
CMU-ITC-85-041

Unix Facilities for Andrew

David S. H. Rosenthal

Information Technology Center
Carnegie-Mellon University

Schenley Park
Pittsburgh PA 15213

Introduction

The software basis for the Information Technology Center's plans for
campus-wide deployment of personal workstations is called Andrew. It
consists of two major components; a remote file system and support for
bitmap displays and mice as the user interface.

The Andrew system currently runs on a number of different types of works-
tations and mini-computers, all running the 4.2BSD version of Unix.
Porting the system to another version of Unix would raise some issues;
those that we can forsee are discussed here.

Prerequisites

Carnegie-Mellon has devoted much time, effort and investment to ensure
that all significant computers on campus can communicate using the DAR-
PA protocols. Although a version of Unix that supported some other pro-
tocol family, or no networking at all, might be technically capable of sup-
porting at least the user interface of Andrew, it would not be acceptable to
CMU.

Remote File System

Andrew's remote file system operates by caching whole files on a
workstation's local disk. It places two requirements on the underlying Unix
system:

1. It must be possible to add code to the kernel to intercept certain file
system operations, and pass information describing them to a user-
level cache manager process. The files affected in 4.2 are:

../h/ermo.h

../h/file.h

../h/inode.h

../h/mount.h

../h/proc.h

../h/user.h

../sys/kern_descrip.c

../sys/kern_exec.c

../sys/kern_exit.c

../sys/kern_fo rk.c
../sys/kern_sig.c
../sys/quota_kern.c
../sys/sys_inode.c
../sys/ufs_inode.c
../sys/ufs_mount.c
../sys/ufs_nami.c
../sys/u fs_syscalls.c
../sys/ufs_xxx.c
../sys/__page.c
../machine/conf.c
../m achin e/m achdep.c

Note that some important .h files are m,odified, so installing this in-
tercept code requires that the entire kernel be re-compiled from the
source.

2. The cache management process uses the socket mechanism to com-
municate with the remote file servers.

User Interface Support

The user interface support in Andrew consists of a user-level window-
manager server process, that mediates all access to the display. Clients
make remote procedure calls on this service over TCP/IP stream socket
connections. Porting the user interface support to a new display involves
changes only to the server process, and is normally only a few clayswork.

The Athena project at MIT has a similar window-maanger server process,
called X. Although there are several differences between Andrew and X,
we hope that X can be made upwards-compatible from Andrew. Their re-
quirements for the underlying Unix system should be identical.

Socket Mechanism

The communication of the remote procedure calls between the clients and
the server uses the socket mechanism of 4.2BSD, specifically stream sock-
ets. An alternative inter-process communication facility that permitted un-
related processes to establish reliable bi-directional byte stream connections
could be used, but would sacrifice remote access to windows.

Select System Call

The select0 system call permits processes to wait for I/O activity on multi-
ple descriptors. To support Andrew, it must at least work for descriptors
representing the mouse, keyboard, pseudo-TTY, and IPC channels.

Non-blocking 110

It must be possible to set at least those descriptors that support select0 into
non-blocking mode.

Pseudo-TTYs

Either the pseudo-TTY mechanism of 4.2BSD, or the stream I/O mechan-
ism of Version 8 is required to support Andrew. These facilities permit
processes to act as terminal emulators. Andrew uses the TIOCREMOTE
mode of 4.2BSD's pseudo-TTYs.

Signal Mechanism

The signal mechanism of earlier versions of Unix suffers from race condi-
tions, and is unreliable. Andrew requires reliable signals, such as those
implemented in 4.2BSD.

Direct Access to Display

The user-level window manager must be able to map the actual pixels of
the display, or for displays with autonomous RastcrOp hardware the device
registers, into its address space. Systems (such at the AT&T Unix PC)
which forbid user-level access to the display, and require a system call per
RasterOp, would not provide acceptable performance.

Mouse Driver

The Andrew window manager performs its own mouse tracking, accessing
the mouse as a TTY-like device, and interpreting the hardware protocol for
several mice. A kernel that supported mouse tracking would provide
smoother movement, but it would probably be necessary to map the regis-
ters controlling cursor position into the window manager process while still
providing select0 indication of mouse movement. At times, Andrew uses
relatively large (> 64 pixel) cursors.

Large Networks of Unix Workstations
Need Auto-Configuration

David S. H. Rosenthal

Information Technology Center
Carnegie-Mellon University

• Pittsburgh PA 15213

Introduction

A feature of some Unix kernels of particular importance for large networks
of workstations is auto-configuration, the ability to determine the set of
available peripherals at boot time. This paper discusses the reason for its
importance, and some implications for hardware design.

The Problem

The Unix kernel is not, in general, a completely static piece of software,
installed in ROM during manufacture. It changes as bugs are fixed and ex-
tensions are made. Nor are the workstations to be deployed on campus
fixed hardware configurations. Options will be added or removed during
their lifetime.

The System V kernel must be configured for the set of devices actually
present on the machine it is to run on. Attempting to use a device that is
not actually present is a fatal error, there is no way for application software
to determine whether a configured-in hardware device is actually present in
a safe way.

In a large network of workstations, many of them owed by individuals, it
will be extremely difficult to:

a) Keep track of the actual hardware configurations of each machine.

b) Ensure that each machine acquires the appropriately configured ker-
nel whenever its hardware is changed.

c) Ensure that fixes to the kernel get propogated to individual machines
in a timely fashion, and in the appropriate configurations.

Auto-Configuration

The Berkeley kernel, on the other hand, auto-configures itself. Attempts
by application programs to use devices that don't exist are quite safe; the
open() call on the device file fails. All workstations of a particular type
(for example all our Suns) can run the identical binary image of the kernel.
At boot time, this kernel examines the hardware it is running on to deter-

-2-

mine the set of devices available.

Thus no effort is required to track hardware configurations; bringing up a
new or modified workstation merely requires use of the current binary ker-
nel image. Similarly, only one new image need be propogated when a fix
is made.

Hardware Requirements

4.x BSD Unix auto-configures by calling a probet I routine for each dev-
ice that it supports. The responsibility of the _ robe() routine is to locate
all instances of its device that are actually present in this particular machine.
It does so using a compiled-in list of the possible I/O locations at which in-
stances of the device may exist, and attempting to verify their presence.
Different devices may share I/O locations provided it is possible for
software to disambiguate them (for example, by reading registers or causing
interrupts to different vectors).

This process can be performed only if the hardware:

a) Permits the presence (or absence) of a device at a particular location
to be determined,

b) Permits the parameters of different storage media attached to the
same controller to be determined (for example, it must be possible
to tell how many sectors, heads and cylinders a particular disk has),

c) Permits devices sharing the same I/O location to be disambiguated.

