CMU-1TC~-84-035

The ITC Project: An Experimentin

Large-Scale Distributed Personal Computing!

M. Satyanarayanan
Information Technology Center
Carnegie-AMellon University

October 1984
Abstract

The Information Technology Center, a collabrative ceffort between International
Business Machines Corporation and Carncgic-Mellon University, is currently in
the process of designing and implementing what may be one of the largest
distributed computing systems yet attempted. This paper traces the origins of the
project. discusses design issues pertinent to it, and gives an overview of the current
status of a prototype implementation. 'The design described here combines the
case of information sharing characteristic of timesharing systems with the richness
of uscramachine interaction typical of personal computing. ‘The resulting
synergesis yields a model that may well become the standard computing paradigm
of the next decade.

1. The Mission

Carnegic-Mellon University (CMU) is a small, technically sopbisticated institution located on a
geographically compact campus. These attributes, in conjunction with rapidly advancing technology in the
computer industry and an enlightened administration have given rise to a project to produce a campus-wide

integrated personal computer environiment.

In 1979 the Computer Science Department at CMU (CMU-CSD) carried out an extensive study to
determine the characteristics of a computing environment appropriate for computer science rescarchers in the
1980's. Their report [24] described the specifications of a hypothetical high-function personai computer called
the Spice machine. The key attributes of this machine were the use of a bit-mapped display and a pointing
device, virtual memory, attachment to a lecal arca petwork, a multi-process operating system, and a
sophisticated user interface. Using off-the-shelf hardware that approximated these 1equirements, the Spice
project at CMU-CS! has been engaged in rescarch to design and build e soltware component of the Spice

machine.

In Scptember 1981, the president of CMU creared a multi-disciplinary task force to consider the role of

computing in CMU’s cducational program. The wsk force repoct [16] caphasised the need to maintain and
I 8 i

11\ prelimninary version was presented o< an invited paper at the Networks 84 Conference held in Oclober 1984 at Madras, India.

cnhance CMU's preeminence in the arca of computing. The proliferation of personal computers points to a
situation where small, technical universitics will have one computer per person on campus by 1990. The task
force reccommended that this process be controlled and accelerated at CMU. thereby giving it an opportunity

to set the standard for educational computing in the next decade.

Experience with personal computing has been overwhelmingly positive in small groups such as individual
departments and rescarch laboratorics. However, the cost/benefits of personal computing arc not yet so
demonstrably superior that businesses or large universitics are willing to adopt it as their model of computing.
With its particular strengths, CMU is in an excellent position to conduct an cxperiment in large-scale personal
computing. CMU students would thus not merely be computer literate, but would actually advance the use

of technology in the world.

The task force report strongly emphasised the importance of communication between all the personal
computers and mainframes on campus so that maximal sharing of information and resources would be
possible. The natural outcome of such a strategy would be a network of personal computers which is larger

than any devcloped hitherto.

Contemporancously, IBM was developing a strategy for increased involvement with universities. [ts
primary goal was to become a leading purveyor of computing systems to rescarch-oriented universitics.
Discussions with CMU resulted, and the advantages of a collaboration soon became obvious to both parties.
CMU could be a showcase for advanced IBM products, and a source of ideas for future products. 1BM’s
devclopment community would also benefit from interaction with the university. For its part, CMU would
reccive considerable development resources and the confidence that the system it developed would not

become a one-of-a-kind curiosity.

In October 1982, CMU and 1BM signed a contract which created the Information Technology Center
(ITC). Located on the CMU campus, the charter of this organisation is to design and develop a systemn based
upon [BM hardware to support CMU’s ambitious plans for educational computing. In a nutshell, the mission
of the I'T'C is to provide the softwarc underpinnings nceded to harness the energy and creative talents of the

entire university in making computers an integral part of the educational process.

2. The Computing Paradigm

2.1. Personal Computing
Personal computers have been touted by manufacturers and users as the wave of the future. Like other
buzzwords, the phrase “personal computing™ has come to acquire a varicty of shades of meaning. What docs

it connote in the context of the I''C project?

The cra of personal computing was ushered in by two independent cvents in the 1970's. ‘The first of these
was the introduction of stand-alone microprocessor-based computers by companies such as Apple Inc. The
identifying characteristic of this class of machines was their cost: it had to be affordable to small businesses
and individuals. This cost constraint and the available technology dictated the architecture, hardware
implementation, and software aspects of these machines: floppy disks, 8-bit data paths, character-displays,
and BASIC were the order of the day. From a user’s point of view, the only real difference between using such
a machine and using a timesharing system was the fact that the performance of the former was constant and

predictable, unaffected by the activities of other users.

‘The second influence was the Alto project at Xerox's Palo Alto Rescarch Center [27). In a radical departure
from traditional dcsigns, this project sought to make possible a “paperless office,” where clectronic media
could totally replace the printed page. A custom-built stand-alone machine was desiened as part of the
project. Integral to this design were a pixel-addressable display mapped into main mcemory and a pointing
device (a mouse). The software for this machine treated the screen as a two-dimensionat collage of text and
graphical imagces rather than a onc-dimensional string of text. Small graphical fcons were uscd to symbolize
actions or states, and mouse movements and button clicks rather than keystrokes were uscd by humans to
communicate with the machine. The Alto project was thus as farrcaching an advance over traditional
timesharing user interfaces as timesharing was over batch processing. The model of man-machine
communication first demonstrated in this project has now come to be accepted as a highly desirable one,

particularly for novices.

The confluence of these two independent developments has yiclded the class of personal computers
envisioned in the I'TC project: individual students and faculty will cach possess a workstation with a bit-
mapped display, pointing device, and uscr-interface software that exploits them. Within this general scenario
there are, of course, many degrees of freedom in design. The challenge is to find a design that is friendly to a
novice user, and yet docs not hinder the expert. An important class of experts in this regard is the set of

application developers who will create cducational software,

'The need to span a wide spectrum of user sophistication has motivated the ITC to require that the hardware

possess a large address space, virtual memory, and a multi-process operating system, in addition to a bit-
mapped display and mouse. The Sun Microsystems Inc. workstation, which possesses these features, has been
chosen as the hardwarce for internal development in the I'TC and pilot deployment to a small sct of users.

Hardware currently under development by IBM will be used in the large-scale deployment to students and

faculty.

On the software front, the desire to have a shortened development cycle, a stable software basc, and the
ability to import existing applications has resulted in the adoption of Unix? as a de facto I'TC standard. In the
long run it is cxpected that workstations with a variety of operating systems will be integrated into this

environment. Initially, however, they will all run 42BSD Unix with minor, upward-compatible ITC

modifications.

2.2. Timesharing

An unanticipated side-cffect of the popularity of timesharing was the use of computers as a vehicle for
communication between users. Sharing of information via a file system, clectronic mail, and bulletin boards
is now taken for granted. In fact, there are many users for whom the communication and information sharing

aspects of a computer arc far more important than its strictly computational capability.

In moving away from timesharing to personal computing, it would indeed be unfortunate if users lost the
ability to communicate among themselves. ‘The development of local area networks (1LANSs) specifically
addresses this issue. Originating with the Ethernet[14] in the Alto project, the linking together of
workstations by a LAN has become standard practice in institutional environments. Inter-machine mail and
bulletin board facilities are typical utilitics in a nctworked personal computer environment [4, 2).
Transmission of files between machines, and the use of a shared facility as a repository of files arc also
common [3, 26]. LANs also make possible the shared use of relatively expensive peripherals such as laser

printers,

In a timesharing cnvironment, cooperation between users is particularly simple because of the existence of
common logical name spaces. For example, two users who are sharing a file refer to it using the same name;
the physical locations at which they are logged in is immaterial. As another example, mail from one user to
another need only specify the recipient’s name; no information need be given about the tcrminal at which the

latter will login to read mail.

While a networked personal computing environment provides connectivity, it does not automatically imply

2ln particular, the 4.2 Berkeley Standard Distribution (4.2BSD Unix) has been adopted.

the same case of sharing. Each workstation in such an environment has a unique network address which has
to be specified when accessing files from it, or when sending mail to its owner. Further, explicit user actions
arc usually required to achicve sharing: before using a file, a user has to run a program to transfer it to the
network node where he is currently located: changes made by him are not visible to other workstations until
he transfers the modified file to them or to a central repository. A corollary to these observations is that user
mobility is limited. One cannot create a file at one workstation, walk to another workstation, and access that
file with the cffortlessness that is possible when using geographically scparated terminals of a timesharing

system.

In a relatively small network, the limitations exposed in the previous paragraphs may not impact user
productivity significantly. The I'I'C project, however, aspires to interconnect over 5000 workstations! Almost
by definition, an academic environment requires a large amount of information sharing. A high degree of

user mobility between dormitorics, faculty offices, libraries, and laboratories is also essential.

In the light of these observations, the second fundamental goal of the I'I'C project becomes evident: to
make possible an information sharing environment that has the same degree of Location Transparency and
User Mobility that is available in a well-designed, modern, timesharing system. Unix, once again, is a good

role model for this aspect of the system.

2.3. VICE and VIRTUE

The computing paradigm cnvisioned in the ITC is thus a marriage between personal computing and
timesharing. It incorporates the flexibility and visually rich user-machine interface made possible by the
former, with the the case of communication and information sharing characteristic of the latter. This model is

depicted in Figure 2-1.

The large amocba-like structure in the middle, called VICE, is a collection of communication and
computational resources serving as the information sharing backbone of a user community. Individual
workstations, called VIRTUES, arc attached to VICE and provide users with the computational cycles needed for

actual work as well the overhcad of a sophisticated user-machine interface.>

VICE provides a common name space for shared resources, particularly files. Users may thus access files in a
uniform manner regardless of the specific workstations at which they arc logged in, or at which the files were
created originally. VICE has mail and bulletin board facilities, thus obviating the need for location-specific

information in sending mail or posting notices. Software in cach VIRTUE workstation makes these facilitics of

3Rumour has it that vice stands for “Vast Integrated Computing Environment.” vikTUE, of course, is one's only defense against vice!

VIRTUE
|
! R
I Y
U 1)
E,

VIRTUE

VIRTUE

Figure 2-1: VICE and VIRTUE

VICE appear as a transparent extension of that workstation’s operating system.

The VICE-VIRTUE interface has two important propertics:

L. It is a relatively static programming interface.
Enhancements to this interface will typically be made in an upward-compatible manner. This
allows advances in technology to be taken advantage of. without system-wide trauma. A ncw type
of workstation will require some software development to integrate it with vick. However,
cxisting workstations will not be affected in any way. In the long run, therefore, one can cxpect a
situation where non-homogencous workstations are attached to VICE, but share its resources in a
uniform manner. Even at the present time two different types of machines (Sun Microsystems
workstations and Digital Equipment Vaxes) running 4.2BSD Unix are capable of accessing VICE.

2. It is the boundary of trustworthiness.

All computing and communication clements within VICE may be assumed to be secure. This
guarantce is achicved through physical and administrative control of computers and the use of
encryption on cxposed parts of the network. No user programs are exccuted on any VICE
machine. Barring 'I'rojan horsemanship, therefore, VICE is an internally sccure environment. The
workstations, however, are owned by individuals who are free to modify the hardware and
software in any way they choosc to. Hence VIRTUE is not trusted by VICE, except for the duration
of an authenticated session at the beginning of which credentials are exchanged, and during which
communication between VICE and VIRTUE is encrypted.

‘The ITC project may be naturally decomposed into three parts:

L. A Network Communication component, dealing with the hardware and software nceded for inter-
machine communication.

2. The Shared File System, which is the first and most important shared resource in VICE,

3. The User Interface on an individual worktation, which is the aspect of the ITC project most visible
to the average uscr.

We examine these topics in the next three sections of this paper.
3. Network Communication

3.1. Connection Structure

Conventional wisdom, based on LLAN usage cxpericnce such as that reported in [6, 23], suggests that
nctwork utilization is rarely high enough to be a serious concern in designing a distributed system. However,
the scale of the I'TC project is one to two orders of magnitude larger than that of most existing networks.
Consequently, it is possible that network utilization may become a serious source of performance degradation
in a fully configured system. Even if network delays turn out to be inconscquential, there is still cause for
concern: the shared computing clements within VICE may become bottlenecks. The evidence indicates that

this is indeed a possibility in real systems [12].

The ITC project uses a design strategy that cxploits locality of reference to reduce network and server
utilization. Viewed at a finer granularity than Figure 2-1, VICE is composed of a collection of semi-
autonomous Clusters connccted together by a Backbone [.AN. Figure 3-1 illustrates such an interconnection
scheme, assuming a lincar topology conncction medium such as Ethernet. Fach cluster consists of a collection
of workstations and a representative of VICE called a Cluster Server. Physical sccurity considerations may
dictate that cluster servers be co-located in small groups in machine rooms, even though cach cluster server is
logically associated with the workstations in its cluster. Being part of VICE, a cluster server only runs software
trusted by the system administrators. There is no mechanism for users to run their programs on cluster

scrvers.

The Bridges which connect individual clusters to the backbone serve both as routers and as traffic filters.
The routing capability of these clements provides a uniform network address space for all nodes, obviating the
need for any end-to-cnd routing by scrvcr:s and workstations. "The key to effective use of this interconnection
scheme for reducing network utilization lics in designing the software so that most network traffic remains
within a cluster. Inter-cluster traffic via the backbone should be the exception rather than the rule. The file
system described in Scction 4 is designed with this goal in mind. There is conceptual similarity between this
problem and that faced by sofware on Cm*, a multiprocessor with differential memory access times caused by

the clustering of its constituent processors [11].

Backhone Fthernet

L

Bridge

Bridge
Cluster
Server
WS
WS
WS
WS
WS
Cluster 0

3.2. Network Hardware

Though the distributed nature of the ITC project is pervasive at all levels of the design, there is suprisingly
little dependence on specific attributes of the network hardware. There is no requirement, for instance, that

the connection media be capable of broadcast communication. The only features required of the network

hardware are;

WS

WS

Cluster

Server

WS

WS

Cluster 1
Figure 3-1: Ethernet VICE Topology

1. High spced (in the 1 to 10 Mbit/s range).

2. Low crror rate (comparable to that of Ethernet).

WS

Bridge
Cluster
Server
WS
WS
WS
WS
WS
Cluster2

3. Addressing and node attachment capability adequate for 5000 to 10000 nodes.

4. Availability as a standard vendor product, with a full range of accessorics for maintenance.

5. Low-cost adaptors, to minimize the expense of VICE-VIRTUL attachment.

The long-range plans of the I'TC call for the use of a token ring network currently under development by

IBM. "This network is based on (but is not plug-compatible with) the token ring developed at IBM Zurich [51.
and conforms to the IEEE Standard 802 {10]. In the short term, for development purposes and pilot

deployment the I'T'C is using Ethernet as the networking medium.

There is some controversy over the relative merits of CSMA-CD technology (Ethernet in particular) versus
token ring technology in a large-scale network. An cloquent defense of token rings has been put forth by
Saltzer et al[19]. The compelling argument in favour of token rings is that workstations may be attached
using wiring technology identical to that used in wiring telephones: one which has evolved over the years to
allow casc of serviceability, fault detection, and fault isolation. ‘T'he more ad hoc attachment scheme
characteristic of Ethernet is convenient for small installations but may not be ideal for a user community as
large as the entire CMU campus. Proponents of the Ethernet point to the fact that this is a mature

technology, is in widespread usc, and is supported by a large number of independent vendors.

It is not clear at this point in time how this controversy will be resolved. Usage experience with a pilot
deployment using Ethernct and IBM sponsorship of the project are two factors that will undoubtedly play a
role in the final decision. Fortunately, I'TC-developed software is quite well insulated from the specifics of
nctwork hardware. Moving to a token ring network would require writing device drivers and a
communication protocol package for the workstations and servers. 'The bulk of the file system and user

interface software would be unaffected.

3.3. Network Protocols
Expcrience with nctworking over the last decade has emphasised the impertance of using standardized
communication protocols for inter-machine communication. Preciscly what protocols are used is far less

important than the fact that all interconnected machines use the same protocol.

Prior to the inception of the ITC, many of the departmental mainframes at CMU used the IDARPA Internct
Standard protocols [7] for communication. This is a family of protocols spanning the levels between the
Application Layer and the Network Layer of the 1SO Open System Interconnect Reference Model [8]. The
family consists of an unreliable datagram protocol (IP/UDP) and a reliable byte stream protocol (IP/TCP) at
the lowest levels, with end-user application protocols such as those for mail, file transfer, and remote login

built on top.

Due to its sponsorship by the US Department of Defence, this protocol family has become the lingua franca
of the Arpanct user community, of which CMU is a very active member. Further, the 4.2BSD Unix operating
systemn, which is being used as a basc for VICE and VIRTUE, alrcady has implementations of these protocols

built into it. Consequently, the I'TC has adopted the Internet protocol family as its standard too.

High-level communication between VICE and VIRTUE is based on a client-server model using Remote
Procedure Calls (RPCs) for transfer of data and control [IS]. An RPC subroutine package has been

implemented on top of the Internet protocols at the 1TC [21]. The distinctive features of this package are:

1. The transfer of bulk data objects, such as files, as side effects of remote procedure calls. This
capability is used extensively in the file system for caching of files at workstations.

RS]

. Built-in authentication facilities which allow two mutually suspicious parties to exchange

credentials via a 3-phase encrypted handshake. ‘This mechanism is used by servers in VICE to
authenticate users.

3. Optional usc of cncryption for secure communication, using session keys generated during the
authentication handshake.

4. The Shared File System

Network file systems have been the subject of investigation in a number of projects over the last few years

[17.1]. A good discussion of these designs may be found in Svobodova's survey [26]. Typically, these designs

have been intended for networks with at most a few hundred nodes. With its ambitions to span an order of

magnitude more nodes, the I'T'C distributed file system design problem had to be approached afresh: the

designers had little confidence that an adaptation of an cxisting design would prove adequate to the task.

The goal of the I'TC is to produce a distributed file system possessing the foliowing propertics:

Location transparency

User mobility

Security

Performance

Expandibility

A user need never know which network node a particular file is located at. For all intents
and purposcs, the distributed file system is viewed by users as a giant timesharing file
systermn, : '

A uscr can suspend work at one workstation, move to any other workstation and resume
work without explicit actions to transfer files. A workstation is “personal” only in the sense
that it is owned by a particular individual.

It cannot be assumed that all users of the system arc non-malicious. In particular, the
hardware and software on workstations may be modified in arbitrary ways by their owners.
Network communications cannot be assumed secure. The design of the system should
allow casy and flexible sharing of resources (in particular, files) in such an cnvironment,

The user-perceived performance should be no worse than that of a well-designed, lightly-
loaded timesharing system. Users should not feel the need to make explicit file placement
decisions on account of poor performance.

It should be possible to expand the system in a graceful and non-traumatic manner. [t is
cxpected that the total number of network nodes in the system will be between 5000 to
10000, thus making it one of the largest distributed file system in cxistence.

10

Reliability As users become dependent on this system, system non-availablity will become
increasingly intolerable. While not as stringent as in a real-time process control
cnvironment, reliability and availability are none the less very important goals.

The following sections describe the main architectural features of a design that addresses these issucs.

4.1. Naming
From the point of view of cach workstation, the space of file names is partitioned into two subspaces: Local

and Shared. Figure 4-1 illustrates this partitioning of name spaccs.

Figure 4-1: Shared and Local Name Spaces

The shared name space is the same for all workstations, and contains the majority of files accessed by users.
The local name space is small, distinct for cach workstation, and contains files which typically belong to one

of the following groups:

L. System files essential for booting the workstation and for its functioning prior to connecting to
VICE.

2. Temporary files, such as those containing intermediate output from compiler phascs.

3. Data files which the owner of the workstation considers so sensitive that he is unwilling to entrust
them to the sccurity mechanisms of VICE. Such files cannot, of course, be accessed in a location
transparent manner.

In addition, to improve performance and to allow at least a inodicum of usability when disconnected from the

11

network, certain commonly used system programs may be replicated in the local name space of cach

workstation.

Both the local and shared name spaces are hicrarchically structured, and are similar to a timesharing Unix
file system {18]. In Unix terminology, the local name space is the Root File System of a workstation and the
shared name space is Mounted on the node “/vice” during workstation initialization. Figure 4-2 depicts this
situation. Since all shared file names generated on the workstation have “/vice” as the pathname prefix, it is

trivial to disambiguate between local and shared files.

tmp L T) Vmuﬂix
Local Files /vicc \
Shared Files

Figure 4-2: A Workstation’s View of the File System

4.2. Data Distribution and Replication

Each cluster server in VICE runs a file server process which supports operations such as storing and
retricving files on that cluster server in response to workstation requests. The hierarchical file name space is
partitioned into disjoint subtrees, and cach such subtree is served by a single cluster server, called its Primary
Custodian. Storage for a file, as well as the servicing of requests for it, arc the responsibility of the
corresponding primary custodian. Certain subtrees which contain frequently read. but rarely modified files,
may have rcad-only replicas at other cluster servers. These read-only sites are referred to as Secomdary
Custodians for the subtree, and cach of them can satisfy rcad requests independently. Write requests to that
subtree have to be directed to the primary custodian of the subtree, which will perform the nccessary
coordination of secondary custodians. Changing the custodian of a subtree is a relatively heavyweight
process: the design is predicated on the assumption that such changes do not occur on a minute-to-minute

basis, bul are batched together and typically done once a day.

Each cluster server logically contains a location databasce which may be queried by workstations to ascertain
the custodian of any file. The query may be addressed to any cluster server, but performance considerations

suggest that the communicating partics be on the same cluster. The size of this replicated database is

12

relatively small because custodianship is on a subtree basis: if all files in a subtree have the same custodian,

the location database need only have an entry for the root of the subtree.

The location database changes relatively slowly for two reasons:

1. Most file creation and deletion activity occurs at depths of the naming tree far below that at which
the assignment of custodians is done.

2. Reassignment of custodians is infrequent and is initiated via administrative procedures.
Conscquently, a specialized slow-update procedure which updates the custodianship information
at all cluster scrvers is possible.

The assignment of custodians to the file subtrees of individual users is done so that there is a high
probability of a user being at a workstation on the same cluster as his custodian cluster scrver. A faculty
member, for instance, would be assigned a custodian on the same cluster server as the workstation in his
office. This assignment does not affect the faculty member’s mobility, since he could access his files from any

other cluster on campus, albeit with some performance penalty.

4.3. Caching

In this design, caching of cntire files on workstations is the primary mechanism used to attain location
transparency, performance, and application code compatibility. Fach workstation has a local disk, part of
which is uscd to store files in the local name space, the rest being used as a cache of files in the shared name

space.

When an application program on a workstation makes a system call to open a file, the request is first
cxamined by the kernel to determine whether the file is local or shared. In the former case, the open request
is satisficd cxactly as in a stand-alone system. For a shared file, the cache is checked for the presence of valid
copy. Ifsuch a copy exists, the open request is treated as a local file open request to the cached copy. If the
file is not present in the cache, or if the copy is not current, a fresh copy is fetched from the appropriate

custodian. All these actions arc transparent to application programs; they merely perform a normal file open.

After a file is opened, individual read and write operations on a shared file a dirccted to the cached copy: no
network traffic is gencrated on account of such requests. On a close request, the cached copy is first closed as
a local file; this copy is then transmitted to the appropriate custodian. The cache thus behaves as a write-

through cachc on closcs.

Checking the validity of a cached copy of a file is - done by workstations rather than by a broadcast

invalidation mechanism as in multiprocessor systems. "This is because only a small fraction of the total update

13

activity in the entire system is likely to affect an individual workstation. Broadcasting all such changes is

likely to have a drastic cffect on performance.

The caching mechanism allows complete mobility of users. If a user places all his files in the shared name
space, his workstation becomes “personal™ only in the sense that it is owned by him. The user can move to
any other workstation attached to VICI: and use it exactly as he would use his own workstation. The only
observable differences would be an initial performance penalty as the cache on the new workstation is filled
with the user’s working set of files and a smaller, perhaps unnoticeable, performance penalty as inter-cluster

cache validity checks, lock requests, and cache write-throughs are made.

The caching of entire files, rather than individual pages, also has a beneficial effect on performance:

1. Network overheads are minimized because custodians are contacted only on file opens and closcs,
and not on individual rcads and writes.

2. The servers do not have to maintain state information about open files in the system.

[ncvitably, there are some files which are far too large to fit in workstation caches. These are typically
databascs, such as the on-linc card cataloguc of the university library. The current design does not address
this class of files; scparate mechanisms for accessing such databases have to be developed. Except in such
cases, actual usage cxperience has shown that the need to cache entire files is not a problem. Studies of file

usage patterns in real systems have, in fact, shown that most files tend to be small [20, 12).

4.4, OtherIssues

VICE provides multi-reader/single-writer synchronization for files. Read locks are optional, but a write lock
prior to creating or overwriting a file is mandatory. These are more stringent requirements than those in
Unix, but were felt to be necessary in view of the size of the shared file space, and the amount of concurrent
usage activity on it. Application programs do not, of course, have to do explicit locking; it is done on their
behalf by the caching software on their workstations. If communication with a workstation is lost, VICE

automatically breaks all locks granted to that workstation.

In oider to allow flexible yet controlled sharing of resources in VICE, an access list package has been
developed. The protected objects in the file system are directories, not individual files. Typical modes of
sharing between users lead us to believe that the overheads involved in associating an access list with cach file
is unwarranted. Entrics in an access list may correspond to Users or Groups. Users are typically humans,
while groups arc collections of users and other groups. The recursive structure of groups implics that a user
may be a direct member of a group, or an indircct member via transitivity of the membership property.

When accessing an object in VICE, the rights accrued to a user arc the union of the rights posscssed by all the

14

groups that he is a direct or indirect member of. More details on the protection mechanism may be found in

the design document [22].

For reliability, a directory can have a Backup custodian specified. ‘This custodian contains an exact image
of the original dircctory, and changes 1o the latter are asynchronously reflected to the backup. Currently, the
backup copics of files arc read-only by workstations. Algorithms for allowing workstations to dircctly modify

backup dircctories are under consideration.

Further details on the design of the shared file system may be found in the design documents [9, 28].

5. The User Interface

In the uvser interface domain, the role of the ITC is to design and develop software that allows application
devclopers to casily exploit the graphics capabilitics of workstations. Since user-interface code in the past has
tended to be highly hardware-specific, one of the goals of the I'I'C has been to develop software to insulate
application developers from the details of the graphics hardware. Software has also been developed to
simplify and encourage the implementation of consistent application-specific user intecfaces. This is
particularly important for novices, since they are often overwhelmed by the diversity of application-specific

knowledge they need to possess to effectively use the system,

The user interface offerings of the I''C can be categorized as follows:

o A Window Manager that allows multiple processes to share a bit-mapped display.
o A Tool Kit of graphical data types for application developers.

o Applications built using the window manager and the base cditor.

We examine each of these components in the following sections.

5.1. Window Manager

The window manager may be viewed as a Hoare-style monitor that manages the display, mouse, and
keyboard attached to a workstation, allowing multiple processes to usce these devices without interfering with
cach other. Two features of 4.2BSI) Unix arce essential to the window manager implementation: inferprocess
communication between ancestrally unrelated processes, and the ability to simultancously wait for input from
many different devices. No kernel modifications are nccessary, since the window manager runs as a user

process.

The screen is partitioned into non-overlapping rectangular Windows, cach associated with a unique Client

process. A client can have more than onc window associated with it, though this is not usually the case.

15
Figure 5-1 shows the typical process structure on a workstation, with a number of client processes
communicating with the window manager. A specialized remote procedure call mechanism is used for

communication between clicnts and the window manager. To obtain satisfactory interactive performance,

remote procedure calls which do not return values are batched together prior to transmission.

———<4— from Mouse

l———»—— 0 Display

|—————<&— from Keyboard

Clients Window Manager

Figure 5-1: Window Manager Process Structure

Mouse movements arc tracked by the window manager and converted into the appropriate cursor
movements on the display. Keyboard typein is routed to the client in whose window the cursor was when the
characters were typed in. Clients obtain information about mouse cvents and keyboard typein by querying
the window manager. A pop-up menu system triggered by mouse clicks is provided. The contents of the
menus, and the actions taken on their selection are client-specific. A subsct of the menu items, such as

reshaping a window or redrawing the screen, are acted upon by the window manager itsclf.

Clients have no control over the precise locations or shapes of their windows. These choices are cither
made heuristically by the window manager, or on demand by the user. The window manager docs not
possess adequate high-level knowledge about the contents of windows to be able to redraw them correctly.
Hence, when a window needs to be redrawn, the appropriate client is informed via a software interrupt. It is

the responsibility of that client to query the window manager for the new window coordinates and size, and to

16

make the necessary low-level calls to the window manager to accomplish the redrawing of the window. 'The
fact that clients cannot insist on specific window sizes or shapes, and may be called upon to redraw their
windows at any time, enforces a programming discipline that makes clicnts relatively immune to specific
display hardware characteristics. In effect, clients arce being asked to deal with a new display whenever the

size or shape of a window changes. The window manager itsclf will, of course, have to be modified to deal
with new display hardware.

‘The window manager has been in use in the I'TC for nearly a ycar, and has undergone a number of
refinements. It is so versatile and useful that using it is the norm rather than the exception. Figure 5-2 is a

snapshot of a workstation screen, showing the multi-process. multi-font, and graphic capabilities of the
window manager.

Performance Monitor satyajlitclogo satya

cvu'&,{,VJ“"x.'x,u'u/J'I"'"‘\,,’.afﬁhx,ﬁ, (” ”l ’ , "
o =—

— e
: EditText misc/docs/nutcr. satya

1 satya U uct | Reposition window -

§f:§;§ 2}3 ’}Si Ei?z;?eﬂﬁn\ggwaw The Excelan Nutcracker: An Evaluation
—ruzrwsrwx 1 osatya 1348 Jan | . = .
drwnrwxrwx B8 satva 2560 Qct MM iionu: M 53“45"-3'3‘/3"3"‘

: 2 satya 1024 Oct 15 21:22 netdd Informaton Tecrnalogy Center

2 sat\}a 512 Sep 26 15:45 perf Carnegie-tielion tnnersity
-rw-r--r-- 1 satya 266 Oct 12 09:44 preferences 22 Ceptemoer 1934
druxrwxrux 8 satya 512 Aug 6 12:08 prs
di wir ~xr-x 2 satva 512 Sep 18 17:17 rbench
drwsrwxrwx 2 satya 512 May 22 11:25 readpress " ..
druxrwxrwx 11 sat;a 1536 Sep 12 11:58 rpc What is it?
drwxr-xr-x 2 satya 10824 Nct 13 14:48 scribelib ->

/vice/itc/satya/scribelit The Nutcracker is an Ethernet monitoring device built by

~r=-—===== 1 satya 8 Oct 14 17:01 send-mail. CKP Eicelan Inc. It is 3 stand-szlare wunit incorporating an
-rw-r--r-- 1 satya 2264 Aug 28 03:34 sn. txt Intel-6086 processor, memory, a Ll(Mb ¥inchestar dishk,
drwsrwxzrux 2 catya 512 Jul 24 12:29 <pool snd a Tloppy drive. The zoftw3re on the cystem iz
drusruxrux 2 satva 512 Oct 13 14:54 test ustom=-buiit. Users cannatf program the Mutcracker in
-rw~r=-re= 1 sat‘}a 531 May 5 17:10 todo.dat the usual sense; instead, a menu-driven interface is
drwsrwxrwx 4 satya 512 May 22 11:18 vp used to set up experiments pertaining to Ethernet
drwxr-xr-x 2 satya 512 Sep 25 15:82 zurich traffic generation and monitoring.

satyas,

The Nutcracker's claim to unigueness lies in the special
Ethernst haroware it possesses. This harcware serves
two Tundamental functions:
It allows capture of minimally-spaced packets.
Thus one can be sure that monitoring is
accurate regardliess of trartic conditions.

It provides a packet filtering capability.
Essentially this i3 a pattern matching
capability which can be set to capture packets
with a particular bit pattern at specific

Figure 5-2: Snapshot of a Window Manager Screen

17

5.2. A User-Interface Toolkit

Built on top of the window manager, but distinct from it, is an I'TC-developed library of graphical abstract
data types called the Base Editor Toolkit. These data types are similar to classical abstract data types in
programming languages [29, 13] in that they consist of cncapsulations of data structures and opcerations on
them. However, in addition to a programming interface cach data type also posscsses a well-defined user

interface: a sct of operations that a user can perform using mouse or keyboard input.

Application programs which usc the toolkit exclusively for their interactions with users are benefitted in a

number of ways:

e The toolkit interface is a higher-level interface than the window manager interface. This relicves
the application developer of many programming details.

e The uscr interfaces of programs that usc the toolkit are more likely to be mutually consistent than
those of programs with independently developed user interfaces.

e It is casicr to cxploit graphics hardware and to obtain good performance by carcfully honing the
implementations of a small number of data types than by refining individual application
programs.

The most basic data type in the toolkit is a View, which corresponds to a rectangular screen region within
which an instantiation of another data type may be displayed. The latter may be a pimnitive data typcora
composition of data types. A Document is a data type that may be used whenever text manipulation of any
kind is involved. Documents may range in size from a short label to an entire file. A view of a document is
cssentially a focus of interest on that document. Regions of text within a document may be demarcated with
Markers whosc specific semantics depends on the application program. A Scrollbar is a data type used in
conjunction with a view on a document, and is used to make different parts of the document visible on the
screen. The toolkit includes a family of data types referred to as Buttons. These are labelled, rectangular
screen objects cach of which is instantiated with a set of procedures to be called when a specific event, such as
a mousc click, occurs. Individual members of this family are used to represent scalar data types such as

boolcans, finite sets, and strings.

The toolkit incorporates a Layout mechanism, which deals with the physical placement of instantiations of
data types within a window. Using high-level hints and placement constraints supplicd by the application
program, this mechanism uscs heuristics to determine the actual sizes and locations of individual items within
a window. When a window is moved or reshaped by the user, the layout mechanism is responsible for

appropriately reconfiguring and redrawing that window.

The toolkit is implmented as a library of subroutines in C. No language extensions have been made. It

18

would be possible to incorporate the toolkit into C using a subclassing facility such as that described by
Stroustrup [25]. This would make the programming interface more robust, on account of the stronger

typechecking enforced by the subclassing mechanisim.

Usage experience with the base editor toolkit has proved that it is indeed a valuable asset to the ITC. A
number of application programs have been developed in a surprisingly short amount of time. Having lcarnced
the interfaces to a few of these programs, users are able to intuit the interfaces of the others quite well.
Erriching the sct of primitive data types, and making it casy for uscrs to define their own data types arc two

arcas where further work needs to be done.

5.3. Applications
Using the window manager and the base editor toolkit, a potpourri of applications which use the
capabilitics of a bit-mapped display have been developed at the ITC. The unifying theme of these

applications is that they are of usc to us in the course of our development work.

Examples of these applications are:

e a bulletin board browsing program, supporting an extensible st of interest groups.

® a text editor with dynamic formatting capability. This cditor is superficially similar to a “What
you sce is what you get” editor. but differs from the latter in that it makes no attempt to produce a
replica of a printed page. Reshaping an editor window automatically reformats the text to fit the
new window.

® a spccial preview program that displays formatted text destined for a printer.
® an access list editor for manipulating file system access lists.
e a personnel directory containing the names and addresses of individuals.

e a drawing program which is built dircctly on top of the window manager and provides a
rcasonably sophisticated drawing facility.

® an activity management tool which assists individuals in keeping track of work items.

These applications have been in use for a few months and have come to form part of the repertoire of

programs in regular usc by the [TC.

An cxperimental icon-based interface to Unix, called Don Z, is also being developed. Replacing keyboard
typein almost entirely by mouse actions, Don Z provides users with a way to communicate with Unix in a less
terse and cryptic manner than that required by Unix traditionally. Figure 5-3 shows a screen snapshot during

a dialoguc with Don Z. This system is opcrational but still undergoing development. With experience and

19

refinement, it may well become the preferred mode of communication with Unix in the future.

satyal

itclogo satyaq ‘P-erfor‘r;;é—ﬁcyéwMt;r;ihtovr‘ '
) i \l i \ ‘ \

Ocl’”1[5m1r984 " ﬂ'n}]’ﬁf"»"a'\ﬁ./ k'mlf'b'ﬂ-’“\;ﬂ'ﬁb‘b VA'"JIII\)“L”.J\;’WJ ?‘“M«_,.J/} \NJ
—_ i

‘? 3/ : IA,_J«,‘A_U!\‘,,\LJAJ,A_,L_J.L_,__'”_,,_d,.,__/’ ' ’

LT e . . . de salya

A

: .
EACh gosl dm

T =

1gUTEAL figureAlTev

/binaomn -~ File exists

s iy Lo

s & v
7’ “
e docs || fonts | [is1a32:0] src

Figure 5-3: Don Z.: An Icon-Based Unix Interface

6. Project Status
The I'TC project is currently at the midpoint of its expected development period. ‘The major activitics and

accomplishments to date can be chronologically summarized as follows:
October 1982 IBM-CMU contract signed. cstablishing the I'TC.
January 1983 Project started.
January to July 1983
Hiring, top-level structuring of project, definition of specific goals, architectural

discussions.

August 1983 Development hardware and software obtained. These were Sun workstations running the
4.2BSD Unix operating system. with Fthernet networking support.

20

October 1983 File system architecture complete.
November 1983 First relcase of window manager in use.

November 1983 Prototype file system implementation design complete.

January 1984 First release of basc cditor toolkit available.

March 1984 First application program using base cditor toolkit available.

July 1984 File system prototypc'availablc for use.

Present 30 users in the I'T'C use the window manager, base cditor and file system on a daily basis.

A variety of application packages have been developed on the base cditor for applications
such as bulletin boards, staff directories, and cditing file system access lists,

Our current and projected future cfforts include:

o Pilot deployment of a prototype.
About 30 to 50 faculty members on campus are being sclected for advance exposure to the
prototype system. ‘They will be supplied with hardware and software similar to that in use at the
ITC. This pilot deployment will serve two functions: it will allow the faculty members to use the
ITC system to develop cducational software and, at the same time, give valuable user feedback
about our design and implementation. This deployment is scheduled for November 1984,

o Performance analysis of the file system.
Mecasurement of the current prototype is under way and is expected to yicld information nceded
for a rcimplementation.

@ FIile System Reimplementation.
The current implementation already gives us much of the functionality we require. It is
noticcably slower than a stand-alone Unix file system, but is not so slow that it is unusable. Fora
prototype system, it is quite robust. The reimplementation will use the experience gained with the
current prototype to produce a system that ecmphasises performance and reliability. We expect
this implementation to be available in the spring of 1985.

e Development of application packages
These packages will use the window manager and base cditor for a varicty of end-user
applications.

o Large-scale deployment .
Faculty members arc expected to rececive workstations in the fall of 1985, and students are
expected to receive them a year later. A whole host of activitics, including wiring with LLANS,
porting of the ITC softwarc to the final hardware, and designing appropriate administrative
controls for the system are involved in this aspect of the project.

"To summarize, thercfore, the ITC currently has a small-scale, operational prototype of the system described

in this paper. The next phase of the I'TC’s cfforts is essentially directed at building a scaled-up version of the

21
system, taking due account of our positive and negative usage experiences with the present system.

7. Conclusion

As mentioned at the beginning of this paper, the I'T'C is an institution created with the express purpose of
designing and implementing a computing cnvironment that will serve as a unifying presence in the
cducational, administrative, and social life of CMU. To meet this chalicnge. a system that represents the
synthesis of personal computing and timesharing has been designed. 'The nature of the problem has
necessitated the use of statc-of-the-art techniques in local arca network technology, distributed file system
design, and user interface design. Using cxisting vendor-supplied hardware. a prototype has been
implemented with a view to testing out the design. The experience to date indicates that the design is
fundamentally sound, though refinements are necessary in a number of arcas. As the system grows there will
incvitably be many iterations over the design and implementation of various parts of the system. This is, of

course, a characteristic of almost all large, heavily-used systems regardless of their specific goals.

In conclusion, it is appropriate to ask what is unique and notcworthy about this project. In many ways, the
most fascinating aspect of the project is its scale. Never beforce has there been an attempt to integrate more
than 5000 autonomous computational cntitics, cach under the total control of an unconstrained individual.
Scale is important not becausc bigger is nccessarily better, but because it makes the building of a “real”
system for “reai” users that much harder. Reliability, security, and performance problems all conspire to

make the design of such a systcm an intcllectual challenge of first magnitude.

Acknowledgements

The work described in this paper represents the creative efforts of
the cntire staff of the I'I'C. The author is only one of the many
individuals who have contributed to the ideas described here. Both
CMU and [BM deserve credit for their willingness to chart a course
into unknown waters, and for providing an cxcellent working

environment within the I'TC,

References
[i] Accetta, M., Robertson, G., Satyanarayanan, M. and Thompson, M.

The Design of a Network- Based Central File System.

Technical Report CMU-CS-80-134, Department of Computer Science, Carnegic-Mellon University, August 1980.
2] Birell, A.D., Levin, R.. Necdham, R M. and Schroeder, M.D.

Grapevine: An [ixercise in Distributed Computing.

In Proceedings of the Fighth Symposium on Opcerating Systems Principles. Asilomar, CA. December, 1981,
3] Boggs, D.R. and Taft, EA.

TP,

In Taft, I (cditor), Alto Uscr's Handbook. Xcrox Palo Alto Research Center, September 1979.
[4] Brotz, D. and Levin, R.

[aurel.

In Taft, E. (cditor), Alro User’s Ilandbook. Xerox Palo Alto Rescarch Center, September 1979.
(5] Bux, W, Closs, I Janson, P.A., Kummerle, K., Muller, I1.R. and Rothauser, F.I1.

A local-arca communication network based on a reliable token ring system.

In Proceedings of the Internationai Symposium on Local Computer Networks. 1lorence, ltaly, April 1982,
{6) Crane, R.C. and Taft, F.A.

Practical Considerations in Ethernet Local Network Design.

Technical Report, Xcrox Palo Alto Research Center, October 1979, revised February 1980.
7 Defense Advanced Rescarch Projects Agency, Information Processing Techniques Office.

RIFC 791: DARPA Internet Program Protocol Specification

September 1981.
(8] Day, J.D. and Zimmermann, H.

‘The OSI Reference Model.

Proceedings of the 1EIF, T1(12), December, 1983.
9 Howard, J.11. (Editor).

1TC File System Design.

Technical Report, Information Technology Center, Carnegie-Mellon University, September 1983.
{10] IFEE Project 802 Committee.

Local Area Network Standards (Draft Standard 802.5).
[11] Jones, A.K. and Gcehringer E.I. (I*ditors).

The Cm™* Multiprocessor Project: A Research Review.

Technical Report CMU-CS-80-131. Department of Comiputer Science, Carncgic-Mellon University, July 1980.
{12] lazowska. E.D., Zahorjan, J., Cheriton, ID.R. and Zwaenepocl, W.

File Access Performance of Diskless Workstations.

Technical Report 84-06-01, Department of Computer Science, University of Washington, June 1984,
[13] Tiskov, B.. Snyder, A., Atkinson, R. and Schaffert, C.

Abstraction Mechanisms in CLU.

Communications of the ACM 20(8), August, 1977.
[14] Metcalfe, R.M. and Boggs, D.R.

Lthernet: Distributed Packet Switching for Local Computer Networks.

Technical Report CSL-75-7, Xcerox Palo Alto Rescarch Center, May 1975, reprinted February 1980.
fL5] Neclson, B.J.

Remote Procedure Call,

PhD thesis, Department of Computer Science, Carnegic-Mellon University, May, 1981.
[16] The Task Force for the Future of Computing, Alan Newell (Chairman).

The Future of Computing at Carnegic-Mecllon University.

I'cbruary 1982,

