
CMU-ITC-83-028

WHITE PAPER: A High Level Virtual Machine"

Document Number 003-001/002.00

DRAFT

ITC Internal

June 22nd, 1983

James Gosling

Information Technology Center

Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

2 A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

ABSTRACT

A virtual machine specification is pre- concepts of both Unix and Accent. These

sented which attempts a graceful merging virtual machines have some orthogonal

of the concepts from both Unix and concepts, (Accent's IPC and Unix's file

Accent. Both Unix and Accent present a system) and some overlapping concepts

'virtual machine' (a.k.a. Kernal inter- (e.g. memory management). Where the two

face) to the user. These virtual overlap, there is a very striking simi-

machines are specified at a very high larity; and since the concepts are near-
level, having no mention of any partic- ly the same, Unix's version will be

ular physical machine. This is the key preferred. The task of writing this

to the many successful ports of Unix to paper really boils down to adding into
dissimilar machines. In this paper yet Unix those aspects of Accent which are

another virtual machine is presented not already addressed by Unix.
which attempts to gracefully merge the

Abstract iii

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

iv A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

PREFACE

One of the goals of this exercise is to global version of an Accent Kernal port

define an interface which can be trivi- with some differences in protection
ally brought into existence on many mechanisms.

machines: PERQs running ICI, UNIX or

Accent with a with a Unix interface I'd like to use a completely neutral

package; SUNs; IBM PC's under PC DOS word instead of port or file descriptor
(the C86 compiler at the ITC already ('handle' for instance), but to avoid a

implements much of this specification); jargon explosion I'll stick to 'port.'

IBM PC's with a co-processor (XENIX on a I'll even use 'port' for the Unix 'proc-
SRI-TECH board); and on the final ITC ess identifier.'
Workstation.

All calls on the virtual machine will be

The base of the virtual machine consists specified as procedure calls. Whether

of all the facilities of the C program- they are really procedure calls or they

ming language. One could substitute are inline macros or messages being
Pascal, but I believe one loses more passed off to another process is irrel-

than one gains. (This whole paper will evant. The only thing that is relevant

generally skip justifications in an is how they appear in a program which

attempt to be brief.) uses them. It is expected that there

will be a series of implementations
In reading through the various through time. For example, the file

documents, it's hard to distinguish system might start out being implemented

UNIX's file descriptors and Accent's as it is now in Unix as hardware traps
ports. A Unix file descriptor is really to the kernel, but they may eventually
a process-local name for an object simi- become message communication to some

lar to an Accent port. When you write a remote process. One of the important
program under Accent and declare some- things about this specification is that

thing to be a port, what you really get such migration of implementation tech-

is a process-local name that is the same niques must be transparent -- it must be
as a Unix file descriptor. Hence, for below the visible level of this inter-

this VM, I will merge the two. Also, a face.

Unix process identifier is essentially a

Preface v

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

vi A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

CONTENTS

1.0 Reading and Writing 1 2.2 Exception Handling 4

I.I Names i 2.3 Intra process operations 4
2.4 Other stuff 4

2.0 File Control 3

2.1 Process Control 3 A.0 ??? 7

Contents vii

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

viii A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

(_- LIST OF ILLUSTRATIONS

List of Illustrations ix

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

.+ _

\

x A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT

003-001/002.00 ITC I nternal

1.0 READING AND WRITING

• result = read (port, buffer, len) this same name space. It should be the

• result = write (port, buffer, len) case that if a object is opened using

some name it should be possible to

Read and write read and write len bytes ignore the differences between files,
to or from the buffer from or to a port. devices, and remote servers.
The result indicates either the actual

amount transferred or an error. Ports Some possible flags are:
will have protocols associated with

them: Stream or Datagram. One can " FRDONLY

think of stream as being datagrams with • The port will only be used for read-

the protocol envelope stripped off, ing FWRONLY

leaving only the data. Essentially, all • The port will only be used for writ-

file and terminal I0 will be done via ing FRDWR

stream reads and writes. Properties • The port will be used for reading

such as timeout intervals and blocking and writing FAPPEND

are associated with a port through • Append on each write FCREATE

seperate control operations -- this is " Create file if it doesn't exist

done to simplify the common case. FTRUNCATE

• Truncate size to 0 FDGRAM

• Do datagram I0 (defaults to stream)
FIPC

1.1 NAMES • The name being established is one to

which others can connect -- they

will be connected to this process.
• port = open (name, flags)

• err = link (name1, name2) Link and unlink have their Unix seman-

• err = unlink (name) tics (establish an alternate name and

• err = access (name, IntendedMode) remove a name). Symbolic links seem
• err = chmod (name, NewMode) essential, but I will leave that issue

• err = chdir (name) open.

Open creates a port and asociates it Access probes the accessibility of some

with a named object. Detailed options object in the name space.
are specified with the flags. In the

simple case, name is the name of a file Chmod changes the accessibility of an

in the usual Unix herarchical name space object if the user is so priviledged.
(this name space may be distributed

across many machines, it may even con- Chdir changes the 'viewpoint' of the

tain devices and other processes, but it program with respect to the global name

is a single uniform name space); and space: names can be given where the

flags specifies reading or writing to a base of the name space is the root of

flat byte stream file. Devices are the file system; or relative to the

integrated into ths name space: they 'current directory' which is just a

appear as nodes (not necessarily shorthand way of talking about where the

leaves!) in the tree. For example, user is working now. It takes the name

'/dev/Ipt' might be the lineprinter, of the directory as an argument.
Remote services are also integrated into

Reading and Writing i

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

2 A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

2.0 FILE CONTROL

• err = close (port) 2.1 PROCESS CONTROL
• err = ioctl (port, opcode,

argrecord)
• err = stat (port, &information) • port = fork (kind)
• err = seek (port, base, offset)

• err = pipe (portpair) • exec (program, args...)
• port = interpose (him,

hisport)?????? • port = wait (&status)
• select = (readports, writeports,

exceptports, timeout) • exit (status)
• (=

PortsWithMessages) Fork creates a clone of the current

• position= tell(port) process, both carry on executing with

exactly the same context. The only dif-

Close disassociates a port from a proc- ference is that in one (the parent) the

ess. returned port can be used to access the

other, and in the other (the child) the

loctlperforms some control operation on port will be NULL. Exec overlays the

the thing at the other side of the port. current process with a new process

This is often device specific, but is image. Exec and fork are decoupled

done in a uniform way so that if two parts of what some systems think of as

types of objects respond similarly to an integrated initiate operation. This

the same types of operations, then the decoupling is done for several reasons:
operation invocation is written similar-

ly, so that replacing one object with • Exec and fork are useful alone; exec

another becomes easy. A classic ease as a chain operation, and fork in

concerns files and the 'console.' It parallel processing servers.

makes no sense to seek to the beginning

of the console or to turn echoing off in • The time between forking and doing

a file, but if all that a program does an exec in the child is used by the

is write streams of characters, then child to set up the final environ-

substituting one for the other makes ment for the program to be invoked.

sense and can be easily done. Setting up this environment can be a

complex process and forcing this

Pipe creates two ports, one with read complexity to always be present in

access and one with write access. The the initiate operation would obscure

two ports are connected to each other the simple cases. This could, of

such that data written to one can be course, be handled by macro

read from the other. Writing to a pipe wizardry. A more important point is

is done with exactly the same operations that some of the setup would be dif-

as are used for writing to a file or to ficult to express without this

a terminal -- a pipe can easily be sub- split. For example, if I wanted the

stituted for either. One uses pipe standard output (console) of some

rather than two opens in order to avoid program to be connected to the
creating a name, keeping the communi-

cation channel anonymous.

File Control 3

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

mailer. This way I could get the break;

effect of having it's output mailed

to someone. With an initiate opera-

tion, you either have to be able to Out of line exceptions take the form of

express arbitrarily complex oper- "spontaneous" procedure calls. To each

ations in the instantiation of a set of events a procedure may be

template, or the caller is going to attached which is supposed to handle the

have to perform some of them, dis- occurance of the event. Such events are

turbing his own environment (i.e., timers going off or addressing vio-

if the initiator had to create the lations. The handler has the choice of

mailer then the initiator would have either resuming the operation, or fermi-

to create a port to the mailer and nating it and doing a 'non-local goto'

pass it on, disturbing his environ- to an outer environment.

ment).

• Exec and fork are simple. I'd like

to keep them that way. 2.3 INTRA PROCESS OPERATIONS

Wait is used to wait for the completion

of a child process, the port returned • space = malloc (size)
identifies the child that completes. • err = free (space)

• alarm (interval)
• setuid, getgid, seteuid, setegid,

setpriority (value ,port)
2.2 EXCEPTION HANDLING • value = getuid, getgid (port)

• time = time (0)
• times (&DetailedTime)

• old = signal (Signalldent, handler)
• err = kill (port, Signalldent) Malloc and free are used to allocate
• err = pause (port) signal space. Lower lever notions like Unix's

(SIGSTP) sbrk or Accent' s ValidateMemory underly

• err = resume (port) signal them.
(SIGCONT)

There are two kinds of exceptions: in

and out of line. An inline exception 2.4 OTHER STUFF
takes the form of a status code returned

from some operation. This comes in two

parts: all functions return a thing Most other 'utility' abstractions can be

which may be the distinguished 'some- built on top of these:

thing has gone wrong' value. Detailed

information is in the global variable abort generate a fault

errno. This can be wrapped in the fol-

lowing syntax: abs integer absolute value

OnErrorln (port = open abspath determine absolute pathname

("/dev/prt", FWRONLY))

case ENONEXISTANT: atof,atoi,atol convert ASCII to numbers

printf ("1 can't find the printer.");
port = atoh,atoo convert ASCII to hexadecimal

StandardOutput; or octal

4 A High Level Virtual Machine"

A High Level Virtual Machine" DRAFT
003- 001/002.00 ITC Inte r na I

atoo convert ASCII to octal ci command interpreter

atot convert ASCII date string to crypt, setkey,encrypt DES encryption
time

ctime,localtime,gmtime,asctime,timezone
convert

boolarg parse boolean argument or ask date and time to ASCII
user

curses screen functions with

cdate convert date to ASCII "optimal" cursor motion

chrarg parse character argument or
ask user

File Control 5

A High Level Virtuat Machine" DRAFT
003-001/002.00 ITC Internal

6 A High Level Virtual Machine"

L

A High Level Virtual Machine" DRAFT
003-001/002.00 ITC Internal

A .0 ???

???

??? 7

