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Abstract 
 
 
This report describes a preliminary Virtual Experiment (VE) utilizing multi-agent simulation that 
explores how information loss and information error impact decision accuracy in organizations. 
Results indicate that information loss and error exert interactive influences on decision accuracy. 
Moreover, the pattern of interaction suggests that information loss due to break-downs in 
communication networks does not adversely affect decision-making accuracy in situations 
characterized by moderate degrees of error in information networks. The results of our VE and 
the trends observed in our exploratory analyses imply that a line of research concerned with 
controlling access to information in a manner that depends on its veracity can potentially 
improve organizational decision-making. Put differently, given estimates of information error, 
communication networks and socio-cognitive network topology can potentially be used as 
“throttles” to control access in a manner that improves organizational performance. Along these 
lines, we include an appendix that describes our initial approach to the representation and 
measurement of error in communication and information networks.   
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1 Introduction 
The general goal of the Army’s Network Science Collaborative Technology Alliance (NS-CTA) 
is to enhance human performance in network-enabled organizations by identifying and 
exploiting synergies in research performed by scientists who study social/cognitive, information, 
and communication networks. Accordingly, researchers in the NS-CTA have defined socio-
technical systems in the battlespace as being comprised of three interacting genres of networks, 
communication networks, information networks, and socio-cognitive networks. 
 
Our research for the NS-CTA is concerned with how information loss in communication 
networks and information errors in information networks impact decision makers in socio-
cognitive networks. Information loss in communication networks occurs when one or more 
nodes or links in physical communication networks disappear (e.g., offline servers or cell phone 
towers). The resulting functional impact on decision-makers is a decrease in information 
accessibility. Information error in information networks arises from occurrences of missing or 
extraneous nodes or links within the networks of concepts formed by an organization’s 
databases, websites, reports, etc. Information error may also arise from missing, extraneous or 
incorrect attributes that are used to describe the nodes and links within such networks (e.g., 
weighting, labeling, or directionality of links). The functional impact of information error on 
decision-makers is a decrease in the veracity of information on which decisions are based.  These 
errors tend to propagate across levels, as seen in our high level concept diagram, Figure 1, below.  
 
 

 
Figure 1.  Three genres of interacting battle-space networks 
 
Although our research topic implies that three mutually exclusive networks operate in the 
battlespace, it would be a mistake to characterize socio-cognitive networks as a particular “level” 
of this multi-level framework.  Rather, it is more productive to see the socio-cognitive networks 
that exist in this system as a flexible web that constrains and enables communication networks 
(e.g., helping govern when, how and for what purpose specific communication devices and 
approaches are used) and information networks (e.g., helping establish the salience and useful 
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interpretation under differing circumstances by various groups and individuals). Socio-cognitive 
networks can also be usefully seen as a dynamic set of pipes that enables decisions to be made 
and activity to continue despite uncertainty caused by information loss at the communication 
layer and errors at the information level.   

1.1  Motivating Scenarios   
The following scenarios are designed to convey issues with information loss and error that may 
develop in the real world, however, the scenarios themselves are entirely fictional.  While they 
may be loosely based on facts and/or real-world events, there is no intention of modeling a 
specific real-world situation in which these events have actually played out.  Certain concepts, 
such as procedures for oil rig wellhead shutdown, may very well be incorrect.  

1.1.1  Scenario One – Mil i tary  Patrols  in Iraq 
Socio-cognitive Level: Platoon leader A, Platoon leader B, C2 Dispatcher 1, C2 Dispatcher 
2, IED Recon Team 
Information Level:  Information on C2 Server 
Communication Level: Radio, GPS, C2 Server 
At 0100, Platoon leader C completes his debriefing of his patrol of Transport Route 5, a road 
commonly used to transport materials to and from base.  He indicates that there was no 
movement in the area.  While eating a meal in the mess hall, Platoon leader C sits down with 
Platoon leader A, who patrols the same route starting at 0300.  Leader C comments on the fact 
that he hasn’t seen anything interesting on Route 5 in weeks.  Nonetheless, Platoon leader A 
notices some suspicious activity under an underpass during his patrol some timeat around 0600.  
He immediately radios in to Command and Control, giving his location and details of the 
activity.  C2 Dispatcher 1 takes the call and logs the information.  Dispatcher 1 confirms the 
location of Platoon leader A via GPS linked to his humvee. In addition, he enters Platoon leader 
A’s visual description of his location. Platoon leader A is then given permission to investigate 
the activity further, but finds nothing of interest by the time he assembles his team and reaches 
the area below the underpass.   
 
At 1200, Platoon leader B is taking his team through the same area along Transport Route 5, also 
on a routine patrol.  Platoon leader B notices an irregular lump of dirt on the left side of the road.  
He radios in to C2, gives his location along Transport Route 5, adding that the suspicious mound 
is located underneath an overpass.  C2 Dispatcher 2, who takes the call, confirms the location of 
Platoon leader B and his team via GPS, and discovers that logs from earlier in the morning that 
morning indicate suspicious activity underneath an overpass in the same area.  In fact, Dispatcher 
2 had already been made aware of a possible situation in this area, as addition, Dispatchers 1 and 
2, because they work in the same room, had been discussing events that occurred on Dispatcher 
1’s shift that morning.  Dispatcher 1 indicated that he thought “something fishy” might be going 
on near an underpass under Route 5.  Dispatcher 2 therefore had direct knowledge of the 
previous issues in the area because of his face-to-face discussion with Dispatcher 1.  Dispatcher 
2 orders Platoon leader B to cordon off the area, and sends an IED Recon Team in to search the 
area for explosives.  Two IEDs are recovered later that afternoon from the area of interest. 
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-Platoon leader A fails to report suspicious activity 
Human Error 

  * 
-Platoon leaders A or B neglect to visually describe their whereabouts   * 
-C2 Dispatcher 1 is the only dispatcher on duty at the time, and forgets to log information 
given by Platoon leader A 

  * 

-C2 Dispatcher 2 does not have the ability to communicate with any IED Recon Teams 
Communication Network Error 

*   
-Platoon leader B cannot give the correct location of his patrol group *   
-Due to the inability of the server to handle multiple simultaneous requests, C2 Dispatcher 
1 is unable to log information from Platoon A’s routine patrol until 1300, when a planned 
mission requiring the entire throughput of the system is finished 

* *  

-Platoon leader A’s radio is malfunctioning, and C2 Dispatcher 1 is not able to log the 
suspicious activity because he cannot get all of the details 

* *  
-C2 Dispatcher 1 cannot determine the exact location of Platoon leader A because GPS is 
malfunctioning 

*   
-Platoon leader B’s radio is malfunctioning, so C2 Dispatcher 2 cannot log his account *   
-C2 Dispatcher 2 is unable to access the system immediately to look for prior reports of 
the given location 

*   
-The C2 Server goes offline for system maintenance when either Dispatcher 1 or 
Dispatcher 2 is trying to access it 

*   

-Platoon leaders A and/or B give the wrong location, perhaps indicating the issue is well 
beyond the overpass.  The IED recon team continues past the IED in search of the 
specified area. 

Information Network Error 
 * * 

-Platoon leader B mischaracterizes the mound of dirt as a rock. C2 dispatcher is aware that 
IEDs are rarely placed under rocks- they are usually much more well disguised.  In 
addition, areas under underpasses are often rocky. 

 * * 

-C2 Dispatchers 1 and/or 2 enter incorrect information into the system, perhaps indicating 
that all suspicious activity and objects were confirmed clear.  They might also enter the 
activity as having occurring on the wrong date 

 * * 

-Dispatcher 1 had indicated that Transport Route 5 sounded “all clear” when talking with 
Dispatcher 2 

 * * 
-The C2 database gets corrupted, and the information entered by Dispatcher 1 is changed.  *  
-Platoon leader A listens to Platoon leader C and ignores his patrol duties   * 
Correct Decision 
Send IED team to remove explosives from the scene 

Possible Incorrect Decisions 
-Platoon leader B is told to investigate 
-Platoon leader B is told not to investigate, but IED Recon Team is never called 
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1.1.2  Scenario Two – Deepwater  Horizon oi l  spi l l  (pre-explosion)  
Socio-cognitive Level: Mechanics, Mechanics’ Supervisors, Engineer, Engineer’s 
Supervisor, Rig Supervisor, All Workers on Rig, All BP Employees 
Information Level: BP Internal web server, BP internal mail server, Onboard wireless 
connections 
Communication Level: Radio, Employee blackberries, Wellhead pressure monitor 
Throughout the first three weeks of April 2010, mechanics aboard the Deepwater Horizon rig 
sent several emails to their supervisors denoting strange readings stemming from a wellhead that 
was being constructed for use onboard.  These supervisors, in turn, forwarded these emails to the 
chief supervisor of the rig, who in turn sent his own report to head BP officials and engineers.  
The internal BP web server was updated to reflect these issues so that engineers could continue 
to collaborate on what they might mean. 
 
On the morning of April 20th, an engineer monitoring the pressure systems on one of the 
wellheads aboard the rig noticed a steep rise in pressure.  The engineer quickly radioed his 
supervisor, explaining the steep jump and requested a protocol for action.  The engineer’s 
supervisor quickly logged onto BP’s internal server to check the latest developments in the 
ongoing research about the bulkhead.  The pressure value that the engineer gave lay above the 
“safety threshold” that had been established by a BP engineer working out of an office in New 
Orleans, indicating that a complete shutdown of the wellhead might be necessary.  The 
engineering supervisor quickly emailed the rig supervisor, who had a reputation amongst rig 
workers as being constantly connected to his email.  In fact, all rig workers were required to have 
company phones that were used to send out emergency alerts and other information, in addition 
to having push-to-talk capabilities necessary for rig operation.  The engineering supervisor 
needed the approval of the rig supervisor to shut down the wellhead.  Upon seeing the 
engineering supervisor’s email, the rig supervisor, who had years of experience on the rig, knew 
that disaster might be imminent.  He quickly gave permission, via email, to the engineering 
supervisor to shut down the wellhead.  The engineering supervisor then radioed to his engineer to 
shut down the wellhead.  As a preventative measure, an email was also sent to all workers on the 
rig to stay clear of the area where the wellhead was located, and to prepare for emergency 
evacuation pending the sound of the rig-wide evacuation alarm. 
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Communication Technology Errors 
Communication Network Error 

-Any one of the many emails sent throughout the scenario was ignored *  * 
-Internal BP server did not allow the engineering supervisor to access the Deepwater Horizon 
page as BP was only leasing the rig, the workers were not all BP employees. *  * 
-Any one of the many emails sent throughout the scenario was not sent immediately, or at all, 
due to misconfiguration or overload of the internal company mail server * * * 
-The engineering supervisor could not access the internal company server detailing protocol for 
the malfunctioning bulkhead *   
-The pressure monitor for the bulkhead was not functioning so there were no pressure readouts  *  
-The engineer monitoring the pressure system was unable to radio his supervisor due to issues 
with the radio *   
-The wireless aboard the ship was broken, or too slow to access BP’s server in time *   
Face-to-Face Access (including worker beliefs of the network structure)    
-Any one of the many emails sent throughout the scenario were never sent, due to a lower-level 
worker’s belief that, given the organization’s social structure, no one would ever read it anyway   * 
-The engineer that calculated the threshold for pressure for the bulkhead was not included in the 
study of the wellhead  * * 
-The onboard engineer monitoring the pressure system did not notify his supervisor, instead 
assuming that the dangers of the wellhead were already known, and that they were being 
monitored at higher levels of the organizational chain 

 * * 

Report Errors 
Information Network Error 

-The engineering supervisor misread the data on the web   * 
-Engineers that calculated the “safety threshold” for the pressure of the wellhead were incorrect   * 
-The engineer monitoring the pressure of the wellhead misread the value  * * 
System Errors 
-The system monitoring the pressure monitor for the wellhead was buggy, and therefore gave 
incorrect readings when the pressure breached a certain value.  *  
“Rumor” Errors 
- One of the emails sent in the scenario contained incorrect information about the wellhead, that 
propagated up the chain of command.  For example, engineering supervisor, when contacting 
the rig supervisor, might misconstrue the situation as being “nothing to worry about”. 

 * * 

-The rig supervisor wasn’t actually always connected to his email.  He would eventually have 
had to make a decision on whether or not to shut down the rig.  Without seeing an email of the 
current readings, he may have had to make that decision with incorrect and/or outdated. 

*   

Correct Decision 
-Shut down the wellhead 
Possible Incorrect Decisions 
-First-level mechanics and engineers choose not to pass on information about issues with the wellhead 
-Supervisors try to mediate the problem by withholding information from superiors in a “wait and see” type situation 
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1.1.3  Summary 
The goal of these scenarios is to show how much interaction may occur between socio-cognitive 
agents (i.e. decision makers) that require the use of the information and communication layers to 
make the correct decision.  In addition, an attempt is made to show that an agent’s perception of 
the network, and his face-to-face interactions, may also play a role in his ability to make 
decisions.  

1.2  Network Interactions 
In addition to governing the usage of the communication and information networks, socio-
cognitive networks also play their own role in facilitating information access.  Decision-makers 
have two general methods for accessing information in organizations. The first method, 
electronically mediated access, requires the infrastructure provided by communications 
networks. In this vein, communication networks are particularly important for decision-makers 
who require access to mass media sources (e.g., organizational websites or databases; email or 
radio broadcasts from superiors), and for socio-cognitive agents who use electronically mediated 
point-to-point communications (e.g., phone, email and texting). However, communication 
networks are not required for the second method of information access – face-to-face 
communication with co-workers.  Because this process exists solely within the socio-cognitive 
networks of the multi-level framework, this can be used as further justification that the system 
presented above cannot be considered three mutually exclusive networks performing mutually 
exclusive tasks.  
 
Furthermore, the point-to-point access of information known by co-workers requires more than 
communication networks or shared locations- it requires knowing who to contact. In practice, 
such knowledge will tend to be a combination of knowledge about formal organizational 
structure and roles, and informal knowledge of what one’s social network of acquaintances and 
peers know (i.e., transactive memory), neither of which can be represented in the communication 
or information networks. In contrast, socio-cognitive networks represent these two types of 
knowledge. More specifically, socio-cognitive networks are multimodal, multiplex networks of 
decision-making agents and their knowledge.  
 
As described above, socio-cognitive networks play an important role in point-to-point 
information access. The pattern of links among nodes in socio-cognitive networks (i.e., 
topology), along with one’s position in such networks, determines the ease or difficulty of 
directly and indirectly accessing information. Thus, information access is constrained and 
enabled by socio-cognitive networks, regardless of the presence or absence of communication 
networks. 
 
Logically, one would assume that information loss in communication networks should tend to 
decrease the accuracy of time-sensitive decisions in evolving situations. Decisions that require 
information from authoritative sources (e.g., C2 nodes) or mass media sources would be 
particularly vulnerable to fluctuations in information accessibility. Situation updates, for 
example, may be unobtainable when communication networks are inoperable. This forces 
decision-makers to rely on information that is potentially out-dated, erroneous or incomplete. 
The degree and frequency of information loss in communication networks, therefore, should be 
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key accessibility characteristics that can degrade decision accuracy; the degradation should be 
especially prominent for those decisions that require authoritative, time-sensitive information.  
 
Face-to-face communications may obviate the detrimental effects of information loss in 
communication networks on decision accuracy. However, the efficacy of such communications 
will depend on at least two other characteristics of the decision-making situation. The first 
concerns the topology of decision-makers’ socio-cognitive network, because it determines the 
point-to-point accessibility of information. The second concerns the veracity of local information 
sources (e.g., local co-workers’ knowledge). When communication networks are down, gaps and 
errors in the information used for decisions can be corrected only to the degree that locally 
accessible information accurately augments information already known by decision-makers.  
 
Locally accessible information is a product of information diffusion processes that take place 
between nodes within socio-cognitive networks (i.e., point-to-point information exchange), and 
between nodes in socio-cognitive networks and information networks (e.g., use of authoritative 
information sources). Consequently, the obviating potential of locally accessible information 
depends to some extent on the prevalence of error in information networks. Incomplete, 
erroneous, or out-dated information obtained from information networks by decision-makers will 
tend to diffuse throughout an organization via point-to-point exchange processes (e.g., spread of 
rumors). Socio-cognitive network topology will influence the extent to which information error 
is propagated through these secondary, point-to-point channels; socio-cognitive network size and 
the density of links will influence the extent of propagation. The prevalence of information error 
in information networks, therefore, is a key characteristic of information networks that can 
degrade decision accuracy – by decreasing the veracity of diffused information.  
 
The primary purpose of the Virtual Experiment (VE) reported in this paper is to explore how 
interactions among these key characteristics, described above, of information loss and 
information error impact decision-making accuracy. 

2 Method 
We conducted a Virtual Experiment (VE) using Agent-Based Simulation (ABS), cognitive 
agents (i.e., agents with knowledge representation and decision-making capabilities), and 
network-constrained information diffusion processes.  
 
The ABS model of information diffusion employed is called Construct (Carley, 19xx). In 
Construct, cognitive agents probabilistically interact to exchange information. The probability of 
interaction depends on homophily in terms of the knowledge shared between pairs of agents, 
expertise seeking in terms of knowledge not shared between pairs of agents, and whether a tie 
exists between two agents in a social network. 

2.1  Virtual  Scenario 
Our VE scenario required each agent in an organization to make 13 decisions. Six items of 
information were associated with each decision. Three items positively influenced decision 
accuracy (i.e., provided accurate information) and three negatively influenced decision accuracy 
(i.e., provided inaccurate information). According to the decision model used, correct decisions 
required at least one of the positive information items.  
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At the start of each simulation, agents’ prior knowledge of decision-relevant information varied 
randomly. During the simulation, agents had 365 time periods to obtain additional decision-
relevant information. Additional information could be obtained by interacting with other agents 
or three types of mass media sources: radio, organizational website, or email broadcasts.  
 
For each simulation, agents were randomly placed in 1 of 12 organizations, which were formed 
by varying the size, topology, and density of social networks. The organizations were either 
small or large, employing 500 or 2000 agents, respectively. The topology of ties among agents 
within each organization – hence the availability of information from other agents – was 
structured as being random, scale-free, or cellular. The density of ties among agents within each 
organization was either 0.005 or 0.05. 
 
The availability and veracity of information from mass media sources (radio, website, email) 
were varied exogenously due to the lack of communication and information network models. 
Thus, communication networks correspond to the physical access points of actors to special 
media sources, such as web sites and radio.  Information networks correspond to the type and 
quality of the information available from these media sources, such as web sites and radio 
channels.  Socio-cognitive networks correspond to the people to people connections within the 
environment, and the connections between each person-agent and its knowledge. 

2.2  Experimental  Design 
Our experimental design was a three-factor complete factorial that manipulated Communication 
Network Intermittency, Communication Network Accessibility, and Degree of Information 
Error. The first two factors are associated the availability of communication networks, which 
connect agents to mass media sources of information.  The third factor is associated with how 
much of the information provided by mass media sources is misleading, not helpful, or missing 
(cf. negatively influences decision accuracy).  
 
We used four levels of each experimental factor (0, 33, 67, 100) to create a 4 x 4 x 4 factorial 
design. The four levels of Communication Network Intermittency correspond probabilistically to 
the percentage of time periods during which mass media sources were unavailable (cf. frequency 
of communication network outages). The four levels of Communication Network Accessibility 
correspond probabilistically to the percentage of agents within an organization that could not 
interact with mass media sources (cf. extent of information loss due to communication network 
outages). The four levels of Degree of Information Error correspond probabilistically to the 
percentage of erroneous/misleading information provided by mass media sources.  

2.3  Performance Variable  
At a basic level, we are interested in how information loss and error influence decision accuracy 
in a given organizational context. Thus, the dependent variable of interest is ostensibly the 
proportion of correct decisions out of the 13 decisions made by each agent. However, using 
agents as our unit of analysis does not take into account the dependencies created by the size, 
topology, and density of the organizations in which agents were placed. Therefore, we defined 
organizations as our basic unit of analysis, and used the mean proportion of correct decisions per 
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agent within organizations as our dependent variable (i.e., the mean proportion of correct 
decisions per simulation). 

Table 1.  Communication and Information Network Error Virtual Experiment 

2.4  Operational  Definit ions 

• Socio-cognitive network

• 

 – Stylized networks drawn from the *ORA stylized network 
generator - these agent x agent networks are defined by the combination of topology, 
density, and size of the networks.  
Information network

• 

 -- exogenous component of our simulation, modeled by parameters 
of special agents (see Mass Media Information Sources). 
Communication network

• 

 – exogenous component of our simulation, modeled by 
parameters of special agents (see Mass Media Information Sources).  
Decision-maker

• 
 – a node in the socio-cognitive (i.e., Agent x Agent) network 

Mass Media Information Sources

• 

 – special agents including radio, mail (same as e-mail), 
and website. Special agents are used to exogenously model communication and 
information networks in our simulation model 

Factor 

Information Loss in Communication Networks 

# of 
Combinations 

Combinations 

Socio-cognitive Network Characteristics 
Topology 3 ER Random, Scale-Free, 

Cellular 
Size 2 500, 2000 
Density 2 .005, .05 
Communication Loss Characteristics 
Intermittency of Access to Mass Media 
Sources 

4 0%,33%,67%,100% 

Extent of Access to Mass Media Sources 4 0%,33%,67%,100% 
Information Loss Characteristics 
Information Error 4 0%,33%,67%,100% 
Controlled Variables 
Actor Perception 1 Perfect 
Knowledge Network Distribution 1 Random 
Knowledge Network Size 1 Constant 
Belief Network Distribution 1 Random 
Belief Network Size 1 Constant 
Total Combinations: (3 * 2 * 2 * 4 * 4 * 4) = 768 (but topology, size, density are treated as 
random variables for this VE) 
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o Intermittency
 Defined negatively, how often are the special agents available to interact 

with? 

 – proportion of time periods in which special agents are inactive.  

 So, Total Intermittency means that the special agents are not available 
after the first time-step at all.   

 High Intermittency means that the special agents are not available more 
often than not.  (suggest we go with ~66%, meaning that special agents are 
active only every third time-period) 

 Low intermittency means that the special agents are more available than 
not.  Suggest we go with ~33%, meaning special agents are active 2 out of 
every 3 time periods 

 When information is not intermittent, it means it’s always available. (i.e., 
0%) 

o Degree

• 

 – proportion of agents that special agents can interact with during a single 
time period. (I’m unsure how to scale this for time course of the simulation.)  

o 
Information Error in Information Networks 

Amount

o Of the information the special agents possess (from Information Completion 
above), how much of it is accurate/correct in relation to the 13 decision tasks?  
Total accuracy means that all information provided is correct.  The inaccuracy 
condition implies that of the information provided, some fixed percentage of the 
information is wrong. 

 – proportion of incorrect/misleading knowledge facts transmitted by 
special agents. 

o Suggest proporitions of 0, .33, .66, 1  
• Socio-cognitive Network Size

• 

 – the number of decision-makers in the socio-cognitive 
network. 
Socio-cognitive Network Density

• 

 – the level of interconnectedness between decision-
makers – for the Cellular topology, this will be a close approximation through tuning the 
“intra-cell” and “extra-cell” densities. 
Interaction Sphere

• 

.  The Information Network is operationalized to refer to special agents 
that provide information to the ‘regular’ agents.  We’re measuring Socio-Cognitive 
network accuracy through accuracy on the classification-choice decision tasks. 
Actor Perception

• 

 – The agents will have zero-error Transactive Memory – they know 
what they know, and have accurate perceptions of what their interaction partners know. 
Knowledge Network Distribution

• 

 – We will use a uniform random distribution to seed 
the people to knowledge network.  This distribution will randomize every run. 
Knowledge Network Size

• 
 – 500. 

Belief Network Distribution

• 

 – We will use a uniform random distribution to seed the 
people to belief network.  This distribution will randomize every run. 
Belief Network Size – This is linked to the existing IRS definitions. 
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3 Results 
Data from 875 simulations were used to calculate our measure of decision accuracy, 
operationalized as the mean proportion of correct decisions per agent for each simulation run. 
Decision accuracy served as the dependent variable in a 4 (Communication Network 
Intermittency) x 4 (Communication Network Accessibility) x 4 (Degree of Information Error) 
ANOVA. The ANOVA yielded a main effect of Degree of Information Error, F(3, 63) = 95.18, p 
< .05. Degree of Information Error also interacted with Communication Network Intermittency, 
F(9, 63) = 10.01, p < .05. No other effects were reliable.  
 
As can be seen in Figure 3, agents tended to make accurate decisions approximately 2/3 of the 
time. Moreover, decision accuracy decreased as Degree of Information Error increased – unless 
the communication network was down for the entire simulation (i.e., Communication Network 
Intermittency = 1).  
 

Figure 2. Decision Accuracy varies as a Function of Communication Network Intermittency and Degree 
of Information Error. 

 

 
Closer inspection of the Degree of Information Error x Communication Network Intermittency 
interaction indicates that Communication Network Intermittency affected decision accuracy only 
when the Degree of Information Error was extreme. When all information provided by mass 
media sources was accurate (i.e., Degree of Information Error = 0), decision accuracy increased 
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in presence of a communication network relative to the absence of a communication network 
(i.e., Communication Network Intermittency = 1). Conversely, when all information provided by 
mass media sources was inaccurate (i.e., Degree of Information Error = 1), decision accuracy 
decreased in presence of a communication network relative to the absence of a communication 
network (i.e., Communication Network Intermittency = 1). The effects of Communication 
Network Intermittency for moderate Degrees of Information Error were unreliable. 

4 Discussion 
On the one hand, our initial VE demonstrated a relatively straightforward dependence of decision 
accuracy on information loss in communication networks and information error in information 
networks (cf. the Communication Network Intermittency x Degree of Information Error 
interaction). Communication networks foster the diffusion of information regardless of whether 
the information conveyed over them is correct. But we observed that the impact of 
communication networks on decision accuracy is substantive only in those situations 
characterized by extreme accuracy or inaccuracy in the information conveyed. 
 
On the other hand, our initial results also imply that in some situations organizations may be able 
to tolerate – or even benefit from – information loss due to problems with communication 
networks. In situations involving moderate Degrees of Information Error, decision accuracy was 
not reliably affected by Communication Network Intermittency. In situations where information 
error was rampant (i.e., Degree of Information Error = 1), the absence of communication 
networks improved decision accuracy by interfering with the diffusion of incorrect information. 
Thus an interesting line of future research would more carefully explore how tolerance for 
information error varies as a function of situational and socio-technical system characteristics. 
 
Follow-on research should continue to explore how interactions among the three network genres 
impact decision accuracy. A logical next VE would partially replicate and extend the VE 
discussed in this report by manipulating organizational parameters (i.e., topology, density, and 
size of the socio-cognitive network), along with the communication and information network 
parameters manipulated in our preliminary study. If the finding of an apparent “tolerance” for 
information loss given moderate degrees of information error is found again, subsequent studies 
can be designed to more carefully delineate the boundaries of information loss tolerance, and 
whether it is influenced by the type of information error (e.g., misinformation versus missing 
information). It may also be of interest to examine whether information loss and error 
differentially impact decisions of varying complexity. Finally, future research should begin to 
address how different information seeking policies influence decision accuracy in different 
organizations experiencing different degrees of information loss/error.  
 
To generate additional hypotheses for follow-on research we examined patterns between 
organizational/socio-cognitive network parameters (i.e., topology, size, and density) and 
information loss and error. In Figure 3 below, we plotted decision accuracy as a function of 
Communication Network Intermittency and socio-cognitive network topology. This plot 
averages over Degree of Information Error and thus represents trends in the effects of 
information loss and socio-cognitive network topology given that the Degree of Information 
Error is moderate on average.  
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As can be seen, decision accuracy appears to be lowest for socio-cognitive networks with the 
most realistic topology. That is, in situations characterized on average by moderate degrees of 
information error, decision accuracy is lowest in cellular networks regardless of the information 
access constraints that stem from communication networks (i.e., Communication Network 
Intermittency). Furthermore, the inverted u-shaped pattern of decision accuracy in cellular 
networks implies the possibility of optimizing organizational decision-making performance by 
balancing the increased rate of information diffusion made possible by communication networks 
and the decreased rate of information diffusion between cells due to the “gate-keepers” who 
connect the various cells in an organization.  
 
Put differently, cellular networks tend to produce a group-think phenomenon in which cell 
members’ knowledge and decisions (right or wrong) grow more similar over time. 
Communication networks can break this group-think phenomenon by providing access to the 
extra-cellular information typically obtained only through gate-keepers. But the increased access 
to extra-cellular information is a double-edged sword because communication networks facilitate 
access to information regardless of its accuracy. Thus, unfettered access to moderately erroneous 
information can be just as detrimental to average decision-making performance as the group-
think that occurs in situations where gate-keepers provide the only access to extra-cellular 
information. Communication networks, therefore, have the potential of being used as a “throttle” 
that improves organizational decision-making by controlling the accessibility of extra-cellular 
information in a manner that is sensitive to estimates of the prevalence of information error. 
 
The pattern of decision-making accuracy in scale-free socio-cognitive networks resembles that 
seen for cellular networks, but with slightly better accuracy. Barabosi and Albert (1999) 
postulated that scale-free network arise in the real-world (e.g., the world-wide web) because 
preferential attachment mechanisms create small sets of highly connected “hubs” in otherwise 
sparsely connected networks. Agents positioned as hubs in scale-free socio-cognitive networks 
have privileged, highly influential opinions because of their many connections to the sparsely 
connected majority. More specifically, the power-law distribution of degree centrality in scale-
free networks creates fault-tolerant hierarchies in which major hubs are followed closely by 
smaller hubs, which are followed by other nodes of smaller degree. In such networks, random 
losses of access to mass media information sources (cf., Communication Network Intermittency) 
are more likely to impact the many low-degree nodes than the few high-degree hubs. Thus, the 
majority of agents in scale-free networks can continue to access decision-relevant information 
(by way of hubs) despite communication network problems. This higher rate of information 
diffusion from hubs regardless of communication network functionality appears to increase the 
mean decision-accuracy for agents in scale-free networks relative to agents in cellular networks. 
Furthermore, the advantage of scale-free networks over cellular networks appears to increase 
when information access is unfettered by communication network intermittency.  
 
Although scale-free socio-cognitive networks appear to offer a performance advantage over 
cellular networks, the notion of scale-free networks of human decision-makers is problematic. 
Socio-technical systems that rely on scale-free organizations of human decision-makers are 
unlikely to exhibit expected performance levels in the real world for two simple reasons. 
Attentional limitations and time constraints will impose upper limits on the amount of 
information that can be transmitted by a human hub. Attentional limitations in human decision-
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makers will impose upper limits on the number of relations that can be managed effectively. 
Time constraints will limit the number of interactions available for the exchange of information. 
Consequently, socio-cognitive networks nominally designed to have a power-law distribution of 
degree centrality may functionally exhibit the performance characteristics of some other network 
topology. In future explorations of the effects of topology on decision-making, it may be fruitful 
to work toward examining how blends of well-known network topologies (e.g., cellular and 
scale-free) impact performance. 
 
Figure 3 also shows a counterintuitive increase in decision accuracy as information loss increases 
for the least realistic socio-cognitive network topology – the Erdos-Renyi topology in which 
socio-cognitive nodes are randomly connected. The improvement in performance as information 
loss increases again indicates the potential of using communication networks to improve 
decision-making by controlling access to moderately erroneous information. In the absence of 
communication networks (i.e., Communication Network Intermittency = 1) random networks 
perform better than cellular and scale-free networks because the time required for any one agent 
to reach any other agent is on average shortest in random networks, and no agent's opinion is 
privileged. Consequently agents in random networks churn information through the group more 
quickly than do agents in cellular or scale-free networks, and on average more agents make 
better decisions.  
 

 
 
Figure 3. Communication Network Intermittency may Interact with Socio-cognitive Network Topology 
to influence Decision Accuracy. 
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In Figure 4 below is a plot of decision accuracy as a function of Degree of Information Error and 
socio-cognitive network topology. This plot averages over Communication Network 
Intermittency and thus represents decision accuracy given a moderate degree of information loss. 
The observed pattern implies that the effect of information error on decision accuracy is 
independent of socio-cognitive network topology.  
 

 
 
Figure 4. Effect of Information Error Degree on Decision Accuracy may vary Independently of Effects 
of Socio-cognitive Network Topology. 
 
Figure 5 below plots decision accuracy as a function of information error and socio-cognitive 
network size, again averaging over information loss. The observed pattern implies that larger 
organizations may be more tolerant of the detrimental effect of information error on decision 
accuracy than smaller organizations.  
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Figure 5. Degree of Information Error may Interact with Socio-cognitive Network Size to Influence 
Decision Accuracy. 
 
In Figure 6 below is a plot of decision accuracy as a function of information error and socio-
cognitive network density; it averages over information loss.  
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Figure 6. Decreased Socio-cognitive Network Density may Ameliorate Influence of Information Error 
Degree on Decision Accuracy. 
 
Taken together, the results of our initial VE and the trends observed in our exploratory analyses 
imply that a line of research concerned with controlling access to information in a manner that 
depends on its veracity can potentially improve organizational decision-making. Communication 
networks provide one method for controlling access; socio-cognitive networks provide another. 
More specifically, a fruitful line of research will explore organizational decision-making by 
varying temporal and structural characteristics of both genres of networks – and the interactions 
among such characteristics –in situations that vary temporal and structural characteristics of 
information error.  
 
Pursuing research along these lines will eventually require procedures for measuring and 
representing information loss and error in real-world networks, along with understanding their 
impact on the network metrics that warfighters will use to assess their situational understanding. 
In this vein, Appendix A describes our preliminary approach to the representation of errors in 
communication and information networks, and initial procedures for measuring error. 
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5 Appendix: Representing and Measuring Information Loss and Error 
In this appendix, we begin to address the fundamental research question of how missing or 
incorrect network data affect the metrics used to describe and reason about multi-modal, 
multiplex networks. In particular, we provide an initial description of communication loss and 
information error; the representation of errors in communication and information networks, and 
procedures for measuring error. 

5.1  Theoret ical  Perspect ive:  Dynamic Network Analysis  
We approach the representation and measurement of information loss and error from a Dynamic 
Network Analysis (DNA) framework (Carley, 2002). Complex social systems are often 
represented as dynamic networks that relate entities in a system (e.g., people, knowledge, 
actions) to each other over time. The emergent field of DNA centers on the collection, analysis, 
understanding and prediction of dynamic relations in such networks, and the enabling and 
constraining impacts of network structure on individual and group behavior. DNA facilitates 
reasoning about real groups as complex dynamic systems that evolve over time as boundedly 
rational agents learn and adapt. Within this field computational techniques such as machine 
learning and artificial intelligence, are combined with traditional graph and social network 
theory, and empirical research on and theories about human behavior, groups, organizations, and 
societies.  
 
At the heart of DNA is the meta-network. A meta-network is a multi-mode, multi-link, multi-
level network, often referred to as a network of networks (Krackhardt & Carley, 1998; Carley, 
2002a). Meta-networks place the social network of who knows/works with/has some relationship 
with whom in an ecology of networks covering the linkages among who, what, where, how, why 
and when. More generally, the nodes classes and the links can come from anywhere in the socio-
technical domain. 
 
The types of nodes and links in a meta-network may vary with application; for example, we 
might use these types of nodes - people, organizations, resources such as databases and servers, 
actions, locations - to capture information on an international firm, and the links might be based 
on data extracted from newspapers (Carley, 2006).  In another application, we might add cell-
phones and supplement open-source information sensor information for defining the links.  
 
A dynamic meta-network thus represents real-world socio-technical systems in which the state of 
the nodes and links, and even which nodes (and so links) exist changes with time. Faults in 
socio-technical systems appear as missing or extraneous nodes and links (or attributes thereof) 
which may or may not vary over time. Just how these faults ultimately impact warfighters’ 
understanding of the battlespace is currently unknown. Using agent-based dynamic network 
simulations the impact of interventions on these dynamic meta-networks (Carley,2002b, Carley 
2006) and the impact of rumors and errors on trust (Prietula and Carley, 2001) and performance 
can be assessed (Lin and Carley, 1997). 
 
What we do know is that network metrics are not robust to error (Borgatti, Krackhardt & Carley, 
2006). For example, the presence of missing nodes has been shown to severely impact 
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betweenness centrality accuracy in scale-free networks, whereas superfluous nodes have a high 
impact on local clustering metrics in small world networks (Frantz, Cataldo, & Carley, 2009). 
Furthermore, we can logically presume that node-related error will be more serious than link-
related error because node-related error necessarily includes link-related error.  
 
False information can lead to or mitigate conflict (Jong, 2009; Carley & Prietula, 2009). Previous 
work on this topic includes efforts to make socio-cognitive networks robust to error by 
propagating information about how long a piece of information has been in the network (Rosvall 
and Sneppen, 2006). One interesting result from this work is that “hubs” in scale-free networks 
tend to accumulate and propagate larger amounts of false information than nodes in random 
(Erdős–Rényi) networks.  However, this model of reducing the cost of information error does not 
take into account the needs of real-time decision making or a way to efficiently reduce the spread 
of information errors throughout the network.  A large amount of work has also been done in 
how to detect information intended to deceive others in the network (Sabater & Sierra, 2002; 
Pradchayakool, Daengdej & Koolmanojwong, 2006; Koolanojwong et al.).  This measure 
requires information about how “trustworthy” an agent is.  Therefore, it is indicative of the 
maliciousness or lack of perception of an agent, and not necessarily indicative of the types of 
error that our research is focused on.  Borgatti, Carley and Krackhardt (2006) suggests that, even 
with erroneous data in the network, centrality measures can still be somewhat indicative of the 
true measures of the actual network up to a given threshold.  In addition, the work suggests that 
the accuracy of predicting these measures decreases systematically with known increases in 
error.  This may indicate that, by predicting the extent to which you can “believe” the current 
system-view of the meta-network, you may be able to determine the rigor with which you search 
for erroneous information.  The concept of allowing for some error has been studied by Olson 
and Carley (2010)  in terms of latent space models – this work may help to assess the likelihood 
of error in a network. 
 
Representing and measuring errors in multi-level meta-networks is described below. 
 

5.2  DyNetML Network Representat ion Language 
DyNetML is an expressive, extensible, open-source, XML-derived language for representing 
relational data consisting of multiple node and link types (e.g., the DNA ontology known as the 
meta-network model; see Tsvetovat, Reminga, & Carley, 2004). DyNetML provides a means to 
represent socio-technical systems as meta-networks using data obtained from one or more 
sources with characteristics such as reliability and pedigree, variable delays in positive 
identification of unknown entities (nodes), and nodes and edges that may appear, disappear, or 
change in strength over time as new information arrives. The resulting meta-networks include 
different types of nodes (i.e., multi-modal), multiple types of links among nodes (i.e., multi-link) 
and multiple types of networks (i.e., multi-level). Multiple link-types may exist between any pair 
of nodes, and multiple types of networks may occur because of variations in the granularity in 
collection of data such as that associated with individuals or groups. 
 
DyNetML is attribute-enhanced network representation language. Thus, it provides a means to 
associate attributes with nodes and edges. Node attributes often represent details about the state 
of a node such as level of education, age, and so on. Link attributes often include details about 
the strength, direction, and reliability of a link. DyNetML also allows one to associate meta-data 
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attributes with networks. These meta-data attributes often include information about who 
generated the data, why, when, how they generated the data, coding constraints, information 
pedigree, credibility, level of classification, etc. 
 
Given a network representation language such as DyNetML, we can define two general types of 
error. First, there may be missing or superfluous nodes or links. Split nodes are a special case of 
superfluous node-error in which a node is inadvertently included in a meta-network two or more 
times. This situation often arises when data are collected for situations in which a person uses his 
or her real name sometimes and an alias at other times. A second general type of error occurs in 
cases where there are missing or superfluous attributes on nodes or links. Weights on directional 
links could be missing or reduced, for example.   

5.3  Communication Loss  
Links or nodes in communication networks disappear for a variety of reasons. The partial loss of 
communication networks decreases bandwidth. Error in communication networks is always a 
loss. Thus the best way to deal with errors in communication networks is to represent 
information loss as a percentage reduction from one time period to the next. Shannon’s 
information entropy metric provides an example of a metric that may prove useful. 
 
Of the three types of networks under consideration in the NS-CTA, communication networks 
will the easiest to describe. In terms of representation, it is questionable as to whether we must 
represent the uncertainty associated with particular nodes or links as values in a network 
representation language. 

5.4  Information Error 
Links or nodes may disappear in information networks just as they do in communication 
networks. This amounts to missing information just as in communication networks. But 
information networks can have several types of error not present in communication networks. 
First off, extraneous links or nodes may be present. This amounts to superfluous or erroneous 
information. In addition, the attributes of links or nodes may be missing or extraneous, link 
weights may be incorrect or link directionality may be incorrect.  
 
In the case of numeric values, we may see an increase or decrease in the represented value on a 
node or link relative to the real value. For binary values, we may have missing or extra nodes or 
links in our data relative to the real world.  
 
Information error, in addition to existing inside a meta-network as misinformation about actual 
people and events, may also persist through the creation of fictitious people and events.  These 
erroneous nodes in the meta-network may develop either accidentally as the result of, for 
instance, a miscommunication between a soldier in the field and a dispatcher at headquarters, or 
intentionally as a result of, for example, false information given by a hostile who has infiltrated 
the network.  False information inputted in various forms into different parts of the network may 
cause poor decisions to be made (e.g., preemptive engagement in a conflict1).  There is a need to 
study the spread of false information within a system and a means to efficiently filter it out.   
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For each of these types of error, we can represent our “confidence” in the accuracy of the 
represented value as a certainty value. Thus for each network characteristic (e.g., node, link, 
node attribute, link attribute), we could create triples of the form: network characteristic, value, 
certainty; where certainty ranges from 0 to 1. 
 
In information networks, there occurs a subtle, different kind of error – the split node. Because 
two nodes might represent the same entity, we need a procedure for estimating when a split node 
is present. Ostensibly, a measure of structural equivalence could be used to identify split-nodes. 
Measures of structural equivalence, however, will work only for simple, obvious cases (e.g, 
multiple cell phones used for the same task).  
 
Representationally, if one suspects two nodes code the same entity, we could use a meta-node 
that represents both of the suspected split node members, along with a certainty value that 
duplicate nodes exist, and certainty values on the membership links between the duplicate nodes 
and metanode. Notice that this procedure and representational scheme for split nodes could be 
extended to group membership. 
 
The procedure for calculating information error gets trickier when trying to look at networks as 
trails through time. What do we do to calculate information error when performing analyses 
concerned with who was where when? Given the omnipresence of measurement error, we have a 
probability that a person was in a location and a probability that the person-location relation 
occurred at a particular time. The question is how to calculate certainty based on the relation of 
underlying probabilities. The relevant probabilities are not independent, but how do we calculate 
their dependencies? 

5.5  Conclusion 
Information uncertainty includes that uncertainty created by loss of information due to 
breakdowns in the communications layer, information layer errors, or cognitive uncertainty or 
forgetting.  Information uncertainty can be created in many ways such as when a UAV’s camera 
malfunctions, mis-estimation of information value due to over- or under-trust in the source and 
the information, and the lack of full information due to incomplete, erroneous, biased, 
intentionally deceptive, inaccessible (e.g., due to security), or otherwise limited data availability 
in the information layer. Information uncertainty is likely to impact the network metrics on 
which future warfighters will base their understanding of the battlespace.  
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