The VistA Ecosystem:

Current Status and Future Directions

James Herbsleb Claudia Miiller-Birn W. Ben Towne

October, 2010
CMU-ISR-10-124

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

institute for
I S SOFTWARE
RESEARCH

Table of Contents

EX@CULIVE SUMMAIY..uiiiiiiieiiiiieiiiieiiiiniiiiaisisieimeiiiesisiesiosessisrsesssssisssssesssssssssssesssssssssssssssssssssnssssnsssssssssnes i
A T o o [Tt o o TS 1
2 The ViStA @COSYSTEMiiuuiiienieienirienietenerennereeseeensseesseseaseressesessssensessnsessassssnssssssssssssessnssssnssssnnessnnes 2
2.1 ReSEArCh MeEthOAOIOZYooiuiereereeeetreereeeseesees st s s s ss s bbb sn s 3
2.2 BIief hISTOIY Of VISTA ..ottt seesses e ssss s s b s s s s bbb n s 4
2.3 Technology and main diStrIDULIONS ...t s s ss s ss s ss s 6
2.4 VISTA COIMIMUIIEY ctruteuiiuritiesessesssesesssesssssssssesssssesssesses s ssse s s s ssse s s s s s s s bR s 8
2.4 T WOTIAVISTA coueoeesereetsseserssessrssssssssssssssssssssssssssssssssssasssssasssssasssssssssassssssassssssassssssassssssasssssasssssasssasssnssassansssssnssssssssanses 9
2.4.2 VISTA EXPETLISE NEEWOIK covvvvrserreerssssisssissssssessssssssussesssssssssssssssssssssssssassssssssssssssssssssassssssesssssssssansssssssssssssssassssssssnes 12
2.4.3VISEA SOFEWATE AIIATNCE.c...coureeeerereresersrerissesis s ssessssesassesasssssssssssssessssesassssassssasssesssssssssssasssssesssssssssssessnsssanssssssses 13
2.4.40DCN HEAIEN TOOIS ...covvvsesrvsrissessisssesssssissssssssssssssssssissssssssssssasssssssssssssssssssssssssssssssssassssssssssssssssssssanssssssssssssssansssssssnes 13
2.4.5 COMMETCIAL fITTNS coorrverereetrieerireeri s essssesassesissesis s ssessssesasses i s s s 8RRS8R0 15
2.5 Perceived Challenges for the ViStA ECOSYSTEMorucenecereeueesreesessseesse e sssssessseessesssesssssssesssssssesssssnnes 20
2.5.1Challenges seen by COMMUNILY MEMDETSccuveereerreerreerisssesssesssesassssissssisssessssessssssassssssssssssssssssessssssssssssnses 20
2.5.2 DISCUSSION Of CRAIICTIGES..c.courvvurireerrsserssirinsesissssisssessssesassesasssssssssssssessssesassssassssasssssssssssssssasssssssssssssssssssansssasssssssses 23
3 Possible Paths fOr VIStAciceeeiiiiiiiiiiiieeiiiiieniccnienneesnennscesnennssessensssessensssssssnsssssssnsssssssnsssssssnnnns 24
3.1 General observations: unification or fragmentation ... eeseessessesseees 25
3.1.1 TR KOY CROICES AT €:euoeeereerireeriesriserisserassesissesissssasssessssessssssasssssssssssssessssesassssesssessssesssssssssssassssassssssssssasesansssassssssnes 26
3.2 General observations: The role Of VAt esssssss st sssssssesssssssssssssssssssessessssans 26
3.2.1 TN KEY CROICES AT €:cuueeeeerereerieeriestssesassesissesissssasssessssessssssisssssssssssssessssesassssesssessssesssssssssssassssasessssssssansssansssasssssssnes 29
3.3 Technical platform arChiteCTUIE ... —————— 29
3.3.1 TN KOY CROICES AT €:eoueveeerieeriesreserisserassesissesissssasssessssesassssisssssssssssssesas s s s sessssessssssassssasesssssssssssssansssansssessnes 31
3.4 Collaborative INfTASTIUCIUIE ..ccececceectreeeeeesstsst ettt ses st s s ses s st st sessss st st st ss e s essesass st st entessnsansane 31
3.4.1 THE KOY CROICES AT €:eoueverereeeriesrisesssssesassesissesissssasssessssessssssasssssssssssssesss s s s sesssssssssssassssasssssssssssnsssansssanssssssses 33
RIS TR 10743 3 T Vo o] OO PRP TP 33
3.5.1 TN KEY CROICES AT €:euueeereereeeriesriertssesassesissesissssasssessssessssssisssssssssssssesss s s s sessssessssssassssasessssssssansssansssanssssssses 35
L S 0o 1 ol V13T Y 4 PPt 35
ACKNOWIEAZMENTS ...cueiieiiiiiiiienieiieeetiertteeteneetenereeneeeasssenseseasessassesssssesssesensessassssnsssensssennsessnsessnsssenne 37
R I ENCES .. iieeiiiiiieiiiiticeritrcerttreetereneeeeseenessteensssssesnssssseensssssesnsssssesnsssssesnsssssssnsssssennsssssennsssssennnns 37
Appendix A: Dimensions of platform-based ecosystemsc..cciveeiiiiiiniiiiieiiiiiieiinrrce e, 41
Appendix B: Four case studies of established ecosystemsccceieuieieeiiieniiiineriencereeeeeereenierenerenneeenes 46
Appendix C: Commonalities and variabilities of four open ecosystems......ccccccirveeeiiiiiencciiienicnnennnnnnns 66
Appendix D: Tabular ecosystem COMPAriSONcccciiiieeiiiiienriiiiieniiiieeniiereeneeereenssesrsenssessesnssessssnssssss 71
Appendix E: Brief overview about lICENSEScivveiiiiiieiiiiiiciiiiieiiiieencereenecsneensseeseensessennsessssnssenns 77
Appendix F: VistA diSCUSSION rOUPS .c.cieiieiieniieiieiiieiireireecrneraeraseeseraseresssnssesssessssssssssssssssssnsssnsssnssnns 78
Appendix G: Red Hat and FEAOraccciiiiiiiiiiiiiniiiiiiiinniiiniiiieiiiiieiessississississsssssssssssenes 79

°
institute for

I S SOFTWARE
RESEARCH

Executive Summary

With the recent national focus on health care and the infusion of funds that HITECH will bring to
Health IT (HIT), it is hard to imagine a more appropriate time for the U.S. Department of Veterans
Affairs (VA) to formulate policy aimed at making its HIT system, VistA, more widely available. In
fact, judging by the transformative impact that open platforms have had in many technology
domains, it is likely that if done correctly, the VistA software could form the basis of a thriving
ecosystem that would drive down cost and unleash innovation. The kernel of a socio-technical
ecosystem based on VistA is functioning today outside of VA, but it needs help and support from VA
policies if it is to thrive, grow to its full potential, and help to transform HIT.

Socio-technical ecosystems are extraordinarily complex, but research has recently begun to reveal
the keys to software platforms that spark successful ecosystems. The primary difficulty is charting
the course to growth and en route there is a set of fundamental issues that need to be addressed:
What technical work must be done to evolve VistA into a suitable platform for use outside of VA?
How should an ecosystem consisting of great numbers of vendors, service providers, IT
departments, many classes of users, VA, non-profits, and many other types of players be governed
so that coherence can be maintained, while still encouraging innovation? What kind of cultural and
technological infrastructure must be deployed in order to support information dissemination and
effective decision-making? How can a critical mass of adopters be attracted quickly to create viable
business opportunities?

In this technical report, we help to answer such questions by mapping out the VistA ecosystem and
comparing it with four well-established, highly successful software ecosystems. We begin by
providing the results of a year-long qualitative study of the current VistA ecosystem. For this study
we conducted interviews with stakeholders, examined documents, e-mail lists, and other sources,
to create an up-to-date view of VistA development and distribution, and the people and
organizations outside VA who are involved with it. Second, we performed four smaller-scale case
studies of long-lived, thriving ecosystems based on software platforms: Apache, Eclipse, GNOME,
and Mozilla. We looked for similarities and differences across these four cases, and then applied
what we learned to the current state of VistA. Based on this analysis, we discuss ways of moving
VistA forward, capitalizing on lessons from successful platforms. We identify the key choices facing
VA and other participants, summarized below.

The architecture of the ecosystem: Our observations of the four established ecosystems lead us
to note several obvious differences between the architecture of the VistA ecosystem and all the
others. The established ecosystems all have a single main distribution and code that is centrally
managed. Licensing is uniform or at least compatible across the ecosystem, and each has a central
foundation that owns the intellectual property or the community is kept together by one shared
license. Moreover, VA plays a role not present in other ecosystems. In particular, VA accepts very
little outside code, and does not release key parts of the VistA system. There are good reasons for
both of these behaviors, but they create a powerful damping effect, as we explain.

We believe it is possible for VA to meet its unique needs, reduce costs, and support HIT adoption
nationally, and create business opportunities to forward-looking firms by pursuing an open source
ecosystem strategy. It will require successful resolution of several issues, outlined below, for
evolving the technical architecture, establishing a governance regime, and creating an effective

institute for .
I S SOFTWARE 1
RESEARCH

collaborative infrastructure. From a business perspective, we believe the appropriate incentives
can readily be put in place to establish the four key elements of a VA ecosystem-based strategy:

* VA performs or directs the vast majority of platform maintenance and enhancement.

* Vendors will provide small, focused platform enhancements for free.

* Vendors will provide the bulk of application development, enhancement, and maintenance
for a free distribution.

* VA will fund application enhancements required by VA, and release the enhanced versions
to the ecosystem.

Key choices about the structure of the community and the role of VA are:

* VA: Will the VA commit to full participation in the ecosystem, and adopt an ecosystem-
based software strategy?

* Community: Will the community continue to maintain several distributions or will it rally
around a single distribution with uniform or compatible licenses?

The technical characteristics of the platform: VistA is currently not separated neatly into an
underlying platform and applications that run on top of it. All of the established ecosystems have
such a technical structure, although they differ considerably on how large the platform is relative to
the entire distribution, and nature of the Application Programming Interfaces (APIs) through which
the platform functionality is exposed. A closely related question concerns what will be included in a
free distribution. In all the established ecosystems, a set of applications sufficient for a fairly wide
range of uses is included, helping to spur adoption and grow market share. Including too much can
reduce business opportunities, such as the ability to sell the included functionality. Including too
little suppresses adoption and growth of the market. Key choices about the technical
characteristics of the platform are:

* Will a platform be “cored” from VistA? What will it include?

* What APIs will be defined and developed? What functionality will be exposed for each? In
what specific way will the APl make the functionality available?

* Will free, open versions of applications be included in a distribution of the platform? If so,
which ones? With what level of functionality (will it, for example, qualify for “meaningful
use”)?

* Will VA choose contractual arrangements with vendors that will make all useful platform
code available to the community, or will vendor code continue to be regarded as
proprietary?

Technical and social collaborative infrastructure: In each of the established ecosystems, the
community converged on a common set of tools to support collaboration, communication, and
coordination. They also developed cultures with norms and values about cooperation,
transparency, and citizenship. The VistA ecosystem has the potential to be much larger and more
interconnected than any of the established ecosystems, so having an effective set of tools and a
culture that strongly encourages prosocial behavior will be particularly important. Key choices
about the technical and social collaborative infrastructure are:

* Will all participants agree on and use a common set of tools, including a hosting service,
mailing lists, source control, change management, etc.?

* Will all participants (including VA and participating firms) agree to openly discuss
important technical decisions in advance in agreed-upon public forums?

institute for :e
I S SOFTWARE 1
RESEARCH

* Will all participants agree to take on the values and follow the norms appropriate for open
source, even when this causes some friction with organizational values and norms?

Governance structures: Finally, we note that all the established ecosystems had governance
structures built around foundations. A number of key decisions were made centrally, by the
foundation, often in consultation with members or advisory boards. Other decisions, such as what
products to build, services to offer, and business models to pursue, were left completely up to
participants. There were various levels of decision-making, with some showing a strong “meso”
level, with projects having considerable authority over their own schedules, processes, and what
features to build. There were also a variety of participatory mechanisms such as councils and
committees that allowed participants to have a role in making decisions. The established
ecosystems differed with respect to the status of firms - some had firms as members, others only
recognized individuals. Key choices about ecosystem governance are:

* Will a foundation be recognized as the legitimate steward of the ecosystem? Will it have
ownership of the intellectual property, or be granted the power to insist on compatible
licenses?

* What kind of input will VA and the community have in the technical direction and evolution
of the platform?

* Will an organizational structure include a meso-level with independent development
projects, or will a foundation be the main decision-making entity?

* What will be the scope of the foundation’s decision-making, and what kinds of decisions will
be left to Councils or members?

* How would a foundation be funded?

* Will companies participate, for example, as members, board members, council or committee
members in such a foundation? If yes, how?

We wish to call particular attention to the process by which decisions are made in the established
ecosystems we studied. In each case, the communities are built on open debate, meritocracy, and
decision-making based on consensus. They are by no means free of conflict, but they resist
imposition of solutions from the outside. The nascent VistA ecosystem has a similar culture, and
would be seriously damaged by decisions simply imposed upon it. We believe that making
decisions the right way - in an open community-based process - is at least as important as making
decisions that are correct on their merits. Incorrect decisions can be changed if the community
remains intact. Community-building may be the most important activity to be undertaken.

A critical role for research. Enhancing and growing the VistA ecosystem will push the boundaries
of practical experience and the current state of knowledge. For this reason it is critically important
for ecosystem development to proceed in close collaboration with a research community
committed to addressing the essential unknowns, anticipating issues, applying state of the art
solutions, and taking on key issues that will help the ecosystem thrive over the longer term. Among
the central issues research must address are the following:

* What social and technical collaborative infrastructure - tools, practices, and norms - will
support an ecosystem on the scale and with the interconnectedness that VistA could
achieve?

* What delivery models make sense for VistA - cloud deployment? Providing applications as
a service? Providing the platform as a service?

* How can the very large-scale VistA legacy system be evolved into a desired architecture?

institute for aee
I S SOFTWARE 11
RESEARCH

* For individual and corporate participants, what is the business case for contributing to the
creation and maintenance of a platform and a fully-functional free distribution? How can it
be modeled in convincing fashion so participants will have a sound basis for their decisions
about participation and contribution?

* How can the critical performance, security, availability, and other quality attributes of
deployed systems be assured?

* How can open source governance mechanisms - foundations, projects, councils,
committees, user groups, vendors, service providers, health professionals, standards bodies
- be orchestrated to provide effective policies, dispute resolution, and guidance for an
ecosystem of unprecedented scale and complexity? Will novel mechanisms be needed?

* In order to guide overall decision-making, how can the socio-technical ecosystem be
modeled so that the effects of establishing or changing various design parameters can be
predicted, and the space of parameter combinations explored?

Research on these issues, critical for near- and long-term success, should be adequately funded, and
mechanisms provided for frequent interaction between the research community and thought
leaders in the ecosystem.

VistA approaches a critical juncture. VistA might well suffer the fate of Unix, and continue to
fragment into multiple and somewhat incompatible versions, each with its own small community.
This is not such a terrible fate - except by comparison to what VistA could become. Imagine a free
platform and basic applications that could be used by doctors’ offices, clinics, small hospitals, and
medical centers. This platform is highly reliable, secure, and standard-compliant, and is naturally
adopted by a substantial segment of the HIT market. Service providers of various sizes and
specialties stand ready to install, configure, customize, and train. Vendors supply upmarket
versions of the applications to large hospitals and hospital networks. All the participants, including
VA, benefit from the huge market created by adoption of the free version, and by sharing the cost of
maintaining the platform and basic applications. HIT costs drop, since duplication of effort is
avoided, and each firm can focus on its differentiating competencies. Innovative companies, large
or small, can sell their novel products and services with low barriers to entry because of the
openness of the ecosystem. Such an ecosystem would not meet all HIT needs, and proprietary
solutions would thrive alongside the VistA-based ones, just as now happens with Apache, Eclipse,
GNOME, and Mozilla. Yet VistA would be at the center of the HIT agenda, driving down costs
through competitive pressure, unleashing innovation, providing business opportunities for firms of
all sizes, and making solutions available to those who otherwise could not afford them.

institute for .
I S SOFTWARE v
RESEARCH

1 Introduction

We have arrived at a critical point for Health Information Technology (HIT) in the United States.
The convergence of several key events presents us with a rare opportunity. The U.S. Department of
Veteran’s Affairs (VA) is currently considering policy options for encouraging wider use and
adoption of the powerful VistA HIT system, currently in use in VA facilities around the country, and
adopted by a number of hospitals and clinics around the world. As claimed by VA CIO Roger Baker
(Baker, 2010), it is arguably the finest HIT system in the world. A working group of the Industry
Advisory Council (IAC), commissioned by VA to look at ways of evolving VistA and deploying it to a
wider community, has recommended pursuing an open source strategy (VistA Modernization
Working Group, 2010). We believe an open source strategy built around a VistA platform could
have a transformative impact on cost, adoption, and innovation in HIT (Yellowlees, Marks, Hogarth,
& Turner, 2008), as this approach has already had in information technology areas such as web and
application servers (e.g., Apache, MySql, and Perl), operating systems (e.g., Linux), mobile
technologies (e.g., app stores for platforms such as Android), and development environments (e.g.,
Eclipse).

Platforms and the ecosystems that grow up around them have the power to “drive innovation and
transform industries” (Evans, Hagiu, & Schmalensee, 2006). They form the context for both
cooperation and competition, in ways that potentially combine the best of both (Brandenberger, &
Nalebuff, 1996). Open platforms can orchestrate people, technology, and organizations into socio-
technical ecosystems that remain, even on large scale (Northrop, 2006), flexible and innovative. For
ultra-large, highly interconnected systems, such as HIT, socio-technical ecosystems are the only
mechanism that will allow sufficient resources to be brought together in a coordinated way to
produce the systems we need (Northrop, 2006).

The time for taking bold steps in HIT could not be better. The Affordable Care Act of 2010 has
focused national attention on health care, and focused a spotlight on the serious, health-threatening
shortcomings of our current information technology and the promise of technologies that are now
within reach (Chaudhry et al,, 2006; Hillestad et al., 2005; Longman, 2010). At the same time, the
Health Information Technology for Economic and Clinical Health (HITECH) Act will provide
sufficient funds to have a very large impact on rapid adoption and deployment of HIT systems.

Yet growing a healthy ecosystem is fraught with uncertainties. Success clearly depends on much
more than the quality and the design of the software itself. How to create and sustain a critical
mass of adopters that will provide a viable market? How to design the platform so that new
technologies can be quickly integrated? How to ensure system-level security and regulatory
compliance when multiple vendors operate independently? How can such an ecosystem be
governed so that technical coordination and coherence are assured, yet novelty and innovation are
encouraged? Why would firms, naturally seeking profit and avoiding uncertainty, adopt business
models that are tied to the success of an overarching ecosystem over which they have limited
control? These are but a few of the very difficult questions that must be addressed in order to
design a viable ecosystem. Design principles to guide such decisions are uncertain at best, and lack
scientific basis.

Yet there exist a number of long-lived, robust ecosystems generating products that are highly
competitive, or, as in the case of Apache (see Netcraft, 2010) even dominate their markets. We
believe that careful study of such ecosystems can provide guidance for anyone wishing to grow the
network of users, vendors, and service providers that surround VistA, and can also begin to provide

nstitute for
I S r SOFTWARE 1
RESEARCH

more general design principles and move us toward a more systematic understanding of
ecosystems.

The goals of this report are twofold. We have the pragmatic goal of providing concrete advice,
grounded in empirical observation and analysis, to help guide the formation of a viable VistA-based
ecosystem. We have the scientific goal of identifying design dimensions, begin to formulate design
principles, and identify choices in ecosystem design. Toward these ends, we have conducted an
extensive qualitative study of the VistA ecosystem, and used a comparative case study of four highly
successful open source ecosystems in order to suggest directions VistA could take to grow and
thrive beyond VA.

The remainder of this report is structured as follows. Section 2 presents the results of our
qualitative case study of the existing VistA ecosystem. Section 3 compares the VistA ecosystem to
four established ecosystems that are long-lived, robust, and thriving. They represent plausible,
albeit smaller scale, models for what the VistA ecosystem could become. In order to provide this
comparison we draw on research that has recently begun to identify some of the critical decisions
for the design of ecosystems. Gawer and colleagues (Gawer, 2010; Gawer & Cusumano, 2002) have
identified four “levers,” i.e., design parameters that firms striving for platform leadership, including
the scope of the firm, product technology, external relationships, and internal organization. We
adopt an analytic framework consisting of four dimensions that are critical to ecosystem design: the
technical architecture, governance regime, collaborative infrastructure, and business
opportunities.! At the heart of any ecosystem is a technical platform that supports the accumulation
of the efforts of diverse contributors (Evans et al., 2006; Gawer, 2009; Gawer et al., 2002). A
governance regime is the way in which a particular ecosystem distributes types of decisions over
types of participants and decision-making mechanisms. Successful collaboration over distances and
across organizational boundaries is widely recognized as a challenging problem (e.g., Olson &
Olson, 2000), but established ecosystems have addressed this with a combination of a culture
favoring openness and a collection of internet-based tools that foster communication and
coordination around the product (Moon & Sproull, 2000). The final dimension we use to compare
the ecosystems is the set of business opportunities that are actively being pursued in the ecosystem
(see generally Messerschmitt & Szyperski, 2005).

2 The VistA ecosystem

In this section, we present the results of our empirical case study of the VistA ecosystem. We first
describe our research methods, then give a brief history of VistA in order to provide context. We
then present our results in several sections. First, we provide a technical overview about the VistA
system, describing the main distributions. We then describe the VistA community and how it is
organized. Finally, we discuss challenges for the VistA ecosystem that were identified by our
interviewees.

' Various appendices contain the details of these dimensions along which we compared ecosystems (Appendix A), our four case studies of
established ecosystems (Appendix B), our analysis of commonalities and variabilities among the cases (Appendix C), a table with our detailed
point by point comparison of all the ecosystems considered (Appendix D), a brief overview of open source licenses (Appendix E), a
comparison of VistA discussion groups (Appendix F), and a description of the role of Fedora in the Red Hat Linux ecosystem (Appendix G).

nstitute for
I S SOFTWARE 2
RESEARCH

2.1 Research methodology

Our study of the VistA ecosystem adopts a grounded theory approach (Glaser, & Strauss, 1967). The
goal is to provide insights about the functioning of the VistA ecosystem after collecting data from
primary and secondary data sources and developing a rich description. Over a six-month period of
time beginning in September 2009, data were collected through individual interviews, analysis of
documents (e.g., research articles, news, websites) and participant observations during meetings.
The first steps in our process of field data collection were identifying the existing key players in the
ecosystem and becoming familiar with the role of information technology in the health care
industry. Based on the findings of the document analysis, the first interviews were conducted and
additional documentation was identified. The collected information yielded further interview
participants.

By means of this iterative process, we identified and interviewed a total of 24 informants. All
interviewees represented different stakeholders in the ecosystem. At the beginning, the interviews
were semi-structured and the questions were dependent on the particular interviewee. Later in the
data collection phase, the interviews became much more structured, especially the final interviews
that sought to address specific holes in our understanding. The interviews were between 30 and 90
minutes long and included the following topics: (1) organizational issues regarding VistA
development process, (2) technical issues regarding VistA distributions, (3) legal issues regarding
VistA distributions, (4) organizational issues regarding the VistA ecosystem, and (5) the future of
the VistA ecosystem.

Classification criteria Number

Number of participants

Total interviewees 21
Total interviews 24
Medium used

Telephone interviews

In-Person interviews 15
Affiliation*

Software vendor 11
Non-profit organization (501(c)(3), (6)) 8
Department of Veterans Affairs 4
Roles*

Developer 7
Implementer 8
Vendor 11

Table 2-1: Summary of interview participants. *Interviewees could have multiple roles and affiliations.

In Table 2-1 represents an overview of the participants. Interviewees are classified according to
three different criteria: medium of interview, affiliation, and role. Most interviews were carried out
in-person and were held mainly during the VistA Community Meeting in January 2010. Three
groups of affiliations could be differentiated: software vendors, non-profit organizations, and
Department of Veterans Affairs (VA). This study deals with the open source ecosystem that exists
outside VA; therefore, the majority of interviews were not conducted with VA employees. There are
some multiply affiliated participants; for example, a person who is involved in a non-profit
organization might also work for VA. The third classification criterion is the assignment of
interviewees to one of three main roles: developer, implementer, or vendor. A developer is a person

nstitute for
I S SOFTWARE 3
RESEARCH

who actively programs functions for extensions to the VistA system. An implementer is a person
who installs the VistA system—funded or unfunded—and adapts the system, if necessary. A vendor
is employed by a company that installs, customizes, or sells a VistA distribution.

In order to develop a description of the VistA ecosystem, the interview data were inductively
analyzed. The interviews were transcribed and then categorized by assigning codes. These codes
were based mainly on existing stakeholders and topics. In the next step, the different codes were
clustered and the resulting concepts were used to identify specific themes. The latter step was
applied specifically for concepts that address existing challenges in the ecosystem. All insights and
findings are summarized and documented.

Based on these results, as well as our analyses of four open source ecosystems reported in
Appendix B. We developed a framework (see Appendix A) that we used to describe and evaluate the
VistA ecosystem, to derive recommendations for improvement, and to highlight existing similarities
and dissimilarities to several thriving, well-established ecosystems (see Appendices C and D for a
detailed comparison).

2.2 Brief history of VistA2

The first ancestor of today’s system was created in 1977: VA MUMPS (Massachusetts General
Hospital Utility Multi-Programming System) medical system3 (cf. Figure 2-1). More and more VA
medical centers acquired their own computing systems and VA MUMPS was increasingly adopted
and enhanced (Brown, Lincoln, Groen, & Kolodner, 2003, p.137). Implemented improvements or
extensions of the system had been shared between Medical Centers; however every VA MUMPS
system was customized for the specific needs of each site.

In 1979, the further development of the VA MUMPS system was officially terminated. But a group of
volunteers, who still believed in the capabilities of the system, continued its development. This
group named itself the Hardhats%. Over a period of three years, they worked in the “underground”
as a geographically distributed development team. This development process was a precursor to
the open source development style (Trotter, 2007). However, the system was increasingly utilized
within and outside the US. In 1981, during the Symposium on Computer Applications in Medical
Care, VA MUMPS with its different components was presented to VA physicians and administrators
from around the country. Because of the outstanding capabilities of the system, in February 1982,
the VA officially legitimized the MUMPS work and founded a task group on the DHCP (Decentralized
Hospital Computer Program). In the first years, the software had been developed in a user-centric
manner that meant that its development was closely related to clinical processes and attuned to the
specific needs of the physicians. Various independent, regional development centers existed across
the US. In 1996, because of an ongoing system evolution, the Department of Veterans Affairs (VA)
renamed DHCP as the Veterans Health Information Systems and Technology Architecture (VistA)
(Brown et al,, 2003). One major improvement was the introduction of a graphical user interface
CPRS (Computerized Patient Record System). In the following years, VistA has been continuously
extended and improved, for example the Barcode Medication Administration (BCMA) to
electronically manage medications, and Clinical Reminders for chronic disease management.>

? For a history of VistA focusing on its role in the extraordinarily effective healthcare at VA, see generally Longman (2010).

’ In the late 1960s, MUMPS was created as an operating system and programming language intended for and designed to build database
applications for the health care industry. More information about M can be found at: http://en.wikipedia.org/wiki/MUMPS.

4 More information can be found at http://www.hardhats.org.

* We are grateful to DSS, Inc. for pointing this out.

nstitute for
I S SOFTWARE 4
RESEARCH

Nowadays, VA provides care to approximately 5.3 million patients (among 7.7 million enrollees or
“covered lives”) through 1,400 sites (including 171 medical centers and hospitals, 876 outpatient
clinics, and a variety of other long-term, community mental health, and home care programs
(Veterans Health Administration, 2006).6

VistA does not only exist in VA. Internationally, VistA is the HIT system, for example, at the Berlin
Heart Institute in Germany and the Nasser Institute Hospital in Egypt?. The Department of Defense
(DoD) installed their variant of VistA, the CHCS (Composite Health Care System) in military
hospitals, and the Indian Health Service (IHS) called their variant RPMS (Resource and Patient
Management System). Both variants can be seen as dialects of VistA. RPMS and VistA are most
closely related because VA and IHS have repeatedly exchanged software code over the years.

In the last few years, the nature of software development in VA has profoundly changed. Today, the
Office for Enterprise Development (OED) coordinates all development activities. In the OED, VistA
has been in maintenance mode with a skeleton staff for the last 5 years while about 700 developers
are working on a rewrite of the original system. New requirements are identified by NSR (new
software requests) in VA. In order to avoid duplication of work, all change requests are collected by
the OED and prioritized. Implemented changes (patches) to the VistA system are aggregated to
releases and distributed in VA twice a year or on an as-needed basis. A new version of VistA is
slated for a first release in 2018.

1978:
Development of FileMan (VA) 1996:
DHCP renamed into VistA
1982: (VA)
Creation of DHCP (VA)
2002:
Late 1960: 1984: First FOIA release
Creation of the IHS implements DHCP
MUMPS language and it evolves to RPMS
| | | |
T T T T
1970 1980 1990 2000 2010
1990:
DHCP implementation (VA) on
N a national scale completed 1997:
1977: .
- CPRS now used in all
ANSI standardization Medical Centers in VA
of MUMPS
MUMPS: Massachusetts General Hospital Utility
1978: Multi-Programming System
First clinical use of VA: Department of Veterans Affairs
f DHCP: Decentralized Hospital Computer Program
MUMPS system in VA RPMS: Resource Patient Management System

CHCS: Composite Health Care System
FOIA: Freedom of Information Act
PTTH: Pacific Telehealth & Technology Hui

Figure 2-1: Timeline of the development of VistA in VA.

¢ Numbers are given by Ben Mehling on Google Group Hardhats (http://groups.google.com/group/hardhats/msg/1d22c0ad3dce7d09).

” Information is given by Chris Richardson on Google Group Hardhats (http://groups.google.com/group/hardhats/msg/80adfala90f7da3d).
Community hospitals that have installed the system are listed on the Hardhats website (http://www.
hardhats.org/adopters/vista_adopters.html).

nstitute for
I S SOFTWARE 5
RESEARCH

In October 2009, the Department of Veterans Affairs commissioned the Industry Advisory Council
(IAC) to invite experienced healthcare and information technology professionals from IAC
membership organizations to form the VistA working group (Blankenhorn, 2009; Brewin, 2009).
Possible deployment models for VistA, such as open source, as well as strategies for modernizing
VistA were discussed in this working group. In May 2010, the IAC working group presented its
recommendations to VA (VistA Modernization Working Group, 2010) consisting of two main ideas:
(a) replace VistA by a new VistA 2.0 core system that is realized by an open source software
development model, and (b) build a sustainable ecosystem around VistA that is governed by a non-
profit foundation.

VistA already forms the technical core of an open source ecosystem, albeit one that is far smaller
and more fragmented than one might expect, based on the value of the technology. The software is
made available via the Freedom of Information Act (FOIA) of 1966, which requires disclosure of
governmental documents and information. VistA and unlimited ongoing updates (500-600 patches
per year) are provided as public domain software8 by the US government. Certain parts of VistA are
precluded from publication because they fall into existing exemptions; for example, records that are
closely related to VHA’s internal rules and practices, as well as proprietary code, security related
routines, or financial information are not released. However, each year VA publishes existing
changes on its website. Patches are assembled in so-called KIDS builds (Kernel Installation and
Distribution System). Most of these patches are written to enhance the software, sometimes also to
fix existing software errors.

2.3 Technology and main distributions

VistA is not a single application; it is more a conglomerate of various packages and programs.
According to the VistA-HealtheVet Monograph, VistA includes 120 applications (Enterprise
Development, 2009). A common framework for VistA implementations is utilized in VA allowing
third party health care providers to easily access health information (Veterans Health
Administration, 2006).

The underlying technology of most of VistA’s applications is MUMPS. MUMPS is both a procedural
programming language and a hierarchical or multidimensional key-value database®. Since 1977,
MUMPS has been an ANSI standard which has primarily fostered its utilization in health care
information technology. During 1966 and 1967, MUMPS was developed at Massachusetts General
Hospital (MGH) in Boston, and apart from health care it is also used in the financial sector. The
design of MUMPS is primarily aligned to multi-user database-driven applications. Compared to
widely used programming languages today, MUMPS has a very different syntax and terminology.
For example, MUMPS has a single data type of string and it is not possible to freely use white space.
Global variables are used for persistent storage and are accessible across all processes in the
system. Almost every MUMPS command can be abbreviated to one single letter, which makes it
possible to have succinct code, but at the same time reduces the readability of the code for
inexperienced programmers10. In Figure 2-2 and Figure 2-3, a simple Hello World example is given
in MUMPS, in MUMPS with abbreviated commands, and in Java.

% «“Public domain” is not a license; it is more the absence of any license or restriction. The exact rules for public domain depend on the country.
More information is available here: http://www.copyright.cornell.edu/resources/publicdomain.cfm.

° More information can be found at http://www.mcenter.com/mtrc/whatism.html.

' More information can be found at Vistapedia http://vistapedia.net/index.php?title=What is VistA Really.

nstitute for
I S SOFTWARE 6
RESEARCH

hello()
write "Hello, World!",!
quit

hello() w "Hello, World!",! q

Figure 2-2: Hello World example in MUMPS (line 1-3) and MUMPS with abbreviated commands (line 5).

class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World!"); // Display the string.
}

Figure 2-3: Hello World example in Java.

Because MUMPS is a programming language and incorporates, based on its design, a database file
system, all database interactions are part of the language. In VA, the proprietary object database
management system Caché is employed!l. In opposition to common relational databases such as
MySql, MUMPS has a native hierarchical storage structure. The VistA systems use a VA constructed
database called File Manager that has properties of both relational and hierarchical databases.
MUMPS has object-oriented capabilities via Caché ObjectScript or ESI objects in order to allow for

object-based programming while Caché also allows creation of SQL tables and supports SQL code to
access the database!2.

. Abstract
VA VistA open source VistA
Client/GUI CPRS P CPRS/CIS
Client operating system Windows Linux
CoCC DT TSToIT ST ITnToTonTonT T T
o . \ |
Network layer RPC Broker i RPC Broker ‘ 1
s ; !
erver | 2.
(virtual operating system) 1 ’ Kemel ‘ ’ Kernel ‘ ©
Database management ! ’ VA FileMan ‘ ’ FileMan ‘ |
Program/database server ’ Caché ‘ ’ GTM ‘
Server operating system ’ Open VMS ‘ ’ Linux ‘
Hardware ’ Alpha ‘ ’ Intel ‘

Figure 2-4: VA VistA and abstracted open source VistA technology stack (following (Mehling, 2008)).

The core infrastructure of VistA consists of two main components: VA FileMan and Kernel (cf.
Figure 2-4). VA FileMan is a database management system that organizes the medical data, storing
it in fields, records, and files (Kolodner, & Douglas, 1997). The Kernel provides the portability layer
on top of the operating system, as well as system management tools and shared services such as

"' More information about this proprietary version of MUMPS can be found at http://www.intersystems.com/cache/. A single user version of
Caché can be downloaded from the website.

"> There is an open source equivalent to Caché's SQL capability, although it is not as fully featured. More information can be found at:
https://medsphere.org/community/project/fm-projection.

institute for
I S SOFTWARE 7
RESEARCH

sign-on and security service, menu management, and error processing. This infrastructure enables
applications to be integrated on a database level and all data between applications can be
consistently shared. This common infrastructure of the core code can be updated more easily
because the layer between applications and the operating system is stable (Brown et al., 2003).

VistA was originally mainframe software that allowed users to interact with the system via
character-based terminals. But since the mid-90s, the Computerized Patient Records System
(CPRS), which is written in Delphi, is the primary graphical user interface for much of the clinical
data in VistA (Veterans Health Administration, 2006). It uses a client-server architecture, with a
client user interface in Windows style!3. However, many departmental systems (e.g., Pharmacy,
Laboratory, Radiology) still use a terminal-based user interface.14

In 2003, under a contract from the Pacific Telehealth & Technology Huil5, VA and DoD, in a joint
effort, converted FOIA VistA into Hui OpenVista. The main motivation behind this project was the
need for an affordable HIT system in the Pacific region. VA VistA runs on proprietary software and
the licensing cost turned out to be a major issue for this region. Therefore, Hui OpenVista operates
on an open source database management system GT.M16, a free equivalent of Caché that runs on
Linux. Hui OpenVista was the first available open source stack of FOIA VistA. A team called the Hui
717 realized this ambitious project; it can be seen as a starting point for the development of today’s
open source VistA ecosystem.

There are four main distributions of VistA outside VA: FOIA Vista (unlicensed, public domain
software), WorldVista EHR (GPL-licensed), OpenVista (AGPL-licensed) and vxVista (EPL-
licensed)!8. These distributions, i.e. flavors, are described in more detail in the following sections
(see also Noll, 2009).

2.4 VistA community

In this section, we describe the different stakeholders of the VistA ecosystem and their governance
models. The stakeholders can be divided into two groups: organizations and software vendors.

System name Vendor/implementer # Patient records # Sites
Non-government:

WorldVistA

EHR/VOE 1.0 Sequence Managers, etc. 293,195 16
RPMS EHR 1.1 Svo\r/nlgnumty Health Network of 242.816 30
OpenVista 1.5 Medsphere Systems Corp. 213,948 18
vx VistA DSS Inc. 189,106 4
Sub-total non-federal 939,065 68
Government:

VistA Department of Veterans Affairs 23,442,000 1,007

13 A demo of this software can be found at http://www1.va.gov/cprsdemo/.

'* We are grateful to Ben Mehling for pointing this out.

'S More information can be found at http://www.pacifichui.org.

' More information can be found at http:/fisglobal.com/Products/TechnologyPlatforms/GTM/index.htm.

' Team members in alphabetical order: Dee Knapp, Brian Lord, Rick Marshall, Chris Richardson, Steve Shreeve, George Welch, and David
Whitten.

'8 A brief description of these licenses is given in Appendix E.

"% The initial implementation is done in collaboration with Medsphere Systems Corp.

nstitute for
I S SOFTWARE 8
RESEARCH

RPMS EHR 1.1 Indian Health Service ~ 1,000,000 600
Sub-total government 24,442,000 1607
Total | | 25,381,065 | 1,675

Table 2-2: OSS deployments and aggregate numbers of patient records in deployed system (after Valdes, 2008).

The first group refers to non-profit corporations or two types of associations: 501(c)(3) and
501(c)(6). This group comprises WorldVistA, VISTA Expertise Network, VistA Software Alliance
and Open Health Tools. The second group comprises all existing companies. Because of their
prominent roles in the VistA ecosystem, two companies are described in more in detail.

Table 2-2 provides an overview of existing applications and their approximate number of
implementations. One may see that governmental application of VistA and related distributions
exceed by far the applications outside the governmental sphere.

2.4.1 WorldVistA

WorldVistA20 is a non-profit organization (501(c)(3)), incorporated on March 18, 2002. It is
dedicated to further development of VistA as open source health care software (WorldVistA, 2009):

“The primary purposes of this corporation shall be to further the cause of affordable health care
information technology worldwide.”

A key part of WorldVistA’s purpose is to ensure that VistA will be available for the world even if VA
eventually stops using it. Therefore, WorldVistA has extended the work of the Hardhats (cf. Section
4.1). The primary goal of the Hardhats has been fostering the virtual community of VistA users
worldwide. For example, they offered help with installing and using FOIA VistA. But the Hardhats
had no formal, legal existence. Necessary activities, such as applying for grants, contracting, or
formal alliances, could not be carried out. Establishing WorldVistA closed this gap. The main goal
was to ensure the availability of VistA code outside VA and to provide “a neutral meeting place for
VA programmers, VA bureaucrats, and those external to the VA.” (Trotter, 2007). WorldVistA is
independent from commercial interests, federal governmental interests, and foreign-government
interests. During its first years, WorldVistA had been a more technically focused group; today in its
self-conception, WorldVistA aspires to be an umbrella organization for all members of the
community.

In October 2009, WorldVistA coordinates with 75 implementations outside VA. Its goal is to be an
international organization (there are board members from England, Canada, and Jordan). At the
beginning of 2010, an important adopter is the country of Jordan, which is implementing
WorldVistA EHR, and there are interested parties in India as well.

Governance. The general organizational structure of WorldVistA consists of the Board of Directors,
the Executive Team, and regular membership. A member can be any individual but not a company.
The Board itself elects the Board of Directors. It is responsible for the management and allocation of
assets, the overall strategic direction and priorities, and the delegation of decisions to the Executive
Team. The Executive Team develops and implements WorldVistA's operational plan, as well as
establishing working groups that are an extension of the management team.

» More information can be found at http://worldvista.org.

nstitute for
I S SOFTWARE 9
RESEARCH

According to the bylaws, WorldVistA is not a membership organization; this means that non-elected
members have no official role in participating in the decision-making process.2! The main reasons
for this model are the number of members of WorldVistA and the size of the community. It has been
pointed out that a membership-based model might endanger the vision of WorldVistA’s founders. A
membership model can be an option with a larger and stronger membership base. However, two
Advisory Councils give voice to WorldVistA’s members: the User Advisory Council and the Vendor
Advisory Council. Councils are self-organized within the terms of reference provided by the Board.
During all Board meetings, representatives of both Councils are invited to attend. An overview of
the organizational structure is given in Figure 2-5.

tablish
’ Board of Directors %::;ffefsi 2S5 5| User Advisory Council

;
/

ccd-cer-project

N e
. defines .
Executive Team (- working groups

self-election

Members (individuals)

Figure 2-5: Organizational structure of WorldVistA Foundation.

Responsibilities. WorldVistA activities can be divided roughly into three main areas: community
development, software development, and business development.

The community development addresses the development of a community of VistA users,
supporters, and developers. It involves the organization of the VistA Community Meeting, the
WorldVistA Education Seminars, developer meetings, and micro training. The VistA Community
Meeting takes place twice a year at various places around the US where low or no cost hosts can be
found (Robert Morris University, University of Washington, University of Arizona, the National
Library of Medicine, Midland Memorial Hospital, Hewlett Packard, and Intersystems).

While the VistA Community Meeting serves as gathering point for the whole open source VistA
community, the WorldVistA Education Seminar is aligned to the specific needs of the WorldVistA
community. The types of technical trainings such as in MUMPS or EsiObjects training at the expert
level for WorldVistA EHR reflect this. Attendees of this seminar are end users, potential users, or
adaptors. Developer meetings, i.e. coding camps, comprise small, intensive programming sessions.

With the community-driven wiki VistApedia.org??, information (installation, configuration, and
usage) about existing distributions (i.e. varieties or flavors) of FOIA VistA, Astronaut (cf. Section
2.4.5), and RPMS EHR is provided (cf. Section 2.2). It is furthermore aimed to give an overview

?! Regarding the role of community participation in WorldVistA, contrary opinions exist. This issue is more deeply discussed in Section 2.5.1.
2 More information is available at http://www.VistApedia.org. (This website is owned by one member of WorldVistA’s Executive Team.)

nstitute for
SOFTWARE
RESEARCH 10

about the comprehensive VistA Documentation Library. Moreover, WorldVistA provides
information and documentation for the whole community, such as CPT codes?23 and Lexicon files.

Software development is mainly focused on the integration of VA patches into the WorldVistA EHR
systems and the development of new functionality. The latter is carried out either by WorldVistA
itself or by collaborative development. Even though WorldVistA initiates those projects, the lack of
funding often leads to voluntary work done by community members. However, WorldVistA
provides the organizational frame to enable collaborative projects. One successful example of these
efforts is the CCR/CCD project. This project addresses new standards to represent patient
information from different sources in one unit document. The ASTM Continuity of Care Record
(CCR) is a standard to transfer patient-related health care information between different medical
applications. The Continuity of Care Document (CCD) standard also supports exchange of clinical
documents, but it was proposed by HL724 in order to harmonize the CCR and the HL7 Clinical
Document Architecture (CDA). In 2006, a proposal to add this functionality to WorldVistA EHR led
to formation of a working group, which subsequently has implemented it (e.g., for the Electronic
Primary Care Research Network, ePCRN).

Part of WorldVistA’s business development effort is providing appropriate support for vendors,
depending on their level of knowledge. For new vendors, WorldVistA recommends the participation
in the Education Seminars or the Community Meeting. For established vendors, support is mainly
carried out by “bringing together others with expertise to help them”. As WorldVistA is a non-profit
organization it is not involved in any business activities. For that reason, the VistA Software Alliance
(cf. Section 2.4.3) has been formed.

WorldVistA EHR. WorldVistA EHR25 consists of GNU Linux, GT.M, FOIA VistA, and EsiObjects26.
Besides the pure open source stack, WorldVistA can be used with Caché and MS Windows.
However, it is the result of two-year effort funded by the Center for Medicare and Medicaid Services
(CMS) to provide an affordable EHR that could help physicians improve their patient care.
WorldVistA EHR was the first open source software product that received CCHIT certification??.

Another important technical task of WorldVistA is the consolidation of VA single patches, i.e. KIDS
builds, into multi-builds in order to enhance the existing distribution. Such multi-builds can
comprise up to 600 KIDS builds and can be used to update WorldVistA EHR. Having single patches
eases the identification of existing problems that can occur during their integration. Projects that
exceed these activities, i.e. larger software development projects, are dependent on available
funding.

Approximately 99 percent of all the WorldVistA EHR code is based on FOIA VistA. But only about
one percent of the source code that has been developed by the open source community goes back
into VA (quotation from WorldVista Education Seminar 10/2009).

» CPT (Current Procedural Terminology) codes are numbers assigned to every task and service a medical practitioner may provide to a patient
including medical, surgical, and diagnostic services (http://patients.about.com/od/costsconsumerism/a/cptcodes.htm).

* HL 7 is an ANSI-accredited Standards Developing Organization providing widely used standards in health care. More information is available
at http://www.hl7.org/.

2 The WorldVistA EHR is available at http://worldvista.org/Software Download.

*6 EsiObjects is a standards-compliant, object-relational, database management and interoperability system from ESI Technology Corporation.

7 CCHIT has defined certification criteria in order to ensure that EHRs achieve measurable outcomes in patient engagement, care coordination,
and population health. More information is available at http://www.cchit.org.

nstitute for
I S SOFTWARE 11
RESEARCH

Extensions or modifications from the community are evaluated based on various criteria in order to
decide about their integration into WorldVistA EHR. An expert group reviews these extensions
based on the following considerations:

* License: extension must be GPL compatible,

* Compatibility: extensions must comply with the SAC (Standards and Conventions,
maintained by the Standards and Conventions Committee (SACC)) and other technical
standards in order to ensure compatibility with WorldVistA EHR,

* Quality: extensions must be suitable for use in terms of code quality (e.g., “good
housekeeping” for variables), ease of code maintenance, and documentation,

* Relevance: extensions must be useful for other members of the community, and

* Feasibility: extensions must run on two different stacks (WorldVistA EHR with Caché
and MS Windows or WorldVistA EHR with GT.M and Linux).

These criteria do not apply for “trusted” submitters such as VA and Medsphere. However, other
extensions or modifications that do not meet these criteria are available on the WorldVistA server.
One main reason that contributed source code is not approved by WorldVistA is that is has not been
tested on different platforms. The testing of this source code by WorldVistA is often impossible
because of a lack of funding. At the moment an important challenge is to receive a CCHIT re-
certification of WorldVistA EHR.

2.4.2 VISTA Expertise Network

The VISTA Expertise Network?® is a 501(c)(3) organization that aims: “[...] to improve people’s
health through the use of technology by providing advice and hands-on assistance for new adopters of
VISTA and affordable support for existing users.”

The VISTA Expertise Network has been founded by Rick Marshall and was incorporated in August
2007. The goal is to close the existing generation gap of VistA developers. The main reasons for this
gap are on the one hand, missing training programs for VistA in the last decade and on the other
hand, the growing number of retirements of VistA experts. In order to support the development of a
new generation of VistA experts, the VISTA Expertise Network has developed a unique educational
program called Paideia. In this program VistA experts teach VistA novices while working on real-
world programming problems that exist in open source VistA distributions (e.g., FOIA VistA,
WorldVistA EHR, RPMS). The program follows a “learn-do-teach” model, i.e. craftsmanship model, of
education.

The network has partnerships in the whole VistA community such as with WorldVistA, with public
health agencies (e.g., Department of Veterans Affairs, Indian Health Service), as well as with
academic institutions (e.g., University of Washington). This cross-organizational approach creates a
strong expert base and addresses the need for the revitalization of the VistA community.

The Paideia approach is a much more elaborated educational concept than WorldVistA’s Educations
Seminars (cf. Section 2.4.1) because of the integration of classes and long-term mentoring. But the
VISTA Expertise Network supports neither community building nor development work to extend
available functionality in open source VistA distributions.

% More information can be found at http://www.vistaexpertise.net/index.html.

nstitute for
SOFTWARE
RESEARCH 12

2.4.3 VistA Software Alliance

The VistA Software Alliance (VSA) is a non-profit trade association (501(c)(6)), a trade organization
for vendors, founded in 2004 for the purpose of promoting the VistA electronic health record
system.2?

It is committed to “improv[e] health care by increasing the quality of care, reducing patient errors,
and lowering costs”. In January 2008, the VistA Software Alliance had more than 40 members, for
example HP, IBM, and Perot (now Dell/Perot cf. Section 2.4.5). In opposition to WorldVistA,
members of the VSA can be individuals and companies who are involved in the implementation,
integration, and support of VistA distributions and who share a common understanding of VistA
being a valuable business model. Members are therefore commercially interested in a higher
adaptation of VistA. The VSA has emerged from WorldVistA members who “felt that their
perspective was not being served” because WorldVistA is not involved in any business activities
because of its non-profit status. Large hospitals especially use so-called “request for proposal”
mechanisms. The VSA performs a clearinghouse function, enabling companies to apply for those
proposals. Another issue has been the self-conception of WorldVistA because its activities have
been more concentrated on system development rather than on promoting the system usage: “[...]
there should be more than engineers or groupies saying how great VistA is, there should be people who
actually use it.” But even though companies joined the VSA, they retained their WorldVistA
membership status. However, it is said that major challenges for the VSA have been the missing
technological community and the costs to keep this organization running. Another issue has been
the missing value because VistA software could not be sold as successfully as expected. Finally, in
2009 the organization fell apart.

2.4.4 Open Health Tools

Open Health Tools (OHT)3?, a non-profit trade association (501(c)(6)), was founded in 2007 (OHTF,
2010) in order to “enable a ubiquitous ecosystem where members of the Health and IT professions can
collaborate to build open, standards-based interoperable systems that enable patients and their care
providers to have access to vital and reliable medical information at the time and place it is needed.”
OHT will therefore be part of various communities in this area of Open Health IT.

¥ More information can be found at http://www.vistasoftware.org.
3% More information can be found at http://www.openhealthtools.org.

nstitute for
SOFTWARE
RESEARCH 13

chairs
chairs chairs

Executive Committee
Membership Committee

=
c
5
5]
o
2]
€
@
£
L
=
=
5]
o

Legal Committee
Architectural Council
Health Council

Committees Chgr‘rer Councils
Projects
voting
representation T T
appoints approves appoints

Board of Stewards = p------
nominate
representatives

Members (companies)

Figure 2-6: Organizational structure of Open Health Tools.

OHT is modeled on the Eclipse open source ecosystem3! in its core areas such as governance, legal
and intellectual property policies, development processes, and business models32. It will facilitate
collaboration among diverse participants by involving stakeholders such as software companies,
government health service agencies, and standards organizations. These stakeholders shall work
together in a transparent software development process in order to produce software products
collaboratively (Open Health Tools Foundation, 2010). The OHT will provide the needed neutral
space for these activities by creating a “common health interoperability framework, exemplary tools
and reference applications”. OHT supports all licenses that have been approved by the Open Source
Initiative.33

In January 2009, DSS, Inc. (cf. Section 2.4.5) joined OHT, and contributed its VistA distribution
vxVistA to OHT. Because of this contribution, OHT became actively involved in the VistA community
and is now more widely recognized. This is the first actively promoted project of OHT, however,
and it can be seen as a test case in the area of Open Health IT to verify the sustainability of its
concept.

Governance. As of May 2010, Open Health Tools had 47 corporate members (with eight in process),
including companies such as RedHat, IBM, and Nex] Systems, Inc., organizations such as Eclipse and
the Veterans Health Administration (VHA), and academic organizations such as the Oregon State
University.34 The goal is to increase the number of members by eight in each quarter. The OHT is
committed to the open source principles of meritocracy, openness, and transparency. All members
of OHT have an equal status that is reflected by a single vote of each member. Individuals have the
same importance as companies. Information, such as deliberations of Board and Councils, project
information, software development processes, and guidelines are openly accessible and decision-

31 More information can be found at http://www.eclipse.org.

% Although the Eclipse Foundation and the OHT Foundation are not affiliated in a corporate sense.

* The Open Source Initiative (OSI) was founded in 1998. It is a non-profit organization that stewards the Open Source Definition (OSD) and
approves licenses as OSD-conformant. More information can be found on its website: http://www.opensource.org.

3 Although OHT has only organizational members, persons are permitted as well if they “can make substantial contributions”.

nstitute for
SOFTWARE
RESEARCH 14

making processes will be transparently designed. OHT follows a contribution-based membership
model. There is no membership fee, but members are explicitly encouraged to make contributions
such as assets, existing software, or other intellectual property, and participate in software
development projects.

The organizational structure of OHT is shown in Figure 2-6. Each member can nominate
representatives (Stewards) to the Board. The goal is to foster collaboration between the different
board members. The Board additionally includes representatives of project leads and committers
who have a vote in the Board as well. The Board is responsible for, amongst other things, policies,
technology plans, and directions. It approves furthermore so-called Charter Projects and appoints
Councils. At the moment there are three Councils: the Requirements Council, Architectural Council,
and the Health Council. These Councils are defined to deal with specific issues of OHT, such as
budget and intellectual property.

Technical Goals. OHT provides an open source technology repository. The idea is that different
software with different licenses (proprietary and open source software) can coexist and can be
combined into one bundle. For this, a rule-based engine is planned that checks under what
conditions such a merge is possible. The objective is to maximize user choice.

The repository contains two kinds of projects - Charter Projects and Forge Projects. The Board
approves Charter Projects; they are reviewed based on their goals, expected contributions, etc. and
if they have been licensed under a commercially friendly license such as Eclipse Public License,
Mozilla Public License, and the Apache License. A development process for those projects shall be
defined in order to ensure high quality of the projects. For example, certain checkpoints shall be
specified which are accompanied with certain sets of rules that are reviewed quarterly and
becoming a committer in those projects shall be based on the principle of meritocracy. The OHT
wants to provide a trusted environment for health care projects that might be related to each part
of the EHR life cycle and can range from development of architectures over standards to trainings.
Additionally, OHT supports so-called Forge Projects that are complementary to Charter Projects.
For those projects, no certain quality criteria exist but there shall be a process how Forge Projects
can graduate to Charter Projects. Forge Projects shall encourage innovative solutions because no
pre-defined rule set exists. In April 2010, there are 9 either approved to proceed or approved in
principle Charter Projects and 11 Forge Projects.

In order to harvest projects the OHT has defined two phases. In the first phase the goal is to gather
as many projects as possible. This phase is almost finished as this report is written. In the second
phase, collaboration within and between projects shall be enhanced. It is planned to have a release
cycle of one year. Tools such as a source code management system, an issue tracking system as well
as project pages, wikis, and discussion forums will enable collaboration between projects.

2.4.5 Commercial firms

It is fairly challenging to assess the number of business that are based on, related to, or that are
using the FOIA VistA distribution. Because the software is in the public domain, it is not even
necessary for a business to mention that their software is based on this distribution. However,
based on the information we were able to collect, Table 2-2 shows selected vendors of VistA
distributions. Three companies that provide open source products are briefly introduced and two
vendors—Medsphere and DSS—are described in more detail.

nstitute for
SOFTWARE
RESEARCH 15

Astronaut, LLC35 offers the VistA InstallerSuite for WorldVistA and OpenVista. Based on experiences
gathered by implementing WorldVistA EHR in the IntraCare Hospital in Houston, TX, the necessity
for an installer has occurred because the overall implementation process was very time-consuming
and long-winded. The Astronaut installer, that packages the server, clients, and auxiliary modules,
promises to reduce this process to less than one hour. Besides the Astronaut installer the company
offers support, further development, training, and the Astronaut Shuttle, a pre-configured Amazon
Machine Image (AMI) with Astronaut VistA pre-installed.

Dell Perot Systems36 was founded as Perot Systems Corporation in 1988 and the Perot Systems
Healthcare Group was established in 1995. Dell Perot Systems is a software integrator. Active
software development does not exist. Dell Perot has been involved in various VA contracts, doing
everything from configuration management to project management. One of the offered health care
products is FOIA VistA and a major customer is Jordan with 46 hospitals (WorldVista EHR will be
implemented). Within this project, Dell Perot Systems collaborates with Medsphere because they
are using their OVID framework (cf. Section 4.3.5).

Sequence Managers Software, LLC37 was founded in February 2004. It results from the Hui initiative
(cf. Section 2.3). The company offers OnDemandCARE that is based on the WorldVistA EHR.
Sequence Managers Software aims to deploy software and services for underserved areas, for
example small communities clinics, rural hospitals, and custom development work.

In 2002, two brothers founded Medsphere Systems Corporation38. The company has various
governmental contracts, amongst others, contracts with VA (e.g., several years for FileMan) and the
Indian Health Service (IHS). For IHS, Medsphere provides the VueCentric front end for RPMS39. The
VueCentric front end is based on a componentized CPRS (cf. Section 4.2). As of May 2010,
Medsphere has around 100 employees; and 20 implementations of the company’s OpenVista EHR
solution40. Medsphere and/or its partners are currently in the process of implementing five
additional non-governmental OpenVista hospital sites.

3 More information is available at http://astronautvista.com.

3 More information is available at http://www.perotsystems.com.

3" More information is available at http://sequencemanagers.com.

3 More information about the company and its mission is available at http://www.medsphere.com.
¥ Additional details are available at http://www.ihs.gov/cio/ehr/index.cfm?module=faqg.

* The number of implementations does not include approximately 200 THS sites.

nstitute for
SOFTWARE
RESEARCH 16

Welcome, Guest ~ Login Register

&) Medsphere.org

® o @ & 9
What's New Getting Started Join a Group
Medsphere.org is a community gathering place where healthcare @ Physicians
FM Projection Released administrators, clinicians, developers and enthusiasts can interact, share,
and collaborate in the largest ecosystem in healthcare. © Nurses
© Pharmacists
Recent Releases 4 Search %y Ask (J)Browse & Tour
@ Behavioral Health WG
Community Demo and . Post Your Browse Take a @ .edu Initiatives
Discussion (Go) Question Communities Quick
log in 5| Demos Tour
@ Groups Get on the
FAQs 1
Popular Blogs ¥ Downloads

Communities
® OpenVista & VistA in the News

Filter

@ Community Events Recent Documents and Discussions
i, Re: first time use of appliance by craigin [
22 hours
Recent Blog Posts Unable to generate ORM&ORU for lab
%) orders 7 by urpurush | &
(@ Bazaar repository formats i 4 days ago
2, Re: OpenVista window size by Octavian | €) Help and Feedback
@ CliqueHealth: A chance to blog 4 days ago d) -) Lounge
and vote on the Stimulus ROI -
Calculator in Re: "Workload not activated” - how to

*) build/activate a workload by R
4 days ago
@ stimulus cash to help doctors

go electronic; help for 1300+ Re: Enable Word 2007 as Spell Checker
Ohio docs on the way in ‘5 days ago
Sample Patient Data for CCR Creation ™

Figure 2-7: Screenshot of OpenVista community portal (April, 2010).

In 2004, the company acquired its first contract and deployed FOIA VistA outside VA for the first
time in seven state veterans’ homes in Oklahoma for the Oklahoma Department of Veterans
Affairs#!. In collaboration with Hewlett Packard (who provided hardware and project management
experience) and Department of Veterans Affairs (provided consultative expertise), FOIA VistA has
been installed with minimal customization. The Oklahoma project gave Medsphere the opportunity
to develop a series of methodologies and tools for rapidly deploying VistA systems; many of these
were the roots of the implementation methodology and tools in use today.

In 2005, Midland Memorial Hospital in Midland, Texas, requested FOIA VistA with extensive
customization4? for a private hospital setting. The OpenVista release contains the commercial
changes made to the software in order for it to more closely match the workflow and processes of
the private hospital setting. The adaptation includes removal of VA-specific elements/functions,
small commercial enhancements, and a suite of interfaces for connecting OpenVista to
departmental systems. In its first years, Medsphere mainly concentrated on software development,
in an effort to commercialize FOIA VistA and move the applications onto an open source stack, but
has now shifted the focus to providing hospitals with EMR implementations.

“ More information isavailable at http://www.medsphere.com/company/partners/customer-partners/379-oklahoma-department-of-veterans-
affairs.

* The hospital reported their cost were less than half of estimated costs for proprietary EHRs [Goth, 2006] or an independent case study at
http://www.medsphere.com/midland-memorial-case-study.

institute for
I S SOFTWARE 17
RESEARCH

Medsphere OpenVistA

Client/GUI

Client operating system

Network layer

Server

(virtual operating system) ’ OpenVistA (M) H New (Java) ‘
Database management ’ FileMan (M) H OVID/FM (Java) ‘
Program/database server ’ GT.M/Caché (M) H OVID (Java) ‘
Server operating system ’ Linux ‘
Hardware ’ Intel ‘

Figure 2-8: Medsphere OpenVista distribution.

In mid 2006, WorldVistA announced the coming release of a 2006 CCHIT-certified open source
distribution of FOIA VistA. But because that distribution was not released for some time, the
certification was ambulatory only, and the existing commercialization targeted for hospitals,
Medsphere decided to release its own distribution - called OpenVista - under a AGPL license (cf.
Figure 2-8). With its products and services, Medsphere is mainly targeting hospitals with a
minimum of one hundred beds, whereas WorldVistA especially addresses small physician offices.

In 2007, Medsphere launched a community website43 containing information regarding existing
open source projects. This website mainly consisted of static information, release notes and
software downloads. At the end of 2008, this website had been comprehensively re-designed in
order to encourage more collaboration in the community (cf. Figure 2-7). The community portal
especially supports collaborative development projects in the VistA community. It provides a
development platform for OpenVista and periodic releases. Many projects have an open
development process with code reviews and bug tracking, and in the future more and more projects
will be managed in this way. Medsphere sees the community portal as providing a central location
for collaboration and information, especially on OpenVista, but also for VistA in general, and it
contains various channels of communication such as blogs, forums, wikis. Community development
has become a more relevant part of Medsphere’s overall business strategy (Medsphere):

“Medsphere also actively nurtures a Healthcare Open Source Ecosystem. This vibrant global
community of customers, partners, developers and other online collaborators is growing daily as it
helps drive OpenVista innovation, and provides a parallel development and support structure.”

This is expressed for example by the collaboration of WorldVistA and Medsphere. In the last two
years, WorldVistA and Medsphere have worked closely together on projects that are important for
both organizations such as the CCR/CCD project (cf. Section 2.4.1).

* More information is available at http://www.medsphere.com/community and http://www.medsphere.org.

nstitute for
SOFTWARE
RESEARCH 18

!) VvxVistA s

The vxCollaboration cycle

j)wﬁ%;ﬁ}&m,y

[From vxProject to vxModule \

P

ceillll I’? /

Figure 2-9: vxVistA collaboration cycle (April, 2010).

Major products of Medsphere are OpenVista Server, OpenVista CIS, OpenVista Interface Domain
(OVID), and FileMan Projection. Core and foundation modules in OpenVista are are licensed under
the LGPL license, application modules are licensed under the AGPL, and the server distribution is
released under a mixed LGPL/AGPL license (cf. Appendix E), in order to improve collaboration in
the community and to avoid further forking. The OpenVista Server is based on FOIA VistA. Existing
errors in FOIA VistA were eliminated and commercial enhancements and interfaces were included.
A cross-platform frontend for the OpenVista Server is the OpenVista Clinical Information System
(CIS) (cf. Figure 2-4). It is based on VA’s Computerized Patient Record System (CPRS) and includes
commercial enhancements such as image viewing. The OpenVista Interface Domain (OVID) is an
RPC#* resource-messaging interface with Java bindings. It comprises a set of development tools to
ease the access to OpenVista data using Java5. A number of platform technologies have been
developed using OVID (or on its underlying technology), including FM Projection (an SQL-like
projection tool), FMQL (a semantic web end-point), OpenVista REST (a RESTful web service layer)
and others.

In 1991, Document Storage Systems, Inc. (DSS) was founded and today the company has around 250
employees. DSS had been developing only proprietary modules for VistA in VA for over 14 years
and conducted over 2,300 VistA installations. At the beginning of 2009, DSS announced its first
open source release of an enhanced version of FOIA VistA - vxVista; for example, vxVistA uses
medical record numbers instead of social security numbers to identify patients, and is CCHIT
certified. At the moment there are four implementations (e.g., Texas Tech Health University,
Bayside Clinic) and four are in progress (e.g., Ramsey County Mental Health). vxVistA is not a single,
monolithic solution. It is rather a modular system that can be customized depending on existing
requirements.

41' Remote Procedure Call (RPC) is an inter-process communication technology.
* For example it is used by the company Contineo to provide ubiquitous portable access to critical information on mobile devices such as the
iPhone.

institute for
SOFTWARE
RESEARCH 19

This VistA distribution is specifically designed to enable collaboration between companies based on
a plug-in model. The Eclipse Public License (EPL)46 was chosen to ensure that open source and
proprietary products could be integrated. vxVistA can be seen as a core platform. On top of this
platform companies can develop additional products by programming and packaging plug-ins,
modules and extensions (DSS, 2009). More than 20 companies are already working with DSS to run
their products on top of vxVistA. vxVistA is integrated in the VA’s patch stream in order to maintain
the FOIA VistA basis.

Another major effort of DSS is to create and sponsor a community (“melting point”) around vxVistA
and therefore a community platform4? was launched at the beginning of 2010. The goal is to build a
collaboration cycle (cf. Figure 2-9) that is triggered by users’ needs and their ideas. Developers
whose efforts are supported by Atlassian donated collaboration tools such as Confluence and Jira
implement best practices. The community platform will help customers to identify specialists and
will support companies and specialists to promote their knowledge. At the end of 2010, it is
planned to provide the complete collaboration functionality*8 on this website.

The overall development process consists of four stages. In the first stage, any community member
can propose a new module but the whole community rates this suggestion. After identifying a
project leader and development team, the Community Board will define this project as
vxCommunity Project. A project will remain in this status until the new module has passed a pre-
defined testing and certification process. A passed module reaches the third stage—vxCertified
modules. The vxVistA Governance Committee will finally decide which vxCertified modules are
included in the core stack of vxVistA. However, customers can individually decide which modules
they want to use. vxCompatible and vxUnsupported modules will be provided as well. A description
of the whole process is at the moment only available on this meta-level but further refinements are
planned.

DSS has joined the Open Health Tool Foundation (cf. Section 4.3.4) and vxVistA will be an OHT
Charter project (DSS, 2009).

2.5 Perceived challenges for the VistA ecosystem

In order to provide one global picture of the VistA community, in this section we consolidate
responses from our interviewees (cf. Table 2-1) concerning the challenges facing the VistA
ecosystem. In the first part of this section, responses containing existing challenges are
summarized, and in the second part, these perceived challenges are discussed in relation to the
literature.

2.5.1 Challenges seen by community members

In the previous sections, various members of the VistA ecosystem were briefly introduced. This
information and additional data collected in the interviews are now utilized to describe existing
challenges.# The main challenge for providing an open source health care system is to build a
successful ecosystem, because the “[sJurvival of VistA is closely connected to the survival of the VistA

** More information regarding the EPL is available in Appendix E.

47 More information is available at http://www.vxvista.org .

* DSS cooperates with Atlassian (http://www.atlassian.com) and is using products such as Confluence, Crowd and Jira (with GreenHopper).
¥ Unless otherwise indicated, quoted passages are taken directly from our interviews with VistA stakeholders.

nstitute for
SOFTWARE
RESEARCH 20

ecosystem.” Only an ecosystem that mirrors the specialties of VistA, therefore, will support its
further development. In the following paragraphs, further challenges are discussed.

At the beginning of 2010, three main community models were differentiated by community
members: the WorldVistA model, the OpenVista model, and the vxVistA model. Because of these
three models, the ecosystem does not have one coherent organization. Our interviewees noted that
one solution to overcome this dilemma might be an “umbrella” organization or consortium that
unifies the community and involves all members of the ecosystem. However, a balance is needed
between the different interests and the type of license, which is seen as a major pitfall. Although
people want this change, they fear “[...] differences that can pull the community apart.” However,
different members of the ecosystem are striving towards a unified community. WorldVistA, for
example, is trying to “provide the framework to bring together diverse points of use”.

But there are divergent views regarding the role of WorldVistA in the ecosystem. According to one
group of interviewees, the “WorldVistA community is [...] very disorganized; the organization should
be improved.” They do not view WorldVistA as a neutral mediator, instead they see a need for an
organization that supports open collaboration and feedback loops. Another challenge seen by our
informants is that WorldVistA does not offer a membership model to its community. The Board of
Directors makes all strategic decisions, and possibilities to actively participate in the general
strategy of the Foundation are very limited. Neither decision-making processes nor development
processes are transparent. On the other hand, even though WorldVistA is not a membership
organization, participation is highly encouraged by the Board. In the past, new Board members
were mainly recruited from these voluntary participants. The Board itself just oversees community
activities and provides strategic direction when needed, but this strategic direction is strongly
influenced by the community and its needs.5° The contrasting perceptions of WorldVistA can be
seen in the following comment: “there are gatekeepers [in WorldVistA] that make sure that VistA
does not change, but [at the same time it is] positive in terms of protecting [VistA] from vandalism and
providing stability.” Besides these differences in perceiving the role of WorldVistA, another
challenge WorldVistA is facing is funding: “I don’t see that we have a real good funding source, right
now.” There are only a few volunteers who keep this organization running. One WorldVistA
representative explained that there should be goals to appoint a grant writer on WorldVistA’s
Board of Directors and to develop strategies to get more people involved.

We were told that Medsphere has become an important role because WorldVistA has some
difficulties in coordinating and directing existing development initiatives: “[t]here is a vacuum and
WorldVistA has not filled that vacuum [...] Medsphere is [..] essentially trying to fill that vacuum.”.
Medsphere’s community portal not only contains general information on VistA but also gives an
overview about existing development projects. Medsphere even plans to provide an open but
formalized development process in order to increase transparency for its internal processes and to
attract more people to engage in the development. Even though the production processes will be
more openly designed, our informants told us that Medsphere does not offer community members
the chance to participate in the overall decision-making process of the product. Medsphere applies
the AGPL license in almost all its products; this might be one reason why Medsphere and
WorldVistA are partners in community projects. Our informants told us that WorldVistA has often
assumed the role of initiator in those projects. Although Medsphere designed a fairly open
environment around its product, it hinders real participation because it lacks a formal concept to
invite external contributors.

*"'We are grateful to Joseph dal Molin for pointing this out.

nstitute for
SOFTWARE
RESEARCH 21

Another challenge for participatory software development within the community is the
unavailability of a source code management system for VistA. The whole development of VistA is
based on convention and patch sequences and therefore the community must constantly re-
integrate contributions manually. We were told that “investment in tools (or adaption there of) like
distributed revision control [...] would be a massive accelerator for the VistA codebase.”

However, our interviewees told us that they would like to see a more active involvement of VA in
the community because “VA is been the mother ship of the VistA technology” but “VA has not done a
good job of developing their software”. In the past, VistA has been seen as legacy system in VA and
there were only low investments in the system. Therefore, VA did not hire new MUMPS developers
and new expertise was mainly built up outside VA (e.g., see, VistA Expertise Network, Section 2.4.2).
We were informed that a main issue working with VA has been the missing consistency in their
actions “[...] in the last 10 years the reporting structure within the VA has changed several times”.
These organizational changes might have caused that for example two years ago, new patches for
VistA were released every two months but since then it is only once a year. Our informants told that
at the same time, there are approximately up to 800 changes a year within VA. However, we were
told that other governmental organizations such as the Department of Defense (DoD) approached
this challenge differently as they support research projects, providing grants, and release new
technology in order to support new businesses that can in turn support the DoD.

Another difficulty is the lack of a sufficient number of MUMPS developers, although the WorldVistA
GPL license might attract other developers to join the community. Young developers are generally
more interested in “modern” languages such as Java. MUMPS is often seen as an ancient, dying
technology albeit it has many unarguable advantages for HIT systems. Recruitment is therefore
seen as one of the major challenges in the community. The success of attracting new members will
heavily influence the survival of the whole community. Universities such as Robert Morris
University in Pittsburgh, Pennsylvania are very important because they are educating students to
use MUMPS.

Our informants fear that the different distributions of VistA lead to higher fragmentation of the
ecosystem. Reasons for this fear are, on one side, the community is fairly small, especially when
considering the developer pool. Each organization finds the process of attracting experienced
programmers more challenging. On the other side, adopters are insecure about the survivability of
the different distributions. This situation endangers the survivability of the whole ecosystem. At the
same time, available information is distributed over the whole community and therefore, “[there
are] ten places were you find information”. Especially people that are new to the community “[...] are
having a hard time to get access to information they need”. Specific sessions during the VistA
Community Meeting specifically addresses those needs but it is still challenging to get a first
overview about available distributions and their differences: “we need to be organized open source
wised in that same way, that everybody understand and we can clearly communicate [that way]”.
Even though VA provides their comprehensive VistA Documentation Library, there is no document
available that shows existing differences between VistA used within VA and the FOIA distribution.

The overall complexity of VistA makes it very challenging to use in small offices. In VistA, existing
user interfaces are often too complicated for small offices because they offer unnecessary functions.
Our interviewees informed us that configuration tools are needed for small hospitals and that a
better documentation of VistA configuration would be helpful. At the same time, FOIA VistA does
not provide critical functions such as billing and e-prescribing: “Real stopper for small doctor’s office
is the [missing] billing [system].”.

nstitute for
SOFTWARE
RESEARCH 22

We were told that companies such as Medsphere and DSS could fill this gap by providing their own
proprietary solutions. But those missing modules are a drawback for VistA’s functional capabilities
because interested parties are less likely to invest in such an incomplete solution. The question
remains whether a joint community initiative could provide a complete open source solution. At the
moment, there is no clear path to a single distribution or efforts underway to minimize variations
between the distributions of VistA. There are also people who see a need for a completely new
infrastructure for VistA. Regarding the age and the size of the software it was pointed out that this
requirement is difficult to realize.

Communication processes in the ecosystem are mainly carried out on the hardhats mailing list51.
This list seems to be used by all members of the community. However, all community members
additionally use their own communication tools. Interviewees see an improved overall
transparency of the community if all used only one set of communication channels.

2.5.2 Discussion of perceived challenges

The overall framework of this ecosystem is unique because VA does the vast majority of
development work even though it is not part of the ecosystem. Knowledge transfer between VA and
the open source community mainly occurs because employees of VA are actively involved in the
community in their spare time. Additionally, VA has opened up attendance to the Veterans E Health
University, their annual educational conference, to people outside VA, and provides access to the
VistA Document Library (VDL), an online repository of user and technical documentation52.

However, both sides are losing existing opportunities such as sharing source code, collaboratively
developing extensions, or exchanging expertise. Moreover, the VistA ecosystem revolves around
several different distributions of the same source code. The unique situation of having almost
completely governmentally-developed software seems to cause certain challenges for the
development of a successful and sustainable ecosystem.

One important dimension to create a successful ecosystem is the governance regime (cf. Appendix
A). A governance model reflects expectations of its community members. It defines how potential
contributors should and can engage with the project and shows who exerts what kind of control. A
governance model can range from centralized control of a single person, a small group of people or
an organization (benevolent dictatorship) to a distributed control that honors contributions
(meritocracy) (Ljungberg, 2000). These forms can be seen as polar opposites in a spectrum. A
governance model can be at any given point in between. Depending on the maturity of the open
source project, the governance model might change over time.

WorldVistA’s organization can be seen as close to Linux kernel development (high tendency to
benevolent dictatorship) because the majority of power is centered on a few people i.e., the Board
of Directors. Such an organization is often chosen to prevent a takeover by another organization or
firm. The management of community-initiated projects, such as WorldVistA, normally changes
organically. In the start-up phase of those projects, decision-making is mainly carried out by its
founders in a cathedral-like central control (Raymond, 2001). Because WorldVistA emanated from
the Hardhats group, the usual community development pattern can be seen. Although the software
itself is quite mature, its initial open source implementation is relatively young. In community-

fl An overview about existing mailing lists and their number of members and posts is given in Appendix F.
52 More information is available at http://www4.va.gov/vdl/.

nstitute for
SOFTWARE
RESEARCH 23

initiated projects, the selected license heavily influences the attractiveness for other developers to
join the project (West, & 0'Mahony, 2005).

Despite community-initiated models such as WorldVistA, there are sponsored open source models
(cf. West et al,, 2005; West, & O'Mahony, 2008b). Medsphere with OpenVista and DSS or OHT with
vxVistA belong to the latter group. Both companies have made their source code available to the
public.

In our interviews, the role of Medsphere was widely discussed but vxVistA/OHT and its role are
more difficult to assess because it is relatively new in the open source VistA sphere even though it
has extensive experience with VistA within VA. In comparison to Medsphere, DSS decided to
contribute its source code to OHT which, as a non-profit foundation, serves as a neutral body.
Modeled after the Eclipse Foundation, its form of governance encourages contributors to actively
participate in decision-making processes. OHT wants to ensure that no single entity is able to
control the strategy and that the process of meritocracy drives the community structure. OHT gives
every single community member the possibility to actively engage in the community. The technical
architecture of vxVistA is designed in a more modular manner. By providing the core VistA system,
interested parties can add additional functionality in independent modules by using existing APIs.
This increases existing incentives for potential developers to join the community and to participate
in the development process (cf. Baldwin, & Clark, 2006). DSS wants to bring together various open
source solutions on the same platform. However, the chosen EPL license hinders possible
collaboration with other stakeholders in the ecosystem, especially WorldVistA, because EPL and
GPL code can not be mixed (cf. Eclipse, 2010).

In this section, we have reported the results of our case study of the current VistA ecosystem. In
order to enable a comparison with several larger, more established ecosystems, we next develop a
set of dimensions on which ecosystems can be compared.

3 Possible paths for VistA

In this section, we seek to apply the lessons from existing ecosystems to VistA (see Appendices A-C
for a detailed description of our cases studies). Our starting point assumes that what is common
across all four ecosystems is likely to be a relatively general characteristic of successful ecosystems,
and therefore something likely to be helpful or even necessary if a VistA ecosystem is to grow along
the same lines. Characteristics that differ among the four present ecosystem design choices.

We derived the main dimensions of our comparison from our analysis of the literature on open
ecosystems and our own research (see Appendix A for a more detailed discussion). In brief, the
dimensions are

* Technical platform: The technical characteristics of the platform that provide common
functionality and support integration of contributions from multiple participants.

* Governance regime: The particular way that decisions are distributed over decision-
makers and decision-making mechanisms, supporting both coherence and innovation.

* Collaborative infrastructure: collaboration technology, practices, and culture that support
effective communication and coordination of participants.

* Business opportunities: Viable strategies for generating and appropriating value in the
context of a socio-technical ecosystem.

nstitute for
SOFTWARE
RESEARCH 24

These dimensions should be considered mutually because interdependencies exist among them.
However, we do not attempt, of course, a complete enumeration of all the choices that lie in front of
the VistA community and VA. This strikes us as an impossible task. Yet there are several
fundamental decisions about the characteristics of the ecosystem that we believe will profoundly
influence and constrain the directions it takes in the future. After making some general
observations about the VistA ecosystem, we address the choices to be made along the four
dimensions.

3.1 General observations: unification or fragmentation

Each of the four open source ecosystems we studied for this report has rallied around a single
development branch, and a single primary distribution. Perhaps the most profound decision the
VistA community has to make at this point is whether to unify the community around a single
distribution or to continue in a fragmented way with many distributions. The latter path was
chosen by Unix, for example, a choice that “increased supplier and customer costs for development,
application porting and system maintenance, and slowed the adoption of Unix in a number of
segments” (Jaruzelski, & President, 2007). This inefficiency is particularly damaging for the VistA
ecosystem, since the platform, at least for the near term, is written in MUMPS. There are relatively
few MUMPS developers, so stretching them among several distributions and duplicating each
other’s efforts is a serious concern.

Moreover, the benefits of product complementarity (Brandenberger et al., 1996) are limited if
complementary products are available for only a subset of the distributions. For a company selling
a particular application, for example, the existence of other vendors selling other applications is a
benefit, since a wider and more complete choice of product configurations is likely to increase
overall market share for the platform, thereby growing the market for everyone. Fragmentation
limits the benefits of complementary products, since an application developed for flavor X may not
run on flavor Y, and therefore cannot act as a complement for other flavor Y applications.

On the other hand, there are several forces working toward fragmentation. Several vendors have
invested in particular flavors of the VistA platform, and will be loath to abandon them. Moreover,
feelings run high in some quarters about open source licenses. Some individuals feel that a
commercial-friendly license like EPL is essential if an ecosystem is to grow to a critical mass, where
a large number of vendors produce a full range of products. Others feel that GPL-style licenses are
more appropriate, since these would encourage volunteer participation, and help prevent firms
from unduly profiting from the work of volunteers. While we do not try to thoroughly analyze the
consequences of varying licenses, we note that among our cases, some have commercial-friendly
licenses (Eclipse, and Apache, and Mozilla), while GNOME is GPL. All have substantial commercial
participation. Unifying the ecosystem would be much easier, and participants would likely reap
more of the benefits of unification, if a single license or compatible licenses were chosen.

As a practical matter, fragmentation is difficult if not impossible to prevent, given the nature of
open source licenses and the always-present possibility of forking. The primary measures that can
prevent forking are a cultural norm that discourages it (Stewart, & Gosain, 2006), and the
accumulation of complementary products that act, in effect, as a barrier to entry for new
distributions (Katz, & Shapiro, 1985). Even in the face of the currently fragmented collection of
distributions, a sufficient investment in one of them would likely reach a tipping point, leading to a
relatively unified community built around the favored distribution.

nstitute for
SOFTWARE
RESEARCH 25

In addition to the type of license, an equally important question is who would own the intellectual
property? In three of our comparison cases, ownership of the code is vested in a foundation. This is
important to participants, as we found in the case of Eclipse (Wagstrom, 2009), where ecosystem
success was dependent on having a non-market player in control of the platform. Profit-driven
platform owners may build profitable features into the platform (Gawer, & Henderson, 2007),
thereby appropriating their value at the expense of application vendors. A foundation as platform
owner enhances trust, reduces perceived risk, and makes participation more attractive. A
foundation has no profit motive, and can focus credibly and transparently on ecosystem
stewardship.

3.1.1 The key choice is:

* Will the community continue to maintain several distributions or will it rally around a
single distribution with uniform or compatible licenses?

3.2 General observations: The role of VA

While VA, as an agency of the federal government, has a general obligation to act in the public
interest, it has the specific mission to “provide veterans the world-class benefits and services they
have earned” (Department of Veteran's Affairs, 2010). Their interest in HIT, including VistA, derives
directly from this mission. For this reason, promoting a VistA ecosystem external to VA will
inevitably be a low priority.

Because of this internal focus, VA is a very unusual ecosystem player. Rather, it is not an actor
within the ecosystem at all, except for providing the legally mandated FOIA releases. Unlike most
ecosystem members, it does not make use of an open distribution, but rather maintains its own
software. It does not have a regular mechanism for accepting modifications from the external
distributions, so the flow of software is almost entirely in one direction, from VA to the outside. It is
also unusual that its resources vastly outstrip those of other ecosystem participants, with the
consequence that the other participants have essentially no leverage over its policies. The
ecosystem provides no incentives - no rewards or costs - to VA.

These characteristics of VA non-participation and disproportionate size have a powerful damping
effect on the ecosystem. Since the VA does not regularly accept modifications, in order for the
distributions to retain these modifications, each VA FOIA release must be patched with all of the
non-VA changes, and any conflicts resolved. This means that extensive modifications outside VA
would be extremely difficult to maintain, as the integration effort would grow - probably at a
superlinear rate - with the number of modifications. The alternative would be to stop updating
external open distributions with FOIA releases, but given the resources and expertise VA has at its
disposal, the VA’s contributions are too valuable for this to be a practical option. The upshot is that
the current mode of operation makes it difficult for the ecosystem to attract contributions from
outside VA.

Yet there are substantial barriers in the way of VA incorporating external changes made to an open
VistA distribution. VA has a number of requirements that many other health care entities do not.
For example, VA must ensure that all changes are nationally deployable, not just deployable in a
single-hospital environment. Systems must be “508 compliant”, meaning that accessibility rules
apply to federal government systems that do not apply elsewhere. Experience at VA, as related by
one interviewee, has been that when they have attempted to bring in code developed elsewhere,

nstitute for
SOFTWARE
RESEARCH 26

they had to rewrite almost all of it. This means that bringing in external code produced by the open
source community often has substantial cost and little benefit to VA.

One possible approach to this problem, suggested by the other ecosystems, would be an incubator
mechanism. The studied ecosystems all have ways of bringing new projects into the distribution.
Some are more formal “incubators” with clear stages and review processes, while others are a more
informal mentoring arrangement. But in order to qualify for inclusion in a distribution, a new
project has to meet certain quality and utility standards, and be approved after careful review.
Such a mechanism could provide screening and mentoring for projects to ensure they meet the VA’s
needs. Projects not meeting the standards could still make their software available, but it would
have to be downloaded and installed separately from the main distribution. Another possible
approach to consider enhancements or changes needed outside VA is to implement configurable
parameters, which can be turned on or off based on the environment.53

VA stands to gain substantially from greater participation. The experience of Red Hat with the
Fedora distribution provides a useful lesson (see Appendix G). Red Hat is a Linux distributor whose
primary product is an enterprise version. In order to be appropriate for an enterprise, the
distribution must be extremely stable so that it can be certified. Red Hat maintains a free version of
Linux, called Fedora, which is more volatile, and to which the open source community can much
more easily incorporate changes. From Red Hat's point of view, they receive, in effect, new
innovations and free testing services from Fedora. When a new feature proves to be sufficiently
stable, it can be brought into the Linux Enterprise edition. VA could potentially benefit from a
similar strategy, bringing new features into its software only after they have proved themselves,
and only after the required VA-specific work has been done. Achieving these benefits however,
would require substantial architectural changes. In particular, it would require defining and
implementing a platform and stable APIs so that new functionality could be maintained separately
as needed (see Section 3.3).

Besides the VistA community there are other Open Health IT initiatives such as OpenMRS54.
OpenMRS is a software platform and a reference application, which has been developed to enable
people to design customized medical record systems without programming knowledge, especially
in the third world. By considering an engagement in existing open source initiatives it might be
even interesting for VA to actively participate in those communities in order to exchange existing
knowledge, to collaborate in selected projects, and share resources.

These mechanisms could be combined into a strategy that works to the benefit of VA as well as the
ecosystem as a whole. The elements of a strategy are:

VA performs or directs the vast majority of platform maintenance and enhancement. This is
almost unavoidable, as seen in the eclipse ecosystem (Wagstrom, 2009). Viewing the platform as a
public good (Olson, 1971), no firm is likely to invest in platform maintenance unless the benefit of
that particular investment to that specific firm is sufficient to justify it. Most platform maintenance
and enhancement activities do not have this property, but rather provide a small, diffuse benefit to
all ecosystem participants. No firm is likely to shoulder the cost on behalf of the community. VA, on
the other hand, benefits sufficiently from the platform, relying exclusively on it (and applications
that run on it) for its IT needs, that it will continue to perform or fund most platform work.

?3 We are grateful to DSS, Inc. for extending this aspect.
** More information can be found at http://openmrs.org/.

nstitute for
SOFTWARE
RESEARCH 27

Vendors will provide small, focused platform enhancements for free. There will be occasions
when firms whose customer base runs the VistA platform will want to upgrade the platform
because the firm’s business needs require it. They may need an enhanced API, improved
performance, or the ability to interoperate with new hardware in order to improve their
applications, create new applications, sell hardware, or provide new services. When the return to
the firm is sufficient to justify this change, they are likely to provide it for the platform, as happens
in many other ecosystems. Concealing their contribution by forking the platform would be far too
expensive, since they would quickly lose the ability to incorporate future changes made by VA and
other firms. The cumulative benefits of such small changes can be very substantial, as the highly
specialized expertise of many firms is built into the platform. This can only work, of course, when
such changes can be brought into the main distribution and when the culture supports
collaboration and requires transparent technical discussions so that any disruptive side effects can
be identified and avoided.

Vendors will provide the bulk of application development, enhancement, and maintenance
for a free distribution. Firms have powerful incentives to provide fully-functional, but basic
versions of applications that can be distributed under an open source license. Giving away a basic
version of an application that can actually be used by downmarket customers still leaves abundant
revenue opportunities for services such as installation, training, and customization. It also paves
the way for sales of enhanced versions as needs grow and become more complex. Although
traditional firms may be reluctant to give anything away, a form of brinksmanship is likely to create
intense pressure, since there is a very large first mover advantage. The first vendor to “give away” a
version of an application will see this application widely distributed very quickly. Many
professionals, administrators, students, and others will see it in action, will become accustomed to
its functionality, its look and feel, and will want similar systems. These expectations, and a desire
not to re-learn and re-train, will give the vendor a big advantage in upmarket sales of enhanced-
value versions of the application. Both the downmarket service opportunities and the upmarket
sales of enhanced versions, as well as services, will be greatly diminished for second movers,
particularly if the release lag is substantial relative to the rapid dissemination of the free software.

While vendors will naturally provide the bulk of the effort for maintenance and enhancement of
basic application versions, the same logic applies here as with the platform. Small, specialized firms
may have urgent needs for bug fixes or enhancements for their own business purposes, and will
provide them to the ecosystem, to the benefit of all users of the application as well as to the benefit
of the firm that is the primary application developer. As with the platform, the cumulative benefits
of “long tail” contributions may be considerable.

VA will fund application enhancements required by VA, and release the enhanced versions
to the ecosystem. Special needs for national deployment and regulatory compliance mean that
applications developed for other customers will often fail to meet VA’s needs. VA will prefer
applications that have a free version available in the ecosystem in order to reduce its costs.
Modifying existing applications - particularly for savvy vendors who have planned to sell
applications to VA - will be much less costly than building applications from scratch. VA will, in
effect, share the cost of the basic application with other customers, as such costs are recovered by
the vendor in upmarket sales, services, and customization. VA will insist on contractual
arrangements that provide for the enhanced versions to be released under an appropriate open
source license so that other customers and government agencies have the benefit of the
enhancements, and in order to maintain a single distribution that allows future enhancements by
others to be incorporated.

nstitute for
SOFTWARE
RESEARCH 28

3.2.1 The key choice is:

* Will the VA commit to full participation in the ecosystem, and adopt an ecosystem-based
software strategy?

3.3 Technical platform architecture

Defining a platform and appropriate APIs are probably the most important and difficult steps
toward building a prospering ecosystem and encouraging greater participation in the ecosystem.
Platforms are typically defined in a process described as “coring”, or identifying elements that
“resolve technical problems affecting a large proportion of other parts of the system” (Gawer, &
Cusumano, 2008). The core would consist largely of infrastructure software that would be needed
for most any implementation, and would be independent of the applications that provide specific
functionality for particular departments or services. Defining this core is a difficult technical
undertaking, but having a platform is fundamental to ecosystems, as we saw in all four case studies.
The technical design of a platform provides the mechanisms needed for various contributors to
work together. Of course, a wide variety of such mechanisms exist, such as plug-in architectures
(e.g., Eclipse), standards-based protocols (e.g., Apache projects), and shared libraries (e.g., GNOME).

Platforms require interfaces in order to be useful, of course, and defining the APIs would also be a
critical task. Fortunately, open standards are already available for many kinds of medical
applications (see, e.g., (HITSP, 2010)). While such standards would generally guide design of APIs,
the specifications would need to include additional information essential for -effective
interoperation of implementations.

Careful definition of stable APIs is not only essential for attracting vendors to the ecosystem, it is
essential for allowing platform evolution. Stable API’s can provide an abstraction layer between
VistA’s highly integrated data and logic tier and presentation tier. A platform, consisting of the data
and logic tier, is the most stable component of an ecosystem, but the interfaces are more stable than
the interior core of the platform (Baldwin, & Woodard, 2009). So long as the APIs are undisturbed,
the platform code and at the same time the presentation tier can (and usually does) evolve. This
would allow a migratory path from existing applications.55

Assuming VA decides to pursue the many advantages of a platform-based architecture, the key
choices concern how to get there. VA has many pressing internal forces that will impact their
decisions, and we do not attempt to assess them. Our focus is on the impact such decisions made by
VA and other actors will have on the ecosystem.

VA could choose to move in the direction of closed source (e.g., contracting for proprietary code not
covered by FOIA). This closed option would, of course, be devastating to the ecosystem. No other
organization in the ecosystem currently has the resources to maintain and update VistA, the
software would quickly become obsolete, and no party would have an incentive to participate in an
ecosystem except to offer services and systems to the most cash-strapped organizations. Given the
size and complexity of VistA and the dearth of resources the ecosystem would attract, the situation
could not be sustained for long.

* We are very grateful to Ben Mehling for pointing this out.

nstitute for
SOFTWARE
RESEARCH 29

On the other hand, VA might choose to internally evolve VistA in the direction of a platform with
well-defined, stable APIs, and to resist proprietary code, perhaps by negotiating a contract calling
for the release of any vendor-developed platform source code. Assuming that such a platform is
released and staged appropriately, this could form the basis of a thriving, vibrant ecosystem. A
critical problem would be drawing enough interested parties quickly enough to be able to build a
critical mass of applications on the platform (often called “tipping” (Gawer et al., 2002)). This could
presumably be addressed by publishing plans and specifications well in advance, and perhaps
providing financial incentives to draw vendors to the platform. In this scenario, VA is essentially
just another customer for application vendors (although one with great leverage given its control
over the platform).

A closely-related issue is platform maintenance. It has long been known that incentives for
collective action are problematic when the returns from an individual’s actions are not sufficient to
justify the cost (Olson, 1971). This tends to be true even in those cases where a set of actors would
each be better off if all agreed to share the cost of some action. The problem is that each would
receive a higher return by defecting, i.e., incurring no cost and allowing the others to do the work.
Platform maintenance can suffer from this phenomenon. If each ecosystem participant would make
a small investment in maintaining the platform, all would be better off. But absent some
mechanism for compelling the investment, defection would be very tempting - rational in an
economic sense - since no matter what the other participants do, a given participant is always
better off doing nothing.

The ecosystems we examined have addressed this problem in several ways. Platform maintenance
in Eclipse is performed virtually entirely by IBM (Wagstrom, 2009). IBM makes many uses of the
Eclipse Rich Client Platform, and presumably benefits sufficiently from its maintenance and
enhancement that the return is adequate to sustain the behavior. In Apache, as we noted, the
platform httpd server is relatively small and stable, requiring only fairly minimal maintenance
effort. In GNOME, several participants are distributors, who require a complete up-to-date
distribution, including the platform, so have sufficient incentive to ensure it is maintained
(Wagstrom, 2009). Other participants maintain small parts of the platform they require for their
own business reasons.

If VA takes the open platform route, the maintenance issue needs careful consideration. It is
unlikely that any other organization has the resources, expertise, or motivation to maintain and
enhance the platform by itself. If VA uses the platform internally, i.e., it uses some version of the
main distribution, then it may be able to provide the bulk of maintenance effort for the ecosystem,
as IBM does for Eclipse. Alternatively, if VistA is owned by a foundation, it could require payment
from members (perhaps on a sliding scale, as many ecosystems do) for use of the platform, and
could fund maintenance from these revenues. Finally, the platform could be privatized, and
provided on a market basis, perhaps with a requirement to have a free “vanilla” version available
for some segment of the market.

The outcomes of a platform strategy would also be heavily influenced by product and pricing
decisions by vendors. Vendors would have to make decisions about whether or not to release free
(or very low-cost) versions of their essential applications. This has happened in many ecosystems,
for sound business reasons. In Eclipse, for example, Actuate joint the Foundation as Strategic
Developer and Board Member and released a highly functional version of their business intelligence
reporting tool (BIRT) under the EPL license. By doing so, they pre-empted their competition, since
all Eclipse users interested in business intelligence will likely have their first experience with BIRT,

nstitute for
SOFTWARE
RESEARCH 30

and want products with similar functionality and look and feel. Actuate sells high-end versions of
BIRT, along with services such as workshops and training courses. The move dramatically grew
their share of the Eclipse business intelligence market. In the case of VistA, providing free versions
of essential applications is likely to have a similar effect, growing the VistA overall market share, at
the expense of fully proprietary systems.

One issue that creates differences between VA VistA and VistA distributions is the use of some
custom, proprietary software by VA, such as Caché. This makes evolution more difficult, since the
software not supplied by VA must either be purchased, or have a free substitute in the VistA
distributions, such as GT.M. These differences make the VistA software less valuable, and create
potentially difficult integration problems. While this issue may not in all cases be solvable, it would
greatly benefit the open source VistA community if VA were able to achieve contractual terms with
its vendors that allowed it to release the source of the custom software. Given VA’s extraordinary
bargaining power, several members of the VistA community believed VA could readily negotiate
such contracts.

3.3.1 The key choices are:

* Will a platform be “cored” from VistA? What will it include?

* What APIs will be defined and developed? What functionality will be exposed for each? In
what specific way will the API make the functionality available?

* Will free, open versions of applications be included in a distribution of the platform? If so,
which ones? With what level of functionality (will it, for example, qualify for “meaningful
use”?).

* Will VA choose contractual arrangements with vendors that will make all useful platform
code available to the community, or will vendor code continue to be regarded as
proprietary?

3.4 Collaborative infrastructure

Successful collaboration over distances and across organizational boundaries is widely recognized
as a very difficult problem (e.g., Olson et al, 2000). Open platform ecosystems have addressed
collaboration with a combination of a culture favoring openness and a collection of internet-based
tools that foster communication and coordination around the product (Moon et al., 2000).

The main characteristic of an open source project is the availability of source code to all project
participants (Raymond, 2001). Collaboration tools are consequently necessary to serve existing
coordination needs of distributed team work (Crowston, & Howison, 2005), as well as to support
users for providing feedback, and submitting bug reports, and usability concerns (Scacchi et al,,
2006). It is even hypothesized that only the availability of collaborative tools has enabled the
development of open source software (Robbins, 2007). However, recent research has shown, based
on an empirical study including 80 projects hosted by SourceForge5s, that the success of a
development project is related to the application of a version control system and the usage of
mailing lists (Koch, 2009; Michlmayr, 2005). Hence all open source ecosystems, including those in
our multiple case study, provide at least a minimal set of collaboration tools including a version
control system, an issue tracking (also called bug tracking or change management) system, a
mailing list, and a chat tool. But these tools provide only low-level coordination in terms “retaining

* SourceForge is a web-based source code repository that provides various tools for managing open source software projects. More information
can be found at: http://sourceforge.net/.

nstitute for
SOFTWARE
RESEARCH 31

project history, tracking problems and revisions, providing and controlling remote access, and
preventing change collisions (the ‘lost update problem’)” (Fielding, & Kaiser, 1997).

It might be useful to start with a fairly simply set of tools and to increase the range of available tools
when needed. Starting with many different tools might be too difficult to handle for many potential
project participants because the effort to learn specific tools might be too high. On the other hand,
available tools often addresses a specific need of a group of project participants. For example in the
GNOME ecosystem, in order to support a specific aspect of the software development process a
build tool and a graphical debugger are provided.

Besides the provision of collaboration tools, finding the “right” fit between project size and
information technology support is essential. For example, within the VistA ecosystem several
mailing lists exist (cf. Appendix F). The majority of these lists are only rarely used and participation
might be endangered because the target group of each list is often not apparent. The hardhats list is
the mailing list with the highest activity but from time to time answers are refused because
questions do not meet the purpose of the list. At the same time, the hardhat lists presents the
central place for asking questions in the community, therefore restricting it to a specific set of
questions seems to be artificial, especially by taking the recent size of the community into account.
The composition of the offered set of collaboration tools should meet the recent requirements of
the community.

Often, projects start just with one mailing list, mostly a developer mailing list, and when the
necessity emerges because more and more questions are related to user specific need, a separate
user mailing list is established. However, in (Cubranic, & Booth, 1999) the challenge of using
mailing lists as primary communication medium are emphasized and the difficulties of information
overload are discussed.

Shared values and norms have been shown to foster trust that is essential for collaboration and
help to prevent fragmentation of the community through such means as social disapproval of
forking (Stewart et al., 2006). Commercially owned platforms, on the other hand, seem to be based
on a combination of trust and coercion, which are often functionally equivalent from an external
point of view (Perrons, 2009). While open source projects can differ on the details of how people
interact, and vary to some degree on level of politeness, helpfulness, and treatment of newcomers,
there seems to be a common core of values and norms (Stewart et al., 2006):

* People should act for the good of the community.

* People should get credit for their contributions.

* Sharing information is important.

* Helping others is important.

* Voluntary cooperation is important.

* Reputation garnered from contributions is important.

These values and norms form a key component of the collaborative infrastructure, as they guide
behavior and shape how the collaboration tools are used. They give rise to specific expectations, for
example, that all substantial changes will be discussed openly before they are made.

But these values, norms, and behaviors can cause significant tension for governmental and
corporate participants. Open communication threatens to signal business strategy, to the firm’s
potential detriment. Software engineers in commercial firms are unaccustomed to exposing their
code publically and potentially receiving public critiques of it. It takes effort to summarize the
results of meetings and internal discussions and conversations for the community mailing list to

nstitute for
SOFTWARE
RESEARCH 32

keep external colleagues informed. Work that is highest priority for the community may not be the
work that is highest priority for a given firm, causing conflicts over how resources are deployed.

Many of the main choices here have to do with how VA and corporate participants will
communicate and collaborate with the rest of the ecosystem, and whether they are willing to adjust
or change their cultures to make them more compatible with an open ecosystem.

The VistA ecosystem, were it to grow to occupy a substantial niche in the HIT marketplace, would
have a scale and complexity that greatly exceeds the other ecosystems we studied. Especially
continuously changing regulations and standards have to be considered by every ecosystem
participant, but they might especially be important for the software development itself. It seems
therefore likely that the collaboration technologies of today would be inadequate for operating at
such a scale. Moving in the open platform direction should be accompanied with research on large-
scale, open software development environments that explore new mechanisms for awareness,
communication, notification, and social computing and other approaches to address these needs.

3.4.1 The key choices are:

* Will all participants agree on and use a common set of tools, including a hosting service,
mailing lists, source control, change management, etc.?

* Will all participants (including VA and participating firms) agree to openly discuss
important technical decisions in advance in agreed-upon public forums?

* Will all participants agree to take on the values and follow the norms appropriate for open
source, even when this causes some friction with organizational values and norms?

3.5 Governance

Assuming that a foundation (or other non-profit) owns the intellectual property, the governance
regime determines which decisions belong to the various decision-makers, and what processes are
used to make them. An important starting point within the process of specifying such a governance
regime is the legal organization structure. In (0'Mahony, 2005) different organizations and their
legal status are reviewed and the importance for project stability and survivability are highlighted.
The GNOME ecosystem for example, started without a formal organization, every developer had a
vote and decisions were discussed in the whole community. But because of the ongoing growth of
the project, decision-making became more complex and less transparent. Also the interest of
companies to participate in the project increased, hence a more formal organization was needed,
amongst other things to ensure that the project’s principles were considered in all future decisions.

Another aspect to support survivability of an ecosystem is trust, and one guarantor for trust is
transparency in the decision-making process. The reviewed ecosystems showed some similarities
and differences. For example, in GNOME, direct influence on Board decisions by community
members is possible by submitting a referendum. Another important control is that not more than
40% of the Board can consist of employees of a single entity, in order to ensure the independence of
the decision-making process. By defining decision-making processes, two main cases should be
considered: the consent case and the conflict resolution case (Jensen, & Scacchi, 2010). For
example in Apache, if a community members gives a negative vote, an alternative proposal or a
detailed explanation of reasons for this negative vote must be provided. Following such a negative
vote the process of “consensus gathering” takes place. Often, a simple majority is sufficient for
decisions, but for example in Eclipse, depending on the kind of decision, different majority
requirements exist, ranging from simple to super-majority consent.

nstitute for
SOFTWARE
RESEARCH 33

The defined organizational structure and the membership rules will determine how and to which
degree the different key players in the VistA sphere are represented. This is likely to heavily
influence their interest in actively engaging with the ecosystem. The Mozilla Foundation, for
example, is the only foundation without members. In order to create revenue the Mozilla
Foundation had to establish companies to carry out their development work. Even though the
community is involved in the development of the Mozilla products, the main development work and
decisions appear to be carried out by Mozilla’s corporations.

The importance of finding the “right” governance regime for an ecosystem can be emphasized by
the historical development of the Eclipse ecosystem. In 2001, the Eclipse consortium under the
leadership of IBM (largest financial contributor) was founded consisting of eight companies. Even
though the source code was open and the first release of Eclipse was very well received, the people
were confused about the role of IBM, which led to a relatively low rate of adoption. In order to
resolve all doubts, in 2003, the Eclipse Foundation was founded and independent staff was now
paid by membership fees. This was an important step, in terms of building trust, reducing the
release cycles and increasing the degree of market adoption.

Another important aspect of membership status is the relationship to companies. For example, the
motivation to create the Apache Foundation was “the welfare of its customers”; therefore, the
importance of companies for the community development is already embedded in the culture of the
ecosystem. In (Dahlander, & Magnusson, 2005), approaches of how companies engage in
ecosystems are reviewed, and the symbiotic, commensalistic, and parasitic approach are
differentiated. First, in the symbiotic approach both roles, the role of the community and the
company, are accepted and companies have high influence in the decision-making process. A
representative of this approach in our multi-case study is Eclipse. Here, companies are allowed to
be member of the Foundation and they have right such as a vote. Second, within the commensalistic
approach companies have only few possibilities to influence the community. The GNOME
community is an example for this approach. Here companies are represented in an Advisory Board,
but they have no decision-making authority, only an advisory function. Third, in the parasitic
approach, the company can indeed use the community resources but has no influence. The Mozilla
ecosystem is the closest example for this approach because companies can only donate money but
other possibilities to participate in the ecosystem (except by submitting code or donating money)
do not exist.

In general, the governance regime of an ecosystem can be described at three analytical levels
(Jensen et al, 2010): the micro-, the meso-, and the macro-level. On a micro-level, individual
participants and their actions are related to artifacts and resources. In order to coordinate their
activities around those objects a collaborative infrastructure must be provided (see Section 3.4).
Individuals’ roles should be defined in order to determine existing rights and obligations, such as
the ability to commit code to the main distribution. The design of the roles depends on the meso-
level that comprises independent projects. Project teams define the meso-level. For these teams,
collaboration in terms of policies and guidelines as well as leadership and control are specified. For
example in Apache, Project Management Committees are established on a meso-level. These project
teams are completely responsible for all technical decisions such as the release schedule within the
respective project. This is unlike GNOME, where the Foundation can influence the release schedule
for each project that is included in the official distribution. However, many policies and guidelines
are effective ecosystem-wide. These generally include at least all necessary procedural guidelines
for most common development tasks. Importantly, from the beginning decision-making processes
regarding changes in these guidelines should be considered. Finally, on a macro-level the

nstitute for
SOFTWARE
RESEARCH 34

collaboration with other ecosystems should be shaped. For VistA, collaborating with standards
bodies, for example, will be critical.

Another important design element to ensure the survivability of an ecosystem is the financial
arrangement of the Foundation. In GNOME for example, necessary funding comes mostly from
members of the Advisory Board, as opposed to Eclipse, here members of the Foundation pay an
annual fee that depends on their membership type.

3.5.1 The key choices are:

* Will a foundation be recognized as the legitimate steward of the ecosystem? Will it have
ownership of the intellectual property, or be granted the power to insist on compatible
licenses?

* What kind of input will VA and the community have in the technical direction and evolution
of the platform?

* Will an organizational structure include a meso-level with independent development
projects, or will a foundation be the main decision-making entity?

* What will be the scope of the foundation’s decision-making, and what kinds of decisions will
be left to Councils or members?

* How would a foundation be funded?

* Will companies participate, for example, as members, board members, council or committee
members in such a foundation? If yes, how?

4 Conclusion

This technical report presents the results of a one-year research study of the VistA ecosystem and a
comparison of VistA to several long-lived, thriving open source ecosystems. The result is both a
description of the current state of the VistA community outside VA and an analysis of the choices
facing the community if VistA is to grow and occupy a key place in the HIT landscape. More
generally, we have contributed to an understanding of design principles for open source
ecosystems, and how these principles can be used to help guide ecosystem design and evolution. A
part of this contribution is an analysis of the dimensions of ecosystem design we identified:
technical architecture, governance regime, collaborative infrastructure, and business opportunities.
Each dimension provides a different view on an ecosystem, but clearly the dimensions are closely
related, and the choices on each dimension influence the choices for the others.

It is also important to highlight the limitations of this work. Our selection of ecosystems is based
only on successful representatives. Studying less successful ecosystems would provide additional
indicators for how and when design elements interact destructively. However, by reviewing only
successful ecosystems we ensure that all design elements necessary for success are present. We
leave the study of unsuccessful ecosystems - a very important topic - to future research. We are
also limited by our choice of only four ecosystems of many possible choices. There may be other
paths to success, and future research will no doubt uncover them. However, this study serves as a
starting point to improve our understanding of the VistA community, the paths it may take, and the
principles of ecosystem design.

While we touched on the topic in our discussion of collaborative infrastructure, we wish to call
attention once again to the process by which decisions are made in the established ecosystems we
studied. In each case, the communities are built on open debate, meritocracy, and decision-making

nstitute for
SOFTWARE
RESEARCH 35

based on consensus. They are by no means free of conflict, but they resist imposition of solutions
from the outside. The nascent VistA ecosystem has a similar culture, and would be seriously
damaged by decisions simply imposed upon it. We believe that making decisions the right way - in
an open community-based process - is at least as important as making decisions that are correct on
their merits. Incorrect decisions can be changed if the community remains intact. Community-
building may be the most important activity to be undertaken.

A critical role for research. Enhancing and growing the VistA ecosystem will push the boundaries
of practical experience and our current state of knowledge. For this reason it is critically important
for ecosystem development to proceed in close collaboration with researchers committed to
addressing the essential unknowns, anticipating issues, applying state of the art solutions, and
taking on key issues that will help the ecosystem thrive over the longer term. Among the central
issues research must address are the following:

* What collaborative infrastructure - tools, practices, and norms - will support an ecosystem
on the scale and with the interconnectedness that VistA could achieve?

* What delivery models make sense for VistA - cloud deployment? Providing applications as
a service? Providing the platform as a service?

* How can the very large-scale VistA legacy system be evolved into a desired architecture?

* For individual and corporate participants, what is the business case for contributing to the
creation and maintenance of a platform and a fully-functional free distribution? How can it
be modeled in convincing fashion so participants will have a sound basis for their decisions
about participation and contribution?

* How can the critical performance, security, availability, and other quality attributes of
deployed systems be assured?

* How can open source governance mechanisms - foundations, projects, councils,
committees, user groups, vendors, service providers, health professionals, standards bodies
- be orchestrated to provide effective policies, dispute resolution, and guidance for an
ecosystem of unprecedented scale and complexity? Will novel mechanisms be needed?

* In order to guide overall decision-making, how can the socio-technical ecosystem be
modeled so that the effects of establishing or changing various design parameters can be
predicted, and the space of parameter combinations explored?

Research on these issues, critical for near- and long-term success, should be adequately funded, and
mechanisms provided for frequent interaction between research communities and thought leaders
in the ecosystem.

VistA approaches a critical juncture. VistA might well suffer the fate of Unix, and continue to
fragment into multiple and somewhat incompatible versions, each with its own small community.
This is not such a terrible fate - except by comparison to what VistA could become. Imagine a free
platform and basic applications that could be used by doctors’ offices, clinics, small hospitals, and
medical centers. This platform is highly reliable, secure, and standard-compliant, and is naturally
adopted by a substantial segment of the HIT market. Service providers of various sizes and
specialties stand ready to install, configure, customize, and train. Vendors supply upmarket
versions of the applications to large hospitals and hospital networks. All the participants, including
VA, benefit from the huge market created by adoption of the free version, and by sharing the cost of
maintaining the platform and basic applications. HIT costs drop, since duplication of effort is
avoided, and each firm can focus on its differentiating competencies. Innovative companies, large
or small, can sell their novel products and services with low barriers to entry because of the
openness of the ecosystem. Such an ecosystem would not meet all HIT needs, and proprietary

nstitute for
SOFTWARE
RESEARCH 36

solutions would thrive alongside the VistA-based ones, just as now happens with Apache, Eclipse,
GNOME, and Mozilla. Yet VistA would be at the center of the HIT agenda, driving down costs
through competitive pressure, unleashing innovation, providing business opportunities for firms of
all sizes, and making solutions available to those who otherwise could not afford them.

Acknowledgments

We wish to thank all of the interviewees who have patiently answered questions, given helpful
advice, and provided careful feedback on our cases. We sincerely appreciate their time and effort.
We also thank Brian Cameron, James Howison, Fabian Lopez, Ben Mehling, Mike Milinkovich,
Joseph Dal Molin, Maury Pepper, Stormy Peters, German P6o-Caamaiio, Kevin Toppenberg, Augie
Turano, Ignacio Valdes, and Steve Watson for their insightful and extremely helpful comments on
an earlier draft. The authors gratefully acknowledge partial funding of this effort by the Software
Engineering Institute at Carnegie Mellon University.

References

APACHE, http://incubator.apache.org/learn/theapacheway.html, accessed August 29, 2010.

APACHE, Developer Information, http://www.apache.org/dev, accessed August 29, 2010.

APACHE, Licenses, http://www.apache.org/licenses/, accessed Sept. 2, 2010.

BAILETTI, T., Open source maturity curve and ecosystems interactions, http://www.slideshare.net/guest239f177/os-maturity-curve-and-
ecosystem, accessed October 15, 2010.

BAKER, M., State of Mozilla and 2008 Financial Statements, http://blog.lizardwrangler.com/2009/11/19/state-of-mozilla-and-2008/, accessed
Sept. 5,2010.

BAKER, R. (2010) VistA Community Meeting,

BALDWIN & CLARK (2006) The Architecture of Participation: Does Code Architecture Mitigate Free Riding in the Open Source Development
Model? Management Science, 52, 1116-1127.

BALDWIN, C. & WOODARD, C. (2009) The architecture of platforms: a unified view. IN GAWER, A. (Ed.) Platforms, Markets and
Innovation. Northampton, MA, Edward Elgar, pp. 19.

BALDWIN, C. Y. & CLARK, K. B. (2000) Design Rules: The Power of Modularity, Cambridge, MA, The MIT Press.

BLANKENHORN, D. (2009) VA now loves its VistA software. ZDNet Healthcare.

BOLOUR, A. (2003) Notes on the Eclipse Plug-in Architecture. Eclipse Corner.

BONACCORSIL A. & ROSSI, C. (2006) Comparing motivations of individual programmers and firms to take part in the open source movement:
From community to business. Knowledge, Technology & Policy, 18, 40-64.

BRANDENBERGER, A. M. & NALEBUFF, B. J. (1996) Co-opetition, New York, Doubleday.

BREWIN, B. (2009) Industry group meets to consider upgrading VA patient record system. nexzgov.

BROWN, S. H., LINCOLN, M. J., GROEN, P. J. & KOLODNER, R. M. (2003) VistA---U.S. Department of Veterans Affairs national-scale
HIS. International Journal of Medical Informatics, 69, 135-156.

CHAUDHRY, B., WANG, J., WU, S., MAGLIONE, M., MOJICA, W., ROTH, E., MORTON, S. & SHEKELLE, P. (2006) Systematic review:
impact of health information technology on quality, efficiency, and costs of medical care. Annals of internal medicine, 144, 742.

COLFER, L. & BALDWIN, C. Y. (2010) The Mirroring Hypothesis: Theory, Evidence and Exceptions. Harvard Business School, 10-058.

COPLIEN, J., HOFFMAN, D. & WEISS, D. (1998) Commonality and Variability in Software Engineering. [EEE Softw., 15, 37-45.

CROWSTON, K. & HOWISON, J. (2005) The social structure of free and open source software development. First Monday, 10.

CUBRANIC, D. & BOOTH, K. S. (1999) Coordinating open-source software development. Enabling Technologies: Infrastructure for
Collaborative Enterprises, 61 - 66.

DAHLANDER, L. & MAGNUSSON, M. G. (2005) Relationships between open source software companies and communities: Observations
from Nordic firms. Research Policy, 34, 481-493.

DECREM, B. & CORRE, C., MOZILLA.ORG ANNOUNCES LAUNCH OF THE MOZILLA FOUNDATION TO LEAD OPEN-SOURCE
BROWSER EFFORTS, {http://www-archive.mozilla.org/press/mozilla-foundation.html, accessed Sept. 1, 2010.

DEPARTMENT OF VETERAN'S AFFAIRS, Mission, Vision, Core Values & Goals, http://www4.va.gov/about_va/mission.asp, accessed
Sept. 1, 2010.

DRAGOIL, O. A. (1999) The Conceptual Architecture of the Apache Web Server. \urlhttp://www.cs.ucsb.edu/~tve/cs290i-
sp01/papers/Concept Apache Arch.htm

DSS, 1. (2009) DSS, Inc., Announces Open Source Version of vxVistA EHR Framework, Joins Open Health Tools Foundation.
\urlhttp://www.vistaexperts.com/pdf/DSS%20vx VistA%200HT%201-7-09.pdf,

ECLIPSE, About the Eclipse Foundation, http://www.eclipse.org/org/, accessed June 26, 2010.

ECLIPSE, Eclipse Marketplace, http://marketplace.eclipse.org/, accessed June 26, 2010.

ECLIPSE, Membership, http://www.eclipse.org/membership/exploreMembership.php, accessed June 26, 2010.

ECLIPSE, RCP FAQ, http://wiki.eclipse.org/RCP_FAQ, accessed June 24, 2010.

ECLIPSE, Rich Client Platform, http://wiki.eclipse.org/index.php/Rich Client Platform, accessed June 26, 2010.

institute for
SOFTWARE
RESEARCH 37

ECLIPSE, Eclipse Public License (EPL) Frequently Asked Questions, http://www.eclipse.org/legal/eplfaq.php#USEINANOTHER, accessed
Sept. 2, 2010.

EVANS, D. S., HAGIU, A. & SCHMALENSEE, R. (2006) Invisible engines : how software platforms drive innovation and transform industries,
Cambridge, Mass., MIT Press.

FIELDING, R. T. (1999) Shared Leadership in the Apache Project. Communications of the ACM, 42, 42-43.

FIELDING, R. T. & KAISER, G. (1997) The Apache http project. [EEE Internet Computing, 1, 88 - 90.

FITZGERALD, B. (2006) The Transformation of Open Source Software. MIS Quarterly, 30, 587-598.

GAWER, A. (2009) Platforms, markets, and innovation, Northampton, MA, Edward Elgar.

GAWER, A. (2010) The organization of technological platforms. Research in the Sociology of Organizations, 29, 287-296.

GAWER, A. & CUSUMANO, M. (2008) How companies become platform leaders. MIT Sloan management review, 49, 28.

GAWER, A. & CUSUMANO, M. A. (2002) Platform leadership : how Intel, Microsoft, and Cisco drive industry innovation, Boston, Mass.,
Harvard Business School Press.

GAWER, A. & HENDERSON, R. (2007) Platform owner entry and innovation in complementary markets: Evidence from Intel. Journal of
Economics & Management Strategy, 16, 1-34.

GEER, D. (2005) Eclipse Becomes the Dominant Java IDE. I[EEE Computer, 38, 16-18.

GERMAN, D. M. (2002) The evolution of the GNOME Project. Proc. of the 2nd Workshop on Open Source Software Engineering,

GERMAN, D. M. (2004) The GNOME project: a case study of open source, global software development. Sofiware Process: Improvement and
Practice, 8,201--215.

GERMAN, D. M. & HASSAN, A. E. (2009) License integration patterns: Addressing license mismatches in component-based development.
ICSE '09: Proceedings of the 2009 IEEE 31st International Conference on Software Engineering, 188--198.

GITHUB, http://github.com/, accessed August 29, 2010.

GLASER, B. G. & STRAUSS, A. L. (1967) The Discovery of Grounded Theory: Strategies for Qualitative Research, Hawthorne, N. Y., Aldine
de Gruyter.

GNOME, GNOME Code of Conduct, http://live.gnome.org/CodeOfConduct, accessed Sept. 5, 2010.

GRONE, B., KNOPFEL, A., KUGEL, R. & SCHMIDT, O., The Apache Modeling Project, chapter 3.3 Extending Apache: Apache Modules,
http://www.fmc-modeling.org/category/projects/apache/amp/ 3 3Extending_Apache.html, accessed

GURBANI, V. K., GARVERT, A. & HERBSLEB, J. D. (2006) A case study of a corporate open source development model. Proceeding of the
28th international conference on Software engineering,

HAUGE, AYALA, C. & CONRADI R. (2010) Adoption of Open Source Software in Software-Intensive Organizations-A Systematic Literature
Review. Information and Software Technology.

HECKER, F. (1999) Setting Up Shop: The Business of Open-Source Software. [EEE Software, 16, 45-51.

HERBSLEB, J. D. & GRINTER, R. E. (1999) Splitting the Organization and Integrating the Code: Conway’s Law Revisited. 21st International
Conference on Software Engineering (ICSE 99). Los Angeles, CA, ACM Press,

HILLESTAD, R., BIGELOW, J., BOWER, A., GIROSL, F., MEILI, R., SCOVILLE, R. & TAYLOR, R. (2005) Can electronic medical record
systems transform health care? Potential health benefits, savings, and costs. Health Affairs, 24, 1103.

HITSP, HITSP enabling health care interoperability, accessed Sept. 1, 2010.

JANG, D. (2006) GNOME Architecture. Presentation, GNOME Korea, \urlhttp://www.slideshare.net/iolo/gnome-architecture,

JARUZELSKI, B. & PRESIDENT, V. (2007) Fad or Future? , Booz Allen & Hamilton,

JENSEN, C. & SCACCHI, W. (2010) Governance in Open Source Software Development Projects: A Comparative Multi-level Analysis. IN
AGERFALK, P., BOLDYREFF, C., GONZALEZ-BARAHONA, J., MADEY, G. & NOLL, J. (Eds.) Open Source Software: New
Horizons. Boston, Springer, pp. 130-142.

KATZ, M. & SHAPIRO, C. (1985) Network externalities, competition, and compatibility. The American economic review, 75, 424-440.

KERNER, S. M. (2009) Eclipse Shines a Light on the IDE's Future. internetnews.com. March 23.

KEW, N. (2007) Apache Modules Book, The: Application Development with Apache, Prentice Hall.

KOCH, S. (2009) Exploring the effects of SourceForge.net coordination and communication tools on the efficiency of open source projects using
data envelopment analysis. Empirical Software Engineering, 14,397 - 417

KOLODNER, R. M. & DOUGLAS, J. V. (1997) Computerizing large integrated health networks: the VA success, Springer.

KRISHNAMURTHY, S. (forthcoming) An analysis of open source business models. IN FELLER, J., FITZGERALD, B., HISSAM, S. &
LAKHANTI, K. (Eds.) Making Sense of the Bazaar: Perspectives on Open Source and Free Software. MIT Press, pp.

LAAT, P. (2007) Governance of open source software: state of the art. Journal of Management and Governance, 11, 165-177.

LEVY, S. (1984) Hackers: Heroes of the computer revolution, O'Reilly Media.

LJUNGBERG, J. (2000) Open source movements as a model for organising. Eur. J. Inf. Syst., 9, 208--216.

LONGMAN, P. (2010) Best care anywhere: Why VA health care is better than yours, Sausalito, CA, Polipoint Press.

LYNN, L. E., HEINRICH, C. J. & HILL, C. J. (2001) Improving governance : a new logic for empirical research, Washington, D.C.,
Georgetown University Press.

MACCORMACK, A., RUSNAK, J. & BALDWIN, C. Y. (2006) Exploring the structure of complex software designs: An empirical study of
open source and proprietary code. Management Science, 52, 1015-1030.

MARKUS, M. (2007) The governance of free/open source software projects: monolithic, multidimensional, or configurational? Journal of’
Management and Governance, 11, 151-163.

MCAFFER, J. & LEMIEUX, J.-M. (2005) Eclipse Rich Client Platform: Designing, Coding, and Packaging Java Applications, Reading, MA,
Addison-Wesley.

MEDSPHERE, Corporation, Medsphere Systems, http://www.medsphere.com, accessed Sept. 5, 2010.

MEHLING, B. (2008) How do the various technology components of OpenVista fit together? , \urlhttps://medsphere.org/docs/DOC-1326,

MESSERSCHMITT, D. & SZYPERSKI, C. (2005) Software ecosystem: understanding an indispensable technology and industry, Cambridge,
MA, MIT Press.

MICHLMAYR, M. (2005) Software Process Maturity and the Success of Free Software Projects. Frontiers in Artificial Intelligence and
Applications, 3-14.

MOCKUS, A., FIELDING, R. & HERBSLEB, J. D. (2002) Two Case Studies of Open Source Software Development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodology, 11, 309-346.

institute for
SOFTWARE
RESEARCH 38

MOCKUS, A., FIELDING, R. T. & HERBSLEB, J. (2000) A case study of open source software development: the Apache server. /ICSE '00:
Proceedings of the 22nd international conference on Software engineering, 263--272.

MOON, J. Y. & SPROULL, L. (2000) Essence of Distributed Work: The Case of the Linux Kernel. First Monday, 5.

MOZILLA.ORG, Bugzilla, http://bugzilla.mozilla.org/, accessed Sept. 5, 2010.

MOZILLA.ORG, Firefox Addons, https://addons.mozilla.org/firefox/, accessed Sept. 5, 2010.

MOZILLA.ORG, History of the Mozilla Project, http://www.mozilla.org/about/history.html, accessed Sept. 5, 2010.

MOZILLA.ORG, Module Owners, http://www.mozilla.org/about/owners.html, accessed Sept. 5, 2010.

MOZILLA.ORG, Mozilla 2008 Financial FAQ, http://www.mozilla.org/foundation/documents/mozilla-2008-financial-faq.html, accessed Sept. 5,
2010.

MOZILLA.ORG, Mozilla Firefox eBay-Edition, http://www.mozilla.com/en-GB/add-ons/ebay/, accessed Sept. 5, 2010.

MOZILLA.ORG, Mozilla Foundation License Policy, http://www.mozilla.org/MPL/license-policy.html, accessed Sept. 5, 2010.

MOZILLA.ORG, Mozilla Organizations, http://www.mozilla.org/about/organizations.html, accessed Sept. 5, 2010.

MOZILLA.ORG, Our Projects, http://www.mozilla.org/projects/, accessed Sept. 5, 2010.

MOZILLA.ORG, The Mozilla Foundation, http://www.mozilla.org/foundation/, accessed Sept. 5, 2010.

MOZILLA.ORG, What Is Mozilla?, http://www.mozilla.com/en-US/about/whatismozilla.html, accessed Sept. 5, 2010.

MOZILLA.ORG, Mozilla foundation reoganization, accessed

MOZILLA.ORG, Interview with Mike Schnoepfer, http://mozillamemory.org/detailview.php?id=7475, accessed Sept. 5, 2010.

NETCRAFT, August 2010 Web Server Survey, http://www.netcraft.com/survey, accessed Sept. 15, 2010.

NETSCAPE, Netscape Announces Plans to Make Next-Generation Communicator Source Code Available Free on the Net,
http://web.archive.org/web/20021001071727/wp.netscape.com/newsref/pr/newsrelease558.html, accessed Sept. 5, 2010.

NOLL, J. (2009) What Constitutes Open Source? A Study of the Vista Electronic Medical Record Software. Open Source Ecosystems: Diverse
Communities Interacting, 310-319.

NORTHROP, L., ET AL (2006) Ultra-Large-Scale Systems The Software Challenge of the Future, Pittsburgh, Software Engineering Institute.

NYMAN, K. (2005) Eclipse Architecture Council: Proposal about the updated Eclipse architecture introduction pictures.

O'MAHONY, S. (2005) Nonprofit Foundations and Their Role in Community-Firm Software Collaboration. IN FELLER, J., FITZGERALD, B.,
HISSAM, S. A. & LAKHANI, K. R. (Eds.) Perspectives on Free and Open Source Software. Cambridge, MA, MIT Press, pp. 393-
414.

O'MAHONY, S. & FERRARO, F. (2007) The emergence of governance in an open source community. Academy of Management Journal, 50,
1079-1106.

O’MAHONY, S. (2007) The governance of open source initiatives: what does it mean to be community managed? Journal of Management and
Governance, 11, 139-150.

OF ENTERPRISE DEVELOPMENT, O. (2009) VistA-HealtheVet Monograph. Department of Veterans Affairs,

OHTF, Vision, http://www.openhealthtools.org/about/vision, accessed October 15, 2010.

OLSON, G. M. & OLSON, J. S. (2000) Distance Matters. Human-Computer Interaction, 15, 139-178.

OLSON, M. (1971) The logic of collective action: Public goods and the theory of groups, Harvard Univ Pr.

OPEN_HEALTH TOOLS_FOUNDATION (2010) Open Health Tools Overview. Open Health Tools,

PERRONS, R. (2009) The open kimono: How Intel balances trust and power to maintain platform leadership. Research Policy, 38, 1300-1312.

PHILLIPS, P., Why Mozilla Matters, http://www-archive.mozilla.org/why-mozilla-matters.html, accessed Sept. 5, 2010.

PROJECT, T. G. (2010) GNOME Foundation Referenda. \urlhttp://foundation.gnome.org/referenda/,

PROJECT., T. G. (2010) How to propose modules for inclusion in GNOME. \urlhttp:/live.gnome.org/ReleasePlanning/ModuleProposing,

RAYMOND, E. S. (2001) The Cathedral and the Bazaar, Sebastopol, Cal., O'Reilly.

ROBBINS, J. E. (2007) Adopting Open source Software Engineering (OSSE) Practices by Adopting OSSE Tools. IN J. FELLER, B. F., S.
HISSAM & K. LAKHANI (Ed.) Making Sense of the Bazaar: Perspectives on Open Source and Free Software. Sebastopol, CA,
O’Reilly & Associates, pp. 245-264.

SCACCHI, W., FELLER, J., FITZGERALD, B., HISSAM, S. A. & LAKHANI, K. (2006) Understanding Free/Open Source Software
Development Processes. Software Process: Improvement and Practice, 11, 95-105.

SCHROEPFER, M., Mozilla platform, http://blog.mozilla.com/schrep/2007/05/16/mozilla-platform/, accessed Sept. 1, 2010.

SMETHURST, G. (2010) Changing the In-Vehicle Infotainment Landscape. GENIVI Allliance,

SOGHOIAN, C., A dangerous conflict of interest between Firefox and Google, http://news.cnet.com/8301-13739 3-9776759-46.html, accessed
Sept. 1, 2010.

STEWART, K. J. & GOSAIN, S. (2006) The Impact of Ideology on Effectiveness in Open Source Software Development Teams. MIS Quarterly,
30,291-314.

THE _APACHE_SOFTWARE_FOUNDATION, Apache Module Index, httpd.apache.org/docs/2.2/mod/, accessed Sept. 1, 2010.

THE _APACHE_SOFTWARE_FOUNDATION, How the ASF works., http://www.apache.org/foundation/how-it-works.html, accessed Sept. 1,
2010.

TORVALDS, L. (1999) The linux edge. Communications of the ACM, 42, 38-39.

TROTTER, F. (2007) What is VistA Really. \urlhttp://vistapedia.net/index.php?title=What is VistA Really,

VALDES, I. (2008) Free and Open Source Software in Healthcare 1.0. American Medical Informatics Association, Open Source Working Group,

VETERANS HEALTH ADMINISTRATION, O. O. 1. (2006) Winner of the 2006 Innovations in American Government Award. Department of
Veterans Affairs - VistA,

VISTA_MODERNIZATION_WORKING_GROUP (2010) VistA Modernization Report - Legacy to Leadership. Fairfax, VA, American Council
for Technology-Industry Advisory Council,

WAGSTROM, P., HERBSLEB, J. & CARLEY, K. (2005) A Social Network Approach to Free/Open Source Software Simulation. The First
International Conference on Open Source Systems,

WAGSTROM, P. A. (2009) Vertical Interaction in Open Software Engineering Communities. Carnegie Institute of Technology and School of
Computer Science. Pittsburgh, Carnegie Mellon University,

WEBER, S. (2004) The success of open source, Harvard Univ Pr.

WEST, J. (2003) How open is open enough? Melding proprietary and open source platform strategies. Research Policy, 32, 1259-1285.

institute for
SOFTWARE
RESEARCH 39

WEST, J. & O MAHONY, S. (2008a) The role of participation architecture in growing sponsored open source communities. Industry &
Innovation, 15, 145-168.

WEST, J. & OMAHONY, S. (2005) Contrasting Community Building in Sponsored and Community Founded Open Source Projects. Hawaii
International Conference on System Sciences, 7, 196c.

WEST, J. & OMAHONY, S. (2008b) The Role of Participation Architecture in Growing Sponsored Open Source Communities. Industry and
Innovation, 15, 145-168.

WORLDVISTA, Adoption of Restated Bylaws of WorldVistA, http://worldvista.org/WorldVistA/WV_Bylaws Restated 06-13-09.pdf/view,
accessed October 15, 2010.

YELLOWLEES, P. M., MARKS, S. L., HOGARTH, M. & TURNER, S. (2008) Standards-Based, Open-Source Electronic Health Record
Systems: A Desirable Future for the U.S. Health Industry. Telemedicine and e-Health, 14,284-288.

YIN, R. K. (2009) Case Study Research - Design and Methods, Thousand Oaks, SAGE Publications.

institute for
I S SOFTWARE
RESEARCH

40

Appendix A: Dimensions of platform-based ecosystems

Our studies of these ecosystems is based on our own prior research (Gurbani, Garvert, & Herbsleb,
2006; Mockus, Fielding, & Herbsleb, 2002; Mockus, Fielding, & Herbsleb, 2000; Wagstrom,
Herbsleb, & Carley, 2005; Wagstrom, 2009) and existing studies in this field. We adopt an analytic
framework consisting of four dimensions that prior research suggests are critical to ecosystem
design: the technical architecture, the governance regime, collaborative infrastructure and culture,
and business opportunities. We explain each dimension of our framework in the remainder of this
section.

A.1 Technical Architecture

At the heart of any ecosystem is a technical platform that supports the accumulation of the efforts of
diverse contributors (Evans et al., 2006; Gawer, 2009; Gawer et al., 2002). The term “platform” can
be a little tricky in this context. It can refer to an actual deployable implementation or simply
specifications that will enable interoperability (see, e.g., Baldwin et al, 2009). Today’s mobile
platforms such as iPhone and Android, are implementations that find their way into customers’
hands, and on top of which other ecosystem participants can deploy applications. The Genivi
platform (Smethurst, 2010), on the other hand, is an example of a “reference” platform, consisting of
middleware and reference applications. Vendors using the platform create their own applications,
which will be certified as Genivi-compliant. In this case, the critical platform supporting the
ecosystem is the specification, with the implementations primarily for reference, i.e.,, showing in
detail how to build a conforming application. In our case studies, we gave this broader
interpretation to “platform”, looking for technical characteristics that allowed participants to make
use of the shared technical work.

Of particular concern in the role of supporting and ecosystem is the modularity of the platform (e.g.,
MacCormack, Rusnak, & Baldwin, 2006). By modularity, we mean that development work on
different modules can be undertaken relatively independently (Baldwin, & Clark, 2000). It has long
been held that modular design is critical for allowing multiple teams to work relatively
independently of one another, without being overwhelmed by the need for technical coordination
(Colfer, & Baldwin, 2010). This need is even greater when the ability of teams to coordinate their
work is reduced by distance (Herbsleb, & Grinter, 1999; Olson et al., 2000), as is inevitably the case
in ecosystems.

In addition to the overall requirement of modularity, the openness of the platform is a critical
feature. For privately owned platforms, the degree of openness involves a crucial tradeoff between
adoption (fostered by openness) and appropriability (made more difficult by openness) (West,
2003). Similar considerations are important even when members of a community or a foundation
own the platform, if it includes a usable (not just a reference) implementation. The more complete
the free version of the platform is, the more adoption one would expect. Yet greater completeness
suggests that fewer business opportunities will be available for ecosystem participants. If a free
platform includes a reasonably good billing system, for example, it will be harder for a vendor to
sell entry-level billing systems, or any billing system that is inconsistent (e.g., has a different user
interface or makes different process assumptions) with the free version. On the other hand, if the
overall market penetration of the free version is sufficiently increased by virtue of its completeness,
vendors may have a much greater opportunity to sell higher-margin enhanced and custom versions,
as well as services such as training and installation. Decisions about what is included and what is
not, what functionality is exposed via Application Programmer’s Interfaces (APIs) and what is not,

° .
nstitute for
SOFTWARE
RESEARCH 41

and the simplicity or complexity of the interfaces will all have powerful impacts on shaping what
participants can do with the platform and how cost-effectively they can do it.

A.2 Governance

A governance regime is the way in which a particular ecosystem distributes types of decisions over
types of participants and decision-making mechanisms. A useful definition from the literature is the
following:

“OSS governance can be defined as the means of achieving the direction, control, and coordination of
wholly or partially autonomous individuals and organizations on behalf of an 0SS development
project to which they jointly contribute.” (Lynn, Heinrich, & Hill, 2001; Markus, 2007)

An effective yet open governance regime is critical for the success of an ecosystem. They are made
up of multiple organizations, yet they have neither markets nor hierarchies to coordinate their
activities (0O'Mahony, & Ferraro, 2007). There are many decisions that have a very broad and
profound impact on members, and must generally be made for the entire ecosystem, such as

* What will be included in a free distribution?

* How the platform software will be licensed?

* What standards will be adopted?

* How quality will be assured?

* The terms of the platform license?

* How the architecture will evolve?

* What s the platform release schedule?

* What technologies will be used in construction of the platform?
* What people and organizations are granted membership?

Despite this need for agreement on key decisions, too much central control threatens one of the
primary benefits of open platforms - the ability of members to freely and independently innovate.
Governance structures seem to arrive at a balance of bureaucratic and democratic mechanisms
(O'Mahony et al., 2007).

Governance regimes do not appear full-blown, but rather evolve. The development stages of open
source software projects correspond roughly to three types of OSS governance: ‘spontaneous’
governance, internal governance, and governance towards outside parties (Laat, 2007). In its first
years, an open source project exhibits no explicit or formal coordination or control. Only the
applied license defines a kind of frame in which members of the open source project can act. Often
accompanied by the growth of an open source project more coordination is needed and explicit
coordination and control mechanisms are introduced for the internal governance. Mechanisms are
for example, modularization, division of roles, and delegation of decision-making. At the same time,
open source projects have to find better means of dealing with outside parties, such as companies
and organizations and they need an institutional frame, often in form of a non-profit foundation.
The rights and the responsibilities of the project’s members, and the right to participate in decision-
making depend on each open source project. For example, West and 0'Mahony (West et al., 2005)
argue that in contrast to community-managed projects, in sponsored open source projects,
sponsors try to retain direct or indirect control.

As we mentioned, it seems unlikely that any single private firm will come to own the VistA platform,
so we focus on community-managed rather than commercially sponsored ecosystems. Participants

nstitute for
SOFTWARE
RESEARCH 42

in community-managed projects associate five particular features with this governance style
(O’Mahony, 2007):

* Independence (Control over the community is independent of any one sponsor but rests
with the members of the community itself),

* Pluralism (preserves multiple and perhaps competing approaches, methods, theories or
points of view),

* Representation (contributing members can be represented in community-wide decisions),

* Decentralized decision-making (some degree of decision-making is decentralized), and

* Autonomous participation (welcomes participation and allows members to contribute on
their own terms).

By describing the governance of each of our representatives we particularly address the following
areas: governance structure, governance processes (project management, release management),
and intellectual property. Within the governance structure the main governing bodies are
introduced and their main responsibilities are explained (West, & O mahony, 2008a). The objective
is to show the roles of foundations, members, committees, firms, and individuals, and how decisions
are reached.

A.3 Collaborative infrastructure and culture

Successful collaboration over distances and across organizational boundaries is widely recognized
as a very difficult problem (e.g., Olson et al, 2000). Open platform ecosystems have addressed
collaboration with a combination of a culture favoring openness and a collection of internet-based
tools that foster communication and coordination around the product (Moon et al., 2000).

Contemporary ecosystem culture can trace its origins to the “hacker” culture prevalent in the early
days of computing, when pioneers at major universities and corporate research labs freely shared
technical solutions in the form of code (Levy, 1984; Weber, 2004). Open source culture continues
to value sharing, helping, and valuing one’s reputation in the community (Stewart et al., 2006).
Moreover, shared values and norms have been shown to foster trust that is essential for
collaboration and help to prevent fragmentation of the community through such means as social
disapproval of forking (Stewart et al., 2006).

As one can observe on any open source hosting service, such as SourceForge, Savannah, or GNOME,
most project use a common set of tools that include a version control system (such as the
Concurrent Versioning System or Subversion), a bug or task tracking system (such as Bugzilla), and
a variety of mailing lists for users and developers. Some projects make use of other tools, such as
wikis, chat rooms, and social computing style technologies (for an example of the latter, see
GitHub).

Since the tools used are generally fairly pedestrian, and widespread in software development more
generally, what is of greatest interest is the norms, beliefs, and values about what should be
communicated, how, and when, as well as how the tools should be used to manage the work. The
tools and the collaborative culture together create the essential infrastructure that allows
ecosystems to function in a coherent and coordinated way within the governance framework.

A.4 Business opportunities
The final dimension we use to describe the ecosystems is the set of business opportunities that are
actively being pursued in the ecosystem. Research literature has identified a number of ways of

nstitute for
SOFTWARE
RESEARCH 43

creating and appropriating valued in an ecosystem context. Krishnamurthy (Krishnamurthy,
forthcoming) distinguishes three:

* Distributor, who provides the platform, perhaps in a bundle with additional software and
services,

* Software producer, who uses the platform in its own products, and

* Third party service provider, who offers support services.

Based on a review of the research literature, Bonaccorsi and Rossi (Bonaccorsi, & Rossi, 2006)
describe a number of economic and technical motivations for firms to participate in open source
ecosystems, including

* Independence from price and licensing policies of large software firms,
* Making profit from complementary services,

* Selling related products,

* Exploiting R&D activity of the open source community,

* Hiring technical personnel,

* Exploiting feedback and contributions from the user community,

* Promoting standardization, and

* Addressing security issues.

Similar sets of motivations have been described by Hecker (Hecker, 1999) and Hauge and
colleagues (Hauge, Ayala, & Conradi, 2010).

Figure A-I shows a high-level view of business models, each of which is briefly highlighted in the
following paragraphs.

OSS deployer
Companies that simply use OSS products.

OSS service provider
Companies that provide training, consulting, and
support.

Loss Leader
Companies that offer a basic version of the
software for free.

0SS distributor
Companies that sell OSS products (often an 0SS
service provider as well).

Widget Frosting

Companies that primarily sell hardware
provide OSS to attract contributions or to
0SS integrator share development costs.

Companies that use OSS components in their
products or that build their products on top of 0SS
infrastructure. Accessorizing

Companies that sell goods that are only
related to OSS such as books, T-Shirts, etc|

0SS participant

Companies that are actively involved

in OSS projects (e.g. documentation, bug fixing,
testing).

Figure A-I. Overview about defined roles of companies.

There are many companies that only use the software (0SS deployer). These companies exist in
nearly all successful ecosystems, and are not further considered in our analysis. Service providers
are companies that provide more or less any kind of service that is related to an open source
software product. Distributors sell OSS products, whereas integrators combine OSS components
with their software or build systems for their clients using at least some 0SS components.

nstitute for
SOFTWARE
RESEARCH 44

Hecker (Hecker, 1999) elaborates on the distributor and integrator roles, differentiating them into
loss leader, widget frosting, and accessorizing. Often, a basic version is provided for free to the user
whereas the full version is commercial software. This is called loss leader. One objective is to
reduce existing barriers for users for buying software because the basic version allows users to test
the software and to gather experiences in its usage. In order to have additional functionality the
user has to buy the complete version but then, the user might be already convinced about the
usefulness of the software. Another possibility is the dual license strategy. Here, a software product
is offered with an open source software license but the same software is provided by a commercial
license as well in order to allow third parties to integrate this software in existing commercial
solutions. Hardware producers that use existing open source to sell besides the hardware software
that is pre-installed on their machines primarily apply widget frosting. The last approach can be
seen as a complementary. Often open source usage and development involves a philosophy and
users or developers want to show this mindset to others. Some companies capitalize on this by
selling t-shirts, mugs, and books to leverage the open source brand (Fitzgerald, 2006).

nstitute for
SOFTWARE
RESEARCH 45

Appendix B: Four case studies of established ecosystems

We employed a multiple case study design and selected four ecosystems - Apache, Eclipse, GNOME,
and Mozilla - using the following criteria:

* Large scale systems,

* Relatively mature technology,

* Multiple projects or modules,

¢ Existence of a Foundation, and

* Both private engagement and corporate participation.

Clearly, this small sample does not exhaust the full range of platform-based ecosystems. We chose
the first three attributes (large, mature, multiple projects) for their obvious relevance to VistA.
While VistA does not currently have a single foundation, the open distributions that exist all have a
foundation or non-profit at their hub. Moreover, it seems highly unlikely that a single corporate
entity will end up with ownership of VistA, so we ruled out commercially-owned platforms. Finally,
while it is possible that VA will decide to retain control of VistA and act as the open source hub, we
are not aware of a precedent for a government-owned open platform. In any event, it seems that
government stewardship would likely resemble foundation stewardship in that control would be
exercised on behalf of the larger community, not for profit-seeking motives. Finally, we particularly
wanted to examine ecosystems with strong corporate participation in order to better understand
the business incentives for participation.

B.1 Apache

Apache is a conglomerate of various open source projects. Each of these projects deals with one
issue in the area of “web serving”. In February 1995, the Apache project was started in a joined
effort by a group of volunteers (“Apache Group”) to improve the existing NCSA httpd program
(Mockus, Fielding, & Herbsleb, 2002). In January 1996, the first version of the Apache httpd 1.0 was
released. By 1999, Apache was already the most often used web server in the world5?. Because of
this success, the technical as well as economic interest has grown and new “sister projects” (e.g.,
Ant) were founded. At present, the Apache Foundation comprises about 200 projects.

The heart of the Apache Foundation is the community management. Even though there is no main
product or platform that integrates the different development efforts, the whole community is kept
together by “The Apache Way” (Apache) that consists of the following principles:

* Collaborative software development,

* Commercial-friendly standard license,

* Consistently high quality software,

* Respectful, honest, technical-based interaction,
* Faithful implementation of standards, and

* Security as a mandatory feature.

Another important principle is meritocracy. Individual contributions are a prerequisite for being
accepted by other community members and to become finally a member of the Apache community.

37 According to the Netcraft survey, more information at http://www.netcraft.com/survey.

° .
nstitute for
SOFTWARE
RESEARCH 46

B.1.1 Technical architecture

Everything started with the development of the Apache HTTP Server, but today the Apache project
comprises not less successful projects such as the network server (servlet container) Apache
Tomcat, the search engine Apache Lucene, as well as the build management and project
management software Apache Maven. All together there are 174 projects and 88 are top-level
projects. Apache has no common platform but projects are encouraged to use open standards.

The principle nature of the different Apache projects can be interpreted as a Lego system with
predefined forms and sizes for the knobs (presenting the standards). Each project presents a Lego
block and by using the knobs blocks can be assembled in order to create customized solutions. It is
even possible, because of the Apache license, to use external and proprietary blocks. Following, this
principle is illustrated using various examples.

2@ Qo @ K}
_g _g =] >
S S 8 8
1S 1S £ 1S
© © © ©
< g g g
£ £ e e
x x
[} [}))
» 7] 3 1]
8 8] 3
3 3 2 =
E K 8 8
modules
module 1
call/luses
core
module ...
module n

Figure B-1. Apache HTTP Server high-level architecture (following Dragoi, 1999).

The Apache HTTP Server has a modular architecture that comprises a core component and a
module component (cp. Figure B-1). The relatively small core implements the basic functionality of
a web server whereas the module component includes a set of modules that extend and
complement the core (Kew, 2007). The Apache HTTP Server distribution consists of nine core
features and multi-processing modules that are part of the core and 75 other modules
(The_Apache_Software_Foundation, 2009). The server provides a module API that enables to
extend easily the core functionality by other functions using external modules (Dragoi, 1999). This
plug-in architecture has led to more than 400 released plug-ins by people outside the Apache
project. The Apache Modeling Portal (Grone, Knopfel, Kugel, & Schmidt, 2004) shows the Apache
module structure and the interaction of core and modules in a plain format.

The same principles have been applied to other Apache projects such as Apache Forrest. It is a
publishing framework that converts different input formats into one unified presentation and
provides this presentation in different output formats. It is mainly based on Apache Cocoon, a
framework that separates content from presentation and uses, for example, Apache FOP

° .
nstitute for
SOFTWARE
RESEARCH 47

(Formatting Objects Processor) for exporting HTML and PDF documents or Apache Batik for
exporting images.

Many of the projects that are part of the ASF are using open standards such DOM, SOAP, XML
Scheme from W3C. For example the Apache FOP follows the Adobe PDF 1.4, PS, Microsoft RTF 1.6,
XSL 1.0, XSL 1.1 standards. If other projects need an implementation of one of these standards, they
can use FOP. For example, the Apache XML Graphics Commons uses Apache FOP. This library only
consists of reusable components from the Apache Batik and FOP projects.

Often, projects have emerged within existing projects, providing a solution for a specific problem.
Over time, the size and importance of this project has grown because the solution appeared to be
applicable in other projects as well. Such a development can even end with extracting this project
from the mother project and creating a new, independent project.

The distinctive feature of Apache projects is that there can be used as stand-alone applications but
at the same time as combined solutions.

B.1.2 Governance

From the beginning, the members of the Apache team were very concerned about their decision-
making processes. The “Apache Group” (later Apache Foundation), therefore, agreed early to a
specific voting system that required a minimal subset of members to vote (Fielding, 1999). The
main motivation behind it was the need to ensure the action-ability of the development.

Basically, the types of votes are based on the specific action; for example, if it is a procedural
decision, a package release decision, or a code modification. The former two are mostly based on
majority approval, whereas the latter is called “lazy consensus” approval because only a few positive
votes with no negative vote are enough to push a project through to its nascent stages. In the case of
a negative vote, an explanation should be included that contains the reasons that led to this
negative vote. Based on the process of “consensus gathering” the community tries to address the
concerns mentioned in the explanation and negotiates a solution that satisfy every member.

However, the Apache Server became very successful and more projects were founded that were
related to the web server area. In June 1999, the Apache Foundation was founded because a more
structured organization became necessary (West et al,, 2005). The entities of the Foundation are its
members, the Board of Directors (Board), and Project Management Committees (PMC).

The Foundation was founded to (The Apache Software Foundation, 2010):

* Provide a foundation for open, collaborative software development projects by supplying
hardware, communication, and business infrastructure,

* C(Create an independent legal entity to which companies and individuals can donate
resources and be assured that those resources will be used for the public benefit,

* Provide a means for individual volunteers to be sheltered from legal suits directed at the
Foundation's projects, and

* Protect the “Apache” brand, as applied to its software products, from being abused by other
organizations.

The Apache governance model is clearly divided into two areas: one area comprises the

organizational, legal and financial responsibilities represented by the Board and its officers; while
the other area comprises technical and operational responsibilities that are decentralized in PMCs.

° .
nstitute for
SOFTWARE
RESEARCH 48

Membership. Members of the community can be entities or individuals. In May 2010, the
Foundation has 332 members (only individuals). A recent member can nominate a new member of
the Foundation. Then, she/he can be elected because of her/his contributions to the Foundation. It
is important that these activities should not be only concentrated on one project, but should have
an impact on a number of different projects. Besides the election of the Board, members of the
Foundation can propose committers for membership and new projects for incubation. There is no
membership fee for members of the Foundation.

Board of Directors. The Board governs the Foundation and is especially responsible for corporate
assets such as funds and intellectual property, and it allocates corporate resources such as technical
infrastructure to projects. The members of the Foundation annually elect the Board that consists of
nine directors. The Board of Directors defines certain quality standards for example for the release
process or the project incubation. Besides the appointment of PMC chairs, the Board initiates a
couple of cross-functional projects, such as Infrastructure PMC, Incubator PMC, Legal Affairs PMC.

Project Management Committees. PMCs have technical decision-making authority in their projects
and they ensure that procedures are implemented, that legal issues are considered, and that the
whole community participates in the release process. The Board appoints the chair of the PMC, who
is an officer (vice president) of the ASF, and officers, who are responsible for day-to-day activities.
Members of the PMC are developers or committers (developers with commit rights).

Project Management. All software development activities are carried out in separate autonomous
projects that are managed by the aforementioned Project Management Committees. It is founded by
resolution of the Board. A PMC is responsible to manage one or more software projects, which are
again created by resolution of the Board. The following main roles can be differentiated: user,
developer, and committer. Whereas a user just uses the software, a developer contributes to the
project, for example, by providing patches or writing documentation. Based on her/his
contributions, a developer can be proposed as a committer by a PMC member. A prerequisite of this
application is a signed Individual Contributor License Agreement (CLA), which has to be approved
by the Board’s secretary. The commit process itself is decentralized in each project. The PMC finally
approve (code review) the commits made by committers of the project.

New projects go through an incubator period in which they are evaluated based on the probability
that they will become successful members of the community (e.g., because of the diversity of
committership). Each new project has to submit a proposal to the Board that contains the project
vision, the chair, project procedures such as code review and release management, voting
procedures and defined processes for committer access and PMC membership. Such a proposal
needs to be supported by an ASF member and a sponsor (Board member, a Top Level Project (TLP)
that considers the candidate to be a sub-project), or the Incubator PMC. Existing functional overlap
between an incubator project and an existing project is allowed and does not influence the approval
of the Board. After acceptance of the proposal the projects goes through a so-called Podling period.
The Incubation PMC takes care of the project during that period. The following activities have to be
carried out: the reporting schedule, the project status page, the mailing lists, and the repository
space. However, during that period projects are not full members of the Apache community and
therefore, different guidelines for example for their releases apply. In order to graduate from the
Podling status a project has to fulfill a number of requirements, for example the project should not
rely on one main contributor, all code has to be conform to the Apache Software License, the project
should use other Apache subprojects or should at least have synergetic relationships to them as
well as the project should completely use the by Apache provided technical infrastructure. A project
that reaches its lifetime is moved into the so-called Attic, a separate PMC.

nstitute for
SOFTWARE
RESEARCH 49

Each project within the ASF can define their self-governing rules. A pre-predefined vision how
those projects should be managed does not exist. But each project in the ASF has the following
similarities:

* Communication within projects is carried out via mailing lists.

* Decision making is based on lazy consensus.

* All projects share the “Apache way”.

* Project members are not paid by the Foundation.

* Individuals are member of the ASF community and not institutions.
* Confidentiality and public discussion are balanced in a project.

Release Management. Even though, each project in the ASF community is responsible for its release
management, the Foundation has defined requirements on reach release and the release process.
These requirements include besides other things: each release must contain a source package,
cryptographically signed by the Release Manager, must be tested and must comply with ASF
licensing policy. Each current release can be assessed by one central website (Apache).

Sponsorship Program. A Sponsorship Program allows non-directed monetary contributions. There
are four different sponsorship levels defined with certain donations and in-return benefits:
Platinum Sponsorship, Gold Sponsorship, Silver Sponsorship, and Bronze Sponsorship. For
example, Yahoo, Microsoft, Google are platinum sponsors; they support the Apache Foundation
with US $100k per year.

Intellectual Property. All projects of the Apache Foundation are applying the Apache License
Version 2.0 (Apache, 2010), which is not a copy-left license. This license therefore allows
developing both open source software and proprietary software based on the licensed source code.

B.1.3 Collaborative infrastructure and culture

The Apache Foundation provides for each project that is member of the Foundation certain
infrastructure services. By focusing on this single aspect, the Apache Foundation provides services
such as SourceForge. But utilizing these services is only one prerequisite of becoming a member of
the Apache community. The aforementioned “The Apache Way” is one main motif of being a
member in the Apache community. The Infrastructure PMC of the Apache Foundation provides a
web serving environment (web sites and wikis), a code repository, a mail management
environment, a bug and issue tracking system and a distribution mirroring system. Each project in
the Apache community can be accessed by its own often individually designed website. The only
characteristic to identify its community affiliation is the Apache logo (i.e. the feather).

The official user conference of the Apache project is the ApacheCon. This is a general conference
about existing technologies and projects in the Apache community. Sometime projects host their
own conferences, addressing the specific needs of their users and developers (i.e. Apache Lucene
and Soir, Cocoon GetTogether).

B.1.4 Business opportunities

There are different reasons for companies to support the Apache Foundation. One of these reasons
is their reliance on Apache products. IBM has significantly impacted the successful development of
the Apache community. In 1999, IBM joined the Apache Foundation and supported the further
development of the web server by submitting bug fixes and features. Yahoo! supports the ASF
because of the Apache HTTP Server and Lucene project. Furthermore, Google even uses the

nstitute for
SOFTWARE
RESEARCH 50

infrastructure provided by the Apache Foundation and initiated new projects such as Shindig
(container and backend server components for hosting OpenSocial applications). By providing
code, companies ensure that existing server components from the Foundation are used from the
beginning, and the product will be well integrated in the Apache “solution map”.

Microsoft’'s motivation to sponsor the Apache Foundation slightly differs. It is a more user-driven
demand for interoperability because an increasing number of Window server’s deploy Apache-
based technologies on top of it.

Companies such as Facebook, LinkedIn and Hippo (CMS) are using open source technologies and
components to build their own products. SpringSource (Java application infrastructure and
management), Lucid Imagination (certified distributions of Lucene and Soir) provide highly
specialized (certified) solutions using ASF components and offer support, training, consulting and
value-added software extensions.

The most dominant role of existing business opportunities for companies in the Apache community
is the OSS integrator. Because Apache projects can easily integrated in existing products or can be
assembled to new solutions, companies use this opportunity to enhance their existing product or to
create new ones. Contrarily, companies such as IBM and Windows invest in Apache to ensure that
their products stay interoperable with Apache projects.

B.2 Eclipse

According to the “about” page at eclipse.org (Eclipse), “Eclipse is an open source community, whose
projects are focused on building an open development platform comprised of extensible frameworks,
tools and runtimes for building, deploying and managing software across the lifecycle.” The history of
this community is described as follows:

“The Eclipse Project was originally created by IBM in November 2001 and supported by a consortium
of software vendors. The Eclipse Foundation was created in January 2004 as an independent not-for-
profit corporation to act as the steward of the Eclipse community. The independent not-for-profit
corporation was created to allow a vendor neutral and open, transparent community to be established
around Eclipse. Today, the Eclipse community consists of individuals and organizations from a cross
section of the software industry.” (Eclipse)

The Eclipse ecosystem evolved into its current form in response to problems encountered, many of
which concerned intellectual property arrangements and the role of IBM (see (Wagstrom, 2009) ch.
2.1 for a brief history). The success of these arrangements has been such that Eclipse is widely
considered to be the dominant development environment for Java (Geer, 2005).

Today, the Eclipse Foundation website lists 160 members (Eclipse), ranging from large
multinational corporations such as AT&T, IBM, Google, Intel, Motorola, Nokia, Oracle, Bosch, and
Siemens to a wide variety of small vendors and service providers, and a few research labs and
universities. The Eclipse technology continues to evolve rapidly. New directions include “bringing
Eclipse to the web” and expanding runtime capabilities, particularly in the direction of Service-
Oriented Architecture (SOA) applications (Kerner, 2009).

B.2.1 Technical architecture

The Figure B-II illustrates several key elements of the Eclipse architecture. First, it shows that
Eclipse is built on top of the OSGI framework, a module system and service platform for Java that
spans devices, clients and servers. Bundles, i.e. plug-ins, can be integrated, updated, removed, etc. at

nstitute for
SOFTWARE
RESEARCH 51

runtime within this dynamic component model. Because of this platform infrastructure, Eclipse is
more widely applicable, such as in the automotive industry. However, on top of this runtime
platform, the Rich Client Platform (RCP) with its core plug-ins is located. Many different kinds of
applications (e.g., IDEs) can be built on top of the RCP (Bolour, 2003). The Rich Client Platform
RCP) is the “minimal set of plug-ins needed to build a rich client application” (Eclipse). As Figure
B-III illustrates, on top of the base RPC, there are additional and optional plug-ins are also available
(see, e.g., (Eclipse; McAffer, & Lemieux, 2005)).

Plug-ins

Modeling Development Testing BI
(UML2) (Cobol, C#) (TPTP) (BIRT)

RCP plug-ins Generic Tool plug-ins RCP plug-ins

Generic Workbench ANT VE (GUI builder fw)
JFace Generic Debug GEF (Graphical fw)
SWT Project Model EMF (Model fw)
Help Search/Compare
Update CVS, Team

! Eclipse Runtime '

Eclipse OSGI Framework

Figure B-I1V. High level view of Eclipse architecture (following (Nyman, 2005))

The Eclipse platform includes additional plug-ins specific to an integrated development
environment (IDE), including Java development tools and an environment for building plug-ins.
The Eclipse Marketplace (Eclipse) offers over 1,000 additional plug-ins, under a variety of open
source and commercial licenses, that users can install on top of these platforms.

In order to support the wide variety of plug-ins, Eclipse has a well-documented plug-in model that
developers can use for extensions to the Eclipse platform or other plug-ins (Bolour, 2003). Plug-ins
must be described in a specific XML format in a “manifest” file, that provides things like the name,
id, any extension points the plug-in provides, and any extension points in other plug-ins that this
plug-in will extend.

The architecture establishes conventions for communication between extended and extending
plug-ins, involving schemas defined in the extending plug-ins manifest file, and callback objects
created by the extending plug-in to receive specific inputs from the extended plug-in.

The key architectural points from an ecosystem view are 1) platforms are well-defined, and have
broad applicability, 2) the platforms provide well-documented ways for developers to build
additional functionality on top of them, and 3) all APIs use a consistent plug-in approach that
provides a single flexible mechanism.

B.2.2 Governance

The Eclipse governance model ensures that no single entity is able to control the strategy, policies
or operations of the Eclipse community. Eclipse has three major mechanisms: decisions made by

o
institute for
SOFTWARE
RESEARCH 52

the Eclipse Foundation, decisions made in three participatory Councils, and decisions left to
participants.

Eclipse Foundation. The Eclipse Foundation (EF) consists of a Board of Directors, officers, and
staff. The Foundation makes decisions in the following areas:

* Handling of intellectual property and other legal issues,

* Deciding membership and membership criteria,

* Development process and IT infrastructure,

* Branding, how the name can be used and by whom,

* Fostering community, shaping the culture, stewardship, and

* Interactions with external bodies, such as standards, specifications, other 0SS ecosystems
such as Apache.

The Foundation has established several basic principles or “rules of engagement”, especially
openness, meritocracy, and transparency.

Members of the Eclipse Foundation can be firms and individuals. There are four membership
classes: Strategic Member, Enterprise Member, Associate Members, Solutions Member,
Committer. The first five types are for companies exclusively. Associate Members show
participation in the Eclipse ecosystem by their membership. Solutions Members are engaged in the
development because they offer products and services based on, or with, Eclipse. Enterprise
Members influence the development of the Eclipse ecosystem because they rely heavily on Eclipse
technology. Eclipse is seen as strategic platform for Strategic Members and they provide
development resources or similar to support the development of the technology. Committer
members are individuals who through a process of meritocracy can commit changes to project
source code.

Strategic Members automatically hold seats in the Board of Directors, whereas representatives
from Committers are elected annually.

The funding of the Foundation is based on annual dues from its members. Four central services are
provided to the community: providing an IT infrastructure, managing intellectual property,
supporting the development process, and further development of the ecosystem.

Participatory Councils.58 The Eclipse Management Organization (EMO) consists of the Foundation
staff and the Councils. The EMO is responsible for organizing and selecting the chair of Councils,
enforcing policies, leading the Eclipse Platform development, marketing, and outreach. There are
three Councils, one each for Requirements, Planning, and Architecture. All three Councils and the
staff of the Eclipse Foundation are responsible for the Eclipse Roadmap, which describes the future
directions of the Eclipse project. The Requirement Council gathers, analyzes, and prioritizes
requirements, producing a set of themes and priorities, and the Planning Council provides the
actual plans from the projects. The Architecture Council is theoretically responsible for describing
the architecture and how it should evolve, even though it could not be realized in the last years.
Existing industry trends and how the Eclipse community responds to them are added to the Eclipse
Roadmap by the Foundation’s staff. Beyond that, the Architecture Council is responsible for
providing mentors for new projects to get started and to evolve development policies that span

8 We are very grateful to Mike Milinkovich (Executive Director of the Eclipse Foundation) for his very helpful comments on this section.

nstitute for
SOFTWARE
RESEARCH 53

across the community (e.g., how to manage API deprecation). The Planning Council can be seen as
most important Council because it is responsible for managing the annual release train.

Member Business Decisions. Key business decisions are left completely to members. The
Foundation takes no position on what members should sell, what their business models should be,
whether they should contribute code to the free distribution, or whether they should participate in
ecosystem governance. It is the expectation of Foundation that members will pursue their own
business interests, and that contributions to the Foundation are a means to that end.

Projects and Release Management. Eclipse has a project hierarchy, with top level projects at the
root, zero or more container projects, and one or more operational projects at the leaves. The top-
level projects must have Project Management Committee (PMC), while subprojects have one or
more project leaders. Contributors and committers perform the technical work for each project -
the latter have write access to the repository. Committers elect new committers. Each project has a
life cycle that goes through stages of Pre-proposal, Proposal, Incubation, Mature, Top-level, and
Archived. At least two mentors (members of the Architecture Council) are necessary to propose
new projects to the EMO. Only after "graduation”, the project is member of the Eclipse Community.
A technical overlap between projects is not prohibited but is strongly discouraged. Reviews are
held to determine changes in stage, as well as for other purposes such as approving a release.
Project management is responsible for ensuring that the project follows Eclipse policies and rules
of engagement.

B.2.3 Collaborative infrastructure and culture

The Eclipse Foundation provides an IT infrastructure that includes all the basic tools found in most
open source ecosystems. They include "CVS/SVN code repositories, Bugzilla databases, development
oriented mailing lists and newsgroups, download site and web site" (Eclipse).

The Eclipse ecosystem has evolved three core values, referred to as "rules of engagement”, that
support collaboration among all participants (Eclipse). They are

* Openness: that the ecosystem excludes no one, and everyone has the same opportunities,

* Transparency: technical discussions are carried on out in the open, easily accessible by the
public, and

* Meritocracy: responsibility and leadership are conferred in proportion to one's
contributions.

In addition to online collaboration, the Eclipse Foundation sponsors two annual conferences,
EclipseCon in the United States and the Eclipse Summit in Europe. The conferences are
approximately 6 months apart, and provide face-to-face forums for Eclipse talks, tutorials, panels,
workshops, and sponsored sessions focused on products; programming challenges (such as the
2010 EclipseCon e4-Rover Mars Challenge); and social occasions.

B.2.4 Business opportunities

A key insight into Eclipse business models comes from an Eclipse Foundation presentation in 2007.
The basic idea is that companies should seek to avoid devoting a large proportion of engineering
effort for infrastructure, which provides no differentiating value, and should seek to increase the
proportion of engineering effort devoted to high-value differentiating features. Eclipse provides a
way of collaborating on infrastructure, i.e., the Eclipse platform, while competing on products.

In addition to product developers, of which there are many in the Eclipse ecosystem, viable
business models include

nstitute for
SOFTWARE
RESEARCH 54

* Custom software vendors that use Eclipse (e.g., BandXI),
* Services such as
o Supporting Eclipse development environments (e.g., Innoopract),
o Training in Eclipse technologies (e.g., Modular Mind, Opcoach, RCP Vision, Innovent
Solutions), and
o Systems integration (e.g., OpenMethods).
* Products such as
o Platforms for commercial distributed software development teams (e.g., Collabnet,
MKS),
o Code analysis modeling, testing, and other development tools based on Eclipse (e.g.,
itemis, Black Duck, froglogic), and
o Business intelligence reporting tools (e.g., Actuate, Innovent Solutions).
* Selling products complementary to Eclipse, such as
o Supporting projects for mobile application development, to help sell devices (e.g.,
Nokia, Motorola), and
o Specialized releases for developing device software (e.g., Wind River).

Value 4 _odn ~_
Appropriated pre D

Redefine

Collaborate

Value co-creation

ffl /
\ Value appropriation y
\ J
N 4

L Coupling 4
‘. management .’

Effort
<---------- Engineering Driven ------- ><--- Business Driven ---—>

Figure B-V. Open source maturity model. (following Bailetti, 2008).

The Eclipse Foundation has promoted a maturity model of open source involvement (cf. Figure B-
[IT) that shows a progression of business incentives for participating in the Eclipse ecosystem. At
the lowest level, companies ignore or deny the existence of open source. Involvement tends to
begin with simple use of open source products, and escalates through contribution and eventually
championing open source. These are all engineering-driven motivations, as firms seek cost-
effective tools and components. Eventually, firms may become more deeply involved by
collaborating on infrastructure that has little or no differentiating product value, redefining their
business model and focusing on value added products and services.

B.3 GNOME

GNOME (GNU Network Object Model Environment) is a free graphical user interface for free and
open source operating systems such as Linux, BSD and Solaris. It was initiated in 1997. In addition

nstitute for
SOFTWARE
RESEARCH 55

to the desktop environment for users, GNOME provides for programmers a development
framework for desktop applications (Wagstrom, 2009).

B.3.1 Technical architecture

GNOME is a graphical desktop environment and an application framework. The architecture, which
is primarily realized in the programming language C and Python, consists of a collection of libraries
and applications that can be roughly divided into four main groups (cf. Figure B-VI): needed
libraries (e.g., GLib, XLib, CORBA), core applications (e.g., windows manager, configuration tool),
applications (e.g., mail client, word processor), and third party applications (German, 2004). At the
moment, GNOME is migrating from CORBA to D-Bus, therefore the architecture described following,
might be soon outdated.

: GNOME 3
' Applications .

GNOME
Libraries

GTK+

Bonobo GDK

CORBA GLib XLib

Figure B-VI. GNOME Architecture at a glance (Jang, 2006)

Two main libraries are briefly introduced: Glib and GTK+. Glib provides basic core application
building blocks (e.g., common data structures, loop implementation) for libraries. GDK is a wrapper
for the low-level library Xlib (X Window System) that serves as intermediate to GTK+. GTK+ (GIMP
ToolKit) is the primary library used to construct user interfaces in GNOME. This library can be seen
as an abstraction layer that enables developers to program user interfaces without dealing with the
low-level details of drawing and device interaction. GTK+ has been developed over the last decade;
it has a well-defined and well-documented object-oriented API.

Another important module is Bonobo, a framework for creating reusable components for use in
applications. It is built on top of the industry-standard Common Object Request Broker Architecture
(CORBA) and provides all common interfaces needed to create and use components in GNOME
applications.

More generally, modules can be divided into platform modules, desktop modules, and language
bindings. There are 21 platform modules and their APIs and ABIs (application binary interfaces)
must stay stable until the major release number changes (e.g.,, GNOME 2.0 to 3.0)%%. For desktop
modules (16) a stability of their APIs and ABIs is not guaranteed. While platform modules are
necessary to develop additional functionality for the GNOME project, desktop modules are

* We are grateful to Brian Cameron for pointing this out.

institute for
SOFTWARE
RESEARCH 56

primarily necessary to ensure the “basic” functionality of the GNOME Desktop. Libraries are
introduced in the desktop release to mature, and once they've stabilized and they are needed, they
are moved into the platform.

The main advantage of platform modules that comprises the core can be seen in the development
framework for desktop applications because it allows third parties to use existing functionality and
to build their applications on top of it; the gnomefiles directory shows the extensive number (over
2,000) of available modules and applications (cf. http://www.gnomefiles.org) that ranges from
commercial to open source licensed offerings.

The GNOME project actively supports development of new functions by providing for example the
Integrated Development Environment (IDE) Ajunta for the GNOME desktop.

Moreover, GNOME is participating in freedesktop.orgé®, which are open source/open discussion
software projects aiming to enhance interoperability and shared technology for X Window System
desktops by building a base platform for desktop software on Linux and UNIX that comprises both
software and specifications.

B.3.2 Governance

In its first years, the GNOME community was loosely organized with a “constitutional monarchy” led
by one of the founders, Miguel de Icaza (German, 2002). In 2000, because of the ongoing growth of
the community and oftentimes less transparent decision-making processes, the GNOME
Foundation, a non-profit organization (501(c)(3)), was founded. Even though the GNOME project
has existed over 10 years, the GNOME Foundation has a flat organizational structure and a
comparatively small size. In June 2010, there were 374 members, the Board of Directors (7
representatives elected by members), the Advisory Board (11 companies) and one Executive
Director (besides the part-time administrative assistant and part time system admin, the only
person paid by the Foundation).

Board of Directors. The Board of Directors is the decision-making body of the Foundation. It
manages the release processes; is concerned with marketing, legal and financial issues of the whole
project; determines which individual projects shall be part of the official GNOME release; and
specifies standards, which define GNOME compliance - but it is not directly involved in technical
decisions within the projects. The Foundation serves as spokesman for the community, its values
and rules. Organic growth of the community is one major concern. Furthermore, the Foundation
offers the technical infrastructure that can be used on a voluntarily basis to run existing projects
and to integrate new ones.

Membership. Members of the Foundation are only individuals who make a non-trivial contribution
to the GNOME project (meritocracy) and who are approved by the Membership Committee. People
can participate in various defined projects such as the Accessibility Team, Bugsquad Team, Build
Brigade, Documentation Project, Translation Project, Usability Project, System Administration
Team, and Marketing Team. Each project addresses a specific issue in the development process or
has a more general role like GNOME love, which helps new project members to get involved. A
membership lasts for two years. Each member has one vote during the annual voting for the new
Board members; candidates with the highest number of votes for the Board of Directors are elected.
Furthermore, a member of the Foundation can run for the GNOME Foundation Board and can

% More information can be found at http://www.freedesktop.org.

nstitute for
SOFTWARE
RESEARCH 57

suggest, vote or create a referendum (Project, 2010). Such a referendum goes only to vote if 10% of
all members of the Foundation endorse it. The majority vote is finally necessary to get it passed.

Advisory Board. Companies and organizations (e.g., Google, IBM, Free Software Foundation) can
participate directly in the Foundation by being members of the Advisory Board. They financially
support GNOME by their membership fees at a minimum (fee depends on the size of the company,
non-for profit organization are exempted) and in addition for example by the Accessibility Program,
by Hackfests and by the technical infrastructure of the Foundation. Even though the Advisory Board
has no decision-making authority, it acts as advisor to the Board of Directors on various topics such
as: it provides input on financial, project management, and system administration issues, it
identifies opportunities and supports collaboration outside GNOME, and it offers mentorship for
community members. Employees of Advisory Board members are often participating in GNOME
Foundation events and projects as well as supporting by specific tasks.

Project Management. GNOME’s software development projects are organized within a federated
system (Wagstrom, 2009). Core programmers manage their projects and oversee the whole
software development, for example they produce releases and integrate changes (patches) from
other people. Even though the projects are quite autonomous, they adjust their developmental
roadmaps and goals to the overall GNOME community strategy.

Especially projects that are part of the release or that link to projects that are part of the release
should follow specific guidelines (such as development guidelines), should meet the user interface
guidelines and should be compliant with the accessibility guidelines.

The source code of the GNOME project is freely accessible by the GIT repository. But only as key
contributors approved people are allowed to commit changes to the source tree. A contributor can
apply for direct access rights to the code repository after submitting a reasonable number of
patches (to a core developer) or Bugzilla reports to a project, or something entirely different. The
criteria differ based on the person’s role and contribution. An application for commit privileges has
to be supported by the module maintainer and approved by the Accounts Committee.

In order to get a project hosted by the GNOME technical infrastructure, they have to meet specific
requirements such as having a free source license, using GTK+/GNOME technologies, and must
have had at least one public release. Furthermore, the accounts committee and people on the
gnome-hackers mailing list have to agree to it.

Release Management. Projects, or so-called modules - separate libraries or applications, with one or
more branches of development included, respectively - can be proposed for inclusion into the
official GNOME release. The release team discusses such proposals based on specific judgment
criteria (Project., 2010). Those criteria include for example:

* The improvement of overall desktop usability,
* The willingness to work with other teams, and
* The application must use GTK+ and other GNOME technologies.

An essential part of the criteria not only deals with technological requirements but with
collaboration and community development in general. This might be a reason that most community
members participate in various projects. Interestingly, companies that are involved in software
development mainly contribute to core projects (Wagstrom, 2009).

° .
nstitute for
SOFTWARE
RESEARCH 58

In the release team, membership is normally by invitation and recommendation when another
team member leaves. There is a defined release schedule that most frequently begins with the
creation of a stable branch in each release project. New releases of GNOME are available as single
files (source tarballs) in the source code repository. Therefore, for example operating system
vendors create distributions in the form of easily installed, pre-compiled packages for their systems
or provide them for end users.

Meanwhile, the GNOME has a 6-month release cycle for its “official” modules. In June 2010, 161
modules were included into the official release (consisting of 22 platform modules, 94 desktop
modules, 2 admin modules, 6 dev tools modules and 12 C+, 5 Java, 8 Perl, 5 Python, 10 mobile and 2
misc bindings).

Intellectual Property. The platform libraries are licensed under the LGPL to allow proprietary
software to link against them. All other modules in GNOME are using the GPL license or are using a
license that is GPL compatible.

B.3.3 Collaborative infrastructure and culture

Even though GNOME is loosely organized, as most free software projects, there are various
communication and collaboration tools available. The main website is for users and comprises
release information, downloads, and documentation.

For developers of the core modules and for people using the development platform there is a
developer portal available. The technical infrastructure consists of the usual open source software
development tools such as bug tracker (Bugzilla), source code repository (git), a wiki, various
mailing lists, instant messaging (esp., IRC), blogs, and blogs aggregators. Even though, this
infrastructure can be used by every GNOME project, project maintainers are not forced to apply it.

Additionally, GNOME News contains information regarding the whole community whereas in Planet
GNOME posts from personal weblogs of most of the developers are aggregated on one place.

There are several conferences each year, for example GUADEC, GNOME Boston Summit, GNOME
Asia, and GUADEC-ES. GUADEC, GNOME Asia, and GUADEC-ES are annually conferences for GNOME
users, developers, and vendors. The GNOME Boston Summit is an annual hacker get-together for
developers.

Participants in GNOME are expected to conform with the GNOME Code of Conduct (GNOME). The
principles are brief and few, but they describe expectations that participants will “be respectful and
considerate [...] patient and generous [...] and assume people mean well.” The high aspirations of the
community are captured in the preamble of the code of conduct, “GNOME creates software for a
better world.” (GNOME).

B.3.4 Business opportunities

In order to provide a viable alternative to established commercial operating systems such as
Microsoft and Apple, companies such as Novell, RedHat and Sun invested in the GNOME project in
order to provide the end user with a free desktop. In 1999, RedHat included GNOME 1.0 in RedHat
Linux and has been supporting the development since then. One reason for this support is that
these companies wanted to sell support and services around free and open source software. In
2000, Sun founded the GNOME Accessibility Development Lab in order to ensure further quality
improvement of the desktop application. Also Mozilla supports the accessibility efforts of the
GNOME project.

° .
nstitute for
SOFTWARE
RESEARCH 59

In 2007, Canonical Ltd. the commercial sponsor of Ubuntu, joined the GNOME Foundation's
advisory board in order to influence more actively the development (in form of feedback and
support) of the GNOME Desktop, which has been used by Ubuntu.

Another business model is to employ open source software for existing hardware solutions.
Software from the GNOME project is in use in a myriad of devices like the One Laptop Per Child and
Nokia n800 series of Internet tablets; numerous start-up firms have created solid businesses
around the project. In 2007, Collabora was one founding member of GNOME Mobile. The GNOME
Mobile stack is used in mobile platforms such as Nokia’s Maemo, Intel’s Moblin and Linux
Foundation’s MeeGo platform. Companies like Collabora work with the GNOME community and
platform companies to deliver free and open source solutions.

All mentioned companies are OSS integrators. Their main motivation is to support a viable
alternative to existing commercial Desktops on different free and open platforms. Nevertheless,
these companies are members of the Advisory Board; a more direct participation of companies
within GNOME is only possible if an employee of a company gets involved in the community as an
individual.

B.4 Mozilla

The Mozilla Foundation is self-described as "a non-profit organization that promotes openness,
innovation and participation on the Internet [...]. We provide core services to the Mozilla community
and promote the values of an open Internet to the broader world.” (Mozilla.org).

These goals shall be achieved through community-developed software that enables people to easily
and freely use Internet services. Their most widely known applications are the Firefox web
browser and the Thunderbird e-mail client. But the community is also responsible for the
development of the very successful software Bugzilla, a tool to support collaborative software
development and defect tracking.

As of November 2009, Firefox's market share was around 25% worldwide: closer to 20% in the US
and Asia; around 33% in Europe (Baker, 2009).

B.4.1 Technical architecture

Mozilla applications include seven tools such as browsers Firefox (for desktop or mobile) and
Camino (for Mac OS X), e-mail client Thunderbird, calendaring software Lightning and Sunbird,
software development tool Bugzilla , and SeaMonkey, an integrated Internet suite that includes
source code from several other Mozilla applications. Additionally, there are applications which are
based on Mozilla technologies, for example the Epic browser and Logitech harmony remote.

Mozilla applications are built on the Mozilla application framework which consists of several core
technologies. These core technologies include a standard-based layout and rendering engine
(Gecko), an extensible API for networking and communications functions (Necko), script execution
engines, and the XPCOM, the Cross Platform Component Object Model (Mozilla.org). The latter is an
object interface that allows interfacing between any programming language. The main objective of
this generic framework is to provide cross-platform functionality for network (Web) applications.
All technologies and their APIs are well-documented so that other developers can change them if
needed for their purposes or can embed them in their applications, even proprietary ones. In order
to support other organizations to use Mozilla technologies and to build their own application on top
of them, Mozilla provides a development platform (called XUL) for desktop applications.
Furthermore, the project provides various independent components such as SpiderMonkey

nstitute for
SOFTWARE
RESEARCH 60

JavaScript engine and Gecko (third parties can use Gecko as a browser within their own
application), and modules that are not even used by Firefox but available for the whole community
such as Rhino.

C Firefox)C Thunderbird)C SeaMonkey)C)

Toolkit
Extension Manager, Update, Moz Storage, Spell Checking

Content
‘ ‘ XUL ‘

XML User Interface

XBL
XML Binding Language

SVG

‘ Layout Scalable Vector Graphics

,,

NSS/PSM

Network Security Services/Personal Security

SQLite

Storage

XPCOM

Necko Cross-Platiorm Component Object Model GFX/

Network . Thebes
| Widget

Graphics
Event Handiing

Loy XPC t
onnec
| and Windowing

Bridges Javascript and XPCOM

| Javascript |

NSPR Cairo
Netscape Portable Runtime: Cross Platform API for System-Level Functions Graphics

Figure B-VII. Simplified Mozilla Application Framework (according to (Schroepfer, 2007)).

Mozilla emerged from the former Netscape browser. Netscape's source code was originally
developed as commercial proprietary software, built for performance and quick shipment by a
team of co-located developers working together for the same firm. At the time when it was
released as Mozilla, it was not modularly designed for distributed development in an open source
community. Some experts believe that the open source development "really requires a software
system which is as modular as possible, because otherwise you can't easily have people working in
parallel.” (Torvalds, 1999). After an intense restructuring effort that improved the modularity of
the code, contributions increased significantly. This effort may have been key to the project's
success: "The Mozilla experience suggests that proprietary products may not be well-suited to
distributed development if they have tightly-coupled architectures. There is a need to create an
“architecture for participation”, one that promotes ease of understanding by limiting module size, and
ease of contribution through minimizing the propagation of design changes [...] We speculate that
without the architectural changes made in 1998, the Mozilla experiment may well have failed”
(MacCormack et al., 2006).

B.4.2 Governance

The Mozilla Project began in 1998 with the release of Netscape's browser code. This move was
meant to tap the creative efforts of thousands of developers over the Internet, and to better
compete with Microsoft's cost-free Internet Explorer. After a while, this code was given up in favor
of designing a new rendering engine, called Gecko, still in use today. The first major open source
version of this software (Mozilla 1.0) was released in 2002 to little fanfare (Mozilla.org). Firefox 1.0
was released in 2004 and quickly took off, with over 100 million downloads in the first year
(Mozilla.org).

Mozilla Foundation. The Mozilla Foundation was established in July 2003 as a 501(c)(3) non-profit
organization, headquartered in CA and guided by the principles of the Mozilla Manifesto. It replaced
the former Mozilla.org organization which was founded by Netscape Communications Corporation
in 1998. The initial US $2M investment came from American Online (AOL) which acquired Netscape
Communications Corporation in 1999 (Decrem, & Corre, 2004). Although thousands of people are

institute for
SOFTWARE
RESEARCH 61

part of Mozilla, the Mozilla Foundation itself is a small team of people (Mozilla.org, 2005). It has a
five-director Board, eight full-time staff, three part-time staff, and no members. The Board is self-
elected with broadly defined powers.

The Foundation focuses on ecosystem and cultural management, maintaining the collaborative
infrastructure and culture discussed below (including Drumbeat, cf. Section B.4.3). They are
responsible for making decisions about these collaborative efforts including licensing decisions.
The Foundation also oversees and coordinates software development for projects other than
Firefox and Thunderbird.

There is presently no overlap between Board members and staff working directly for the
Foundation. The Foundation coordinates projects in support of the Manifesto's principles. They
also award grants for projects promoting openness and accessibility on the Web. The Mozilla
Foundation has affiliate foundations in Europe, China, and Japan, independent organizations
contracted by the Foundation for development and promotion of Mozilla products in their regions
(Mozilla.org, 2005)

Mozilla Corporations. The Mozilla Corporation was established in August 2005 as a wholly owned
subsidiary of the Foundation to coordinate the development and marketing of Mozilla technologies
and products (Mozilla.org). The main motivation to form such a commercial subsidiary is the
possibility to generate revenue and this revenue can be used to support the further development of
Mozilla’s open source technologies. The Mozilla Corporation has a staff of about 175 and there are
subsidiaries in China and Denmark for work there, and a third subsidiary to operate branch offices
in foreign locations. Despite the commercial background of the corporation, the community and the
corporation should work closely together (Mozilla.org). For example, Mozilla Corporation employs
58% of individuals who have code review and check-in authority on multiple modules, 74% of
developers with access to security bugs and 70% of super-reviewers.

The Mozilla Corporation provides the main of financial activity within the Mozilla Foundation, on
the order of US $80M. Most of this comes from companies such as Google, Yahoo, Amazon, eBay,
and others related to the search functionality in Firefox (Mozilla.org).

Mozilla Messaging, Inc. a second corporation also wholly owned by the Mozilla Foundation, was
launched in 2008. This company develops and promotes the Thunderbird e-mail client. Mozilla
Messaging has a staff of 10 who work with a much larger volunteer community.

Project Management. The Mozilla Foundation governs the source code repository and committer
rights. Each module in the Mozilla project has zero or one module owner, who is responsible for
setting the overall goals for that module, requiring a deep understanding of how it works and how it
relates to the rest of the Mozilla codebase (Mozilla.org). Module owners are responsible for
reviewing code submitted to that module before checking it in, although they may also designate
one or more "peers” who can also review and check in code for their module. Any changes, which
affect architecture, module interaction, or APIs, must also be reviewed by one of 27 senior
developers (“super-reviewers”) after review by the module owner.

A module owner is usually a different person than the default "component owner” who receives
notice of all component's bugs and is responsible for prioritizing and assigning them to the correct
developers. Components (in their Bugzilla) do not map directly on to modules; components are
related to how bugs are experienced and modules are related to how the code is structured. There

° .
nstitute for
SOFTWARE
RESEARCH 62

is a meta-level "module ownership” module. Owners and peers of this module can install or remove
owners of other modules.

Incubator repositories are available to module owners for challenging collaborations with
contributors who do not yet have commit access to the Mozilla tree (Mozilla.org). They can be used
for work that is planned in Mozilla's roadmap (not for "potentially related" work) that cannot be
broken into smaller segments for the usual review and check-in process. Incubator repositories are
temporary (< 6 months), until it is clear that the work has potential (or not) and at least one core
contributor is ready for commit access to the Mozilla tree.

At the highest level, Mozilla has two "benevolent dictators”, who have the final say in any technical
dispute (Brendan Eich) or non-technical dispute (Mitchell Baker). Eich is also a super-reviewer and
driver.

Release Management. Within the Mozilla governance “release drivers” are defined in order to
provide project management for milestone releases. The election of the release team is based on
meritocracy. Close to a milestone release, a group of 17 release drivers (8 of whom are also super-
reviewers) become very active, charged with finalizing a milestone branch of the code to make sure
it is stable, secure, and ready for release. During these periods, drivers review all submitted
patches to determine if they will become part of the next release.

Intellectual Property. Code contributed to Mozilla is tri-licensed under the Mozilla Public License
(MPL), GNU General Public License (GPL), and Lesser General Public License (LGPL) (Mozilla.org).
Add-on developers may choose whatever license they want for their add-ons (with certain
minimum criteria to allow Mozilla to distribute it). The Mozilla Foundation owns the Mozilla
trademarks and other intellectual property.

B.4.3 Collaborative Infrastructure

Mozilla's instance of Bugzilla plays a central role in the discussion, management, and development
of changes to the software. Communication also takes place on IRC, a wiki, forums/mailing lists,
and occasionally via direct instant messaging between two developers discussing a technical
problem or review. The wiki is open to editing by anybody, but project-specific sections are socially
limited to those who are working on that project (discussion pages open to anybody). Weekly
conference calls are held to discuss updated in each major project.

"The common thread that runs throughout Mozilla is [participants'] belief that, as the most significant
social and technological development of our time, the Internet is a public resource that must remain
open and accessible to all [...] In the end, the Mozilla community, organization and technology is all
focused on a single goal: making the Internet better for everyone” (Mozilla.org).

The organization also emphasizes its transparent and collaborative nature. The Mozdev site
provides hosting resources for developers working on Mozilla related projects (e.g., add-ons) but
Mozilla now provides those resources directly and MozDev is winding down as an organization and
site.

Mozilla is also starting a "Drumbeat” platform which shares a common culture and collaborative
infrastructure (but little else) with the software projects. Drumbeat is a way of involving more
people with Mozilla's core culture and goals, at least partially through the spread of skills and
knowledge. Mozilla's role in the Drumbeat Project is to provide the collaborative infrastructure and
cultural management. Any individual or organization can easily become a member for free by

nstitute for
SOFTWARE
RESEARCH 63

registering on a simple web form, and easily start or join a project. It provides an online gathering
and project hosting space for people, projects, and groups who actionably care about keeping the
web open and free. Drumbeat will host online conferences and web pages, process financial details
for donations, and provide a common branding and communication strategy for volunteer
recruitment. The Mozilla foundation also picks some projects to “sponsor” with coaching and/or
financial support (around US $25K, typically). Mozilla currently sponsors Peer2Peer University’s
School of Webcraft project, WebMadeMovies, and Universal Subtitles. To start a project, one needs
to upload a project title, description, and funding goal. This person (or group) then becomes the
project manager and is responsible for all aspects of the project: recruitment, road-mapping,
release, media selection, etc. They can promote (recruit for) the project on the Drumbeat web page
and at Drumbeat events. As an example of a project led by organizations, the Universal Subtitles
project is nominally led by "Help Mozilla, Miro and the Participatory Culture Foundation".

B.4.4 Business Opportunities

Netscape initially opened the source to their code in the hopes of getting free development work by
open source volunteers around the world. They hoped that a strong, free, core browser would give
them a ready market for their Networked Enterprise software and Netcenter services, and make
them a driver of internet standards (Netscape). A basic but free (costless) client platform would
make it easier for customers to adopt Netscape's primary revenue-producing products and
services.

Today, the Mozilla project presents the same sort of business opportunities to anybody whose
business involves Internet services or functionality. By building a free add-on for Mozilla products,
a business can make it much easier for customers to interact with their main sites and consume
their revenue-producing products and services. For example, the eBay search extension can
provide fast access to an easy customer experience shopping on eBay from any starting point when
the browser is open (Mozilla.org). Other add-ons are available to use online translating services,
bookmark sites on Delicious, purchase products described on a page you're viewing, download
music and video, use telephony services, find the weather from your favorite weather prediction
source, or use a host of other online services (Mozilla.org).

Many developers of Mozilla products are themselves end-users, and implement (via add-ons or core
code patching) the functionality they want or need from the software. Besides the added
functionality, developers may receive a free technical education through hands-on interaction with
experts, earn peer recognition, enjoy the benefits of social interaction, and feel like they are part of
something much larger than themselves (Mozilla.org, 2008). Early developers were also motivated
by how publicly visible Mozilla would be as a paradigm of whether or not open source could be a
viable model (Phillips, 2008).

When a business uses the software (as an 0SS Deployer), they may assign development resources
to the Mozilla project (and thereby become OSS Participants as well). This person or team
primarily ensures that their business needs are met by the software, but would also be expected to
help the community in other general software development goals, so that help would be available
from the larger community if needed. For example, a software development firm using Bugzilla has
a strong incentive to build up the strength of that product; a university using Firefox has a strong
incentive to ensure the security and functionality of that product; an office which coordinates via
Mozilla's free e-mail client and calendaring clients has a strong incentive to ensure that those
products are highly functional and bug-free.

nstitute for
SOFTWARE
RESEARCH 64

Businesses looking to introduce new software functionality also generally have a financial incentive
to extend open source technologies and applications rather than bear the added cost of developing
software from scratch, because a good part of the work is already done. This approach also helps
ensure later stability and maintainability of a business's software solutions even if there is turnover
in software staff. In the terms of Section A.4, these firms are OSS Integrators.

nstitute for
SOFTWARE
RESEARCH 65

Appendix C: Commonalities and variabilities of four open

ecosystems

Among the four open source ecosystems we have studied, we observed both commonalities and
variances. Commonalities suggest design principles that may be essential to successful operation of
an open source ecosystem, while variances suggest options for different ways of implementing
these design elements. The commonalities and variabilities analysis is used successfully in the
design and understanding of software applications and languages (Coplien, Hoffman, & Weiss,
1998); we here extend this model to examine software ecosystems and communities. The approach
is very similar to Yin’s (Yin, 2009) pattern matching method for the analysis of case study data.

This chapter describes each of the four dimensions in terms of the commonalities and variabilities
of the four studied ecosystems. A commonality is a design principle that is applied in all four
ecosystems, and often, this design principle has the same value in each ecosystem. Variability
means that each ecosystem might exhibit a specific design principle but the value differs in each
system.

In Section 3, we used the identified commonalities of all ecosystems to help us think through the
“should do” requirements and the identified variabilities to prime consideration of “might do”
requirements for the VistA ecosystem design.

C.1 Technical architecture

Following we reveal existing commonalities and variabilities of the technical architecture of each
ecosystem. We focus on the general technical structure of the project, the question how extensible
and interoperable the technical structure is, and how the final software product is provided to
users.

The qualitative comparison showed that each ecosystem distributed its development efforts into
single modules, i.e. projects. Especially stable interfaces and open standards are used to ensure
interoperability. Also, three of four ecosystems provide a bundled version of their software.

C.1.1 Commonalities

Each of the four analyzed ecosystems consists of multiple software projects to realize one software
product or various ones. By decomposing a software product into single modules (a module often
refers to one project in the ecosystem) allows developers to participate easier in the software
development process because only a specific part of the functionality is unfolded and design
changes affect only the changed module (MacCormack et al., 2006). Implementing open standards
and providing stable APIs especially ensure interoperability between those software projects and at
the same time, encourage third parties to implement additional functionality because a long-term
usage is guaranteed.

C.1.2 Variabilities

The open source ecosystems examined here have significant variation in terms of their technical
architecture. The type and the scope of the implemented software mainly cause these differences.
GNOME and Eclipse provide more or less a single software product that can be adapted or extend
based on the needs of their users. Apache and Mozilla follow more a general idea or philosophy, in
the former ecosystem all projects are somehow related to the “web serving problem”, conversely the
latter ecosystem whose projects are intended to “make the Web a better place”.

nstitute for
SOFTWARE
RESEARCH 66

As expected, the final design of the technical architecture of each ecosystem differs. Three of four
ecosystems provide a cross-platform (Mozilla and GNOME with GTK+) or Java platform (Eclipse)
respectively and therefore, the software can be used on more than one platform. Also, three of four
ecosystems provide specific development environments for their software to support third parties
to implement additional functionality.

There is also some difference in how users can obtain the software from each ecosystem. Apacheé!
and Eclipses2 makes a list of mirrors available on its website, with one mirror chosen as
“recommended” in a semi-random fashion for load balancing. Mozilla’'s download website63
features a single download button which semi-randomly assigns a download mirror. By contrast,
GNOME cannot be downloaded directly. It is free software, but in order to get it one must
download an OS distributioné4 integrating the GNOME desktop.

C.2 Governance
In the following section, we focus on the general governance structure and governance processes,
which consist of project and release management, as well as intellectual property.

As a result, each of the analyzed ecosystems is governed by a foundation. Another important
commonality are well-defined governance processes, even though the characteristics of these
processes differ which are mostly described in the variabilities section. For example, main
differences are the types of members, how community members can participate in the decision-
making process, and how developer can commit and create new projects.

C.2.1 Commonalities
Each of the investigated ecosystems is governed by a foundation, which has the code ownership.
The Board of Directors is the main decision-making authority and one primary interest is
community development. Besides the Board, each foundation has additional organizational entities,
which are assigned to specific activities within the foundation such as conference organization and
technical development.

Each ecosystem has well-defined development processes with specific roles and responsibilities.
The source code is easily accessible from one central repository or over a central web page
respectively. In each ecosystem specific guidelines are defined for when and how code can be
changed by developers, which requirements exists to create new projects, and which steps are
necessary within the release process.

There are also some commonalities in the particular leaders, donors, and developers who are active
in various open source communities. For example, Brian Behlendorf is the co-founder of the
Apache project and currently on the board of the Mozilla Foundation. Companies such as IBM and
Google contribute significant resources to each of the four ecosystems studied here.

C.2.2 Variabilities

Even though each ecosystem is governed by a foundation, three ecosystems are non-profit
organizations (501(c)(3)) and one ecosystem is a non-profit trade association (501(c)(6)). Whereas
the latter can serve the business purposes of its members the former must serve public purposes.

°! http://www.apache.org/dyn/closer.cgi

2 http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/R/eclipse-php-helios-win32.zip
% http://www.mozilla.com/en-US/products/download.html

 http://people.gnome.org/~daniellem/footware.shtml

nstitute for
SOFTWARE
RESEARCH 67

The 501(c)(3) status requires that donations must be disclosed but in 501(c)(6) organizations this
is not necessary. One of the 501(c)(3), the Mozilla Foundation has a very special organizational
structure because the foundation owns two companies, which are wholly owned subsidiaries.
These companies allow the Mozilla Foundation to generate revenue and to use this revenue for
further investments in the development of its software.

Another main difference between the ecosystems is the design of the membership. The Mozilla
foundation has no members, therefore community members have no influence into the decision-
making process of the Foundation. GNOME allows only individuals to be member of the Foundation.
The bylaws of Apache and Eclipse permit firms and individuals to be member of the Foundation.
However, currently GNOME and Apache have only persons as members and they elect the Board
annually. Eclipse has different membership types and two of them are automatically member of the
Board without election. All other Board members are elected annually following a specific key per
membership type. Also company participation is differently designed within the ecosystems. In
GNOME and Apache the participation is limited to financial support and advisory function, in
Mozilla companies can donate money to the Foundation and in Eclipse companies are members and
they can determine the strategic development of the community. Even though Mozilla and Eclipse
are sponsor-founded ecosystems, the design of company participation is very different.

The possibilities of participation differ for ecosystem members. Often, the majority of votes
determines the final decision. In Apache, for specific decision the “lazy consensus” is used; positive
votes without a negative vote are sufficient for the final decision. Only GNOME allows direct
participation of its members by a so-called referendum.

Besides the general governance structure of the ecosystems, we had a look on the design of the
development processes. The use of common collaborative resources is more optional in some
ecosystems and mandatory in others. For example, Apache is quite strict about requiring projects
to use the shared community infrastructure and do things “the Apache way”, while Mozilla is less
precise and encourages developers to be resourceful and creative in finding resources. Ecosystems
vary with the way they handle new projects. Apache, Eclipse, and Mozilla have incubator
procedures. GNOME has open hosting for new related projects. Mozilla’s Drumbeat project hosts
project organization resources for (especially) nontechnical projects.

Ecosystems also vary in how they grant different levels of access to contributors. Mozilla has
multiple levels of commit access and uses social control within those bounds to determine who can
commit to what parts of the codebase. Other projects have only “committer” and “non-committer”
statuses and use pure social control to limit check-ins to the part of the code tree where a developer
has expertise. The number of required reviews also varies, although patches with greater impact
on any project generally require greater review. Some ecosystems follow a coordinated release
schedule. Others, like Apache, allow each PMC-level project to set their own release schedule.

C.3 Collaborative infrastructure and culture

The collaborative infrastructure of an ecosystem is on one side determined by the used Internet
tools to facilitate collaboration and on the other side by the culture of an ecosystem in terms of its
openness. In our analysis, we specifically investigated the provided hosting services of each
ecosystem and which requirements exist for projects to use these provided hosting services.

Our comparison unfolded that each ecosystem uses a wide range of tools to facilitate collaboration
in the community. Main differences exist under which circumstances new projects can use these
hosting services.

nstitute for
SOFTWARE
RESEARCH 63

C.3.1 Commonalities

All investigated ecosystems have a collection of common community resources. First, they provide
hosting for software development work; this includes file servers where the source code and
distributions can be stored and downloaded, and space for people to upload project-related files.
Also, all ecosystems use a software revision control system, which allows amongst other things to
record who made what changes when, and allows easy reversion to an earlier version of the code.
Another utilized tool is the bug tracking or modification request system. This allows developers or
users to report on and discuss issues with the software. “Bugs” are a single “place” where a
particular topic may be discussed, and the bug tracking system makes it easy to find and organize
these discussions about changes to the software system. Besides these mainly development related
tools, also communication tools and collaborative editing tools are applied. Communication tools
are especially (E-)mailing lists, web forums, and IRC channel(s). These allow users and developers
to communicate with one another, and allow each user and developer to manage his or her own
preferences for communication and subscriptions. Wiki are used for collaborative editing purposes
in order to document the current state and progress of the software development project or to
collaboratively document the existing function of the software. Open source software projects tend
to change more quickly than any central documentation authority could keep up with, so a Wiki
allows each project member to participate in the documentation process and to change existing
information more easily and quickly.

C.3.2 Variabilities

Though all of the open source communities we looked at provided these community resources, they
varied in how much each of these tools were used, and who could (or had to) use them. Some
ecosystems stipulate the usage of the community-provided resources. For example, the Apache
project requires the utilization of their SourceForge hosting services for all software development
work, but at the same time, allows every project to design their own web presence. Apache projects
can often only be identified by their Apache logo. Mozilla extension developers, by contrast, are
free to use any hosting services they like, and add-on developers must choose their own. (Mozilla
only hosts add-ons for download during distribution, not development®5). Ecosystems also vary in
their choices of particular implementations for the above technologies and in how much they use
various channels.

C.4 Business opportunities

Ecosystems allow (or do not allow) business opportunities based on decisions made when choosing
the license governing the software, and the decision about the technical architecture and if and how
the software can be extended.

C4.1 Commonalities
A successful, sustainable open source ecosystem enables various business opportunities within and
outside of the community.

For example, open source software is generally licensed so that anybody may copy or distribute the
software. This means that hardware or software companies in related areas can package the open
source software in their product. As an example, a hardware company selling server machines can
pre-load Apache web server and other products, providing their customers with an easy and
complete turnkey solution. GNOME relies completely on other software vendors to integrate the

% https://developer.mozilla.org/en/Submitting_an_add-on_to AMO

nstitute for
SOFTWARE
RESEARCH 69

GNOME desktop with their software for distribution. These other vendors are generally also free
projects but do not have to be.

There are some business opportunities from the sale of complementary products. When Netscape
opened the source code of its web browser (seeding the Mozilla project), it did so hoping to
increase its sales in complementary products such as internet access (as an ISP), content linking
(e.g., Netcenter, Netscape’s web portal), and web-based enterprise services. Giving away a free,
open source platform allows businesses to charge for other services that rely on customers having
access to that basic platform functionality. This is a similar model to wireless phone companies
that will “give away” mobile phones to sell carrier contracts, except that the marginal price of
software does not require a contract lock-in while the price of a mobile phone does.

Businesses can also build add-ons that make it easier for customers to access their regular
business; for example eBay offers add-ons to Mozilla that make eBay searches and purchases easier,
boosting eBay sales.

In some open source communities, the ability to develop add-ons or extensions provides a fairly
direct business opportunity. Software developers can enhance the core functionality and charge
the end user for this (proprietary) added functionality, which is called the “open core” model (and is
the subject of some debate in the open source community). Eclipse offers this as a business
opportunity directly.

Even simple use of the open source software can create business opportunities by lowering the
barriers to entry in a particular field. A software start-up, for example, can use Eclipse and
immediately have a highly functional development environment, and get right to work on their
value-added projects that support their business model. They do not have to invest as much time
or resources in inventing or setting up this development environment as a software start-up
needed before Eclipse. Open source software can lower entry barriers for many industries.

C4.2 Variabilities

Some open source communities offer the opportunity for members to become distributors, for
example Red Hat in the Linux community as well as Eclipse, Apache, and especially GNOME. Mozilla
allows others to bundle the software, but the Corporation is a direct distributor of the software so
there is not much room for another distributor.

Some open source communities allow business opportunities through service links. For example,
the Mozilla foundation has a deal with Google to make Google the default search engine and to set
the default homepage to a Firefox-themed Google Search page, for which Google pays Mozilla a
considerable sum of money. Google recoups the money in advertisements displayed alongside
search results. At least until recently, this has been Mozilla’s primary source of revenue (>85%).
Google also contributes more developers and technical resources to Mozilla than any other
company, not counting the Mozilla Corporation (Soghoian, 2007).

nstitute for
SOFTWARE
RESEARCH 70

Appendix D: Tabular ecosystem comparison

Comparison of architecture of participation and technical architecture of GNOME, Apache, Mozilla
and Eclipse; (*) adapted from (West et al.,, 2008b), (**) adapted from (German, & Hassan, 2009).

(Last update in September 2010)

CHARACTERISTICS GNOME APACHE MozILLA ECLIPSE

General

Founded/released 1997 1995 1998 2001

Type of core/ initial | graphical user | web server web browser integrated

software interface, developer development
framework environment (RCP)/

application platform

Recent version

2.30 (desktop)

2.2.15 (http server)

3.6 (web browser)

3.6 (RCP)

Motivation for initial

Create a great free

Collaborative

Netscape released

IBM released Eclipse

project initiation desktop platform development to | application suite as an | as open source
improve existing httpd | open source project | project in order to
program because of high | improve competitive

market competition position

Type of community(*)

Community initiated

Community initiated

Sponsor founded

Sponsor founded

Type of users End-users with | Professionals/users End-users with | Professionals/users
varying skills, desktop | with development | varying skills with development
programmers skills skills

Self-concept One community of | Several separate | Hybrid organization, | Vendor-neutral, open
volunteers communities, each | combining non-profit | development platform

focused on a different | and market strategies | supplying frameworks
side of the “web and exemplary,
serving” problem; extensible tools
collaborative

development across

both nonprofit and

commercial

organizations

Main reason for | Shared philosophy; | Community Vision (promotes | Annual release train

ecosystem cohesion product vision, use of | management; culture; | openness; innovation | (shapes how projects

GTK+

brand

and participation on
the Internet)

collaborate)

Governance
Foundation Yes, GNOME | Yes, Apache Software | Yes, Mozilla | Yes, Eclipse
Foundation Foundation (ASF) Foundation Foundation
Foundation type Non-profit Non-profit Non-profit Foundation
organization organization organization Non-profit trade
(501(c)(3)) (501(c)(3)) (501(c)(3)) association
(501(c)(6))
Date of formation August 2000 June 1999 July 2003 January 2004
Membership type Individual (people | Entity/individual (but | No members Firm/individual (5
who have made a | only individuals are membership classes:
contribution) listed as members); Strategic Developer,
new members are Strategic Consumer,
nominated by current Enterprise Member,

members and elected
due to merit the

Associate Members,
Solutions Member,

nstitute for
I S SOFTWARE
RESEARCH

71

CHARACTERISTICS

GNOME

APACHE

foundation

MozILLA

ECLIPSE

Committer)

Membership
rights

voting

One vote per member

One vote per member
(one-third of the
members entitled to
vote)

One vote per member
but collective vote for
Committer Members
who are employed by
the same organization

Membership fee No fee for individual | No fee, but there is a | — Yes (annual dues),
members, but large | ASF Sponsorship depending on the
companies pays a | Program (platinum membership type
membership fee of | sponsors: Yahoo,

US $20,000, small | Microsoft, Google;
companies of US | gold sSponsors:
$10,000, and non- | Facebook, HP;
profit organizations | 3xSilver and 6 Bronze
are exempt to join the | Sponsors)
Advisory Board
Number of members 374 332 (e.g., 8 IBM, 2 | — 158 (13 strategic
Sun, 4xCollabNet, 2x developer, 1 strategic
RedHat, 3xGoogle) consumer, 3
enterprise members,
68 associates, 73
solutions members,
number of committer
member unknown)

Organizational entities | Board of Directors, | Board of Directors | Board of Directors Board of Directors
Executive Director, | (Board), Officers (95), with three standing
Advisory Board (11 | Project Management committees
companies and 7 | Committees (PMC) (membership, finance,
organizations), (88) compensation) and
membership Executive Director

and Secretary; under
the direction of the
Executive Director is
the Eclipse
Management
Organization (EMO),
Advisory Board

Main decision-making | Board of Directors | Board governs the | Board of Directors | Board of Directors

authority (single entity is not | foundation, PMCs | governs the | (Strategic Developers
permitted to represent | govern projects, | foundation and Strategic
more than 40% of the | officers govern day- Consumers hold
Board) but many | to-day affairs seats, as well as
decisions are representatives
delegated to the elected by Add-in
teams, like the Providers and Open
release team Source committers)

Main tasks of | Coordinates each | Board responsible for | Introducing Mozilla | Business and

decision-making release; determines | management and | Drumbeat; fundraising | technical affairs are

authority the set of modules | oversight of the | and engagement; | managed by or under
that are part of | business and affairs | strengthen Mozilla’s | the direction of the
GNOME release; | of the ASF; each | positon as open | Board; EMO is
specifies standards | PMC has technical | Internet charity; make | responsible for
which defines | decision-making Mozilla community | organizing and
GNOME compliance; | authority for its project | more productive, | selecting the chair of
communicates overall | (the main role is not | cohesive and | Councils, enforcing
strategy; manages | coding) understandable policies, leading the
staff and finances of Eclipse Platform

the Foundation development,
marketing, and

nstitute for
M e 7

CHARACTERISTICS

GNOME

APACHE

MozILLA

ECLIPSE

outreach

Size of decision-

At least 7 but no more

Board has 9 directors,

Minimum of 5 and

No pre-defined size

making authority than 15 members; | PMC (54) consists of | maximum of 15, at the | (depending on
Board members are | at least one officer | moment 5 directors | member); consists of
elected by email, at | (vice president) of the | (2xMozilla Strategic Developer
least one month | ASF (= chairman) Corporation) and Consumer and
before the annual Add-In Provider and
meeting; usually Committer Member;
during the annual at the moment 14
meeting the new Strategic Members, 3
board starts working elected Add-in
actively; current board Provider
members: 1xRed Hat, Representative, 3
1xOracle, elected Committer
1xSun/Oracle, 1 Representative
Novell, 1xrPath Inc,
2xNon affiliation
Decision-making Preferential method: | Lazy consensus | Majority of votes in | Different majority
process single transferable | approach: a few | Board requirements (ranging
vote (STV) positive votes with no from simple to super-
negative vote is majority consent)
enough to get going depending on
(negative vote particular decision
includes an
alternative proposal or
a detailed explanation
of the reasons);
process of
“consensus gathering”
by negative vote
Nomination and | Self-nomination of | Board is annually | Annual election by the | Strategic Developers
election process members, annual | elected by members | Board itself and Consumers are
election, candidates | of the foundation; automatically
who receive the | chair of the PMC is presented without
highest number of | appointed by the election; Add-in
votes are elected Board Providers and
Committers are
annually elected
Company Advisory Board that | Not directly, only by | -- Companies are
participation includes 11 | non-directed member of the
companies monetary foundation
(Canonical, Collabora, | contributions to the
Google, IBM, lIgalia, | ASF Sponsorship
Intel, Motorola, | program
Novell, Nokia, Oracle,
Red Hat) and 7
organizations (Sugar
Labs, OLPC, Debian
Project, Free
Software Foundation,
Mozilla Foundation,
Software Freedom
Law Center, Limo
Foundation)
Further organizational | Several teams | Several ASF | Foundation owns the | Project Management
entities (Accessibility Team, committees Mozilla Corporation | Committee (PMC)
Travel Committee, | (Infrastructure, Labs, | (established in 2005 | manage top-level
M e 73

CHARACTERISTICS GNOME APACHE MoziLLA ECLIPSE
Translation Team, Art | Attic (finalized | as wholly owned | projects; project
Team, "GNOME | projects), Legal | subsidiary) and | leaders manage sub-
Website Affairs, Conference | Mozilla Messaging | projects; PMC leads
Reorganization Planning, Security, | (established in 2008 | are approved by the
Team", Accounts | Travel Assistance, | as wholly owned | Board and PMC
Team, Quality | Community subsidiary) members and project
Assurance team, | Development); leads are approved by
Sysadmin Team, | specific officer roles the EMO; Architecture
GNOME Marketing, | (Java Community Council, Planning
GNOME Website | Process, W3C Council,
Reorg Team, | Relations, Brand Requirements Council
GnomeWomen, Management, are comprised of
Membership & | Fundraising, Strategic = Members
Elections Committee, | Marketing and and PMC
ModeratorTeam, Publicity) representatives
UsabilityProject,
UserGroups)
Intellectual property
License (**) LGPL (platform | AL [The Apache | Core project is | EPL1o, as long as a
libraries), everything | Software Foundation, | licensed under | plug-in for Eclipse
else GPL or GPL | 2010] MPL1.1+, GPLz2+, | uses the plug-in API
compatible LGPL2.1+ the plug-in can be
licensed under any
terms [The Eclipse
Foundation, 2010]
License Type Weak/strong copyleft No copyleft Weak copyleft Weak copyleft
Code ownership Contributors Foundation Foundation IP ownership is
diffused by all
contributions share
the same license
Technical architecture
Programming C, Python (mainly) Various languages | JavaScript (mainly), | Java
Language such as C, C++, Java, | C++, XUL, Cascading
Perl, Python Style Sheets, XBL
Modules/ projects 730 modules | 174 projects (6 build- | 86 modules, 7 | 148 projects (64 in
(desktop, management, 1 | applications, 2 | incubation phase
infrastructure, content, 10 database, | Mozilla-based conforming branding,
development tools, | 5 graphics, 8 http, 3 | applications, 13 non-conforming
bindings, httpd-module, 3 | approximately 5000 | branding)
administration tools, | javaee, 52 library, 2 | add-ons for
platform, productivity | mail, 12 network- | applications
tools, others) client, 23 network-
server, 2 regexp, 4
testing, 1 virtual-
machine, 17 web-
framework, 24 xml)
Core modules/ | 110 projects (desktop | 88 projects | 3 core products | 74 projects in mature
projects only) (corresponds to the | (Firefox, Fennec and | phase
number of PMC) Thunderbird)
Platform Generic cross- | No common platform, | Generic cross- | Rich client platform
platform application | project directory | platform application
framework (GTK+), | website realized by a | framework
platform core | RDF based DOAP
technologies (e.g., | (Description Of A
graphical interfaces, | Project) file

virtual file system)

nstitute for
I S SOFTWARE
RESEARCH

74

CHARACTERISTICS GNOME APACHE MoOzILLA ECLIPSE

Extensibility and | Stable API Projects are | Extension system | Component model

interoperability encouraged to use | (add-ons) (i.e., plug-ins)

open standards

Software development process

General Specific guidelines for | Software Mozilla Corporation | Projects passes
projects that are part | development activities | and Mozilla | through a pre-defined
of the release or link | are carried out in | Messaging is | Project Lifecycle
to projects that are | separate autonomous | responsible for all | consisting of six

part of the release, | projects that are | software development | distinct phases, status
otherwise managed by Project | activities reports at least
decentralized and | Management quarterly to EMO
managed by | Committees (PMC) (Eclipse Management
maintainer Organization)
necessary

Defined roles User, developer, | User, developer, | Module owner (86 | Contributor or
committer, maintainer | committer, PMC | code module owners), | committer, project

member (developer or | super-reviewer (27 | leader, PMC member,
committer, nominated | individuals), release | PMC lead, Council
by current members | driver (17 individuals), | representative, user,
and elected due to | Bugzilla component | adopter (plug-in
merit the foundation), | owner, benevolent | developer)

PMC chair, ASF | dictator

member

Code access Freely accessible | Freely accessible | Freely accessible | Freely accessible
(GIT) (SVN) (CVS) (CVS/SVN)

Commit rights Registered GNOME | Only after signing the | Committer’s Contributors who
developers can | Individual Contributor | Agreement and at | have the trust of the
commit changes License Agreement | least one person who | project’s committers

(CLA) vouch for competence | can be promoted
is needed (well- | committer through
defined procedure); | election (least three
final decision is | (3) positive votes and
carried out by Mozilla | no negative votes
representative within ~ the voting

period of at least one

week); confirmation
by the relevant PMC
necessary

Commit process Every module one | Decentralized in each | One tree, but three | Different
repository with its own | project levels of code access | decentralized
history (L1: incubator, L2: | repositories but

general access, L3: | directly accessible on
access to core | one web page
products)

New project creation Sub-projects can be | Incubator period in | Module ownership | New projects must be
created anytime, new | which a new project is | system (Mozilla | proposed to the EMO;
modules can be | evaluated based on | source tree), but for | at least two mentors
proposed to be | the likeliness that it | new projects (not | necessary (members
included in official | becomes a successful | experienced of the Architecture
release (pre-defined | meritocratic contributors) a | Council); projects go
requirements) community (e.g., | separate incubator | through incubation

because of the | repository is available | phase; only after
diversity of “graduation” member
committership); of the Eclipse
functional overlap of Community; overlap

projects is allowed

between projects is

nstitute for
I S SOFTWARE
RESEARCH

75

CHARACTERISTICS GNOME APACHE MoOzILLA ECLIPSE
not prohibited but is
strongly discouraged
Release process Defined release | Defined process; | Defined process; | Release review based

schedule; creation of
a stable branch

creation of a stable
branch

creation of a stable
branch; super/review
necessary for all core
projects

on certain criteria
(successful advisory
vote and the approval
of the Release
Review by the EMO is
necessary)

Release team

Membership is
normally by invite and
recommendation
when one person
leaves

Decentralized
responsibilities

Nominated drivers

Decentralized
responsibilities

Release set

New modules are
discussed based on
judgment criteria by
the release team
[Project., 2010],
modules are
introduced in the
desktop release to
mature, only libraries
of wide use and with
stable API/ABI are
moved to platform

Defined by each

project

Defined by each

project

Defined by each

project

Release cycles

6-monthly release
(only “official”
modules)

Defined individually
by each project

Defined by each

project

Defined by each
project but there is an
annual release train

nstitute for
SOFTWARE
RESEARCH

76

Appendix E:

Brief overview about licenses

GNU General Public License, Version 3.0 (GPLv3)

Brief description:

- Proprietary software linking is not allowed

- Distribution of combination of software is allowed with software whose
license is GNU GPL-licensed

- Redistributing of the code with changes is only allowed if the derivative is
GNU GPL

Source:

Brief description:

GNU Lesser General Public License (LGPL)

http: //www.gnu.org/ licenses/gpl.html

- Proprietary software linking is allowed

- Distribution of combination of software is allowed with some restrictions
- Redistributing of the code with changes is only allowed if the derivative is
GNU LGPL or GNU GPL-licensed

- Compatible with GNU GPL

Source:

Brief description:

GNU Affero General Public License (AGPL)

http: //www.gnu.org/ licenses/Igpl.html

- Proprietary software linking is not allowed

- Distribution of combination of software is allowed with software whose
license is AGPL or GNU GPL-licensed

- Redistributing of the code with changes is only allowed if the derivative is
GNU LGPL or GNU GPL-licensed

- Compatible with GNU GPL

Source:

Apache License, Version 2.0

http://opensource.org/licenses/ agpl-v3.html

Brief description:

Brief description: - Proprietary software linking is allowed
- Distribution of combination of software is allowed
- Redistributing of the code with changes is allowed under another license
- Compatible with GNU GPL

Source: http://www.apache.org/licenses/LICENSE-2.0

' Mozilla Public License (MPL), Version 1.1

- Proprietary software linking is allowed

- Distribution of combination of software is allowed

- Redistributing of the code with changes is only allowed if the derivative is
MPL-licensed

- Compatible with GNU GPL

Source:

Brief description:

Eclipse Public License (EPL), Version

http://www.mozilla.org/MPL/MPL-1.1.html

- Proprietary software linking is allowed

- Distribution of combination of software is allowed

- Redistributing of the code with changes is only allowed if the derivative is
EPL-licensed

- Not Compatible with GNU GPL

Source:

http://www.eclipse.org/legal/epl-v10.html

° .
institute for

I S r SOFTWARE
RESEARCH

77

Appendix F: VistA discussion groups

At the moment, the most reliable source for communication within the community seems to be
different Google discussion groups. There are the main group hardhats and various project related
discussion groups, such as CCD/CCR project.

The following figure shows selected discussion lists (Google Groups) with their number of members
(blue) and number of posts (red) (from 11-09-2009):

100
EWDand VistA |
and Vist 8

283

Lab Re-engineering ¥,

RPMS/VistA Billing ii

Active Software Projects

1,132
ceo-cer [

y

2,407

openhealth e

Policy & Advocac

344
Open eHealth Collaborative |

| 110

worldvista-services
81

Community
<
=3
1

23,252

1,063

0 5,000 10,000 15,000 20,000 25,000

Posts Members

The number of members and posts of selected discussion groups are shown in the following table
(from 11-09-2009):

Scope Name # Posts # Members Founded
Community
Hardhats 1,063 23,252 Jul-06
VistA 179 343 May-04
worldvista-services 81 110 Jul-07
worldvista-adoption N.A. 71 Jun-05
Policy & Advocacy
Open eHealth
Cgllaborative 69 344 Jan-09
openhealth 431 2407 Apr-05
FOSS Health N.A. 407 May-07
Active Software Projects
CCD-CCR 50 1132 Jan-08
RPMS/VistA Billing 24 31 Sep-09
Lab Re-engineering 48 283 Jan-08
EWD and VistA 38 100 Jun-08

° .
nstitute for
SOFTWARE
RESEARCH 78

Appendix G: Red Hat and Fedora

(This appendix was written in collaboration with Michael Tiemann of Red Hat.)

Red Hat was perhaps the first commercial endeavor to create a successful business model based
primarily on open source software. From the earliest days of the company, Red Hat promoted
Linux, helped to make it available to the public for free, thereby increasing their potential market
share. The value added by Red Hat was software to simplify installation and management, as well
as customization and support. The greater the market penetration of Linux, the greater the
potential market for Red Hat’s proprietary software and services. Red Hat’s success has been
impressive, with about 1,000 employees in 15 countries, with annual revenue around US $200 M,
and net income of about US $45 M for fiscal 2005.

Red Hat’s success has not come without some painful lessons along the way, and here is where we
begin to see the unique role of open source communities in software value chains. In 2002, Red Hat
identified an attractive business opportunity in the enterprise server market. But because of the
enormous commitments of time and money required to qualify a server in an enterprise
environment, an enterprise release could include only features that were of proven stability, and
the rapid pace of change typical of Linux and open source more generally was not well-matched to
enterprise customers. So for good business reasons, based on a sound understanding of the market,
Red Hat began to manage its open source Linux in a very conservative way, drastically limiting the
changes and features that went into Red Hat releases.

The reaction of the open source community that Red Hat had cultivated was rapid, highly vocal, and
overwhelmingly negative. No longer could the community get their code into a release, and they
were not happy. As Eric Raymond might have said, there was now a community of developers who
had no way of “scratching their own itch,” and they felt betrayed. Red Hat had managed its assets in
a way designed to serve its customers, but exerting this unilateral control over the open source
asset enraged the community, and left them asking, “Who the hell do these guys think they are?”

After some internal discussion, Red Hat realized that it had made a serious mistake. Red Hat
Enterprise was cut off from the contributions of the open source community. Keeping new
functionality out produced the stability that enterprise customers needed, but at a high price. In
response, there was a movement inside Red Hat to create a community release with no revenue
responsibility, hosting and maintaining the community resources. The move was fairly
controversial, since it was not clear, from a traditional point of view, that this was a responsible use
of company resources. After a few false starts, Fedora was launched, and the benefits to Red Hat
have been enormous.

Red Hat had at least two critical value relationships with the Red Hat Linux open source
community, which were restored when Fedora was released: Red Hat benefits enormously from
the innovation that the larger community produces, and benefits from the extensive testing and
error reporting the community provides. The Linux security module (LSM), a framework
developed by a number of contributors at the behest of the National Security Administration,
provides an excellent example of both. Security features are often annoying to non-security-
conscious users, since they tend to impact performance and convenience. So the decision was made
to add LSM to Fedora, rather than RH Enterprise. The initial reception was highly unfavorable,
since kernel modules in LSM typically had a default to disallow connections, which was too

nstitute for
SOFTWARE
RESEARCH 79

invasive. Rather than this simple default, Red Hat wrote scripts to deny things that touched the
internet, to create a targeted policy.

Fedora core 3 shipped with LSM, and was much more secure than previous versions, and most
surprisingly - the change was hardly noticed. After running long enough in Fedora to be confident
of its stability and usability, Red Hat migrated the module and scripts into Enterprise 4. Fedora
provided a crucial testbed in which the stability and acceptability of features can be tested in a wide
variety of real environments.

nstitute for
SOFTWARE
RESEARCH 80

