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Abstract

The success of software development projects depends on carefully and effectively coordinat-
ing the effort of many individuals across the multiple stages of the development process. In soft-
ware engineering, modularization is the traditional technique intended to reduce the interdepen-
dencies among modules that constitute a system. Reducing technical dependencies, the theory
argues, results in a reduction of work dependencies between teams developing interdependent
modules. Organizational researchers have proposed similar theoretical arguments. Although such
research streams have been quite influential, they have taken a coarse-grain and static view of the
problem of coordination in engineering activities. This paper proposes a new perspective on
coordination where fine-grain and evolving dependencies are front and central. Our empirical
analyses demonstrate that considering dependencies at a fine-grain level of analysis provides us
deeper insight to the relationship between technical and work dependencies. Moreover, our ex-
amination of two large scale projects from two distinct companies showed that (a) logical depen-
dencies among software entities are significantly more important in terms of coordinating devel-
opment work compared to syntactic dependencies and (b) satisfying coordination needs arising
from those logical software dependencies with appropriate coordinating actions results in signifi-
cant improvements on development productivity as well as a significant reduction in the failure
proneness of the software systems.
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1. INTRODUCTION

Over the past decades, software-intensive systems have become increasingly pervasive in our
lives, and their complexity has increased drastically (Ebert & Jones, 2009). Software develop-
ment organizations are also changing. Factors such as project scale, access to talent, acquisitions,
and the need to reduce the time-to-market have fueled an increase in distribution of the develop-
ment work and a corresponding increase in organizational complexity (Herbsleb & Moitra, 2001;
Karolak, 1998; Northrop et al, 2006). Coordination — long recognized as one of the fundamental
problems of software engineering (Curtis et al, 1988; Kraut & Streeter, 1995) — has become ever
more challenging. This has led to a growing body of empirical work on coordination in software
development (e.g. Cataldo et al, 2007, 2009; de Souza et al, 2004; Grinter et al, 1999; Herbsleb
et al, 2000; Herbsleb & Mockus, 2003).

Coordination is a topic that has received significant research attention in both modular product
design and organizational theory. The key idea across those bodies of research is “nearly de-
composable” systems (Simon, 1962). On the technical dimension, the work on modular product
design has examined extensively the role of interdependencies among components of a product
and has proposed approaches to minimize those dependencies (Baldwin & Clark, 2000; Eppinger
et al, 1994; Parnas, 1972; Sullivan et al, 2001). A key assumption in this line of work is that mi-
nimizing technical dependencies among product components will result in a “modular work
structure” (Baldwin & Clark, 2000; Parnas, 1972). The organizational theory literature has de-
veloped similar theoretical arguments from the perspective of organizing the work around loose-
ly-coupled entities such as teams or departments (Galbraith, 1973; Malone & Crowston, 1994;

March & Simon, 1958; Staudenmayer, 1997; Thompson, 1967).



Although both research streams have been quite influential, those theoretical perspectives
have important limitations. A modular strategy is vulnerable to unanticipated ‘“‘cross-cutting”
product features, as they require coordinated changes to multiple modules (e.g. Kiczales & Men-
zini, 2005). Moreover, modular structures as well as traditional organizational mechanism to
coordination are not suitable for environments with volatile dependencies (e.g. Cataldo et al,
2006; Faraj & Xiao, 2006; Gittel, 2002; Staudenmayer, 1997). In sum, the dominant theoretical
perspectives have taken a coarse-grain and static view of the problem of coordination in engi-
neering activities and they fail to fully recognize the complex and dynamic reality of software
development projects. This paper proposes a new perspective on coordination where fine-grain
and evolving dependencies are front and central. Our empirical analyses demonstrate that consi-
dering dependencies at a fine-grain level of analysis provides us deeper insight to the relationship
between technical and work dependencies. Moreover, our examination of two large scale
projects from two distinct companies showed that matching fine-grained coordination needs with
appropriate coordinating actions results in significant improvements productivity as well as a
significant reduction in defects.

The remaining of the paper is organized as follows. We first examine the limitations of current
theoretical views of coordination from both a technical and an organizational perspective.
Second, we propose a new framework to examine the relationship between the structure of soft-
ware systems and the corresponding organizational structures. Third, we describe our research
setting followed by the empirical analyses. We conclude with a discussion of the implication of

our results and future research directions



1I. DEPENDENCIES IN SOFTWARE DEVELOPMENT: THE TRADITIONAL PERSPECTIVE

Traditional approaches to coordination are based on a reductionist view which argues that
complexity, technical or organizational, can be managed by dividing a system or task into small-
er and more manageable units (March & Simon, 1958; Simon, 1962; von Hippel, 1990). In a
technical context, the work is often characterized as choosing the design parameters for a system
(Baldwin & Clark, 2000; Browning, 2001). Such decisions are often highly inter-related, of
course, and a modular approach creates system components that are, in effect, “bundles” of de-
sign decisions. Good architectural design bundles decisions in such a way that there are relative-
ly few decisions that affect multiple components. These decisions that do affect multiple com-
ponents, often called architectural decisions (Shaw & Garlan, 1996) are made first, and establish
the stable “design rules” that determine how components will interact (Baldwin & Clark, 2000).
In this strategy, the remainder of the engineering work should consist of designing the compo-
nents within the constraints established by the design rules. This permits different organizational
units (Conway, 1968; Parnas, 1972; Eppinger et al, 1994; Sullivan et al, 2001), or even different
organizations (Baldwin and Clark, 2000) to work in parallel on different components. Conway
(1968) proposed that the component structure and organizational structure stand in a homomor-
phic relation, in that more than one component can be assigned to a team, but a component must
be assigned to a single team. A similar argument has been proposed in the product development
literature. Baldwin and Clark (2000, page 90) argued that modularization makes complexity ma-
nageable, enables parallel work and tolerates uncertainty.

It is, of course, recognized that components may be merely “nearly” rather than strictly de-
composable (Simon, 1962). On the organizational dimension, researchers have proposed numer-

ous approaches to manage the work dependencies that might remain across organizational enti-



ties such as individual, teams or departments. In the traditional organizational theory, March and
Simon (1958) argued that schedules and feedback mechanisms are required when interdepen-
dence is unavoidable. Thompson (1967) extended March and Simon’s work by matching three
mechanisms: standardization, plan, and mutual adjustment, to stylized categorizations of depen-
dencies such as pooled, sequential, and reciprocal. Galbraith (1973) argued that low levels of in-
terdependency can be managed by traditional mechanisms such as rules and programs. However,
as the level of interdependency increases additional mechanisms are required such as slack re-
sources and lateral communication (Galbraith, 1973). Mintzberg (1979) took an organizational-
level perspective and argued that specific coordination mechanisms are properties of particular
kinds of organizations and environments. Malone and Crowston (1994) developed a typology of
coordination problems to catalog coordination mechanisms that address specific types of inter-
dependencies.

The predominant theoretical perspectives on dependencies and coordination have important
limitations that diminish their applicability in the software engineering context and limit their
ability to address the challenges of identifying and managing dependencies. First, the modulari-
zation argument assumes a single modular structure is sufficient for all purposes. Yet, existing
software modularization approaches consider only a subset of the technical dependencies, typi-
cally syntactic relationships (Garcia et al, 2007). Yet other concerns, such as semantics, system
performance, security, and reliability each create different webs of dependencies that cannot all
be captured in a single structure (Clements, et al, 2002). Moreover, modularization and organiza-
tional theories assume a predictable and static technical structure that is mirrored by a static or-
ganizational structure (Henderson & Clark, 1990; Faraj & Xiao, 2006; Staudenmayer, 1997).

However, it is widely accepted among software engineering researchers and practitioners that the



requirements of the system become known gradually over time, and requirements change as time
progresses (Curtis et al, 1988; Leffingwell & Widrig, 2003). In some cases the changes in the
requirements result in minor alterations of specific development tasks. In other cases, new fea-
tures have to be added or features under development are eliminated. Such changes disrupt com-
ponent interfaces, i.e., design rules, by establishing new dependencies among the various parts of
the system, modifying existing ones, or even eliminating dependencies.

The effects of such changes on task dependencies can be quite subtle and difficult to identify a
priori (Henderson & Clark, 1990; Sosa et al, 2004). For example, Cataldo et al (2007) presented
case studies where even simple interfaces between modules developed by remote teams create
coordination breakdown and integration problems. In a field study of a large software project, de
Souza (2005) observed that interfaces tended to change often and their design details tended to
be incomplete, leading to serious integration problems. Failure to discover the changes in coor-
dination needs might have a profound impact on the quality of the product (Curtis et al, 1988),
on productivity (Herbsleb & Mockus, 2003) and even on the projects’ overall design (Bass et al,
2007).

In sum, traditional views of coordination are based on the notion that a single modular struc-
ture is adequate for all purposes, and assume a static organization and a static and predictable
product structure. Research has shown that, for a wide variety of reasons, these assumptions fre-
quently fail. Software development tasks are embedded in an evolving network of task depen-
dencies. The coarse-grain and idealized approaches suggested by the modularization and organi-
zation theory literatures are not adequate to identify and manage such a dynamic web of interde-
pendencies. A finer-grain view of coordination that seeks to identify and continuously monitor

evolving coordination needs has the potential to provide a better framework.



III. SOCIO-TECHNICAL CONGRUENCE: A FINE-GRAIN VIEW OF DEPENDENCIES

In this section, we present a framework to determine the coordination requirements among de-
velopers. The objective of the framework is to provide a fine-grain level of analysis of coordina-
tion that does not assume a single structure or a static architecture. To do so, we analyze files of
source code, which represent “bundles” of design decisions that are far smaller than components
(in our data, 1-2.5 orders of magnitude smaller), and compute task dependencies from data au-
tomatically collected by standard software development tools. We also propose a measure of
“fit” between these work dependencies and the coordination activities performed by the software
developers.

Two lines of work are particularly relevant in this context. The concept of “fit” from organiza-
tional literature refers to the match between a particular organizational design and the organiza-
tion’s ability to carry out a task (Burton & Obel, 1998; Carley & Ren, 2001; Levchuck et al,
2004). Research on dynamic analysis of social networks provides an innovative approach, called
the meta-matrix, to examine the dynamic co-evolution of relationships among multiple types of
entities such as resources, tasks, and individuals (Carley, 2002; Krackhardt & Carley, 1998). The
concept of socio-technical congruence presented in this paper draws on these two lines of re-
search to provide three important contributions to the literature. First, the socio-technical congru-
ence framework presented here provides a fine-grain level of analysis that we argue is essential.
Secondly, the congruence measure facilitates assessing the role of coordination activities, and
allows us to identify both the impact of the modular strategy and the impact of using lightweight
communication media to manage task dependencies that violate the modularity assumptions.

Finally, we examine how task dependencies and coordination evolve over time, finding that the



modular strategy is fairly effective early in a project, but breaks down fairly dramatically as a
project progresses.

Socio-technical congruence is generally defined as the match between the coordination re-
quirements established by the dependencies among tasks and the actual coordination activities
carried out by the workers. In other words, the concept of congruence has two components,
coordination needs and coordination activities. In order to determine the coordination needs, we
need to represent two sets of relationships: which individuals are working on which development
tasks and the dependencies among tasks. In the framework proposed in this study, assignments of
individuals to particular work items is represented by a people by task matrix where a one in cell
ij indicates that worker i is assigned to task j. We will refer to this matrix as Task Assignments
(Ta). The set of dependencies among tasks can be represented as a square matrix where a cell ij
(or cell ji) indicates that task 7 and task j are interdependent. We will refer to this matrix as Task
Dependencies (Tp). Now, if the Task Assignment and Task Dependencies matrices are multip-
lied, a people by task matrix is obtained that represents the set of tasks a particular worker should
be aware of, given the tasks the person is responsible for and the dependencies among tasks. Fi-
nally, a representation of the coordination requirements among the different workers is obtained
by multiplying the product of the Task Assignment and Task Dependencies matrices by the trans-
pose of the Task Assignment matrix. This product results in a people by people matrix where a
cell ij (or cell ji) indicates the extent to which person i works on tasks that share dependencies
with the tasks worked on by person ;. In other words, the resulting matrix represents the Coordi-
nation Requirements or the extent to which each pair of people needs to coordinate their work.
More formally, the Coordination Requirements matrix is determined by the following product:

CR:TA*TD*TAT (1)



where, Ty is the Task Assignments matrix, Tp is the Task Dependencies matrix and Ta" is the
transpose of the Task Assignments matrix.

So far, we have discussed coordination requirements — we now turn our attention to coordina-
tion activities. Actual Coordination (C,) is represented by a square, people by people matrix,
where each entry in cell ij (or cell ji) represents the extent to which person i engaged in a particu-
lar kind of coordination activity with person j.

Socio-technical congruence is the result of comparing Cr and Ca. In particular, given a particu-
lar set of dependencies among tasks, socio-technical congruence is the proportion of coordina-
tion activities that actually occurred (given by the Actual Coordination matrix) relative to the
total number of coordination activities that should have taken place (given by the Coordination
Requirements matrix). For example, if the Coordination Requirements matrix shows that 10 pairs
should coordinate, and of these, 5 show Actual Coordination interactions, then the congruence is
0.5. Formally, we define congruence as follows:

Diff (Cgr, Ca) = cardinality {diff; | cr;; >0 & ca;j >0 }

|Cr| = cardinality {cr; >0}
we have,

Congruence (Cg, Ca) = Diff (Cg, Ca) / |Cg] (2)
The value of congruence belongs to the [0,1] interval that represents the proportion of coordina-
tion requirements that were satisfied through some type of coordination activity. The measure of
socio-technical congruence proposed here provides a new way of thinking about coordination,
particularly, by providing a fine-grain level of analysis of different types of product dependen-

cies and allowing us to examine how coordination needs are impacted by them.
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IV.  RESEARCH QUESTIONS

Utilizing the socio-technical congruence framework, our study examines how the alignment
between task dependencies and coordination activities impact traditional outcomes measures of
software development projects. Specifically, we address the following general research ques-
tions:

RQ 1: What is the impact of congruence on development productivity and soft-
ware failures?

RQ 2: How do coordination requirements evolve over time?

V. RESEARCH SETTING

We examined our research questions using data collected from two large scale software devel-

opment projects from two distinct companies.

A. Project A: Distributed System

Project A was a large distributed system for data storage product. The data covered a period of
39 months of development activity and the first four releases of the product. The company had
one hundred and fourteen developers grouped into eight development teams distributed across
three development locations in North America. All the members of each team were collocated.
All the developers worked full time on the project during the time period covered by the data.
The system was composed of about 5 million lines of code distributed in 7737 source code files
mostly in C language and a small portion (117 files and less than 96000 lines of code) in C++
language. The system consisted of 27 architectural components and the development responsibil-
ity of each component was assigned to one of the eight development teams. All developers had

full access to a version control system and a modification request tracking system. The data cor-



responding to a total of 8,257 resolved modification requests (MRs) involving 67,652 commits to
the version control system.

Software developers communicated and coordinated using various means. Opportunities for in-
teraction existed when working in the same formal team or when working in the same location
through periodic team meetings as well as impromptus interactions. Developers also used tools
such as Internet Relay Chat (IRC) and a MR tracking system to interact and coordinate their
work. Each formal team had a channel in IRC where most of the interactions with the team took
place. The company stored the contents of those IRC channels and such content was viewable
through a web-based interface. The MR tracking system kept track of the progress of the devel-
opment task, comments and observations made by developers as well as additional material used
in the development process such as snapshots of screen reporting errors, trace dumps or specifi-
cation documents. We collected communication and coordination information from these two
systems. Finally, we also collected demographic data about the developers such as the geograph-

ical location and the team he/she belonged to.

B. Project B: Embedded System

We collected data from a multi-national development organization responsible for producing a
complex embedded system for the automotive industry. The development organization used a
product line approach and the collected data covered 65 months of development activities asso-
ciated with the latest version of the main platform software from the beginning of the project in
late 2003 until end of 2008. Three hundred and eighty developers located in eight development
sites distributed across Europe and India participated in the project. Those developers were orga-
nized in 37 development teams. The system was composed of about 7 million lines of code dis-

tributed in 9,074 source code files and 562 architectural components. The development responsi-
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bilities of each component were assigned to a single development team. All source code files
were written in C language. All developers have full access to the version control system and the
modification request tracking system. The data corresponding to a total of 4,170 resolved mod-
ification requests were identified and 2,340 of those were multi-team modification requests.
Those MRs involved 10,736 commits to the version control system.

The development organization had in place a well-defined development process. Telephone
and conference calls as well as email were the primary mechanisms of communication among
distributed engineers. The use of communication technologies such as instant messaging was not
allowed. Finally, we also collected demographic data about the developers such as the geograph-

ical location and the team he/she belonged to.

VI.  SOFTWARE DEPENDENCIES AND COORDINATION REQUIREMENTS

The first step in our investigation examines how software dependencies can be utilized to ex-
tract coordination requirements among developers. Based on recent studies, we computed soft-
ware dependencies by examining the set of source code files that are modified together as part of
a modification request. This approach is equivalent to the approach proposed by Gall and col-
leagues (1998) in the software evolution literature to identify logical dependencies between
modules. A source code file can be viewed as representing a “bundle” of technical decisions. If a
modification request can be implemented by changing only one file, it provides no evidence of
any dependencies among files. However, when a modification request requires changes to more
than one file, it can be assumed that decisions about the change to one file in a modification re-
quest depend in some way on the decisions made about changes to the other files involved in im-
plementing the modification request. Dependencies could range from syntactic, for instance a

function call between files, to more complex semantic dependencies where the computations



done in one files affect the behavior of other files. This approach has been shown to represent a
good estimate for a broad range of dependencies that affect productivity and defect-proneness.'
We now turn our attention to research question 1 which asks if we can determine the coordina-
tion needs among developers of a software project. The following paragraphs address this ques-
tion in two parts. First, we provide an interpretation of the model in equation 1 that allows us to
compute coordination requirements based on the socio-technical congruence framework de-
scribed in section III. Second, we demonstrate how the coordination requirements can be calcu-
lated from data in traditional software repositories such as version control and change manage-

ment systems.

A. From Software Dependencies to Coordination Requirements

The socio-technical congruence framework provides us with a measure of coordination re-
quirements that consists of two elements: a people to task relationship (Task Assignment matrix)
and task to task relationship (Task Dependency matrix). In the context of software development,
we interpret the people to task relationship as developers modifying source code files. The
second relationship can be articulated as the technical dependencies among files. Combining
these two definitions with equation (1) allows us to compute coordination requirements. The out-
come is a people to people matrix where each cell ij indicates the extent to which developer i is
dependent of developer j given the set of logical dependencies of the system under development

and the allocation of work responsibilities.

' For completeness, we computed all congruency measures using both logical dependencies and syntactic dependencies. Our results were in
agreement with published literature (Cataldo et al, 2008; Cataldo, et al, 2009), with logical dependencies far more predictive of failures and pro-
ducitvity. We omit these results in the interest of space.
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B. Coordination Requirements from Software Repository Data

The data for constructing the Coordination Requirements matrix can be extracted from two
types of repositories commonly encountered in software development projects: the modification
request tracking systems and the version control systems. Modification reports in our data con-
tained information about which commits in the version control system represent the development
effort for that report. Thus, an MR provides the “developer i modified file ; relationship that
constitutes our T, matrix described in the previous section.

The Task Dependency (Tp) matrix was constructed as follows. The cell ¢;; of the Tp matrix
represents the number of times a particular pair of source code files changed together as part of
the work associated with modification requests prior to the focal MR. Finally, using those T and
Tp matrices, the Coordination Requirement (Cr) matrix can be computed as indicated earlier.

Figure 1 depicts an example of using the algorithm with data from software repositories. In this
case, we have a modification request involving 3 developers and a system with 5 source code
files. The T matrix captures the set of files that each developer modified as part of working on
the modification request. For instance, developer 1 (top row) worked on 2 files (cells in the first
row containing 1). The Tp matrix, in this case, contains logical dependency information. The di-
agonal indicates the total number time the source code files was changed in the past development
tasks, while the off-diagonal cells indicate the number of times the two files were changed to-
gether as part of past modification requests. For example, the value 3 in cell; ; (top row, third
column from left to right) indicates that files 1 and 3 were changed together three times in the
past. Then, the resulting Cr matrix represents the extent to which developers are interdependent
giving the history of how source code files were changed (Tp matrix) and the files that were

modified as part of the development tasks considered in the T4 matrix. For instance, developers 1



and 3 are the highly coupled (cell; 3 in Cr equals 10) whereas developers 1 and 2 are significantly
less interdependent (cell; > in Cr equals 1). Notice since the Tp matrix is symmetric the resulting

Cr matrix is also symmetric.

Task Files Coordination
Assignments Changed Together Requirements
Ta To (T)T Cr
Fi Fs
F F — D D
o ° W5 030 0 00 1 o 3
0|01 0 0 1 0 9 011 101 Oo|(- 1 10
00110 X 30300 X 010 = 1 - 4
Sl1 1000 01020 010 L |10 4 -
#0100 6 L1 0 0]

Figure 1: Example of the Computation of the Coordination Requirement Matrix

VII. CONGRUENCE AND SOFTWARE DEVELOPMENT PRODUCTIVITY

The second step in our analysis consists of evaluating the relationship between socio-technical
congruence and development time, an outcome that past research in software development has
shown to be negatively impacted by failure to adequately coordinate development tasks (Curtis
et al, 1988; Espinosa et al, 2007; Herbsleb & Mockus, 2003).

Empirical research has shown that difficulties in communication and coordination breakdowns
are particularly problematic when the work items involve more than one team (Curtis et al, 1988;
Espinosa et al, 2007; Kraut & Streeter, 1995) and the developers are geographically distributed
(Herbsleb & Mockus, 2003). For these reasons, the analysis focuses on the set of modification
requests that involved more than one software development team. A total of 2,375 multi-team
modification requests were identified in project A. Project B contained 2,480 multi-team modifi-

cation requests.
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A. Description of the Measures

Past research has identified a number of factors that impact development time. Some of those
factors are related to characteristics of the development tasks such as the amount of code to be
written or modified and the priority of the task, whereas other factors capture relevant attributes
of the individual developers and the teams that participate in a development task. In the follow-
ing paragraphs, we first describe our dependent variable, resolution time of modification re-
quests. Secondly, the procedures used to construct the measures of congruence are described.
Finally, we describe a number of additional control measures that were included in the statistical
models.

1) Development Time Measure

Our measure of development time is Resolution Time, which captures the time it took to re-
solve a particular modification request, accounting for all the time that the MR was assigned to
developers. The modification requests reports contain records of when the MR was opened and
resolved as well as every time the MR was assigned to a particular developer. Given this infor-
mation, we can approximate the amount of time that developers were actually working on the
task.

2) Congruence Measures

We collected logical dependency information from both projects in order to compute the coor-
dination requirement matrices. Logical dependencies were extracted from the modification re-
quest tracking and version control systems in both projects as described in section VI-B.

Development organizations have different ways of coordinating their activities, that is, they
have different sets of coordination capabilities. In the measure of congruence described in sec-

tion III, the Actual Coordination (C,) matrix captures one or more coordination capabilities of a



particular organization. We constructed two distinct C5 matrices for each project, which led to
two distinct measures of congruence. One C, matrix that we call Structural Congruence, cap-
tured the existence of coordination activity between engineers i and j if they belong to the same
formal team. Such a matrix represented the potential paths of communication and coordination
that members of a formal team have through various mechanisms such as team meetings and
other work-related activities. This particular view of congruence captures the essence of the theo-
rized relationship between product and work modularization. If the system is modular then the
work in one module can be done within one team, then no coordination is required among differ-
ent teams.

Similarly to the case of organizational structure, the second C matrix that we call Geographi-
cal congruence was built around the idea of potential paths of communication and coordination
that exist when individuals work in the same physical location (Allen, 1997; Olson & Olson,
2000). Then, in terms of the matrix of coordination activities, engineers i and j have a linkage if
they work in the same location.

In the case of project A, we had data concerning two additional communication and coordina-
tion mechanisms: the exchanges of information in the MR tracking system and IRC. MR com-
munication congruence considers an exchange of technical information between engineers i and j
only when both 7 and j explicitly commented in the modification request report. Multiple modifi-
cation requests might refer to the same problem and later be marked as duplicates of a particular
modification request. All duplicates of the focal MR were also used to capture the interactions
among developers. Finally, IRC communication congruence was computed based on interaction
between developers from the IRC logs. Three raters, blind to the research questions, examined

the IRC logs corresponding to the period of time associated with each MR and established an
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interaction between engineers 7 and j if they made reference to the MR identifier or to the task or
problem represented by the MR in their conversations. In order to assess the reliability of the ra-
ters’ work, 10% of the MRs where coded by all raters. Comparisons of the obtained networks
showed that 98.2% of the networks had the same set of nodes and edges.

3) Additional Control Measures

Past research has reported several additional factors that impact development time (Espinosa et
al, 2007; Herbsleb & Mockus, 2003; Kraut & Streeter, 1995). We collected a number of control
variables that capture attributes of the development tasks, the individuals and the teams asso-
ciated with the development work. The amount of code written or changed is a proxy for the ac-
tual amount of development work done. The change size measure was computed as the number
of files that were modified as part of the change for the focal MR. Prior research (Espinosa et al,
2007) has used lines of code changed as a measure of the size of the modification; however, a
comparative analysis of both measures showed equivalent results in the statistical model used in
this study. Therefore, the results presented in this study are based on the measure computed from
the number of files modified. The change size measure was highly skewed so a log transforma-
tion was applied to satisfy the normality requirements of the regression model used in our analy-
sis (see table A1 in the appendix).

Two measures were constructed to capture attributes of the teams involved in each modifica-
tion request. Team load is a measure of the average work load of the teams responsible for the
components associated with the modification request. This control variable was computed as the
ratio of the average number of modification requests in open or assigned state over the total
number of engineers in the groups involved in the focal modification request during the period of

time the MR was in assigned state. Multiple Locations is a binary variable that indicates whether



all the developers that worked on a particular MR were in the same geographical location (a val-
ue of 0) or were distributed across different development locations (a value of 1).

An experienced software engineer familiar with tools and programming languages can be sub-
stantially more productive than an inexperienced developer (Brooks, 1995; Curtis, 1981; Curtis
et al, 1988). Furthermore, experience with the domain area and the technical characteristics of
the application being developed help accelerate development time (Curtis et al, 1988). We used
archival information as well as data from the software repositories to compute several individual
level measures of experience. First, Component experience was computed as the average number
of times that the engineers responsible for the modification request have worked on the same
files affected by the focal modification request. Second, Shared Work Experience was computed
as the average number of times both persons in each dyad in a modification request worked to-
gether prior to the focal MR, averaged across all dyads. Both experience measures were log-

transformed to satisfy normality requirements (see table A1l in the appendix).

B. Description of the Statistical Model

Past research has found that linear (Espinosa et al, 2007; Herbsleb et al, 2006) and hierarchical
linear (Espinosa et al, 2007; Kraut & Streeter, 1995) models are appropriate techniques for ex-
amining the effects of different factors on development productivity. In this study, we examined
the effect of the various congruence measures on task performance using the following linear
regression model:

ResolutionTime = - * CongruenceMeasure: +
=i g i

Zé'j *ControlVariablej +& ®)

J
We report several measures of fit for each linear regression model including R the adjusted

R? and the F-statistic as indicators of the models’ explanatory power. An examination of descrip-
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tive statistics and Q-Q plot indicated that several of the variables (Resolution Time, Chang Size,
Shared Work Experience and Component Experience) were highly skewed to the left. The log
transformation provided the best approximation to a normal distribution (see table A.1 in the ap-
pendix). An analysis of the pair-wise correlations amongst the independent variables as well as a
variance inflation analysis suggested no relevant collinearity problems. A small set of correla-
tions were statistically significant but their levels did not exceed +/- 0.33 (see table A.3 in the

appendix).
C. Results

We performed several linear regression analyses to assess the effect of the congruence meas-
ures on resolution time. Table I reports the OLS coefficients from the various regression models.
We constructed a baseline model for both projects (model I and IV) considering only the control
factors. The results are consistent with previous empirical work in software engineering. Factors
such as the size of the modification, familiarity with the software components, familiarity work-
ing together with other developers and are geographic distribution are significant factors impact-
ing the resolution time of modification requests (Boh et al, 2007; Espinosa et al, 2007; Herbsleb
& Mockus, 2003).

We then included the measures of structural and geographical congruence based on logical de-
pendencies. The results are reported in models II and V for project A and B, respectively. Both
measures of congruence, structural and geographical, have statistically significant effects and the
negative values of the estimated coefficients suggest that higher levels of congruence are asso-
ciated with a reduction in time to resolve a modification request. More specifically, the associa-
tion of higher levels of structural congruence with shorter development times supports the argu-

ment that when coordination requirements are contained within a formal team, task performance



increases. Geographical congruence had a positive effect on resolution time, consistent with past
research finding distance has detrimental effects on communication (see Herbsleb & Mockus,
2003 and Olson & Olson, 2000 for reviews).

The measures of structural and geographical congruence could be affected by personnel turno-
ver and mobility across teams. In project A, we examined archival data collected from the com-
pany and we determined a yearly turnover rate of only 3% and an inter-group mobility rate of
less than 1%. The modification requests that involved individuals that left the company or
changed group membership were eliminated from the analysis. However, an analysis including
those modification requests showed results consistent with those reported in tables 1 and 3. Un-

fortunately, we did not have access to the necessary data in project B.

TABLEI
The Impact of Congruence on Resolution Time of Modification Requests
Project A Project B

Model | Model Il Model 11l Model IV
(Intercept) 3.681%* 4.301%* 4.218%* 4.799**
Change Size (log) 0.402%* 0.308%* 0.331** 0.213%*
Team Load 0.014 0.013 -0.011 -0.004
Multiple Locations 0.523** 0.527** 0.282%* 0.234*
Shared Work Experience (log) -0.144%* -0.146** -0.116%* -0.117%*
Component Experience (log) -0.141** -0.141** -0.213** -0.254**
Structural Congruence -0.239* -0.329%*
Geographical Congruence -0.382* -0.360*
Model Fit
N 2375 2375 2480 2480
R? 0.652 0.692 0.459 0.522
Adjusted R? 0.651 0.691 0.457 0.521
F-test 887.7%* 787.1%* 419.8%* 385.6%*

(p<0.10, p<0.05, p<00l)

The data collected in project A allowed us to compute two additional measures of congruence,
IRC and MR communication congruence. Table II reports the results from the models that in-
cluded all four measures of congruence. The results are consistent with those reported in table I.
In addition, congruence based on the coordination activities amongst engineers performed

through the MR reports as well as IRC were also statistically significant suggesting the useful-



23

ness of these tools as additional coordination capabilities that facilitate interdependent work, par-

ticularly in a geographically distributed context.

TABLE II
THE IMPACT OF CONGRUENCE ON RESOLUTION TIME WHEN CONSIDERING ADDITIONAL
COORDINATION CAPABILITIES IN PROJECT A

Model | Model 11
(Intercept) 3.681%* 4.278**
Change Size (log) 0.402%* 0.307%*
Team Load 0.014 0.013
Multiple Locations 0.523%* 0.528**
Shared Work Experience (log) -0.144%* -0.145%*
Component Experience (log) -0.141%** -0.141**
Structural Congruence -0.235%
Geographical Congruence -0.372*
MR Congruence -0.146*
IRC Congruence -0.154*
Model Fit
N 2375 2375
R’ 0.652 0.744
Adjusted R? 0.651 0.743
F-test 887.7** 763.7%*

('p<0.10, "p<0.05, "p<0.01)

VIII. CONGRUENCE AND SOFTWARE FAILURES

Many software failures are caused by dependencies that are not recognized by the engineers
that architect, design and implement a software system (de Souza et al, 2004; Cataldo et al,
2009). This section examines the relationship between socio-technical congruence and failure
proneness defined as the likelihood of software entities (e.g. source code files, modules or com-

ponents) of being modified as part of fixing a field defect.

A. Description of the Measures

The literature has identified a number of factors that impact failure proneness of source code
files. Some of those factors are related to attributes of the files, attributes of the technical depen-
dencies among the files as well as characteristics of the development activities that modified
those source code files. In the following paragraphs, we first describe our dependent variable,

File Buggyness. Secondly, the procedures used to construct the measures of congruence are de-



scribed. Finally, we describe a number of additional control measures that were included in the
statistical models.

1) Measuring Failure

The dependent variable, File Buggyness, is a binary measure indicating whether a file has been
modified as part of the resolving a field defect. Therefore, the unit of analysis is the source code
file. In project A, our data covered four releases of the product. Defects reported after the official
release of the product were considered field defects. In the case of project B, the consequences of
field defects are quite severe because they typically involve recall of vehicles with significant
financial and reputational impact. A great effort goes into quality assurance and, consequently,
field defects seldom occur. Therefore, we considered “field defects” as those defects encountered
during the integration and system testing phase. Using 2,375 modification requests from project
A and 4,170 modification requests from project B, the dataset of source code files was con-
structed in the following way. First, the dataset included all the files that were modified as part of
the development activities of each project. For each one of those files, we determined if they
were associated with a field defect in any of the releases of the product covered by the data. Se-
condly, we included all files that were associated with field defects that did not change during
the development of a release under study. This procedure selection bias concerns.

2) Congruence measures

In order to construct the congruence measures, we used the same procedure described in sec-
tion VI. However, the outcome in is a measure of congruence per MR. The congruence measures
at the file level were constructed in the following way. For each file, we identified all the modifi-
cation requests that touched the file. Then, the median value of each congruence measure was

associated with that particular file. An alternative approach would be to compute the measure as
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an average of level of congruence across all modification requests that affected each particular
file. However, the number of MRs that affected a file was highly correlated with other measures
and it was also a significant predictor of failures. Hence, it was more appropriate to use the
measure based on the median value of congruence. As we indicated earlier, coordination data
over the MR tracking systems and IRC were only available for project A, we computed only
structural and geographical in the case of project B.

3) Additional Control Factors

Past research on failure proneness has identified a number of technical and work-related factors
that impact it. On the technical dimension, Graves and colleagues (2000) suggested that such
measures could be grouped in two sets: process measures and product measures. Process meas-
ures such as number of previous faults, number of deltas, age of the code and the number of de-
velopers that modified the files have been shown to be very good predictors of failures (Graves
et al, 2000; Nagappan & Ball, 2007). These measures are also referred to in the literature as
churn metrics. In terms of product measures, investigations have typically focused on measures
such as size of the code and complexity measures and the empirical results are mixed. Research-
ers have found a positive relationship between lines of code and failures (Briand et al, 2000;
Graves et al, 2000). However, other work has found a negative relationship between lines of
code and failures, that is, a larger number of LOC decreases the likelihood of failures (Basili &
Perricone, 1984). More recently, researchers have also looked at the role of software dependen-
cies on failure proneness (Cataldo et al, 2009; Nagappan & Ball, 2007; Nagappan et al, 2008;
Zimmerman & Nagappan, 2008).

The work by Cataldo and colleagues (2009) examined the relationship of failure proneness

with several process, product and work-related metrics in two large scale industrial software de-



velopment projects. The authors performed several collinearity diagnostics and identified a sub-
set of technical and work related measures to be included in the statistical models. Those meas-
ures constitute the set of control variables used in this study and they are described in the subse-
quent paragraphs. The size of the file (LOC) as the number of non-blank non-comment lines of
code. We also computed for the Average Number of Lines Changed in a file as part of modifica-
tion requests. Using the information in the Tp matrices discussed in section VI, we computed the
two measures proposed by Cataldo and colleagues (2009). Number of logical Dependencies was
computed from the corresponding Tp matrix as the row sum minus the cell in the diagonal. No-
tice that the Tp matrix based on logical dependencies is symmetric, therefore, the variable could
also be computed using a summing the cells in the corresponding column. Clustering of Logical
Dependencies measure for file i was computed as the density of connections among the direct
neighbors of file i. This measure is equivalent to Watts’s (1999) local clustering measure. Final-
ly, we used equation 1 to construct the Coordination Requirement measure. A modification re-
quest provides the “developer i modified file ;” relationship. We grouped such information
across all modification requests in a particular release of the product to construct the T matrix.
The Tp matrix was the same used for the computation of the logical dependency measures. Then,
the Coordination Requirements measure captures for each file 7, the degree centrality of the most

central developer in the Cr matrix that worked on the file i.

B. Description of the Statistical Model

Since our dependent measure is a binary variable, our analyses used the logistic regression
model described in equation 4 to assess the impact of socio-technical congruence on failure
proneness.

> B *CongruenceMeasure +). ¢, *ControlMeasure,) _
P(Buggyness=l|X)=[l+e(‘ﬁ & Y )] 1 4)
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where X is the vector consisting of the congruence and control measures. As it is customary with
logistic regressions, the models were estimated using a maximum-likelihood method. We report
several goodness-of-fit measures for each statistical model y?, the percentage of deviance ex-
plained by the model as well as the statistical significance of the difference between a model that
adds new factors and the previous model without the new measures. Deviance is defined as -2
times the log-likelihood of the model. The percentage of the deviance explained is a ratio of the
deviance of the null model (containing only the intercept), and the deviance of the final model.
Traditionally, regression coefficients are reported as part of the results. However, since we are
using logistic regressions, we decided to report odds ratios because they simplify the interpreta-
tion of the results. Odds ratios are the exponent of the logistic regression coefficient. Odds ratios
larger than 1 indicate a positive relationship between the independent and dependent variables
whereas an odds ratio less than 1 indicates a negative relationship. For instance, an odds ratio of
2 associated with the number of logical dependency measure indicates that a unit change in such
measure doubles the probability of a file having a customer reported defect when the remaining

factors in the model are kept constant.

C. Results

We performed several logistic regression analyses to assess the effect of the congruence meas-
ures on failure proneness of source code files. Table III reports the odds ratios associated with
the various regression models. We constructed a baseline for both project A and B (models I and
IIT). The results from both projects are consistent with those reported by Cataldo and colleagues
(2009). Models II and IV introduce the measures of congruence based on logical dependencies
for projects A and B, respectively. The results show a significant impact of both structural and

geographical congruence in project B (model IV) with higher levels of congruence being asso-



ciated with lower levels of failure proneness (odds ratios less than 1). In project A, only structur-
al congruence was statistically significant.

The data collected in project A allowed us to compute two additional measures of congruence,
IRC and MR communication congruence. Table IV reports the odds ratios from the models that
included all four measures of congruence. The results from model II are consistent with those
reported in table III. In addition, IRC and MR congruence are also statistically significant sug-
gesting such means of communication and coordination are very valuable in managing depen-
dencies and, consequently, improving software quality. Model III in table II also shows no statis-
tically significant effect for the measures of congruence computed based on syntactic dependen-
cies.

It is worth mentioning that we also replicated the analyses using the data from the entire set of
MR from project B (8,257 MRs) and the results were consistent to those reported in table III.
However, we did not have IRC-based coordination data for the entire set of modification re-
quests. Consequently, we decided to report the analyses based on a dataset that allows us to ex-

amine the impact of all four measures of congruence.

TABLE III
THE IMPACT OF CONGRUENCE ON FAILURE PRONENESS
Project A Project B

Model | Model Il Model 111 Model IV
LOC (log) 1.125%* 1.137%* 1.251%%* L1ST**
Avg. Lines Changed (log) 1.128%* 1.118%* 1.331%* 1.314%*
Number Logical Dep. (log) 2.219%* 2.109%* 3.829%* 3.830%*
Clustering Logical Dep. (log) 0.012%* 0.012%* 0.002%* 0.002%*
Coordination Req. Dep. (log) 2.187** 1.967** 1.111** 1.801**
Structural Congruence 0.285%* 0.859*
Geographical Congruence 0.317 0.578*
Model Fit
N 3980 3980 9074 9074
Model %2 1663** 1701** 3092%* 3401**
df 5 7 5 7
Deviance Explained 0.302 0.317 0.362 0.401
Model Comparison y2 -- 38.13%* -- 309.07**

(+p<0.10; * p<0.05; ** p<0.01)
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Summarizing, the results of our analyses suggest that the relevant work dependencies that im-
pact software failures stem from logical dependencies rather than syntactic relationships between
software entities. Furthermore, the various measures of congruence demonstrate the complemen-
tary benefits of different approaches of satisfying coordination needs which if left unattended can

results in poorer software quality.

TABLE IV
THE IMPACT OF CONGRUENCE ON FAILURE PRONENESS WHEN
CONSIDERING ADDITIONAL COORDINATION CAPABILITIES IN PROJECT A

Model | Model Il
LOC (log) 1.125%* 1.136%*
Avg. Lines Changed (log) 1.128%%* 1.121%*
Number Logical Dep. (log) 2.219%* 2.109%*
Clustering Logical Dep. (log) 0.012%* 0.012%*
Coordination Req. Dep. (log) 2.187** 1.962**
Structural Congruence (Logical Dep.) 0.281*
Geographical Congruence (Logical Dep.) 0.317
MR Congruence (Logical Dep.) 0.471%*
IRC Congruence (Logical Dep.) 0.044**
Model Fit
N 3980 3980
Model 2 1663** 1859%*
af 5 9
Deviance Explained 0.302 0.335
Model Comparison 2 -- 196.24%**

(+p<0.10; * p<0.05; ** p < 0.01)

1X. THE TEMPORAL EVOLUTION OF CONGRUENCE

The various measures of congruence based on logical dependencies are associated with im-
provements in development productivity and software quality. However, those analyses do not
examine the role of two important factors that could impact a development organization’s ability
to effectively coordinate: learning and product evolution. It is well established that groups and
organizations are able to learn over time to perform their task better (Argote, 1999). In our con-
text, as developers gain experience in different aspects of the development project such as how
the various components of the system being developed relate to each and who is working in the

various parts of a system, we could expect that developers, over time, are better able to identify



and manage emerging work dependencies. However, the benefits accrued from learning can be
diminished when important changes in the coordination requirements take place (e.g. structure of
the system or the allocation of functional responsibilities change). The socio-technical congru-
ence framework allows us explore these issues by examining how the congruence measures
evolve over time. The rest of this section examines the evolution of congruence in both projects,
A and B.

In order to examine the evolutionary patterns of congruence, we constructed measures of con-
gruence on a semi-annual basis which resulted in 6 semesters for project A and 10 semesters for
project B. We considered all the modification requests started and completed within each seme-
ster of each projects covered by our data. Combining that data with the logical dependencies data
corresponding to the same semester, we constructed a coordination requirements (Cr) matrix for
each semester. Then, the congruence measures for each semester were calculated using the same
approach discussed in section VI. Figure 2 shows the average level of the structural and geo-
graphical congruence over time in both projects. We observe that in project A (continuous lines),
structural congruence declines significantly over time. A similar pattern also occurs in project B
(dashed lines) but the magnitude of the decline is not as severe as in project A. The decline in
structural congruence could be interpreted as a deterioration of the homomorphic relationship
between product and work structures posited by the modularity theoretical argument (Baldwin &
Clark, 2000; Conway, 1968; Parnas, 1972). On the other hand, we observe that the geographical
congruence remains relatively stable in both projects suggesting that the coordination needs
across locations did not change over time. However, the low levels of congruence, particularly in
project B, suggest that the organization was never able to appropriately deal with cross-site de-

pendencies.
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Figure 2: The Evolution of Structural and Geographical Congruence

In the case of project A, we can compare the evolution of all four measures of congruence.
Figure 3 depicts such patterns and we observe that structural and geographical congruence domi-
nate in the earlier semesters while communication congruence based on MRs or IRC are almost
absent. In later semesters, structural congruence decreases significantly, particularly after the 31
semester, while the measures of communication congruence based on MR and IRC increase sig-
nificantly, remaining high during the last two semesters. These patterns suggest a learning effect
where developers substitute the lack of formal communication and coordination paths with coor-
dination through other means of communication such as IRC and MR reports.

The changes in the various measures of congruence depicted in figures 2 and 3 raise a follow
up question: are all developers able to identify the changes in coordination requirements and
adapt their coordinative actions accordingly? Mockus and colleagues (2002) and Cataldo and
colleagues (2006) reported that in open source and commercial projects a large portion of the
modifications to a software are made by a small number of developers. Following such insight,
we examined the patterns of contributions in both projects. In project A, we found that 50% of

the modifications made to the software system were done by only 18 (15%) developers. In



project B, 107 developers (28%) contributed 50% of the modifications. Based on these results,

we separated the developers in two groups: top performers and the rest’.
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Figure 3: The Evolution of all Measures of Congruence in Project A

Figure 4 shows the evolution of the congruence measures for both groups in project A. The top
performers are represented on left hand side of the graph (solid lines) while the rest of the devel-
opers are represented on the right hand side of the graph (dashed lines). The patterns are surpri-
singly different. Top-performers were involved in tasks that required significantly more coordi-
nation across teams (decreasing structural congruence) and, over time, they became quite effec-
tive at coordinating over IRC and the MR tracking system. On the other hand, the rest of the de-
velopers seem not to use the computer-mediated communication tools (e.g. IRC) to interact with
the right set of people. Consequently, they never achieve high levels of congruence in the IRC
and MR congruence measures. Figure 5 depicts the evolution of structural and geographical con-

gruence for both groups of developers, top-performers and the rest, in project B. We observer a

* We performed several statistical comparisons and the two groups of individuals in both projects did not differ in
terms of experience, familiarity working together, the average size of the changes made to the software and the av-
erage number of lines added or removed from the software.
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similar pattern as in project A where top-performers tend to be involved in tasks that require

cross-team coordination, particularly as the project matures.
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Figure 4: The Evolution of Congruence for Top-Performers and

the Rest of the Developers in Project A
Summarizing, the section presents two additional and important results. First, the decreasing
levels of structural congruence suggest that the benefits of modularization diminish as a project
matures. Second, high performing developers tend to exhibit very different coordinative actions
relative to less productive individuals suggesting that the traditional perspective in software en-
gineering relating only cognitive ability and experience to contributions (Curtis, 1981) may not
capture all of the important attributes of top-performing developers, since their performance

seems to have a substantial social component.
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Figure 5: The Evolution of Congruence for Top-Performers and
the Rest of the Developers in Project B

X.  COORDINATION REQUIREMENTS AND THEIR TEMPORAL EVOLUTION

The step in our investigation consisted on examining how the coordination needs of the devel-
opment organization evolve over time. This is a particularly important factor because highly vo-
latile coordination needs render traditional coordination approaches inadequate. We focused our
attention on two key aspects of the coordination requirements: the average change in an individ-
ual’s coordination needs and the amount of coordination needed that crosses team boundaries.
Figure 6 depicts the evolution of the average change in an individual’s coordination needs in
projects A and B on a monthly basis over the time period covered by the datasets (39 months for
project A and 65 months for project B). The average change in an individual’s coordination
needs is computed by comparing the coordination requirements matrices (constructed using the
logical dependencies) from month 7 against month #-/ and averaging the amount of change in the
coordination needs across all the individuals. As an example, a 10% value of change in the coor-

dination needs in month # means that 10% of the coordination requirements of any particular de-
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veloper did not exist in the previous month (#-7). The amount of coordination requirements that
involve developers from other formal organizational groups is depicted in figure 6 for both
closed source projects. The values are computed by identifying those coordination requirements
that cross the boundaries of an individual’s team and averaging those specific coordination
needs. Figure 6 shows significant volatility in the coordination requirements over time. There are
several instances where the level of change in the coordination requirements is above 20% for
both projects. Specifically, the average change in the developers’ coordination needs across all
months in project A is 12.9% (minimum = 2.2% and maximum = 44.1%) while project B exhibit
an average of 13.5% across all 65 months covered by the data (minimum = 3.5% and maximum
=27.9%). Considering those percentages in terms of actual number of distinct individuals that a
developer needs to coordinate with, on average and on a monthly basis, we have 6.8 different
developers in project A and 21.5 different developers in project B. A similar pattern also occurs
for the amount of coordination needs that cross the team boundary as depicted in Figure 7. In this
case, we see an average change in coordination requirements across team boundaries of 15.2% in
project A (minimum = 4.5% and maximum = 35.7%) and 11.6% (minimum = 0.2% and maxi-
mum = 22.4%) for project B.

In sum, the results presented in this section show that coordination requirements tend to be
quite volatile over the life of a software development project. More importantly, coordination
needs that cross the formal organizational boundaries (e.g. formal team) are also quite common.
Combined, these results suggest the need to new coordination mechanisms such as collaborative
tools that are able to assist developers navigate the complex landscape of dependencies that im-

pact their work.
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Figure 6: The Average Change in Coordination Requirements on a Monthly Basis
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Figure 7: The Average Change on Out-Group Coordination Needs on a Monthly Basis

XI. DISCUSSION

This paper introduced the notion of socio-technical congruence as a framework for examining

fine-grain technical dependencies among software entities (e.g. source code files, modules, com-
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ponents) and their implications for coordination needs in development organizations. We ad-
dressed three specific research questions. First, we proposed a technique to compute coordination
requirements among developers based on the technical dependencies among the parts of a soft-
ware system modified in the development tasks (research question 1). We evaluated the proposed
approach to calculate task dependencies in two large scale software development projects. The
results of our empirical analyses revealed that the gaps between the computed coordination re-
quirements and the actual coordination activities carried out by the developers had major impli-
cations on development productivity and software quality (research question 2). In particular, our
analyses showed that when engineers identified and managed the relevant coordination needs,
development productivity and software quality improved.

Finally, research question 3 was addressed by examining the evolution of the coordination re-
quirements as well as the evolution of the mismatches between coordination needs and coordina-
tion behavior (congruence) over the lifetime of the projects. Our analyses revealed two important
results. First, our measure of structural congruence, which captures how well the organizational
structure of a software project supports the coordination needs stemming from the technical
structure of the system, diminishes over time. Such a pattern suggests a more complex relation-
ship between the product and the organizational structures than theorized in the modular design
literature (e.g. Baldwin & Clark, 2000). As demonstrated in our results, high levels of structural
congruence (indicative of a good match between product and organizational structure) are asso-
ciated with better productivity and quality complementing the abundance of evidence highlight-
ing the benefits of modular designs. However, as the development of a system evolves, new de-
pendencies emerge and they tend not to be aligned with the existing formal organizational struc-

ture. Thus, additional coordination capabilities are required. For instance, our analyses revealed



developers in project A tended to coordinate more congruently over communication mediums
such as IRC and the MR tracking system as the coordination mechanism provided by the formal
organization increasingly failed to match the coordination needs of the developers.

A second important result related to research question 3 relates to the evolution of the coordi-
nation requirements. Our qualitative analysis showed that coordination needs tend to be quite
volatile. Moreover, we found that coordination requirements that cross organizational boundaries
(e.g. formal teams) are also quite common. Combined, these findings demonstrate the dynamic
nature of work dependencies that exist in software development. Individuals tend have difficul-
ties identifying task interdependencies that are not obvious or explicit (de Souza et al, 2004; So-
sa, 2008; Sosa et al, 2004) and the developers’ ability to recognize dependencies diminish as
coordination requirements change over time because communication and coordination patterns
become embedded in the organizational practices (Henderson & Clark, 1990). In addition, coor-
dinating across organizational boundaries is quite challenging and the negative impact of failed
coordination on productivity is quite significant (Hoegl et al, 2004). For these reasons, volatility
in the coordination requirements represents a major hurdle for software development projects,

particularly, for those that are geographically distributed.

Future Research Directions

The results reported in this paper provide a number of directions for future research activities.
First, our results suggest that collaboration tools could constitute an important coordination ca-
pability to support the development organization manage the dynamic and evolving web of work
dependencies in software development projects. A host of collaboration and awareness tools
have been proposed in the software engineering and CSCW literatures (e.g. Ripley et al, 2007,

Schummer & Haake, 2001; Sarma et al, 2003; Sarma et al, 2009; Trainer et al, 2005). The meas-
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ures of software dependencies used in our empirical analyses could provide complementary and,
potentially more valuable, dependency information to such tools’. Particularly, in terms of rais-
ing awareness among developers’ activities and the potential impact of their changes in the soft-
ware system and other developers’ work. In a more general context, traditional collaboration
tools, such as email and instant messaging, which have become an integral part of work in the
vast majority of organizations (Bellotti et al, 2003; Wattenberg et al, 2005) could also be im-
proved. The coordination requirements measure could provide a way of identifying the email ex-
changes that are more relevant given the task interdependencies among individuals. This infor-
mation would enable tools to present an enhanced task management experience by, for instance,
prioritizing to-do-lists and generating reminders to respond to task-specific emails based on the
coordination requirements. This email sorting approach could be thought as a task-specific alter-
native to other social-based sorting techniques such as the one proposed by Fisher and colleagues
(Fisher et al, 2006). A more recent set of tools, such as sidebars (Cadiz et al, 2002) and produc-
tivity assistants (Geyer et al, 2007), would also benefit from the congruence framework. These
types of tools focus on activity-centric collaboration and, as argued by Geyer and colleagues
(2007), the majority of the tools assume user intervention in terms of deciding what type of in-
formation to make part of the sidebar. The congruence framework would provide an automatic
mechanism to identify people of interest giving a particular set of task dependencies among the
workers. Finally and in the context of large-scale software development projects such as the ones
studied in the paper, the coordination requirement measure provides a mechanism to augment

awareness tools that provide real-time information regarding the likely set of workers that a par-

3 In order to take advantage of the congruence measures, tools would have to be able to identify (1) the set of
source code files (or other software entities of interest) that were changed as part of a modification request and (2)
the developers that made those changes.



ticular individual might need to communicate with. For instance, integrated development envi-
ronments, such as Eclipse (2009) or Jazz (2009), could use the coordination requirement infor-
mation to recommend a dynamic “coordination buddy list” every time particular parts of the
software are modified. In this way, the developer becomes aware of the set of engineers that
modified parts of the system that are interdependent with the one the developer is working on.
The concept of the “buddy list” in communication and collaboration tools is not a new idea.
However, the novel contribution is to construct the “buddy list” from accurate estimates of the
set of individuals more likely to be relevant to a particular developer in relations to the work de-
pendencies, information which is captured by the coordination requirements measure.

Second, the impact of congruence on productivity and quality highlight the importance of iden-
tifying potential coordination needs as early as possible in the development process in order to
provide the development organization with the appropriate communication and coordination me-
chanisms. Unfortunately, identifying logical dependencies as proposed by our measures is not
possible in early stages of a project where no source code has been developed. We see at least
two research paths which deserve future attention. One path is to consider a coordination view of
the architectures that combines the product’s technical dependencies with relationships among
the organizational units responsible for carrying out the development work. In order to generate
such representations, methods of identifying relevant dependencies from the technically focused
views of the architecture are to be devised. One potentially promising approach is to synthesize
the dependencies represented in the various types of UML diagrams (e.g. class diagrams, se-
quence diagrams, collaboration diagrams, etc) into a single set of technical relationships among
modules. Such a method might be able to identify logical relationships among parts of the sys-

tems which, as shown in this paper, are an important factor driving the work dependencies in



41

software development organizations.

Third, the proposed framework opens the door for the analyses of numerous other forms of
technical dependencies such as grouping dependencies around product features or around “cross-
cutting” concerns (Kiczales & Menzini, 2005), which might not necessarily match the source
code file, module or component based representations of technical dependencies, and examine
their implications on coordination. On the organizational side, we could extend the analyses to
temporary organizational entities such as task forces, performance or integration teams) and ex-

amine their implications for coordination.
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APPENDIX

TABLE A.1
DESCRIPTIVE STATISTICS OF VARIABLES USED IN DEVELOPMENT PRODUCTIVITY STUDY

PROJECT A: DISTRIBUTED SYSTEM

Mean SD Min Max Skew Kurtosis
Resolution Time (log) 3.260 1.236 0 6.490 -0.809 3.127
Change Sixe (log) 1.163 1.781 0.301 4.741 0.302 4.005
Team Load 9.104 2.938 1.016 58.800  -0.361 2.342
Multiple Locations 0.779 0.414 0 1 -1.346 2.814
Shared Work Experience (log) 0.011 0.033 0 0.381 1.147 3.644
Component Experience (log) 3.051 0.958 0 5.601 -0.015 2.145
Structural Congruence (Logical Dep.) 0.663 0.217 0.156 0.995 -0.931 3.754
Geographical Congruence (Logical Dep.) 0.684 0.237 0.142 0.993 -0.863 3.201
MR Congruence (Logical Dep.) 0.567 0.283 0.070 0.982 -0.319 1.965
IRC Congruence (Logical Dep.) 0.599 0.274 0.079 0.982 -0.506 2.233

PROJECT B: EMBEDDED SYSTEM

Mean SD Min Max Skew Kurtosis
Resolution Time (log) 3.384 0.623 0 4.025 -0.323 1.957
Change Sixe (log) 1.671 0.665 0.301 4.276 1.563 3.014
Team Load 9.098 2.923 1.016 13.992  -0.371 2.354
Multiple Locations 0.615 0.486 0 1 -0.475 1.226
Shared Work Experience (log) 0.084 0.072 0 0.540 1.629 2.465
Component Experience (log) 4.069 1.239 0 4.995 0.031 2.227
Structural Congruence (Logical Dep.) 0.625 0.178 0.009 0.990 -0.355 2.512
Geographical Congruence (Logical Dep.) 0.631 0.192 0.011 0.987 -0.451 2.687

TABLE A.2
DESCRIPTIVE STATISTICS OF VARIABLES USED IN SOFTWARE QUALITY STUDY
PROJECT A: DISTRIBUTED SYSTEM

Mean SD Min Max Skew Kurtosis
File Buggyness 0.458 0.498 0 1 0.167 1.028
LOC (log) 5.097 1.792 0 9.789 1.191 1.517
Avg. Lines Changed (log) 1.389 1.316 0 6.511 1.871 2.359
Num. Logical Dep. (log) 3.789 1.641 0 6.729 0.655 1.911
Clustering Logical Dep. (log) 0.545 0.182 0 0.693 1.012 1.939
Coordination Req. (log) 0.035 0.053 0 0.215  -0.362 1.943
Structural Congruence (Logical Dep.) 0.268 0.129 0.156 0.421 0.284 1.089
Geographical Congruence (Logical Dep.) 0.432 0.064 0.142 0.476 1.090 1.517
MR Congruence (Logical Dep.) 0.247 0.336 0.070 0.982 1.606 2.359
IRC Congruence (Logical Dep.) 0.205 0.101 0.079 0.386 0.241 1.744

PROJECT B: EMBEDDED SYSTEM

Mean SD Min Max Skew Kurtosis
File Buggyness 0.176 0.381 0 1 1.096 2.888
LOC (log) 2.793 1.307 0 8.587 0.878 1.318
Avg. Lines Changed (log) 1.944 1.058 0 8.861 1.264 1.757
Num. Logical Dep. (log) 0.417 0.697 0 4.111 1.710 3.345
Clustering Logical Dep. (log) 0.394 0.076 0 0.641 -2.216 2.234
Coordination Req. (log) 0.027 0.067 0 0.555 1.371 1.467
Structural Congruence (Logical Dep.) 0.093 0.164 0.009 0.891 1.578 2.950
Geographical Congruence (Logical Dep.) 0.219 0.147 0.012 0.477 0.110 1.753




TABLE A.3:
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PAIR-WISE CORRELATIONS (* P < (0.01) AMONG VARIABLES USED IN DEVELOPMENT PRODUCTIVITY STUDY

PROJECT A: DISTRIBUTED SYSTEM

1 2 3 4 5 6
1.Change Sixe (log) -
2.Team Load -0.04 -
3.Multiple Locations 0.01 0.01 -
4.Shared Work Experience (log) 0.06 0.03 -0.01 -
5.Component Experience (log) 0.13* 0.02 0.04 0.17* -
6.Structural Congruence (Logical) 0.04 0.03 0.05 -0.02 -0.05 -
7.Geographical Congruence (Logical) 0.05 -0.09 0.09 -0.01 0.01 0.13*
8.MR Congruence (Logical) -0.01 -0.06 -0.04 -0.01 -0.01 0.03
9.IRC Congruence (Logical) -0.02 -0.04 -0.03 -0.01 -0.02 0.03

7 8 9 10 11 12
8.MR Congruence (Logical) 0.02 -
9.IRC Congruence (Logical) 0.01 0.01 -

PROJECT B: EMBEDDED SYSTEM

1 2 3 4 5 6
1.Change Sixe (log) -
2.Team Load 0.09 -
3.Multiple Locations 0.13* 0.01 -
4.Shared Work Experience (log) 0.02 0.03 0.16* -
5.Component Experience (log) 0.26* 0.12* 0.03 0.33* -
6.Structural Congruence (Logical) 0.01 0.03 0.02 0.01 -0.01 -
7.Geographical Congruence (Logical) 0.02 0.02 0.02 0.02 -0.03 0.21%*

TABLE A 4:

PAIR-WISE CORRELATIONS (* P <0.01) AMONG VARIABLES USED IN SOFTWARE QUALITY STUDY

PROJECT A: DISTRIBUTED SYSTEM

1 2 3 4 5 6
1.LOC (log) -
2. Avg. Lines Changed (log) 0.31%* -
3.Num Logical Dep. (log) 0.11% 0.43* -
4.Clustering Logical Dep. (log) 0.31%* 0.34* 0.06* -
5.Coordination Req. (log) -0.32* -0.21%* -0.10* -0.14* -
6.Struct. Congruence (Logical) 0.33* 0.07* -0.05 -0.03 0.31* -
7.Geo. Congruence (Logical) 0.04* -0.04 -0.04 -0.01 0.12%* 0.08%*
8.MR Congruence (Logical) 0.19% 0.09* -0.01 0.03 0.11%* 0.09%*
9.IRC Congruence (Logical) 0.02 -0.06* -0.01 0.05 0.02 0.11*

7 8
8.MR Congruence (Logical) 0.11* -
9.IRC Congruence (Logical) 0.05 0.17*

PROJECT B: EMBEDDED SYSTEM

1 2 3 4 5 6
1.LOC (log) -
2. Avg. Lines Changed (log) 0.27* -
3.Num Logical Dep. (log) 0.11* 0.41* -
4.Clustering Logical Dep. (log) 0.21%* 0.27* 0.16* -
5.Coordination Req. (log) -0.18* -0.11%* -0.19%* 0.04 -
6.Struct. Congruence (Logical) 0.33* 0.05 0.03 0.03 0.11* -
7.Geo. Congruence (Logical) 0.04* 0.02 0.02 0.01 0.04 0.07*




