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Abstract

Analysis at the level of a runtime architecture matches the way experts reason about security or privacy
better than a purely code-based strategy. However, the architecture must still be correctly realized in the
implementation.
We previously developed Scholia to analyze, at compile time, communication integrity between arbitrary
object-oriented code, and a rich, hierarchical intended runtime architecture, using typecheckable annotations.
This paper applies Scholia to security runtime architectures. Having established traceability between the
target architecture and the code, we extend Scholia to enforce structural architectural constraints. At the
code level, annotations enforce local, modular constraints. At the architectural level, predicates enforce global
constraints. We validate the end-to-end approach in practice using a real 3,000-line Java implementation,
and enforce its conformance to a security architecture designed by an expert.
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1 Introduction

Companies such as Boeing and Microsoft have been using threat modeling [1] as a lightweight approach
to reason about security, to capture and reuse security expertise and to find security design flaws during
development. During threat modeling, development teams construct security architectures that are later
reviewed by security experts.

Although threat modeling often finds security design flaws, it suffers from the two known problems of
architectural extraction and conformance analysis. When a security expert asks a developer to build a
security architecture for a system under study, the developer typically produces a diagram mostly from his
recollection of how the system works, with little tool support to extract such an architecture from the code.
Then, during the security review, the experts study the architecture, assign to the components different
architectural properties such as trustLevel [2] or privacyLevel, and enumerate all possible communication
between the more trusted and the less trusted components of the system. But if the architecture does not
show all the communication that is present in the system, the results of an architectural-level analysis may
be incorrect. While any architecture-based approach suffers from these problems, security architectures pose
special challenges.

A security architecture1 is a runtime architecture which shows runtime components and connectors, uses
hierarchical decomposition, and partitions a system into tiers [3]. Unfortunately, the tools for extracting and
analyzing the conformance of a runtime architecture are immature.

Moreover, a security analysis must consider the worst and not the typical case of possible component
communication. The analysis results are valid only if the architecture reveals all objects and relations that
may exist at runtime – in any program run. This requires a static analysis, which can capture all possible
executions. In contrast, a dynamic analysis, which extracts an architecture or analyzes conformance based
one or more program runs [4], may miss important objects or relations that arise only in other executions.

The communication integrity property [5] defines one notion of conformance as: “Each component in
the implementation may only communicate directly with the components to which it is connected in the
architecture” [6].

Abi-Antoun and Aldrich previously developed an approach, Scholia, to analyze at compile time commu-
nication integrity between arbitrary object-oriented code, and a rich, hierarchical intended runtime architec-
ture [7]. Scholia uses typecheckable annotations and establishes traceability between the target architecture
and the code.

This paper’s contributions are the following:
• An application of Scholia to analyze conformance between a Java implementation and a security

runtime architecture, entirely statically and using annotations;
• An illustration of enforcing constraints at the code level and architecturally;
• A validation using a real 3,000-line Java implementation of a security architecture designed by an

expert.
This paper is organized as follows. Section 2 discusses relating a security architecture to code. Section 3

describes enforcing architectural intent. Section 4 presents an evaluation of the approach on a real system.
Finally, we discuss related work (Section 5) and conclude.

Our design intent-based analysis for relating security architectures and code has two main stages: the
conformance stage and the enforcement stage. Each stage consists of several steps. The overall process is
iterative, so the term does not imply following these steps in a strict sequence.

1Threat modeling typically uses Data Flow Diagrams (DFDs) with security-specific annotations to describe how data enters,
leaves and traverses the system by showing data sources and destinations, the relevant processes that data goes through and
the trust boundaries in the system [1]. This paper uses a slightly different architectural style: a security architecture shows
points-to (not data flow) connectors, has no explicit data stores or external interactors, and uses more general boundaries that
are tiers.
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2 Conformance Stage

The object-oriented analogues to a runtime architecture and a code architecture would be a global object

diagram and a class diagram, respectively. While in the class diagram a single node represents a class and
summarizes the properties of all of its instances, an object diagram represents different instances as distinct
nodes, with their own properties. Thus, an object diagram makes explicit the object structures that are
only implicit in a class diagram [8]. One can generalize an object diagram into a runtime architecture
which abstracts objects into components, and represents how those components interact. Usually, distinct
component instances have different values for architectural properties such as trustLevel.

Architectural reasoning about security is best accomplished with a runtime architecture, not a code
architecture. The appendix [9, §2] contains class diagrams extracted from CryptoDB, the secure database
system we evaluate in Section 4. These class diagrams are not comparable to the security architecture drawn
by its designer [9, §1].

Unfortunately, extracting the runtime architecture is difficult. At runtime, an object-oriented system can
be represented as an object graph: nodes correspond to objects, and edges correspond to relations between
objects. Taking a snapshot of the heap at runtime reveals the structure at that instant in great detail, but
the profusion of objects makes it difficult to get a high-level picture, without extensive graph summarization
and manipulation. Moreover, such a snapshot shows only one execution, meaning the developer may miss
important objects or relations that show up only in other executions. On the other hand, a sound static
analysis can extract an object graph that captures all executions. But previous static analyses produce
non-hierarchical object graphs that explain runtime interactions in detail but convey little architectural
abstraction. A flat object graph mixes low-level objects such as HashMap, with architecturally relevant
objects such as CryptoReceipt, and a developer has no easy way to distinguish them. A flat object graph
will again have a plethora of objects that is unreadable, even for relatively small programs, and will not
convey sufficient architectural abstraction to be used for conformance analysis (See the appendix for flat
object graphs for CryptoDB [9]).

A central difficulty is that architectural hierarchy is not readily observable in arbitrary code. Some
language-based solutions, e.g., ArchJava [6], specify architectural hierarchy and instances directly in code.
But ArchJava’s breaking extensions restrict how objects are used and require re-engineering an existing Java
system [10].

In contrast, Scholia achieves hierarchy in an object graph by having a developer pick a top-level object
as a starting point, then use local modular ownership annotations in the code [11, 12] to impose a conceptual
hierarchy on objects, with architecturally significant objects near the top of the hierarchy and data structures
further down. The annotations and object graph extraction are at the core of the approach, so we discuss
these next.

2.1 Ownership domain annotations

A developer uses local, modular (one class at a time) annotations to specify, in code, object encapsulation,
logical containment and architectural tiers, which are not explicit constructs in general-purpose programming
languages.

An ownership domain is a conceptual group of objects with an explicit name and explicit policies that
govern how a domain can reference objects in other domains [12]. Each object is assigned to a single
ownership domain that does not change at runtime. A developer indicates the domain of an object by
annotating each reference to that object in the program. For example, “DOM Type obj” declares a reference
obj of type Type in a domain DOM (Fig. 1).

Domain names are arbitrary, except for a few special annotations we discuss later. Ideally, a domain name
conveys architectural intent. We also use capital letters to distinguish domain names from other program
identifiers. A typechecker validates the annotations and identifies inconsistencies between the annotations
and the code.

The Scholia tools use existing language support for Java 1.5 annotations, which tends to be verbose
(Fig. 3) [11]. In this paper, we use a more readable syntax, focusing on a core Java language (Fig. 1). An
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L ∈ ClassDecl ::= class C<α> [extends C ′<β>]
assumes α′ → α′′ {L;D;F ; . . .}

L ∈ LinkDecl ::= link d → d′;
D ∈ DomDecl ::= [public] domain d;
F ∈ FieldDecl ::= T f ;

n ::= d | v

p ::= α | n.d | shared

T ∈ Type ::= powner C<pparams>

α, β ∈ DomParam C,C ′ ∈ ClassName

Figure 1: Simplified annotation syntax [12].

1 class LocalKeyStore<KEYID> {

2 private domain OWNED, KEYDATA;

3 public domain KEYS;

4 link KEYS -> KEYID, KEYS -> KEYDATA, OWNED -> KEYS;

5 assume OWNER -> KEYID;

6 private OWNED List<KEYS LocalKey<KEYDATA,KEYID>> keys;

7

8 public unique List<KEYS LocalKey<...>> getKeys() {

9 unique List<KEYS LocalKey<...>> copy = copy(keys);

10 return copy;

11 }

12 }

13 class List<ELTS T> {

14 private domain OWNED; // Private domain
15 OWNED Object[] rep; // Private representation
16 ELTS T obj; // Virtual field declaration
17 }

18 class LocalKey<KEYID,KEYDATA> {

19 assume OWNER -> KEYID, OWNER -> KEYDATA;

20 private KEYDATA String keyData; // encrypted key
21 private KEYID String keyId; // encrypted key id
22 ...

23 private OWNER SecretKeySpec key; // Make peer to self
24 }

Figure 2: LocalKeyStore and LocalKey annotations.

overbar represents a sequence.
The annotations define two kinds of object hierarchy, logical containment and strict encapsulation.

Logical containment A public domain provides logical containment and makes an object conceptually
“part of” another object. Having access to an object gives the ability to access objects inside all its public

1 @DomainParams({"KEYID", "KEYDATA"}) // Domain parameters
2 @DomainAssumes({"OWNER->KEYID", "OWNER->KEYDATA"})

3 class LocalKey {

4 private @Domain("KEYDATA") String keyData;

5 private @Domain("KEYID") String keyId;

6 ...

7 }

Figure 3: Using concrete Java 1.5 annotations [11].
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Figure 4: LocalKeyStore OOG.

domains. For example, in Fig. 2, LocalKeyStore declares a public domain, KEYS, to hold LocalKey objects
(line 3).

Strict encapsulation A private domain provides strict encapsulation. For instance, a public method
cannot return an alias to an object inside a private domain, even though the Java type system allows
returning an alias to a field marked as private. For example, LocalKeyStore stores the list of LocalKey

objects, keys, in a private domain, OWNED (line 6). As a result, the accessor getKeys must return a shallow
copy of the list, and cannot return an alias (line 8).

Domain parameters List is part of the Java standard library. Library code is often parametric with
respect to application components. For example, the List class is parametric in two ways (Fig. 2). First,
List is parametric in the type of the element stored in the List, hence the T type parameter (line 13).
List also takes a formal domain parameter, ELTS, that contains the elements stored in a List instance (this
assumes an ownership model where all the objects referenced by a List object are in the same domain).
Whenever a List is used, the formal domain parameter must be bound to another domain in scope, e.g.,
KEYS. The internal representation of the List is in a private domain. Because a List has virtual references
to the elements it holds, the annotation system allows a virtual field declaration to simulate that (line 16).

Similarly, LocalKey takes the KEYID and KEYDATA domain parameters (line 18). In turn, LocalKeyStore
takes a KEYID domain parameter (line 1). For example, LocalKeyStore binds its local domain KEYDATA to
LocalKey’s KEYDATA parameter (line 6).

Special annotations There are additional special annotations that add expressiveness [12]: unique in-
dicates an object to which there is only one reference, such as a newly created object, or an object that
is passed linearly from one domain to another. One ownership domain can temporarily lend an object to
another and ensure that the second domain does not create persistent references to the object by marking it
lent. An object that is shared may be aliased globally but may not alias non-shared references, and little
reasoning can be done about shared references.

2.2 Object graph extraction

Scholia extracts a hierarchical object graph that provides architectural abstraction by ownership hierarchy
and by types, the Ownership Object Graph (OOG).

The visualization uses box nesting to indicate containment of objects inside domains, and domains inside
objects (Fig. 4). Dashed-border, white-filled boxes represent domains. Solid-filled boxes represent objects.
Solid edges represent field references. An object labeled obj:T indicates an object reference obj of type T,
which we then refer to either as “object obj” or as “T object”, meaning for brevity, “an instance of the T

class”. E.g., LocalKey is inside KEYS. A private domain has a thick, dashed border; a public domain, a thin
one. A (+) symbol on an object or a domain indicates that it has a collapsed substructure.
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Figure 5: Overview of the Scholia approach.

In a runtime architecture, it is common practice to represent multiple objects at runtime with one
canonical component. Of course, at runtime, there are many LocalKey objects, but the OOG shows a single
representative.

An extracted object graph is sound in two respects. First, it approximates all objects and all relations
possibly created between those objects. Second, an object graph does not represent one runtime object
as separate nodes. The latter, aliasing soundness, relies on the type system’s guarantee that two objects
in different domains cannot be assigned to each other, and thus can never alias (but two objects in the
same domain may alias) [12]. Aliasing soundness is important for an architectural-level security analysis.
For instance, if an architecture showed the same entity as two components, one could assign them different
values for the key trustLevel property and potentially invalidate the analysis results.

In addition, ownership-parametric library code, such as List (Fig. 2), often creates interesting architec-
tural relationships in application objects, when these formal parameters are bound to actual domains on
specific objects created by the application. The static analysis resolves these parameters to ensure that the
relevant object relations appear at the level of the global application object structures—hence the edge from
keys to localKey (Fig. 4).

When adding annotations and extracting OOGs, the goal is to minimize the number of annotation
warnings, and the number of objects in the top-level domains.

2.3 Communication integrity and traceability

When reasoning about security, we want to ensure that the designed architecture is a conservative abstraction
of all the objects in the implemented system and the relations between those objects at runtime. Thus, the
goal is to show the worst case of possible communication between objects at runtime.

Of course, a static approach may generate false positives. An object graph obtained statically may show
relations that may never exist at runtime, due to infeasible paths. However, an object graph extracted using
a dynamic analysis can show the exact number of instances and the actual relations in a given program run,
it may not reflect important objects or relations that show up only in other executions.

To analyze communication integrity, Scholia follows the extract-abstract-check strategy [13], as follows
(Fig. 5): (1) Document the designed runtime architecture; (2) Add annotations to the code and typecheck
them (ArchCheckJ); (3) Extract an object graph (ArchRecJ); (4) Abstract an object graph into a built
architecture (ArchCog); (5) Structurally compare the built and the designed architectures; (6) Check and
enforce communication integrity in the designed architecture (ArchConf).

A developer can perform any of the following: (a) Iteratively refine the annotations based on visualizing
an extracted object graph, before abstracting it; (b) Fine-tune the abstraction of an object graph into an
architecture; (c) Manually guide the comparison of the built and the designed architecture, if the struc-
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tural comparison fails to perform the proper match; (d) Correct the code if she decides that the designed
architecture is correct, but that the implementation violates the architecture; or (e) Update the designed
architecture if she considers that the implementation highlights an omission in the architecture.

In the terminology of Murphy [13], the analysis identifies:
• Convergence: a node or an edge that is in both the built and the designed architectures (shown as

);
• Divergence: a node or an edge that is in the built architecture, but not in the designed architecture

( );
• Absence: a node or an edge that is in the designed architecture, but not in the built architecture ( ).
When analyzing communication integrity, the goal is to minimize the number of divergences and absences,

or to ensure that they do not correspond to cases where the implementation violates the architectural intent.

3 Enforcement Stage

Having analyzed conformance and established traceability between the target architecture and the code,
the enforcement stage can identify additional implementation-level violations of the architectural intent. At
the code level, annotations can enforce local, modular constraints. In addition, architectural predicates can
enforce global constraints.

Relating the target architecture and the code, together with effective change management, can help detect
unwanted architectural violations more effectively than inspecting the program, with or without annotations.
In the unannotated program, changing the runtime architecture is as simple as storing or passing a reference
to an object. The ownership annotations help somewhat. But a developer can still add communication paths
by adding domain links, declaring additional domain parameters and passing additional domain arguments
at object allocation sites. Code inspections could audit revisions that modify the domain link annotations
more closely. However, the annotations enforce modular constraints, so it is still necessary to identify code
modifications that impact the global architectural structure.

Extracting the up-to-date built architecture and analyzing its conformance to a target architecture makes
it easier to trigger an architectural review. Various constraints can be enforced by a visual inspection of the
conformance view. The structural constraints in the target architecture can always enforce these policies.
Indeed, empirical evidence suggests that such policies are frequently needed during software evolution. For
instance, a study using a well-designed framework (JHotDraw) showed that students subverted the frame-
work’s design by passing to and storing additional objects in the constructors of classes that implemented
the core framework interfaces [14].

3.1 Code-level constraints

We use domain link annotations to specify explicit policies that govern how a domain can reference objects
in other domains [12]. We illustrate them again by example.

A LocalKey assumes that its owning domain can access the KEYID and KEYDATA domain parameters. In
turn, when a LocalKeyStore instantiates a LocalKey, and binds KEYID and KEYDATA to KEYID and KEYS,
respectively, LocalKeyStore must satisfy those permissions. For the first one, it declares a domain link from
KEYS to KEYID (line 4). For the second one, it links KEYS to KEYDATA.

3.2 Architectural constraints

Documenting an architecture in an architecture description language (ADL) enables various architectural-
level analyses. We use Acme, a general-purpose ADL with mature tool support [15]. An ADL allows setting
architectural types, properties and constraints to specify architectural intent.

Architectural types The built architecture does not usually have rich architectural types. In principle,
one could add some to the built architecture, while abstracting an object graph, by mapping implementation
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types to architectural types. However, this is only a first approximation, because different instances of the
same implementation type such as HashMap, could correspond to architectural components of different types.

Relating the built and the designed architectures, and enriching the designed architecture, can uncover
additional violations of the architectural intent in the code.

Architectural properties In previous work, we defined element-level properties, such as trustLevel, to
support an architectural-level analysis to identify spoofing or tampering [2].

Structural constraints First-order logic predicates can enforce structural constraints [16], such as:
• Component instance c1 never directly connects to Component instance c2;
• A Component of type t1 never directly connects to a Component of type t2;
• No component in Group g1 communicates directly with any component in Group g2.
During this stage, the goal is to reduce the number of violations of architectural types, styles and con-

straints.

4 Evaluation

We validate the end-to-end approach using CryptoDB, a secure database system designed by security expert
Kevin Kenan in his book [17]. CryptoDB follows a database architecture that provides cryptographic pro-
tections against unauthorized access, and includes a 3,000-line sample implementation in Java. The presence
of both a Java implementation and an informal architectural description make CryptoDB an appropriate
choice to demonstrate our approach.

During the evaluation, the coauthors played the roles of architect and developer. The architect controlled
the target architecture, and the developer controlled the annotations and the code. In particular, the
developer was not allowed to change the target architecture himself, but instead had to convince the architect
that the proposed change was architecturally justified. Also, we forbade ourselves from making changes to
the source code, except to annotate it.

4.1 Conformance stage

During this stage, we annotated the code, extracted OOGs, and iterated the annotations until the OOG had
roughly similar tiers, a similar hierarchical decomposition, and a similar number of components in each tier,
when visually compared to the target architecture. We then constructed the target architecture, analyzed
its communication integrity, and established traceability to the code.

4.1.1 Gather available documentation

We studied the available architectural documentation, which consisted of various Data Flow Diagrams
(DFDs) along with accompanying, explanatory text [17]. We used these materials only as a guide, because
the implementation departed from this documentation in some respects (see Section 4.1.4 for an example).
We mined the diagrams for the architecturally significant elements, the top-level tiers, and the hierarchical
system decomposition.

It quickly became apparent that the documentation and the code used slightly different terminology. For
example, the documentation referred to a “key manager,” but the code had a KeyTool. In the following
discussion, we use the names from the implementation. A mapping between the two terminologies is in the
appendix [9].

4.1.2 Annotate the code

We organized instances of the core types into four top-level domains, as follows (Fig. 7):
• CONSUMERS: has CustomerManager, and EncryptionRequests, such as CustomerInfo and CreditCardInfo;
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Figure 6: CryptoDB OOG (Level 0) with Strings.

• PROVIDERS: has Provider, EngineWrapper;
• KEYSTORAGE: has KeyAliases and LocalKeyStore;
• KEYMANAGEMENT: has a KeyTool object.
For several classes Ci, we also defined one or more nested domains Di, which we refer to using the Ci::Di

notation:
• CustomerManager::RCPTS has CryptoReceipts;
• LocalKeyStore::KEYS has instances of LocalKey, SecretKeySpec, etc.; (Fig. 4)
• Provider::RCPTMGR has CompoundReceipt objects;
Refining the annotations. As part of applying the approach, we refined the annotations. One such

refinement was related to reasoning about String objects. In many applications, String objects are un-
interesting, and annotated with shared. Unless the user requests otherwise, an OOG purposely excludes
objects that are shared since they often add uninteresting clutter.

When reasoning about security, String objects can be interesting. Indeed, in CryptoDB, much com-
munication takes place through Strings. To better understand this communication, we declared different
domains for plain-text (PLAIN), encrypted (CRYPTO), alias identifier (ALIASID), and key identifier (KEYID)
Strings. In particular, the annotation typechecker checks that these Strings are not assigned to each other,
a perfectly valid operation in Java.

For example, Fig. 6 shows only the top-level domains and summarizes the field references between objects
in those domains using dotted edges. However, when analyzing conformance later, we simplified the OOG by
binding all the additional parameters for PLAIN, CRYPTO, etc., to the shared domain. This required changing
only the binding of these domain parameters in the top-level class, and changing a few lines of annotations
in the top-level class.

4.1.3 Extract object graphs

We then used ArchRecJ to extract an OOG from the annotated code. An OOG illustrates some of the key
differences between a code and a runtime architecture. For example, inside the Provider’s RCPTMGR domain,
a CompoundReceipt encapsulates a HashMap that maps String to CryptoReceipt objects. Separately, each
EncryptionRequest inside the CONSUMERS domain has a HashMap that maps Strings to Strings.

Abstraction by types. In addition to abstraction by ownership hierarchy, an OOG can provide ab-
straction by types, where a developer specifies which types are more architecturally significant than others
[18]. Based on this optional input, an OOG merges closely related objects, in a given domain, based on their
declared types. For example, with abstraction by types turned on, the CryptoDB OOG merges objects of
type CustomerInfo, and CreditCardInfo in the CONSUMERS domain, because their classes implement the
EncryptionRequest interface (Fig. 7).
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interface EncryptionRequest<PLAIN> {

unique Map<PLAIN String, PLAIN String> getPlaintexts();

}

class DecryptionResults<PLAIN>

implements EncryptionRequest<PLAIN> {

private domain OWNED;

OWNED Map<PLAIN String, PLAIN String> plaintexts = new ...;

unique Map<...> getPlaintexts() {

return copy(plaintexts); // Return copy of field
}

}

class CompoundReceipt<RCPTS,PLAIN,CRYPTO,ALIASID> {

private domain OWNED;

OWNED Map<PLAIN String,RCPTS CryptoReceipt> receipts = new ...;

}

class CryptoReceipt<CRYPTO,ALIASID> {

CRYPTO String ciphertext;

CRYPTO String iv;

ALIASID String aliasId;

}

class Provider<RQSTS,PLAIN,CRYPTO,ALIASID,RCPTS...> {

public domain RCPTMGR;

public RCPTMGR CompoundReceipt<...> encrypt(RQSTS EncryptionRequest<PLAIN> rqst...) {...}

public unique DecryptionResults<PLAIN> decrypt(RCPTMGR CompoundReceipt<...> wrapper) {...}

}

class CreditCardInfo<PLAIN>

implements EncryptionRequest<PLAIN> {

public unique Map<...> getPlaintexts() {

unique Map<PLAIN String, PLAIN String> map = new ...;

map.put(CustomerManager.CREDIT_CARD, creditCard);

...

return map;

}

}

class CustomerManager<CNSMRS,PRVDRS,PLAIN,CRYPTO,ALIASID...> {

public domain RCPTS;

PRVDRS Provider<CNSMRS,PLAIN,CRYPTO,ALIASID,RCPTS...> prov;

void testEncrypt() {

CNSMRS CreditCardInfo<PLAIN> cci = new CreditCardInfo();

prov.RCPTMGR CompoundReceipt<...> cciRcpts = prov.encrypt(cci, "cci");

}

void testDecrypt() {

prov.RCPTMGR CompoundReceipt<...> pii = new ...;

RCPTS CryptoReceipt<CRYPTO,ALIASID> r1 = new ...;

pii.addReceipt(FIRST_NAME, r1);

CNSMRS DecryptionResults<PLAIN> piiPlaintexts = prov.decrypt(pii);

}

}

class System {

domain CNSMRS,PRVDRS,KMGT,KSTR...;

KSTR LocalKeyStore<...> store = new LocalKeyStore();

KMGT KeyTool<KSTR...> tool = new KeyTool(store);

CNSMRS CustomerManager<...> mgr = new CustomerManager(store);

}

Figure 7: Portions of CryptoDB with annotations.
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Figure 8: CryptoDB OOG (Level 1), no Strings.

Hierarchy. Hierarchy allows both high-level and detailed understanding, by expanding or collapsing
selected elements. Fig. 8 shows the top-level domains and the objects directly inside them, with their
substructure collapsed, after binding all the domain parameters containing Strings to shared. In Fig. 9, we
manually expanded the substructures of mgr, provider, engine, etc. Here, we collapsed the substructure
of keyStore (which appears in Fig. 4).

4.1.4 Model the target architecture

We designed a target architecture using Acme. We based this architecture largely on the available DFDs
(Section 4.1.1). We represented the DFD processes and data stores using components. We used the Acme
representation feature to include subarchitectures corresponding to second-level DFDs. We used Acme
groups, depicted with dashed lines, to partition the architecture into broad areas of responsibility.

We added directional connectors based on the information in the textbook. In many cases, the points-to
connectors were the reverse of the data flow connectors in the DFDs.

We went through a process of iteration to get the architecture right. This was due in large measure to the
ways in which the implementation departed from the architecture. The implementation, in our case, was a
demonstrative implementation found in a security book, not a fully faithful implementation of the design. In
particular, the implementation was simplified in many respects. For instance, Kenan identifies in principle
a number of subcomponents of the cryptographic provider: an initializer, an encoder, a receipt manager,
an engine interface, and others [17, §6.1]. In the implementation, the provider was nearly monolithic; few
of these distinct responsibilities were actually allocated to separate objects. We had to modify our target
architecture to accommodate the casual way in which the implementation realized the described architecture.
(If we had not done so, we would have had to deal with these discrepancies later in the conformance stage.) In
a system in which the implementation more faithfully realized the design, less iteration would be necessary.

This iteration was partly due to the mismatch between conceptual and implementation-level architec-
tures. In Acme, a component is just a transparent view of a more detailed decomposition specified by
the representation of that component [19]. In an OOG, and the resulting built architecture, a component
collapses one or more objects that constitute its parts, according to their ownership and type structures.

In general, developers do not use hierarchical decomposition rigorously in DFDs. But in Scholia,
annotations can push almost any object underneath any other object in the ownership hierarchy (without
creating cycles). A child object may or may not be encapsulated by its parent object: a child object can
still be referenced from outside its owner if it is part of a public domain of its parent, or if a domain
parameter is linked to a private domain [12]. This allows a developer to use annotations to control the
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Figure 9: CryptoDB OOG (Level 2).

system decomposition in the OOG.
Another change we made in the process of iteration was to delete the external interactors. Although

useful for showing the endpoints of the system, they did not correspond to any code elements (since they
were, of course, external to the system) and so did not facilitate the analysis.

While iterating the annotations, we determined the similarity between the OOG and the target architec-
ture by visual inspection.

4.1.5 Analyze communication integrity

Object graphs tend to expose low-level implementation details. In Scholia, when internal state is placed in
private domains, the OOG abstraction tool, ArchCog, can leverage the semantic distinction between private
and public domains. For example, in LocalKeyStore, the private OWNED domain contains an ArrayList of
LocalKeys (Fig. 4). In the OOG (Fig. 9), we made the private domains appear as OWNED(+).
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Figure 10: CryptoDB conformance view in Acme.

We then analyzed communication integrity. ArchConf creates a conformance view of the target archi-
tecture (Fig. 10), which shows convergences, divergences, and absences, and has traceability to the code.

4.2 Enforcement stage

Having analyzed conformance and established traceability between the designed architecture and the Cryp-
toDB code, we now move to the enforcement stage.

4.2.1 Define code-level constraints

We defined domain links and assumptions, as discussed in Section 2.1. The resulting domain link decla-
rations in the top-level class were largely expected. As can be seen in Fig. 6, there are bidirectional links
between PROVIDERS and CONSUMERS. But the links are unidirectional from PROVIDERS and KEYMANAGEMENT to
KEYSTORAGE. Of course, there are no links from CONSUMERS to KEYSTORAGE. Note that domain link permissions
are not transitive.

4.2.2 Set architectural constraints

We wrote architectural constraints to express restrictions on the communication allowed in the architecture.
Then, we formalized these constraints and added them to the target architecture. Some of the constraints
include:

1. KeyManager should not connect to EngineWrapper;
2. KeyVault should not point to KeyManifest;
3. Only KeyManager and EngineWrapper should have access to KeyVault.
All these constraints reflect our understanding of the security requirements of the target architecture,

and indeed they are all roughly derived from commentary in Kenan’s book [17]. For example, constraint 3
is an adaptation of the following remark: “Access to the key vault [. . . ] should be granted to only security
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class Provider<RQSTS,KSTR...> {

assume OWNER->KSTR;

KSTR LocalKeyStore<KEYID> keyStore; // (1)
OWNER EngineWrapper<KSTR...> engine;

Provider(KSTR LocalKeyStore<KEYID> store) {

// Inject architectural violation
this.keyStore = store; // (2)
this.engine = new EngineWrapper(store);

}

}

Figure 11: Injected architectural violation.

officers and the cryptographic engine” (p. 71). The key manager is the architectural agent that security
officers use, hence we arrive at constraint 3.

Once we wrote these constraints, we formalized them using the Acme predicate language [16], as follows:

1. forall c : Component in KeyManagement.MEMBERS |

!connected(c, EngineWrapper)

2. !pointsTo(KeyVault, KeyManifest)
3. forall c : SyncCompT in self.COMPONENTS |

pointsTo(c, KeyVault) -> c.label=="KeyManager"

or c.label=="EngineWrapper"

The full Acme specification of the target architecture, including the architectural style and the definition
of the pointsTo predicate above, is in the appendix [9].

4.3 Evaluation summary

Scholia was able to successfully relate the security architecture and the implementation.
Renames. Because Scholia uses a structural comparison algorithm to compare the built and de-

signed architectures, it can analyze conformance despite the naming discrepancies—e.g., KeyManager versus
KeyTool.

Conformance findings. Overall, the top-level components in the target architecture (based on a Level-
1 DFD) and the implementation were mostly consistent, as indicated by the large number of convergences
(Fig. 10).

Drilling down into the representations of the some of the top-level components revealed more interesting
differences. For example, a Level-2 DFD (in the appendix [9]) shows an Encoder component inside the
Provider. However, the Encoder is implemented using a helper class Utils, which is never instantiated.
Hence, the corresponding absence in the conformance view. We could resolve this absence by modifying the
code to instantiate a singleton Utils object, without affecting the system’s behavior.

In the process of modeling the target architecture, we confronted a number of architecture–implementation
discrepancies of this nature. We ultimately dealt with them, in most cases, by modifying the target archi-
tecture to match the implementation. This was necessary because of the departures that the CryptoDB
implementation made from the cryptographic database architecture. Had we not reconciled the differences
at that stage, we would have had much more noise to sort through in the conformance operation. Naturally,
distinguishing between deliberate departures from the architecture and genuine architecture violations re-
quires careful judgment. However, we view it as a strength of our iterative approach that architects have the
opportunity to exercise their judgment in this way to forestall uninteresting violation reports from the tool.

In other cases, we refined the annotations. For instance, we had initially modeled all instances of
CryptoReceipt and CompoundReceipt in a RECEIPTS domain inside the CustomerManager. As a result,
the analysis flagged the ReceiptManager inside the CryptoProvider as an absence. Then we looked more
carefully at how the Provider and the CustomerManager exchanged these objects (Fig. 7). This led us
to define a RCPTMGR domain inside provider for CompoundReceipts, and left the CryptoReceipts in the
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RECEIPTS domain inside mgr (Fig. 9).
Constraint violations. Once we added the constraints to the target architecture, we used the AcmeS-

tudio tool to verify them. Due to the traceability we established between the architecture and source code,
we can have some confidence that the implementation meets these constraints.

To further validate our approach, we modified the CryptoDB code, injecting a manufactured architecture
violation to confirm that our constraints would catch it. Specifically, we coupled the Provider and the
LocalKeyStore as shown in Fig. 11. According to constraint 3 above, the Provider is not allowed to point
to the LocalKeyStore in this way. In the architecture, access to the key vault is highly restricted due to the
sensitivity of the contents.

When we modified the code in this way and ran our analysis, the predicate raised a warning about the
architectural violation in the conformance view. It is true that enforcing predicates at the architectural level
is not novel. But since our approach establishes traceability between the architecture and the code, enforcing
constraints at the architectural level allows enforcing global constraints on the application structure in the
code. In addition, the domain link checks alone would not have caught this violation. Both engine and
provider are peers in the same PROVIDERS domain (Fig. 8). So, there must already be a domain link from
PROVIDERS to KEYSTORAGE for engine to access the key vault.

5 Related Work

Architectural security analysis. Various architectural-level security analyses have been proposed [20, 21].
For example, UMLsec [22] extends UML with secrecy, integrity and authenticity, to allow analyzing security
weaknesses at the design level. However, conformance between the architecture and the implementation
is achieved using code generation, code analysis, and test-sequence generation. Code generation, while
potentially guaranteeing the correct refinement of an architecture into an implementation, is often too
restrictive to be fully adopted on a large scale and cannot account for legacy code. One could use the
approach in this paper to analyze an existing system, after the fact, by adding annotations to the code.

Conformance analysis. There are many approaches to analyze conformance to a code architecture (see
Knodel and Popescu for a comparative analysis [23]). However, the tool support for analyzing, statically,
communication integrity in a runtime architecture is much less mature. Scholia is modeled after, and
complements, Reflexion Models [13], which handles the code architecture only.

Language-based solutions. Like ArchJava [6], Scholia integrates architectural intent into source
code, but instead of extending Java with architectural components and ports, Scholia uses language support
for annotations. The evaluation in this paper did not require re-engineering a system to follow ArchJava’s
rules [10]. In this paper, we only added annotations to the code and typechecked them using a tool.

Abi-Antoun et al. also added ownership domain annotations to several subject systems [11, 24]. The study
in this paper has novel aspects. We added domain links (they were part of the formal model, but previously
not supported by the tools) and reasoned about Strings instead of marking them shared. Moreover, the
CryptoDB target architecture was drawn by a security expert instead of a professor [7], and has richer
types, properties and constraints than the previous architectures that Scholia analyzed, which increases
the external validity of the result.

Code generation. SecureUML [25] recommends a model-driven approach in which security constraints
are imposed on a model that is later elaborated into code. Of course, like all model-driven approaches, it is
useful only for construction of new systems, not for analysis of existing implementations. Our approach is
appropriate for use on existing code, requiring only annotations. Another difference is that SecureUML is
based on a code architecture.

Code-level analyses. Architectural analysis matches the way experts reason about security or privacy
better than a purely code-based strategy. Our approach complements, and does not supplant, code-level
analyses. Moreover, the traceability between a security architecture and the code that our approach derives
can benefit other static analyses. Until now, due to the lack of traceability, much of the security design intent
generated during threat modeling has not been easily accessible to other code quality tools. For instance,
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a static analysis checking for buffer overruns [26] can use this traceability to assign to its warnings more
appropriate priorities based on a more holistic view of the system.

Security testing. Analysis offers substantial benefits beyond those of testing alone. Perhaps most
significantly, since our approach is based on static analysis, it can reveal information about all possible runs
of a program, while testing is limited to a small number of runs. This difference is particularly important in
the security domain. Similar to testing is dynamic conformance analysis, which instruments and monitors a
system [27, 4].

Design enforcement. Many approaches can enforce local, modular, code-level constraints, e.g., [28].
Our approach is complementary, and can enforce structural constraints on the global runtime architectural
structure.

6 Conclusion

We presented the first approach to relate, entirely statically, a security runtime architecture to a program
written in a widely used object-oriented language, using annotations. Such an approach can increase the
effectiveness of reasoning architecturally about the security of existing systems, because it ensures that
the architecture is a faithful representation of the code, which is ultimately the most reliable and accurate
description of the built system.
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APPENDIX

A Documented Architectures

Fig. 12 is a Level-1 DFD.

Figure 12: CryptoDB documented DFD (Level 1) [17, Fig. 9.1].
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Fig. 13 is a Level-2 DFD which refines in place some of the components in the Level-1 DFD (Fig. 12).

Figure 13: CryptoDB documented DFD (Level 2) [17, Fig. 6.1].
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B Code Architecture

We used the Eclipse UML tool [29] to extract from the implementation various views of the code architecture.
Fig. 14 shows the package structure. Fig. 15 shows the class diagram with a few selected core types.
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Figure 14: CryptoDB layer diagram.
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Figure 15: CryptoDB class diagram.
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C Flat Object Graphs

Fig. 16 is a flat object graph obtained statically using Pangaea [30].
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Figure 16: CryptoDB flat object graph extracted using Pangaea.

Figs. 17, 18 are flat object graphs obtained statically using Womble [31].
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D Acme Source Code for Designed Architecture

Here, we reproduce the entire architectural model, in Acme [15]. We provide both the family file, SyncFam-
ily.acme, which defines the architectural family that supports Scholia, and the target architecture itself,
CryptoDBTarget.acme.

D.1 SyncFamily.acme

This file defines the architectural family SyncFamily. The properties defined here are used by Scholia for
conformance analysis.

import $AS GLOBAL PATH/families/TieredFam.acme;

Family SyncFamily extends TieredFam with {

analysis isSrcComponent(d1 : SyncCompT, conn : SyncConnT) : boolean =
connected(conn, d1) and

exists src : SyncUserT in conn.ROLES | exists put : SyncUseT in d1.PORTS |
declaresType(src, SyncUserT) and declaresType(put, SyncUseT)
and attached(src, put);

analysis isDstComponent(d2 : SyncCompT, conn : SyncConnT) : boolean =
connected(conn, d2) and

exists dst : SyncProviderT in conn.ROLES | exists get : SyncProvideT in d2.PORTS |
declaresType(dst, SyncProviderT) and declaresType(get, SyncProvideT)
and attached(dst, get);

analysis pointsTo(d1 : SyncCompT, d2 : SyncCompT) : boolean =
exists conn : SyncConnT in self.CONNECTORS |

isSrcComponent(d1, conn) and isDstComponent(d2, conn);

Role Type SyncUserT extends userT with {
Property syncStatus : int;

}
Component Type SyncCompT extends TierNodeT with {

Property syncStatus : int;
Property label : string;
Property hasDetail : boolean;
Property detailStatus : int;
Property traceability : string;

}
Connector Type SyncConnT extends CallReturnConnT with {

Property syncStatus : int;
Property label : string;
Property traceability : string;
Property summary : int;

}
Port Type SyncUseT extends useT with {

Property syncStatus : int;
}
Port Type SyncProvideT extends provideT with {

Property syncStatus : int;
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}
Role Type SyncProviderT extends providerT with {

Property syncStatus : int;
}

}

D.2 CryptoTargetDB.acme

This file defines the target architecture itself, including the constraints we discussed in the paper.

import families/SyncFamily.acme;

System CryptoDBTarget : SyncFamily = new SyncFamily extended with {

Component KeyVault : SyncCompT = new SyncCompT extended with {
Port KeyVault : SyncProvideT = new SyncProvideT;
Port KeyManager : SyncUseT = new SyncUseT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = “KeyVault”;
}
Component CryptoProvider : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncUseT = new SyncUseT;
Port CryptoProvider : SyncProvideT = new SyncProvideT;
Port CustomerManager : SyncUseT = new SyncUseT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = “CryptoProvider”;

Representation CryptoProvider Rep = {
System CryptoProvider Rep : SyncFamily = new SyncFamily extended with {

Component ReceiptManager : SyncCompT = new SyncCompT extended with {
Port ReceiptManager : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;

Property label = “ReceiptManager”;
}
Component Encoder : SyncCompT = new SyncCompT extended with {

Port CryptoProvider : SyncUseT = new SyncUseT;
Port Encoder : SyncProvideT = new SyncProvideT;

Property label = “Encoder”;
}

}
Bindings {

CustomerManager to ReceiptManager.CryptoProvider;
EngineWrapper to Encoder.CryptoProvider;

}
}

}
Component KeyManager : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncUseT = new SyncUseT;
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Port KeyVault : SyncUseT = new SyncUseT;
Port KeyManager : SyncProvideT = new SyncProvideT;

Property label = “KeyManager”;
}
Component KeyManifest : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncProvideT = new SyncProvideT;
Port KeyManager : SyncUseT = new SyncUseT;
Port CryptoProvider : SyncUseT = new SyncUseT;

Property label = “KeyManifest”;
}
Component EngineWrapper : SyncCompT = new SyncCompT extended with {

Port EngineWrapper : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;
Port KeyVault : SyncUseT = new SyncUseT;

Property label = “EngineWrapper”;

Representation EngineWrapper Rep = {
System EngineWrapper Rep : SyncFamily = new SyncFamily extended with {

Component Engine : SyncCompT = new SyncCompT extended with {
Port Engine : SyncProvideT = new SyncProvideT;
Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = “Engine”;
}

}
Bindings {

EngineWrapper to Engine.Engine;
CryptoProvider to Engine.EngineWrapper;

}
}

}
Component CustomerManager : SyncCompT = new SyncCompT extended with {

Port CustomerManager : SyncProvideT = new SyncProvideT;
Port CryptoProvider : SyncUseT = new SyncUseT;
Port CustomerInfo : SyncUseT = new SyncUseT;

Property label = “CustomerManager”;

Representation CustomerManager Rep = {
System CustomerManager Rep : SyncFamily = new SyncFamily extended with {

Component Receipts : SyncCompT = new SyncCompT extended with {
Port Receipts : SyncProvideT = new SyncProvideT;
Port CustomerManager : SyncUseT = new SyncUseT;

Property label = “Receipts”;
}

}
Bindings {
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CustomerManager to Receipts.Receipts;
CryptoProvider to Receipts.CustomerManager;

}
}

}
Component CustomerInfo : SyncCompT = new SyncCompT extended with {

Port CustomerManager : SyncUseT = new SyncUseT;
Port CustomerInfo : SyncProvideT = new SyncProvideT;

Property label = “CustomerInfo”;
}
Connector CustomerInfo CustomerManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector CustomerManager CustomerInfo : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector CustomerManager CryptoProvider : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector CryptoProvider CustomerManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector EngineWrapper CryptoProvider : SyncConnT = new SyncConnT extended with {

Role user : SyncUserT = new SyncUserT;
Role provider : SyncProviderT = new SyncProviderT;

}
Connector CryptoProvider EngineWrapper : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector KeyVault KeyManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector KeyManager KeyVault : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector KeyManifest KeyManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector KeyManager KeyManifest : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
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Connector KeyManifest CryptoProvider : SyncConnT = new SyncConnT extended with {
Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector CryptoProvider KeyManifest : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector KeyVault EngineWrapper : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Connector EngineWrapper KeyVault : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;
Role user : SyncUserT = new SyncUserT;

}
Attachment CryptoProvider.CustomerManager to CryptoProvider CustomerManager.user;
Attachment CustomerManager.CustomerManager to CryptoProvider CustomerManager.provider;
Attachment CustomerManager.CustomerManager to CustomerInfo CustomerManager.provider;
Attachment CustomerInfo.CustomerInfo to CustomerManager CustomerInfo.provider;
Attachment CustomerInfo.CustomerManager to CustomerInfo CustomerManager.user;
Attachment KeyManifest.CryptoProvider to KeyManifest CryptoProvider.user;
Attachment KeyVault.EngineWrapper to KeyVault EngineWrapper.user;
Attachment EngineWrapper.EngineWrapper to CryptoProvider EngineWrapper.provider;
Attachment EngineWrapper.CryptoProvider to EngineWrapper CryptoProvider.user;
Attachment EngineWrapper.EngineWrapper to KeyVault EngineWrapper.provider;
Attachment EngineWrapper.KeyVault to EngineWrapper KeyVault.user;
Attachment CryptoProvider.EngineWrapper to CryptoProvider EngineWrapper.user;
Attachment CryptoProvider.KeyManifest to CryptoProvider KeyManifest.user;
Attachment KeyVault.KeyManager to KeyVault KeyManager.user;
Attachment KeyManager.KeyVault to KeyManager KeyVault.user;
Attachment KeyManifest.KeyManager to KeyManifest KeyManager.user;
Attachment KeyManager.KeyManifest to KeyManager KeyManifest.user;
Attachment CryptoProvider.CryptoProvider to CustomerManager CryptoProvider.provider;
Attachment CryptoProvider.CryptoProvider to KeyManifest CryptoProvider.provider;
Attachment CryptoProvider.CryptoProvider to EngineWrapper CryptoProvider.provider;
Attachment KeyManifest.KeyManifest to CryptoProvider KeyManifest.provider;
Attachment KeyManifest.KeyManifest to KeyManager KeyManifest.provider;
Attachment KeyManager.KeyManager to KeyManifest KeyManager.provider;
Attachment KeyManager.KeyManager to KeyVault KeyManager.provider;
Attachment KeyVault.KeyVault to EngineWrapper KeyVault.provider;
Attachment CustomerManager.CryptoProvider to CustomerManager CryptoProvider.user;
Attachment CustomerManager.CustomerInfo to CustomerManager CustomerInfo.user;
Attachment KeyVault.KeyVault to KeyManager KeyVault.provider;
Group KeyManagement = {

Members {KeyManager}
}
Group CryptoConsumption = {

Members {CustomerManager, CustomerInfo,
CustomerManager CustomerInfo, CustomerInfo CustomerManager}

}
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Group CryptoProvision = {
Members {CryptoProvider, EngineWrapper,

CryptoProvider EngineWrapper, EngineWrapper CryptoProvider}
}
Group KeyStorage = {

Members {KeyManifest, KeyVault}
}
rule noVaultToManifest = invariant !pointsTo(KeyVault, KeyManifest);
rule keyManagementAndEngineDisconnected = invariant

forall c : Component in KeyManagement.MEMBERS | !connected(c, EngineWrapper);
rule limitedVaultAccess = invariant forall c : SyncCompT in self.COMPONENTS |

pointsTo(c, KeyVault) −> c.label == “KeyManager” OR c.label == “EngineWrapper”;
}

E Mapping between Architectural Components and Code Ele-

ments

The names of the components in the target architecture do not always match up exactly to the names of code
elements in the Java implementation. For example, some of the Java class names are implementation-specific
(LocalKeyStore instead of KeyVault). Table 1 provides a mapping between the components in the target
architecture and the corresponding Java classes.

Architectural Component Java Class Note
CustomerManager cryptodb.test.CustomerManager AKA “crypto consumer”
CustomerManager.Receipts cryptodb.CryptoReceipt Receipts the consumer holds

onto
CustomerInfo cryptodb.test.CustomerInfo AKA “protected data”
CryptoProvider cryptodb.core.Provider
CryptoProvider.ReceiptManager cryptodb.CompoundCryptoReceipt Used by the provider to pro-

duce receipts
CryptoProvider.Encoder cryptodb.Utils
EngineWrapper cryptodb.core.EngineWrapper
EngineWrapper.Engine javax.crypto.Cipher
KeyManifest cryptodb.KeyAlias The key manifest contains key

aliases
KeyVault cryptodb.core.LocalKeyStore The key vault contains keys

(LocalKeys)
KeyManager cryptodb.KeyTool

Table 1: Mapping between architectural components and code elements.

F Additional diagrams

F.1 Target architecture

The CryptoDB target architecture is in Fig. 19.

F.2 Built architecture

The C&C view obtained from the abstracted object graph is in Fig. 20.
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Figure 19: CryptoDB target architecture in Acme.

Figure 20: CryptoDB built architecture in Acme.

F.3 Extracted object graphs

An object graph without abstraction by types shows separate CustomerInfo and CreditCardInfo (Fig. 21).
With abstraction by types, these two are merged, because they both implement EncryptionRequest.

An object graph showing explicit top-level domains for the different kinds of Strings is in Fig. 22.
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Figure 21: CryptoDB OOG, binding top-level domains for String to shared.
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Figure 22: CryptoDB OOG with Strings.
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