
A Multi-Modal Intelligent Agent that Learns from
Demonstrations and Natural Language Instructions

Toby Jia-Jun Li
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

tobyli@cs.cmu.edu
http://toby.li/

CMU-HCII-21-102

May 3, 2021

Thesis Committee:

Brad A. Myers (Chair), Carnegie Mellon University
Tom M. Mitchell, Carnegie Mellon University
Jeffrey P. Bigham, Carnegie Mellon University
John Zimmerman, Carnegie Mellon University

Philip J. Guo, University of California San Diego

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright ©2021 Toby Jia-Jun Li

Keywords: end user development, end user programming, interactive task learning, programming
by demonstration, programming by example, multi-modal interaction, verbal instruction, natural
language programming, task automation, intelligent agent, instructable agent, conversational as-
sistant, human-AI interaction, human-AI collaboration.

Abstract

Intelligent agents that can perform tasks on behalf of users have become increasingly popular
with the growing ubiquity of “smart” devices such as phones, wearables, and smart home devices.
They allow users to automate common tasks and to perform tasks in contexts where the direct ma-
nipulation of traditional graphical user interfaces (GUIs) is infeasible or inconvenient. However,
the capabilities of such agents are limited by their available skills (i.e., the procedural knowledge
of how to do something) and conceptual knowledge (i.e., what does a concept mean). Most current
agents (e.g., Siri, Google Assistant, Alexa) either have fixed sets of capabilities or mechanisms that
allow only skilled third-party developers to extend agent capabilities. As a result, they fall short in
supporting “long-tail” tasks and suffer from the lack of customizability and flexibility.

To address this problem, I and my collaborators designed SUGILITE, a new intelligent agent
that allows end users to teach new tasks and concepts in a natural way. SUGILITE uses a multi-
modal approach that combines programming by demonstration (PBD) and learning from natural
language instructions to support end-user development for intelligent agents. The lab usability
evaluation results showed that the prototype of SUGILITE allowed users with little or no program-
ming expertise to successfully teach the agent common smartphone tasks such as ordering coffee,
booking restaurants, and checking sports scores, as well as the appropriate conditionals for trig-
gering these actions and the task-relevant concepts. My dissertation presents a new human-AI
interaction paradigm for interactive task learning, where the existing third-party app GUIs are
used as a medium for users to communicate their intents with an AI agent in addition to being the
interface for interacting with the underlying computing services.

Through the development of the integrated SUGILITE system over the past five years, this dis-
sertation presents seven main technical contributions including: (i) a new approach to allow the
agent to generalize from learned task procedures by inferring task parameters and their associ-
ated possible values from verbal instructions and mobile app GUIs, (ii) a new method to address
the data description problem in PBD by allowing users to verbally explain ambiguous or vague
demonstrated actions, (iii) a new multi-modal interface to enable users to teach the conceptual
knowledge used in conditionals to the agent, (iv) a new mechanism to extend mobile app based
PBD to smart home and Internet of Things (IoT) automation, (v) a new multi-modal interface that
helps users discover, identify the causes of, and recover from conversational breakdowns using
existing mobile app GUIs for grounding, (vi) a new privacy-preserving approach that can identify
and obfuscate the potential personal information in GUI-based PBD scripts based on the unique-
ness of information entries with respect to the corresponding app GUI context, and (vii) a new
self-supervised technique for generating semantic representations of GUI screens and components
in embedding vectors without requiring manual annotation.

Acknowledgements

This thesis would not be possible without my advisor, Brad Myers, who has been tremendously
supportive in the past 5 years. He has provided guidance, resources, and importantly, freedom that
helped me grow into a more mature researcher where I am able to define and execute new research
agendas. Brad also served as a role model to me for his passion and enjoyment of research and his
investment and pride in his students’ success. I am proud to be the newest branch of Brad’s sizable
academic family tree and hopefully can contribute to growing the tree bigger.

Tom Mitchell provided valuable mentorship and encouragement as I ventured into the inter-
section of HCI and AI. Tom has always been positive to any new ideas I propose—but more im-
portantly, he asked insightful and sharp questions that helped me further develop the preliminary
ideas into concrete research plans.

I would also like to thank my other committee members, Jeff Bigham, John Zimmerman, and
Philip Guo, for their valuable feedback and continued support. I am indebted to Brent Hecht, who
opened up the doors to research for me by taking me on as a research assistant in my sophomore
year of college and showing me the ropes of HCI. I also thank those who have been mentors and
champions for me at different stages of my academic career: Loren Terveen, Shilad Sen, Oriana
Riva, Henry Lieberman, and Ranjitha Kumar.

I am fortunate to have the opportunity of working with fabulous collaborators on this project,
including Amos Azaria, Brandon Canfield, Fanglin Chen, Haijun Xia, Igor Labutov, Jingya Chen,
Justin Jia, Jeremy Wei, Kirielle Singarajah, Lindsay Popowski, Marisssa Radensky, Nancy Xi-
aohan Li, Tiffany Cai, Vanessa Hu, Wanling Ding, Wenze Shi, William Timkey, Xiaoyi Zhang,
and Yuanchun Li. I am also thankful for the support from wonderful friends and colleagues
in the HCII and SCS community: Alexandra To, Amber Horvath, Anhong Guo, Anthony ‘Xi-
ang’ Chen, Cori Faklaris, Cole Gleason, Diyi Yang, Erica Cruz, Fannie Liu, Felicia Ng, Forough
Arabshahi, Franceska Xhakaj, Franklin Li, Gierad Laput, Joseph Seering, Judith Uchidiuno, Judy
Choi, Julia Ramos, Julia Cambre, Kareem Bedri, Karan Ahuja, Ken Holstein, Kenneth Huang,
Kerry Chang, Kristin Williams, Mary Beth Kery, Michael Xieyang Liu, Michael Madaio, Michael
Rivera, Nikola Banovic, Qian Yang, Queenie Kravitz, Rushil Khurana, Robert Xiao, Sauvik Das,
Saiganesh Swaminathan, Siyan Zhao, Steven Dang, Tianshi Li, Tianying Chen, Xu Wang, Yang
Zhang, Yasmine Kotturi, Zheng Yao, and many more.

This project has received generous financial support from corporate and governmental spon-
sors, including the National Science Foundation, Verizon, Yahoo!, J.P. Morgan, and Google Cloud.
I also want to thank the anonymous study participants, Mechanical Turk workers, and paper re-
viewers who contributed to this work.

Finally, I am deeply grateful to my family—my wife, my daughter, and my parents for their
unconditional love, as evidenced by bearing with me as I went through this challenging solitary
endeavor and celebrating every single tiny success I had along the way.

Contents

List of Figures vi

List of Tables x

List of Acronyms xii

1 Introduction 1
1.1 An End-User Programmable Intelligent Agent . 3

1.1.1 Challenges . 4
1.1.2 My Approach . 5

1.2 Contributions . 6
1.3 Outline . 8

2 Background 10
2.1 Programming by Demonstration . 10
2.2 Natural Language Programming . 12
2.3 Multi-modal Interfaces . 13
2.4 End User Development for Task Automation . 15
2.5 Understanding App Interfaces . 15
2.6 Breakdown Handling in Task-Oriented Dialogues 17

3 The SUGILITE System 19
3.1 Introduction . 19
3.2 Example Usage Scenario . 20

3.2.1 Order Starbucks Coffee . 21
3.2.2 Additional Examples . 22

3.3 SUGILITE’s Key Features . 22
3.3.1 Multi-Modal Interaction . 22
3.3.2 Script Generalization . 23
3.3.3 Error Checking and Handling . 25
3.3.4 Manual Script Editing . 26

3.4 System Implementation . 27
3.4.1 Conversational Interface . 27
3.4.2 Background Accessibility Service . 27
3.4.3 Recording Handler . 27

i

3.4.4 Execution Handler . 28
3.4.5 SUGILITE API . 29

3.5 User Study . 29
3.5.1 Participants . 29
3.5.2 Sample Tasks . 30
3.5.3 Procedure . 31
3.5.4 Results . 31
3.5.5 Time Trade-off . 33
3.5.6 Subjective Feedback . 33
3.5.7 Discussion . 34

3.6 Chapter Conclusion . 35

4 The Data Description Problem 37
4.1 Introduction . 37
4.2 Formative Study . 39
4.3 APPINITE’s Design and Implementation . 41

4.3.1 UI Snapshot Knowledge Graph Extraction 41
4.3.2 Instruction Parsing . 43
4.3.3 Interaction Proxy Overlay . 45

4.4 User Study . 46
4.4.1 Participants . 46
4.4.2 Tasks . 47
4.4.3 Procedure . 47
4.4.4 Results . 48
4.4.5 Discussion . 48

4.5 Chapter Conclusion . 49

5 Learning Task Conditionals and Concepts 50
5.1 Introduction . 50
5.2 Formative Study . 52

5.2.1 App GUI Grounding Reduces Unclear Concept Usage 53
5.2.2 Unmet User Expectation of Common Sense Reasoning 53
5.2.3 Frequent Omission of Else Statements . 54

5.3 PUMICE’s Design . 56
5.3.1 Example Usage Scenario . 56
5.3.2 Design Features . 57

5.4 System Implementation . 62
5.4.1 Semantic Parsing . 62
5.4.2 Knowledge Representations . 62

5.5 User Study . 63
5.5.1 Participants . 64
5.5.2 Procedure . 64
5.5.3 Tasks . 65
5.5.4 Results . 66
5.5.5 Discussion . 68

ii

5.6 Chapter Conclusion . 68

6 Applications in Smart Home Scenarios 70
6.1 Introduction . 70
6.2 EPIDOSITE’s Advantages . 71
6.3 Example Usage Scenario . 72
6.4 EPIDOSITE’s Key Features . 75

6.4.1 Notification and App Launch Triggers . 75
6.4.2 External Service Triggers . 75
6.4.3 Cross-app Interoperability . 77

6.5 System Implementation and Technical Limitations 79
6.6 Chapter Conclusion . 80

7 Breakdown Repairs in Task-Oriented Dialogues 81
7.1 Introduction . 81
7.2 Problem Setting . 85

7.2.1 Frame-Based Task-Oriented Conversational Agents 85
7.2.2 Design Goals . 86

7.3 Background . 87
7.3.1 Studies of Breakdowns in Conversational Interfaces 87
7.3.2 Multi-Modal Mixed-Initiative Disambiguation Interfaces 88

7.4 The Design of SOVITE . 88
7.4.1 Communicating System State with App GUI Screenshots 88
7.4.2 Intent Detection Repair with App GUI References 90
7.4.3 Slot Value Extraction Repair with Direct Manipulation 92

7.5 Implementation . 93
7.5.1 Generating the App GUI Screenshot Confirmations 94
7.5.2 Finding Relevant Intents from Apps and App Screens 95

7.6 User Study . 97
7.6.1 Participants . 97
7.6.2 Study Design . 97
7.6.3 Results . 98

7.7 Discussion . 99
7.8 Limitations and Future Work . 101
7.9 Chapter Conclusion . 102

8 Privacy in Sharing Demonstrated Scripts 103
8.1 Introduction . 103
8.2 Related Work . 105

8.2.1 Sharing and Cooperations in End User Development 105
8.2.2 Identifying Personal & Private Information in Data Sharing 107

8.3 Background . 108
8.3.1 SUGILITE Scripts . 108
8.3.2 Data Descriptions and GUI Snapshot Graphs 109
8.3.3 Sources of Personal Information Leaks 112

iii

8.3.4 Threat Model . 113
8.4 Our Approach . 113

8.4.1 Overview . 114
8.4.2 Information Entries as App Context-Content Pairs 115
8.4.3 Background Data Collection . 116
8.4.4 Identifying Personal Information for PBD Script Sharing 117
8.4.5 The Interactive Interface . 118
8.4.6 Rebuilding Scripts with Obfuscated Information by Script Consumers . . . 120

8.5 Evaluation . 122
8.5.1 Accuracy of Identifying Potential Personal Information 123
8.5.2 User Study . 125

8.6 Limitations . 128
8.7 Future Work . 130
8.8 Chapter Conclusion . 130

9 The Semantic Representation of GUIs 131
9.1 Introduction . 131
9.2 Our Approach . 134

9.2.1 Dataset . 135
9.2.2 Models . 136
9.2.3 Training Configurations . 140
9.2.4 Baselines . 141
9.2.5 Prediction Task Results . 142

9.3 Sample Downstream Tasks . 143
9.3.1 Nearest Neighbors . 145
9.3.2 Embedding Composability . 149
9.3.3 Screen Embedding Sequences for Representing Mobile Tasks 149

9.4 Potential Applications . 150
9.5 Limitations and Future Work . 152
9.6 Related Work in Embedding Natural Language 153
9.7 Chapter Conclusion . 154

10 Limitations, Future Work, and Conclusion 155
10.1 System Limitations . 155

10.1.1 Platform . 155
10.1.2 Runtime Efficiency . 156
10.1.3 Expressiveness . 156
10.1.4 Brittleness . 157

10.2 Future Work . 158
10.2.1 Generalization in Programming by Demonstration 158
10.2.2 Human-Agent Co-Creation . 159
10.2.3 Field Study of SUGILITE . 160

10.3 Conclusion . 160

iv

A A Need-finding Study for Understanding Text Entry in Smartphone App Usage 163
A.1 Introduction . 164
A.2 Related Work . 165
A.3 Pre-Survey . 167
A.4 Longitudinal Study . 168

A.4.1 Participants . 169
A.4.2 Tracking Tool . 169
A.4.3 Study Procedure . 170
A.4.4 Dataset . 171

A.5 Results . 171
A.5.1 Characterizing Text Entry Behaviors in App Usage 171
A.5.2 Text Entry in Cross-application Interactions 178

A.6 Discussion . 181
A.7 Conclusion and Future Work . 181

Bibliography 183

v

List of Figures

Figure 1.1 The typical role of a GUI. The GUI sits between the user and the back
end services, where it receives direct manipulation inputs from the user, sends
corresponding calls to the back-end services, and displays the results to the user. . . 2

Figure 1.2 The typical role of a prevailing intelligent agent. The agent acts based on
the user’s speech command or specified automation rule, directly invokes back-
end services through API calls, and returns the results to the user through either
the display or spoken feedback. 3

Figure 1.3 The role of the SUGILITE agent between the user and the app GUI. At
programming time, SUGILITE learns the task procedure and relevant concepts by
observing the user’s demonstration using the app GUI while getting the user’s ver-
bal instructions in natural language. At the execution time, SUGILITE directly
manipulates the app GUI on the user’s behalf to perform the task. 7

Figure 3.1 Screenshots of the original version of the core SUGILITE system: (a) the
conversational interface; (b) the recording confirmation popup; (c) the recording
disambiguation/operation editing panel and (d) the viewing/editing script window.
Note that in newer versions, the conversational interface (a) has been replaced
with PUMICE (Chapter 5), and the data description disambiguation interface (c)
has been replaced with APPINITE (Chapter 4). 20

Figure 3.2 The average task completion time for the participants grouped by their pro-
gramming experience. Shorter bars are better. Error bars show the standard devia-
tions. 32

Figure 4.1 Specifying data description in programming by demonstration using AP-
PINITE: (a, b) enable users to naturally express their intentions for demonstrated
actions verbally; (c) guides users to formulate data descriptions to uniquely iden-
tify target GUI objects; (d) shows users real-time updated results of current queries
on an interaction overlay; and (e) formulates executable queries from natural lan-
guage instructions. 38

Figure 4.2 APPINITE’s error handling interfaces for handling situations where the in-
struction and the demonstration do not match. 40

Figure 4.3 A snippet of an example GUI where the alignment suggests a semantic
relationship — “This is the score for Minnesota” translates into “Score is the
TextView object with a numeric string that is to the right of another TextView
object Minnesota.” . 41

vi

Figure 4.4 APPINITE’s instruction parsing process illustrated on an example UI snap-
shot graph constructed from a simplified GUI snippet. 44

Figure 5.1 Example structure of how PUMICE learns the concepts and procedures in
the command “If it’s hot, order a cup of Iced Cappuccino.” The numbers indi-
cate the order of utterances. The screenshot on the right shows the conversational
interface of PUMICE. In this interactive parsing process, the agent learns how to
query the current temperature, how to order any kind of drink from Starbucks, and
the generalized concept of “hot” as “a temperature (of something) is greater than
another temperature”. 54

Figure 5.2 The conversational interface of PUMICE for the concept learning process
shown in Figure 5.1. 55

Figure 5.3 The user teaches the value concept “commute time” by demonstrating query-
ing the value in Google Maps. The red overlays highlight all durations PUMICE

was able to identify on the Google Maps GUI. 60
Figure 5.4 An example showing how PUMICE parses the user’s demonstrated action

and verbal reference to an app’s GUI content into a SET VALUE statement with
a query over the UI snapshot graph when resolving a new value concept “current
temperature.” . 63

Figure 5.5 The graphical prompt used for Task 1 – A possible user command can
be “Order Iced coffee when it’s hot outside, otherwise order hot coffee when the
weather is cold.” . 65

Figure 5.6 The average task completion times for each task. The error bars show one
standard deviation in each direction. 67

Figure 6.1 Screenshots of EPIDOSITE: (a) the main screen of EPIDOSITE showing a
list of available scripts; (b) the confirmation dialog for an operation; (c) the data
description editing panel for one operation. Note that in the latest version, the data
description editing panel (c) has been replaced with APPINITE (see Chapter 4). . . 73

Figure 6.2 Screenshots of EPIDOSITE’s script view and trigger creation interfaces: (a)
the script view showing the script from the example usage scenario; (b) the window
for creating an app notification trigger; (c) the window for creating an app launch
trigger. 74

Figure 6.3 The architecture of EPIDOSITE’s external service trigger mechanism. 76
Figure 6.4 Creating an IFTTT applet that triggers an EPIDOSITE script: (a) creating the

trigger condition “sleep duration below 6 hours” using the Fitbit activity tracker;
(b) creating the action of running the EPIDOSITE script “coffeemachine” using the
URL generated by EPIDOSITE; (c) the IFTTT applet created. 76

Figure 6.5 Extracting the time of the last detection from a D-link motion sensor in the
Mydlink Home app using a circle gesture in EPIDOSITE. 78

vii

Figure 7.1 The interface of SOVITE: (a) SOVITE shows an app GUI screenshot to
communicate its state of understanding. The yellow highlight overlay specifies
the task slot value. The user can drag the overlay to fix slot value errors. (b)
To fix intent detection errors, the user can refer to an app that represents their
desired task. SOVITE will match the utterance to an app on the phone (with its
icon shown), and look for intents that use or are relevant to this app. (c) If the
intent is still ambiguous after referring to an app, the user can show a specific app
screen relevant to the desired task. 82

Figure 7.2 SOVITE provides multiple ways to fix text-input slot value errors: LEFT:
the user can click the corresponding highlight overlay and change its value by ad-
justing the selection in the original utterance, speaking a new value, or just typing
in a new value. RIGHT: the user can drag the overlays on the screenshot to move
a value to a new slot, or swap the values between two slots. 93

Figure 8.1 Some examples of potential information leaks from the app GUIs. The red
circles highlight personal information directly displayed (e.g., name, point balance,
order history, current address). The blue circles highlight information that can be
used for re-identification attacks (e.g., the user’s favorite teams and the name of a
nearby Starbucks location can be used for inferring the user’s location). 104

Figure 8.2 A simple example GUI, its corresponding UI snapshot graph, and some
example possible data description queries for button 1 on the graph (highlighted
in red). 108

Figure 8.3 An example SUGILITE script for paying off the credit card balance using the
American Express app. The screenshot (a) shows the user-readable descriptions
for the operations, and the screenshot (b) shows the raw source of the script. The
red triangles point to data description queries that include the user’s bank account
information. The screenshot (c) shows the corresponding app screen for the data
description query. 110

Figure 8.4 The diagram shows the pipeline of how our approach collects and aggre-
gates information entries in an example third party app, uses those to compute the
uniqueness for information entries before sharing a script, and obfuscates potential
personal information in the shared script. 114

Figure 8.5 The result of processing the script shown in Figure 8.3. The left side shows
the review interface for the script author, where the identified personal information
is highlighted in red. The right side shows the source of the processed script, where
the content of identified personal information is replaced by its hash. 119

Figure 9.1 The two-level architecture of Screen2Vec for generating GUI component
and screen embeddings. The weights for the steps in teal color are optimized
during the training process. 134

Figure 9.2 Screen2Vec extracts the layout of a GUI screen as a bitmap, and encodes
this bitmap into a 64-dimensional vector using a standard autoencoder architecture
where the autoencoder is trained on the loss of the output of the decoder [66]. . . . 139

Figure 9.3 The interface shown to the Mechanical Turk workers for rating the similar-
ities for the nearest neighbor results generated by different models. 144

viii

Figure 9.4 The example nearest neighbor results for the Lyft “request ride” screen
generated by the Screen2Vec, TextOnly, and LayoutOnly models. 147

Figure 9.5 An example showing the composability of Screen2Vec embeddings:
running the nearest neighbor query on the composite embedding of (Marriott app’s
hotel booking page + Cheapoair app’s hotel booking page − Cheapoair app’s
search result page) can match the Marriott app’s search result page, and the similar
pages of a few other travel apps. 148

Figure A.1 Proportions of Light, Heavy and Non-Text Entry Usage for Three Types of
Communication Apps . 175

Figure A.2 Distribution of Structured Data Entry Usage across App Categories (“Comm”
is the Communications category) . 176

Figure A.3 Clipboard Contents by Structure Type . 177
Figure A.4 Distribution of Copy-and-Paste Counts across App Categories. “Copy-

Same” means the copy or cut operation was in an app, and the corresponding paste
was also in the same app. “Copy-CrossApp” means the copy/cut was in an app and
the paste was in a different app. Similarly for “Paste-xx” where the paste was in
this category and the copy/cut was either here or in a different app. 180

ix

List of Tables

Table 3.1 Number of participants (#) grouped by programming experience 29
Table 3.2 Average time to automate the task (t̄), average time to perform the task man-

ually (¯tm), time to run the automation (t̄0), and the “break-even” point (n) for the
four tasks. 33

Table 3.3 Average scores on usability questions from the post-questionnaire (on a 7-
point scale). 34

Table 3.4 Average scores on usefulness questions from the post-questionnaire (on a
7-point scale). 34

Table 7.1 The 6 breakdown types and a ”no error” type covered in the user study, an
example scenario for each type, and their corresponding user repair methods using
SOVITE. All participants saw all 7 in random order. 96

Table 8.1 The result of the evaluation, showing the app name, the task, the number of
information entries collected (n), the number of information entries that contained
personal information (npersonal), the recall, the precision, and the accuracy for each
script. 124

Table 9.1 The 26 categories (including the “Others” category) of GUI class types we
used in Screen2Vec and their associated base class names. Some categories
have additional heuristics, as shown in the notes. This categorization is adapted
from [183]. 137

Table 9.2 The GUI component prediction performance of the Screen2Vec(S2V)
model . 142

Table 9.3 The GUI screen prediction performance of the three variations of the Screen2Vec
model and the baseline models (TextOnly, LayoutOnly, and VisualOnly). 144

Table 9.4 The mean screen similarity rated by the Mechanical Turk workers for the
top-5 nearest neighbor results of the sample source screens generated by the 3
models: Screen2Vec, TextOnly, and LayoutOnly. 146

Table 9.5 A list of 10 tasks we used for the preliminary evaluation of using Screen2Vec
for task embedding, along with the apps used and the count of screens used in the
task embedding for each variation. 150

Table A.1 Descriptive Statistics for App Usage . 172
Table A.2 App Category and Example Apps Sorted by Usage 173
Table A.3 Descriptive Statistics for Sessions . 178

x

Table A.4 Comparing Descriptive Statistics for Non-Text Entering Sessions and Text-
Entering Sessions . 179

xi

List of Acronyms

Following a tradition1 started by my doctoral advisor Brad Myers, the names of most of the systems
and subsystems described in this dissertation are acronyms based on gemstones or rocks. Below is
a list of these acronyms and what they stand for, as well as references to the corresponding chapters
in this dissertation.

1. SUGILITE

Smartphone Users Generating Intelligent Likeable Interfaces Through Examples
An end-user-programmable intelligent agent that can learn new tasks from the user through
a combination of app demonstrations and natural language instructions. (Chapter 3)

2. APPINITE

Automation Programming on Phone Interfaces using Natural-language Instructions with
Task Examples
A subsystem of SUGILITE that allows users to use spoken natural language to disambiguate
and clarify the intents for their demonstrations. (Chapter 4)

3. PUMICE

Programming in a User-friendly Multimodal Interface through Conversations and Examples
A subsystem of SUGILITE that allows users to teach conditionals and concepts through a

1The full list of all systems and their acronyms from Brad and his students is available at https://www.cs.
cmu.edu/˜bam/acronyms.html.

xii

https://www.cs.cmu.edu/~bam/acronyms.html
https://www.cs.cmu.edu/~bam/acronyms.html

mixed-initiative dialog framework. (Chapter 5)

4. EPIDOSITE

Enabling Programming of IoT Devices On Smartphone Interfaces for The End-users
A subsystem of SUGILITE that allows users to instruct automation rules that involve smart
home devices through their corresponding mobile apps. (Chapter 6)

5. SOVITE

System for Optimizing Voice Interfaces to Tackle Errors
A subsystem of SUGILITE that allows users to recover from conversational breakdowns
caused by natural language understanding errors. (Chapter 7)

6. PINALITE

Personal Information Nicely Anonymized Leveraging Interface Trace Examples
A subsystem of SUGILITE that allows users to remove personal information from their
recorded systems and share their scripts with each other in a privacy-preserving way (Chap-
ter 8)

7. SCREEN2VEC

Screen 2(to) Vector *not rock or gemstone themed
A self-supervised technique for encoding the semantics of GUI screens into a vector space
so screens that are semantically similar to each other can be closer in the space. (Chapter 9)

xiii

Chapter 1

Introduction

With the widespread popularity of mobile apps, users are utilizing them to complete a wide variety

of tasks ranging from information query (e.g., checking the weather), making purchases (e.g.,

ordering coffee), communicating (e.g., sending messages), to performing professional job duties

(e.g., managing server configurations) [42, 307]. These apps interact with users through graphical

user interfaces (GUIs), where users usually provide inputs by direct manipulation and read outputs

from the GUI display (see Figure 1.1). Most GUIs are designed with usability in mind, providing

non-expert users low learning barriers to commonly-used computing tasks. App GUIs also often

follow certain design patterns that are familiar to users, which helps them easily navigate around

GUI structures to locate the desired functionalities [2, 66, 241].

However, GUI-based mobile apps have several limitations. First, performing tasks on GUIs

can be tedious especially when the task is repetitive. For example, the Starbucks app on Android

requires 14 taps to order a cup of venti Iced Cappuccino with skim milk (as of 2019), and even

more if the user does not have the account information stored. For such tasks, users would often

like to have them automated [6,193,237]. Second, direct manipulation of GUIs is often not feasible

or convenient in some contexts, such as when the user is away from the phone or when the user

is occupied with other tasks. Third, many tasks require coordination among many apps, but data

often remain siloed in individual apps [46]. In a formative study we did with 17 active smartphone

users in 2016 (see Appendix A), many users reported having to remember information displayed

on the GUI of one app, and retype it into the GUI of another app for cross-app tasks. While

most smartphone systems support copy-and-paste and many mobile apps utilize the “share to”

feature to support cross-app data transfer, these features can be frustrating or difficult to use as

reported by users in our interviews. Lastly, while some app GUIs provide certain mechanisms

of personalization (e.g., remembering and pre-filling the user’s home location), they are mostly

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The typical role of a GUI. The GUI sits between the user and the back end services, where it
receives direct manipulation inputs from the user, sends corresponding calls to the back-end services, and
displays the results to the user.

hard-coded. Users rarely have means to create customized rules or to specify personalized task

parameters to reflect their preferences beyond what the app developers have explicitly designed

for.

Recently, intelligent agents like Apple Siri, Google Assistant, and Amazon Alexa have become

popular solutions to the limitations of GUIs. They can be activated by speech commands to perform

tasks on the user’s behalf [189]. This interaction style allows the user to focus on the high-level

specification of the task while the agent performs the low-level actions, as opposed to the usual

direct manipulation GUI in which the user must select the correct objects, execute the correct

operations, and control the environment [38, 252]. Compared with traditional GUIs, intelligent

agents can reduce user burden when dealing with repetitive tasks, and alleviate redundancy in

cross-app tasks. The speech modality in intelligent agents can support hands-free contexts when

the user is physically away from the device, cognitively occupied by other tasks (e.g., driving), or

on devices with little or no screen space (e.g., wearables) [185]. The improved expressiveness in

natural language also affords more flexible personalization in tasks.

Nevertheless, current prevailing intelligent agents have limited capabilities. They invoke un-

derlying functionalities by directly calling back-end services (shown in Figure 1.2). Therefore,

agents need to be specifically programmed for each supported application and service. By default,

they can only invoke built-in apps (e.g., phone, message, calendar, music) and some integrated

external apps and web services (e.g., web search, weather, Wikipedia), lacking the capability of

controlling arbitrary third-party apps and services. To address this problem, providers of intelli-

gent agents, such as Apple, Google, and Amazon, have released developer kits for their agents, so

that the developers of third-party apps can integrate their apps into the agents to allow the agents

to invoke these apps from user commands. However, such integration requires significant cost and

2

1.1. AN END-USER PROGRAMMABLE INTELLIGENT AGENT

Figure 1.2: The typical role of a prevailing intelligent agent. The agent acts based on the user’s speech
command or specified automation rule, directly invokes back-end services through API calls, and returns
the results to the user through either the display or spoken feedback.

engineering effort from app developers, therefore only some of the most popular tasks in popular

apps have been integrated into prevailing intelligent agents so far. The “long-tail” of tasks and apps

have not been supported yet, and will likely not get supported due to the cost and effort involved.

Prior literature [293] showed that the usage of these “long-tail” apps made up a significant por-

tion of user app usage. Smartphone users also have highly diverse usage patterns within apps [307]

and wish to have more customizability over how agents perform their tasks [64]. Therefore, rely-

ing on third-party developers’ effort to extend the capabilities of intelligent agents is not sufficient

for supporting diverse user needs. It is not feasible for end users to develop for new tasks in pre-

vailing agents on their own either, due to (i) their lack of the required technical expertise, and (ii)

the limited availability of openly accessible application programming interfaces (APIs) for many

back-end services, as shown in Figure 1.2.

1.1 An End-User Programmable Intelligent Agent

To address this problem, I designed, implemented, and studied a new end-user programmable

intelligent agent called SUGILITE1 [159] in this dissertation. The thesis for my dissertation is:

1SUGILITE is named after a purple gemstone, and stands for: Smartphone Users Generating Intelligent Likeable
Interfaces Through Examples.

3

CHAPTER 1. INTRODUCTION

A multi-modal end user development system that combines programming by demonstra-
tion and natural language instructions can empower users without significant programming
expertise to extend and customize intelligent agents for their own app-based computing tasks.

1.1.1 Challenges

Based on prior works in end user development (EUD) for task automation, I identify the following

key research challenges that SUGILITE seeks to address:

• Usability: SUGILITE should be usable for users without significant programming expertise.

Some prior EUD systems (e.g., [184,237]) require users to program in a visual programming

language or a textual scripting language, which imposes a significant learning barrier and

prevents users with limited programming expertise from using these systems.

• Applicability: SUGILITE should handle a wide range of common and long-tail tasks across

different domains. Many existing EUD systems can only work with applications imple-

mented with specific frameworks or libraries (e.g., [25, 54]), or services that provide open

API access to their functionalities (e.g., [115]). This limits the applicability of those systems

to a small subset of tasks.

• Generalizability: SUGILITE should learn generalized procedures and concepts that handle

new task contexts and different task parameters without requiring users to reprogram from

scratch. For example, macro recorders like [240] can record a sequence of input events

(e.g., clicking on the coordinate (x,y)) and replay the same actions at a later time. But these

macros are not generalizable, and will only perform the exact same action sequences but not

tasks with variations or different parameters. Learning generalized procedures and concepts

requires a deeper understanding of the semantics of the medium of instruction, which in

SUGILITE’s case are the GUIs of existing mobile apps.

• Flexibility: SUGILITE should provide adequate expressiveness to allow users to express

flexible automated rules, conditions, and other control structures that reflect their desired task

intentions. The simple single trigger-action rule approach like [115, 119], while providing

great usability due to its simplicity, is not sufficiently expressive for many tasks that users

want to automate [273].

• Robustness: SUGILITE should be resilient to minor changes in target applications (such

as changes in the GUI or menu options), and be able to recover from errors caused by

4

1.1. AN END-USER PROGRAMMABLE INTELLIGENT AGENT

previously unseen or unexpected situations with the user’s help. Macro recorders such

as [240] are usually brittle — the macro may break in case of minor changes in the target app

GUI. Approaches with complicated programming synthesis or machine learning techniques

(e.g., [181, 199]) usually lack transparency into the inference process, making it difficult for

end users to recover from errors. Another aspect of robustness is to handle errors in natural

language interactions—Conversational breakdowns can decrease users’ satisfaction, trust,

and willingness to continue using a conversational system and may cause users to abandon

the current task [8, 185].

• Shareability: SUGILITE should support the sharing of learned task procedures and concepts

among users. This requires SUGILITE to (i) have the robustness of being resilient to minor

differences between different devices, and (ii) preserve the original end-user developer’s

privacy in the sharing process. As discussed in [152,155], end users are often hesitant about

sharing end-user-developed scripts due to the fear of accidentally including personal private

information in shared program artifacts.

1.1.2 My Approach

To address these challenges, SUGILITE takes a multi-modal interactive task learning (ITL) [143]

approach, where it learns new tasks and concepts from end users interactively in two complemen-

tary modalities: (i) demonstrations by direct manipulation of third-party app GUIs, and (ii) spoken

natural language instructions. This approach combines two popular EUD techniques — program-

ming by demonstration (PBD) and natural language programming. In PBD, users teach the system

a new behavior by directly demonstrating how to perform it. In natural language programming,

users teach the system by verbally describing and explaining the desired behaviors using a natu-

ral language like English. Combining these two modalities allows users to take advantage of the

easiest, most natural, and/or most effective modality based on the context for different parts of the

programming task.

As shown in Figure 1.3, unlike prevailing intelligent agents, SUGILITE sits between the user

and the GUIs of third-party apps. The user can teach the agent new task procedures and concepts

by demonstrating them on existing third-party app GUIs and verbally explaining them in natural

language. When executing a task, SUGILITE directly manipulates app GUIs on the user’s behalf.

This approach tackles the two major barriers in prevailing intelligent agents, as shown in Figure 1.2,

by (i) leveraging the available third-party app GUIs as a channel to access a large number of back-

end services without requiring openly available APIs, and (ii) taking advantage of users’ familiarity

5

CHAPTER 1. INTRODUCTION

with app GUIs, so users can program the intelligent agent without having significant technical

expertise by using app GUIs as the medium.

This project presents a new human-AI interaction paradigm for interactive task learning. SUG-

ILITE uses existing app GUIs as a medium for users to communicate their intents with an AI agent

in addition to the interfaces for users to interact with the underlying computing services. Among

common mediums for agent task learning, app GUIs sit at a nice middle ground between (1) pro-

gramming language, which can be easily processed by a computing system but imposes significant

learning barriers to non-expert users; and (2) unconstrained visual demonstrations in the physical

work and natural language instructions, which are natural and easy-to-use for users but infeasible

for computing systems to fully understand without significant human-annotated training data and

task domain restrictions given the current state-of-art in natural language understanding, computer

vision, and commonsense reasoning. In comparison, existing app GUIs cover a wide range of use-

ful task domains for automation, encode the properties and relations of task-relevant entities, and

encapsulate the flows and constraints of underlying tasks in formats that can be feasibly extracted

and understood by an intelligent agent.

Through its multi-modal approach combining PBD and natural language programming, SUG-

ILITE mitigates the shortcomings in each individual technique. Demonstrations are often too lit-

eral, making it hard to infer the user’s higher-level intentions. In other words, it often only records

what the user did, but not why the user did it. Therefore, it is difficult to produce generalizable

programs from demonstrations alone. On the other hand, natural language instructions can be very

flexible and expressive for users to communicate their intentions and desired system behaviors.

However, they are inherently ambiguous. In my approach, SUGILITE grounds natural language

instructions to demonstration app GUIs, allowing mutual disambiguation [221], where demonstra-

tions are used to disambiguate natural language inputs, and vice versa.

In the following chapters, I will go into details of each aspect of SUGILITE’s approach and how

it addresses the challenges identified in the previous section.

1.2 Contributions

My dissertation contributes a new multi-modal approach for intelligent agents to learn new task

procedures and relevant concepts and a system that implements this approach. Specifically, this

dissertation makes the following contributions:

1. The SUGILITE system, a mobile PBD system that enables end users with no significant pro-

gramming expertise to create automation scripts for arbitrary tasks across any or multiple

6

1.2. CONTRIBUTIONS

Figure 1.3: The role of the SUGILITE agent between the user and the app GUI. At programming time,
SUGILITE learns the task procedure and relevant concepts by observing the user’s demonstration using the
app GUI while getting the user’s verbal instructions in natural language. At the execution time, SUGILITE

directly manipulates the app GUI on the user’s behalf to perform the task.

third-party mobile apps through a multi-modal interface combining demonstrations and nat-

ural language instructions [159] (Chapter 3).

2. A PBD script generalization mechanism that leverages the natural language instructions,

the recorded user demonstration, and the GUI hierarchical structures of third-party mobile

apps to infer task parameters and their possible values from a single demonstration [159]

(Chapter 3).

3. A multi-modal mixed-initiative PBD disambiguation interface that addresses the data de-

scription problem by allowing users to verbally explain their intentions for demonstrated

GUI actions through multi-turn conversations with the help of an interaction proxy overlay

that guides users to focus on providing effective information [163] (Chapter 4).

4. A technique for grounding natural language task instructions to app GUI entities by con-

structing semantic relational knowledge graphs from hierarchical GUI structures, along with

a formative study showing the feasibility of this technique with end users [163] (Chapter 4).

5. A top-down conversational programming framework for task automation that can learn both

task procedures and the relevant concepts by allowing users to naturally start with describing

the task and its conditionals at a high-level and then recursively clarify ambiguities, explain

7

CHAPTER 1. INTRODUCTION

unknown concepts, and define new procedures through a mix of conversations and references

to third-party app GUIs [167] (Chapter 5).

6. An extension of SUGILITE that leverages PBD on mobile apps to control smart home devices

through their corresponding mobile app GUIs, addressing the challenge of interoperability

in smart home automation by allowing end users to create automation rules across multiple

IoT devices from different manufacturers or “eco-systems” [164] (Chapter 6).

7. A multi-modal error handling and repairing approach for task-oriented conversational agents

that helps users discover, identify the causes of, and recover from conversational breakdowns

caused by natural language understanding errors using existing mobile app GUIs for ground-

ing [161] (Chapter 7).

8. A privacy-preserving sharing mechanism for GUI-based PBD scripts that can identify and

obfuscate personal private information embedded in scripts, while maintaining the trans-

parency, readability, robustness, extensibility, and generalizability of original scripts [160]

(Chapter 8).

9. A series of lab usability studies that showed end users with different levels of programming

expertise were able to successfully use the above systems, mechanisms, and interfaces to

complete example tasks derived from common real-world EUD scenarios.

10. A new self-supervised technique for generating semantic embeddings of GUI screens and

components that encode their textual contents, visual design, and layout patterns, and app

meta-data without requiring manual data annotation [166] (Chapter 9).

1.3 Outline

Chapter 2 describes the background and related work. Chapter 3 covers the design, implemen-

tation, and usability evaluation of the core SUGILITE system and its approach in further detail.

Chapter 4 discusses the data description problem and how SUGILITE addresses this long-standing

problem in PBD using an multi-modal approach through its extension APPINITE. Chapter 5 in-

troduces another SUGILITE’s extension named PUMICE that allows SUGILITE to learn conceptual

knowledge in addition to procedural knowledge about tasks. Chapter 6 talks about the application

of SUGILITE’s approach in smart home scenarios. Chapter 7 introduces SOVITE, an conversational

breakdown repair interface for SUGILITE. Chapter 8 describes the PINALITE system that adds the

support for privacy-preserving script sharing among users to SUGILITE. Chapter 9 describes a new

8

1.3. OUTLINE

self-supervised technique named SCREEN2VEC for generating semantic representations of GUI

screens and components in embedding vectors without requiring manual annotation. Lastly, Chap-

ter 10 discusses the system limitations of SUGILITE, describes some future research directions,

and concludes this dissertation.

9

Chapter 2

Background

This chapter discusses prior work in the following six areas: (i) programming by demonstration,

(ii) natural language programming, (iii) multi-modal interfaces, (iv) end user development for task

automation, (v) understanding app interfaces, and (vi) breakdown handling in task-oriented dia-

logues.

2.1 Programming by Demonstration

SUGILITE uses the programming by demonstration (PBD) technique to enable end users to de-

fine concepts by referring to the contents of GUIs from third-party mobile apps, and to teach new

procedures through demonstrations with those apps. PBD is a promising technique for enabling

end users to automate their activities without necessarily requiring programming knowledge — it

allows users to program in the same environment in which they perform the actions. This makes

PBD particularly appealing to many end users, who have little knowledge of conventional pro-

gramming languages but are familiar with how to perform the tasks they wish to automate using

existing app GUIs [65, 175, 207].

There are many PBD systems that help users automate tasks. However, PBD systems often

require access to the internal data of the software where the demonstration happens. This limits the

reach of those systems. For example, the CHINLE system [54] only works with interfaces generated

with the SUPPLE framework [88], and DocWizards [25] can only record actions performed on

SWT widgets in Eclipse. Some PBD systems focus on automating a specific task domain like

file manipulation [204], photo manipulation [98], text editing [147], web tasks [16, 152], web

scraping [50]), or generating interactive interfaces [85, 194, 276].

10

2.1. PROGRAMMING BY DEMONSTRATION

A key challenge for PBD is generalization [65,146,175]. When a user demonstrates an instance

of performing a task in a specific situation, the PBD system needs to learn the task a higher-level

of abstraction so that it can perform similar tasks (with different parameters, configurations, etc.)

in new contexts. SUGILITE improves the generalization capability compared with prior similar

PBD agents such as CoScripter [152], HILC [120], Sikuli [299], and VASTA [247] through its

support for parameterization (Chapter 3), data description disambiguation (Chapter 4), and concept

generalization (Chapter 5).

SUGILITE supports domain-independent PBD for task automation by using GUIs of third-

party apps. Similar approaches have also been used in prior systems. For example, Assistive

Macros [240] uses mobile app GUIs, CoScripter [152], d.mix [110], Vegemite [180], Ringer [16],

and PLOW [3] use web interfaces, and HILC [120] and Sikuli [299] use desktop GUIs. Macro

recording tools like [240] can record a sequence of input events and replay them later. Many of

these tools are quite literal — they replay exactly the same procedure that was demonstrated, with

limited ability to generalize the demonstration to perform similar tasks. They are also brittle to any

UI changes in the app. Sikuli [299], VASTA [247], and HILC [120] used the visual features of GUI

entities to identify the target entities for actions — while this approach has some advantages over

SUGILITE’s approach, such as being able to work with graphic entities without textual labels or

other appropriate identifiers, the visual approach does not use the semantics of GUI entities, which

also limits its generalizability.

Compared to those prior systems, SUGILITE can learn task procedures and relevant concepts as

generalized knowledge, and create conditionals from natural language instructions. Systems like

Sikuli [299] require users to define conditionals in a scripting language, which is not feasible for

end users without significant programming expertise.

Another relevant area of research is the use of programming by example (PBE) in data pro-

cessing and analytics. In these data processing and analytics tools, the user provides multiple

input-output examples from which the system creates programs that satisfy the constraints of the

examples using program synthesis techniques [106]. One of the most well-known and widely-used

PBE applications is the FlashFill in Microsoft Excel, which can analyze the information the user

enters and automatically fill data when it identifies a pattern [105]. PBE has also been used in

generating labeling rules from interactive demonstrations of users in the interactive data labeling

process [79]. A major issue with PBE in data processing and analytics is that end users often have

problems coming up with an effective set of examples that are comprehensive, correct, and mean-

ingfully different from each other [151]. The examples provided by users are often ambiguous

(i.e., multiple plausible programs can be inferred) [303]. There is also a gap between the user’s

11

CHAPTER 2. BACKGROUND

mental model of the PBE synthesizer’s abilities and the actual abilities of the synthesizer—because

the user does not author the programs directly, the user often does not know what the synthesizer

can and cannot do [81]. Many interactive PBE systems have been proposed to address these issues,

such as [81, 284, 303].

In human-robot interaction, PBD is often used in interactive task learning where a robot learns

new tasks and procedures from the user’s demonstration with physical objects [7, 28, 93, 136].

The demonstrations are sometimes also accompanied by natural language instructions [205, 248]

similar to SUGILITE. While many recent works try to enhance computing systems’ capabilities

for parsing human activities (e.g., [235]), modeling human intents (e.g., [91]), and representing

knowledge (e.g., [306]) from visual information from the physical world, it remains a major AI

challenge to recognize, interpret, represent, learn from, and reason with visual demonstrations. In

comparison, SUGILITE avoids this grand challenge by using existing app GUIs as the alternative

medium for task instruction, which retains the user familiarity, naturalness, and domain generality

of visual demonstrations but is much easier to comprehend for a computing system.

2.2 Natural Language Programming

SUGILITE uses natural language as one of the two primary modalities for end users to program task

automation scripts. The idea of using natural language inputs for programming has been explored

for decades [12,26,176,200]. In NLP and AI communities, this approach is also known as learning

by instruction [10, 55, 142, 178].

The foremost challenge in supporting natural language programming is to deal with the in-

herent ambiguities and vagueness in natural language [275]. To address this challenge, a prior

approach was to require users to use expression styles that resembled conventional programming

languages (e.g., [12, 154, 234]), so that the system could directly translate user instructions into

code. Despite that the user instructions used in this approach seemed like natural language, it did

not allow much flexibility in expressions. This approach is not adequate for end user development,

because it has a high learning barrier for users without programming expertise — users have to

adapt to the system by learning new syntax, keywords, and structures.

Another approach for handling ambiguities and vagueness in natural language inputs is to seek

user clarification through conversations. For example, Iris [80] asked follow-up questions and

presents possible options through conversations when initial user inputs are incomplete or unclear.

This approach lowered the learning barrier for end users, as it did not require them to clearly

define everything upfront. It also allowed users to form complex commands by combining mul-

12

2.3. MULTI-MODAL INTERFACES

tiple natural language instructions in conversational turns under the guidance of the system. This

multi-turn interactive approach is also known as interactive semantic parsing in the NLP commu-

nity [297, 298]. SUGILITE adopts the use of multi-turn conversations as a key strategy in handling

ambiguities and vagueness in user inputs. However, a key difference between SUGILITE and other

conversational instructable agents is that SUGILITE is domain-independent. All conversational in-

structable agents need to resolve the user’s inputs into existing concepts, procedures, and system

functionalities supported by the agent, and to have natural language understanding mechanisms

and training data in each task domain. Because of this constraint, existing agents often limit their

supported tasks to one or a few pre-defined domains, such as data science [80], email process-

ing [10, 258], invoking Web APIs [262], or database queries [108, 132, 153].

SUGILITE supports learning concepts and procedures from existing third-party mobile apps

regardless of the task domain. Users can explain new concepts, define task conditionals, and

clarify ambiguous demonstrated actions in SUGILITE by referencing relevant information shown

in app GUIs. The novel semantic relational graph representation of GUIs (details in Section 4.3.1)

allows SUGILITE to understand user references to GUI contents without having prior knowledge

of the specific task domain. This approach enables SUGILITE to support a wide range of tasks

from diverse domains, as long as the corresponding mobile apps are available. This approach also

has a low learning barrier because end users are already familiar with the functionalities of mobile

apps and how to use them. In comparison, with prior instructable agents, users are often unclear

about what concepts, procedures, and functionalities already exist to be used as “building blocks”

for developing new ones.

2.3 Multi-modal Interfaces

Multi-modal interfaces process two or more user input modes in a coordinated manner to provide

users with greater expressive power, naturalness, flexibility, and portability [222]. SUGILITE com-

bines speech and touch to enable a “speak and point” interaction style, which has been studied since

early multi-modal systems like Put-That-There [35]. Prior systems such as CommandSpace [1],

Speechify [130], QuickSet [223], SMARTBoard [206], and PixelTone [145] investigated multi-

modal interfaces that can map coordinated natural language instructions and GUI gestures to sys-

tem commands and actions. In programming, similar interaction styles have also been used for

controlling robots (e.g., [118, 192]). However, the use of these systems is limited to specific first-

party apps and task domains, in contrast to SUGILITE which aims to be general-purpose.

13

CHAPTER 2. BACKGROUND

When SUGILITE addresses the data description problem (details in Chapter 4), the demonstra-

tion is the primary modality; verbal instructions are used for disambiguating demonstrated actions.

A key pattern used in SUGILITE is mutual disambiguation [221]. When the user demonstrates an

action on the GUI with a simultaneous verbal instruction, our system can reliably detect what the

user did and on which UI object the user performed the action. The demonstration alone, however,

does not explain why the user performed the action, and any inferences on the user’s intent would

be fundamentally unreliable. Similarly, from verbal instructions alone, the system may learn about

the user’s intent, but grounding it onto a specific action may be difficult due to the inherent am-

biguity in natural language. SUGILITE utilizes these complementary inputs to infer robust and

generalizable scripts that can accurately represent user intentions in PBD. A similar multi-modal

approach has been used for handling ambiguities in recognition-based interfaces [190], such as

correcting speech recognition errors [263] and assisting the recognition of pen-based handwrit-

ing [141]. The recent DoThisHere [296] system uses a similar multi-modal interface for cross-app

data query and transfer between multiple mobile apps.

In the parameterization and concept teaching components of SUGILITE, the natural language

instructions come first. During the parametrization, the user first verbally describes the task, and

then demonstrates the task from which SUGILITE infers parameters in the initial verbal instruc-

tion, and the corresponding possible values. In concept teaching, the user starts with describing

an automation rule at a high-level in natural language, and then recursively defines any ambiguous

or vague concepts by referring to app GUIs. SUGILITE’s approach builds upon the approach used

in prior work like PLOW [3], which uses users’ verbal instructions to infer possible parameters.

Compared with PLOW, SUGILITE presents several new interface design features and natural lan-

guage grounding techniques to further explore how GUI and GUI-based demonstrations can help

enhance natural language inputs.

Throughout the design process for SUGILITE, we used user-centered methods [210] includ-

ing the natural programming method [211, 213]. Note that this “natural programming” concept

is different from “natural language programming” that we discussed before. Natural program-

ming seeks to make the programming process closer to the way the developers think about their

tasks [100] to make it easier for developers to implement what they have in mind and to understand

the state of their program [211]. My work particularly studies how end users naturally instruct

tasks with multiple modalities (see Sections 4.2 and 5.2), and explores the design of multi-modal

interfaces that allow users to use the most natural modality for the current context.

14

2.4. END USER DEVELOPMENT FOR TASK AUTOMATION

2.4 End User Development for Task Automation

Besides programming by demonstration and natural language programming, there are a few other

approaches for supporting end user development in task automation. Trigger-action programming

(e.g., [92, 115, 119, 274]) has been popular with end users due to its simplicity. In this model, the

user can specify a simple pair of trigger and action, where the action will be performed when the

trigger happens. Compared with SUGILITE’s approach, trigger-action programming tools can only

be applied for apps or services that have open APIs available. The simple structure in trigger-action

programming also limits its expressiveness so it cannot automate more complex tasks.

Visual programming is another popular technique for end user development. Prior systems

like Automate [184] and AppGate [63] allow users to create automation scripts with blocks in

flowcharts. Helena [49] also uses a visual language to enable end users to adapt, extend, and un-

derstand PBD programs. While visual programming has a lower learning barrier than conventional

programming, it still requires users to spend significant effort to learn its syntax, notions, and struc-

tures, especially when the programs get more complicated. The supported task domains in visual

programming are also often limited by the available “blocks” provided by the system.

While these techniques are much easier to use than conventional programming, the abstractions

in visual programming and trigger-action programming still create barriers for end users [92,113].

To address this issue, IoT Codex [287] uses a paper-engineering tangible approach that conveys and

enhances the affordances of the physical world for EUD by allowing users to attached paper RFID-

enabled “IoT Stickers” with sensors to everyday objects. SUGILITE seeks to address a similar issue

but in different ways. IoT Codex seeks to expand the expressiveness of the physical world for EUD,

while SUGILITE uses app GUIs as the medium for users to program automation scripts that can

read data from or invoke physical devices.

2.5 Understanding App Interfaces

A unique challenge for SUGILITE is to support multi-modal PBD on arbitrary third-party mobile

app GUIs. Some of such GUIs can be complicated, with hundreds of entities, each with many

different properties, semantic meanings, and relations with other entities. Moreover, third-party

mobile apps only expose the low-level hierarchical representations of their GUIs at the presentation

layer, without revealing information about internal program logic.

There has been some prior work on inferring semantics and task knowledge from GUIs. Pre-

fab [72, 73, 74] introduces pixel-based methods to model interactive widgets and interface hier-

archies in GUIs, and allowed runtime modifications of widget behaviors. Waken [14] also uses

15

CHAPTER 2. BACKGROUND

a computer vision approach to recognize GUI components and activities from screen-captured

videos. StateLens [107] and KITE [168] look at the sequence of GUI screens of completing a task,

from which they can infer the task flow model with multiple different branches and states. The in-

teraction mining approach used in ERICO [67] and RICO [66] captures the static (UI layout, visual

features) and dynamic (user flows) parts of an app’s design from a large corpus of user interaction

traces with mobile apps, identifies 23 common flow types (e.g., adding, searching, composing), and

can classify the user’s GUI interactions into these flow types. Their results show that higher-level

semantically meaningful tasks (e.g., search, login) can be recognized from GUI layouts of individ-

ual screens based on their design patterns. A similar approach was also used to learn the design

semantics of mobile apps, classifying GUI elements into 25 types of GUI components, 197 types

of text buttons, and 135 types of icon classes [183]. Appstract [82] focused on the semantic en-

tities (e.g., music, movie, places) instead, extracting entities, their properties, and relevant actions

from mobile app GUIs. These approaches use a smaller number of discrete types of flows, GUI

elements, and entities to represent GUI screens and their components, while our Screen2Vec

(Section 9) uses continuous embedding in a vector space for screen representation.

Some prior techniques specifically focus on the visual aspect of GUIs. The RICO dataset [66]

shows that it is feasible to train a GUI layout embedding with a large screen corpus, and re-

trieve screens with similar layouts using such embeddings. Chen et al.’s work [53] and Li et al.’s

work [172] show that trained machine learning models can generate semantically meaningful nat-

ural language descriptions for GUI components based on their visual appearances and hierarchies.

Compared with them, our Screen2Vec method (Chapter 9) used in SUGILITE provides a more

holistic representation of GUI screens by encoding textual contents, GUI component class types,

and app-specific meta-data in addition to the visual layout.

Another category of work in this area focuses on predicting GUI actions for completing a

task objective. Pasupat et al.’s work [226] maps the user’s natural language commands to target

elements on web GUIs. Li et al.’s work [171] goes a step further by generating sequences of actions

based on natural language commands. These works use the supervised approach that requires a

large amount of manually-annotated training data, which limits its utilization. In comparison, the

Screen2Vecmethod used in SUGILITE uses a self-supervised approach that does not require any

manual data annotation of user intents and tasks. Screen2Vec also does not need any annotation

on the GUI screens themselves, unlike [305] which requires additional developer annotations for

the meta-data of GUI components.

Compared with the work on predicting GUI actions, SUGILITE has a slightly different goal for

understanding GUI semantics — in SUGILITE, the user talks about the underlying task of an app

16

2.6. BREAKDOWN HANDLING IN TASK-ORIENTED DIALOGUES

in natural language while making references to the app’s GUI. The system needs to have the suffi-

cient understanding of the contents of the app GUI to be able to handle these verbal instructions in

order to learn the task. Therefore, the goal of SUGILITE in understanding app interfaces is to ab-

stract the semantics of GUIs from their platform-specific implementations, while being sufficiently

aligned with the semantics of users’ natural language instructions, so that it can leverage the GUI

representation to help to understand the user’s instruction about the underlying task.

2.6 Breakdown Handling in Task-Oriented Dialogues

A specific focus of this thesis is on handling the conversational breakdowns in SUGILITE’s task-

oriented dialogues with the users, as discussed in Chapter 7. As reported in Beneteau et al.’s 2019

study [19] of Alexa, conversational breakdown is a major issue experienced by most conversa-

tional agent users. The current repair strategies used by users are often not effective since their

understandings were frequently inaccurate. Other studies [8,32,56,124,214,233] reported similar

findings of the types of breakdowns encountered by users and the common repair strategies.

Some previous approaches have been proposed to assist users with discovering, identifying, and

repairing conversational breakdowns. A taxonomy of conversational breakdown repair strategies

by Ashktorab et al. [8] categorized repair strategies using the dimensions of: (1) whether there is

evidence of breakdown (i.e., whether the system makes users aware of the breakdown); (2) whether

the system attempts to make a repair (e.g., provide options of potential intents), and (3) whether

assistance is provided for user self-repair (e.g., highlight the keywords that contribute to the intent

classifier’s decision). In the results from that paper [8], the most preferred option by the users

was to have the system attempt to help with the repair process by providing options of potential

intents. However this approach requires domain-specific “deep knowledge” about the task and

error handling flows manually programmed by the developers [5,197], and therefore is not practical

for user-instructed tasks. In fact, even agents with professionally developed conversational skills

such as Amazon Alexa and Google Assistant often only provide generic error messages (e.g., “I

didn’t understand.”) with no transparency into the states of understanding in the system and no

mechanism for further interactions for repair [56,233]. In comparison, SUGILITE’s approach does

not require any additional effort from the developers. It only requires “shallow knowledge” in

a domain-general generic language model to map user intents to the corresponding app screens

(details in Chapter 7).

The second most preferred strategy in [8] was for the system to provide more transparency into

the cause of the breakdown, such as highlighting the keywords that contribute to the intent detection

17

CHAPTER 2. BACKGROUND

results. This approach is also relevant to work in explainable machine learning (e.g., [261]), which

seeks to help users understand the results from intelligent systems and therefore provide more

effective inputs. However, these approaches usually require users to verbally clarify or define

these keywords. My study (details in Chapter 5) found that when users tried to verbally explain

a concept unknown to the system, they often introduced even more unknown concepts in their

explanations. The agents also have problems understanding such explanations due to their limited

capability of reasoning with natural language instructions and domain knowledge.

My work further explores the design space of improving system transparency—it visualizes the

intent detection and slot value extraction results with app GUI screenshots. It also allows the users

to easily repair the breakdowns using references to app GUI contents and direct manipulation on

the screenshots.

18

Chapter 3

The SUGILITE System

3.1 Introduction

This chapter describes the design and implementation of the core SUGILITE system, a new intelli-

gent agent that allows end users to teach new tasks and concepts using a multi-modal approach that

combines programming by demonstration (PBD) and learning from natural language instructions.

It features the following components:

1. The PBD mechanism that enables users to create automation for arbitrary tasks across any or

multiple third-party smartphone apps, and to execute automated tasks through a multi-modal

(speech) interface.

2. A PBD script generalization mechanism that leverages the user’s verbal commands, demon-

strated actions, and the UI hierarchy structures of third-party apps to create generalized pro-

grams from single demonstrations. The system also has a representation of the recordings

that allows users to manually edit scripts if necessary.

3. An error checking and handling mechanism that improves the system’s robustness when the

underlying apps change, and also supports further generalization of the scripts to handle new

situations as they arise.

Through the work covered in this chapter, we seek to address the challenges of usability, ap-
plicability, and generalizability, as identified in Section 1.1.1. The core features described in this

This chapter is modified from the conference paper: Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. SUG-
ILITE: Creating Multimodal Smartphone Automation by Demonstration. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI 2017).

19

CHAPTER 3. THE SUGILITE SYSTEM

Figure 3.1: Screenshots of the original version of the core SUGILITE system: (a) the conversational inter-
face; (b) the recording confirmation popup; (c) the recording disambiguation/operation editing panel and (d)
the viewing/editing script window. Note that in newer versions, the conversational interface (a) has been
replaced with PUMICE (Chapter 5), and the data description disambiguation interface (c) has been replaced
with APPINITE (Chapter 4).

chapter provide the platform that allows research on the specific issues such as the data descrip-

tion problem (Chapter 4), learning task conditionals and concepts (Chapter 5), and SUGILITE’s

application in smart home scenarios (Chapter 6). The system described in this chapter is the base

version of SUGILITE. Several changes and improvements have been made to this version, which I

will cover in the later chapters of this dissertation.

This chapter will also describe a lab usability study that showed that users with different levels

of programming experience were able to use SUGILITE to create automation for four tasks derived

from real-world scenarios with an 85.5% completion rate, plus subjective feedback showing they

liked and would want to use a tool like SUGILITE.

3.2 Example Usage Scenario

This section presents an example scenario of a user interacting with the base version of the SUG-

ILITE system. This example demonstrates SUGILITE’s ability to learn generalized tasks with third-

party applications from a user’s single demonstration.

20

3.2. EXAMPLE USAGE SCENARIO

3.2.1 Order Starbucks Coffee

Smartphone users can order a wide range of products through the apps provided by merchants. In

the motivating survey (see Appendix A), respondents reported that many such tasks required them

to navigate through a complicated multi-level menu in the app to locate the desired offering, which

would be especially annoying when the same task is performed frequently. Automating repetitive

activities is a key motivation for SUGILITE. In this scenario, we show an example of how a user

automates ordering Starbucks drinks using SUGILITE1.

The user first gives SUGILITE a voice command, “Order a Cappuccino.” using the conversa-

tional voice interface (Figure 3.1a), for which SUGILITE answers “Sorry but I don’t understand.

Would you like to teach me? Say ‘demonstrate’ to demonstrate.” The user then says, “demonstrate”

and starts demonstrating the procedure of ordering a Cappuccino using the Starbucks app.

She first clicks on the Starbucks icon on the home screen, taps on the main menu and chooses

“Order”, which is exactly the same procedure as what she would do if she is ordering manually

through the Starbucks app. (Alternatively, she could instead say verbal commands such as “Click

on Starbucks”, etc.) After each action, a confirmation dialog from SUGILITE pops up (Figure 3.1b)

to confirm that the action has been recorded, and which also serves to slow down the user to make

sure that the Android accessibility API has time to record the action.

The user continues the “Order” procedure by clicking on “MENU”, “Espresso Drinks”, “Cap-

puccinos”, “Cappuccino”, “Add to Order” and “View Order” in sequence, which are all exactly the

same steps that she would do without SUGILITE. In this process, the user could also demonstrate

customizing the size, flavor, etc. according to her personal preferences. SUGILITE pops up the

confirmation dialog after each click, except for the one on “Cappuccino”, where SUGILITE is con-

fused and must ask the user to choose from two identifying features on the same button (explained

in Section 3.4): “Cappuccino” and “120cal” (Figure 3.1c). When finished, the user clicks on the

SUGILITE status icon and selects “End Recording”.

After the demonstration, SUGILITE analyzes the recording and parameterizes the script accord-

ing to the voice command and its knowledge about the UI hierarchy of the Starbucks app (details

in Section 3.4).

This parameterization allows the user to give the voice command “Order a [DRINK]”, where

[DRINK] can be any of the drinks listed on the Starbucks app’s menus. SUGILITE can then

order the drink automatically for the user by manipulating the user interface of the Starbucks app.

1A demo is available at https://www.youtube.com/watch?v=KMx7Ea6W6AQ. This video demo was
recorded in 2016.

21

https://www.youtube.com/watch?v=KMx7Ea6W6AQ

CHAPTER 3. THE SUGILITE SYSTEM

Alternatively, the automation script can also be executed by using the SUGILITE graphical user

interface (GUI) or invoked externally by a third party app using the SUGILITE API.

3.2.2 Additional Examples

To exhibit the generalizability and customizability of SUGILITE, Here are some other example

tasks that we have successfully taught the base version of SUGILITE to execute:

1. (American Express) – “Pay off my credit card balance.”

2. (Venmo) – “Send [AMOUNT] dollars to [NAME].”

3. (Fly Delta) – “Find the flights from [CITY] to [CITY] on [DATE].”

4. (CHI 2016) – “Show me all the papers by [NAME].”

5. (Transit) – “When is [BUS LINE] coming?”

6. (Pokemon Go) – “Collect my coins in the shop.”

7. (GrubHub & Uber) – “Request an Uber to the nearest [TYPE] restaurant.”

3.3 SUGILITE’s Key Features

3.3.1 Multi-Modal Interaction

To provide flexibility for users in different contexts, both creating the automation and running the

automation can be performed through either the conversational voice interface or SUGILITE’s GUI.

In order to create an automation script, the user can either give a new voice instruction, for which

SUGILITE will reply “. . . Would you like to teach me?” or the user can start a new demonstration

using SUGILITE’s GUI.

When teaching a new command to SUGILITE, the user can use verbal instructions, demon-

strations, or a mix of both in creating the script. Even though in most cases, demonstrating app

operations through direct manipulation will be more efficient, we anticipate some useful scenarios

for instructing by voice, like in contexts where touching on the phone is not convenient, or for

users with motor impairment.

The user can also execute automation scripts by either giving voice commands, or by selecting

from a list of scripts. Running an automation script by voice allows the user to give a command

22

3.3. SUGILITE’S KEY FEATURES

from a distance. For scripts with parameters, the parameter values are either explicitly specified

in the GUI or inferred from the verbal command when the conversational interface is used (see

Section 3.3.2 for details).

During recording or executing, the user has easy access to the controls of SUGILITE through

the floating duck icon (See Figure 3.1, where the icon is on the right edge of the screen). The

floating duck icon changes its appearance to indicate the current status of SUGILITE — whether

it is recording, executing, or tracking in the background. The user can start, pause or end the

execution/recording as well as view the current script (Figure 3.1d) and view the script list from

the pop-up menu that appears when the user taps on the duck. The GUI also enables the user

to manually edit a script by deleting an operation and all the subsequent operations or to resume

recording starting from the end of the script. Selecting an operation lets the user edit it using the

editing panel (Figure 3.1c).

The multi-modality of SUGILITE enables many useful usage scenarios in different contexts.

For example, one may automate tasks like finding nearby parking or streaming audible books by

demonstrating the procedures in advance by direct manipulation. Then the user can perform those

tasks by voice while driving without needing to touch the phone. A user with motor impairment

can have her friends or family automate her common tasks so she can execute them later through

the voice interface.

3.3.2 Script Generalization

Verbal Commands and Demonstrations As shown in the example usage scenario, SUGILITE

can automatically identify the parameters in the task and generalize the scripts from a single

demonstration. After the user finishes the demonstration, SUGILITE first compares the identi-

fying features of the target UI elements and the arguments of the operations against the verbal

command, trying to identify the parameters by matching the words in the command. For example,

for the verbal command “find the flights from New York to Los Angeles”, SUGILITE identifies

“New York” and “Los Angeles” as two parameters if the user typed “New York” into the departure

city textbox and “Los Angeles” into the destination textbox during the demonstration.

This parameterization method provides users control over the level of personalization and ab-

straction in SUGILITE scripts. For example, if the user demonstrated ordering a venti Cappuccino

with skim milk by saying the command “order a Cappuccino”, we will discover that “Cappuccino”

is a parameter, but not “venti” or “skim milk”. However, if the user gave the same demonstration,

but had used the command, “order a venti Cappuccino.” then we would also consider the size of

the coffee (“venti”) to be a parameter.

23

CHAPTER 3. THE SUGILITE SYSTEM

For the generalization of text entry operations (e.g., typing “New York” into the departure

city textbox), SUGILITE allows the use of any value for the parameters. In the checking flights

example, the user can give the command “find the flights from [A] to [B]” for any [A] and [B]

values after demonstrating how to find the flights from New York to Los Angeles. SUGILITE will

simply replace the two city names by the value of the parameters in the corresponding steps when

executing the automation script.

In order to support generalization over UI elements, SUGILITE records the set of all possible

alternatives to the UI element that the user operates on. SUGILITE finds these alternatives based on

the UI structure, looking for those in parallel to the original target UI element. For example, sup-

pose the user demonstrates “Order a Cappuccino” in which an operation is clicking on “Cappuc-

cino” from the “Cappuccinos” menu that has two options “Cappuccino” and “Iced Cappuccino”.

SUGILITE will first identify “Cappuccino” as a parameter, and then add “Iced Cappuccino” to the

set as an alternative value for the parameter, allowing the user to order Iced Cappuccino using the

same script. By keeping this list of alternatives, SUGILITE can also differentiate tasks with similar

command structure but different values. For example, the commands “Order Iced Cappuccino”

and “Order cheese pizza” invoke different scripts, because the phrase “Iced Cappuccino” is among

the alternative elements of operations in one script, while “cheese pizza” would be among the al-

ternatives of a different script. If multiple scripts can be used to execute a command (e.g., if the

user has two scripts for ordering a pizza with different apps), the user can explicitly select which

script to run.

App GUI Hierarchy Structure A limitation of the above method in handling alternative ele-

ments is that it can only generalize at the leaf level of a multi-level menu tree. For example, the

generalized script for “Order a Cappuccino” cannot be used to order drinks like a Latte or Macchi-

ato because they are on other branches of the Starbucks “Order” menu. Since the user did not go to

those branches during the demonstration, SUGILITE could not know the existence of those options

or how to reach those options in the menu tree. This is a challenge of working with third-party

apps, which will not expose their internal structures to us nor can we traverse the menu structures

without invoking their app on the main UI thread.

To address this issue, we created a background tracking service that records all the clickable

elements in apps and the corresponding previous actions taken to reach each element. This service

can run all the time, so SUGILITE can learn about all parts of an app that the user visits. Through

this mechanism, we can construct the path to navigate the menu structure to reach a UI element.

The text labels of all such elements can then be added to the sets of alternative parameter values for

24

3.3. SUGILITE’S KEY FEATURES

the scripts. This means that we can allow the user to order drinks that are not an immediate sibling

to Cappuccino at the leaf level of the Starbucks order menu tree from a single demonstration.

This method has its trade-offs. First, it brings in false positives. For example, there is a click-

able node “Store Locator” in the Starbucks order menu. The generalizing process will then mis-

takenly add “Store Locator” to the list of what the user can order. Second, running the background

tracking affects the phone’s performance. Third, SUGILITE cannot generalize for items that were

never viewed by the user. Lastly, many participants expressed privacy concerns about allowing

background tracking to store text labels from apps, since apps may dynamically generate labels

with personal data like an account number or balance. We addressed this problem in the PINALITE

subsystem, as discussed in Chapter 8.

3.3.3 Error Checking and Handling

Error checking and handling has been a major challenge for many PBD systems [146]. SUGILITE

provides error handling and checking mechanisms to detect when a new situation is encountered

during execution or when the app’s UI changes after an update. We addressed handing intent

recognition errors and entity extraction errors in the SOVITE subsystem, as discussed in Chapter 7.

When executing a script, an error occurs when the next operation in the script cannot be suc-

cessfully performed. There are many possible reasons for an execution error. First, it is possible

that the app has been updated and the layout of the UI has been changed, so SUGILITE cannot find

the object specified in the operation. Second, it is possible that the app is currently in a different

state than it was during the demonstration. For example, if a user demonstrates how to request an

Uber ride during normal pricing, and then uses the script to request a ride during surge pricing, then

an error will occur because SUGILITE does not know how to handle the popup from the Uber app

that asks for surge price confirmation. Third, the execution can also be interrupted by an external

event, like a phone call or an alarm.

In SUGILITE, when an error occurs, an error handling pop-up will be shown, asking the user

to choose between three options: keep waiting, end executing, or fix the script. The “keep wait-

ing” option will keep SUGILITE waiting until the current operation can be performed. This option

should be used in situations like prolonged waiting in the app or an interrupting phone call, where

the user knows that the app will eventually return to the recorded state in the script, which SUG-

ILITE knows how to handle. The “end executing” option will simply end the execution of the

current script.

The “fix the script” option has two sub-options: “replace” and “create a fork”, which allow the

user to either demonstrate a procedure from the current step that will replace the corresponding part

25

CHAPTER 3. THE SUGILITE SYSTEM

of the old script, or create a new alternative fork in the old script. The “replace” option should be

used to handle permanent changes in the procedure due to an app update or an error in the previous

demonstration, or if the user changes her mind about what the script should do. The “create a fork”

option (Figure 3.1d) should be used to enable the script to deal with a new situation. The forking

works similarly to the try-catch statement in programming languages, where SUGILITE will first

attempt to perform the original operation, and then execute the alternative branch if the original

operation fails. Allowing SUGILITE to learn other kinds of conditions and the relevant concepts is

discussed in Chapter 5.

The forking mechanism can also handle new situations introduced by generalization. For ex-

ample, after the user demonstrates how to check the score of the NY Giants using the Yahoo!

Sports app, SUGILITE generalizes the script so it can check the score of any sports team. However,

if the user gives a command “check the score of NY Yankees”, everything will work properly until

the last step, where SUGILITE cannot find the score because the demonstrations so far only show

where to find the score on an American football team’s page, which has a different layout than

a baseball team’s page. In this case, the user creates a new fork and demonstrates how to find

the score for a baseball team. Details about how SUGILITE finds items on the screen is described

below in Secion 3.4.

3.3.4 Manual Script Editing

For advanced users, we provide an interface to manually edit and manually generalize the script

(Figure 3.1d). In this interface, users can delete operations, create forks, or resume recording

to add more operations to an existing script. They can also manually generalize the scripts to

better reflect their intentions. For example, for the action “Click on ‘Chile Mocha Frappuccino in

Starbucks ‘Featured’ menu”, the user can override the heuristic-generated identifying feature (see

Section 3.4 for details) to use the screen location of the item instead of the text label of the item so

the script will click on the top item on the “Featured” menu instead of always choosing the Chile

Mocha Frappuccino.

Lastly, the user can manually create parameters. SUGILITE supports the use of a simple markup

language. For the action “Set the text of the textbox ‘Message’ to ‘The bus is delayed, I’ll be home

by 6PM”’, the user can manually modify the text to “@transportation is delayed, I’ll be

home by @time” so she can reuse the script in a similar scenario by only providing the values for

the parameters instead of the whole text. Similarly, the user can set a parameter with the value or

label of one UI element (e.g., the result of a search), which can be used for a later operation.

26

3.4. SYSTEM IMPLEMENTATION

3.4 System Implementation

In this section, we discuss the implementation of the different SUGILITE components and how

they are integrated with each other. SUGILITE is an Android application implemented in Java.

SUGILITE Scripts and tracking data are stored locally on phone in an SQLite database. SUGILITE

does not require jailbreaking/root access to the phone, and has been tested on phones running

Android 4.4 through 8.0.

3.4.1 Conversational Interface

The conversational interface we used in the base version of SUGILITE is built upon the Learning

by Instruction Agent (LIA)2 [10]. When the user gives a voice command, the audio is first decoded

into text using Google Speech API. LIA uses a Combinatory Categorial Grammar (CCG) parser

to parse the verbal command. Based on the parsing result, LIA can initiate a new recording or

execute a SUGILITE script. Details on LIA can be found in [10].

3.4.2 Background Accessibility Service

The SUGILITE background service registers as an Android accessibility service. It listens to Ac-

cessibilityEvent and distributes the events to the recording handler or the execution handler based

on the current mode of the system. The service receives an AccessibilityEvent through the listener

whenever a view on the screen is clicked on (or long-clicked on), selected, or focused. The service

will also receive an AccessibilityEvent if the text on a view has changed, the state of the current

window has changed, or the content of the current window has changed.

3.4.3 Recording Handler

The recording handler in the base version of Sugilite receives the AccessibilityEvent from the

SUGILITE background accessibility service during the demonstration3. It consumes the event if the

event is for a user action (click, long click or text entry). From the AccessibilityEvent object, the

handler gets meta-data features (text labels, screen locations, accessibility labels, view ID) for the

target UI element on which the action was performed. It also includes all the other elements in the

hierarchy of the entire current screen (the UI layout), which SUGILITE saves for error checking and

2LIA has been replaced with a new semantic parsing mechanism in the latest version, as described in Section 5.4.1.
3The recording handler has been updated to use an interaction proxy overlay in the latest version, as described in

Section 4.3.3.

27

CHAPTER 3. THE SUGILITE SYSTEM

generalization. SUGILITE also saves the child features (i.e., element has a child element that. . .)

and the parent features of the target UI element.

SUGILITE applies the following rule-based heuristics to determine a subset of the features to

be used in identifying the current screen and the current target UI element. The SUGILITE first

looks for the text or accessibility label in the UI element. If it has one, the system will verify that

this feature is unique among all the UI elements on the screen. If this fails, The SUGILITE seeks to

find a unique second-level feature like view ID or label of a child element. If The SUGILITE fails

to find a feature to uniquely identify the element on the screen, it will use the screen coordinates

of the element’s bounding box. The chosen subset of features needs to (i) uniquely identify the UI

layout of the screen and the specific target UI element on that screen, and (ii) still work for future

runs of the application to identify the same element.

If the recording handler determines that the heuristic-generated feature set can fulfill the above

two requirements, the confirmation popup (Figure 3.1b) will be shown. Otherwise, the disam-

biguation panel (Figure 3.1c) will be shown to ask the user to manually disambiguate what fea-

tures should be used in the script4. After this, The SUGILITE generates and saves an operation to

the current recorded script. The operation also stores identifiers for all the unique UI layouts and

all the alternative UI elements that are structurally in parallel with the target UI element. After

the demonstration, SUGILITE will use these when parameterizing and generalizing the script, as

described earlier.

3.4.4 Execution Handler

The execution handler will be activated when an AccessibilityEvent is sent from the background

accessibility service, which happens when the screen changes, or when the user takes any action.

The execution handler will try to match the current UI layout to the stored one in the script, then

it tries to find the required target UI element on the screen, and then it will try to perform the

operation as specified in the current operation. In the SUGILITE UI, the floating icon of a duck

will also move to the target UI element to signify the operation. If the current screen specified

in the AccessibilityEvent was not among the recorded ones for the current operation, the error

handling pop-up will be shown, signifying that the state of the current app does not match what

was demonstrated for the operation.

If the current operation is successful, the execution handler will then proceed to handle the next

operation. The error handling mechanism (described earlier) will be activated in case of an error.

4The manual disambiguation interface has been replaced with a multi-modal disambiguation interface, as discussed
in Chapter 4.

28

3.5. USER STUDY

3.4.5 SUGILITE API

SUGILITE has an API that allows external apps to utilize its recording, tracking, and executing

functionality. Scripts can be exported for editing/sharing or imported for executing in JSON for-

mat. Several research software projects such as PrivacyStream [170] and the Yahoo InMind5 Mid-

dleware was building upon, connected to, or invoking SUGILITE.

3.5 User Study

To assess how successfully users with various levels of prior programming experience can use

some features of SUGILITE, we conducted a lab study where we asked the participants to teach

SUGILITE new tasks for four given scenarios.

3.5.1 Participants

19 participants aged 20–30 (mean = 24.2, SD = 2.55) were recruited from the local university

community. The participants were required to be 18 or order, be active smartphone users and be

fluent in English. All recruited participants were university students.

In the recruiting form, participants rated their own programming experience on a five-point

scale from “no experience” to “experienced programmer”. We specifically selected participants

across a range of prior programming experience. Table 3.1 shows the description used for each

category and the number of participants in each category.

Group–Programming Experience #

1 – I’ve never done any computer programming 3

2 – I’ve done some light programming (e.g., Office macros, excel functions, simple scripts) 4

3 – Beginner programmer (experience equivalent to 1–2 college level computer science classes) 5

4 – Intermediate programmer (1–2 years of programming experience) 3

5 – Experienced programmer (2+ years of programming experience) 4

Table 3.1: Number of participants (#) grouped by programming experience

5https://www.cmu.edu/homepage/computing/2014/winter/project-inmind.shtml

29

https://www.cmu.edu/homepage/computing/2014/winter/project-inmind.shtml

CHAPTER 3. THE SUGILITE SYSTEM

3.5.2 Sample Tasks

We chose five tasks for the study based on the common repetitive task scenarios from a motivating

survey (Appendix A). The first task was used as a tutorial, where the experimenter showed the

participant how to teach SUGILITE to complete the example task and explained how to operate

SUGILITE. The other four tasks were given to the participants in random order. All the participants

used the same Nexus 6 phone with SUGILITE and relevant apps installed.

Before each task, the participants were given time to get familiar with the involved apps (Uber,

Starbucks, Yahoo! Sports, and Gmail), so they were all proficient at performing the tasks using

direct manipulation. We first asked the participants to perform the task directly without SUGILITE,

and then asked them to teach SUGILITE the same task by demonstration. During the task, we would

not answer questions on how to use SUGILITE (but we responded to the requests for clarification

on the task specifications).

Below are the task descriptions:

Tutorial Task: Pizza Ordering In this task, we demonstrated the procedure of ordering a large

pepperoni pizza for carryout at the nearest Papa John’s store using the Papa John’s app. The script

was then automatically generalized so it can be used to order any of the three basic variations of

pizza (pepperoni, cheese, and sausage). There were one SET TEXT and nine CLICK operations

in the script. Among these operations, two CLICK operations required manual disambiguation of

the identifying features.

Task 1: Get an Uber The specification given to the participants was “You should teach the

agent how to use the Uber app to request an Uber X cab to the current location.” The standard

procedure for this task had two CLICK operations, none of which required manual disambiguation

of the identifying features. The participants were told to not confirm sending the Uber request to

avoid being charged.

Task 2: Check Sports Score The specification given to the participants was “You should teach

the agent how to use the Yahoo! Sports app to show you the latest score of Pittsburgh Steelers.”

The standard procedure for this task had four CLICK operations and one SET TEXT operation,

none of which required manual disambiguation of the identifying features. The parameter for the

SET TEXT operation is automatically generalized so the script can be used to check the score for

any football team in Yahoo! Sports.

30

3.5. USER STUDY

Task 3: Order Coffee The specification given to the participants was “You should teach the

agent how to use the Starbucks app to order a cup of Cappuccino.” The standard procedure for

this task had 11 CLICK operations. Among them, one CLICK operation required manual disam-

biguation of the identifying features. This script is automatically generalized so it can be used to

order any drink from the Starbucks app. The participants were told to not submit the final order to

avoid being charged.

Task 4: Send an Email The specification given to the participants was “You should teach the

agent the command ‘Tell Joe that I will be late because my car is broken.’ by demonstrating

how to send a new email to ‘joe@example.com’, with the subject ‘I will be late’ and body ‘I

will be late because my car is broken’.” The standard procedure for this task had four CLICK

operations and three SET TEXT operations, none of which required manual disambiguation of the

identifying features. This script is automatically generalized so it can respond to “Tell [NAME]

that [SOMETHING] because [SOMETHING].”

3.5.3 Procedure

The study took about 1 hour per participant. After signing the consent form, the participant re-

ceived the tutorial through the experimenter walking through the tutorial task. The tutorial took

about 5 minutes. Following the tutorial, the experimenter gave the first task to the participant.

Then the participant began to do the tasks as specified in the previous section. After performing

the tasks, the participant filled out a usability questionnaire on their experiences interacting with

SUGILITE. Finally, the experimenter conducted a brief semi-structured interview with the partic-

ipant based on the questionnaire responses and the experimenter’s observations during the study.

Participants were compensated $15 for their time.

3.5.4 Results

Overall, 65 out of 76 (85.5%) scripts created by the participants ran and performed the intended

task successfully. 8 out of the 19 (42.1%) participants succeed in all four tasks. 10 (52.6%)

succeeded in three tasks and 1 (5.3%) succeeded in only two tasks. All participants completed

at least two tasks successfully. A Pearson’s chi-squared test was performed and no significant

relationship was found between task completion and the level of prior programming experience

(X2(4) = 4.15, p = 0.39).

31

CHAPTER 3. THE SUGILITE SYSTEM

Figure 3.2: The average task completion time for the participants grouped by their programming experience.
Shorter bars are better. Error bars show the standard deviations.

For each successful task, we measured the task completion time from when the voice com-

mand was successfully received until the participant ended the recording. We then used a one-way

ANOVA to compare the task completion time of each task for participants grouped by their pro-

gramming experience. No significant difference between the five groups as described in Table 1

based on task completion time was found for any of the tasks. The average task completion time

of each task by group is shown in Figure 3.2. All times are in seconds.

Task 1 All but one participant completed this task (94.7%). That participant “double clicked”

(i.e., clicked twice in a row without waiting for the confirmation pop-up in between), which caused

the system to fail to record the first action. This issue has been fixed in the subsequent versions of

SUGILITE.

Task 2 15 participants out of 19 (78.9%) completed this task. Four participants failed by entering

the text directly into textboxes6 (they were supposed to double tap on the textbox and type into a

pop-up due to an implementation limitation).

6The latest version of SUGILITE has fixed this issue by adding support for direct text input.

32

3.5. USER STUDY

Task 3 17 participants out of 19 (89.5%) completed this task. A participant erroneously “double

clicked” and another participant recorded a click when the Starbucks app had not finished loading,

which would cause the execution to block when this click is to be performed.

Task 4 14 participants out of 19 (73.7%) completed this task. Five participants failed by entering

the text directly into textboxes.

3.5.5 Time Trade-off

For each of the four tasks, we also calculated an average “break-even” point n, for which if a task

needs to be performed for at least n times, then the total time needed for automating the task and

executing the script for n times is shorter than the time needed to do the tasks manually for n times.

This metric is also known as the equivalent task size [203]. We use n as a rough measure for the

time trade-off of using SUGILITE to automate tasks. In plain words, if a user needs to perform a

task more than n times, then automating the task with SUGILITE can save her time.

Using the average time it took to create the automation (t̄), the average time it took to perform

the task manually (¯tm) and the time it took to execute the automation (t̄0), we calculate the average

break-even value of n for each task, shown in Table 3.2.

Task t̄ ¯tm t̄0 n

Task 1 44.47s 13.71s 3.35s 5

Task 2 58.61s 15.15s 5.12s 6

Task 3 74.29s 26.47s 7.34s 4

Task 4 125.25s 50.25s 6.14s 3

Table 3.2: Average time to automate the task (t̄), average time to perform the task manually (¯tm), time to
run the automation (t̄0), and the “break-even” point (n) for the four tasks.

3.5.6 Subjective Feedback

Overall, SUGILITE received positive feedback on both usability and usefulness from our study

participants. On the post questionnaire, the participants were asked to rate their agreement with

statements related to their experience interacting with SUGILITE on a 7-point Likert scale from

“Strongly Disagree” to “Strongly Agree.” Table 3.3 shows the average score for the usability-

33

CHAPTER 3. THE SUGILITE SYSTEM

related items on the questionnaire. Table 3.4 shows the average score for the usefulness-related

questions.

Statement Score

“It’s easy to learn how to use this system.” 6.17

“My interaction with the system is clear and understandable.” 6.00

“I’m satisfied with my experience using this system.” 5.94

Table 3.3: Average scores on usability questions from the post-questionnaire (on a 7-point scale).

Statement Score

“I find the system useful in helping me creating automation.” 6.39

“I find automating tasks with the system is efficient.” 6.11

“I would use this system to automate my tasks.” 6.06

Table 3.4: Average scores on usefulness questions from the post-questionnaire (on a 7-point scale).

In a semi-structured interview after the questionnaire, the participants were asked whether they

found anything unclear or confusing in their interaction with SUGILITE. Most complaints were on

the demonstration of text entry, where the user needs to type into a SUGILITE popup instead of

the textbox in the original app. Participants found this to be unnatural and easy-to-forget7. Some

also reported information overload on the disambiguation panel (Figure 1c). It contained too much

information, which made it hard to locate where they needed to read and make selections8.

3.5.7 Discussion

The outcome of the evaluation suggests no significant difference based on the level of programming

experience of participants for all four tasks in either task completion rate or task completion time.

The groups with no programming experience (Group 1) and only light programming experience

(Group 2) completed 25 out of 28 (89.3%) tasks. The results indicate that end users with little or

no programming experience can successfully use SUGILITE to automate smartphone tasks.

7As mentioned above, the latest version of SUGILITE has added the support for direct text input.
8The manual disambiguation has been replaced with a multi-modal disambiguation interface, as discussed in Chap-

ter 4.

34

3.6. CHAPTER CONCLUSION

Looking at the “break-even” point for each task, we learn that for the four example scenarios,

the user can save time with SUGILITE if they are to perform the tasks more than 3 to 6 times. This

implies that the efficiencies of many repetitive tasks could potentially benefit from automating

through SUGILITE, because the overhead of creating automation using SUGILITE is small.

After the study, we asked the participants to describe scenarios from their own smartphone

usage where SUGILITE would be helpful. Some of the scenarios involved using apps that are not

likely to ever be integrated into existing agents, like the specialized apps made for the university

community to check the shuttle location, dining menu, meeting room availability, etc. Many orga-

nizations or communities have made such apps to serve the information needs of their members.

Due to the limited engineering resources available and the small user base for those apps, they are

unlikely to get integrated into the intelligent software agents for automation without EUD. But for

the users of those apps, they often use the apps frequently and repetitively, so they wish to have

their common tasks automated.

The participants commented that even when apps have already been integrated into the prevail-

ing agents like Siri, sometimes specific tasks they wanted are not supported. An example is that

for the music player, users cannot change the equalizer settings or download the current song using

voice commands. They also wished to incorporate personalized settings into the automation (e.g.,

setting the volume before playing a particular song).

They also proposed scenarios for creating SUGILITE automation beyond single apps. Users

often perform a set of tasks in a row (e.g., check the weather, the traffic information and book

a cab when waking up) so Sugilite can be used to create a single voice command for multiple

tasks. Another example is a command “request an Uber to the nearest (sushi restaurant, pharmacy,

grocery store. . .)”, SUGILITE can first use Google Maps to retrieve the address of the nearest

desired entity, then use the Uber app to request a cab with the destination filled in.

3.6 Chapter Conclusion

This chapter described the design and implementation of the core SUGILITE system, an end-user-

programmable intelligent agent that can learn tasks in various task domains from end users through

demonstrations on existing third-party app GUIs, and infer parameters and their associated possible

values in learned tasks from a combination of task demonstrations, user verbal instructions, and

app GUI hierarchy structures.

35

CHAPTER 3. THE SUGILITE SYSTEM

Even though there have been many years of research on programming by demonstration and

speech interfaces, SUGILITE was the first PBD system to show how they can successfully be put

together on a smartphone to enhance the capabilities of both [159].

36

Chapter 4

The Data Description Problem

4.1 Introduction

A central challenge for PBD is generalization. The PBD system should produce more than literal

record-and-replay macros (e.g., sequences of keystrokes and clicks at specific screen locations),

but learn the target task at a higher level of abstraction so it can perform similar tasks in new

contexts [65, 175]. Previously, Section 3.3.2 discussed parameterization, which is a key issue in

generalization. This chapter will cover another key issue in generalization — the data description

problem [65, 175]: when the user performs an action on an item in the GUI, what does it mean?

The action and the item have many features. The system needs to choose a subset of features to

describe the action and the item, so that it can correctly perform the right action on the right item

in a different context.

For example, in Figure 4.1(a), the user’s action is “Click”, and the target object can be described

in many different ways, such as Charlie Palmer Steak / the second item from the list / the closest

restaurant in Midtown East / the cheapest steakhouse, etc. The system would need to choose a

description that reflects the user’s intention, so that the correct action can be performed if the script

is run with different search results.

To identify the correct data description, prior PBD systems have varied widely in the division

of labor, from making no inference and requiring the user to manually specify the features, to

using sophisticated AI algorithms to automatically induce a generalized program [212]. Some

prior systems such as SmallStar [109] and Topaz [209] used the “no inference” approach to give

This chapter is modified from the conference paper: Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi
Zhang, Wenze Shi, Wanling Ding, Tom M. Mitchell, and Brad A. Myers. APPINITE: A Multi-Modal Interface for
Specifying Data Descriptions in Programming by Demonstration Using Natural Language Instructions. In Proceedings
of the 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2018).

37

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

Figure 4.1: Specifying data description in programming by demonstration using APPINITE: (a, b) enable
users to naturally express their intentions for demonstrated actions verbally; (c) guides users to formulate
data descriptions to uniquely identify target GUI objects; (d) shows users real-time updated results of current
queries on an interaction overlay; and (e) formulates executable queries from natural language instructions.

users full control in manually choosing features to use. However, this approach involves heavy user

effort, and has a steep learning curve, especially for end users with little programming expertise.

Others like Peridot [208] and CoScipter [152] went a step further and used heuristic rules for

generalization, which were still limited in applicability. This approach can only handle simple

scenarios (unlike Figure 4.1), and has the possibility of making incorrect assumptions.

At the other end of the spectrum, prior systems such as [104, 148, 195, 199] used more so-

phisticated AI-based programming synthesis techniques to automatically infer the generalization,

usually from multiple example demonstrations of a task. However, this approach has issues as

well. It requires a large number of examples, but users are unlikely to be willing to provide more

than a few examples, which limits the feasibility of this approach [146]. Even if end users provide

a sufficient number of examples, prior studies [151, 212] have shown that untrained users are not

good at providing useful examples that are meaningfully different from each other to help with in-

ferring data descriptions. Furthermore, users have little control of the resulting programs in these

systems. The results are often represented in such a way that is difficult for users to understand.

Thus, users cannot verify the correctness of the program, or make changes to the system [146],

resulting in a lack of trust, transparency and user control.

38

4.2. FORMATIVE STUDY

This chapter describes a new multi-modal interface for SUGILITE named APPINITE1. This

interface enables end users to naturally express their intentions for data descriptions when pro-

gramming task automation scripts by using a combination of demonstrations and natural language

instructions on the GUIs of arbitrary third-party mobile apps. APPINITE helps users address the

data description problem by guiding them to verbally reveal their intentions for demonstrated

actions through multi-turn conversations. APPINITE constructs data descriptions of the demon-

strated action from natural language explanations. This interface is enabled by our novel method

of constructing a semantic relational knowledge graph (i.e., an ontology) from a hierarchical GUI

structure (e.g., a DOM tree). APPINITE uses an interaction proxy overlay to highlight ambiguous

references on the screen, and to support meta actions for programming with interactive UI widgets

in third-party apps. The APPINITE interface replaces the manual disambiguation panel (described

in Section 3.4 and shown in Figure 3.1c) in the base SUGILITE system.

APPINITE provides users with greater expressive power to create flexible programming logic

using the data descriptions, while retaining a low learning barrier and high understandability for

users. The evaluation showed that APPINITE is easy-to-use and effective in tasks with ambiguous

actions that are otherwise difficult or impossible to express in prior PBD systems.

4.2 Formative Study

We conducted a formative study to understand how end users may verbally instruct the system si-

multaneously while demonstrating using the GUIs of mobile apps, and whether these instructions

would be useful for addressing the data description problem. We asked workers from Amazon

Mechanical Turk (mostly non-programmers [116]) to perform a sample set of tasks using a sim-

ulated phone interface in the browser, and to describe the intentions for their actions in natural

language. We recruited 45 participants, and had them each perform 4 different tasks. We randomly

divided the participants into two groups. One group of participants were simply told to narrate

their demonstrations in a way that would be helpful even if the exact data in the app changed in the

future. Another group were additionally given detailed instructions and examples of how to write

good explanations to facilitate generalization from demonstrations.

After removing responses that were completely irrelevant, or apparently due to laziness (32%

of the total), the majority (88%) of descriptions from the group that were not given detailed instruc-

tions and all of descriptions (100%) from the group that received detailed instructions explained in-

1APPINITE is named after a type of rock. The acronym stands for Automation Programming on Phone Interfaces
using Natural-language Instructions with Task Examples.

39

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

Figure 4.2: APPINITE’s error handling interfaces for handling situations where the instruction and the
demonstration do not match.

tentions for the demonstrations in ways that would facilitate generalization, e.g., by saying “Scroll

through to find and select the highest rated action film, which is Dunkirk” rather than just “select

Dunkirk” without explaining the characteristic feature behind their choice.

We also found that many of such instructions contain spatial relations that are either explicit

(e.g., “then you click the back button on the bottom left”) or implicit (e.g., “the reserve button for
the hotel”, which can translate to “the button with the text label ‘reserve‘ that is next to the item

representing the hotel”). Furthermore, approximately 18% of all 1631 natural language statements

we collected from this formative study used some generalizations (e.g., the highest rated film) in

the data description instead of using constant values of string labels for referring to the target GUI

objects. These findings illustrate the need for constructing an intermediate level representation

of GUIs that abstracts the semantics and relationships from the platform-specific implementation

of GUIs and maps more naturally to the semantics of likely natural language explanations. We

addressed this need through the extraction of UI Snapshot Knowledge Graph, as described in

Section 4.3.1.

40

4.3. APPINITE’S DESIGN AND IMPLEMENTATION

Figure 4.3: A snippet of an example GUI where the alignment suggests a semantic relationship — “This is
the score for Minnesota” translates into “Score is the TextView object with a numeric string that is to the
right of another TextView object Minnesota.”

4.3 APPINITE’s Design and Implementation

In this section, we discuss the design and implementation of three core components of APPINITE:

the UI snapshot graph extractor, the natural language instruction parser, and the interaction proxy

overlay.

4.3.1 UI Snapshot Knowledge Graph Extraction

We found in the formative study that end users often refer to spatial and semantic-based general-

izations when describing their intentions for demonstrated actions on GUIs. Our goal is to translate

these natural language instructions into formal executable queries of data descriptions that can be

used to perform these actions when the script is later executed. Such queries should be able to

generalize across different contexts and small variations in the GUI to still correctly reflect the

user’s intentions. To achieve this goal, a prerequisite is a representation of the GUI objects with

their properties and relationships, so that queries can be formulated based on this representation.

APPINITE extracts GUI elements using the Android Accessibility Service, which provides the

content of each window in the current GUI through a static hierarchical tree representation similar

to the DOM tree used in HTML. Each node in the tree is a view, representing a UI object that

is visible (e.g., buttons, text views, images) or invisible (often created for layout purposes). Each

view also contains properties such as its Java class name, app package name, coordinates for its on-

screen bounding box, accessibility label (if any), and raw text string (if any). Unlike a DOM, our

41

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

extracted hierarchical tree does not contain specifications for the GUI layout other than absolute

coordinates at the time of extraction. It does not contain any programming logic or meta-data for

the text values in views, but only raw strings from the presentation layer. This hierarchical model

is not adequate for APPINITE’s data description, as it is organized by parent-child structures tied

to the implementation details of the GUI, which are invisible to end users of the PBD system. The

hierarchical model also does not capture geometric (e.g., next to, above), shared property value

(e.g., two views with the same text), or semantic (e.g., the cheapest option) relations among views,

which are often used in users’ data descriptions.

To represent and to execute queries used in data descriptions, APPINITE constructs relational

knowledge graphs (i.e., ontologies) from hierarchical GUI structures as the medium-level repre-

sentations for GUIs. These UI snapshot graphs abstract the semantics (values and relations) of

GUIs from their platform-specific implementations, while being sufficiently aligned with the se-

mantics of users’ natural language instructions. Figure 4.4 illustrates a simplified example of a UI

snapshot graph.

Formally, we define a UI snapshot graph as a collection of subject-predicate-object triples

denoted as (s, p,o), where the subject s and the object o are two entities, and the predicate p is a

directed edge representing a relation between the subject and the object. In APPINITE’s graph, an

entity can either represent a view in the GUI, or a typed (e.g., string, integer, Boolean) constant

value. This denotation is highly flexible — it can support a wide range of nested, aggregated, or

composite queries. Furthermore, a similar representation is used in general-purpose knowledge

bases such as DBpedia [9], Freebase [34], Wikidata [282] and WikiBrain [162], which can enable

us to plug APPINITE’s UI snapshot graph into these knowledge bases to support better semantic

understanding of app GUIs in the future.

The first step in constructing a UI snapshot graph from the hierarchical tree extracted from the

Android Accessibility Service is to flatten all views in the tree into a collection of view entities,

allowing more flexible queries on the relations between entities on the graph. The hierarchical

relations are still preserved in the graph, but converted into hasChild and hasParent rela-

tionships between the corresponding view entities. Properties (e.g., coordinates, text labels, class

names) are also converted into relations, where the values of the properties are represented as en-

tities. Two or more constants with the same value (e.g., two views with the same class name) are

consolidated as a single constant entity connected to multiple view entities, allowing easy querying

for views with shared property values.

In GUI designs, horizontal or vertical alignments between objects often suggest a semantic

relationship [5]. Generally, smaller geometric distance between two objects also correlates with

42

4.3. APPINITE’S DESIGN AND IMPLEMENTATION

higher semantic relatedness between them [46]. Therefore, it is important to support spatial rela-

tions in data descriptions. APPINITE adds spatial relationships between view entities to UI snap-

shot graphs based on the absolute coordinates of their bounding boxes, including above, below,

rightTo, leftTo, nextTo, and near relations. These relations capture not only explicit spa-

tial references in natural language (e.g., the button next to something), but also implicit ones (see

Figure 4.3 for an example). In APPINITE, thresholds in the heuristics for determining these spatial

relations are relative to the dimension of the screen, which supports generalization across phones

with different resolutions and screen sizes.

APPINITE also recognizes some semantic information from the raw strings found in the GUI

to support grounding the user’s high-level linguistic inputs (e.g., “item with the lowest price”).

To achieve this, APPINITE applies a pipeline of data extractors on each string entity in the graph

to extract structured data (e.g., phone number, email address) and numerical measurements (e.g.,

price, distance, time, duration), and saves them as new entities in the graph. These new entities

are connected to the original string entities by contains relations (e.g., containsPrice).

Values in each category of measurements are normalized to the same units so they can be directly

compared, allowing flexible computation, filtering and aggregation.

4.3.2 Instruction Parsing

After APPINITE constructs a UI snapshot graph, the next step is to parse the user’s natural language

description into a formal executable query to describe this action and its target UI object. In APPI-

NITE, we represent queries in a simple but flexible LISP-like query language (S-expressions) that

can represent joins, conjunctions, superlatives and their compositions. Figure 4.1e, Figure 4.4, and

Figure 4.3 show some example queries. To support these queries, we implemented a new semantic

parser that replaces the old LIA parser used in the initial version of SUGILITE (see Section 3.4).

Representing UI elements as a UI snapshot graph offers a convenient data abstraction model

for formulating a query using language that is closely aligned with the semantics of users’ instruc-

tions during a demonstration. For example, the utterance “next to the button” expresses a natural

join over a binary relation near and a unary relation isButton (a unary relation is a mapping

from all UI object entities to truth values, and thus represents a subset of UI object entities.) An

utterance “a textbox next to the button” expresses a natural conjunction of two unary relations, i.e.,

an intersection of a set of UI object entities. An utterance such as “the cheapest flight” is naturally

expressed as a superlative (a function that operates on a set of UI object entities and returns a

single entity, e.g., ARG MIN or ARG MAX). Formally, we define a data description query in AP-

43

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

Figure 4.4: APPINITE’s instruction parsing process illustrated on an example UI snapshot graph constructed
from a simplified GUI snippet.

44

4.3. APPINITE’S DESIGN AND IMPLEMENTATION

PINITE’s language as an S-expression that is composed of expressions that can be of three types:

joins, conjunctions and superlatives, constructed by the following 7 grammar rules:

E→ e;E→ S;S→ (join r E);S→ (and S S)

T → (ARG MAX r S);T → (ARG MIN r S);Q→ S | T

where Q is the root non-terminal of the query expression, e is a terminal that represents a UI object

entity, r is a terminal that represents a relation, and the rest of the non-terminals are used for inter-

mediate derivations. APPINITE’s language forms a subset of a more general formalism known as

Lambda Dependency-based Compositional Semantics [173], a notationally simpler alternative to

lambda calculus, which is particularly well-suited for expressing queries over knowledge-graphs.

APPINITE’s semantic parser uses a Floating Parser architecture [227] and does not require

hand-engineering of lexicalized rules, e.g., as is common with synchronous CFG or CCG based

semantic parsers. This allows users to express lexically and syntactically diverse, but semantically

equivalent statements such as “I am going to choose the item that says coffee with the lowest

price” and “click on the cheapest coffee” without requiring the developer to hand-engineer or tune

the grammar for different apps. Instead, the parser learns to associate lexical and syntactic patterns

(e.g., associating the word “cheapest” with predicates ARG MIN and containsPrice) with

semantics during training via rich features that encode co-occurrence of unigrams, bigrams and

skipgrams with predicates and argument structures that appear in the logical form. We trained the

parser used in the preliminary usability study via a small number of example utterances paired

with annotated logical forms and knowledge-graphs (840 examples), using 4 of the 8 apps used in

the user studies as a basis for training examples. We use the core Floating Parser implementation

within the SEMPRE framework [24].

4.3.3 Interaction Proxy Overlay

The base version of SUGILITE instruments GUIs by passively listening for the user’s actions

through the Android accessibility service, and popping up a disambiguation dialog after an ac-

tion if clarification of the data description is needed (see Section 3.4). This approach allows

PBD on unmodified third-party apps without access to their internal data, which is constrained

by working with Android apps (unlike web pages, where run-time interface modification is possi-

ble [33, 75, 271]). However, at the time when the dialog shows up, the context of the underlying

app may have already changed as a result of the action, making it difficult for users to refer back

to the previous context to specify the data description for the action. For example, after the user

45

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

taps on a restaurant, the screen changes to the next step, and the choice of restaurant is no longer

visible. This approach also has problems processing non-standard GUIs whose widgets do not use

the standard onClick() listeners for handling clicks.

To address these issues, we implemented an interaction proxy [304] in APPINITE to add an

interactive overlay on top of third-party GUIs. This mechanism replaced the old recording handler

discussed in Section 3.4. It can run on any phone running Android 6.0 or above, without requiring

root access. The full-screen overlay can intercept all touch events (including gestures) before

deciding whether, or when to send them to the underlying app, allowing APPINITE to engage in

the disambiguation process while preventing the demonstrated action from switching the app away

from the current context. Users can refine data descriptions through multi-turn conversations,

try out different natural language instructions, and review the state of the underlying app when

demonstrating an action without invoking the action.

The overlay is also used for conveying the state of APPINITE in the mixed-initiative disam-

biguation to improve transparency. An interactive visualization highlights the target UI object in

the demonstration, and matched UI objects in the natural language instruction when the user’s in-

struction matches multiple UI objects (Figure 4.1d), or the wrong object (Figure 4.2a). This helps

users to focus on the differences between the highlighted objects of confusion, assisting them to

come up with additional differentiating criteria in follow-up instructions to further refine data de-

scriptions. In the “verbal-first” mode where no demonstration grounding is available, APPINITE

also uses similar overlay highlighting to allow users to preview the matched object results for the

current data description query on the underlying app GUI.

4.4 User Study

We conducted a lab usability study. Participants were asked to use APPINITE to specify data

descriptions in 20 example scenarios. The purpose of the study was to evaluate the usability of

APPINITE on combining natural language instructions and demonstrations.

4.4.1 Participants

We recruited 6 participants (1 identified as female and 5 identified as male, average age = 26.2)

at Carnegie Mellon University. All but one of the participants were graduate students in technical

fields. All participants were active smartphone users, but none had used APPINITE or SUGILITE

prior to the study. Each participant was paid $15 for an 1-hour user study session.

46

4.4. USER STUDY

Although the programming literacy of our participants is not representative of APPINITE’s tar-

get users, this was not a goal of this study. The primary goal was to evaluate the usability of

APPINITE’s interaction design on combining natural language instructions and demonstrations.

The demonstration part of this usability study was based on the earlier SUGILITE study (see Sec-

tion 3.5), which found no significant difference in PBD task performances among groups with dif-

ferent programming expertise. The formative study (Section 4.2) showed that non-programmers

were able to provide adequate natural language instructions from which APPINITE can generate

generalizable data descriptions.

4.4.2 Tasks

From the top free apps in Google Play, we picked 8 sample apps (OpenTable, Kayak, Amtrak,

Walmart, Hotel Tonight, Fly Delta, Trulia and Airbnb) where we identified data description chal-

lenges. Within these apps, we designed 20 scenarios. Each scenario required the participant to

demonstrate choosing an UI object from a collection of options. All the target UI objects had

multiple possible and reasonable data descriptions where the correct ones (that reflect user inten-

tions) could not be inferred from demonstrations alone, or using heuristic rules without semantic

understanding of the context. The tasks required participants to specify data descriptions using

APPINITE. For each scenario, the intended feature for the data description was communicated to

the participant by pointing at the feature on the screen. Spoken instructions from the experimenter

were minimized, and carefully chosen to avoid biasing what the participant would say. Four out

of the 20 scenarios were set up in a way that multi-turn conversations for disambiguation (e.g.,

Figure 4.1c and Figure 4.1d) were needed. The chosen sample scenarios used a variety of different

domains, GUI layouts, data description features, and types of expressions in target queries (i.e.

joins, conjunctions and superlatives).

4.4.3 Procedure

After obtaining consent, the experimenter first gave each participant a 5-minute tutorial on how to

use APPINITE. During the tutorial, the experimenter showed a video2 as an example to explain

APPINITE’s features.

Following the tutorial, each participant was shown the 8 sample apps in random order on a

Nexus 5X phone. For each scenario within each app, the experimenter navigated the app to the

designated state before handing the phone to the participant. The experimenter pointed to the UI

2https://www.youtube.com/watch?v=2GqMUiPvidU

47

https://www.youtube.com/watch?v=2GqMUiPvidU

CHAPTER 4. THE DATA DESCRIPTION PROBLEM

object which the participant should demonstrate clicking on, and pointed to the on-screen feature

which the participant should use for verbally describing the intention. For each scenario, the par-

ticipant was asked to demonstrate the action, provide the natural language description of intention,

and complete the disambiguation conversation if prompted by APPINITE. The participant could

retry if the speech recognition was incorrect, and try a different instruction if the parsing result was

different from expected. APPINITE recorded participants’ instructions as well as the corresponding

UI snapshot graphs, the demonstrations, and the parsing results.

After completing the tasks, each participant was asked to complete a short survey, where they

rated statements about their experience with APPINITE on a 7-point Likert scale. The experimenter

also had a short informal interview with each participant to solicit their comments and feedback.

4.4.4 Results

Overall, our participants had a good task completion rate. Among all 120 scenario instances across

the 6 participants, 106 (87%) were successful in producing the intended target data description

query on the first try. Note that we did not count retries caused by speech recognition errors, as

it was not a focus of this study. Failed scenarios were all caused by incorrect or failed parsing of

natural language instructions, which can be fixed by having a more robust natural language under-

standing mechanism. Participants successfully completed all initially failed scenarios in retries by

rewording their verbal instructions after being prompted by APPINITE. Among all the 120 scenario

instances, 24 instances required participants to have multi-turn conversations for disambiguation.

22 of these 24 (92%) were successful on the first try, and the rest were fixed by rewording.

In a survey on a 7-point Likert scale from “strongly disagree” to “strongly agree”, our 6 partic-

ipants found APPINITE “helpful in programming by demonstration” (mean = 7), “allowed them to

express their intentions naturally” (mean = 6.8, σ = 0.4), and “easy to use” (mean = 7). They also

agreed that “the multi-modal interface of APPINITE is helpful” (mean = 6.8, σ = 0.4), “the real-

time visualization is helpful for disambiguation” (mean = 6.7, σ = 0.5), and “the error messages

are helpful” (mean = 6.8, σ = 0.4).

4.4.5 Discussion

The study results suggested that APPINITE has good usability, and also that it has adequate perfor-

mance for generating correct formal executable data description queries from demonstrations and

natural language instructions in the sample scenarios.

48

4.5. CHAPTER CONCLUSION

Participants praised APPINITE’s usefulness and ease of use. A participant reported that he

found sample tasks very useful to have done by an intelligent agent. Participants also noted that

without APPINITE, it would be almost impossible for end users without programming expertise to

create automation scripts for these tasks, and it would also take considerable effort for experienced

programmers to do so.

Our results illustrate the effectiveness of combining two input modalities, each with its own dif-

ferent of ambiguities, to more accurately infer user’s intentions in EUD. A major challenge in EUD

is that end users are unable to precisely specify their intended behaviors in formal language. Thus,

easier-to-use but ambiguous alternative programming techniques like PBD and natural language

programming are adopted. Our results suggest that end users can effectively clarify their intentions

in a complementary technique with adequate guidance from the system when the initial input was

ambiguous. Further research is needed on how users naturally select modalities in multi-modal

environments, and on how interfaces can support more fluid transition between modalities.

Another insight from APPINITE is to leverage app GUIs as a shared grounding for EUD. By

asking users to describe intentions in natural language referring to GUI contents, APPINITE’s ap-

proach constrains the scope of instructions to a limited space, making semantic parsing feasible.

Since users are already familiar with app GUIs, they do not have to learn new symbols or mecha-

nisms as in scripting or visual languages. The knowledge graph extraction further provides users

with greater expressive power by abstracting higher-level semantics from platform-specific imple-

mentations, enabling users to talk about semantic relations for the items such as “the cheapest

restaurant” and “the score for Minnesota.”

4.5 Chapter Conclusion

Natural language is a natural and expressive medium for end users to specify their intentions and

can provide useful complementary information about user intentions when used in conjunction

with other end user development approaches, such as programming by demonstration. This chapter

described the new multi-modal APPINITE interface. It combines natural language instructions with

demonstrations to provide end users with greater expressive power to create more generalized GUI

automation scripts in SUGILITE, while retaining the usability and transparency.

49

Chapter 5

Learning Task Conditionals and Concepts

5.1 Introduction

Although the core SUGILITE system was effective in supporting end user development for task

automation (as discussed in Section 3.5), a major challenge remains — the system needs to help

non-programmers to specify conditional structures in programs. Many common tasks involve con-

ditional structures, yet they are difficult for non-programmers to correctly specify using existing

EUD techniques due to the great distance between how end users think about the conditional struc-

tures, and how they are represented in programming languages [224].

Another problem in programming conditionals is supporting the instruction of concepts. In our

study (details in Section 5.2), we found that end users often refer to ambiguous or vague concepts

(e.g., cold weather, heavy traffic) when naturally instructing conditionals in a task. Moreover, even

if a concept may seem clear to a human, an agent may still not understand it due to the limitations

in its natural language understanding techniques and pre-defined ontology.

This chapter will describe our work on enabling end users to augment task automation scripts

with conditional structures and new concepts through a combination of natural language program-

ming and programming by demonstration (PBD). We took a user-centered design approach, first

studying how end users naturally describe tasks with conditionals in natural language in the context

of mobile apps, and what types of tasks they are interested in automating.

This chapter is modified from the conference paper: Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle
Singarajah, Tom M. Mitchell, and Brad A. Myers. PUMICE: A Multi-Modal Agent that Learns Concepts and Con-
ditionals from Natural Language and Demonstrations. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology (UIST 2019).

50

5.1. INTRODUCTION

Based on insights from the formative study (Section 5.2), we designed and implemented a

new multi-modal conversational framework for SUGILITE named PUMICE1 that allows end users

to program tasks with flexible conditional structures and new concepts across diverse domains

through spoken natural language instructions and demonstrations.

PUMICE extends the SUGILITE [159] system. A key novel aspect of PUMICE’s design is that

it allows users to first describe the desired program behaviors and conditional structures naturally

in natural language at a high level, and then collaborate with an intelligent agent through multi-

turn conversations to explain and to define any ambiguities, concepts, and procedures in the initial

description as needed in a top-down fashion. Users can explain new concepts by referring to

either previously defined concepts, or to the contents of the GUIs of third-party mobile apps.

Users can also define new procedures by demonstrating using third-party apps, as described in

previous sections. This approach facilitates effective program reuse in automation authoring, and

provides support for a wide range of application domains, which are two major challenges in prior

EUD systems. The results from the motivating study (Section 5.2) suggest that this paradigm is

not only feasible but also natural for end users, which was supported by our lab usability study

(Section 5.4.1).

This work builds upon recent advances in natural language processing to allow PUMICE’s se-

mantic parser to learn from users’ flexible verbal expressions when describing desired program

behaviors. Through PUMICE’s mixed-initiative conversations with users, an underlying persis-

tent knowledge graph is dynamically updated with new procedural (i.e., actions) and declarative

(i.e., concepts and facts) knowledge introduced by users, allowing the semantic parser to improve

its understanding of user utterances over time. This structure also allows for effective reuse of

user-defined procedures and concepts at a fine granularity, reducing user effort in EUD.

PUMICE presents a multi-modal interface, through which users interact with the system using

a combination of demonstrations, pointing, and spoken commands. Users may use any modality

that they choose, so they can leverage their prior experience to minimize necessary training [188].

This interface also provides users with guidance through a mix of visual aids and verbal directions

through various stages in the process to help users overcome common challenges and pitfalls iden-

tified in the formative study, such as the omission of else statements, the difficulty in finding correct

GUI objects for defining new concepts, and the confusion in specifying proper data descriptions for

target GUI objects. A summative lab usability study (Section 5.4.1) with 10 participants showed

that users with little or no prior programming expertise could use PUMICE to program automation

1PUMICE is a type of volcanic rock. It is also an acronym for Programming in a User-friendly Multimodal Interface
through Conversations and Examples

51

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

scripts for 4 tasks derived from real-world scenarios. Participants also found PUMICE easy and

natural to use.

5.2 Formative Study

As with the other parts of the system, we took a user-centered approach [210] for designing a

natural end-user development system [211]. We first studied how end users naturally communicate

tasks with declarative concepts and control structures in natural language for various tasks in the

mobile app context through a formative study on Amazon Mechanical Turk with 58 participants

(41 of whom were non-programmers; 38 identified as male, 19 identified as female, 1 identified as

non-binary).

Each participant was presented with a graphical description of an everyday task for a conver-

sational agent to complete in the context of mobile apps. All tasks had distinct conditions for a

given task so that each task should be performed differently under different conditions, such as

playing different genres of music based on the time of the day. Each participant was assigned to

one of 9 tasks. To avoid biasing the language used in the responses, we used the Natural Program-

ming Elicitation method [210] by showing graphical representations of the tasks with limited text

in the prompts. Participants were asked how they would verbally instruct the agent to perform the

tasks so that the system could understand the differences among the conditions and what to do in

each condition. Each participant was first trained using an example scenario and the corresponding

example verbal instructions.

To study whether having mobile app GUIs can affect users’ verbal instructions, we randomly

assigned participants into one of two groups. For the experimental group, participants instructed

agents to perform the tasks while looking at relevant app GUIs. Each participant was presented

with a mobile app screenshot with arrows pointing to the screen component that contained the

information pertinent to the task condition. Participants in the control group were not shown app

GUIs. At the end of each study session, we also asked the participants to come up with another

task scenario of their own where an agent should perform differently in different conditions.

The participants’ responses were analyzed by two independent coders using open coding [260].

The inter-rater agreement [61] was κ = 0.87, suggesting good agreement. 19% of responses were

excluded from the analysis for quality control due to the lack of effort in the responses, question

misunderstandings, and blank responses.

Here are the most relevant findings which motivated the design of PUMICE.

52

5.2. FORMATIVE STUDY

5.2.1 App GUI Grounding Reduces Unclear Concept Usage

We analyzed whether each user’s verbal instruction for the task provided a clear definition of the

conditions in the task. In the control group (instructing without seeing app screenshots), 33% of the

participants used ambiguous, unclear or vague concepts in the instructions, such as “If it is daytime,

play upbeat music...” which is ambiguous as to when the user considers it to be “daytime.” This is

despite the fact that the example instructions they saw had clearly defined conditions.

Interestingly, for the experimental group, where each participant was provided an app screen-

shot displaying specific information relevant to the task’s condition, fewer participants (9%) used

ambiguous or vague concepts (this difference is statistically significant with p < 0.05), while the

rest clearly defined the condition (e.g., “If the current time is before 7 pm...”). These results suggest

that end users naturally use ambiguous and vague concepts when verbally instructing task logic,

but showing users relevant mobile app GUIs with concrete instances of the values can help them

ground the concepts, leading to fewer ambiguities and vagueness in their descriptions. The impli-

cation is that a potentially effective approach to avoiding unclear utterances for agents is to guide

users to explain them in the context of app GUIs.

5.2.2 Unmet User Expectation of Common Sense Reasoning

We observed that participants often expected and assumed the agent to have the capability of

understanding and reasoning with common sense knowledge when instructing tasks. For example,

one user said, “if the day is a weekend”. The agent would therefore need to understand the concept

of “weekend” (i.e., how to know today’s day of the week, and what days count as “weekend”) to

resolve this condition. Similarly when a user talked about “sunset time”, he expected the agent to

know what it meant, and how to find out its value.

However, the capability for common sense knowledge and reasoning is very limited in current

agents, especially across many diverse domains, due to the spotty coverage and unreliable inference

of existing common sense knowledge systems. Managing user expectations and communicating

the agent’s capability is also a long-standing unsolved challenge in building interactive intelligent

systems [177]. A feasible workaround is to enable the agent to ask users to ground new concepts

to existing contents in apps when they come up, and to build up knowledge of concepts over time

through its interaction with users.

53

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

Figure 5.1: Example structure of how PUMICE learns the concepts and procedures in the command “If it’s
hot, order a cup of Iced Cappuccino.” The numbers indicate the order of utterances. The screenshot on
the right shows the conversational interface of PUMICE. In this interactive parsing process, the agent learns
how to query the current temperature, how to order any kind of drink from Starbucks, and the generalized
concept of “hot” as “a temperature (of something) is greater than another temperature”.

5.2.3 Frequent Omission of Else Statements

In the study, despite all provided example responses containing else statements, 18% of the 39

descriptions from users omitted an else statement when it was expected. “Play upbeat music until

8pm every day,” for instance, may imply that the user desires an alternative genre of music to

be played at other times. Furthermore, 33% omitted an else statement when a person would be

expected to infer an else statement, such as: “If a public transportation access point is more than

half a mile away, then request an Uber,” which implies using public transportation otherwise.

This might be a result of the user’s expectation of common sense reasoning capabilities. The user

omits what they expect the agent can infer to avoid prolixity, similar to patterns in human-human

conversations [101].

These findings suggest that end users will often omit appropriate else statements in their natural

language instructions for conditionals. Therefore, the agent should proactively ask users about

alternative situations in conditionals when appropriate.

Motivated by the formative study results, we designed the PUMICE interface that supports

understanding ambiguous natural language instructions for task automation by allowing users to

recursively define any new, ambiguous or vague concepts in a multi-level top-down process.

54

5.2. FORMATIVE STUDY

Figure 5.2: The conversational interface of PUMICE for the concept learning process shown in Figure 5.1.

55

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

5.3 PUMICE’s Design

5.3.1 Example Usage Scenario

This section shows an example scenario to illustrate how PUMICE works2. Suppose a user starts

teaching SUGILITE agent a new task automation rule through PUMICE interface by saying, “If it’s

hot, order a cup of Iced Cappuccino.” We also assume that the agent has no prior knowledge about

the relevant task domains (weather and coffee ordering). Due to the lack of domain knowledge,

the agent does not understand “it’s hot” and “order a cup of Iced Cappuccino”. However, the agent

can recognize the conditional structure in the utterance (the parse for Utterance 0 in Figure 5.1)

and can identify that “it’s hot” should represent a Boolean expression while “order a cup of Iced

Cappuccino” represents the action to perform if the condition is true.

PUMICE’s semantic parser can mark unknown parts in the user-provided utterances using typed

resolve...() functions, as marked in the yellow highlights in the parse for Utterance 0 in

Figure 5.1. It then proceeds to ask the user to further explain these concepts. It asks, “How do I tell

whether it’s hot?” since it has already figured out that “it’s hot” should be a function that returns a

Boolean value. The user answers “It is hot when the temperature is above 85 degrees Fahrenheit.”,

as shown in Utterance 2 in Figure 5.1. The system understands the comparison (as shown in the

parse for Utterance 2 in Figure 5.1), but does not know the concept of “temperature”, only knowing

that it should be a numeric value comparable to 85 degrees Fahrenheit. Hence it asks, “How do I

find out the value for temperature?”, to which the user responds, “Let me demonstrate for you.”

Here the user can demonstrate the procedure of finding the current temperature by opening the

weather app on the phone, and pointing at the current reading of the weather. To assist the user,

PUMICE uses a visualization overlay to highlight any GUI objects on the screen that fit into the

comparison (i.e., those that display a value comparable to 85 degrees Fahrenheit). The user can

choose from these highlighted objects (see Figure 5.3 for an example). Through this demonstration,

PUMICE learns a reusable procedure query Temperature() for getting the current value for

the new concept temperature, and stores it in a persistent knowledge graph so that it can be used

in other tasks. PUMICE confirms with the user every time it learns a new concept or a new rule, so

that the user is aware of the current state of the system, and can correct any errors.

For the next phase, PUMICE has already determined that “order a cup of Iced Cappuccino”

should be an action triggered when the condition “it’s hot” is true, but does not know how to

perform this action (also known as intent fulfillment in chatbots [168]). To learn how to perform

this action, it asks, “How do I order a cup of Iced Cappuccino?”, to which the user responds, “I

2A demo video is available at https://www.youtube.com/watch?v=BAC2ZuJGY4M

56

https://www.youtube.com/watch?v=BAC2ZuJGY4M

5.3. PUMICE’S DESIGN

can demonstrate.” The user then proceeds to demonstrate the procedure of ordering a cup of Iced

Cappuccino using the existing app for Starbucks (a coffee chain). From the user’s demonstration,

PUMICE can figure out that “Iced Cappuccino” is a task parameter, and can learn the generalized

procedure order Starbucks() for ordering any item displayed in the Starbucks app, as well

as a list of available items to order in the Starbucks app by looking through the Starbucks app’s

menus, using the underlying SUGILITE framework (see Sections 3.4 and 4.3.3) for processing the

task recording.

Finally, PUMICE asks the user about the else condition by saying, “What should I do if it’s not

hot?” Suppose the user says “Order a cup of Hot Latte,” then the user will not need to demon-

strate again, because PUMICE can recognize “Hot Latte” as an available parameter option for the

previously learned order Starbucks() procedure.

5.3.2 Design Features

In this section, we discuss several of PUMICE’s key design features in its user interactions, and

how they were motivated by the results of the formative study.

Support for Concept Learning

In the formative study, we identified two main challenges with regard to concept learning. First,

users often naturally use intrinsically unclear or ambiguous concepts when instructing intelligent

agents (e.g., “register for easy courses”, where the definition of “easy” depends on the context and

the user’s preference). Second, users expect agents to understand common-sense concepts that the

agents may not know. To address these challenges, we designed and implemented the support for

concept learning in PUMICE. PUMICE can detect and learn three kinds of unknown components

in user utterances: procedures, Boolean concepts, and value concepts. Because PUMICE’s support

for procedure learning is unchanged from the underlying SUGILITE mechanisms (see Sections 3.4

and 4.3.3), we focus in this section on discussing how PUMICE learns Boolean concepts and value

concepts.

When encountering an unknown or unclear concept in the utterance parsing result, PUMICE

first determines the concept type based on the context. If the concept is used as a condition (e.g.,

“if it is hot”), then it should be of Boolean type. Similarly, if a concept is used where a value is

expected (e.g., “if the current temperature is above 70°F” or “set the AC to the current temper-
ature”), then it will be marked as a value concept. Both kinds of concepts are represented as typed

resolve() functions in the parsing result (shown in Figure 5.1), indicating that they need to be

further resolved down the line. This process is flexible. For example, if the user clearly defines

57

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

a condition without introducing unknown or unclear concepts, then PUMICE will not need to ask

follow-up questions for concept resolution. This process uses a lazy-evaluation strategy, where the

system waits for all unknown or unclear concepts to be defined before evaluating the expressions.

PUMICE recursively executes each resolve() function in the parsing result in a depth-first

fashion. After a concept is fully resolved (i.e., all concepts used for defining it have been resolved),

it is added to a persistent knowledge graph (details in Secion 5.4.2), and a link to it replaces the

resolve() function. From the user’s perspective, when a resolve() function is executed, the

agent asks a question to prompt the user to further explain the concept. When resolving a Boolean

concept, PUMICE asks, “How do I know whether [concept name]?” For resolving a value concept,

PUMICE asks, “How do I find out the value of [concept name]?”

To explain a new Boolean concept, the user may verbally refer to another Boolean concept (e.g.,

“traffic is heavy” means “commute takes a long time”) or may describe a Boolean expression (e.g.,

“the commute time is longer than 30 minutes”). When describing the Boolean expression, the user

can use flexible words (e.g., colder, further, more expensive) to describe the relation (i.e., greater

than, less than, and equal to). As explained previously, if any new Boolean or value concepts are

used in the explanation, PUMICE will recursively resolve them. The user can also use more than

one unknown value concepts, such as “if the price of a Uber is greater than the price of a Lyft”

(Uber and Lyft are both popular ridesharing apps).

Similar to Boolean concepts, the user can refer to another value concept when explaining a

value concept. When a value concept is concrete and available in a mobile app, the user can also

demonstrate how to query the value through app GUIs. The formative study has suggested that

this multi-modal approach is effective and feasible for end users. After users indicate that they

want to demonstrate, PUMICE switches to the home screen of the phone, and prompts the user to

demonstrate how to find out the value of the concept.

To help the user with value concept demonstrations, PUMICE highlights possible items on the

current app GUI if the type of the target concept can be inferred from the type of the constant value,

or using the type of value concept to which it is being compared (see Figure 5.3). For example,

in the aforementioned “commute time” example, PUMICE knows that “commute time” should be

a duration, because it is comparable to the constant value “30 minutes”. Once the user finds the

target value in an app, they can long press on the target value to select it and indicate it as the

target value. PUMICE uses an interaction proxy overlay [304] for recording, so that it can record

all values visible on the screen, not limited to the selectable or clickable ones. PUMICE can extract

these values from the GUI using the screen scraping mechanism. Once the target value is selected,

PUMICE stores the procedure of navigating to the screen where the target value is displayed and

58

5.3. PUMICE’S DESIGN

finding the target value on the screen into its persistent knowledge graph as a value query, so

that this query can be used whenever the underlying value is needed. After the value concept

demonstration, PUMICE switches back to the conversational interface and continues to resolve the

next concept if needed.

Concept Generalization and Reuse

Once concepts are learned, another major challenge is to generalize them so that they can be reused

correctly in different contexts and task domains. This is a key design goal of PUMICE. It should be

able to learn concepts at a fine granularity, and reuse parts of existing concepts as much as possible

to avoid asking users to make redundant demonstrations. In the previous chapters, we focused on

generalizing procedures, specifically learning parameters (Section 3.3.2) and intents for underlying

operations (Chapter 4). In PUMICE, we explored the generalization of Boolean concepts and value

concepts.

When generalizing Boolean concepts, PUMICE assumes that the Boolean operation stays the

same, but the arguments may differ. For example, for the concept “hot” in Figure 5.1, it should

still mean that a temperature (of something) is greater than another temperature. But the two

in comparison can be different constants, or from different value queries. For example, suppose

after the interactions in Figure 5.1, the user instructs a new rule “if the oven is hot, start the cook

timer.” PUMICE can recognize that “hot” is a concept that has been instructed before in a different

context, so it asks “I already know how to tell whether it is hot when determining whether to order

a cup of Iced Cappuccino. Is it the same here when determining whether to start the cook timer?”

After responding “No”, the user can instruct how to find out the temperature of the oven, and the

new threshold value for the condition “hot” either by instructing a new value concept, or using a

constant value.

The generalization mechanism for value concepts works similarly. PUMICE supports value

concepts that share the same name to have different query implementations for different task con-

texts. For example, following the “if the oven is hot, start the cook timer” example, suppose the

user defines “hot” for this new context as “The temperature is above 400 degrees.” PUMICE re-

alizes that there is already a value concept named “temperature”, so it will ask “I already know

how to find out the value for temperature using the Weather app. Should I use that for determin-

ing whether the oven is hot?”, to which the user can say “No” and then demonstrate querying the

temperature of the oven using the corresponding app (assuming the user has a smart oven with an

in-app display of its temperature).

59

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

Figure 5.3: The user teaches the value concept “commute time” by demonstrating querying the value in
Google Maps. The red overlays highlight all durations PUMICE was able to identify on the Google Maps
GUI.

60

5.3. PUMICE’S DESIGN

This mechanism allows concepts like “hot” to be reused at three different levels: (i) exactly

the same (e.g., the temperature of the weather is greater than 85°F); (ii) with a different threshold

(e.g., the temperature of the weather is greater than x); and (iii) with a different value query (e.g.,

the temperature of something else is greater than x).

Error Recovery and Backtracking

Like all other interactive EUD systems, it is crucial for PUMICE to properly handle errors, and to

backtrack from errors in speech recognition, semantic parsing, generalizations, and inferences of

intent. We iteratively tested early prototypes of PUMICE with users through early usability testing,

and developed the following mechanisms to support error recovery and backtracking in PUMICE.

To mitigate semantic parsing errors, we implemented a mixed-initiative mechanism where

PUMICE can ask users about components within the parsed expression if the parsing result is

considered incorrect by the user. Because parsing result candidates are all typed expressions in

PUMICE’s internal functional domain-specific language (DSL) as a conditional, Boolean, value, or

procedure, PUMICE can identify components in a parsing result that it is less confident about by

comparing the top candidate with the alternatives and confidence scores, and ask the user about

them.

For example, suppose the user defines a Boolean concept “good restaurant” with the utterance

“the rating is better than 2”. The parser is uncertain about the comparison operator in this Boolean

expression, since “better” can mean either “greater than” or “less than” depending on the context.

It will ask the user “I understand you are trying to compare the value concept ‘rating’ and the

value ‘2’, should ‘rating’ be greater than, or less than ‘2’?” The same technique can also be used

to disambiguate other parts of the parsing results, such as the argument of resolve() functions

(e.g., determining whether the unknown procedure should be “order a cup of Iced Cappuccino” or

“order a cup” for Utterance 0 in Figure 5.1).

PUMICE also provides an “undo” function to allow the user to backtrack to a previous conver-

sational state in case of incorrect speech recognition, incorrect generalization, or when the user

wants to modify a previous input. Users can either say that they want to go back to the previous

state, or click on an “undo” option in PUMICE’s menu (this option can be activated from the option

icon on the top right corner on the screen shown in Figure 5.2).

61

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

5.4 System Implementation

5.4.1 Semantic Parsing

We extended the semantic parser for PUMICE from the APPINITE parser (see Section 4.3.2) using

the SEMPRE framework [24] to support the new lazy-evaluation top-down conversational frame-

work for handling unknown concepts. The parser runs on a remote Linux server, and commu-

nicates with the PUMICE client through an HTTP RESTful interface. It uses the Floating Parser

architecture, which is a grammar-based approach that provides more flexibility without requiring

hand-engineering of lexicalized rules like synchronous CFG or CCG based semantic parsers [227].

This approach also provides more interpretable results and requires less training data than neural

network approaches (e.g., [300, 301]). The parser parses user utterances into expressions in a

simple functional DSL we created for PUMICE.

A key feature we added to PUMICE’s parser is allowing typed resolve() functions in the

parsing results to indicate unknown or unclear concepts and procedures. This feature adds inter-

activity to the traditional semantic parsing process. When this resolve() function is called at

runtime, the front-end PUMICE agent asks the user to verbally explain, or to demonstrate how to

fulfill this resolve() function. If an unknown concept or procedure is resolved through verbal

explanation, the parser can parse the new explanation into an expression of its original type in the

target DSL (e.g., an explanation for a Boolean concept is parsed into a Boolean expression), and

replace the original resolve() function with the new expression. The parser also adds relevant

utterances for existing concepts and procedures, and visible text labels from demonstrations on

third-party app GUIs to its set of lexicons, so that it can understand user references to those exist-

ing knowledge and in-app contents. PUMICE’s parser was trained on rich features that associate

lexical and syntactic patterns (e.g., unigrams, bigrams, skipgrams, part-of-speech tags, named en-

tity tags) of user utterances with semantics and structures of the target DSL over a small number

of training data (n = 905) that were mostly collected and enriched from the formative study.

5.4.2 Knowledge Representations

PUMICE maintains two kinds of knowledge representations: a continuously refreshing UI snapshot

graph representing third-party app contexts for demonstration, and a persistent knowledge base for

storing learned procedures and concepts.

The purpose of the UI snapshot graph is to support understanding the user’s references to app

GUI contents in their verbal instructions. The UI snapshot graph mechanism used in PUMICE

62

5.5. USER STUDY

Figure 5.4: An example showing how PUMICE parses the user’s demonstrated action and verbal reference to
an app’s GUI content into a SET VALUE statement with a query over the UI snapshot graph when resolving
a new value concept “current temperature.”

was extended from APPINITE (see Section 4.3.1). For every state of an app’s GUI, a UI snapshot

graph is constructed to represent all visible and invisible GUI objects on the screen, including their

types, positions, accessibility labels, text labels, various properties, and spatial relations among

them. We used a lightweight semantic parser from the Stanford CoreNLP [191] to extract types

of structured data (e.g., temperature, time, date, phone number) and named entities (e.g., city

names, people’s names). When handling the user’s references to app GUI contents, PUMICE parses

the original utterances into queries over the current UI snapshot graph (example in Figure 5.4).

This approach allows PUMICE to generate flexible queries for value concepts and procedures that

accurately reflect user intents, and which can be reliably executed in future contexts.

The persistent knowledge base is an add-on to the original SUGILITE system. It stores all proce-

dures, concepts, and facts PUMICE has learned from the user. Procedures are stored as SUGILITE

scripts, with the corresponding trigger utterances, parameters, and possible alternatives for each

parameter. Each Boolean concept is represented as a set of trigger utterances, Boolean expressions

with references to the value concepts or constants involved, and contexts (i.e., the apps and actions

used) for each Boolean expression. Similarly, the structure for each stored value concept includes

its triggering utterances, demonstrated value queries for extracting target values from app GUIs,

and contexts for each value query.

5.5 User Study

We conducted a lab study to evaluate the usability of PUMICE. In each session, a user completed 4

tasks. For each task, the user instructed PUMICE to create a new task automation, with the required

63

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

conditionals and new concepts. We used a task-based method to specifically test the usability of

PUMICE’s design, since the motivation for the design derives from the formative study results. We

did not use a control condition, as we could not find other tools that can feasibly support users with

little programming expertise to complete the target tasks.

5.5.1 Participants

We recruited 10 participants (5 identified as female, 5 identified as male, ages 19 to 35) for this

study. Each study session lasted 40 to 60 minutes. We compensated each participant $15 for

their time. 6 participants were students in two local universities, and the other 4 worked different

technical, administrative, or managerial jobs. All participants were experienced smartphone users

who had been using smartphones for at least 3 years. 8 out of 10 participants had some prior

experience of interacting with conversational agents like Siri, Alexa and Google Assistant.

We asked the participants to report their programming experience on a five-point scale from

“never programmed” to “experienced programmer”. Among our participants, there were 1 who

had never programmed, 5 who had only used end-user programming tools (e.g., Excel functions,

Office macros), 1 novice programmer with experience equivalent to 1-2 college-level programming

classes, 1 programmer with 1-2 years of experience, and 2 programmers with more than 3 years

of experience. In our analysis, we will label the first two groups “non-programmers” and the last

three groups “programmers”.

5.5.2 Procedure

At the beginning of each session, the participant received a 5-minute tutorial on how to use

PUMICE. In the tutorial, the experimenter demonstrated an example of teaching PUMICE to check

the bus schedule when “it is late”, and “late” was defined as “current time is after 8pm” through a

conversation with PUMICE. The experimenter then showed how to demonstrate to PUMICE finding

out the current time using the Clock app.

Following the tutorial, the participant was provided a Google Pixel 2 phone with PUMICE and

relevant third-party apps installed. The experimenter showed the participant the available apps,

and made sure that the participant understood the functionality of each third-party app. We did

this because the underlying assumption of the study (and the design of PUMICE) is that users are

familiar with the third-party apps, so we are testing whether they can successfully use PUMICE,

not the apps. Then, the participant received 4 tasks in random order. We asked participants to

keep trying until they were able to correctly execute the automation, and that they were happy with

64

5.5. USER STUDY

Figure 5.5: The graphical prompt used for Task 1 – A possible user command can be “Order Iced coffee
when it’s hot outside, otherwise order hot coffee when the weather is cold.”

the resulting actions of the agent. We also checked the scripts at the end of each study session to

evaluate their correctness.

After completing the tasks, the participant filled out a post-survey to report the perceived use-

fulness, ease of use, and naturalness of interactions with PUMICE. We ended each session with a

short informal interview with the participant on their experiences with PUMICE.

5.5.3 Tasks

We assigned 4 tasks to each participant. These tasks were designed by combining common themes

observed in users’ proposed scenarios from the formative study. We ensured that these tasks

(i) covered key PUMICE features (i.e., concept learning, value query demonstration, procedure

demonstration, concept generalization, procedure generalization and “else” condition handling);

(ii) involved only app interfaces that most users are familiar with; and (iii) used conditions that we

can control so we can test the correctness of the scripts (we controlled the temperature, the traffic

conditions, and the room price by manipulating the GPS location of the phone).

In order to minimize biasing users’ utterances, we used the Natural Programming Elicitation

method [210]. Task descriptions were provided in the form of graphics, with minimal text descrip-

tions that could not be directly used in user instructions (see Figure 5.5 for an example).

Task 1 In this task, the user instructs PUMICE to order iced coffee when the weather is hot, and

order hot coffee otherwise (Figure 5.5). We pre-taught PUMICE the concept of “hot” in the task

domain of turning on the air conditioner. So the user needs to utilize the concept generalization

65

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

feature to generalize the existing concept “hot” to the new domain of coffee ordering. The user

also needs to demonstrate ordering iced coffee using the Starbucks app, and to provide “order hot

coffee” as the alternative for the “else” operation. The user does not need to demonstrate again

for ordering hot coffee, as it can be automatically generalized from the previous demonstration of

ordering iced coffee.

Task 2 In this task, the user instructs PUMICE to set an alarm for 7am if the traffic is heavy

on their commuting route. We pre-stored “home” and “work” locations in Google Maps. The

user needs to define “heavy traffic” as prompted by PUMICE by demonstrating how to find out the

estimated commute time, and explaining that “heavy traffic” means that the commute takes more

than 30 minutes. The user then needs to demonstrate setting a 7am alarm using the built-in Clock

app.

Task 3 In this task, the user instructs PUMICE to choose between making a hotel reservation and

requesting a Uber to go home depending on whether the hotel price is cheap. The user should

verbally define “cheap” as “room price is below $100”, and demonstrate how to find out the hotel

price using the Marriott (a hotel chain) app. The user also needs to demonstrate making the hotel

reservation using the Marriott app, specify “request an Uber” as the action for the “else” condition,

and demonstrate how to request an Uber using the Uber app.

Task 4 In this task, the user instructs PUMICE to order a pepperoni pizza if there is enough money

left in the food budget. The user needs to define the concept of “enough budget”, demonstrate

finding out the balance of the budget using the Spending Tracker app, and demonstrate ordering a

pepperoni pizza using the Papa Johns (a pizza chain) app.

5.5.4 Results

All participants were able to complete all 4 tasks. The total time for tasks ranged from 19.4

minutes to 25 minutes for the 10 participants. Figure 5.6 shows the overall average task completion

time of each task, as well as the comparison between the non-programmers and the programmers.

The average total time-on-task for programmers (22.12 minutes, SD=2.40) was slightly shorter

than that for non-programmers (23.06 minutes, SD=1.57), but the difference was not statistically

significant.

Most of the issues encountered by participants were actually from the Google Cloud speech

recognition system used in PUMICE. It would sometimes misrecognize the user’s voice input, or

66

5.5. USER STUDY

Figure 5.6: The average task completion times for each task. The error bars show one standard deviation in
each direction.

cut off the user early. These errors were handled by the participants using the “undo” feature in

PUMICE. Some participants also had parsing errors. PUMICE’s current semantic parser has limited

capabilities in understanding references of pronouns (e.g., for an utterance “it takes longer than

30 minutes to get to work”, the parser would recognize it as “it” instead of “the time it takes to

get to work” is greater than 30 minutes). Those errors were also handled by participants through

undoing and rephrasing. One participant ran into the “confusion of Boolean operator” problem in

Task 2 when she used the phrase “commute [time is] worse than 30 minutes”, for which the parser

initially recognized incorrectly as “commute is less than 30 minutes.” She was able to correct this

error by specifying that she meant “greater than” for the word “worse” using the error recovery

mechanism discussed in Section 5.3.2.

Overall, no participant had major problems with the multi-modal interaction approach and the

top-down recursive concept resolution conversational structure, which was encouraging. However,

all participants had received a tutorial with an example task demonstrated. We also emphasized in

the tutorial that they should try to use concepts that can be found in mobile apps in their explana-

tions of new concepts. These factors might contributed to the success of our participants.

In a post survey, we asked our participants to rate statements about the usability, naturalness,

and usefulness of PUMICE on a 7-point Likert scale ranging from “strongly disagree” to “strongly

agree”. PUMICE scored on average 6.2 on “I feel PUMICE is easy to use”, 6.1 on “I find my

interactions with PUMICE natural”, and 6.9 on “I think PUMICE is a useful tool for automating

tasks on smartphones,”. The results indicated that our participants were generally satisfied with

their experience using PUMICE.

67

CHAPTER 5. LEARNING TASK CONDITIONALS AND CONCEPTS

5.5.5 Discussion

In the informal interview after completing the tasks, participants praised PUMICE for its natural-

ness and low learning barriers. Non-programmers were particularly impressed by the multi-modal

interface. For example, P7 (who was a non-programmer) said: “Teaching PUMICE feels similar

to explaining tasks to another person...[Pumice’s] support for demonstration is very easy to use

since I’m already familiar with how to use those apps.” Participants also considered PUMICE’s

top-down interactive concept resolution approach very useful, as it does not require them to define

everything clearly upfront.

Participants were excited about the usefulness of PUMICE. P6 said, “I have an Alexa assistant

at home, but I only use them for tasks like playing music and setting alarms. I tried some more

complicated commands before, but they all failed. If it had the capability of PUMICE, I would

definitely use it to teach Alexa more tasks.” They also proposed many usage scenarios based on

their own needs in the interview, such as paying off credit card balance early when it has reached a

certain amount, automatically closing background apps when the available phone memory is low,

monitoring promotions for gifts saved in the wish list when approaching anniversaries, and setting

reminders for events in mobile games.

Several concerns were also raised by our participants. P4 commented that PUMICE should

“just know” how to find out weather conditions without requiring her to teach it since “all other

bots know how to do it”, indicating the need for a hybrid approach that combines EUD with pre-

programmed common functionalities. P5 said that teaching the agent could be too time-consuming

unless the task was very repetitive since he could just “do it with 5 taps.” Several users also ex-

pressed privacy concerns after learning that PUMICE can see all screen contents during demonstra-

tions, while one user, on the other hand, suggested having PUMICE observe him at all times so that

it can learn things in the background.

5.6 Chapter Conclusion

This chapter presented PUMICE, a new multi-modal conversational framework for SUGILITE that

allows it to learn task conditionals and relevant concepts from conversational natural language

instructions and demonstrations. The design of PUMICE showcased the idea of using multi-modal

interactions to support the learning of unknown, ambiguous, or vague concepts in users’ verbal

commands, which was shown to be common in the formative study.

In PUMICE’s approach, users can explain abstract concepts in task conditions using more con-

crete smaller concepts, and ground them by demonstrating with third-party mobile apps. More

68

5.6. CHAPTER CONCLUSION

broadly, this work demonstrates how combining conversational interfaces and demonstrational in-

terfaces can create easy-to-use and natural end user development experiences.

69

Chapter 6

Applications in Smart Home Scenarios

6.1 Introduction

In recent years, the rapid growth of Internet of Things (IoT) has surrounded users with various

smart appliances, sensors, and devices. Through their connections, these smart objects can under-

stand and react to their environment, enabling novel computing applications [239]. A past study

has shown that users have highly diverse and personalized desired behaviors for their smart home

automation, and, as a result, they need end-user tools to enable them to program their environ-

ment [273]. Especially with the growing number of devices, the complexity of the systems, and

their importance in everyday life, it is increasingly important to enable end users to create the

programs themselves for those devices to achieve the desired user experience [198, 244].

Many manufacturers of smart devices have provided their customers with tools for creating

their own automation. For example, LG has the SmartThinQ app, where the user can author

schedules and rules for their supported LG smart appliances such as fridges, washers, and ovens.

Similar software is also provided by companies like Samsung (SmartThings), Home Depot (Wink),

and WeMo. However, a major limitation for all of these is the lack of interoperability and com-

patibility with devices from other manufacturers. They all only support the limited set of devices

manufactured by their own companies or their partners. Therefore, users are restricted to creat-

ing automation using devices within the same “ecosystem” and are unable to, for instance, create

automation to adjust the setting of an LG air conditioner based on the reading from a Samsung

sensor.

This chapter is modified from the conference paper: Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad
A. Myers. Programming IoT Devices by Demonstration Using Mobile Apps. In Proceedings of the International
Symposium on End User Development (IS-EUD 2017).

70

6.2. EPIDOSITE’S ADVANTAGES

Some platforms partially address this problem. For example, IFTTT1 is a popular service that

enables end users to program in the form of “if trigger, then action” for hundreds of popular

web services, apps, and IoT devices. With the help of IFTTT, the user can create automation

across supported devices like a GE dishwasher, a WeMo coffeemaker, and a Fitbit fitness tracker.

However, the applicability of IFTTT is still limited to devices and services offered by its partners,

or those that provide open APIs which can connect to IFTTT. Even for the supported devices and

services, often only a subset of the most commonly used functions is made available due to the

required engineering effort. Other platforms like Apple HomeKit and Google Home also suffer

from the same limitations. Because of the lack of a standard interface or a standard protocol,

many existing tools and systems cannot support the heterogeneity of IoT devices [94,103]. While

generalized architectures for programming IoT devices and higher-level representations of IoT

automation rules and scripts have been proposed (e.g., [84, 89, 103, 103, 231]), they have not yet

been widely adopted in the most popular commercial IoT products, and there is some reason for

pessimism that such an agreement will ever happen.

To address these problems, we have created an extension to the base version of SUGILITE

named EPIDOSITE2. EPIDOSITE enables the creation of automation for IoT devices from dif-

ferent ecosystems by demonstration through manipulating their corresponding mobile apps using

SUGILITE. Our system particularly targets the development of automation scripts for consumer

IoT devices in the smart home environment by end users with little or no programming expertise.

Thanks to the ubiquity of smartphones, for the majority of consumer IoT devices, there are corre-

sponding smartphone apps available for remote controlling them, and these apps often have access

to the full capabilities of the devices. A smartphone loaded with these apps is an ideal universal

interface for monitoring and controlling the smart home environment [308]. Thus, by leveraging

the smartphone as a hub, we can both read the status of the IoT sensors by scraping information

from the user interfaces of their apps, and control the IoT actuators by manipulating their apps.

To our knowledge, EPIDOSITE is the first end user development system for IoT devices using this

approach.

6.2 EPIDOSITE’s Advantages

EPIDOSITE’s approach has the following three major advantages:

1https://ifttt.com/
2EPIDOSITE is a type of rock. The acronym stands for Enabling Programming of IoT Devices On Smartphone

Interfaces for The End-users

71

CHAPTER 6. APPLICATIONS IN SMART HOME SCENARIOS

• Compatibility: Unlike other EUD tools for consumer IoT devices, which can only support

programming devices from the same company, within the same ecosystem, or which provide

open access to their APIs, EPIDOSITE can support programming for most of the available

consumer IoT devices if they provide Android apps for remote control. For selected phones

with IR blasters (e.g., LG G5, Samsung Galaxy S6, HTC One) and the corresponding IR

remote apps, EPIDOSITE can even control “non-smart” appliances such as TVs, DVRs, home

theaters, and air conditioners that support IR remote control (but this obviously only works

when the phone is aimed at the device).

• Interoperability: EPIDOSITE can support creating automation across multiple IoT devices,

even if they are from different manufacturers. Besides IoT devices, EPIDOSITE can also

support the incorporation of arbitrary third-party mobile apps and hundreds of external web

services into the scripts. The exchange of information between devices is also supported by

demonstration. The user can extract values of the readings and status of IoT devices using

gestures on one mobile app, and use the values later as input for other apps. This approach

addresses the challenge of supporting impromptu interoperability [76], a vision that devices

acquired at different times, from different vendors and created under different design con-

straints and considerations should interconnect with no advance planning or implementation.

• Usability: We believe that EPIDOSITE should be easy to use, even for end users with lit-

tle or no prior programming experience. Since the users are already familiar with how to

use the mobile apps to monitor and to control IoT devices, EPIDOSITE minimizes the learn-

ing barrier by enabling users to use those familiar app interfaces to develop automation by

demonstrating the procedures to control the IoT devices to perform the desired behaviors.

A major advantage of PBD is that it can empower users while minimizing learning of pro-

gramming concepts [65,175]. The evaluation of the core SUGILITE system (see Section 3.5)

has shown that most end users can successfully automate their tasks by demonstration using

mobile apps on smartphones.

6.3 Example Usage Scenario

In this section, we use an example scenario to illustrate the procedure of creating an automation

script with EPIDOSITE. For the scenario, we will create a script that turns on the TV set top box

and turns off the light when someone enters the TV room. We will use a Verizon TV set-top box,

72

6.3. EXAMPLE USAGE SCENARIO

Figure 6.1: Screenshots of EPIDOSITE: (a) the main screen of EPIDOSITE showing a list of available
scripts; (b) the confirmation dialog for an operation; (c) the data description editing panel for one operation.
Note that in the latest version, the data description editing panel (c) has been replaced with APPINITE (see
Chapter 4).

a Philips Hue Go light, and a D-Link DCH-S150 Wi-Fi motion sensor in this script. To our best

knowledge, there exists no other EUD solution that can support all the above three devices.

First, the user starts EPIDOSITE (Figure 6.1a), creates a new script, and gives it a name. The

phone then switches back to the home screen, and prompts the user to start demonstrating. The

user now starts demonstrating how to turn off the light using the Philips Hue app — tapping on the

Philips Hue icon on the home screen, choosing “Living Room”, clicking on the “SCENES” tab,

and selecting “OFF”, which are the exact same steps as when the user turns off the light manually

using the same app. After each action, the user can see a confirmation dialog from EPIDOSITE

(Figure 6.1b). Running in the background as an Android accessibility service, EPIDOSITE can

automatically detect the user’s action and determine the features to use to identify the element

using a set of heuristics, but the user can also manually edit the details of each recorded action

in an editing panel (Figure 6.1c). Figure 6.2a shows the textual representation of the EPIDOSITE

script created for turning off the light. Next, the user demonstrates turning on the TV set-top box

using the SURE Universal Remote app on the phone (or other IR remote apps that support the

Verizon TV set-top box), and EPIDOSITE records the procedure for that as well.

73

CHAPTER 6. APPLICATIONS IN SMART HOME SCENARIOS

Figure 6.2: Screenshots of EPIDOSITE’s script view and trigger creation interfaces: (a) the script view
showing the script from the example usage scenario; (b) the window for creating an app notification trigger;
(c) the window for creating an app launch trigger.

The user ends the demonstration recording and goes back to the EPIDOSITE app. She then

clicks on the menu, and chooses “Add a Script Trigger”. In the pop-up window (Figure 6.2b), she

gives the trigger a name, selects “Notification” as the type of the trigger, specifies “mydlink Home”

(the mobile app for the D-Link motion sensor) as the source app, chooses the script she just created

as the script to trigger, enters “Motion detected by TV room” as the activation string, and finally,

clicks on “OK” to save the trigger. This trigger will execute the script every time that the “mydlink

Home” app sends a notification that contains the string “Motion detected by TV room”.

The steps shown above are the whole process to create this automation. Once the trigger is

enabled, the background Android accessibility service waits for the activation of the trigger. When

the motion sensor detects a motion, an Android notification is generated and displayed by the

mydlink Home app. Then EPIDOSITE intercepts this notification, activates the trigger, executes

the script, and manipulates the UI of the Philips Hue app and the SURE Universal Remote app to

turn off the lights and to turn on the TV set-top box.

74

6.4. EPIDOSITE’S KEY FEATURES

6.4 EPIDOSITE’s Key Features

6.4.1 Notification and App Launch Triggers

The most common context-aware applications in the smart home are naturally described using

rule-based conditions in the model of trigger-action programming, where a trigger describes a

condition, an event, or a scenario, and an action specifies the desired behavior when its associated

trigger is activated [70, 273]. In EPIDOSITE, scripts can be triggered by the content of Android

notifications, or as a result of the launch of a specified app on the phone.3

EPIDOSITE keeps a background Android accessibility service running at all times. Through the

Android accessibility API, the service is notified about the system notifications and app launches.

If the content of a new notification contains the activation string of a stored notification trigger (as

shown in the example usage scenario using the interface shown in Figure 6.2), or an app associated

with an app launch trigger has just launched, the corresponding automation script for the trigger

will be executed. Figure 6.2c shows the interface with which the user can create an automation

that turns off the light when the YouTube app launches, after first creating the “Turn off the living

room light” script by demonstration.

These features allow scripts to be triggered not only by mobile apps for IoT devices, as shown

in the example usage scenario, but also by other third-party Android apps. Prior research has shown

that the usage of smartphone apps is highly contextual [42, 123] and also varies [307] for different

groups of users. By allowing the launching of apps and the notifications from apps to trigger

IoT scripts, the user can create highly context-aware automation with EPIDOSITE, for example, to

change the color of the ambient lighting when the Music Player is launched, to adjust the thermostat

when the Sleep Monitor app is launched, or even to warm up the car when the Alarm app rings

(and sends the notification) on winter mornings.

Using the above two types of triggers, along with the external service trigger introduced in the

next section, user-demonstrated scripts for smartphone apps can also be triggered by readings and

status of IoT sensors and devices.

6.4.2 External Service Triggers

To expand the capabilities of EPIDOSITE to leverage all of the available resources, we implemented

an optional server application that allows EPIDOSITE to integrate with the popular automation ser-

vice IFTTT. Through this integration, an EPIDOSITE script can be triggered by over 360 web ser-

3The notification-based and app launch-based trigger mechanisms have not been integrated with the app interface-
based conditional mechanism described in Chapter 5.

75

CHAPTER 6. APPLICATIONS IN SMART HOME SCENARIOS

Figure 6.3: The architecture of EPIDOSITE’s external service trigger mechanism.

Figure 6.4: Creating an IFTTT applet that triggers an EPIDOSITE script: (a) creating the trigger condi-
tion “sleep duration below 6 hours” using the Fitbit activity tracker; (b) creating the action of running the
EPIDOSITE script “coffeemachine” using the URL generated by EPIDOSITE; (c) the IFTTT applet created.

76

6.4. EPIDOSITE’S KEY FEATURES

vices supported by IFTTT, including social networks (e.g., Facebook, Twitter), news (e.g., ESPN,

Feedly), email, calendar management, weather and supported devices like smart hubs (e.g., Google

Home, Amazon Echo), smart appliances, fitness trackers, home monitors, and smart speakers. An

EPIDOSITE script can also be used to trigger actions for IFTTT-supported services. Figure 6.3

shows the overall architecture for supporting external service triggers, consisting of the client-side,

the server-side, the IFTTT service, and how they communicate.

An IFTTT applet consists of two parts: a trigger and an action., in which either part can be an

EPIDOSITE script. If an EPIDOSITE script is used as the trigger, then an HTTP request will be sent

out to IFTTT via the EPIDOSITE server to execute the corresponding IFTTT action when the trigger

is activated. Similarly, if an EPIDOSITE script is used as the action, then it will be executed on the

corresponding client smartphone upon the client application receiving a Google Cloud Messaging

(GCM) message sent by the EPIDOSITE server when the associated IFTTT trigger is activated.

The EPIDOSITE server communicates with IFTTT through the IFTTT Maker channel, which can

receive and make RESTful HTTP web requests. The EPIDOSITE server-side application is also

highly scalable and can handle multiple clients at the same time.

To create an IFTTT triggered script, the user first creates an EPIDOSITE script for the “action”

part by demonstration, where the user records the procedure of performing the desired task by

manipulating the phone apps. Then, the user goes to IFTTT, chooses “New Applet,” and chooses a

trigger for the script. After this, the user chooses the Maker channel as the action. For the address

for the web request, the EPIDOSITE app on the phone will automatically generate a URL which

the user can just paste into this field. The auto-generated URL is in the format of:

http://[SERVER ADDRESS]/client=[CLIENT NAME]&scriptname=[SCRIPT NAME]

where [SERVER ADDRESS] is the address of the EPIDOSITE server, [CLIENT NAME] is the

name of the EPIDOSITE client (which by default is the combination of the phone owner’s name

and the phone model. e.g., “Amy’s Nexus 6”) and [SCRIPT NAME] is the name of the EPIDOSITE

script to trigger. The user can just paste this URL into the IFTTT field (see Figure 6.4).

The procedure to create an EPIDOSITE-triggered IFTTT applet is similar, except that the user

needs to add “trigger an IFTTT applet” as an operation when demonstrating the EPIDOSITE script,

and then use the Maker channel as the trigger.

6.4.3 Cross-app Interoperability

Interoperability among IoT devices has been a long-time important challenge [76]. Sharing data

across devices from different “ecosystems” often requires the user to manually setup the connec-

77

CHAPTER 6. APPLICATIONS IN SMART HOME SCENARIOS

Figure 6.5: Extracting the time of the last detection from a D-link motion sensor in the Mydlink Home app
using a circle gesture in EPIDOSITE.

tion using techniques like HTTP requests, which require careful planning and extensive techni-

cal expertise [68]. Middleware like [29, 89, 131, 255] supports IoT interoperation and provides a

high-level representation model for common IoT devices, but these also require the user to have

sophisticated programming skills.

EPIDOSITE supports the user in extracting the value of a TextView object in the user interface

of an app by using a gesture during the demonstration, storing the value in a variable, and then

using the values saved in these variables later in the script. All the user needs to do to save a

value is to click on the “Get a Text Element on the Screen” option from the recording menu while

demonstrating, circle the desired element on the screen using a finger gesture (the yellow stroke

shown in Figure 6.5), and select the element in a pop-up menu (see Figure 6.5). Later, when the

user needs to enter a string in a script, the user can instead choose to use the value from a previously

created variable. Eventually, this value selection and extraction mechanism should be connected

with the concept learning mechanism described in Section 5.3.2.

When a script that contains a value extraction operation is executed, EPIDOSITE will automat-

ically navigate as demonstrated to the user interface where the desired value is located, and then

dynamically extract the value using the appropriate data description query (see Chapter 4). This

78

6.5. SYSTEM IMPLEMENTATION AND TECHNICAL LIMITATIONS

approach does not require the involved app to have an API or other data export mechanism. As

long as the desired value is displayed as a text string in the app, the value can be extracted and used

in other parts of the script.

6.5 System Implementation and Technical Limitations

The client component of EPIDOSITE is an Android app extension to the base version of SUGILITE

(see Chapter 3). The client component is standalone. There is also an optional server application

available for supporting automation triggered by external web services through IFTTT. The server

application is implemented in Java with Jersey4 and Grizzly.5

On top of the base version of SUGILITE, EPIDOSITE added new features and mechanisms to

support the programming of IoT devices in the smart home setting, including new ways for trig-

gering scripts, new ways for scripts to trigger external services, and devices, and new mechanisms

for sharing information among devices. To better meet the needs of developing for IoT devices,

EPIDOSITE also supported programming for different devices in separated subscripts, and reusing

the subscripts in new scripts. For example, the user can demonstrate the two scripts for “turning

off the light” and “turning on the TV”, and then create a new script of “if ..., turn off the light and

turn on the TV”) without having to demonstrate the procedures for performing the two tasks again.

The current version of EPIDOSITE has several technical limitations. First, for executing au-

tomation, the phone must be powered on and concurrently connected to all the devices involved in

the automation. If the phone is powered off, or disconnected from the involved IoT devices, the

automation will fail to execute. This limitation will particularly affect EPIDOSITE’s applicability

for devices that are connected to the phone via a local network or through a short-range wireless

communication technology (e.g., Bluetooth, ZigBee, IR), since with these devices, the phone is re-

stricted to be connected to the local network, or physically within range of the wireless connection

for the automation to work. Second, EPIDOSITE automation needs to run in the foreground on the

main UI thread of the phone. Thus, if automation is triggered when the user is actively operating

the phone at the same time (e.g., if the user is on a phone call), then the user’s interaction with the

phone will be interrupted. The automation execution may also fail if it is interrupted by a phone

event (e.g., an incoming phone call) or by the user’s action.

For the above limitations, an approach is to use a separate phone as the hub for IoT automation,

and to run EPIDOSITE on that phone instead of using the user’s primary smartphone. By doing this,

4https://jersey.java.net/
5https://grizzly.java.net/

79

CHAPTER 6. APPLICATIONS IN SMART HOME SCENARIOS

the separate phone can be consistently plugged in and stay connected with the IoT devices to ensure

that the automation can be triggered and executed properly. Currently, a compatible Android phone

can be purchased for less than $50, which makes this approach affordable.

6.6 Chapter Conclusion

In this chapter, we described EPIDOSITE, a SUGILITE extension that makes it possible for end users

to create automation for consumer IoT devices on their smartphones. It supports programming

across multiple IoT devices and exchanging information among them without requiring the devices

to be of the same brand or within the same “ecosystem”. The programming by demonstration

approach minimizes the necessity to learn programming concepts. EPIDOSITE also supports using

arbitrary third-party Android mobile apps and hundreds of available web services in the scripts to

create highly context-aware and responsive automation.

80

Chapter 7

Breakdown Repairs in Task-Oriented
Dialogues

7.1 Introduction

Conversational user interfaces have become increasingly popular and ubiquitous in our everyday

lives, assisting users with tasks from diverse domains. However, despite the advances in their nat-

ural language understanding capabilities, prevailing conversational systems, including SUGILITE,

are still far from being able to understand the wide range of flexible user utterances and engage

in complex dialog flows [102]. Existing agents employ rigid communication patterns, requiring

that users adapt their communication patterns to the needs of the system instead of the other way

around [19, 124]. As a result, conversational breakdowns, defined as failures of the system to cor-

rectly understand the intended meaning of the user’s communication, often occur. Conversational

breakdowns decrease users’ satisfaction, trust, and willingness to continue using a conversational

system [22, 64, 121, 122, 185], and may cause users to abandon the current task [8]. In this chap-

ter, we study repair strategies for such conversational breakdowns, specifically in the context of

spoken task-oriented conversations with a mobile device, grounded in the apps and the display of

that mobile device. The new approach described in this chapter enables SUGILITE to better sup-

port users to effectively discover, identify the causes of, and repair breakdowns caused by certain

natural language understanding errors.

Prior breakdown repair methods in human-agent conversations mainly have used only the nat-

ural language modality. Code-switching [283], which refers to the act of adjusting the speaking

This chapter is modified from the conference paper: Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell,
and Brad A. Myers. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented Dialogs. In Proceedings of
the ACM Symposium on User Interface Software and Technology (UIST 2020).

81

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

Figure 7.1: The interface of SOVITE: (a) SOVITE shows an app GUI screenshot to communicate its state
of understanding. The yellow highlight overlay specifies the task slot value. The user can drag the overlay
to fix slot value errors. (b) To fix intent detection errors, the user can refer to an app that represents their
desired task. SOVITE will match the utterance to an app on the phone (with its icon shown), and look for
intents that use or are relevant to this app. (c) If the intent is still ambiguous after referring to an app, the
user can show a specific app screen relevant to the desired task.

82

7.1. INTRODUCTION

style to accommodate the listener [19] in the context of conversational agents, is commonly found

in users’ breakdown repair attempts. Many repair strategies are used in these adjustments, depend-

ing on the user’s understanding of the cause of the breakdown [19, 214]. For example, when the

user suspects that the system has misheard the utterance, they might apply prosodic changes (ad-

just the rhythm or cadence of speech), overarticulation (exaggerating sounds), increased volume,

or simply repetitions of the original utterance [19]. They might make syntactical adjustments to

the original utterance if they thought the system did not understand its syntactic structure [19].

Similarly, they might perform semantic adjustments and modifications, such as replacing a word

with its synonym, defining a concept, or breaking down a procedure, if they suspected the incorrect

semantic understanding to be the cause of the breakdown [19, 214].

However, these strategies are often ineffective for two reasons: First, users often lack an ac-

curate understanding of the cause of the breakdown because current conversational agents do not

provide sufficient transparency into the system’s state of understanding [19]. Understanding why

a breakdown happens is crucial for the user to repair it [8]. In current agents, breakdowns are of-

ten discovered by users only after the system has acted incorrectly based on its misunderstanding

(i.e., performing the wrong action) or from a generic error response (e.g., ”Sorry I don’t under-

stand”) [19]. Thus, little useful information is available for users to infer the cause of the break-

down. The system will provide a task-specific clarification response only in the small portion of

cases where a developer has explicitly programmed an error handling conversation flow for the

specific breakdown scenario.

Second, even when users correctly identify the causes of the breakdowns, their repairs in natural

language are often ineffective [19]. This is especially problematic in breakdowns caused by natural

language understanding errors, where the user needs to make semantic and syntactic adjustments

such as verbally defining a keyword, explaining a procedure, replacing a word with its synonym,

or restructuring the sentence instead of simply repeating the utterances with exaggerating sounds.

The user usually needs to guess the right strategy to use due to the lack of transparency into

the system’s natural language understanding models. Existing conversational systems also often

have problems understanding these repairs due to the system’s limited capability of reasoning with

natural language instructions and common sense knowledge [167]. This is part of the reason why

commercial systems like Siri and Alexa rarely ask users to try to repair the conversation, but just

immediately perform generic fallback actions such as searching the web.

Visualizing the agent’s understanding of user intent is a promising way to address these chal-

lenges. Some existing agents support displaying visual responses (known as cards1 in Google

1https://developers.google.com/assistant/conversational/rich-responses

83

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

Assistant) within natural language conversations. These cards allow the user to see the agent’s

state, and to interact with the agent visually to complement speech commands. However, these

cards must be hard-coded by the developers, require significant effort to create, and therefore have

limited adoption across task domains. In this chapter, we propose a new approach to address these

challenges leveraging the graphical user interfaces (GUIs) of existing apps. This approach can be

applied on devices with screens and access to app GUIs, such as smartphones and smart display

devices (e.g., Amazon Echo Show, Google Home Hub). Our approach helps the user discover

breakdowns and identify their causes by showing the system’s state of understanding using GUI

screenshots of the underlying apps for the task domain. It subsequently allows the users to re-

pair the breakdowns by using direct manipulation on the screenshots and by making references to

relevant apps and screens in the conversation.

The use of app GUIs has many advantages. GUIs and conversational agents are two different

types of interfaces to mostly the same set of underlying computing services, since most, if not all,

supported task domains in task-oriented conversational agents have corresponding mobile apps.

The GUIs of these apps encapsulate rich knowledge about the flows of the tasks and the properties

and relations of relevant entities [168]. The majority of users are also familiar with the app GUIs,

the way to interact with them, and their general design patterns [163], which makes them ideal

mediums through which the agent and the user can communicate in a supplementary modality

during natural language conversations.

This chapter introduces SOVITE2, a new interface for SUGILITE that helps users discover, iden-

tify the causes of, and recover from conversational breakdowns using a app-grounded multi-modal

approach (Figure 7.1). A remote user study of 10 participants using SOVITE in 7 conversational

breakdown scenarios showed that end users were able to successfully use SOVITE to fix common

types of breakdowns caused by natural language understanding errors. The participants also found

SOVITE easy and natural to use.

This chapter describes the following research contributions:

1. A new multi-modal approach that allows users to discover, identify the causes of, and repair

conversational breakdowns caused by natural language understanding errors in task-oriented

agents using the GUIs of existing mobile apps.

2. The SOVITE interface: an implementation of the above approach on SUGILITE, along with

a user study evaluating its effectiveness and usability.
2SOVITE is named after a type of rock. It is also an acronym for System for Optimizing Voice Interfaces to Tackle

Errors.

84

7.2. PROBLEM SETTING

7.2 Problem Setting

7.2.1 Frame-Based Task-Oriented Conversational Agents

SOVITE is designed for handling natural language understanding errors in task-oriented conversa-

tional agents that use the frame-based architecture for dialog management [30]. This is the most

popular architecture used by the majority of existing commercial task-oriented agents [127]. It is

based on a set of frames (also known as intents). Each frame represents a kind of intent that the

system can extract from user utterances. A frame often contains slots whose values are needed

for fulfilling the underlying task intent. For a user utterance, the system first determines the frame

to use (e.g., finding a flight), and then tries to fill the slots (e.g., date, departure airport, and ar-

rival airport) through the dialog. Frames can ensure the necessary structures and constraints for

task completion [127], which are lacking in statistical dialog approaches (e.g., deep reinforcement

learning for response generation [156, 157, 246] and information retrieval-based structures [290])

often used in social chatbots that converse with human users on open domain topics without ex-

plicit task completion goals.

A typical pipeline for a frame-based dialog architecture consists of multiple steps, including:

(1) speech recognition, (2) natural language understanding, (3) natural language generation, and

(4) speech synthesis [127]. Among those, (2) natural language understanding causes most of the

critical breakdowns, as reported in Myers et al.’s study [214] on how users overcome obstacles in

voice user interfaces. For the (1) speech recognition step, state-of-art algorithms have reached hu-

man parity [292]. For screen-based systems like what we use, the user can easily read and edit the

transcription from the speech recognition step. Further, users’ natural repair strategies such as rep-

etition, prosodic changes, and overarticulation are effective for speech recognition errors [19]. The

(3) natural language generation step in frame-based agents is typically rule-based with manually

created templates, therefore less prone to errors compared with statistical approaches commonly

used in social chatbots. Finally, the latest techniques for the (4) speech synthesis step reliably

produce clear and easy-to-understand synthetic speech from text.

Problem Scope

This work, therefore, focuses on the breakdowns caused by (2) natural language understanding

errors. There are two key components in the natural language understanding step: intent detection

and slot value extraction. Intent detection errors are those where the system misrecognizes the

intent in the user’s utterance, and subsequently invokes the wrong dialog frame (e.g., responding

“what kind of cuisine would you like” for the command “find me a place in Chicago tonight”

85

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

when the user intends to book a hotel room.) In slot value extraction errors, the system either

extracts the wrong parts in the input as slot values (e.g., extracting “Singapore” as the departure

city in “Show me Singapore Airlines flights to London.”) or links the extracted phrase to incorrect

entities (e.g., resolving “apple” in “What’s the price of an apple?” to the entity “Apple company”

and therefore incorrectly invoking the stock price lookup frame). As illustrated in the examples,

slot value extraction errors can cause either the wrong slot match in the dialog frame (the airline

example) or the wrong dialog frame (the apple example).

Note that there are other types of breakdowns in task-oriented agents that SOVITE does not

handle. It does not address (1) speech recognition errors, as discussed previously. It also does not

address breakdowns caused by errors in task fulfillment (i.e., exceptions when executing the task),

errors in generating agent response ((3) and (4)), or the user’s lack of familiarity with intents (e.g.,

the user does not know what intents the system can support).

Instructable Agents

An instructable agent like SUGILITE is a promising new type of frame-based agent that can learn

intents for new tasks interactively from the end user’s natural language instructions [10,258] and/or

demonstrations [211], as discussed in previous Chapters. However, supporting effective break-

down repair is even more challenging for instructable agents. The user-instructed task domains

have many fewer example utterances (usually only one) for training the underlying natural lan-

guage understanding model. As a result, breakdowns caused by natural language understanding

errors occur more frequently.

Further, when encountering breakdowns, the instructable agents seldom have task-specific error

handling mechanisms for user-instructed task domains. In agents with professionally-developed

task domains, developers can explicitly program error handling conversation flows for domain-

specific breakdowns [5,197]. However, end users with little programming expertise seldom create

such error handlers for user-taught tasks due to the lack of tool support, and more importantly, the

lack of expertise to consider and to handle possible future breakdown situations in advance.

We support instructable agents in SOVITE by (1) supporting user-instructed task domains by

not requiring existing domain knowledge, hard-coded error handling mechanisms, or large corpus

in the task domains, and (2) supporting the easy transition to user instruction when a breakdown

turns out to be caused by out-of-domain errors rather than natural language understanding errors.

7.2.2 Design Goals

We have the following design goals:

86

7.3. BACKGROUND

1. The system should enable users to effectively discover, identify the causes of, and repair

conversational breakdowns in intent detection and slot value extraction of frame-based task-

oriented conversational agents.

2. The system should handle conversational breakdowns in various task domains, including

user-instructed ones, without requiring existing domain knowledge or manually-created

domain-specific error handling mechanisms.

7.3 Background

7.3.1 Studies of Breakdowns in Conversational Interfaces

The design of SOVITE is informed by insights from previous studies of breakdowns. As reported

in Beneteau et al.’s 2019 deployment study [19] of Alexa, all study participants experienced break-

downs when conversing with the agent. The participants used a variety of repair strategies based

on their understandings of the causes of the breakdowns, but those repairs were often not effective

since their understandings were frequently inaccurate. Repairing breakdowns caused by natural

language understanding errors (compared with speech recognition errors) was particularly prob-

lematic, as the natural repair strategies used by users such as semantic adjustments and defining

unclear concepts were not well-supported by the agents. Other studies [8, 32, 56, 124, 214, 233]

reported similar findings of the types of breakdowns encountered by users and the common repair

strategies.

In a 2020 study conducted by Cho et al. [56], more than half of the responses given by Google

Home in a user study with five information-seeking tasks were “cannot help” error responses (40%)

or “unrelated” responses (24%) that were not useful for the user’s request. In most cases, the

“cannot help” messages did not provide useful information about the causes of the breakdowns to

help the users with breakdown repairs. The participants were sometimes able to infer the causes of

the breakdowns from “unrelated” responses, but this process was often unreliable and confusing.

The 2018 study by Myers et al. [214] identified “Rely on GUI” as a strategy that users naturally use

when they encounter obstacles in conversational interfaces, where they looked at the corresponding

app’s GUIs to look for cues on what to say for task intents.

Motivated by these insights, SOVITE helps the users identify the causes of breakdowns by

visualizing the system’s state of understanding of user intent using the app GUI screenshots.

87

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

7.3.2 Multi-Modal Mixed-Initiative Disambiguation Interfaces

SOVITE uses a multi-modal approach [222] that visually displays the system states and enables

direct manipulation inputs from users in addition to spoken instructions to repair breakdowns,

unlike prior systems that use only the natural language inputs and outputs [5, 8, 197]. SOVITE’s

design uses the mutual disambiguation pattern [221], where inputs from one modality are used to

disambiguate inputs for the same concept from a different modality. Similar patterns have been

previously used for handling errors in other recognition-based interfaces [190], such as speech

recognition [263] and pen-based handwriting [141]. Visually-grounded language instructions were

also used in interactive task learning for robots [248] and performing web tasks [3, 243].

The design of SOVITE also applies the principles of mixed-initiative interfaces [111]. Specif-

ically, it considers breakdown repairing as a human-agent collaboration process, where the user’s

goals and inputs come with uncertainty. The system shows guesses of user goals, assists the user

to provide more effective inputs and engages in multi-turn dialogs with the user to resolve any un-

certainties and ambiguities. This combination of multi-modal and mixed-initiative approaches has

been previously applied in the interactive task learning process in systems such as [3,137,163,167].

SOVITE bridges an important gap in these systems, as they focus on the ambiguities, uncertainties,

and vagueness embedded in the user instructions of new tasks, while SOVITE addresses the con-

versational breakdowns caused by the natural language understanding problems when users invoke

already-supported tasks.

In terms of the technique used, SOVITE extracts the semantics of app GUIs [53,183] for ground-

ing natural language conversations. Compared with the previous systems that used the semantics

of app GUIs for learning new tasks [163, 165, 247], extracting task flows [168], and supporting

invoking individual GUI widgets with voice commands [269], a new idea in SOVITE is that it en-

codes app GUIs into the same vector space as natural language utterances, allowing the system to

look up semantically relevant task intents when the user refers to apps and app GUI screens in the

dialogues for repairing intent detection errors (details in Section 7.5).

7.4 The Design of SOVITE

7.4.1 Communicating System State with App GUI Screenshots

The first step for SOVITE in supporting the users in repairing conversational breakdowns is to

provide transparency into the state of understanding in the system, allowing the users to discover

breakdowns and identify their causes. SOVITE leverages the GUI screenshots of mobile apps for

88

7.4. THE DESIGN OF SOVITE

this purpose. As shown in Figure 7.1a, for the user command, SOVITE displays one or more

(when there are multiple slots spanning many screens) screenshots from an app that correspond to

the detected user intent (details of how SOVITE extracts the screenshots and creates the highlight

overlays are discussed in Section 7.5). For intents with slots, it shows screens that contain the GUI

widgets corresponding to where the slots would be filled if the task was performed manually using

the app GUI. SOVITE also adds a highlight overlay, shown in yellow in Figure 7.1a, on top of the

app’s GUI, which indicates the current slot value. If the slot represents selecting an item from a

menu in the GUI, then the corresponding menu item will be highlighted on the screenshot. For

an intent without a slot, SOVITE displays the last GUI screen from the procedure of performing

the task manually, which usually shows the result of the task. After displaying the screenshot(s),

SOVITE asks the user to confirm if this is indeed the correct understanding of the user’s intent by

asking, ”I will. . .[the task], is this correct?”, to which the user can verbally respond.

For example, as shown in Figure 7.1a, SOVITE uses the screenshot of the “Order” screen in

Starbucks app to represent the detected intent “buy a [drink type] from Starbucks”, and high-

lights the value “Espresso” for the slot drink type on the screenshot.

Design Rationale

SOVITE’s references to app GUIs help with grounding in human-agent interactions. In communi-

cation theory, the concept of grounding describes the conversation as a form of collaborative action

to come up with common ground or mutual knowledge [60]. For conversations with computing

systems, when the user provides an utterance, the system should provide evidence of understand-

ing so that the user can evaluate the progress toward their goal [39]. As described in the gulf of

evaluation and gulf of execution framework [117, 219] and shown in prior studies of conversa-

tional agents [8, 19], execution and evaluation are interdependent—in order to choose an effective

strategy for repairing a conversational breakdown, the user needs to first know the current state of

understanding in the system and be able to understand the cause of the breakdown.

The app GUI screenshots can be ideal mediums for communicating the state of understanding

of the system. They show users the evidence of grounding [56] through their familiar app GUIs.

This approach highlights that the agent performs tasks on the user’s behalf, showing the key steps of

navigating app screens, selecting menu items, and entering text through GUIs based on slot values

as if a human agent was to perform the task using the underlying app. We believe this approach

should help users to more effectively identify the understanding errors because it provides better

closeness of mapping [99] to how the user would naturally approach this task. Prior studies showed

that references to existing app GUIs were effective in other aspects of conversational interface

89

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

designs, such as enabling users to explain unknown concepts [167] and helping users come up

with the language to use to invoke app functionalities [214]. Showing the screenshots of GUIs is

also a useful way to present the context of a piece of information, making the content easier to

understand [182].

7.4.2 Intent Detection Repair with App GUI References

When an intent detection result is incorrect, as evidenced by the wrong app or the wrong function-

ality of app shown in a confirmation screenshot, or when the agent fails to detect an intent from

the user’s initial utterance at all (i.e., the system responds “I don’t understand the command.”), the

user can fix the error by indicating the correct apps and app screens for their desired task.

References to Apps

After the user says that the detected intent is incorrect after seeing the app GUI screenshots, or

when the system fails to detect an intent, SOVITE asks the user ”What app should I use to per-

form. . .[the task]?”, for which the user can say the name of an app for the intended task

(shown in Figure 7.1b). SOVITE looks up the collection of all supported task intents for not only

the intents that use this underlying app, but also intents that are semantically related to the supplied

app (we will discuss how SOVITE finds semantically relevant task intents in Section 7.5).

For example, suppose the agent displays the screenshots of the OpenTable app for the utterance

“find a place for tonight” because it classifies the intent as “book restaurant” when the user’s actual

intent is ”book hotel”. The user notices that the app is wrong from the screenshot and responds

“No” when the agent asks, “Is this correct?” The agent then asks which app to use instead, to which

the user answers “Booking.com”, which is an app for booking hotel rooms. If there was indeed a

supported “book a hotel room” intent using the Booking.com app, SOVITE would respond “OK, I

know how to book a hotel room using Booking.com”, and then show the screenshots of booking

hotel rooms in Booking.com for confirmation. If no such intent was available, but there was an

intent semantically related to the Booking.com app, such as a ‘book a hotel room” intent using the

Hilton app, SOVITE would respond “I don’t know how to find a place for tonight in Booking.com,

but I know how to book a hotel room using Hilton” and show the corresponding screenshots. The

user can verbally confirm performing the task using the Hilton app instead, or indicate that they still

wish to use the Booking.com app and teach the agent how to perform this task using Booking.com

by demonstration.

90

7.4. THE DESIGN OF SOVITE

References to App Screens

In certain situations, the user’s intent can still be ambiguous after the user indicates the name of an

app; there can be multiple intents associated with the app (for example, if the user specifies “Expe-

dia” which can be used for booking flights, cruises, or rental cars), or there can be no supported task

intent in the user-provided app and no intent that meets the threshold of being sufficiently “related”

to the user-provided app. In these situations, SOVITE will ask the user a follow-up question “Can

you show me which screen in. . .[the app]] is most relevant to. . .[the task]?” (shown in

Figure 7.1c). SOVITE then launches the app and asks the user to navigate to the target screen in the

app. (The user may also say “no” and start over.) After the user reaches the target screen, they can

click on a floating SOVITE icon (the duck) to provide this screen as an input to SOVITE. SOVITE

then finds intents that are the most semantically related to this app screen among the ambiguous

ones (technical details in Section 7.5), or asks the user to teach it a new one by demonstration.

Ease of Transition to Out-of-Domain Task Instructions

An important advantage of SOVITE’s intent disambiguation approach is that it supports the easy

transition to the user instructing how to perform a new task if the intent disambiguation attempt

fails when the user’s intended task is out of scope (i.e., there is no existing intent that supports the

task). SOVITE’s approach can directly connect to the user instruction mode in SUGILITE. Since at

this point in the overall process, SOVITE already knows the most relevant app and app screen for

the user’s intended task and how to navigate to this screen in the app, it can simply ask the user

“Can you teach me how to. . .[the task] using. . .[the app] in this screen”, switch back to

this screen, and have the user to continue demonstrating the intended task to teach the agent how to

fulfill the previously out-of-scope task intent. The user may also start over and demonstrate from

scratch if they do not want to start the instruction from this screen.

Design Rationale

The main design rationale of supporting intent detection repairs with app GUI references is to

make SOVITE’s mechanism of fixing intent detection errors consistent with how users discover the

errors from SOVITE’s display of intent detection results. When users discover the intent detection

errors by seeing the wrong apps or the wrong screens displayed in the confirmation screenshots,

the most intuitive way for them to fix these errors is to indicate the correct apps and screens that

should be used for the intended tasks. Their references to the apps and the screens also allow

SOVITE to extract richer semantic context (e.g., the app store descriptions and the text labels found

91

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

on app GUI screens) than having the user simply rephrase their utterances, helping with finding

semantically related task intents (technical details in Section 7.5).

7.4.3 Slot Value Extraction Repair with Direct Manipulation

If the user finds that the intent is correct (i.e., the displayed app and app screen correctly match

the user’s intended task), but there are errors in the extracted task slot values (i.e., the highlighted

textboxes, the values in the highlighted textboxes, or the highlighted menu items on the confirma-

tion screenshots are wrong), the user can fix these errors using direct manipulation on the screen-

shots.

All the highlight overlays for task slots can be dragged-and-dropped (Figures 7.1a and 7.2).

For slots represented by GUI menu selections, the user can simply drag the highlight overlay to

select a different item. For example, assuming the agent incorrectly selects the item ”Espresso” for

the utterance ”order a cold espresso” due to an error in entity recognition, as shown in Figure 7.1a,

the user can drag the highlight overlay to ”Iced Espresso” on the screenshot to specify a different

slot value. (If the user’s desired slot value is not on the screen, the user can say “no” and indicate

the correct screen to use, as discussed in the previous section.) The same interaction technique

also works for fixing mismatches in the text-input type slot values. For example, if the agent swaps

the order between starting location and destination in a “requesting Uber ride” intent, the user can

drag these overlays with location names to move them to the right fields in the app GUI screenshot

(Figure 7.2). When a field is dragged to another field that already has a value, SOVITE performs a

swap rather than a replacement so as not to lose any user-supplied data.

Alternatively, when the value for a text-input type slot is incorrect, the user can repair it using

the popup dialog shown in Figure 7.2. After the user clicks on the highlight overlay for a text-input

slot, a dialog will pop up, showing the slot’s current value in the user’s original utterance. The user

can adjust the text selection by dragging the highlight boundaries in the identified entities (e.g., the

system recognizes the slot value as ”The Lego” when the user says ”find showtimes for The Lego

Movie.”) The same dialog alternatively allows the user to just enter a new slot value by speech or

typing.

Design Rationale

We believe these direct manipulation interactions in SOVITE are intuitive to the users—this is also

supported by the results reported in Section 7.6. The positions and the contents of the highlight

overlays represent where and what slot values would be entered if the task was performed using

the GUI of the corresponding app. Therefore, if what SOVITE identified does not match what the

92

7.5. IMPLEMENTATION

Figure 7.2: SOVITE provides multiple ways to fix text-input slot value errors: LEFT: the user can click
the corresponding highlight overlay and change its value by adjusting the selection in the original utterance,
speaking a new value, or just typing in a new value. RIGHT: the user can drag the overlays on the screenshot
to move a value to a new slot, or swap the values between two slots.

users would do for the intended task, the users can directly fix these inconsistencies through simple

physical actions such as drag-and-drop and text selection gestures, and see immediate feedback on

the screenshots, which are major advantages of direct manipulation [251].

7.5 Implementation

We implemented SOVITE in Java as an Android app. SOVITE was developed and tested on a

Google Pixel 2 XL phone running Android 8.0. It does not require root access to the phone and

should run on any phone with Android 6.0 or higher.

The implementation of SOVITE builds on the SUGILITE system described in this dissertation.

We summarize SUGILITE’s key characteristics relevant to SOVITE below. You can refer to Chap-

ter 3 and Chapter 5 for more details.

SUGILITE uses a standard frame-based dialog management architecture with intents, slots, and

slot values. Its natural language model uses a SEMPRE [24]-based Floating Parser [227] that can

parse the user’s utterance into a corresponding expression that invokes an intent and sets the re-

spective slot values. The model was trained on the lexical (e.g., unigrams, bigrams, skip-grams),

93

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

syntactic (e.g., part-of-speech tags, named-entity tags), and semantic (e.g., word embeddings) fea-

tures extracted from the training utterances for each task intent, including when users teach new

tasks for an utterance (details in Chapters 4 and 5). Because the task fulfillment in SUGILITE

is instructed by end users, there are usually only a very small number of sample training utter-

ances (often only one) for each task intent. As a result, conversational breakdowns are common in

SUGILITE’s interaction with users when they use utterances with diverse vocabulary, structures, or

expressions that are not covered in the training corpus.

While we implemented SOVITE with our SUGILITE agent, we believe the approach used in

SOVITE should generalize to other frame-based task-oriented conversational agents as well. The

only major part of SOVITE’s implementation that is specific to SUGILITE is its mechanism for

generating app GUI screenshot confirmations. However, there are other practical ways to generate

these app GUI screenshot confirmations without relying on the programming by demonstration

scripts in SUGILITE (details in the next section).

7.5.1 Generating the App GUI Screenshot Confirmations

In SUGILITE, each supported task intent corresponds to an automation script created from user

demonstrations of performing the task manually using the GUIs of the underlying app. Therefore,

SOVITE can extract app GUI screenshots for these intents by instrumenting the demonstration

process.

When the user starts demonstrating a task, SOVITE creates a virtual display device in the back-

ground that mirrors the main display that the user sees for capturing the screenshots. For each GUI

action demonstrated by the user, SOVITE takes a screenshot that captures this action. At the end

of the demonstration process, SOVITE compares the task slot values with the demonstrated actions

to identify actions that correspond to the task slots and saves these screenshots to be used as the

confirmation for this demonstration’s underlying task intent. For example, assuming the user’s

demonstration for the task “order an Espresso” contains an action “click on the item ‘Espresso”’

from a menu on the GUI of Starbucks app, SOVITE will use the screenshot taken from the user

demonstrating this action as a confirmation for the intent. The same mechanism also works for slot

values from text inputs (e.g., the user demonstrates typing “Chicago” into a textbox for a command

“book a hotel room in Chicago”).

Although the implementation of generating app GUI screenshot confirmations used in SO-

VITE, as described above, only applies to programming-by-demonstration instructable agents such

as SUGILITE [159], PLOW [3], and VASTA [247], there are other feasible approaches for generating

app GUI screenshot confirmations in other types of agents. For example, recent advances in ma-

94

7.5. IMPLEMENTATION

chine learning have been shown to support directly matching natural language commands to spe-

cific GUI elements [226] and generating semantic labels for GUI elements from screenshots [53].

For agents that use web API calls to fulfill the task intents, it is also feasible to compare the agent

API calls to the API calls made by apps by analyzing the code of the apps (e.g., CHABADA [97]),

or to the network traffic collected from the apps (e.g., MobiPurpose [125]). These techniques

should allow associating slots with their corresponding app GUI widgets without relying on user

demonstrations.

7.5.2 Finding Relevant Intents from Apps and App Screens

When the user refers to an app name or an app screen for their desired task for disambiguating

task intents, SOVITE first looks for intents that use exactly this app or this app screen. If none

of the supported task intents uses the exact app or app screen that the user refers to, SOVITE can

recommend relevant task intents. For example, if the user refers to the app ”Booking.com” or the

page for ”List hotels near [location]]” in Google Maps to explain the utterance ”find a place

for tonight”, SOVITE can prompt ”I know how to book a hotel room using the Hilton app, is this

what you want to do?” (assuming that the underlying SUGILITE agent has been previously taught

the skill of “book a hotel room” using the Hilton app)

The technical challenge here is to identify semantically relevant task intents based on the user-

provided app names and app screens. An effective way to match the user’s task intent with natural

language descriptions of goals (e.g., book hotel) to apps (e.g., Booking.com) is to leverage the app

descriptions in the app stores. For example, MessageOnTap [52] uses word embeddings to repre-

sent the semantic meanings of individual words in the user utterances and app store descriptions

and calculates the cosine similarity between the word embedding centroids of each app description

and the conversation to recommend relevant apps in human-human conversations (e.g., recom-

mending the Calendar app and the OpenTable app when one party in the conversation says “let’s

schedule a dinner.”) SOVITE uses a similar approach but recommends task intents from the user

references to apps instead of recommending apps from the user expressions of task intents as in

MessageOnTap.

Specifically, for each app reference made by the user, a remote SOVITE server retrieves its

description from the Google Play store and calculates the sentence embeddings for the app store

description and the sample utterances of each supported task intent using a state-of-art pre-trained

Sentence-BERT model [238], which is a modified BERT network [69] that can derive semantically

meaningful sentence embeddings for calculating semantic relatedness. SOVITE is then able to

identify the most relevant task intent for the app by finding the task intent whose centroid of

95

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

Breakdown Type Example Scenario User Repair Method with SO-
VITE

1 No error Make a call to Amazon (in the
Phone app)

Not applicable

2 Intent: no intent matched (did
not understand the command)

Find something to eat (should
order food for delivery in Do-
ordash)

Provide a reference to the cor-
rect app to use (and the screen
if needed)

3 Intent: wrong app used Find a place for tonight (rec-
ognized as using OpenTable for
restaurant booking instead of
using Hilton for hotel booking

Provide a reference to the cor-
rect app to use (and the screen
if needed)

4 Intent: correct app, wrong
screen used

Book a ticket to New York
(recognized as booking a ho-
tel room in Expedia instead of
booking a flight)

Provide a reference to the cor-
rect screen in Expedia to use

5 Slot: wrong item selected in a
menu

Buy an Iced Espresso from
Starbucks (the slot value recog-
nized as “Espresso”)

Drag the highlight on the
screenshot to select the correct
item

6 Slot: wrong value extracted for
text input

Find the showtimes of The
Lego Movie (the slot value rec-
ognized as “The Lego”)

Click on the highlight on the
screenshot to modify the slot
value

7 Slot: slot value mismatched Book an Uber ride to airport
from home (the starting loca-
tion and the destination are
swapped)

Drag the highlight on the
screenshot to swap slot values

Table 7.1: The 6 breakdown types and a ”no error” type covered in the user study, an example scenario for
each type, and their corresponding user repair methods using SOVITE. All participants saw all 7 in random
order.

sentence embeddings of all its sample utterances has the highest cosine similarity with the sentence

embedding of the target app’s app store description. All this can be done in real-time as the user is

interacting with SOVITE.

When the user refers to a specific app screen, SOVITE uses a similar technique for finding

semantically relevant task intents. The only difference is that instead of using the sentence embed-

dings of app store descriptions, it uses the embeddings of all the text labels shown on the screen,

and computes their semantic relatedness with each supported task intent to find the most relevant

one.

96

7.6. USER STUDY

7.6 User Study

We conducted a remote user study3 to evaluate SOVITE. The study examined the following two

research questions:

RQ1: Can users understand and use SOVITE’s new features for identifying and repairing conver-

sational breakdowns?

RQ2: Is SOVITE effective for fixing conversational breakdowns caused by natural language un-

derstanding errors in task-oriented agents?

7.6.1 Participants

We recruited 10 participants (2 identified as female, 8 identified as male, ages 25-41) for our study.

5 participants were graduate students in two local universities, and the other 5 worked at different

technical, administrative, or managerial jobs. All of our participants were experienced smartphone

users with more than 3 years of experience of using smartphones. 8 of the 10 participants (80%)

were active users of intelligent conversational agents such as Alexa, Siri, or Google Assistant.

Each participant was compensated $15 for an hour of their time.

7.6.2 Study Design

The remote study session with each participant lasted 30–40 minutes. After agreeing to the consent

form presented online and filling out a demographic survey, each participant received a short tuto-

rial on SOVITE, which explained the SOVITE features discussed above. The participant was then

presented with the 7 tasks in random order. In each task, the participant saw an example conversa-

tion scenario that contained a user voice command and SOVITE’s response (i.e., each scenario tells

the participant “Assume you have said [utterance], and here is the agent’s response. You need

to identify whether the system’s understanding of the intent was correct and fix the breakdown us-

ing SOVITE when the understanding was incorrect”). The 7 tasks include one “no error” scenario

(Scenario 1), and 6 breakdown scenarios that cover different types of intent detection and slot value

extraction errors (Table 7.1). The participant then filled out a post-study questionnaire about their

experiences with SOVITE, and ended the study with a short interview with the experimenter.

The study was performed remotely using the Zoom video conference software. SOVITE ran on

a Pixel 2 XL phone running Android 8.0 with relevant third-party apps pre-installed. We streamed

3The study protocol was approved by the IRB at our institution.

97

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

the screen display of the phone through a camera pointing at its screen, so that the remote partic-

ipant could see and hear the output of the phone. The participant was able to control the phone

indirectly through the relay of the experimenter: the participant could point to a GUI widget on the

phone screencast with the mouse cursor, and ask the experimenter to click on the widget or enter

text into the widget on their behalf. The participant could also ask the experimenter to say some-

thing by speech to the phone, and the experimenter repeated the participant’s utterance exactly.

Since speech recognition errors were not a concern for this study, repeating the utterance was not

a confound.

Impact of the COVID-19 Pandemic

This study was conducted in April 2020 in the midst of the COVID-19 global pandemic. Due

to health concerns, we were unable to conduct an in-person lab study as originally planned. Al-

though in the remote study the participants were not able to directly control and speak to SOVITE,

we believe the results were still valid for the two research questions we asked. Specifically, the

study measured whether the users could come up with what to do in SOVITE when presented with

breakdown situations and whether these inputs were effective for breakdown repairs. We tried a

few third-party software tools for directly screencasting and remote controlling Android phones

but ran into stability and performance issues with them when sharing with remote participants;

therefore we used the camera method described above.

Note that this is not a Wizard-of-Oz study because the system was actually operating on the

participants’ utterances and actions—the experimenter just served as an intermediary since we

could not have the participants use the actual phone.

7.6.3 Results

Among the 70 scenario instances (10 participants× 7 scenarios), including 10 “no error” scenarios,

the participants correctly identified all 10 “no error” scenarios and discovered 57 out of 60 errors

(95%). Among the discovered errors, they successfully fixed all of them using SOVITE. The

participants failed to notice the error in two instances of Scenario 7 and one instance of Scenario

6. When asked to reflect upon their experience, the participants attributed all of these failure cases

to the “expectation of capabilities” problem, which we will describe in Section 7.7 below.

98

7.7. DISCUSSION

Subjective Results

In a questionnaire after the study, we asked each participant to rate statements about SOVITE’s us-

ability and usefulness on a 7-point Likert scale from “strongly disagree” to “strongly agree”. SO-

VITE scored on average 6.1 (SD = 0.83) on “I find SOVITE helpful for fixing understanding errors

in conversational agents”, 6.4 (SD = 0.8) on “I feel SOVITE is easy to use”, and 6.3 (SD = 0.9) on

“I’m satisfied with my experience with SOVITE” Specifically for SOVITE’s individual features, the

participants rated 6.5 (SD = 0.81) on “The highlights on screenshots for task parameter values are

clear” and 6.2 (SD = 1.54) on “Dragging the highlights to fix parameter errors is natural.” These

results suggest that our participants were positive about the usability and usefulness of SOVITE.

7.7 Discussion

We observed some confusion over the highlight overlays in screenshot confirmations in the partic-

ipants’ interactions with SOVITE. A few participants tried to interact with the other GUI compo-

nents on the screenshots when they first encountered them. For example, in Scenario 4, P1 tried to

use the back button on the screenshot to switch to the “book flight” page. In Scenario 7, P2 was

looking for a “swap” button on the screenshot. However, after trying to interact with these GUI

components and receiving no response, they quickly realized that only the highlight overlays were

interactive on the screenshots and successfully repaired the breakdowns thereafter. The overlay

is not a common metaphor in interfaces—users are more familiar with static screenshots where

nothing is interactive, and actual GUIs where every element can be directly interacted with. The

overlay (also known as interaction proxy [304]) sits in between, where the user can specify actions

about an underlying GUI element (e.g., the value that should go into a textbox or the menu item

that should be selected) using direct manipulation, but not directly interact with these GUI ele-

ments. A future direction is to explore the design space of overlay interfaces to make them more

intuitive to use.

The “expectation of capabilities” problems [8, 19, 214] impacted the user’s capability to dis-

cover errors in SOVITE in some cases. For example, the visual clue for Scenario 7 was rather subtle

on the screenshot (i.e., the highlights for starting location and destination in Uber were swapped,

as shown in Figure 7.2). P7 missed this error and went with “OK” when SOVITE asked for confir-

mation. When asked about this instance after the study, P7 said “I didn’t expect it [the system] to

make this error. . . I thought the original utterance was clear, so when I saw two highlights saying

“home” and “airport” I didn’t carefully check the order since I assumed that the system would

get it right. . . I was more looking at if this was indeed the request ride screen in Uber.” Users may

99

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

look more carefully at places where they expect errors to appear, but their expectations might not

always match the system’s behaviors. However, with SOVITE, once the user discovers an error,

it is straightforward what the cause of the error is and how to fix it, which is a significant im-

provement from the prevailing systems where the user needs to guess the cause of the error (which

is often inaccurate) and come up with the repair strategy to use (which is often ineffective as a

result) [19, 214].

Efficiency wise, we did not measure the time-on-task in the study due to the delays and over-

heads from running the study remotely. But from our observations, while adding some overhead to

the conversation, using SOVITE should still be more efficient than completing the tasks manually

in most cases. For example, completing the “order coffee“ task in Starbucks requires up to 14

clicks on 8 screens. In comparison, the user reads one GUI screenshot confirmation (and fixes the

errors, if any) in addition to speaking the initial utterance when using SOVITE for the same task.

Design Implications

SOVITE illustrates the effectiveness of presenting the system’s state of understanding in a way

closely matched to how the user would otherwise (i.e., not using speech) naturally approach the

problem to help with error discovery. While speech is a natural modality for interacting with

task-oriented agents, the technical limitations in natural language understanding and reasoning

capabilities limit its effectiveness in handling conversational breakdowns. App GUI screenshots

can serve as a good complement to natural language in this context.

An important underlying assumption in SOVITE’s strategy of using app GUI screenshots is that

users are familiar with the app GUIs. This is also the assumption of many prior interactive task

learning systems like [3,152,159,247]. SOVITE requires the user to have a mental model of “apps”

so that they understand how to complete their intended tasks through existing app GUIs. Today,

this assumption seems reasonable, given the high adoption rate of smartphones [45]. Most app

GUIs are designed to be easy-to-use with common design patterns [67], so users are likely able to

understand the screens even if they have never used the particular app before. Using app GUIs is

still by far the most common means through which the users access computing services. However,

it would be interesting to think about how this may change for certain user groups in some task

domains in the future. For example, are we going to see the conversational agents become “the

native interface” for some tasks and some user groups in the future, just as how GUIs replaced

command-line interfaces? In our opinion, the app-GUI-based approach used in SOVITE can be

a stepping stone to a more integrated speech-oriented agent in the future, which may eventually

transcend the app-oriented design of current smartphones.

100

7.8. LIMITATIONS AND FUTURE WORK

SOVITE’s design highlights the importance of consistency between how users fix the errors and

how they discover the errors. Once the users discover the errors (e.g., the wrong app was used, the

wrong screen was shown, the highlights are at wrong places, the slot values use the wrong parts

of the initial utterances, etc.), the ways to fix them are rather intuitive and obvious (e.g., saying

the correct app, pointing to the correct screen, dragging the highlights to the correct places, and

selecting the right parts of the initial utterances to be used in the slot values). This was noticed

and praised by many participants in our study. With SOVITE, the user no longer needs to guess the

strategy to fix the error (e.g., explain a word, replace words with synonyms, restructure the syntax)

like with prevailing systems when the error message was the generic “Sorry I didn’t understand”.

7.8 Limitations and Future Work

SOVITE currently does not handle task intents that span multiple apps (even though the under-

lying SUGILITE system does). Those intents are often higher-level intents that involve multiple

smaller sub-intents within individual apps and information exchange between them (e.g., “plan

a dinner party” can involve “find time availability for [people] in Calendar”, “make a restau-

rant reservation at [time]”, and “notify the [people] about the [reservation info]”.

An interesting future challenge is to design a new confirmation mechanism to clearly show the

system’s state of understanding for such cross-domain intents with increased complexity.

As discussed previously in Section 7.2.1, SOVITE only handles intent detection and slot value

extraction errors in natural language understanding. We hope to integrate SOVITE with the existing

mechanisms that handle other kinds of errors, such as voice recognition errors, task execution

errors (described in Section 3.3.3), and feedback generation errors.

SOVITE currently displays the full app GUI screenshots as a part of the conversation. As a

result, the screenshots are displayed in about half of their original size, making them harder to

read for the users. The highlight overlays for smaller GUI elements are also prone to the “fat fin-

ger” problem. To address this issue, one approach is to extend our model for extracting app GUI

screenshots so that it only displays parts of the screens that are most relevant to the underlying task

intents. This might be feasible as we already have a mechanism to determine the semantic related-

ness between GUI screens and task intents, but it risks making it harder for users to understand the

context of the displayed portions. Another approach is to add support for zooming and panning

using familiar gestures such as pinch-to-zoom on the screenshots.

Another challenge is to better encode the semantics of app GUI screens for assisting natural

language understanding. SOVITE’s current mechanism only takes the text labels shown on GUIs

101

CHAPTER 7. BREAKDOWN REPAIRS IN TASK-ORIENTED DIALOGUES

into consideration. We can capture more comprehensive semantics of app GUI screens by lever-

aging the GUI layouts (e.g., the distance between elements [169] and design patterns [67, 183]),

control flows among GUI screens [168], and large collections of user interaction traces. The avail-

ability of large-scale GUI datasets like RICO [66] makes future experiments in this area feasible.

Chapter 9 discusses some of my work in this direction.

Lastly, the user-provided repairs in SOVITE only apply locally to the current dialog session.

In the future, we plan to develop mechanisms that allow the conversational agent to learn from

the user-provided repairs to improve its performance. The user’s expression of the actual intent

for their natural language command collected through SOVITE can be a highly valuable resource

for applying online learning (a machine learning approach that supports incremental learning us-

ing small batches of data) to improve the accuracy of the agent’s natural language understanding

models on the fly.

7.9 Chapter Conclusion

Conversational breakdown repairing in task-oriented dialogues is surprisingly little studied or han-

dled by research or commercial intelligent agents. The lack of effective and robust breakdown

repair mechanisms significantly affects the adoption of these agents. By incorporating the SOVITE

interface, the SUGILITE system is able to better support users to effectively discover, identify the

causes of, and repair breakdowns caused by intent detection errors and slot value extraction errors.

102

Chapter 8

Privacy in Sharing Demonstrated Scripts

8.1 Introduction

An important focus of this dissertation is on end-user development (EUD). The concept of EUD,

according to a popular definition, refers to programming activities to achieve results primarily

intended for personal, rather than public use [138]. It allows individual users to develop and

adapt systems according to their own needs and preferences [179]. Despite the “for-self-use” main

intention, sharing of the program artifacts is common in EUD (e.g., [186]). However, when sharing

EUD artifacts, users are often concerned about privacy: they do not want to leak any personal

information that may be embedded in the shared artifacts [152, 155].

This concern is particularly important in graphical user interface (GUI) based programming

by demonstration (PBD) systems such as SUGILITE. In such systems, end-user developers do

not directly author the programs, but instead, demonstrate one or more examples of the desired

system behaviors using the GUIs of target applications. From the demonstrations, the system

synthesizes a program that can invoke and control the target applications to perform tasks. As a

result, end-user developers have little knowledge or control about what has been included in the

resulting program, and therefore are hesitant about sharing them [31,152,155]. In the recent GUI-

based PBD agents for task automation (e.g., SUGILITE [159] and VASTA [247]), the system not

only collects information about the exact demonstrated actions but also records rich contextual

information (e.g., the contents of the screens including the app’s responses) in order to better

infer the users’ intents from the demonstrations and to further generalize the resulting programs.

While these new mechanisms make the PBD more powerful, flexible and robust, they also increase

This chapter is modified from the conference paper: Toby Jia-Jun Li, Jingya Chen, Brandon Canfield, and Brad
A. Myers. Privacy-Preserving Script Sharing in GUI-based Programming-by-Demonstration Systems. In Proceedings
of the ACM on Human-Computer Interaction (CSCW 2020).

103

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Figure 8.1: Some examples of potential information leaks from the app GUIs. The red circles highlight
personal information directly displayed (e.g., name, point balance, order history, current address). The blue
circles highlight information that can be used for re-identification attacks (e.g., the user’s favorite teams and
the name of a nearby Starbucks location can be used for inferring the user’s location).

the likelihood of inappropriately including personal information in program artifacts, and make it

infeasible for end-user developers to manually scrutinize the program artifacts before sharing them,

since the collected contextual meta information is large in amount (averaging over 100 strings per

script in our tests) and not generally shown to users. Many information fields displayed in app

GUIs are dynamically generated based on the user’s personal information. Figure 8.1 shows some

examples of personal information displayed in app GUIs that may be included in PBD scripts.

Another constraint in removing personal information from program artifacts created from GUI

demonstrations is to preserve the scripts’ transparency, readability, robustness, and generalizability.

In task automation, it is important to enable users who plan to use a script shared by others to be

able to fully understand its behavior, so that they can (1) validate if the script actually fulfills their

needs, (2) identify any potentially dangerous or malicious operations in the script, and (3) modify

or extend the script when needed. As a result, the system should avoid unnecessary obfuscation

of the shared scripts that hinders transparency and readability. The system should also preserve

as much meta information from demonstrations as possible in shared scripts, since such meta-

information is very useful for recovering from script execution errors, extending existing scripts,

and supporting effective parameterization in scripts (see more details in Section 8.3.2).

There is also the emerging challenge of preventing re-identification attacks [21, 77] when pro-

tecting identifiable personal information. In many cases, user identities and private information can

be re-identified by combining multiple seemingly innocent data sources. For example, knowing

104

8.2. RELATED WORK

seemingly non-private information like the user’s local sports teams, the default Starbucks store,

and the estimated wait time for food delivery, one can infer the user’s location fairly accurately

(Figure 8.1 shows some examples). This is also known as a record linkage attack [278]. Prior ap-

proaches that mask only pre-specified types of explicit personal information (e.g., [62, 152, 285])

are not sufficient when dealing with re-identification attacks.

In this chapter, we present a new mechanism named PINALITE1 for privacy-preserving sharing

of GUI-based PBD task automation scripts in SUGILITE. PINALITE’s approach can identify and

obfuscate possible personal information at the time of sharing with minimal user intervention. This

approach collects and aggregates hashed text strings from app GUIs on users’ phones in everyday

use. This aggregated data allows our system to identify fields in end-user-developed scripts with

potentially personal information, and obfuscate their values by hashing. Unlike prior systems,

PINALITE works with third-party apps from any task domain without prior knowledge about the

app or the domain, and can process broad types of personal information beyond explicitly pre-

specified ones to protect against re-identification attacks. At runtime, the obfuscated fields can

be rebuilt locally using the script consumer’s app GUIs, which helps preserve the shared scripts’

transparency, readability, robustness, and generalizability.

8.2 Related Work

8.2.1 Sharing and Cooperations in End User Development

The sharing of PBD scripts has been discussed in prior work. Leshed et al. outlined two main

motivations for sharing end-user-developed PBD task automation scripts in CoScripter [152]: (i)

for tasks that are tedious and are performed frequently by many users, the main motivation is ef-

ficiency; and (ii) for tasks that are complex or hard to remember, the shared scripts are also used

as the medium for sharing how-to knowledge among users. A later field study of CoScripter

scripts [31] revealed that users had shared CoScripter scripts for automating a wide range of

work-related and non-work-related tasks, which affirmed the need for sharing end-user-developed

scripts. The same study also confirmed that making scripts that were mainly intended for self-use

be publicly available can lead to serendipitous reuse by others [31].

The privacy concern in PBD script sharing has been reported by several studies. Email and in-

terview studies for CoScripter [152] showed that the privacy concern was a main barrier to sharing.

Participants reported that they decided to make scripts private because they worried about having

1PINALITE is named after a type of rock. It is also an acronym for Personal Information Nicely Anonymized
Leveraging Interface Trace Examples.

105

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

personal information embedded in scripts. Studies and discussions for other PBD systems such as

ActionShot [155], RePlay [86], and SUGILITE [159] also identified similar privacy concerns. An-

other prior study investigated the privacy risks of running trigger-action EUD scripts for the script

users [267]. Our work focuses on the privacy risks of sharing PBD scripts for the script authors.

A few prior approaches have tried to address the privacy issue in sharing PBD scripts. Co-

Scripter [152] used a “personal database” where end user developers could manually enter their

personal information such as name, phone number and email address. Whenever these entries

appear in the recorded scripts during demonstrations, they are replaced with named variables.

During execution, these named variables are populated with data from the script consumer’s per-

sonal database. A significant drawback of this approach is that it requires users to manually create

personal databases, which requires significant effort. Personal databases also only cover the most

common and the most obvious types of personal information, and only handle situations where

database entries show up as exact string matches in the shared scripts. Another approach is to

display operations in a script as a list of textual steps (e.g., ActionShot [155]) or in visual program-

ming blocks (e.g., Rousillon [50] and Helena [49]) before sharing, and have users check if any

personal information is included. This approach also requires manual intervention from users, and

is not scalable to recent PBD systems [159, 164, 167, 247] that collect a large amount of contex-

tual information along with the operations. In contrast, PINALITE seeks to minimize user effort, to

cover a wide range of explicit and implicit personal data, and to support processing GUI contextual

meta information embedded in automation scripts.

The tailoring of software artifacts is another important aspect of cooperative EUD. Some prior

work in this area focused on the cooperation between end users, and sometimes professional de-

velopers or “local experts” during the development process (e.g., [90,186,216,291]), which we do

not consider in this chapter. In the scope of this chapter, we assume the development is done indi-

vidually. Pipek and Kahler proposed three levels of intensity of user ties in collaborative tailoring

(“shared use”, “shared context”, and “shared tool”) [232]. The scenarios discussed in this chapter

fall into the “shared use” level, where “the common denominator for cooperation” is the tool usage

itself [232]. Each shared script can automate a type of task by invoking and controlling an app (or

multiple apps) that both the script author and the script consumer have. The script author and the

script consumers do not share the same task instances, the same workspace, or the same context,

nor is there any data exchange between them besides the script itself.

106

8.2. RELATED WORK

8.2.2 Identifying Personal & Private Information in Data Sharing

Our approach is also related to prior literature from the privacy and security research commu-

nities on detecting personal information leaks in shared data. For example, systems like Priva-

cyProxy [257], Agrigento [62], MobiPurpose [125], and LeakDoctor [285] detect leaks of personal

information by analyzing the contents of outbound network packets. Agrigento [62] and Leak-

Doctor [285] used black-box differential analysis, where they test if the outbound network traffic

changes when values for personal information of interest (e.g., user id, location) are changed. This

approach will work with any app, but can only protect a list of pre-specified common types of

personal information (e.g., location, user id), not the non-obvious ones we discussed in Section 8.1

(e.g., the user’s reward point balance and the user’s order history as shown in Figure 8.1). Taint-

Droid [78] labels data from privacy-sensitive sources (e.g., GPS, contacts) and tracks how they

flow within apps and leave the system, which also only works with limited pre-specified common

types of personal information. Systems like SUPOR [114] detect sensitive information from user

text inputs in mobile apps using natural language processing (NLP) techniques. This approach also

only deals with pre-specified common types of personal information. Those methods are limited

when dealing with the long-tail of uncommon types of personal information, and can be prone

to re-identification attacks [21, 77]—the way to identify the user by combining multiple pieces of

seemingly less-sensitive information.

PINALITE’s approach for identifying personal information leaks is similar to the approach used

in PrivacyProxy [257] – both systems identify potential personal and private information based

on the uniqueness of the data. This approach does not limit the types of personal information

that can be detected, providing coverage for more types of personal information. Compared with

PrivacyProxy, which identifies private information in network traffic packets, PINALITE uses a

new approach of estimating uniqueness for information shown on app GUIs (more details in Sec-

tion 8.4.4). PINALITE also rebuilds obfuscated information at runtime on the script consumer’s

side using GUI information from the script consumer’s local apps (see Section 8.4.6).

Another way to protect personal information is to monitor when, how, and what granularity

of personal information is accessed and shared by apps [170]. This approach requires instrument-

ing each individual app, which is not scalable for our use case because we want to handle PBD

scripts made with any arbitrary third-party app. In contrast, since PINALITE focuses on informa-

tion extracted from the GUIs of apps, it does not require any special modification on target apps,

and should work with most native Android apps (with a few exceptions, such as apps with custom

graphic engines like games).

107

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Figure 8.2: A simple example GUI, its corresponding UI snapshot graph, and some example possible data
description queries for button 1 on the graph (highlighted in red).

8.3 Background

The implementation of PINALITE builds on the SUGILITE system described in this dissertation.

This section summarizes the key characteristics of SUGILITE scripts and their corresponding meta-

data, and the possible types of privacy leaks in them, providing the background for the design,

development, and evaluation of our approach.

8.3.1 SUGILITE Scripts

SUGILITE scripts support task automation using the GUIs of Android mobile apps (e.g., to auto-

mate ordering coffee using the Starbucks app). Each script consists of a collection of operations,

conditionals, and their corresponding metadata. In most cases, an operation represents an action to

be performed on the GUI of an app, such as CLICK (click on a GUI element X) and SET TEXT

(set the value of the text field of a GUI element X to Y). For those operations, the first arguments

(X in the previous two examples) are used for identifying the target GUI elements from current

108

8.3. BACKGROUND

screens for performing the actions (more details in Section 8.3.2). Some operations also have addi-

tional arguments (e.g., the second argument of a SET TEXT operation specifies the String content

that the value of the target GUI element’s text field should be set to). There are also a few types

of special operations that do not represent actions on the GUI, such as READ OUT (read the text

field of a GUI element out loud), EXTRACT VALUE (assign a variable using the value of the text

field of a GUI element), and PAUSE (pause for X seconds or until the user signals to continue).

A script can have parameters (e.g., the size of coffee and the type of coffee for a coffee-ordering

script). Each parameter may have a list of possible values (e.g., “tall”, “grande” and “venti” for size

in the Starbucks app). The parameters and their possible values are extracted from GUIs during

the demonstrations, as explained in Chapter 3.

Operations are linked and executed sequentially unless there is a conditional. A conditional IF

includes one or two (with an ELSE clause) branches and a Boolean expression. At runtime, the

execution depends on the evaluation result of the Boolean expression, which can involve constants

or variables. The values of variables can be either provided before the script execution, during the

script execution through extracting values from GUIs, or from the result of executing a subscript.

(see Chapter 5 for full details on conditionals and variables in SUGILITE scripts)

8.3.2 Data Descriptions and GUI Snapshot Graphs

In programming by demonstration, the main challenge is to infer the user’s intent as explained in

Chapter 4. From a recorded action, the system needs to determine the user’s intent in performing

that action so that the system can perform the desired action in a different context in the future.

This process is known as creating a data description [65, 175]. For GUI-based PBD systems, data

descriptions are often queries that can identify the correct target GUI element on which to perform

the actions from all of the screen contents [163]. In our case, SUGILITE uses graphs to represent

the GUI screen contents, and represents data descriptions as graph queries. Such graphs are called

UI snapshot graphs in SUGILITE. A main challenge for PINALITE is to identify and anonymize

personal information in the UI Snapshot graphs. This section summarizes the characteristics and

design rationale of UI Snapshot graphs. More details can be found in Chapter 4.

Figure 8.2 shows a simple example GUI, its corresponding UI snapshot graph, and a few differ-

ent example queries for describing the same button in the GUI. Each graph consists of a collection

of edges represented as triples denoted as (s, p,o). The subject s and the object o are two enti-

ties, and the predicate p is a directed edge from s to o representing a relation. Each GUI element

(known as a view in Android) is represented as an entity in the graph. They are connected to

entities that represent the properties of the GUI elements, such as class types (e.g., button, check-

109

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Figure 8.3: An example SUGILITE script for paying off the credit card balance using the American Express
app. The screenshot (a) shows the user-readable descriptions for the operations, and the screenshot (b)
shows the raw source of the script. The red triangles point to data description queries that include the user’s
bank account information. The screenshot (c) shows the corresponding app screen for the data description
query.

110

8.3. BACKGROUND

box, textbox—called HAS CLASS NAME), on-screen bounding box coordinates (HAS SCREEN -

LOCATION), text labels (HAS TEXT), whether the elements are clickable, scrollable or focused

(IS CLICKABLE, IS SCROLLABLE, and IS FOCUSED), and app-developer-assigned view IDs

(HAS VIEW ID). The entities for GUI elements are also connected to each other based on their hi-

erarchical relationship (i.e., HAS PARENT and HAS CHILD) and spatial relationship (e.g., ABOVE,

BELOW, LEFT) in the current GUI layout. SUGILITE also extracts some basic semantic relations

for String entities in the graph that have easily identifiable structures (e.g., CONTAINS PRICE,

CONTAINS DATE). SUGILITE’s UI snapshot graphs are generated from the hierarchical UI trees

provided by Android’s Accessibility API, but this approach should also apply to other types of

hierarchical mobile, desktop, or web GUI representations (e.g., the DOM tree in HTML).

The UI snapshot graphs at the time of demonstrations are saved and stored with their corre-

sponding operations and data description queries in SUGILITE scripts for a few reasons: first, they

are needed to support the parameterization of scripts. In SUGILITE, parameters and their possible

values are identified using a combination of the user’s natural language utterance and the app GUIs

during the demonstration. For example, suppose the user selects an option with text “venti” from

a menu during a demonstration for a task with a spoken command “order a venti cappuccino.”

SUGILITE would identify “venti” as a parameter in the utterance, link it to the corresponding GUI

action in the demonstration, and extract other items in the same menu (e.g., “grande” and “tall”)

as alternative possible values for this parameter from the UI snapshot graph.

Second, UI snapshot graphs are used to help with modifying and extending existing scripts.

When the user needs to, for example, switch a data description query in use (e.g., Figure 8.2 shows

three different data description queries that can be used to refer to the same UI element, the user

may want to switch from one to another in an existing script), the original UI snapshot graph can be

used to generate possible alternative data description queries, and validate the new data description

query to ensure that it matches the user’s intended target UI element for the action (described in

detail in Chapter 4).

Third, UI snapshot graphs are also used for error recovery in case of execution errors. During

the automation execution, when the system cannot find the target UI element for the next operation

using the original data description query, the system will verify if the phone is on the correct

screen of the app by comparing the current UI snapshot with the saved UI snapshot from the

original demonstration. If the phone is at a different screen, it indicates a previously unseen new

app state (or the app’s UI has changed), so the system will prompt the user to demonstrate what to

do in this new situation. For example, the Uber app will show a confirmation screen during price

111

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

surges. If this new screen was not seen during the demonstration (as determined by comparing the

UI snapshot graphs), the user can show how to handle this new situation by demonstration.

8.3.3 Sources of Personal Information Leaks

This section explains possible sources of potential information leaks in shared SUGILITE scripts

and their embedded UI snapshot graphs using examples.

Data Description Queries

HAS TEXT and HAS CONTENT DESCRIPTION queries used in data descriptions may contain

personal information of the script author. HAS TEXT is used when the target UI element for an

operation is identified using its displayed text string (the text field), and HAS CONTENT DE-

SCRIPTION is used when the target UI element is identified using its contentDescription

field, which is often used as the accessibility alt-text label for graphical UI elements. In many

app GUIs, the contents for these fields are dynamically generated with the script author’s personal

information (e.g., account number, name, address—Figure 8.1 shows a few examples). Therefore,

when data description queries containing them used in the operations are subsequently shared with

other users, the personal information is leaked. Figure 8.3 shows an example data description

query that leaks a script author’s personal information. The data description queries include the

last four digits of the user’s bank account number, therefore the system needs to obfuscate personal

information used in data description queries prior to sharing the script.

Parameter Values

Another possible source of personal information leaks is the list of possible values for parameters.

As explained in Section 8.3.2, SUGILITE infers the possible values for parameters from app GUIs

when the script author chooses an item from a menu by extracting the alternative items that the

script author could have chosen from the same menu. Therefore, personal information can be

leaked when these items are personal to the script author. For example, when a script author records

the “pay off the credit card balance” script (shown in Figure 8.3), an operation can be choosing the

bank account. The PBD system can infer “bank account” as a parameter, and include all the stored

accounts, which are private to the script author, as possible values for this parameter in the script.

To prepare the script for sharing, the system needs to obfuscate such personal information from all

parameters’ list of possible values.

112

8.4. OUR APPROACH

UI Snapshot Graph Texts

As explained in Section 8.3.2, the UI snapshot graph for an app screen contains all the text strings

visible on the screen. Even when the corresponding UI elements are not operated on, the text

strings can still get included in the shared script to support future script modification and error

handling. Although the UI snapshot graph is usually hidden from the script consumer, we do not

want there to be the possibility that a script consumer could extract it. Therefore, the system also

needs to examine the stored UI snapshot for each operation and obfuscate all potential personal

information before sharing a script.

8.3.4 Threat Model

We assume the authors of shared scripts are anonymized, and the main goal of the attackers is to

obtain enough personal information about the script authors to identify them. We assume the de-

velopers of the underlying apps used for demonstrations are generally honest and well-intentioned.

The local storage of PINALITE, the client-server communication, and the server storage are all

encrypted using state-of-art techniques. The attackers are able to access all the shared scripts, as

well as upload a small number of scripts each with a small number of text fields to the server for

the server-computed hash values before the server-side anomaly detection mechanism blocks them

(see discussions in Sections 8.4.4 and 8.6).

8.4 Our Approach

In order to preserve user privacy in sharing end-user-developed scripts in GUI-based PBD systems,

we present a new mechanism that can identify and mask potential personal and private information.

To achieve this, we identified the following design goals:

1. The approach should require minimal user effort and intervention. In particular, it should not

require script authors to manually tag personal information from a large amount of collected

data.

2. The approach should retain the transparency, readability, robustness, and generalizability of

the original scripts wherever possible.

3. The approach needs to detect and protect a wide range of common and uncommon, explicit

and implicit types of personal information. Some of personal information may be previously

unknown to the system, and dynamically generated by third-party apps.

113

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Figure 8.4: The diagram shows the pipeline of how our approach collects and aggregates information entries
in an example third party app, uses those to compute the uniqueness for information entries before sharing
a script, and obfuscates potential personal information in the shared script.

4. The approach should work with PBD scripts on general task domains on existing non-

modified third-party app GUIs without the system having prior knowledge about the task

domain or the underlying apps.

5. To ensure data security, sensitive personal information should not leave the user’s device

(that is, the private data should stay on the phone and not be sent to the server storing scripts

or, even worse, to another person’s phone).

8.4.1 Overview

Figure 8.4 illustrates the pipeline of our approach. On a high level, PINALITE identifies potential

information in a PBD script based on the uniqueness of the information among app users. Intu-

itively, if a piece of information has been seen by most users, it is likely to be public, otherwise,

it is possibly personal. In GUI-based PBD systems, we consider an “information entry” to be a

combination of a content (i.e., a string), and its app context (i.e., the context in the app where this

string appeared). Section 8.4.2 will discuss more why we define an information entry this way, and

how we extract them from apps.

To determine the uniqueness of information entries, PINALITE collects and aggregates infor-

mation entries in third-party mobile apps from many users in the background (Step 1 in Figure 8.4).

114

8.4. OUR APPROACH

Potential personal information on GUIs should be different for different users (e.g., everyone

should have different balance, account numbers, addresses, etc. in the Amex app), but other in-

formation should stay the same (e.g., the ”next” button and the ”contact us” phone number in an

app). To protect user privacy, PINALITE only collects the hashes of information entries, which

are sufficient for determining their uniqueness. The details of this process and the definition of

“uniqueness” used in our approach are described in Section 8.4.4.

Before sharing a script, PINALITE uploads the hashes of all information entries in the script

(Step 2 in Figure 8.4). The server computes and returns the uniqueness of all these information

entries (Step 3 in Figure 8.4). The information entries that are more unique are considered likely

personal, and therefore obfuscated using hashes by default. But the script author can also manually

label and unlabeled personal information through an interactive interface. Once the author confirms

that all personal information is correctly obfuscated, they can go ahead and share the script (step 4

in Figure 8.4).

After a different user, who we will call the script consumer, downloads a script to their per-

sonal device, PINALITE supports rebuilding obfuscated fields in the script locally using the GUI

contents from the corresponding target apps on the script consumer’s phone. This improves the

transparency, readability, and robustness of shared scripts, and allows the script consumer to take

advantage of the existing parameterization in the script. Section 8.4.6 will discuss this topic in

more detail.

8.4.2 Information Entries as App Context-Content Pairs

In GUI-based PBD systems, the personal information in the scripts comes from the GUIs of the

target apps. Potential personal information displayed on app GUIs can get included in the data de-

scription queries, the possible parameter values, and the UI snapshot graphs during the demonstra-

tion, as discussed in Section 8.3.3. While some kinds of GUI-displayed information are explicitly

private on their own (e.g., user phone numbers), others are only private when accompanied by the

contexts of app GUIs. For example, the string “New York” showing up on the checkout screen of

the Starbucks app can be personal and private information since it gives away the user’s location,

but the same string showing up on the home screen of NYC Transit app is not personal because

the app would display the string “New York” for all of its users. Even a phone number might not

be private information when it belongs to a business. For example, every user will see the same

phone number when visiting the “Contact Us” page in the Amex app.

115

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Therefore, in PINALITE, we consider an information entry as a combination of a content and

its app context, and use the uniqueness of such information entries to determine whether they are

likely personal information.

In the implementation, the collected app context contains the unique identifier of an app: pack-

age name and the unique identifier of a screen within an app: activity name. During the background

data collection and the recording of a script, PINALITE’s client-side software collects all text strings

visible on the screen along with their app contexts as app context-content pairs. That is, an app

context-content pair denotes “the information X is displayed on the screen Y in the app Z.”

8.4.3 Background Data Collection

After PINALITE’s client-side software is installed on a user’s phone, and given the appropriate

permissions, it begins collecting information in the background, which it sends to the server (Step

1 in Figure 8.4). On each user’s phone, when not recording, the client-side software collects app

context-content pairs (defined in Section 8.4.2) in the background for the current app running on

the phone, and uploads the hash values of them to the server (the hashes are computed locally).

Our implementation uses the SHA-512 hash algorithm for all our hash functions. It is a one-way

hash function, which means that is practically infeasible to derive the original string from the

hash value. The uploaded data are labeled with the user’s Android Advertising ID [96], which

is an anonymous, user-specific, unique, and resettable user ID. The server keeps a count of the

number of unique users with identical information entries (i.e., how many users have seen the

same information on the same screen of an app) and the number of unique users with the same app

context (i.e., how many users have visited the same screen of an app).

To preserve user privacy, the user only sends out the hashes of the app context and the contents

in information entries, so neither any app content nor the app usage can be recovered from the

uploaded data. For an information entry, the user only uploads hash(app context,content) to the

server, so that the plain values of private information do not leave the user device. When receiving

the user-uploaded hashes of information entries, the server applies another level of server-side hash

with an encrypted salt before storing them (i.e., the data stored on the server for an information

entry is hash′(hash(app context,content),salt). This prevents dictionary attacks [230] (i.e., the

attacker enumerates the hashes of all possible content values—for example, if the attacker guesses

that one of the hash values in an uploaded app UI snapshot may represent the user’s city, they

can enumerate the hashes for all possible city names, and compare if any matches a hash in the

uploaded app UI snapshot) and rainbow table attacks [220] (similar to the dictionary attack, but the

attacker looks up a pre-computed table of hash values for strings up to a certain length consisting

116

8.4. OUR APPROACH

of a certain set of characters), because even the attackers got access to the hashes, they would not

be able to decrypt the data because they cannot compute hashes offline without the encrypted salt.

8.4.4 Identifying Personal Information for PBD Script Sharing

The next step is to identify personal information in scripts. PINALITE uses the uniqueness of

an information entry among all users of the same to determine if it is likely to be personal. As

described in Section 8.4.3, the server collects and aggregates hashed information entries from

app GUIs of many users. Information entries that only appear on one or a very small number

of users’ devices are likely personal, while entries that appear across devices of many users are

likely not. An advantage of this approach is that it makes re-identification attacks difficult. It not

only protects common types of explicit personal information, but also identifies and masks any

information entries that are non-common among users. As a result, information entries that are

classified as non-personal are those shared by the majority of users. Therefore it would be very

difficult to re-identify a user using these information entries.

Before sharing a script, PINALITE’s client-side software for the script author first queries for

the uniqueness of each information entry in the script (Step 2 in Figure 8.4). For each entry, it sends

out hash(app context,content) in the query to the server. The server then computes the salted hash

value hash′(hash(app context,content),salt) using the encrypted salt, and counts the number of

unique users with the identical information entries (i.e., the number of users who have seen this

information on this screen in this app) and the number of unique users who have had the same app

context (i.e., the number of users who have been to this screen in this app).

With these counts, the server computes the uniqueness of each information entry by estimating

the probability of a user has seen the same content given the user has been in the same app context.

The details of the process are described below:

Let’s define the observed number of unique users F(E,U,a,c) as the number of users in a

dataset of information entries E who have had the identical app context-content pair (a,c) from

the user set U of all the users that have contributed to E:

F(E,U,a,c) = ∑
u∈U

[∃e ∈ E : (usere = u)∧ (app contexte = a)∧ (contente = c)]

Similarly, we define the observed number of unique users G(E,U,a) as the number of users in

a dataset of information entries E who have had the same app context a from the user set U of all

the users that have contributed to E:

117

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

G(E,U,a) = ∑
u∈U

[∃e ∈ E : (usere = u)∧ (app contexte = a)]

Therefore, for an app context-content pair (a,c), the server can calculate the observed fre-

quency H(E,U,a,c) of the users who had the app context-content pair (a,c) in all the users who

have had the app context a:

H(E,U,a,c) =
F(E,U,a,c)
G(E,U,a)

The result of H(E,U,a,c) estimates the probability that a user has seen the content c given that

the user has been in the app context a. The server uses this estimated probability to indicate the

uniqueness of the content c in the app context a.

Lastly, the server tests if this probability meets a pre-specified threshold t using the one-tailed

exact test of goodness-of-fit [196]. The null hypothesis is that (a,c) does not meet the uniqueness

threshold t—the probability of a user has seen the content c when the user has been in the app

context a is greater than t, and the alternative hypothesis is that the probability of a user has seen

the content c when the user has been in the app context a is less than or equal to t.

If the result indicates that the probability is less than or equal to t with statistical significance2,

we consider the app context-content pair (a,c) to potentially contain user personal information that

needs to be obfuscated. Specifying a smaller t lowers the risk of false negatives (i.e., classifying

personal information as non-personal) in the shared script, especially when the sample population

is skewed (see Section 8.6 for the detailed discussion). However, it increases the likelihood of false

positives (i.e., classifying non-personal information as personal), and specifically, requires a larger

number of users to collect UI snapshots from before non-personal information can be confidently

identified.

For example, at t = 0.5 (which means that for an information entry to be non-personal, at least

a half of users who have been to this screen of this app should have seen the same information), our

approach requires collected UI snapshots from 5 unique users (with the threshold of significance

p < 0.05) that all have seen the same information before it can label this information entry as

non-public. Before that, it would classify everything as potentially personal.

8.4.5 The Interactive Interface

When the script author chooses to share a script, PINALITE first identifies personal information

in the script using the method described above in Section 8.4.4, and then displays the result in an

2We used p < 0.05 in our implementation.

118

8.4. OUR APPROACH

Figure 8.5: The result of processing the script shown in Figure 8.3. The left side shows the review interface
for the script author, where the identified personal information is highlighted in red. The right side shows
the source of the processed script, where the content of identified personal information is replaced by its
hash.

119

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

interactive interface (shown in Figure 8.5a). For information entries that have been classified as

public, the interface displays them in plain text, and highlights them in blue. Those that have been

classified as potentially personal are marked as “hidden text” and highlighted in red. The script

author can review the script to be uploaded, and manually label or unlabel private information as

needed by clicking on them.

If an information entry is labeled as public, it will be included in the shared script in plain text,

otherwise, the shared script will include its encrypted salted hash (hash′(hash(app context,

content),salt)). Server-computed salted hashes are used for obfuscating the shared scripts in order

to prevent dictionary attacks and rainbow table attacks, as discussed in Section 8.4.3. Once the

script author confirms the script, PINALITE will upload the obfuscated script to the server for

sharing.

8.4.6 Rebuilding Scripts with Obfuscated Information by Script Consumers

For SUGILITE scripts, obfuscating string values in data description queries or parameter values by

hashing does not necessarily prevent executing scripts with hash values in data descriptions. Data

description queries in SUGILITE compare the equality of string references in the query (e.g., click

on the button that has text “next”) with text labels of GUI elements on the screen. With hashed

values, the comparison can still be done on the server-side, because the hash values in the scripts

are originally computed by the server using the encrypted salt. PINALITE’s client-side software

can send the hashed UI snapshot to the server during the script execution, from which the server

can return which, if any, of the elements on the current UI snapshot matches the hashed query.

However, in practice, the script execution using only equality checks often fails for the con-

sumers of shared scripts when the data description queries contain the hash values of string contents

that are personal to the original script author. When SUGILITE executes an action, it will not be

able to find the target UI element because the string content used in the data description query can

match anything in the app on the script consumer’s phone. For example, the script in Figure 8.3

will not work with a different user, because the new user presumably does not have an account with

the same account number. Therefore the system needs to rebuild the obfuscated data descriptions

using the script user’s local information.

There are some additional motivations for rebuilding obfuscated data descriptions: first, it

helps improve script transparency. It allows script consumers to understand script behaviors, to

check to see if the script fits the script consumer’s needs, and allows the script consumer to modify

and extend the scripts when needed. Second, as discussed earlier, comparing salted hash values

can only be done on the server-side. Rebuilding the obfuscated fields in scripts allows the script

120

8.4. OUR APPROACH

consumer to execute them on the consumer’s phone without help from the server. Lastly, when the

script parameter values are personal to the script author, rebuilding them on the script consumer’s

side allows the script consumers to take advantage of the parameterization with their own personal

options. For example, a script consumer can replace the data description query in the highlight

operation in the screen shown in Figure 8.3 with their own account numbers, and use them as

possible parameter values for the parameter “account number” so that this script can be used for

all of the script consumer’s bank accounts.

Rebuilding Obfuscated Fields

Here we explain how PINALITE rebuilds the obfuscated fields in shared scripts locally on the

consumer’s phone. In the earlier example shown in Figure 8.3, when a script author records a

script that pays off the credit card balance using the Amex app, one step is to choose an account

to pay from. This action is recorded as “Click on the LinearLayout that has the text ‘Checking

Account ...1234 in Amex”. Since the author chooses this account from a menu that also contains

options for the author’s other accounts, the PBD system can recognize “account” as a parameter,

and save the other account options as possible values for this parameter so that this script can later

be used for paying off the credit card balance using the other accounts (see more details about the

script parameterization process in Chapter 3). However, when PINALITE prepares the script for

sharing, both the original data description text (“Checking Account ...1234”) and the alternative

options will be obfuscated because these information entries are all personal to the script author.

When script consumers download this script, all they can see is “Click on the LinearLayout that

has hidden text in Amex” (shown in Figure 8.5a). Under the hood, the hidden text represents a

salted hash of the original text in the source, as shown in Figure 8.5b. This script will not execute

correctly, because the script consumer would not have an account whose text label matches the

hash of the original account text label of the script author. The parameter mechanism would be

broken too for the same reason.

A prerequisite to our solution is to add a step in the script recording mechanism on the script

author’s side. Each time the script author demonstrates an operation, in addition to generating the

main data description that best reflects the script author’s intention, the recording mechanism also

extracts an alternative data description query that uses no potential personal information on app

GUIs. As explained in Section 8.3.2, each app screen is represented as a GUI snapshot graph.

Therefore, the alternative data description needs to be a graph query that (1) uniquely identifies the

target UI element in the graph, and (2) does not use the (HAS TEXT) relation on strings containing

any potential personal information. For the credit card payment example used above, an alterna-

121

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

tive to the original data description “Click on the TextView that has the text ‘Checking Account

(...1234) in Amex” can be “Click on the first TextView in the ListView below the TextView that

has the text “Choose Bank account” in Amex.” In this alternative query, the text “Choose Bank

account” is not personal, because everyone who has visited the account selection screen in the

Amex app can see the same text on the screen.

On the script consumer’s phone, PINALITE rebuilds the script at the runtime using the script

consumer’s local app GUI information. When executing a script, when SUGILITE reaches the

account selection menu, it cannot find any screen element with text that matches the hash value in

the script. At this time, the system uses the previously generated alternative data description query

to locate the account selection menu on the screen, replaces the “hidden text” data description with

the new value (e.g., “Checking Account (...2345)” found locally on the consumer’s phone from

the matched UI element, and extracts other menu options from the GUI (e.g., “Saving Account

(...3456)”) to be used as the new possible parameter values for this specific script consumer. This

allows the script consumer to see the data description queries revealed in the script (e.g., the script

consumer’s own account information for the script in Figure 8.5 instead of “hidden text”), and to

take advantage of the parameterization in the script using their own personal information.

An underlying assumption of this approach is that the SUGILITE operates on the script con-

sumer’s personal device, and the script consumer does not share the device with others. Our

approach assumes that the script consumer should have access to any information the system sees

in app GUIs locally on their phone, and therefore the information can be safely used to rebuild the

script consumer’s personal copy of the automation script. Similarly, other people should not have

access to the script consumer’s personal copy of the script stored locally on the phone, since it may

contain the script consumer’s personal information.

8.5 Evaluation

We evaluated our approach on three research questions:

RQ1 How accurate is PINALITE’s approach in identifying personal information in GUI-based

PBD scripts?

RQ2 How well can script consumers understand the shared scripts after they are obfuscated using

PINALITE?

RQ3 How comfortable do script authors feel about sharing their scripts with PINALITE?

122

8.5. EVALUATION

We investigated the first question through an accuracy evaluation, and the last two questions

through a lab user study.

8.5.1 Accuracy of Identifying Potential Personal Information

Method

We selected 15 popular Android apps from various task domains in the Google Play Store. For each

app, we came up a task that (1) reflects the main purpose of the app, (2) is reasonable to be auto-

mated using an agent, and (3) interacts with some personal information of the user. We performed

each task with 5 different “simulated users”, and collected the corresponding information entries

from these UI snapshots. For each simulated user, We created a new app account using different a

profile, and spoofed a new GPS location. (Note that we did not select, for example, banking apps

and medical apps in this evaluation because it was difficult to create new accounts for simulated

users in these apps.) We then created a SUGILITE script for each target task by demonstration, and

used PINALITE to identify personal information in the script with the uniqueness threshold t = 0.5.

For each script, we extracted all of the information entries contained in its data description

queries, parameter values, and UI snapshots. We evaluated the performance of our approach on

these scripts in terms of precision (the fraction of information entries that contain personal infor-

mation among the ones classified as “potentially personal”), recall (the fraction of information

entries that contain personal information that were correctly classified as “potentially personal”),

and accuracy (the fraction of information entries that were correctly classified) of identifying per-

sonal information by comparing the result against expert human judgments. We used two ex-

perts to independently label whether each information entry contains any personal information.

The two judges reached substantial agreement [144], with the percent of agreement = 87.8% and

Cohen′s κ = 0.63.

Results and Discussion

Table 8.1 reports the result of the evaluation. First of all, note the large number of strings in each

script (column n), ranging from 42 to 193 strings—too many for script authors to comfortably

review manually. All 15 scripts included some personal information of the script author (column

npersonal). Our approach achieved a perfect recall—that is, all personal information entries were

indeed correctly identified as potentially personal, and therefore obfuscated. No personal informa-

tion was leaked in the processed scripts in our evaluation. This result suggests that our approach is

adequate in preserving the script author’s personal information in end-user developed PBD scripts.

123

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

App Task n npersonal Recall Prec. Accu.

Starbucks Order a cup of coffee for pick up 58 11 1 0.38 0.83

Uber Request a ride 128 35 1 0.74 0.69

Marriott Book a hotel room 140 8 1 0.44 0.93

Papa John’s Order a pizza for delivery 142 5 1 0.19 0.85

AccuWeather Check the current weather 59 3 1 0.17 0.75

OpenTable Make a restaurant reservation 116 12 1 0.26 0.71

Kayak Book a flight 89 21 1 0.51 0.78

AMC Theatres Buy a movie ticket 91 6 1 0.12 0.53

Zillow Check the homes for sale in the area 42 4 1 0.25 0.71

Lyft Request a ride 68 37 1 0.86 0.85

Cinemark Theatres Buy a movie ticket 193 9 1 0.11 0.60

Chipotle Order food for pickup 136 34 1 0.89 0.94

Yahoo! Sports Check sports scores 86 13 1 0.34 0.71

Dunkin’ Order a drink for pick up 76 19 1 0.83 0.95

Uber Eats Order food for delivery 63 13 1 0.41 0.73

Table 8.1: The result of the evaluation, showing the app name, the task, the number of information entries
collected (n), the number of information entries that contained personal information (npersonal), the recall,
the precision, and the accuracy for each script.

On the other hand, the precision of our approach was lower in some task domains. That is,

our approach sometimes classifies non-personal information as personal information. This trade-

off was a deliberate design decision we made—our approach seeks to minimize false negatives

by not limiting to pre-specified common types of personal information such as phone numbers,

email addresses, and birthdays. Instead, it by default obfuscates all “unique” information, defined

as information that is not seen by most people who have visited the same screen in the same app.

This approach ensures a higher degree of privacy for users. A trade-off of this approach is that it

may introduce false positives by obfuscating information that people might not consider private.

When we looked into the false positives in our evaluation, they were mostly (1) personalized

recommendations and advertisements—fields that show different contents for different users such

as movie recommendations in AMC and Cinemark apps; and (2) dynamic information that depends

on the time and location, such as the temperature readings in AccuWeather, the available timeslots

for restaurants in OpenTable, the date selections in Marriott, and the latest sports news in Yahoo!

124

8.5. EVALUATION

Sports. It is also worth noting that these kinds of false positives are unlikely to impact the function

and the usability of the shared PBD scripts. These fields are almost never used in data descriptions

for script actions, and are rarely useful for script generalization and error handling because they

are not consistent across multiple instances of script execution.

Our approach successfully identified many kinds of uncommon and seemingly innocent per-

sonal information that may be combined for re-identification attacks, such as the address of and

the distance to nearby locations in Starbucks, Papa John’s, and AMC Theatres, the addresses of

nearby real estate properties in Zillow, the amount of reward points in Starbucks and Marriott, the

names of local sports teams in Yahoo! Sports, and the past order history of the script author in

Uber Eats. This was in addition to the common types of explicit personal information identified in

the scripts such as the script author’s name in greetings (“Good morning, Bob”), the stored script

author’s home address, and the script author’s account name. When labeling the ground truth for

personal information, we did not count information entries that may only reveal the script author’s

personal information with some prior domain knowledge, such as a product offering that is only

available to users in a certain region, and a menu option that only shows up for users with certain

reward status. In our metric, those were counted as false positives, but they were protected using

our approach nevertheless.

8.5.2 User Study

Participants

We recruited 16 participants (5 identified as female, 11 identified as male, ages 21–32) for our

user study. The user study session for each user lasted around 30-40 minutes. We compensated

the participants $15 for their time. Most (75%) participants were students at local universities.

The others worked different technical, administrative, or managerial jobs. Among the partici-

pants, there were 4 (25%) non-programmers (i.e., those who have done none or only very light

programming such as writing Excel functions), 5 (31.3%) novice programmers (i.e., those who

have taken 1-2 college-level computer science classes, or with equivalent expertise, but have little

“real-world” programming experience), and 7 (44%) more experienced programmers. 5 (31.3%)

participants had some prior experiences with PBD systems (e.g., macro recorders in MS Office and

Adobe software), while the other 11 participants (68.7%) had no prior experience with PBD.

125

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

Methods

For each study session, after obtaining the proper consent and having the participant fill out a de-

mographic survey, we gave the participant a short tutorial on the general concept of GUI-based

PBD, and how SUGILITE works using its published tutorial video3. After the tutorial, we investi-

gated RQ2: How well can script consumers understand the obfuscated scripts?

We gave each participant 3 tasks in random order. The goal of the tasks was to simulate the

experience of understanding a shared script for a script consumer. For each task, the participants

saw an obfuscated script like in Figure 8.5a. We used the Amex example shown in Figure 8.5,

and the Uber and Dunkin’ scripts that were also used in the accuracy evaluation (Table 8.1). The

participants saw screens of running the script on the phone of a simulated user different from the

script author (so that the screens would show different contents in the personal information fields).

The user experience in this process should be identical to that when a script user downloads and

executes a shared script using PINALITE. We used a simulated user profile instead of having

the participants create new user profiles in the study in order to avoid accidentally collecting any

actual personal information from the participants. We then asked the participant to tell us what

the purpose of the script was, and what the “hidden text” represented in the script. Finally, each

participant rated if it was easy for them to understand what each script does.

Following the tasks, we moved to answering RQ3 (How comfortable do script authors feel

about sharing their scripts with PINALITE?) using a questionnaire. We first described the con-

cept of uniqueness in our approach, explained the guarantee that our approach provides (for an

information entry to be non-personal, at least a half users who have been to this screen of this app

should have seen the same information), and showed the review interface using the Amex script

example. We did not have the participants demonstrate new scripts because (1) we wanted to ex-

clude the factor of the usability of SUGILITE’s recording mechanism (which has been evaluated in

Chapter 3) from this study; and (2) we wanted to avoid accidentally collecting any actual personal

information from the participants. Each participant then filled out a questionnaire on how much

they trusted the system as a script author, how comfortable they were with sharing scripts in our

system, and whether the review interface was clear about what information is hidden and what

information is revealed in shared scripts. Finally, we ended the session with an informal interview

on their thoughts about our approach. We specifically asked if they had any privacy concerns with

our approach, and whether they could think of any scenarios where they would not be comfortable

sharing scripts processed with our approach.

3https://www.youtube.com/watch?v=KMx7Ea6W6AQ

126

https://www.youtube.com/watch?v=KMx7Ea6W6AQ

8.5. EVALUATION

Results and Discussion

The results for RQ2 are encouraging. Our participants found the obfuscated scripts easy to under-

stand. After completing the 3 tasks of understanding obfuscated shared scripts, they on average

rated 4.69 out of 5 (standard error of the mean σx̄ = ±0.12) on a 5-point Likert scale for the

statement “I find it easy to understand what each script does”, and on average rated 4.44 out of 5

(σx̄ =±0.19) for the statement “The script representation is useful for me to determine if the script

serves my needs” in the questionnaire.

In the interview, the participants confirmed our hypothesis that script consumers would like to

review the scripts from others before executing them. For example, P9 agreed they “were con-

cerned about using others’ scripts, [and they wanted to check] whether that contains the virus or

other unwanted hidden procedures.” However, several participants, although finding the current

representation clear and easy-to-understand, also thought it to be too difficult to go through the

entire script. P15 said, “...there must be some easier way to do it.” P3 and P12 also worried

that some words used in the script representation (e.g., “TextView” and “LinearLayout”) were too

technical for end users (both P3 and P12 were experienced programmers). These findings iden-

tified the research opportunity of designing an easier-to-use script representation of PBD scripts

specifically for script consumers. But overall, participants did not have much of a problem with

the transparency of the scripts with obfuscated fields. They found it easy to understand the purpose

of each script and what each “hidden text” might represent as a script consumer, with the help of

referencing the GUIs of the underlying third-party apps.

The results for RQ3 are also generally positive. 14 (87.5%) participants reported that they felt

comfortable sharing their personal scripts with others using our approach in the study. 14 (87.5%)

participants found the script review interface (shown in Figure 8.5a) clear about what information

was private and what information was public in the scripts. However, there were 2 participants

who reported that they could not trust PINALITE to protect their personal information.

Some of the distrust originated from the sensitivity of certain task domains. For example, in

the interview, P1 reported, “I might not let a virtual agent do the task related to my bank account.”

but was comfortable sharing scripts in other task domains with PINALITE. Another participant

who reported distrust in our system, P6, said, “It is not about this mechanism or app, I just don’t

trust technology in general,” and later added, “but sharing with friends is acceptable.” A few

other participants, while comfortable with sharing scripts with the public using PINALITE, also

mentioned that scripts shared only with friends can have different standards for privacy. P4 and

P7 wanted to include more personalizations in their scripts to make them more effective for their

friends to use. P4 said, “I want to share with my friends about ...(some customization of coffee)

127

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

since I think my recipe is delicious. But that information would be definitely hidden with your

mechanism.” Lastly, a few participants reported non-privacy-related concerns about script sharing.

P4 was not sure if his scripts are effective enough for other people to use, and P13 said “... I don’t

want to be responsible for the performance of my scripts.”

8.6 Limitations

Our current approach has some limitations. First, the current version of PINALITE only processes

textual information. It can not identify and obfuscate personal information from visual information

in images, or other multimedia forms. This limitation does not pose a problem when working

with the current version of the underlying SUGILITE PBD system. SUGILITE, like many other

GUI-based PBD systems such as CoScripter [152], PLOW [3], and ActionShot [155] do not use

information about the contents of images and other multimedia forms in scripts. So they do not

collect any visual information in their scripts. But for our approach to work with vision-based PBD

systems (e.g., Sikuli [299] and HILC [120]), it would need to be able to identify and obfuscate

visual information as well.

Second, PINALITE also does not consider situations where the layout of an app encodes per-

sonal information. For example, suppose a layout structure in an app only shows up for users in

a specific user group (e.g., the entire “loan” menu in a banking app only shows up for users with

outstanding loans), then the presence of references to this GUI layout structure in the alternative

queries used for rebuilding scripts may reveal personal information about the script author.

Third, when testing whether the uniqueness of an information entry meets the threshold t, we

assume that the population of sample users is independent. This assumption can be a problem

when the sample population is very significantly skewed. Let’s look back at the example in Sec-

tion 8.4.2, the string “New York” on the checkout screen of the Starbucks app should be identified

as potential personal information, as it gives away the script author’s current city. However, if the

system encounters a skewed sample population where the vast majority of users are actually from

New York, the system may classify it as a non-personal information entry, and therefore reveal

it by default in future shared scripts. One way to mitigate this problem is to impose more strict

thresholds for t and for the p value used in the statistical test. But this comes with the trade-off

of having more false negatives (non-personal information classified as personal information). It is

worth noting that this limitation only affects “less differentiating” personal information such as the

current city, gender, and country when the sample population is significantly skewed. More sen-

128

8.6. LIMITATIONS

sitive information such as names, exact addresses, account numbers will not be impacted because

these are more likely to be unique among the users.

Fourth, PINALITE uses a server-side salted hash approach (see Section 8.4.4) to prevent dic-

tionary attacks. The attackers cannot decrypt obfuscated personal information by comparing the

hashes appeared in scripts against offline-computed hashes for a large number of possible values

because computing hashes requires access to the encrypted salt. The server can control the access

to the salted hash function and block abnormal requests (e.g., those with abnormally large numbers

of strings, or from clients with too many requests). However, for fields with only a few possible

values (e.g., gender), it is still possible for an attacker to enumerate all possible values in the server

requests without being detected and blocked. But this problem will not affect more sensitive per-

sonal information fields like names, exact addresses, and account numbers, which have larger num-

bers of possible values. In our threat model (Section 8.3.4), we assume that the authors of shared

scripts are anonymized, and the main goal of the attackers is to obtain enough personal informa-

tion about the script authors to identify them. Therefore, fields with only a few possible values are

not very useful (e.g., knowing a script author is a female Starbucks app user between 25-39 is not

sufficient for identifying her). Since shared scripts are anonymized, and hashes are computed with

app contexts (i.e., the same string will result in different hash values when appearing in different

apps, or different screens within the same app), the attackers are not able to link information across

multiple scripts to further deanonymize the script author either. However, when the identity of the

script author is known, such as when a script author directly shares a PINALITE-obfuscated script

with others, potential sensitive information with a small number of possible values (e.g., gender

and age group) may get compromised when the attackers try enumerating the possible options with

the PINALITE server to obtain their hashes.

In practice, PINALITE can also be combined with other methods to support identifying potential

personal information at a finer granularity. For example, one can use the “personal database”

method used in CoScripter [152] to manually blacklist specific fields known to contain personal

information (e.g., gender), and use regular expressions to explicitly identify personal information

with fixed structures like email addresses and phone numbers. This would allow the system to

obfuscate these fields using named types like “hidden email address” and “hidden user name”

instead of the generic “hidden information”, further improving the readability and generalizability

of shared scripts.

129

CHAPTER 8. PRIVACY IN SHARING DEMONSTRATED SCRIPTS

8.7 Future Work

The current version of PINALITE addresses the privacy-preserving sharing of individual scripts.

For the future, it would be interesting to explore aggregating scripts for similar tasks from multiple

users. This would allow us to collect data about task automation procedures on different phones

in various environments, and create more robust scripts that can handle differences in target app

versions, screen layouts, phone usage contexts, and task parameters. Prior to the introduction of

an effective privacy-preserving mechanism, we cannot collect runtime data of GUI-based PBD

systems which contain actual script contents in the background, since the contents may contain the

script author’s personal information. With PINALITE, it may be feasible to extract runtime data of

GUI-based PBD systems in the background, which would allow the PBD system to collect more

data for aggregation purposes.

Another interesting future research direction is to better communicate with the script authors

and the script users about the data they may share and the privacy expectations associated with

sharing these data. This should help users become more comfortable with participating in the

background data collection and sharing their scripts, while making informed decisions on whether

to share a script and whether to mask/unmask a field in a shared script at the script review stage.

8.8 Chapter Conclusion

This chapter presents a new mechanism, called PINALITE, for identifying and obfuscating possible

personal information in SUGILITE scripts based on the uniqueness of information entries in app

GUIs. By collecting hashed samples of GUI screens from users, PINALITE is able to determine

if a piece of information is likely personal by estimating the probability that a user has seen this

information when that the user has visited this screen in the app. PINALITE’s approach can also re-

place the obfuscated fields in a shared script locally using the script consumer’s app GUI contents,

preserving the transparency, readability, robustness, and generalizability of the original script.

130

Chapter 9

The Semantic Representation of GUIs

9.1 Introduction

With the rise of data-driven computational methods for modeling user interactions with graphical

user interfaces (GUIs), the GUI screens have become not only interfaces for human users to interact

with the underlying computing services, but also valuable data sources that encode the underlying

task flow, the supported user interactions, and the design patterns of the corresponding apps, which

have proven useful for AI-powered applications. For example, programming-by-demonstration

(PBD) intelligent agents such as SUGILITE and others (e.g. [247]) use task-relevant entities and

hierarchical structures extracted from GUIs to parameterize, disambiguate, and handle errors in

user-demonstrated task automation scripts. ERICA [67] mines a large repository of mobile app

GUIs to enable user interface (UI) designers to search for example design patterns to inform their

own design. Kite [168] extracts task flows from mobile app GUIs to bootstrap conversational

agents.

Semantic representations of GUI screens and components, where each screen and component

is encoded as a vector (known as the embedding), are highly useful in these applications. The

representations of GUI screens and components can be used to also represent other entities of

interest. For example, a task in an app can be modeled as a sequence of GUI actions, where each

action can be represented as a GUI screen, a type of interaction (e.g., click), and the component

that is interacted with on the screen. An app can be modeled as a collection of all its screens,

or a large collection of user interaction traces of using the app. Voice shortcuts in mobile app

deeplinks [11] can be modeled as matching the user’s intent expressed in natural language to the

This chapter is modified from the conference paper: Toby Jia-Jun Li, Lindsay Popowski, Tom M. Mitchell, and
Brad A. Myers. Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (CHI 2021).

131

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

target GUI screens. The representation of the screen that the user is viewing or has previously

viewed can also be used as the context to help infer the user’s intents and activities in predictive

intelligent interfaces. The semantic embedding approach represents GUI screens and components

in a distributed form [20] (i.e., an item is represented across multiple dimensions) as continuous-

valued vectors, making it especially suitable for use in popular machine learning models.

However, existing approaches of representing GUI screens and components are limited. One

type of approach solely focuses on capturing the text on the screen, treating the screen as a bag of

words or phrases. For example, the original SUGILITE system (Chapter 3) uses exact matches of

text labels on the screen to generalize the user demonstrated tasks. The SOVITE interface (Chap-

ter 7) uses the average of individual word embedding vectors for all the text labels on the screen to

represent the screen for retrieving relevant task intents. This approach can capture the semantics

of the screen’s textual content, but misses out the information encoded in the layout and the design

pattern of the screen, and the task context encoded in the interactivity and meta-data of the screen

components.

Another type of approach focuses on the visual design patterns and GUI layouts. ERICA [67]

uses an unsupervised clustering method to create semantic clusters of visually similar GUI compo-

nents. Liu et al.’s approach [183] leverages the hierarchical GUI structures, the class names of GUI

components, and the visual classifications of icons to annotate the design semantics of GUIs. This

type of approach has been shown to be able to determine the category of a GUI component (e.g.,

list items, tab labels, navigation buttons), the “UX concept” semantics of buttons (e.g., “back”,

“delete”, “save”, and “share”), and the overall type of flow of screens (e.g., “searching”, “promot-

ing”, and “onboarding”). However, it does not capture the content in the GUIs—two structurally

and visually similar screens with different content (e.g., the search results screen in a restaurant

app and a hotel booking app) will yield similar results.

There have been prior approaches that combine the textual content and the visual design pat-

terns [171,226]. However, these approaches use supervised learning with large datasets for specific

task objectives. Therefore they require significant task-specific manual data labeling efforts, and

their resulting models cannot be used in different downstream tasks. For example, Pasupat et

al. [226] create an embedding-based model that can map the user’s natural language commands to

web GUI elements based on the text content, attributes, and spatial context of the GUI elements.

Li et al.’s work [171] describes a model that predicts sequences of mobile GUI action sequences

based on step-by-step natural language descriptions of actions. Both models are trained using large

manually-annotated corpora of natural language utterances and the corresponding GUI actions.

132

9.1. INTRODUCTION

We present a new self-supervised technique (i.e., the type of machine learning approach that

trains a model without human-labeled data by withholding some part of the data, and tasking the

network with predicting it), called Screen2Vec, for generating more comprehensive semantic

representations of GUI screens and components using their textual content, visual design and lay-

out patterns, and app context meta-data. Screen2Vec’s approach is inspired by the popular

word embedding method Word2Vec [202], where the embedding vector representations of GUI

screens and components are generated through the process of training a prediction model. But

unlike Word2Vec, Screen2Vec uses a two-layer pipeline informed by the structures of GUIs

and GUI interaction traces and incorporates screen- and app-specific metadata.

The embedding vector representations produced by Screen2Vec can be used in a variety

of useful downstream tasks such as nearest neighbor retrieval, composability-based retrieval, and

representing mobile tasks. The self-supervised nature of Screen2Vec allows its model to be

trained without any manual data labeling efforts—it can be trained with a large collection of GUI

screens and the user interaction traces on these screens such as the RICO [66] dataset.

Along with this chapter, we also release the open-source1 code of Screen2Vec as well as a

pre-computed Screen2Vec model trained on the RICO dataset [66] (more in Section 9.2.1). The

pre-computed model can encode the GUI screens of Android apps into embedding vectors off-the-

shelf. The open-source code can be used to train models for other platforms given the appropriate

dataset of user interaction traces.

Screen2Vec addresses an important gap in prior work about computational HCI research.

The lack of comprehensive semantic representations of GUI screens and components has been

identified as a major limitation in prior work in GUI-based interactive task learning (e.g., [167,

247]), intelligent suggestive interfaces (e.g., [52]), assistive tools (e.g., [27]), and GUI design aids

(e.g., [149, 268]). Screen2Vec embeddings can encode the semantics, contexts, layouts, and

patterns of GUIs, providing representations of these types of information in a form that can be

easily and effectively incorporated into popular modern machine learning models,

This chapter makes the following contributions:

1. Screen2Vec: a new self-supervised technique for generating more comprehensive seman-

tic embeddings of GUI screens and components using their textual content, visual design,

layout patterns, and app meta-data.

2. An open-sourced GUI embedding model trained using the Screen2Vec technique on the

RICO [66] dataset that can be used off-the-shelf.
1A pre-trained model and the Screen2Vec source code are available at: https://github.com/tobyli/

screen2vec

133

https://github.com/tobyli/screen2vec
https://github.com/tobyli/screen2vec

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

Figure 9.1: The two-level architecture of Screen2Vec for generating GUI component and screen embed-
dings. The weights for the steps in teal color are optimized during the training process.

3. Several sample downstream tasks that showcase the model’s usefulness.

9.2 Our Approach

Figure 9.1 illustrates the architecture of Screen2Vec. Overall, the pipeline of Screen2Vec

consists of two levels: the GUI component level (shown in the gray shade) and the GUI screen

level. We will first describe the approach at a high-level here, and then explain the details in

Section 9.2.2.

The GUI component level model encodes the textual content and the class type of a GUI com-

ponent into a 768-dimensional2 embedding vector to represent the GUI component (e.g., a button,

a textbox, a list entry, etc.). This GUI component embedding vector is computed with two inputs:

(1) a 768-dimensional embedding vector of the text label of the GUI component, encoded using

a pre-trained Sentence-BERT [238] model; and (2) a 6-dimensional class embedding vector that

represents the class type of the GUI component, which we will discuss in detail in Section 9.2.2.

The two embedding vectors are combined using a linear layer (Section 9.2.2), resulting in the

768-dimensional GUI component embedding vector that represents the GUI component. The class

embeddings in the class type embedder and the weights in the linear layer are optimized through

training a Continuous Bag-of-Words (CBOW) prediction task: for each GUI component on each

screen, the task predicts the current GUI component using its context (i.e., all the other GUI com-

2We decided to produce 768-dimensional vectors so that they can be directly used with the 768-dimensional vectors
produced by the pre-trained Sentence-BERT model with its default settings [238].

134

9.2. OUR APPROACH

ponents on the same screen). The training process optimizes the weights in the class embeddings

and the weights in the linear layer for combining the text embedding and the class embedding.

The GUI screen level model encodes the textual content, visual design and layout patterns,

and app context of a GUI screen into an 1536-dimensional embedding vector. This GUI screen

embedding vector is computed using three inputs: (1) the collection of the GUI component em-

bedding vectors for all the GUI components on the screen (as described in the last paragraph),

combined into a 768-dimension vector using a recurrent neural network model (RNN), which we

will discuss more in Section 9.2.2; (2) a 64-dimensional layout embedding vector that encodes

the screen’s visual layout (details later in Section 9.2.2); and (3) a 768-dimensional embedding

vector of the textual App Store description for the underlying app, encoded with a pre-trained

Sentence-BERT [238] model. These GUI and layout vectors are combined using a linear layer

(Section 9.2.2), resulting in a 768-dimensional vector. After training, the description embedding

vector is concatenated on, resulting in the 1536-dimensional GUI screen embedding vector (if

included in the training, the description dominates the entire embedding, overshadowing informa-

tion specific to that screen within the app because the RICO dataset does not include interaction

traces that go across multiple apps). The weights in the RNN layer for combining GUI component

embeddings and the weights in the linear layer for producing the final output vector are similarly

trained on a CBOW prediction task on a large number of interaction traces (each represented as a

sequence of screens). For each trace, a sliding window moves over the sequence of screens. The

model tries to use the representation of the context (the surrounding screens) to predict the screen

in the middle.

9.2.1 Dataset

We trained Screen2Vec on the open-sourced RICO3 dataset [66]. The RICO dataset contains

interaction traces on 66,261 unique GUI screens from 9,384 free Android apps collected using a

hybrid crowdsourcing plus automated discovery approach. For each GUI screen, the RICO dataset

includes a screenshot image (that we did not use in Screen2Vec) and the screen’s “view hierar-

chy” in a JSON file. The view hierarchy is structurally similar to a DOM tree in HTML; it starts

with a root view, and contains all its descendants in a tree. The node for each view includes the

class type of this GUI component, its textual content (if any), its location as the bounding box on

the screen, and various other properties such as whether it is clickable, focused, or scrollable, etc.

Each interaction trace is represented as a sequence of GUI screens, as well as information about

3Available at: http://interactionmining.org/rico

135

http://interactionmining.org/rico

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

which (X, Y) screen location was clicked or swiped on to transit from the previous screen to the

current screen.

9.2.2 Models

This section explains the implementation details of each key step in the pipeline shown in Fig-

ure 9.1.

GUI Class Type Embeddings

To represent the class types of GUI components, we trained a class embedder to encode the class

types into the vector space. We used a total of 26 class categories: the 22 categories that were

present in [183], one layout category, list and drawer categories, and an “Other” category. We

classified the GUI component classes based on the classes of their className properties and,

sometimes, other simple heuristic rules (see Table 9.1). For example, if a GUI component is an

instance of EditText (i.e., its className property is either EditText, or a class that inherits

from EditText), then it is classified as an Input. There are two exceptions: the Drawer and the

List Item categories look at the className of the parent of the current GUI component instead

of the className of itself. A standard PyTorch embedder (torch.nn.Embedding4) maps

each of these 26 discrete categories into a continuous 6-dimensional vector. The embedding vector

value for each category is optimized during the training process for the GUI component prediction

tasks so that GUI components categories that are semantically similar to each other are closer

together in the vector space.

GUI Component Context

As discussed earlier, Screen2Vec uses a Continuous Bag-of-Words (CBOW) prediction task [202]

for training the weights in the model, where for each GUI component, the model tries to predict it

using its context. In Screen2Vec, we define the context of a GUI component as its 16 nearest

components. The size 16 is chosen to balance the model performance and the computational cost.

Inspired by prior work on the correlation between the semantic relatedness of entities and the

spatial distance between them [169]. We tried using two different measures of screen distance

for determining GUI component context in our model: EUCLIDEAN, which is the straight-line

minimal distance on the screen (measured in pixels) between the bounding boxes of the two GUI

components; and HIERARCHICAL, which is the distance between the two GUI components on

4https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

136

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

9.2. OUR APPROACH

GUI Component Associated Class Type GUI Component Associated Class Type
Advertisement AdView,

HtmlBannerWebView,
AdContainer

Layouts LinearLayout,
AppBarLayout,
FrameLayout,
RelativeLayout,
TableLayout

Bottom Navigation BottomTabGroupView,
BottomBar

Button Bar ButtonBar

Card CardView CheckBox CheckBox,
CheckedTextView

Drawer (Parent) DrawyerLayout Date Picker DatePicker

Image ImageView Image Button ImageButton,
GlyphView,
AppCompatButton,
AppCompatImageButton,
ActionMenuItemView,
ActionMenuItemPresenter

Input EditText,
SearchBoxView,
AppCompatAutoComplete
TextView, TextView1

List Item (Parent) ListView,
RecyclerView,
ListPopupWindow,
TabItem, GridView

Map View MapView Multi-Tab SlidingTab

Number Stepper NumberPicker On/Off Switch Switch

Pager Indicator ViewPagerIndicatorDots,
PageIndicator,
CircileIndicator,
PagerIndicator

RadioButton RadioButton,
CheckedTextView

Slider SeekBar TextButton Button2, TextView3

Tool Bar ToolBar, TitleBar,
ActionBar

Video VideoView

Web View WebView Drawer Item Others category and
ancestor is
Drawer(Parent)

List Item Others category and
ancestor is
List(Parent)

Others ...

1 The property editable needs to be TRUE.
2 The GUI component needs to have a non-empty text property.
3 The property clickable needs to be TRUE.

Table 9.1: The 26 categories (including the “Others” category) of GUI class types we used in Screen2Vec
and their associated base class names. Some categories have additional heuristics, as shown in the notes.
This categorization is adapted from [183].

137

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

the hierarchical GUI view tree. For example, a GUI component has a distance of 1 to its parent

and children and a distance of 2 to its direct siblings.

Linear Layers

At the end of each of the two levels in the pipeline, a linear layer is used to combine multiple vectors

and shrink the combined vector into a lower-dimension vector that contains the relevant semantic

content of each input. For example, in the GUI component embedding process, the model first

concatenates the 768-dimensional text embedding with the 6-dimensional class embedding. The

linear layer then shrinks the GUI component embedding back down to 768 dimensions. The linear

layer works by creating 774×768 weights: one per pair of input dimension and output dimension.

These weights are optimized along with other parameters during the training process, so as to

minimize the overall total loss (loss function detail in Section 9.2.3).

In the screen embedding process, a linear layer is similarly used for combining the 768-

dimensional layout embedding vector with the 64-dimensional GUI content embedding vector

to produce a new 768-dimensional embedding vector that encodes both the screen content and the

screen layout.

Text Embeddings

We use a pre-trained state-of-art Sentence-BERT model [238] to encode the text labels on each GUI

component and the Google Play store description for each app into 768-dimensional embedding

vectors. This Sentence-BERT model, which is a modified BERT network [69], was pre-trained

on the SNLI [37] dataset and the Multi-Genre NLI [286] dataset with a mean-pooling strategy, as

described in [238]. This pre-trained model has been shown to perform well in deriving semantically

meaningful sentence and phrase embeddings where semantically similar sentences and phrases are

close to each other in the vector space [238].

Layout Embeddings

Another important step in the pipeline is to encode the visual layout pattern of each screen. We

use the layout embedding method from [66], where we first extract the layout of a screen from its

screenshot using the bounding boxes of all the leaf GUI components in the hierarchical GUI tree,

differentiating between text and non-text GUI components using a different color (Figure 9.2).

This layout image represents the layout of the GUI screen while abstracting away its content and

visual specifics. We then use an image autoencoder to encode each image into a 64-dimensional

138

9.2. OUR APPROACH

Figure 9.2: Screen2Vec extracts the layout of a GUI screen as a bitmap, and encodes this bitmap into
a 64-dimensional vector using a standard autoencoder architecture where the autoencoder is trained on the
loss of the output of the decoder [66].

embedding vector. The autoencoder is trained using a typical encoder-decoder architecture, that is,

the weights of the network are optimized to produce the 64-dimensional vector from the original

input image that can produce the best reconstructed image when decoded.

The encoder has input dimension of 11,200, and then two hidden layers of size 2,048 and 256,

with output dimension of size 64; this means three linear layers of sizes 11,200→ 2,048,2,048→
256, and 256→ 64. These layers have the Rectified Linear Unit (ReLU) [215] applied, so the

output of each linear layer is put through an activation function which transforms any negative input

to 0. The decoder has the reverse architecture (three linear layers with ReLU 64→ 256,256→
2,048, and 2,048→ 11,200). The layout autoencoder is trained on the process of reconstructing

the input image when it is run through the encoder and the decoder; the loss is determined by the

mean squared error (MSE) between the input of the encoder and the output of the decoder.

GUI Embedding Combining Layer

To combine the embedding vectors of multiple GUI components on one screen into a single fixed-

length embedding vector, we use a Recurrent Neural Network (RNN): The RNN operates similarly

to the linear layer mentioned earlier, except it deals with sequential data (thus the “recurrent” in

the name). The RNN we used was a sequence of the same linear layer, except with the additional

input of a hidden state. The GUI component embeddings are fed into the RNN in the pre-order

traversal order of the GUI hierarchy tree. For the first input of GUI component embedding, the

hidden state was all zeros, but for the second input, the output from the first serves as the hidden

state, and so on, so that the nth input is fed into a linear layer along with (n− 1)th output. The

overall output is the output for the final GUI component in the sequence, which encodes parts of

139

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

all of the GUI components, since the hidden states could pass on that information. This allows

screens with different numbers of GUI components to have vector representations that both take

all GUI components into account and are of the same size. This RNN combiner is trained along

with all other parameters in the screen embedding model, optimizing for the loss function (detail

in Section 9.2.3) in the GUI screen prediction task.

9.2.3 Training Configurations

In the training process, we use 90% of the data for training and save the other 10% for validation.

The models are trained on a cross entropy loss function with an Adam optimizer [135], which is

an adaptive learning gradient-based optimization algorithm of stochastic objective functions. For

both stages, we use an initial learning rate of 0.001 and a batch size of 256.

The GUI component embedding model takes about 120 epochs to train, while the GUI screen

embedding model takes 80–120 epochs depending on which version is being trained5. A virtual

machine with 2 NVIDIA Tesla K80 GPUs can train the GUI component embedding model in about

72 hours, and train the GUI screen embedding model in about 6-8 hours.

We used PyTorch’s implementation of the CrossEntropyLoss function6 to calculate the

prediction loss. The CrossEntropyLoss function combines negative log likelihood loss (NLL

Loss) with the log softmax function:

CrossEntropyLoss(x,class) = NLL Loss(logSo f tmax(x),class))

=−log(
exp(x[class])
∑c exp(x[c])

)

=−x[class]+ log∑c exp(x[c])

In the case of the GUI component embedding model, the total loss is the sum of the cross

entropy loss for the text prediction and the cross entropy loss for the class type prediction. In cal-

culating the cross entropy loss, each text prediction was compared to every possible text embedding

in the vocabulary, and each class prediction was compared to all possible class embeddings.

In the case of the GUI screen embedding model, the loss is exclusively for screen predictions.

However, the vector x does not contain the similarity between the correct prediction and every

screen in the dataset; instead, we use negative sampling [201,202] so that we do not have to recal-

5The version without spatial information takes 80 epochs; and the one with spatial information takes 120.
6https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

140

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

9.2. OUR APPROACH

culate and update every screen’s embedding on every training iteration, which is computationally

expensive and prone to over-fitting. In each iteration, the prediction is compared to the correct

screen and a sample of negative data that consists of: a random sampling of size 128 of other

screens, the other screens in the batch, and the screens in the same trace as the correct screen, used

in the prediction task. We specifically include the screens in the same trace to promote screen-

specific learning in this process: This way, we can disincentive screen embeddings that are based

solely on the app7, and emphasize having the model learn to differentiate the different screens

within the same app.

9.2.4 Baselines

We compared Screen2Vec to the following three baseline models:

Text Embedding Only

The TextOnly model replicates the screen embedding method used in SOVITE 7. It only looks

at the textual content on the screen: the screen embedding vector is computed by averaging the

text embedding vectors for all the text found on the screen. The pre-trained Sentence-BERT

model [238] calculates the text embedding vector for each text. With the TextOnly model,

screens with semantically similar textual contexts will have similar embedding vectors.

Layout Embedding Only

The LayoutOnly model replicates the screen embedding method used in the original RICO pa-

per [66]. It only looks at the visual layout of the screen: it uses the layout embedding vector

computed by the layout autoencoder to represent the screen, as discussed in Section 9.2.2. With

the LayoutOnly model, screens with similar layouts will have similar embedding vectors.

Visual Embedding Only

The VisualOnly model encodes the visual look of a screen by applying an autoencoder (de-

scribed in Section 9.2.2) directly on its screenshot image bitmap instead of the layout bitmap. This

baseline is inspired by the visual-based approach used in GUI task automation systems such as

VASTA [247], Sikuli [299], and HILC [120]. With the VisualOnly model, screens that are

visually similar will have similar embedding vectors.
7Since the next screen is always within the same app and therefore shares an app description embedding, the

prediction task favors having information about the specific app (i.e., app store description embedding) dominate the
embedding.

141

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

9.2.5 Prediction Task Results

We report the performance on the GUI component task and the GUI screen prediction task of the

Screen2Vec model, as well as the GUI screen prediction performance for the baseline models

described above.

Table 9.2 shows the top-1 accuracy (i.e., the top predicted GUI component matches the correct

one), the top-0.01% accuracy (i.e., the correct GUI component is among the top 0.01% in the

prediction result), the top-0.1% accuracy, and the top-1% accuracy of the two variations of the

Screen2Vec model on the GUI component prediction task, where the model tries to predict the

text content for each GUI component in all the GUI screens in the RICO dataset using its context

(the other GUI components around it) among the collection of all the GUI components in the RICO

dataset.

Model Top-1
Accu-
racy

Top
0.01%
Accu-
racy

Top
0.1%
Accu-
racy

Top 1%
Accu-
racy

Top 5%
Accu-
racy

Top 10%
Accu-
racy

S2V-EUCLIDEAN-text 0.443 0.619 0.783 0.856 0.885 0.901
S2V-HIERARCHICAL-text 0.588 0.687 0.798 0.849 0.878 0.894

Table 9.2: The GUI component prediction performance of the Screen2Vec(S2V) model

Similarly, Table 9.3 reports the accuracy of the Screen2Vec model and the three baseline

models (TextOnly, LayoutOnly, and VisualOnly) on the task of predicting GUI screens,

where each model tries to predict each GUI screen in all the GUI interaction traces in the RICO

dataset using its context (the other GUI screens around it in the trace) among the collection of all

the GUI screens in the RICO dataset. For the Screen2Vec model, we compare two versions:

one that encodes the locations of GUI components and the screen layouts and one that does not

consider such spatial information. A higher accuracy indicates that the model is better at predicting

the correct screen.

We also report the normalized rooted mean square error (RMSE) of the predicted screen em-

bedding vector for each model, normalized by the mean length of the actual screen embedding

vectors. A smaller RMSE indicates that the top prediction screen generated by the model is, on

average, more similar to the correct screen.

From the results in Table 9.3, we can see that the Screen2Vec models perform better than

the baseline models in top-1 and top-k prediction accuracy. Among the different versions of

Screen2Vec, the versions that encode locations of GUI components and the screen layouts per-

142

9.3. SAMPLE DOWNSTREAM TASKS

form better than the one without spatial information, suggesting that such spatial information is

useful. The model that uses the HIERARCHICAL distance performs similarly to the one that uses

the EUCLIDEAN distance in GUI component prediction, but performs worse in screen prediction.

In the Sample Downstream Tasks section below, we will use the Screen2Vec-EUCLIDEAN-

spatial info version of the Screen2Vec model.

As we can see, adding spatial information dramatically improves the Top-1 accuracy (by 10x)

and Top-0.01% accuracy (by 2x). But the improvements in Top 0.1% accuracy, Top 1% accuracy,

and normalized RMSE are smaller. We think the main reason is that aggregating the textual infor-

mation, GUI class types, and app descriptions is good for representing the high-level “topic” of a

screen (e.g., a screen is about hotel booking because its text and app descriptions talk about hotels,

cities, dates, rooms etc.), hence the good top 0.1% and 1% accuracy and normalized RMSE for

the“no spatial info” model. But these types of information are not sufficient for reliably differen-

tiating the different types of screens needed (e.g., search, room details, order confirmation) in the

hotel booking process because all these screens in the same app and task domain would contain

“semantically similar” text. This is why the spatial information is helpful in identifying the top-1

and top-0.01% results.

Interestingly, the baseline models beat the “no spatial info” version of Screen2Vec in nor-

malized RMSE: i.e., although the baseline models are less likely to predict the correct screen,

their predicted screens are, on average, more similar to the correct screen. A likely explanation to

this phenomenon is that both baseline models use, by nature, similarity-based measures, while the

Screen2Vec model is trained on a prediction-focused loss function. Therefore Screen2Vec

does not emphasize making more similar predictions when then the prediction is incorrect. How-

ever, we can see that the Screen2Vec-layout+locations version of Screen2Vec per-

forms better than the baseline models on both the prediction accuracy and the similarity measure.

Note that while the accuracy measures are indicative of how much the model has learned about

GUI screens and components, the main purpose of the Screen2Vec model is not to predict

GUI components or screens, but to produce distributed vector representations for them that encode

useful semantic, layout, and design properties. Therefore we further evaluate Screen2Vec with

several downstream tasks in the following Section 9.3.

9.3 Sample Downstream Tasks

This section presents several sample downstream tasks to illustrate important properties of the

Screen2Vec representations and the usefulness of our approach.

143

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

Model Top-1
Accu-
racy

Top
0.01%
Accu-
racy

Top
0.1%
Accu-
racy

Top
1%
Accu-
racy

Top
5%
Accu-
racy

RMSE

S2V-EUCLIDEAN-spatial info 0.061 0.258 0.969 0.998 1.00 0.853
S2V-HIERARCHICAL-spatial info 0.052 0.178 0.646 0.924 0.990 0.997
S2V-EUCLIDEAN-no spatial info 0.0065 0.116 0.896 0.986 0.999 1.723
TextOnly 0.012 0.055 0.196 0.439 0.643 1.241
LayoutOnly 0.0041 0.024 0.091 0.222 0.395 1.135
VisualOnly 0.0060 0.026 0.121 0.252 0.603 1.543

Table 9.3: The GUI screen prediction performance of the three variations of the Screen2Vec model and
the baseline models (TextOnly, LayoutOnly, and VisualOnly).

Figure 9.3: The interface shown to the Mechanical Turk workers for rating the similarities for the nearest
neighbor results generated by different models.

144

9.3. SAMPLE DOWNSTREAM TASKS

9.3.1 Nearest Neighbors

The nearest neighbor task is useful for data-driven design, where the designers want to find ex-

amples for inspiration and for understanding the possible design solutions [66]. The task focuses

on the similarity between GUI screen embeddings: for a given screen, what are the top-N most

similar screens in the dataset? A similar technique can also be used for unsupervised clustering in

the dataset to infer different types of GUI screens. In our context, this task also helps demonstrate

the different characteristics between Screen2Vec and the three baseline models.

We conducted a Mechanical Turk study to compare the similarity between the nearest neighbor

results generated by the different models. We selected 50 screens from apps and app domains that

most users are familiar with. We did not select random apps from the RICO dataset, as many apps

in the dataset can be obscure to Mechanical Turk workers so they cannot understand them and

therefore might not be able to judge the similarity of the results. For each screen, we retrieved the

top-5 most similar screens using each of the 3 models. Therefore, each of the 50 screens had up to

3 (models) × 5 (screen each) = 15 similar screens, but many had fewer since different models may

select the same screens.

79 Mechanical Turk workers participated in this study8. They labeled the similarity between

5,608 pairs of screens. Each worker was paid $2 for each batch of 5 sets of source screens they

labeled. A batch on average takes around 10 minutes. In each batch, a worker went through a

sample of 5 source screens from the 50 source screens in random order, where for each source

screen, the worker saw the union of the top-5 most similar screens to the source screen generated

by the 3 models in random order. For each screen, we also showed the worker the app it came from

and a short description of the app from the Google Play Store, but we did not show which model

produced the screen. The worker was asked to rate the similarity of each screen to the original

source screen on a scale of 1 to 5 (Figure 9.3). We asked the workers to consider 3 aspects in

measuring similarity: (1) app similarity (how similar are the two apps); (2) screen type similarity

(how similar are the types of the two screens e.g., if they are both sign-up screens, search results,

settings menu, etc.); and (3) content similarity (how similar are the content on the two screens).

Table 9.4 shows the mean screen similarity rated by the Mechanical Turk workers for the top-5

nearest neighbor results of the sample source screens generated by the 3 models. The Mechanical

Turk workers rated the nearest neighbor screens generated by the Screen2Vec model to be,

on average, more similar (p < 0.0001) to their source screens than the nearest neighbor screens

generated by the baseline TextOnly and LayoutOnly models. Tested with a non-parametric

Mann-Whitney U test (because the ratings are not normally distributed), the differences between

8The protocol was approved by the IRB at our institution.

145

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

the mean ratings of the Screen2Vec model and both the TextOnly and the LayoutOnly

models are significant (p < 0.0001).

Screen2Vec TextOnly LayoutOnly

Mean Rating Std. Dev. Mean Rating Std. Dev. Mean Rating Std. Dev.
3.295* 1.238 3.014* 1.321 2.410* 1.360

*p < 0.0001.

Table 9.4: The mean screen similarity rated by the Mechanical Turk workers for the top-5 nearest neigh-
bor results of the sample source screens generated by the 3 models: Screen2Vec, TextOnly, and
LayoutOnly.

Subjectively, when looking at the nearest neighbor results, we can see the different aspects

of the GUI screens that each different model captures. Screen2Vec can create more compre-

hensive representations that encode the textual content, visual design, and layout patterns, and app

contexts of the screen compared with the two baselines, which only capture one or two aspects. For

example, Figure 9.4 shows the example nearest neighbor results for the “request ride” screen in the

Lyft app. Screen2Vec model retrieves the “get direction” screen in the Uber Driver app, “select

navigation type” screen in the Waze app, and “request ride” screen in the Free Now (My Taxi)

app. Visual and component layout-wise, the result screens all feature a menu/information card

at the bottom 1/3 to 1/4 of the screen, with a MapView taking the majority of the screen space.

With respect to the content and app domain, all of these screens are from transportation-related

apps that allow the user to configure a trip. In comparison, the TextOnly model retrieves the

“request ride” screen from the zTrip app, the “main menu” screen from the Hailo app (both zTrip

and Hailo are taxi-hailing apps), and the home screen of the Paytm app (a mobile payment app in

India). The commonality of these screens is that they all include text strings that are semantically

similar to ”payment” (e.g., add a payment type, wallet, pay, add money), and textual strings that

are semantically similar to “destination” and “trips” (e.g., drop off location, trips, bus, flights). But

the model did not consider the visual layout and design patterns of the screens nor the app context.

Therefore the result contains the “main menu” (a quite different type of screen) in the Hailo app

and the “home screen” in the Paytm app (a quite different type of screen in a different type of app).

The LayoutOnly model, on the other hand, retrieves the “exercise logging” screens from the

Map My Walk app and the Map My Ride app, and the tutorial screen from the Clever Dialer app.

As shown in Figure 9.4, the content and app-context similarity of the result of the LayoutOnly

model is quite lower than those of the Screen2Vec and TextOnly models. However, the result

screens all share similar layout features as the source screen, such as the menu/information card at

the bottom of the screen and the screen-wide button at the bottom of the menu.

146

9.3. SAMPLE DOWNSTREAM TASKS

Figure 9.4: The example nearest neighbor results for the Lyft “request ride” screen generated by the
Screen2Vec, TextOnly, and LayoutOnly models.

147

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

Figure 9.5: An example showing the composability of Screen2Vec embeddings: running the nearest
neighbor query on the composite embedding of (Marriott app’s hotel booking page + Cheapoair app’s hotel
booking page − Cheapoair app’s search result page) can match the Marriott app’s search result page, and
the similar pages of a few other travel apps.

148

9.3. SAMPLE DOWNSTREAM TASKS

9.3.2 Embedding Composability

A useful property of embeddings is that they are composable—meaning that we can add, subtract,

and average embeddings to form a meaningful new one. This property is commonly used in word

embeddings. For example, in Word2Vec, analogies such as “man is to woman as brother is to

sister” is reflected in that the vector (man−woman) is similar to the vector (brother− sister).

Besides representing analogies, this embedding composability can also be utilized for generative

purposes—for example, (brother−man+woman) results in an embedding vector that represents

“sister”.

This property is also useful in screen embeddings. For example, we can run a nearest neighbor

query on the composite embedding of (Marriott app ’s “hotel booking” screen + (Cheapoair app’s

“search result” screen − Cheapoair app’s “hotel booking” screen)). The top result is the “search

result” screen in the Marriott app. When we filter the result to focus on screens from apps other

than Marriott, we get screens that show list results of items from other travel-related apps such as

Booking, Last Minute Travel, and Caesars Rewards.

The composability can make Screen2Vec particularly useful for GUI design purposes—the

designer can leverage the composability to find inspiring examples of GUI designs and layouts.

We will discuss more its potential applications in Section 9.4.

9.3.3 Screen Embedding Sequences for Representing Mobile Tasks

GUI screens are not only useful data sources individually on their own, but also as building blocks

to represent a user’s task. A task in an app, or across multiple apps, can be represented as a se-

quence of GUI screens that makes up the user interaction trace of performing this task through app

GUIs. In this section, we conducted a preliminary evaluation on the effectiveness of embedding

mobile tasks as sequences of Screen2Vec screen embedding vectors.

Similar to GUI screens and components, the goal of embedding mobile tasks is to represent

them in a vector space where more similar tasks are closer to each other. To test this, we recorded

the scripts of completing 10 common smartphone tasks, each with two variations that use different

apps, using the SUGILITE system on a Pixel 2 XL phone running Android 8.0. Each script consists

of a sequence of “perform action X (e.g., click, long click) on the GUI component Y in the GUI

screen Z”. In this preliminary evaluation, we only used the screen context: we represented each

task as the average of the Screen2Vec screen embedding vectors for all the screens in the task

sequence.

149

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

Table 9.5 shows the 10 tasks we tested on, the two apps used for each task, and the number of

unique GUI screens in each trace used for task embedding. We queried for the nearest neighbor

within the 20 task variations for each task variation, and checked if the model could correctly iden-

tify the similar task that used a different app. The Screen2Vec model achieved a 18/20 (90%)

accuracy in this test. In comparison, when we used the TextOnly model for task embedding, the

accuracy was 14/20 (70%).

Task Description App 1 Screen Count App 2 Screen Count
Request a cab Lyft 3 Uber 2
Book a flight Fly Delta 4 United Airlines 4
Make a hotel reservation Booking.com 7 Expedia 7
Buy a movie ticket AMC Theaters 3 Cinemark 4
Check the account balance Chase 4 American

Express
3

Check sports scores ESPN 4 Yahoo! Sports 4
Look up the hourly weather AccuWeather 3 Yahoo! Weather 3
Find a restaurant Yelp 3 Zagat 4
Order an iced coffee Starbucks 7 Dunkin’ Donuts 8
Order takeout food GrubHub 4 Uber Eats 3

Table 9.5: A list of 10 tasks we used for the preliminary evaluation of using Screen2Vec for task embed-
ding, along with the apps used and the count of screens used in the task embedding for each variation.

While the task embedding method we explored in this section is quite primitive, it illustrates

that the Screen2Vec technique can be used to effectively encode mobile tasks into the vector

space where semantically similar tasks are close to each other. For the next steps, it would be

useful to further explore this direction. For example, the current method of averaging all the screen

embedding vectors does not consider the order of the screens in the sequence. In the future, we

may collect a dataset of human annotations of task similarity, and use techniques that can encode

the sequences of items, such as recurrent neural networks (RNN) and long short-term memory

(LSTM) networks, to create the task embeddings from sequences of screen embeddings. We may

also incorporate the Screen2Vec embeddings of the GUI components that were interacted with

(e.g., the button that was clicked on) to initiate the screen change into the pipeline for embedding

tasks.

9.4 Potential Applications

This section describes several potential applications where the new Screen2Vec technique can

be useful based on the downstream tasks described in Section 9.3.

150

9.4. POTENTIAL APPLICATIONS

Screen2Vec can enable new GUI design aids that take advantage of the nearest neighbor

similarity and composability of Screen2Vec embeddings. Prior work such as [66, 112, 140]

has shown that data-driven tools that enable designers to curate design examples are quite useful

for interface designers. Unlike [66], which uses a content-agnostic approach that focuses on the

visual and layout similarities, Screen2Vec considers the textual content and app meta-data in

addition to the visual and layout patterns, often leading to different nearest neighbor results as

discussed in Section 9.3.1. This new type of similarity results will also be useful when focusing on

interface design beyond just visual and layout issues, as the results enable designers to query for

example designs that display similar content or screens that are used in apps in a similar domain.

The composability in Screen2Vec embeddings enables querying for design examples at a finer

granularity. For example, suppose a designer wishes to find examples for inspiring the design

of a new checkout page for app A. They may query for the nearest neighbors of the synthesized

embedding App A’s order page + (App B’s checkout page− App B’s order page). Compared with

simply querying for the nearest neighbors of App B’s checkout page, this synthesized query can

encode the interaction context (i.e., the desired page should be the checkout page for App A’s order

page) in addition to the “checkout” semantics.

The Screen2Vec embeddings can also be useful in generative GUI models. Recent models

such as the neural design network (NDN) [150] and LayoutGAN [158] can generate realistic GUI

layouts based on user-specified constraints (e.g., alignments, relative positions between GUI com-

ponents). Screen2Vec can be used in these generative approaches to incorporate the semantics

of GUIs and the contexts of how each GUI screen and component gets used in user interactions.

For example, the GUI component prediction model can estimate the likelihood of each GUI com-

ponent given the context of the other components in a generated screen, providing a heuristic of

how likely the GUI components can fit well with each other. Similarly, the GUI screen predic-

tion model may be used as a heuristic to synthesize GUI screens that can better fit with the other

screens in the planned user interaction flows. Since Screen2Vec has been shown effective in

representing mobile tasks in Section 9.3.3, where similar tasks will yield similar embeddings, one

may also use the task embeddings of performing the same task on an existing app to inform the

generation of new screen designs. The embedding vector form of Screen2Vec representations

made them particularly suitable for use in the recent neural-network-based generative models.

Screen2Vec’s capability of embedding tasks can also enhance interactive task learning sys-

tems. Specifically, Screen2Vec may be used to enable more powerful procedure generalizations

of the learned tasks. We have shown that the Screen2Vec model can effectively predict screens

in an interaction trace. Results in Section 9.3.3 also indicated that Screen2Vec can embed mo-

151

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

bile tasks so that the interaction traces of completing the same task in different apps will be similar

to each other in the embedding vector space. Therefore, it is quite promising that Screen2Vec

may be used to generalize a task learned from the user by demonstration in one app to another app

in the same domain (e.g., generalizing the procedure of ordering coffee in the Starbucks app to the

Dunkin’ Donuts app).

9.5 Limitations and Future Work

There are several limitations of our work in Screen2Vec. First, Screen2Vec has only been

trained and tested on Android app GUIs. However, the approach used in Screen2Vec should

apply to any GUI-based apps with hierarchical-based structures (e.g., view hierarchies in iOS apps

and hierarchical DOM structures in web apps). We expect embedding desktop GUIs to be more

difficult than mobile ones, because individual screens in desktop GUIs are usually more complex

with more heterogeneous design and layout patterns.

Second, the RICO dataset we use only contains interaction traces within single apps. The

approach used in Screen2Vec should generalize to interaction traces across multiple apps. It

would be good to evaluate its prediction performance on cross-app traces in the future with an

expanded dataset of GUI interaction traces. The RICO dataset also does not contain screens from

paid apps, screens that require special accounts/privileges to access to (screens that require free

accounts to access are included when the account registration is readily available in the app),

or screens that require special hardware (e.g., in the companion apps for smart home devices)

or specific context (e.g., pages that are only shown during events) to access. This limitation of

the RICO dataset might affect the performance of the pre-trained Screen2Vec model on these

underrepresented types of screens.

A third limitation is that the current version of Screen2Vec does not encode the semantic

information of graphic icons that have no textual information. Accessibility-compliant apps all

have alternative texts for their graphic icons, which Screen2Vec already encodes in its GUI

screen and component embeddings as a part of the text embedding. However, for non-accessible

apps, computer vision-based (e.g., [53,183]) or crowd-based (e.g., [304]) techniques can be helpful

for generating textual annotations for graphic icons so that their semantics can be represented in

Screen2Vec. Another potentially useful kind of information is the rules and examples in GUI

design systems (e.g., Android Material Design, iOS Design Patterns). While Screen2Vec can, in

some ways, “learn” these patterns from the training data, it will be interesting to explore a hybrid

approach that can leverage their explicit notions.

152

9.6. RELATED WORK IN EMBEDDING NATURAL LANGUAGE

9.6 Related Work in Embedding Natural Language

The study of representing words, phrases, and documents as mathematical objects, often vectors, is

central to natural language processing (NLP) research [202,272]. The conventional non-distributed

word embedding method represents a word using a one-hot representation where the vector length

equals to the size of the vocabulary, and only one dimension (that corresponds to the word) is

on [272]. This representation does not encode the semantics of the words, as the vector for each

word is perpendicular to the others. Documents represented using one-hot word representation

also suffer from the curse of dimensionality [18] as a result of the extreme sparsity.

By contrast, a distributed representation of a word represents the word across multiple dimen-

sions in a continuous-valued vector (word embedding) [20]. Such distributed representations can

capture useful syntactic and semantic properties of the words, where syntactically and semanti-

cally related words are similar in this vector space [272]. Modern word embedding approaches

are usually results from the language modeling task. For example, Word2Vec [202] learns the

embedding of a word by predicting it based on its context (i.e., surrounding words), or predicting

the context of a word given the word itself. GloVe [228] is similar to Word2Vec on a high level,

but focuses on the likelihood that each word appears in the context of other words within the whole

corpus of texts, as opposed to Word2Vec which uses local contexts. More recent work such as

ELMo [229] and BERT [69] allowed contextualized embedding. That is, the representation of a

phrase can vary depending on a word’s context to handle polysemy (i.e., the capacity for a word or

phrase to have multiple meanings). For example, the word “bank” can have different meanings in

“he withdrew money from the bank” versus “the river bank”

While distributed representations are commonly used in natural language processing, to the

best of our knowledge, the Screen2Vec approach presented in this chapter is the first to seek to

encode the semantics, the contexts, and the design patterns of GUI screens and components using

distributed representations. The Screen2Vec approach is conceptually similar to Word2Vec

on a high level. Similar to Word2Vec, Screen2Vec is trained using a predictive modeling

task where the context of a target entity (words in Word2Vec, GUI components and screens in

Screen2Vec) is used to predict the entity (known as the continuous bag of words (CBOW)

model in Word2Vec). There are also other relevant Word2Vec-like approaches for embedding

APIs based on their usage in source code and software documentation (e.g., API2Vec [218]), and

modeling the relationships between user tasks, system commands, and natural language descrip-

tions in the same vector space (e.g., CommandSpace [1]).

Besides the domain difference between Screen2Vec and Word2Vec and its follow-up work,

Screen2Vec uses both a (pre-trained) text embedding vector and a class type vector, and com-

153

CHAPTER 9. THE SEMANTIC REPRESENTATION OF GUIS

bines them with a linear layer. It also incorporates external app-specific meta-data such as the app

store description of the app. The hierarchical approach allows Screen2Vec to compute a screen

embedding with the embeddings of the screen’s GUI components, as described in Section 9.2. In

comparison, Word2Vec only computes word embeddings using word contexts without using any

other meta-data [202].

9.7 Chapter Conclusion

We have presented Screen2Vec, a new self-supervised technique for generating distributed se-

mantic representations of GUI screens and components using their textual content, visual design

and layout patterns, and app meta-data. This new technique has been shown to be effective in

downstream tasks such as nearest neighbor retrieval, composability-based retrieval, and repre-

senting mobile tasks. Screen2Vec addresses an important gap in computational HCI research,

and can be utilized for enabling and enhancing interactive systems in task learning (e.g., [167,

247]), intelligent suggestive interfaces (e.g., [52]), assistive tools (e.g., [27]), and GUI design aids

(e.g., [149, 268]).

154

Chapter 10

Limitations, Future Work, and Conclusion

Each of the previous chapters in this dissertation has discussed some local limitations and future

work individually. In this chapter, I summarize some of the most important ones in the entire

SUGILITE project, plus more the more global ones for the scope of this dissertation.

10.1 System Limitations

10.1.1 Platform

SUGILITE and its follow up work have been developed and tested only on Android. SUGILITE

retrieves the hierarchical structure of the current GUI screen and manipulates the app GUI through

Android’s Accessibility API. However, the approach used in SUGILITE should apply to any GUI-

based apps with hierarchical-based structures (e.g., the hierarchical DOM structures in web apps).

In certain platforms like iOS, while the app GUIs still use hierarchical tree structures, the access

to extracting information from and sending inputs to third-party apps has been restricted by the

operating system due to security and privacy concerns. In such platforms, implementing a SUG-

ILITE-like system likely requires collaboration with the OS provider (e.g., Apple) or limiting the

domain to first-party apps. We also expect that to make it work with desktop apps would be more

challenging than with mobile apps due to the increased difficulty in inferring their GUI semantics,

as the desktop apps often have more complex layouts and more heterogeneous design patterns. In

the current implementation of SUGILITE, there are also sometimes compatibility issues in non-

native Android apps and apps that use special libraries or graphic engines to implement their GUIs

(e.g., most games).

155

CHAPTER 10. LIMITATIONS, FUTURE WORK, AND CONCLUSION

10.1.2 Runtime Efficiency

An important characteristic of SUGILITE is that it interacts with the underlying third-party apps in

the same way that a human user does, meaning that it reads information by navigating to the corre-

sponding app screen through the app GUI menu and performs a task by manipulating the app GUI

controls. While this approach provides an excellent range for SUGILITE, allowing the invocation

of millions of existing third-party apps without any modification to these apps, it also means that

performing a task using SUGILITE is much slower than using an agent that directly invokes the

under-the-hood API. It usually takes SUGILITE a few seconds to execute a task automation script.

This includes the time needed for SUGILITE to process each screen, plus the extra time for the

underlying app to load and to render its GUI.

Another implication of how SUGILITE interacts with the underlying apps is that it needs to

run in the foreground of the phone. As discussed in Section 6.5, if an automation script is trig-

gered when the user is actively using the phone at the same time, the user’s current task will be

interrupted. Similarly, if an external event (e.g., an incoming phone call) interrupts in the middle

of executing an automation script, the script execution may fail. One possible way to address the

problem is to execute SUGILITE scripts in a virtual machine running in the background, similar to

X-Droid [134]. Another relevant issue is that SUGILITE can only read and invoke items that are

logically on the screen. Note that this is different from being visibly on the screen—for example,

if a list contains 5 items but the screen can only display 3, the other 2 items may have been already

rendered and “displayed” outside the visible area of the screen (depending on the implementation),

which SUGILITE still have access to. However, if the app loads and renders additional menu items

just-in-time when the user scrolls1, Sugilite would not have access to the off-screen items. I will

leave these issues for future work.

10.1.3 Expressiveness

My work in SUGILITE has made several contributions in improving the user expressiveness in pro-

gramming by demonstration and interactive task learning systems. For example, the PUMICE inter-

face described in Chapter 5 supports conditional (if-then) statements with user-taught recursively-

defined concepts in the conditions. The EPIDOSITE mechanism described in Chapter 6 allows

trigger-action structures with external triggers from app-displayed information, phone notifica-

tions, or events from external web services such as Gmail, Facebook, and Twitter. However, there

are still several limitations in SUGILITE’s expressiveness, which are left for future work.

1The default implementation of Android ListView does this with its view recycling mechanism.

156

10.1. SYSTEM LIMITATIONS

The first type of limitations originates from SUGILITE’s domain-specific language (DSL) used

to specify its automation scripts. For example, it has no support for nested arithmetic operations in

the DSL (e.g., one can say “if the price of a Uber ride is greater than 10 dollars” and “if the price

of a Uber ride is greater than the price of a Lyft ride”, but not “if the price of a Uber ride is at least

10 dollars more expensive than the price of a Lyft ride”) mostly due to the extra complications in

semantic parsing. Correctly parsing the user’s natural language description of arithmetic operations

into our DSL would likely require a more complicated parsing architecture with a much larger

training corpus. SUGILITE also does not support loops in automation (e.g., “order one of each

item in the “Espresso Drinks” category in the Starbucks app”). This is due to SUGILITE’s limited

capability to capture the internal “states” within the apps and to return to a specific previous state.

For example, in the “ordering one of each item” task, the agent needs to return to the GUI state

showing the list of items after completing ordering the first item in order to order the second item.

This cannot be easily done with the current SUGILITE agent. Even if SUGILITE was able to find

the “same” screen (visually similar or having the same activity name), SUGILITE cannot know if

the internal state of the underlying app has changed (e.g., adding the first item to the cart might

affect what other items are available for purchase).

Another limitation in expressiveness is due to the input modalities that SUGILITE tracks in the

user demonstrations—it only records a set of common input types (clicks, long-clicks, text entries,

etc.) on app GUIs. Gestures (e.g., swipes, flicks), sensory inputs (e.g., tilting or shaking the phone

detected by the accelerometer and the gyroscope, auditory inputs from the microphone), and visual

inputs (from the phone camera) are not recorded.

10.1.4 Brittleness

While many measures (details described in Section 3.3.3) have been taken to help SUGILITE handle

minor changes in app GUIs, SUGILITE scripts can still be brittle after a change in the underlying

app GUI due to either an app update or an external event. As discussed in Section 4.3.1, SUGILITE

uses a graph query to locate the correct GUI element to operate on when executing an automation

script. Instead of using the absolute (x, y) coordinates for identifying a GUI element as some prior

systems do, SUGILITE picks one or more features such as the text label, the ordinal position in a

list (e.g., the first item in the search result), or the relative position to another GUI element (e.g.,

the “book” button next to the cheapest flight) that corresponds to the user’s intent. Therefore, if a

GUI change does not affect the result of the graph query, the automation should still work.

However, if the GUI layout or structure has changed in any major way, the change will likely

break the graph query, in which case the user can fix the script using the error handling mechanism

157

CHAPTER 10. LIMITATIONS, FUTURE WORK, AND CONCLUSION

described in Section 3.3.3. The same applies to unexpected app states. If the app shows a GUI

screen that has not been seen by SUGILITE during the demonstration (e.g., the surge price confir-

mation shows up in the Uber app when a price surge is currently in effect but the price was not in

surge when the task was demonstrated by the user, or a new screen pops up for a new promotion),

SUGILITE will enter the error-handling mode, asking the user to show how to handle the new sit-

uation (details in Section 3.3.3). In the future, it would be possible to further enhance SUGILITE’s

capability of understanding screen semantics, so that it can automatically detect and handle some

of these unexpected screens that do not affect the task (e.g., promos) without user intervention.

10.2 Future Work

10.2.1 Generalization in Programming by Demonstration

Generalization is a central challenge in programming by demonstration [65, 175]. SUGILITE has

made several important improvements to the generalization capabilities of the current state-of-art

programming by demonstration systems through (1) its multi-modal approach for parameteriz-

ing task procedures by combining entities from the user’s spoken instructions with information

extracted from the hierarchical app GUI structures; and (2) its app-based abstraction model for

generalizing learned concepts such as “hot” and “busy” across different apps.

However, there are still opportunities for supporting more powerful generalization. The em-

bedding technique described in Chapter 9 opens up the opportunity of cross-app generalization,

i.e., when the user has taught performing a task in an app, can the agent generalize the learned

procedure to perform a similar task in a different app? Section 9.3.3 shows that a task procedure

can be represented as a sequence of actions that each consists of (1) the embedding of the screen

where the action is performed; and (2) the embedding of the GUI component on which the action

is performed, and Section 9.3.2 illustrates that it is feasible to find the “equivalence” of a screen in

a new app (e.g., locating the search screen in the Cheapoair app based on the search screen in the

Marriott app) through arithmetic operations on the screen embeddings. An interesting direction

for future work is to explore the design of new mechanisms and their corresponding interfaces that

leverage these characteristics of screen embeddings to allow the agent to generalize the learned

tasks across different apps with the help of the user.

This approach is inspired by our observation about how people use unfamiliar apps. In most

cases, a user would be able to use an unfamiliar app to perform a task if they have used a similar app

before because (1) they have the domain-agnostic knowledge of how mobile apps generally work;

and (2) they have the app-agnostic knowledge about the task domain. In this planned approach,

158

10.2. FUTURE WORK

the domain-agnostic knowledge of app design patterns and layouts is encoded in the app screen

embedding model while the task-domain-specific knowledge can be acquired by the agent through

the user’s instructions for a similar task in a different app.

Another opportunity for facilitating generalization is to enhance the reasoning of user intents by

connecting to large pre-trained commonsense models like COMET [36] and Atomic [242]. While

the current SUGLITE agent can be taught new concepts (e.g., hot, busy, and late), procedures (e.g.,

setting alarms and requesting Uber rides), and if-else rules, the agent does not understand the ratio-

nale and reasoning process among these entities (e.g., the user requests a Uber ride when it is late

because the Uber ride is faster and the user does not want to be late for an event). Understanding

such rationale would allow the agent to better generalize user instructions to different contexts and

to suggest alternative approaches.

10.2.2 Human-Agent Co-Creation

The scope of SUGILITE falls into one type of human-AI collaboration where the user teaches the

AI agent tasks that they have been already doing so that the agent can automate these tasks for

them. In the future, I would love to explore the other type of human-AI collaboration, where the

user “co-creates” new artifacts with the agent that do not yet exist and “co-performs” new tasks that

the user is not performing yet on their own. The recent advances in the general-purpose language

models (e.g., BERT [69], GPT-3 [41]) and reasoning models (e.g., COMET [36], Atomic [242])

are able to create “seemingly realistic” results from simple user inputs, showing great promise in

this direction.

However, these models are still largely “black-boxes” to the user, leaving little agency to the

user in controlling the output, limited transparency in helping the user understand the creation

process, and lack of mechanisms in assisting the user to validate the model outputs. Many design

implications from SUGILITE, such as its use of multi-modal interfaces for disambiguation, its

mixed-initiative dialog approach for resolving vague and unknown concepts, its use of interactive

visualization for communicating the system’s state of understanding, and its application of familiar

app GUIs for establishing common ground may also be useful in human-agent co-creation. The

new generative models are great fits for few-shot learning and transfer learning, allowing effective

incorporation of general knowledge with small amounts of data and instructions from end users.

In SUGILITE, the strategy of using multi-modal interaction has been shown to be effective in

helping users provide better-quality inputs to the system. Further research is needed on how users

naturally select modalities in multi-modal environments, and on how interfaces can support more

fluid transition between modalities. For the future, I plan to focus on designing the interaction

159

CHAPTER 10. LIMITATIONS, FUTURE WORK, AND CONCLUSION

between the user and the AI system in these scenarios, bridging the transparency and explainability

of AI systems with the user’s natural cognitive models for the task, and enabling the user to provide

useful inputs that boost the generalizability, expressiveness, robustness of the AI system through

effective human-AI collaboration.

10.2.3 Field Study of SUGILITE

Another future direction is to study the user adoption of SUGILITE through a longitudinal field

study. A field study was proposed as a part of this dissertation but had to be canceled due to

the COVID-19 pandemic. While the usability and the effectiveness of SUGILITE have been vali-

dated through task-based lab studies, deploying it to actual users can still be useful for (i) further

validating the feasibility and robustness of the system in various contexts, (ii) measuring the use-

fulness of SUGILITE in real-life scenarios, and (iii) studying the characteristics of how users use

SUGILITE. The main goal of the deployment would be to study SUGILITE within its intended

context of use [253]. Another goal is to study the use of SUGILITE in a more representative user

populations. While our prior lab usability studies controlled for the programming expertise of the

participants. Our participants are in general younger, with a higher education level, and come from

a higher socioeconomic status than an average smartphone user. We seek to recruit a more diverse

group of participants that can better resemble the wide range of smartphone users in the planned

field study of SUGILITE.

10.3 Conclusion

In this dissertation, I have described the SUGILITE system and several of its extensions, new inter-

faces, and mechanisms I designed, developed, and studied to enable an intelligent task automation

agent to learn new tasks and procedures interactively from the user’s explicit instructions.

The GUI-mediated approach used in SUGILITE featured a new paradigm for interactive task

learning. It has a much lower usability barrier for users than conventional programming languages

or visual languages because users are already familiar with the GUIs of the existing third-party

mobile apps. Compared with popular end-user development software such as IFTTT, SUGILITE’s

approach is not restricted to a small number of “supported task domains and devices” and sup-

ports a greater level of expressiveness for the users (as discussed in Chapters 3, 5, and 6). On

the other end, compared with approaches that use unconstrained visual demonstrations or uncon-

strained natural language instructions, SUGILITE significantly lowers the technical difficulty for

the computing system to understand the user’s instructions by naturally constraining and ground-

160

10.3. CONCLUSION

ing the user’s instructions to the existing app GUIs. This allows SUGILITE to avoid the grand AI

challenge in recognizing, understanding, and reasoning with unconstrained natural language in-

puts and visual demonstrations in the physical world, which is extremely difficult for a computing

system without extensive domain-specific training data.

SUGILITE’s approach informs a new design strategy for human-AI interaction. To facilitate

human-AI collaboration, a crucial step is to choose a representation in which both the human user

and the AI system can effectively work. The human user should be able to easily and naturally

express their intents in this representation, while the AI system should be able to understand user

intents in this representation. Meanwhile, the AI system also needs to communicate its state of

understanding in a representation which the human user can easily understand, process, and adjust

their inputs or provide additional inputs accordingly (as discussed in Chapter 7).

My work in SUGILITE applied theoretical frameworks and design principles in multi-modal

interfaces [222] and mixed-initiative interfaces [4, 111], adding to their implications for use in

interactive task learning. Particularly, my work showed that the mutual disambiguation approach

combining spoken natural language inputs with visual demonstrations is useful for generalization,

disambiguation, error discovery, and error repair (as shown in Chapters 3, 4, and 7). The design of

the APPINITE, PUMICE, and SOVITE interfaces demonstrated the application of several key design

principles in mixed-initiative interaction such as each agent (human or computer) contributing

what it is best suited at the most appropriate time to build mutual understanding, considering the

uncertainty about the user’s goals, and facilitating agent-user collaboration to refine results [111]

in GUI-based interactive task learning.

On the AI aspect, my dissertation has made several contributions in new techniques for rep-

resenting the semantics of app GUIs and grounding the natural language inputs to GUI demon-

strations. Chapter 4 presented a novel method for representing a GUI screen as a graph and the

technique for interactively parsing the user’s intent for an action into its corresponding graph query

through multi-turn conversations. Chapter 5 described a new lazy-evaluation dialog structure that

allows the recursive clarification of ambiguous concepts and learning of unknown concepts. Chap-

ter 7 presents a new multi-modal interface for error identification and recovery in human-AI in-

teraction systems, which is a important but often overlooked topic in designing AI systems. The

new privacy-preserving script sharing mechanism discussed in Chapter 8 not only facilitates script

sharing between users but also enables us as researchers to collect GUI screen data and GUI in-

teraction traces at a scale without accidentally collecting personal information from the users.

Chapter 9 featured a new technique for generating semantic embeddings of GUI screens and com-

161

CHAPTER 10. LIMITATIONS, FUTURE WORK, AND CONCLUSION

ponents that encodes their textual contents, visual design and layout patterns, and app meta-data

without requiring manual data annotation.

As a whole, this dissertation represents an effort to empower non-technical users to teach new

tasks, concepts, and their personal preferences and needs to computers through natural interactions.

I hope work in this direction, including mine, can support a bottom-up approach in AI automation

that helps individual users automate and augment their work. In my view, this is a key path towards

alleviating the societal problem faced by the workforce in the era of “the fourth industrial revo-

lution [245]”. While the adoption of AI automation technologies has significantly increased the

overall productivity of society, the gains have mostly gone to a small group at the top while many

workers have been stagnated in wages or displaced by AI automation. I attribute much of this phe-

nomenon to the top-down approach used in developing and deploying AI automation. While many

workers, especially the rapidly expanding group of “gig workers”, participate in the corporate-

provided AI infrastructures, they often act as interchangeable and replaceable components (e.g.,

Uber drivers, Instacart shoppers, data annotators) in large algorithm-directed workflows with little

agency. The AI systems are often developed from a corporate’s perspective with its best interest in

mind, with little support for individual worker’s personal preferences, motivation, and creativity.

Instead of replacing workers with AI, this end-user-programmable agent approach can emancipate

workers from mundane repetitive tasks, enabling them to focus on the creative and social aspects

of work which AI systems cannot feasibly replace in the near future. Bottom-up AI automation

can complement the predominant top-down AI automation paradigm, empowering the users with

a programmable AI agent with more agency, more control, more transparency, and more power.

162

Appendix A

A Need-finding Study for Understanding
Text Entry in Smartphone App Usage

This appendix presents a need-finding study we conducted in 2015–2016 for understanding text

entry in smartphone app usage. The results of this study informs and motivates the design of

SUGILITE, especially on its support for the automation of cross-app repetitive mobile tasks.

Abstract

Text entry makes up about one-fourth of the smartphone interaction events, and is known to be

challenging and difficult. However, there has been little study about the characteristics of text

entry in the context of smartphone app usage. In this appendix, we present a mixed-method in-

situ study of 17 active smartphone users to better understand text entry in smartphone app usage.

Our results show 80% of text was entered into communication apps, with different apps exhibiting

distinct usage patterns. We found that structured data such as URLs and email addresses are rarely

typed but instead are auto-completed or replaced with search, copy-and-paste is rarely used, and

sessions of smartphone usage with text entry involve more apps and last longer. We conclude

with a discussion about the implications on the development of systems to better support mobile

interaction.

Unpublished preprint available as Toby Jia-Jun Li and Brad A. Myers. A Need-finding Study for Understanding
Text Entry in Smartphone App Usage. https://arxiv.org/abs/2105.10127.

163

https://arxiv.org/abs/2105.10127

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

A.1 Introduction

Smartphones are the primary devices on which users send and receive messages, take notes, and

search for information on the go. Text entry is an important aspect of users’ mobile interactions

and makes up about one-fourth of the total interaction events according to our data (with the other

three-quarters being taps, swipes, focuses and other interactions). It is also long been known that

text entry is a particularly challenging and difficult activity in using mobile phones [139,187,280].

Many solutions have been proposed to improve the performance and user experience of mobile

text entry, including novel (virtual) keyboards (e.g., [302]), alternative non-keyboard text entry

techniques (e.g., [289]), text prediction (e.g., [281]), and apps to support a specific domain of text

entry (e.g., [47]). There also have been text corpora which have been collected from a single do-

main of smartphone usage, such as for email [279] or chat rooms [302], which have been used to

help evaluate text entry methods. However, surprisingly little study has focused on understanding

users’ text entry in the context of smartphone app usage. This lack of knowledge makes it hard to

properly evaluate if a proposed solution to text entry problems is relevant. It also hinders the devel-

opment of new text entry mechanisms, as researchers often need to make guesses or assumptions

about users’ text entry behaviors.

To help fill in this gap, we conducted a mixed-method study including surveys, interviews,

diaries and in-situ logging to characterize the users’ mobile text entry behaviors. In our study, we

recorded 1,607,199 total events, of which 401,875 were text-editing events, representing 476,322

characters entered into 155,300 app usages of 364 unique apps from 17 active smartphone users

(mostly university students) over 2 weeks. We also gathered the participants’ reflections on their

usages through interviews and diaries.

Using the collected data, in this appendix, we mainly focus on answering the following research

questions:

RQ1: To which applications are data entered into smartphones?

RQ2: What kinds of textual data are entered into smartphones?

RQ3: Through what means are data entered (typing vs. copy-and-paste vs. auto-completion)?

RQ4: How are text-entering sessions different from the non-text entering sessions?

RQ5: How is text transferred among apps within sessions?

In summary for the above questions, we found that for our users, over 80% of text was entered

into communication apps like instant messaging (IM), SMS and email. Among those apps, the

164

A.2. RELATED WORK

participants exhibit different text entry patterns: only a small portion of email app usages involve

text entry compared to IM and SMS, but more email app usage involves heavy text entry (more

than 100 characters) than the other two communication apps.

Only a small portion (2.5%) of the strings entered into the smartphones by our participants

includes structured data in the form of phone numbers, email addresses, URLs or street addresses,

and most of them go to where one might expect (e.g., URLs are mostly entered in a browser). In

addition, for about half of the times that the clipboard was used, the clipboard contents contained

structured data, mostly URLs.

We found that in our data, 60% of the text was typed character by character into phones. Most

of the rest were auto-completed, with less than 1% being entered through copy-and-paste. Looking

at the various sessions, we found that sessions with text entry on average last longer and have more

apps used than those with no text entry. Our interview results showed that most of our participants

found copy-and-paste difficult to use and preferred alternative ways of sharing data, such as using

the Android “share to” API, or taking a screenshot of an app and sharing it with other people.

While our study of smartphone usage behavior was performed on a sub-population of users for

a limited period of time, and the results will not necessarily generalize across all different popula-

tions, our findings provide value, as discussed in [58], in uncovering interesting user practices and

providing insights into how future smartphone interactions and apps can better support text entry

and thus improve the overall user experience.

A.2 Related Work

There have been prior studies that tried to understand various aspects of smartphone usage. Böhmer

et al. [42] ran a large-scale logging study of app launches and found that the use of an app on

average lasts less than a minute. They also discovered that communication is the most often used

app category, with some app categories being used more often at certain times. The LiveLab

project [249] also collected a large dataset of smartphone app usage records. Many prior studies

(e.g., [15,40,59,128,270]) investigated how smartphone usage is triggered by the context and how

smartphone interactions can be integrated with the user’s activity. Karlson et al. [129] looked at

smartphone use in the context of task flow, suggesting that interruptions affect mobile productivity

and found it common for users to move to a PC to complete a task started on the phone. Some

studies also focused on characterizing users’ information needs: Sohn et al. [254] conducted a diary

study and discovered that people use diverse and sometimes ingenious ways to obtain information

on smartphones.

165

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

To fully understand smartphone usage, it is not sufficient to only analyze the use of individual

apps, as each smartphone app is designed to handle a limited number of domains (usually one),

which is not sufficient to support many cross-domain tasks [264, 266]. Thus, many researchers

have looked at multi-app usage sessions. For instance, for mobile search tasks, Carrascal and

Church [43] reported that users frequently switch among mobile search apps and other apps, and

that sessions with mobile searches also tend to have more apps used, have a longer duration; and

use some categories of apps more intensively. On the other hand, many smartphone usage sessions

can be very short with studies reporting that 40% of sessions are shorter than 15 seconds [83]

and 38% contain no app usage but only interactions with the lock screen or launcher [13] (for

example, to look at notifications or the time). Jesdabodi and Maalej [123] proposed the concept

of “usage states” to categorize usage sessions based on the topic of user’s task. Many projects

(e.g., [126, 174, 225, 250, 256, 294, 309]) investigated the “app chain” – the temporal patterns in

app launches or the contextual information of the smartphone usage to predict the next app to be

launched. Systems like HELPER [265] and SUGILITE (described in this dissertation) proposed

using intelligent agents to automate tasks across multiple apps and domains.

However, none of the above studies looked at the text entry aspect of smartphone usage, nor is

there any dataset for text entry behaviors in app usage available to the community. There were text

corpora in some prior projects [259, 279, 302] collected from users’ mobile text entry in a single

domain (like emails or chat rooms) for the purpose of training and evaluating the performance of

text entry methods. But they did not consider text entry behaviors in the context of multiple mobile

app interactions, nor did they characterize the text entry behaviors so we can learn what data do

users enter or what apps are these data entered into. There are also studies on the usage of a single

domain of app with heavy text entry like instant messaging [57, 71] and SMS [17].

Various systems have been developed to better support mobile text entry. Some [47, 48, 217]

support easier and more efficient entry and processing of structured data like dates, addresses and

URLs. Fuccella et al.’s work [87] supports mobile text editing with gestures. Although there are

many solutions proposed, there are few studies about how often those solutions will be relevant, or

how prominent the reported problems are, as we do not yet know in which apps do users enter and

process structured data, nor do we know how those data are entered and what types of structured

data are common. We hope our results reported here can help the community to have a deeper

understanding of users’ text entry behaviors with respect to app usage and usage sessions, and

provide resources for the development of future systems to better support smartphone text entry.

166

A.3. PRE-SURVEY

A.3 Pre-Survey

To help us better design our studies, we conducted an online survey using SurveyMonkey about

the users’ text entry and cross-app usage on their smartphones. By posting the link on Facebook

groups and to mailing lists at Carnegie Mellon University, we collected 65 responses between

December 2015 and January 2016. 70% of the respondents were between 18–24 years old, 87%

were students, 57% used iPhone while the rest (43%) used Android phones. In the survey, we

asked the respondents to estimate their frequency of entering text for different purposes on their

smartphones, and to describe the tasks, the goals, the procedures and the apps used for each of

their most recent text entry situations. We also asked about their copy-and-paste usage, retyping,

cross-application interactions and repetitive sequences of actions.

When asked about which applications they most enter data into on their smartphones, 76% of

the respondents self-reported that they often entered data into map/navigation apps, 70% said they

often entered data into instant messaging apps, and 66% said search engines. On the other end of

the spectrum, most people reported that they never or seldom entered data into spreadsheets (58%

of the respondents said never; 30% said seldom), text editing apps (30% never; 50% seldom) or

note-taking apps (10% never; 53% seldom) on their smartphones.

For copy-and-paste, 3% respondents reported that they never used copy and paste, 12% seldom

used it, 52% some-times used it and 33% often do so. Among the 53 responses who reported

about their most recent copy-and-paste usage, the contents reported by 25 people (47%) consisted

of “structured text,” which we defined in the survey as URLs, phone numbers, email addresses

and street addresses. The most popular type of structured text was URL, which was reported by

15 people (28%). Respondents also shared their most recent case of retyping contents instead of

using copy-and-paste, mostly because they said that the text field did not allow copy-and-paste, or

that copy-and-paste is too hard to use. For example, as a rationale for not using copy-and-paste,

some of our respondents wrote:

“I saw it [the text] on a link and didn’t want to accidentally click on the link.”

“. . . It was that either it was ineffective to try to copy paste due to resolution, clutter

of other text in the browser or the address as typed didn’t work on Google Maps.”

“The input box doesn’t support paste”.

The respondents also shared their most recent experiences of using multiple apps for a single

task. Sample usage scenarios they described included:

167

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

“Plan the event using email or messenger and check whether I’m free using Calendar.”

“[I used] Airbnb for the address, looked up the route through Google Maps, checked

the bus schedule with [the] browser.”

“I opened Gmail to locate the receipt, I noted the total amount I had spent and divided

it fairly between my friends (evenly, in this case). I then opened Venmo and charged

each friend who owed me separately.”

“Find the name in Yelp, check rating and reviews, and then find the estimated time it

takes from my place to the bar by using Google Maps.”

31 respondents were able to describe their most recent experiences of performing a repetitive

task. A respondent talked about how she kept all her expenses in memos and she “saw the money

I spent each day on notes and then added each entry on calculator.” One other talked about how

he needed to switch back-and-forth between the Cisco tool, system settings and the Browser to

connect to the office network every morning.

The results of the pre-survey further suggest that users exhibit different text entry behaviors

in different domains, and the amount of text, the frequency of text entry and the type of content

entered vary for different categories of apps. It also suggests that in many situations, users need

to use multiple apps, sometimes with data being transferred among the apps, to perform a single

task. The outcome of the pre-survey shows the need for a more detailed empirical study to better

understand users’ text entry and cross-application behaviors, which motivates the main study we

will talk about in the following sections.

A.4 Longitudinal Study

We conducted a two-week longitudinal study with 17 active smartphone users in February and

March of 2016 to understand the users’ data entry and cross-application usage in depth. The

study consisted of two in-lab user interviews and a 2-week-long in-situ logging and diary study.

We collected detailed logs of the users’ smartphone interactions (clicking, tapping etc.), data en-

try behaviors (keystroke, copy-and paste), app usage and the corresponding usage context using

a tracking tool that we created and installed on their phones. Through surveys and interviews,

we also gathered the users’ reflections on their smartphone interactions and descriptions of their

specific usage sessions.

168

A.4. LONGITUDINAL STUDY

A.4.1 Participants

We recruited 17 participants (7 males and 10 females, ages 18–45, mean age 25.2, SD=5.48) from

Carnegie Mellon University. All participants were proficient in English and used English as the

main language in their interactions with smartphones. We recruited participants who use Android

phones running Android 4.4 or above as their main mobile phones and self-identified as active

smartphone users. During the course of study, the participants on average spent 4.2 hours on their

smartphones per day, with the least active participant spending an average of 1.1 hours per day

and the most active one spending on average 7.7 hours per day, so it seems reasonable to consider

all of them to be active users. Each participant signed the informed consent form, and received a

compensation of $50.

A.4.2 Tracking Tool

We implemented an Android app named CROSSAPPTRACKER to track the participants’ smart-

phone interactions. CROSSAPPTRACKER runs as an Android accessibility service and records all

of the participants’ interactions with the phone UI across all smartphone apps. Each interaction

(tapping, clicking, keystroke, focusing, clipboard event and screen state change) is recorded as a

tracked event. Tracked events include when the user clicks or focuses on a UI element, enters or

edits some text, when the window state changes, or when the contents of the clipboard changes.

For each tracked event, the tracker also logs the name of the current app, the name of the current

Android activity1, the text or content description2 of the UI element, a unique identifier of the UI

element, a timestamp and the identifier (SSID) of the connected Wi-Fi network. In addition to

these events, CROSSAPPTRACKER also records an event whenever the screen was turned on or

off. CROSSAPPTRACKER automatically uploads the logs every 8 hours to our server, so the exper-

imenter could look for interesting interactions. If the upload failed, CROSSAPPTRACKER would

retry later to ensure the completeness of the log.

To protect privacy, CROSSAPPTRACKER allows the participants to specify a list of apps to

exclude from keystroke logging, for example those that contain sensitive data, like banking apps

and medical apps. It also avoids logging any data marked as encrypted or entered into password

fields. Still, the logs do contain sensitive data, so they are kept in a protected place and processed

in accordance to our IRB-approved study protocol.

1An activity is a single, focused thing that the user can do [95] within an Android application. Each activity often
represents a single screen with a user interface.

2Content description is an accessible text label for a UI element that can be read out by a screen reader.

169

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

A limitation of CROSSAPPTRACKER is that it can only listen to interaction events in native

Android apps, but not when the user uses a web application. However, we do not expect this

limitation to have a major impact on our results, as all but one of our 17 participants reported that

they would almost always prefer using a native Android app to a web app when both are available.

A study from Yahoo also reported that 90% of users’ time on smartphones is spent in apps, while

only 10% is spent in the browser [133].

A.4.3 Study Procedure

The study consisted of four main components:

Pre-interview

In 30-minute semi-structured interview sessions, the participants were asked to reflect on their

smartphone usage in a one-on-one lab interview setting. They described the motivations, goals and

procedures of concrete examples of their smartphone tasks that are cross-app, text entry heavy or

repetitive. They also discussed the apps they used the most, how they split and coordinate tasks

between their smartphone and other computing devices (computers, tablets, wearables), how they

interact with the smartphone’s virtual assistants (e.g., Google Now, S Voice), how they use copy-

and-paste on their phones, and any smartphone tasks they find frustrating to perform, or would like

to automate.

In-situ Logging

During the pre-interview, we installed CROSSAPPTRACKER onto the participants’ smartphones.

CROSSAPPTRACKER recorded all of the participants’ smartphone interactions as discussed above,

and uploaded the logs to our server, so the experimenter could look for interesting interactions and

ask the participants to reflect on those in their daily diaries.

Each participant was asked to keep CROSSAPPTRACKER running in the background at all

times for at least 14 days while using their smartphones as they normally would. Some partici-

pants recorded more than 14 days of data due to the scheduling of interview sessions, since the

CROSSAPPTRACKER software was removed at the exit interview.

Diary Study

At the end of each day during the 2-week in-situ study, each participant filled out an online ques-

tionnaire about their smartphone usage on that day. Each questionnaire consisted of 4 questions.

170

A.5. RESULTS

The first 3 questions were constant. The last one was a personalized question made by the experi-

menter about a specific usage session from that day. The 3 constant questions asked the respondents

to describe the goals, procedures and contexts of their text entry heavy, cross-app or repetitive tasks

on that day, if any. The personalized question was often in the form “we saw you used [list of apps]

at [time] today, can you report what was the task and how did you use the above apps to perform

the task?”

Exit Interview

Each of the participants came into our lab for a 30-minute semi-structured interview session after

completing the in-situ logging and diary study. During the session, the participants had their

CROSSAPPTRACKER removed, and they were asked to clarify any confusing entries in their diaries

and reflect on their smartphone usage of the past two weeks.

A.4.4 Dataset

The raw dataset we collected from the 17 participants through the in-situ logging contained 1,607,199

tracked events, representing 155,300 application usages in 37,496 sessions. An application usage

contains all the tracked events starting from when an app became active in the foreground until ei-

ther another app became active instead, or the phone was locked or turned off. Similarly, a session

includes all the application usages starting from when the phone was unlocked or turned on until

when the phone was locked or turned off. In the dataset, the 17 participants used 364 unique apps

over the course of our study.

A.5 Results

A.5.1 Characterizing Text Entry Behaviors in App Usage

In this section, we mainly try to understand the characteristics of the users’ text entry behaviors.

More specifically, we attempt to answer three research questions:

RQ1: To which applications are data entered into smartphones?

RQ2: What kinds of data are entered into smartphones?

RQ3: Through what means are data entered (typing vs. copy-and-paste vs. auto-completion)?

171

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

Our dataset contained 401,875 text-editing events (addition, deletion or replacement of charac-

ters) made by the 17 participants in 348 different applications over roughly 2 weeks, representing a

total of 476,322 characters entered, which works out to an average of 28,018 characters per person

(SD=20802.5). Excluding symbols and spaces, 357,306 characters make up 71,974 words, with

an average word length 4.96. All the characters constitute 12,504 separate strings entered, or 52.5

strings per participant per day.

We group all the text-editing events into the corresponding app that they belong to, and use the

app usage as our unit of analysis. Among all 155,300 app usages, 20,202 (13%) include at least

one text entry event.

N %Text-Session Duration-
Mean

#Char/Text-
Session

%TextEntry %Structured

20, 202 13.0% 27.9s
(SD=80.6s)

23.6
(SD=51.0)

5.25% 2.50%

Keys:
%TextSession: Percentage of text entering app usages out of all app usages
DurationMean: Mean duration for each text entering app usage
#Char/TextSession: Mean number of characters entered for each text entering app usage
%TextEntry: Percentage of text heavy app usages (with more than 100 characters entered) in all text
entering app usages
%Structured: Percentage of strings containing structured data in all strings entered

Table A.1: Descriptive Statistics for App Usage

In Table A.1, we show the descriptive statistics for the 20,202 app usages with text-editing

events (which we will call text entering app usages). For the analysis, we consider an app usage to

be “text entry heavy” if more than 100 characters are entered into the app during this app usage.

We also parsed the contents of the text entered and consider a piece of text to be “structured” if it

contains an email address, a URL, a phone number or a US-formatted street address.

One thing we noticed in our dataset is that there are distinct differences in the amounts of text

entry among participants. The 5 participants with the smallest number of characters only entered

on average 8,731 characters (SD=1519.7) during the study, while the 5 participants at the other end

of the spectrum entered an average of 50,253 characters (SD=12789.8). With respect to app usages,

the participants also exhibited diverse text entry behaviors: the bottom 5 participants (which are

different than for characters entered) on average entered 12 characters (SD=3.5) per text entering

app usage, while the top 5 on average entered 51 characters (SD=9.3). An interesting fact is that

the 2 participants with the least characters entered per text entering app usage actually had the

largest total number of text entering app usages. This suggests that users exhibit very different text

172

A.5. RESULTS

entry patterns, with some entering a large number of shorter strings and some entering fewer, but

longer, strings.

We find no statistically significant difference between the two gender groups of our participants

in the average amount of text entered per person (Male 28038.1, Female 28005.5), average number

of text entering sessions per person (Male 1280.9, Female 1123.6) or the mean session duration

(Male 29.9s, Female 30.9s).

Category Usage# Example Apps
Communication-IM 26,178 WhatsApp, Facebook Messenger
Tools-Other 25,173 Google Search, Clock, Calculator, Dictionary, File Manager
Social 7,594 Facebook, Twitter, Pinterest
Communication-Browser 4,820 Chrome, Samsung Browser, Dolphin Browser
Communication-Email 3,633 Gmail, Inbox by Gmail, Yahoo! Mail
Communication-SMS 3,446 Messaging, Verizon Messages
Tools-Dialer 2,466 Phone, Dialer
Transportation 1,302 Uber, Lyft, RideTrack
News & Magazine 996 BaconReader for Reddit, NYTimes, Flipboard, Feedly
Media & Video 963 Youtube, Gallery, VLC
Music & Audio 852 Spotify, Google Music
Communication-Others 834 Contacts, Visual Voice Message, TrueCaller
Travel & Local-Maps 744 Google Maps, Waze, HERE Maps
Productivity-Others 700 Calendar, Adobe Reader, IFTTT, Dropbox
Photography 617 Camera, Google Photos, Pixlr
Entertainment 436 Netflix, 9GAG, IMDb
Productivity-Text Editor 422 Google Docs, POLARIS Office, Hamcom Office
Finance 403 Square, TurboTax, Venmo
Health & Fitness 366 Fitbit, S Health, Nike+
Lifestyle 362 Starbucks, Tinder, Zomato
Productivity-Memo 324 Evernote, Keep, Samsung Memo

Table A.2: App Category and Example Apps Sorted by Usage

RQ1: To which applications are data entered into smartphones? To answer RQ1 on under-

standing where the data are entered into smartphones, we logged the smartphone apps in which

each text entry is entered, and group these apps using the categories from the Google Play store.

We also further divide the text entry heaviest categories into sub-categories to better characterize

the users’ text entry behaviors in those apps. In Table A.2, we list the top 20 app categories with

the most app usages and example apps within the category. Note that we have excluded system

services and launchers from this table. Among all the text entered, 92.6% of the total 476,322

characters were entered into the top five most text-heavy categories: Communication-IM (64%),

173

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

Communication-SMS (17%), Social (4.6%), Communication-Browser (4.0%) and Communication-

Email (3.1%). All of the above five except for Email are also among the categories with the

most number of text entering app usages. Among all the 20,202 text entering app usages, 12,477

(61.8%) are for IM, 1,588 (7.9%) are for SMS, 1,185 (5.9%) are for Tools-Other, 970 (4.8%) are

for Browsers and 822 (4.1%) are for Social.

An interesting observation is that, within the Communication category, the subcategories ex-

hibit very different profiles for the number of characters entered per text entering usage and the

percentage of text entering usages in all usages. As shown in Figure A.1, for SMS and IM, 46.1%

and 47.6% of usages respectively include text entry, but only 12.6% of email usages involve text

entry. Among all the text entering usages, 14.9% SMS text entering usages are text-entry heavy

(having 100+ characters entered), while the same statistic is 9.0% for email and 5.6% for IM.

This result implies that our participants are far less likely to send out or reply to emails on

the smartphone compared to SMS and IM messages. This is consistent with what people said

in our pre-interviews. When we asked our participants on how they would split tasks between

smartphone and other computing devices, all of our participants said that they would not write

long emails on their phones unless it was urgent. Instead, they would prefer to wait until they had

access to a computer. About half of our participants reported that they seldom write any email on

smartphones, mostly because “it is hard and frustrating to type long emails on [a] phone.” Others

said they would reply to emails if it was quick, but would avoid writing formal or important emails

because “formatting emails on [a] smartphone is hard.” We discovered significant differences

in the proportions of text heavy usage for SMS apps and IM apps (t=9,48, p<.001). As shown

in Figure A.1, the percentage of text heavy usages is 2.7 times higher in SMS apps than in IM

apps, which is interesting as we often consider these two apps to be used in similar scenarios.

We asked some of our participants in the exit interview about how they would differentiate the

use of SMS and that of IM, and got interesting insights. Three participants mentioned that the

availability and easy accessibility of multi-media contents like pictures, video clips, animations

(or “GIFYs”), emojis and audio messages in most IM apps reduce the need for typing long text

messages. They said they would avoid typing long messages as much as possible and preferred

to send the “alternative” form of messages because it was hard to type on phones. However, in

situations like when the message recipient does not use IM apps, does not use the same IM app as

the user does, or is not a friend on IM with the user, the user would have to use SMS to reach the

recipient. This forces the user to type a longer message than they would when using IM apps due

to the lack of easily accessible multimedia contents.

174

A.5. RESULTS

Figure A.1: Proportions of Light, Heavy and Non-Text Entry Usage for Three Types of Communication
Apps

Other participants offered different perspectives on the rationale behind the text entry pattern

difference between SMS and IM apps. One said that “because [WhatsApp] is free, it incurs no

extra cost for sending many shorter replying messages like ‘Yeah’, ‘OK’ or ‘Sure’. But since I’m

on a pay-by-use mobile plan, I need to pay extra to send SMS. That’s why I send fewer SMS and

try to cover more information in one message.”

RQ2. What kinds of data are entered into smartphones? To investigate RQ2, we parsed and

analyzed all 12,504 strings entered into the phones by our participants during the course of the

study. We looked for structured data, including URLs, email addresses, phone numbers and street

addresses. We were able to find 312 instances of strings with structured data, among which 72.8%

include URLs, 27.6% include email addresses, 19.6% include phone numbers and 7.7% include

street addresses. Note that the sum of counts for different types of structured data can exceed the

total number of strings with structured data, as a string can contain more than one type of structured

data, but we only count once if same type of structured data shows up more than once in a single

string. We show the distribution of structured data entry usage among application categories in

Figure A.2 for categories with at least 5 strings with structured data entered.

This result confirms the hypothesis that the type of data entered is associated with the nature of

the app [47]. Different types of structured text go to where you might think they should go—the

participants entered URLs into browsers, email addresses into email clients, phone numbers into

contacts and dialer apps, and street addresses into maps.

However, if we compare the amount of structured data entered with the number of total text

entering usages for each category of app, the portion of text entering usages with structured data

175

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

Figure A.2: Distribution of Structured Data Entry Usage across App Categories (“Comm” is the Commu-
nications category)

entered is surprisingly small. As an example, for the browsers, only 12.2% of the text entering

sessions had a URL entered. Similarly, only 11.6% text entering sessions for email apps had an

email address entered, 15.6% text entering sessions for dialer had a phone number entered and 5%

text entering sessions for maps had a street address entered.

Talking with the participants in the exit interview, most of the participants reported that they

seldom actually type structured data into any apps. The text fields in which one might expect

structured data to be typed the most—the “To” fields in email clients, number fields in dialers,

address bars in browsers or the address fields in map apps—are actually used as the de facto search

bars in many modern app design, where the user can just type in the name (and in most cases, the

partial name) of the contacts, web-sites or points of interest instead of the corresponding numbers,

URLs or addresses. This technique reduced the user’s typing workload and eliminated many needs

for typing structured data.

Based on the results shown in Figure 2, for example, it is still safe to assume that users are more

likely to type email addresses into email clients than into any other kinds of app, and to assume

that users in email clients are more likely to type an email address than other types of structured

data. But it would be wrong to assume that the user will type an email address most of the time

when they send emails. The same goes for other combinations of structured data types and apps.

176

A.5. RESULTS

Figure A.3: Clipboard Contents by Structure Type

RQ3. Through what means are data entered? We then looked at RQ3 on how the data are

entered into the phones. Three major means of data entry were considered: typing, copy-and-paste

and auto-completion. A prior study found that not presenting the auto-completion suggestions

enabled the users to type faster, but the suggestions were utilized to save taps and were subjectively

preferred [236]. Copy-and-paste was also perceived to be difficult by users in a prior study [51].

In our 401,875 text-editing events collected, 51,534 (12.8%) were deletions, 311,369 (77.5%)

were additions, in which 285,772 events were typing, 158 events were copy-and-pastes and 25,439

events were auto-completion. (For typing, each keystroke is a text-editing event. Each instance of

paste or auto-completing is also an event.) The 12.8% of text entry events being deletions seems

higher than other studies (e.g., 9.7% in [288] and 9.5% in [187]). Lengthwise, the 285,772 char-

acters typed constituted 60.0% of the total 476,322 characters entered. 12,730 (2.7%) characters

were pasted in, and the rest, 177,870 (37.3%), were entered using auto-completion or using a

suggestion.

We investigated the characteristics of the content being copied into the clipboard. During the

course of the study, 164 unique items were copied into the clipboard across all participants. That

is only an average of 0.69 items per participant per day.

Among the texts that were copied, 50.6% contained structured data, among which the majority

were URL links (72.3%). The distribution of content type for clipboard content is shown in Figure

3.

The low amount of clipboard usage confirms what our participants said in the pre-survey: that

they do not use copy-and-paste often, as they find it frustrating. The participants also expressed

the same frustration in the exit interview. When asked about the alternative means for transferring

data between fields other than using copy-and-paste, we heard three major methods mentioned.

177

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

For text that is short and easy to remember, many would simply retype. For sharing longer quotes,

tweets or social network statuses with friends, a few of our participants mentioned that they often

just made a screenshot and sent the picture to their friends via IM apps. They considered using this

technique to be quicker and easier, as taking a screenshot only requires pressing the power button

and the volume-down button simultaneously—which is much easier to do than selecting the right

block of text with one’s fingers on the small screen. Text sent through screenshot can also be easier

for the recipient to read as it preserves the format of the content.

In the exit interview, most users identified URLs as their most commonly copied structured

data, which is consistent with our observations in the data. A participant reflected “if I am to share

a web content with my friends, I would normally just send a screenshot. But sometimes I’ll copy-

and-paste the link to the chat instead if the page is too long. Sometimes I’ll also have to copy a

link to my browser if it is not clickable.”

N #AppUsage-
Mean

Duration-Mean #UniqueApp-
Mean

%Text-Entering %MultiApp

17,684 4.76 (SD=8.64) 181.7s
(SD=404.1s)

1.99 (SD=1.23) 39.9% 55.6%

Keys:
#AppUsageMean: Average number of non-system app usages in sessions
DurationMean: Mean duration for each session
#UniqueAppMean: Average number of unique non-system apps used in sessions
%TextEntering: Percentage of sessions with text entry
%MultiApp: Percentage of sessions containing more than one app usages

Table A.3: Descriptive Statistics for Sessions

A.5.2 Text Entry in Cross-application Interactions

In this section, instead of looking at the usage of individual apps, we focus on understanding text

entry in the context of multi-app sessions. To characterize the user’s text entry behavior in multi-

app sessions, we investigated the following two research questions:

RQ4: How are text-entering sessions different from the non-text entering sessions?

RQ5: How is text transferred among apps within sessions?

As mentioned above, we define a session as containing all app usages from when the device is

powered on or awakened until when the device is powered off or turned to standby mode. Based on

this, we group 155,300 app usages in our dataset into 37,496 sessions. This definition of sessions

178

A.5. RESULTS

is reasonable based on previous findings [277] that for the majority of instances where users return

to their smartphone i.e., unlock their device, they in fact begin a new task as opposed to continuing

a previous one. Among our 37,496 sessions, 52.8% are turning on the phone display without

launching any non-system apps, which are mostly to check the time or to see the notifications on

the lock screen. We exclude those sessions in the following analyses. In Table A.3, we show the

descriptive statistics for the 17,684 sessions with at least one app usage.

The statistics confirm phenomena reported by prior work. In Jesdabodi and Maalej’s study [123],

which used the LiveLab dataset [249], they reported a mean of 2.12 unique apps per session and

overall mean duration of usage sessions of 172.8s, which are similar to our stats. We also find

58.9% of our sessions last less than 30s and 87.0% last less than 4 minutes, which supports Yan

et al.’s finding [295] that 50% of phone engagements last less than 30 seconds, and 90% last less

than 4 minutes. Our descriptive stats of sessions are also in line with Carrascal and Church’s prior

study [43] and confirms Ferreira et al.’s finding about mobile application micro usage [83].

N #AppUsage-Mean Duration-Mean #UniqueApp-
Mean

%MultiApp

Non-Text 10,630 2.39 (SD=2.45) 129.7s
(SD=339.9s)

1.66 (SD=0.93) 43.2%

Text 7,054 8.34 (SD=12.5) 260.0s
(SD=474.4s)

2.49 (SD=1.44) 74.4%

Table A.4: Comparing Descriptive Statistics for Non-Text Entering Sessions and Text-Entering Sessions

RQ4: How are text-entering sessions different from the non-text entering sessions? Ta-

ble A.4 shows a comparison of the descriptive statistics between the text entry sessions and the

non-text entry sessions. We see that text entry sessions have higher average number of non-system

app usages per session (t=39.5, p<0.001), longer mean duration (t=19.9, p<0.001), higher aver-

age number of unique apps in the sessions (t=42.8, p<0.001) and higher percentage of multi-app

sessions (t=44.1, p<0.001).

RQ5: How is text transferred among apps within sessions? To answer RQ5, we consider two

methods of data transfer between apps: copy-and-paste and the Android built-in “Share to” API.

One of the most obvious ways to transfer data between apps is through copy-and-paste. A

prior study suggested that at least half of copy-paste operations were cross-app [51]. We discussed

above the content of the clipboard and the low usage of copy-and-paste in RQ3 of the previous

section. Here we focus on where are data copied from and to.

179

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

Figure A.4: Distribution of Copy-and-Paste Counts across App Categories. “Copy-Same” means the copy
or cut operation was in an app, and the corresponding paste was also in the same app. “Copy-CrossApp”
means the copy/cut was in an app and the paste was in a different app. Similarly for “Paste-xx” where the
paste was in this category and the copy/cut was either here or in a different app.

In Figure 4, we show the distribution of 164 copy events (including cuts) and 158 paste events

across the app categories. 41% of the paste events are cross app, which is defined as that the

source of the clipboard content is different from the destination for pasting. The vast majority of

copy-and-paste events (84.6%) are in the communication category, which is not surprising giving

the dominance of communication app in the number of text entry sessions. The structure type of

the pasted content is also associated with the app category. For instance, 67% of strings pasted

into browsers include URL links, and 78% of strings with URLs in the clipboard are pasted into a

browser.

Another method of data sharing across apps is through the Android “Share to” mechanism,

which allows the user to share the current content to a set of apps that can “consume” this type of

content. The developers for both the source app and the destination app have to explicitly specify

the content of the data to share, the type of the data to share and the type of the data to accept. This

mechanism is popular among our participants and covers many of the most frequent use cases like

sharing a web page to WhatsApp chat, a piece of text to Gmail, etc.

180

A.6. DISCUSSION

We were not able to record the number of uses of the “share to” mechanism, since many

mobile apps have overridden the default “share to” API provided by the Android operating system.

However, in the interviews, our participants mentioned they often use this mechanism since “it

better fits my way of thinking about the task. It’s also much easier to use than copy-and-paste”.

A.6 Discussion

In the results, we see fewer instances of structured data entered than one might expect. From the

interviews, we learn that this is mainly because in current app design, data entry fields can also be

used as de facto search bars where the user can simply enter a partial entity name (e.g., the website

name or recipient name) and the structured data (e.g., the URL or email address) will be retrieved.

Such design is well used and liked by our participants.

Similarly, there are only a small number of copy-and-paste instances in our dataset. In inter-

views, the participants expressed their frustration about the current copy-and-paste mechanism,

and talked about how they adopt alternative methods to transfer data between apps through the

“screen-shot-and-send-picture” method, the Android “share to” mechanism, or app-specific ways

of sharing data (e.g., through cloud service). This suggests that higher level support is needed to

facilitate the data transfer between apps in cross-app tasks. For sharing web content with friends,

the design for better supporting “sharing beyond the blue link”, as framed in [23], is also worth

exploring.

Our results support the need for better integration and more streamlined data flow among apps.

Users prefer to not type data into fields or copy-and-paste text between fields. Thus, they quickly

adopt interactions techniques like integrated search and intent-based cross-app data sharing mech-

anisms. So, in the design of mobile interfaces, the designers should minimize the unnecessary or

repetitive data entry, and support automatically sharing data from one app to another.

The results also show a correlation between the category of app in use and the type of structured

data entered. This implies that predictive text entry methods should not only consider the language

model and the semantic context, but also the context for the app usage.

A.7 Conclusion and Future Work

We conducted a mixed-method study on understanding user’s text entry on smartphones in the

context of app usage. Our results fill in gaps in prior work, identify characteristics of users’ current

text entry usage, and shed light on requirements for new systems. We characterize mobile text

181

APPENDIX A. A NEED-FINDING STUDY FOR UNDERSTANDING TEXT ENTRY IN
SMARTPHONE APP USAGE

entry as to what, how, and to which apps the contents are entered, based on actual usage data

collected from our participants. We also consider text entry in the context of cross-app sessions

and compare text-entering and non-text-entering sessions.

In this work, we studied the usage by a sub-population of smartphone users and provide in-

sights on designing novel interactions to better support their usage. Future research might investi-

gate text entry behaviors for populations with broader demographics, especially those from diverse

socioeconomic backgrounds, people in developing countries [44], or field workers who have lim-

ited access to computers and use smartphone as their primary computing device [129]. Per our

interviews, our participants seldom use voice input, but a future study should collect voice input

data and compare how the usage, scenario and context of voice input differ from those of other text

entry methods. It would also be interesting to investigate a broader range of text entry, like text

entry across multiple devices.

Another needed study would be about the relationships between data entry and the user’s task

flow, and investigate what we can infer about a user’s other activities based on their text entry

behaviors, and vice versa. Finally, the resulting knowledge could guide the design of novel systems

and interaction techniques to better support users’ tasks on smartphones.

182

BIBLIOGRAPHY

Bibliography

[1] Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014. CommandSpace: Modeling the Relationships Between
Tasks, Descriptions and Features. In Proceedings of the 27th Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). ACM, New York, NY, USA, 167–176. DOI:http://dx.doi.org/10.1145/
2642918.2647395

[2] Khalid Alharbi and Tom Yeh. 2015. Collect, Decompile, Extract, Stats, and Diff: Mining Design Pattern Changes
in Android Apps. In Proceedings of the 17th International Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI ’15). ACM, New York, NY, USA, 515–524. DOI:http://dx.
doi.org/10.1145/2785830.2785892

[3] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. PLOW: A Collaborative Task Learning Agent. In Proceedings of the 22Nd National
Conference on Artificial Intelligence - Volume 2 (AAAI’07). AAAI Press, Vancouver, British Columbia, Canada,
1514–1519.

[4] James F. Allen, Curry I Guinn, and Eric Horvtz. 1999. Mixed-initiative interaction. IEEE Intelligent Systems
and their Applications 14, 5 (1999), 14–23.

[5] Amazon. 2020. Alexa Design Guide. (2020). https://developer.amazon.com/en-US/docs/
alexa/alexa-design/get-started.html

[6] V. Antila, J. Polet, A. Lämsä, and J. Liikka. 2012. RoutineMaker: Towards end-user automation of daily rou-
tines using smartphones. In 2012 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops). 399–402. DOI:http://dx.doi.org/10.1109/PerComW.2012.
6197519

[7] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A Survey of Robot Learning
from Demonstration. Robot. Auton. Syst. 57, 5 (May 2009), 469–483. DOI:http://dx.doi.org/10.
1016/j.robot.2008.10.024

[8] Zahra Ashktorab, Mohit Jain, Q Vera Liao, and Justin D Weisz. 2019. Resilient Chatbots: Repair Strategy
Preferences for Conversational Breakdowns. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, 254.

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. The semantic web (2007), 722–735. http://www.
springerlink.com/index/rm32474088w54378.pdf

[10] Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell. 2016. Instructable Intelligent Personal Agent. In
Proc. The 30th AAAI Conference on Artificial Intelligence (AAAI), Vol. 4.

[11] Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink: Enabling User-Defined Deep Linking to App
Content. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’16). ACM, New York, NY, USA, 305–318. DOI:http://dx.doi.org/10.1145/
2906388.2906416

[12] Bruce W. Ballard and Alan W. Biermann. 1979. Programming in Natural Language “NLC” As a Prototype. In
Proceedings of the 1979 Annual Conference (ACM ’79). ACM, New York, NY, USA, 228–237. DOI:http:
//dx.doi.org/10.1145/800177.810072

183

http://dx.doi.org/10.1145/2642918.2647395
http://dx.doi.org/10.1145/2642918.2647395
http://dx.doi.org/10.1145/2785830.2785892
http://dx.doi.org/10.1145/2785830.2785892
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
http://dx.doi.org/10.1109/PerComW.2012.6197519
http://dx.doi.org/10.1109/PerComW.2012.6197519
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://www.springerlink.com/index/rm32474088w54378.pdf
http://www.springerlink.com/index/rm32474088w54378.pdf
http://dx.doi.org/10.1145/2906388.2906416
http://dx.doi.org/10.1145/2906388.2906416
http://dx.doi.org/10.1145/800177.810072
http://dx.doi.org/10.1145/800177.810072

BIBLIOGRAPHY

[13] Nikola Banovic, Christina Brant, Jennifer Mankoff, and Anind Dey. 2014. ProactiveTasks: The Short of Mobile
Device Use Sessions. In Proceedings of the 16th International Conference on Human-computer Interaction with
Mobile Devices & Services (MobileHCI ’14). ACM, New York, NY, USA, 243–252. DOI:http://dx.doi.
org/10.1145/2628363.2628380

[14] Nikola Banovic, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2012. Waken: Reverse Engineer-
ing Usage Information and Interface Structure from Software Videos. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (UIST ’12). ACM, New York, NY, USA, 83–92. DOI:
http://dx.doi.org/10.1145/2380116.2380129

[15] Louise Barkhuus and Valerie E. Polichar. 2011. Empowerment Through Seamfulness: Smart Phones in Everyday
Life. Personal Ubiquitous Comput. 15, 6 (Aug. 2011), 629–639. DOI:http://dx.doi.org/10.1007/
s00779-010-0342-4

[16] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. 2016. Ringer: Web Automation by Demon-
stration. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 748–764. DOI:
http://dx.doi.org/10.1145/2983990.2984020

[17] Agathe Battestini, Vidya Setlur, and Timothy Sohn. 2010. A Large Scale Study of Text-messaging Use. In
Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI ’10). ACM, New York, NY, USA, 229–238. DOI:http://dx.doi.org/10.1145/
1851600.1851638

[18] Richard Bellman. 1966. Dynamic Programming. Science 153, 3731 (1966), 34–37. DOI:http://dx.doi.
org/10.1126/science.153.3731.34

[19] Erin Beneteau, Olivia K. Richards, Mingrui Zhang, Julie A. Kientz, Jason Yip, and Alexis Hiniker. 2019.
Communication Breakdowns Between Families and Alexa. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA, Article 243, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300473

[20] Yoshua Bengio. 2009. Learning deep architectures for AI. Now Publishers Inc.

[21] Kathleen Benitez and Bradley Malin. 2010. Evaluating re-identification risks with respect to the HIPAA privacy
rule. Journal of the American Medical Informatics Association 17, 2 (2010), 169–177.

[22] Frank Bentley, Chris Luvogt, Max Silverman, Rushani Wirasinghe, Brooke White, and Danielle Lottridge. 2018.
Understanding the Long-Term Use of Smart Speaker Assistants. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2, 3, Article Article 91 (Sept. 2018), 24 pages. DOI:http://dx.doi.org/10.1145/3264901

[23] Frank R. Bentley, S. Tejaswi Peesapati, and Karen Church. 2016. ”I Thought She Would Like to Read It”:
Exploring Sharing Behaviors in the Context of Declining Mobile Web Use. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 1893–1903. DOI:
http://dx.doi.org/10.1145/2858036.2858056

[24] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing. 1533–1544.

[25] Lawrence Bergman, Vittorio Castelli, Tessa Lau, and Daniel Oblinger. 2005. DocWizards: A System for Author-
ing Follow-me Documentation Wizards. In Proceedings of the 18th Annual ACM Symposium on User Interface
Software and Technology (UIST ’05). ACM, New York, NY, USA, 191–200. DOI:http://dx.doi.org/
10.1145/1095034.1095067

[26] Alan W. Biermann. 1983. Natural Language Programming. In Computer Program Synthesis Methodologies
(NATO Advanced Study Institutes Series), Alan W. Biermann and Gerard Guiho (Eds.). Springer Netherlands,
335–368.

[27] Jeffrey P. Bigham, Tessa Lau, and Jeffrey Nichols. 2009. Trailblazer: Enabling Blind Users to Blaze Trails
through the Web. In Proceedings of the 14th International Conference on Intelligent User Interfaces (IUI ’09).
ACM, New York, NY, USA, 177–186. DOI:http://dx.doi.org/10.1145/1502650.1502677

184

http://dx.doi.org/10.1145/2628363.2628380
http://dx.doi.org/10.1145/2628363.2628380
http://dx.doi.org/10.1145/2380116.2380129
http://dx.doi.org/10.1007/s00779-010-0342-4
http://dx.doi.org/10.1007/s00779-010-0342-4
http://dx.doi.org/10.1145/2983990.2984020
http://dx.doi.org/10.1145/1851600.1851638
http://dx.doi.org/10.1145/1851600.1851638
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1145/3290605.3300473
http://dx.doi.org/10.1145/3264901
http://dx.doi.org/10.1145/2858036.2858056
http://dx.doi.org/10.1145/1095034.1095067
http://dx.doi.org/10.1145/1095034.1095067
http://dx.doi.org/10.1145/1502650.1502677

BIBLIOGRAPHY

[28] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Robot programming by demonstra-
tion. In Springer handbook of robotics. Springer, 1371–1394. http://link.springer.com/10.1007/
978-3-540-30301-5_60

[29] Michael Blackstock and Rodger Lea. 2014. IoT interoperability: A hub-based approach. In Internet of
Things (IOT), 2014 International Conference on the. IEEE, 79–84. http://ieeexplore.ieee.org/
abstract/document/7030119/

[30] Daniel G Bobrow, Ronald M Kaplan, Martin Kay, Donald A Norman, Henry Thompson, and Terry Winograd.
1977. GUS, a frame-driven dialog system. Artificial intelligence 8, 2 (1977), 155–173.

[31] C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi. 2008. End-user programming in the wild: A field study
of CoScripter scripts. In 2008 IEEE Symposium on Visual Languages and Human-Centric Computing. 39–46.
DOI:http://dx.doi.org/10.1109/VLHCC.2008.4639056

[32] Dan Bohus and Alexander I. Rudnicky. 2005. Sorry, I didn’t catch that!-An investigation of non-understanding
errors and recovery strategies. In 6th SIGdial Workshop on Discourse and Dialogue.

[33] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller. 2005. Automation and cus-
tomization of rendered web pages. In Proceedings of the 18th annual ACM symposium on User interface software
and technology. ACM, 163–172. http://dl.acm.org/citation.cfm?id=1095062

[34] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. ACM, 1247–1250. http://dl.acm.org/citation.cfm?
id=1376746

[35] Richard A. Bolt. 1980. “Put-that-there”: Voice and Gesture at the Graphics Interface. In Proceedings of the 7th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’80). ACM, New York, NY,
USA, 262–270.

[36] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. 2019.
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. ACL, Florence, Italy, 4762–4779. DOI:
http://dx.doi.org/10.18653/v1/P19-1470

[37] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. ACL, Lisbon, Portugal, 632–642. DOI:http://dx.doi.org/10.18653/
v1/D15-1075

[38] Susan E. Brennan. 1991. Conversation with and through computers. User Modeling and User-Adapted Interac-
tion 1, 1 (01 Mar 1991), 67–86. DOI:http://dx.doi.org/10.1007/BF00158952

[39] Susan E Brennan. 1998. The grounding problem in conversations with and through computers. Social and
cognitive approaches to interpersonal communication (1998), 201–225.

[40] Barry Brown, Moira McGregor, and Eric Laurier. 2013. iPhone in Vivo: Video Analysis of Mobile Device
Use. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1031–1040. DOI:http://dx.doi.org/10.1145/2470654.2466132

[41] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and others. 2020. Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165 (2020).

[42] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, and Gernot Bauer. 2011. Falling Asleep
with Angry Birds, Facebook and Kindle: A Large Scale Study on Mobile Application Usage. In Proceedings of
the 13th International Conference on Human Computer Interaction with Mobile Devices and Services (Mo-
bileHCI ’11). ACM, New York, NY, USA, 47–56. DOI:http://dx.doi.org/10.1145/2037373.
2037383

185

http://link.springer.com/10.1007/978-3-540-30301-5_60
http://link.springer.com/10.1007/978-3-540-30301-5_60
http://ieeexplore.ieee.org/abstract/document/7030119/
http://ieeexplore.ieee.org/abstract/document/7030119/
http://dx.doi.org/10.1109/VLHCC.2008.4639056
http://dl.acm.org/citation.cfm?id=1095062
http://dl.acm.org/citation.cfm?id=1376746
http://dl.acm.org/citation.cfm?id=1376746
http://dx.doi.org/10.18653/v1/P19-1470
http://dx.doi.org/10.18653/v1/D15-1075
http://dx.doi.org/10.18653/v1/D15-1075
http://dx.doi.org/10.1007/BF00158952
http://dx.doi.org/10.1145/2470654.2466132
http://dx.doi.org/10.1145/2037373.2037383
http://dx.doi.org/10.1145/2037373.2037383

BIBLIOGRAPHY

[43] Juan Pablo Carrascal and Karen Church. 2015. An In-Situ Study of Mobile App & Mobile Search Interactions.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 2739–2748. DOI:http://dx.doi.org/10.1145/2702123.2702486

[44] Pew Research Center. 2015. Communications Technology in Emerging and De-
veloping Nations. (2015). http://www.pewglobal.org/2015/03/19/
1-communications-technology-in-emerging-and-developing-nations/

[45] Pew Research Center. 2019. Demographics of Mobile Device Ownership and Adoption in the United States.
(2019). https://www.pewresearch.org/internet/fact-sheet/mobile/

[46] Vageesh Chandramouli, Abhijnan Chakraborty, Vishnu Navda, Saikat Guha, Venkata Padmanabhan, and Ra-
machandran Ramjee. 2015. Insider: Towards breaking down mobile app silos. In TRIOS Workshop held in
conjunction with the SIGOPS SOSP 2015.

[47] Kerry Shih-Ping Chang, Brad A. Myers, Gene M. Cahill, Soumya Simanta, Edwin Morris, and Grace Lewis.
2013a. Improving Structured Data Entry on Mobile Devices. In Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology (UIST ’13). ACM, New York, NY, USA, 75–84. DOI:http:
//dx.doi.org/10.1145/2501988.2502043

[48] K. S. P. Chang, B. A. Myers, G. M. Cahill, S. Simanta, E. Morris, and G. Lewis. 2013b. A plug-in architecture for
connecting to new data sources on mobile devices. In 2013 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 51–58. DOI:http://dx.doi.org/10.1109/VLHCC.2013.6645243

[49] Sarah Chasins and Rastislav Bodik. 2017. Skip blocks: reusing execution history to accelerate web scripts.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 51.

[50] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web
Data. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST ’18).
ACM, New York, NY, USA, 963–975. DOI:http://dx.doi.org/10.1145/3242587.3242661

[51] Chen Chen, Simon T. Perrault, Shengdong Zhao, and Wei Tsang Ooi. 2014. BezelCopy: An Efficient Cross-
application Copy-paste Technique for Touchscreen Smartphones. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces (AVI ’14). ACM, New York, NY, USA, 185–192. DOI:
http://dx.doi.org/10.1145/2598153.2598162

[52] Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason I. Hong. 2019. MessageOnTap: A Suggestive In-
terface to Facilitate Messaging-Related Tasks. In Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems (CHI ’19). ACM, New York, NY, USA, Article Paper 575, 14 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300805

[53] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang. 2020.
Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning. In
Proceedings of the 42nd International Conference on Software Engineering (ICSE ’20).

[54] Jiun-Hung Chen and Daniel S. Weld. 2008. Recovering from Errors During Programming by Demonstration.
In Proceedings of the 13th International Conference on Intelligent User Interfaces (IUI ’08). ACM, New York,
NY, USA, 159–168. DOI:http://dx.doi.org/10.1145/1378773.1378794

[55] Merav Chkroun and Amos Azaria. 2019. LIA: A Virtual Assistant that Can Be Taught New Commands by
Speech. International Journal of Human–Computer Interaction (2019), 1–12.

[56] Janghee Cho and Emilee Rader. 2020. The Role of Conversational Grounding in Supporting Symbiosis Between
People and Digital Assistants. Proc. ACM Hum.-Comput. Interact. 4, CSCW1 (May 2020).

[57] Karen Church and Rodrigo de Oliveira. 2013. What’s Up with Whatsapp?: Comparing Mobile Instant Messaging
Behaviors with Traditional SMS. In Proceedings of the 15th International Conference on Human-computer
Interaction with Mobile Devices and Services (MobileHCI ’13). ACM, New York, NY, USA, 352–361. DOI:
http://dx.doi.org/10.1145/2493190.2493225

186

http://dx.doi.org/10.1145/2702123.2702486
http://www.pewglobal.org/2015/03/19/1-communications-technology-in-emerging-and-developing-nations/
http://www.pewglobal.org/2015/03/19/1-communications-technology-in-emerging-and-developing-nations/
https://www.pewresearch.org/internet/fact-sheet/mobile/
http://dx.doi.org/10.1145/2501988.2502043
http://dx.doi.org/10.1145/2501988.2502043
http://dx.doi.org/10.1109/VLHCC.2013.6645243
http://dx.doi.org/10.1145/3242587.3242661
http://dx.doi.org/10.1145/2598153.2598162
http://dx.doi.org/10.1145/3290605.3300805
http://dx.doi.org/10.1145/1378773.1378794
http://dx.doi.org/10.1145/2493190.2493225

BIBLIOGRAPHY

[58] Karen Church, Denzil Ferreira, Nikola Banovic, and Kent Lyons. 2015. Understanding the Challenges of Mobile
Phone Usage Data. In Proceedings of the 17th International Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI ’15). ACM, New York, NY, USA, 504–514. DOI:http://dx.
doi.org/10.1145/2785830.2785891

[59] Karen Church and Nuria Oliver. 2011. Understanding Mobile Web and Mobile Search Use in Today’s Dynamic
Mobile Landscape. In Proceedings of the 13th International Conference on Human Computer Interaction with
Mobile Devices and Services (MobileHCI ’11). ACM, New York, NY, USA, 67–76. DOI:http://dx.doi.
org/10.1145/2037373.2037385

[60] Herbert H. Clark and Susan E. Brennan. 1991. Grounding in communication. In Perspectives on socially shared
cognition. APA, Washington, DC, US, 127–149. DOI:http://dx.doi.org/10.1037/10096-006

[61] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement
20, 1 (1960), 37–46.

[62] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti, Ali Zand, Christopher Kruegel,
and Giovanni Vigna. 2017. Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through Differential
Analysis.. In NDSS.

[63] J. Coutaz and J. L. Crowley. 2016. A First-Person Experience with End-User Development for Smart Homes.
IEEE Pervasive Computing 15, 2 (April 2016), 26–39. DOI:http://dx.doi.org/10.1109/MPRV.
2016.24

[64] Benjamin R. Cowan, Nadia Pantidi, David Coyle, Kellie Morrissey, Peter Clarke, Sara Al-Shehri, David Ear-
ley, and Natasha Bandeira. 2017. ”What Can I Help You with?”: Infrequent Users’ Experiences of Intelli-
gent Personal Assistants. In Proceedings of the 19th International Conference on Human-Computer Interaction
with Mobile Devices and Services (MobileHCI ’17). ACM, New York, NY, USA, Article 43, 12 pages. DOI:
http://dx.doi.org/10.1145/3098279.3098539

[65] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming by demonstration. MIT press.

[66] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and
Ranjitha Kumar. 2017. Rico: A Mobile App Dataset for Building Data-Driven Design Applications. In Proceed-
ings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST ’17). ACM, New
York, NY, USA, 845–854. DOI:http://dx.doi.org/10.1145/3126594.3126651

[67] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Mining Mobile Apps. In Proceed-
ings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16). ACM, New York,
NY, USA, 767–776. DOI:http://dx.doi.org/10.1145/2984511.2984581

[68] A. Demeure, S. Caffiau, E. Elias, and C. Roux. 2015. Building and Using Home Automation Systems: A Field
Study. In End-User Development (Lecture Notes in Computer Science), Paloma Dı́az, Volkmar Pipek, Carmelo
Ardito, Carlos Jensen, Ignacio Aedo, and Alexander Boden (Eds.). Springer International Publishing, 125–140.
DOI:http://dx.doi.org/10.1007/978-3-319-18425-8_9

[69] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). ACL, Minneapolis, Minnesota, 4171–4186. DOI:http://dx.doi.org/10.18653/v1/
N19-1423

[70] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a CAPpella: programming by
demonstration of context-aware applications. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 33–40. http://dl.acm.org/citation.cfm?id=985697

[71] Tilman Dingler and Martin Pielot. 2015. I’Ll Be There for You: Quantifying Attentiveness Towards Mobile
Messaging. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’15). ACM, New York, NY, USA, 1–5. DOI:http://dx.doi.org/10.
1145/2785830.2785840

187

http://dx.doi.org/10.1145/2785830.2785891
http://dx.doi.org/10.1145/2785830.2785891
http://dx.doi.org/10.1145/2037373.2037385
http://dx.doi.org/10.1145/2037373.2037385
http://dx.doi.org/10.1037/10096-006
http://dx.doi.org/10.1109/MPRV.2016.24
http://dx.doi.org/10.1109/MPRV.2016.24
http://dx.doi.org/10.1145/3098279.3098539
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/2984511.2984581
http://dx.doi.org/10.1007/978-3-319-18425-8_9
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dl.acm.org/citation.cfm?id=985697
http://dx.doi.org/10.1145/2785830.2785840
http://dx.doi.org/10.1145/2785830.2785840

BIBLIOGRAPHY

[72] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing Advanced Behaviors Using Pixel-based Reverse
Engineering of Interface Structure. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’10). ACM, New York, NY, USA, 1525–1534. DOI:http://dx.doi.org/10.1145/
1753326.1753554

[73] Morgan Dixon, Daniel Leventhal, and James Fogarty. 2011. Content and Hierarchy in Pixel-based Methods
for Reverse Engineering Interface Structure. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). ACM, New York, NY, USA, 969–978. DOI:http://dx.doi.org/10.
1145/1978942.1979086

[74] Morgan Dixon, Alexander Nied, and James Fogarty. 2014. Prefab Layers and Prefab Annotations: Extensible
Pixel-based Interpretation of Graphical Interfaces. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology (UIST ’14). ACM, New York, NY, USA, 221–230. DOI:http://dx.
doi.org/10.1145/2642918.2647412

[75] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Cracking the Cocoa Nut: User Inter-
face Programming at Runtime. In Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, New York, NY, USA, 225–234. DOI:http://dx.doi.org/10.1145/
2047196.2047226

[76] W. Keith Edwards and Rebecca E. Grinter. 2001. At Home with Ubiquitous Computing: Seven Challenges.
In Proceedings of the 3rd International Conference on Ubiquitous Computing (UbiComp ’01). Springer-Verlag,
London, UK, UK, 256–272. http://dl.acm.org/citation.cfm?id=647987.741327

[77] Khaled El Emam, Elizabeth Jonker, Luk Arbuckle, and Bradley Malin. 2011. A systematic review of re-
identification attacks on health data. PloS one 6, 12 (2011), e28071.

[78] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. 2014. TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[79] Sara Evensen, Chang Ge, and Cagatay Demiralp. 2020. Ruler: Data Programming by Demonstration for Doc-
ument Labeling. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association
for Computational Linguistics, Online, 1996–2005. DOI:http://dx.doi.org/10.18653/v1/2020.
findings-emnlp.181

[80] Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S. Bernstein. 2018. Iris: A Conver-
sational Agent for Complex Tasks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, 473:1–473:12. DOI:http://dx.doi.org/10.1145/
3173574.3174047

[81] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2020. Small-Step
Live Programming by Example. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (UIST ’20). ACM, New York, NY, USA, 614–626. DOI:http://dx.doi.org/10.1145/
3379337.3415869

[82] Earlence Fernandes, Oriana Riva, and Suman Nath. 2016. Appstract: On-the-fly App Content Semantics with
Better Privacy. In Proceedings of the 22Nd Annual International Conference on Mobile Computing and Net-
working (MobiCom ’16). ACM, New York, NY, USA, 361–374. DOI:http://dx.doi.org/10.1145/
2973750.2973770

[83] Denzil Ferreira, Jorge Goncalves, Vassilis Kostakos, Louise Barkhuus, and Anind K. Dey. 2014. Contextual
Experience Sampling of Mobile Application Micro-usage. In Proceedings of the 16th International Conference
on Human-computer Interaction with Mobile Devices & Services (MobileHCI ’14). ACM, New York, NY, USA,
91–100. DOI:http://dx.doi.org/10.1145/2628363.2628367

[84] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. 2000. Integrating information appliances into an interactive
workspace. IEEE Computer Graphics and Applications 20, 3 (May 2000), 54–65. DOI:http://dx.doi.
org/10.1109/38.844373

188

http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/10.1145/1978942.1979086
http://dx.doi.org/10.1145/1978942.1979086
http://dx.doi.org/10.1145/2642918.2647412
http://dx.doi.org/10.1145/2642918.2647412
http://dx.doi.org/10.1145/2047196.2047226
http://dx.doi.org/10.1145/2047196.2047226
http://dl.acm.org/citation.cfm?id=647987.741327
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.181
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.181
http://dx.doi.org/10.1145/3173574.3174047
http://dx.doi.org/10.1145/3173574.3174047
http://dx.doi.org/10.1145/3379337.3415869
http://dx.doi.org/10.1145/3379337.3415869
http://dx.doi.org/10.1145/2973750.2973770
http://dx.doi.org/10.1145/2973750.2973770
http://dx.doi.org/10.1145/2628363.2628367
http://dx.doi.org/10.1109/38.844373
http://dx.doi.org/10.1109/38.844373

BIBLIOGRAPHY

[85] Martin R. Frank and James D. Foley. 1994. A Pure Reasoning Engine for Programming by Demonstration. In
Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology (UIST ’94). ACM,
New York, NY, USA, 95–101. DOI:http://dx.doi.org/10.1145/192426.192466

[86] C. Ailie Fraser, Tricia J. Ngoon, Mira Dontcheva, and Scott Klemmer. 2019. RePlay: Contextually Presenting
Learning Videos Across Software Applications. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (CHI ’19). ACM, New York, NY, USA, Article 297, 13 pages. DOI:http://dx.doi.
org/10.1145/3290605.3300527

[87] Vittorio Fuccella, Poika Isokoski, and Benoit Martin. 2013. Gestures and Widgets: Performance in Text Edit-
ing on Multi-touch Capable Mobile Devices. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13). ACM, New York, NY, USA, 2785–2794. DOI:http://dx.doi.org/10.
1145/2470654.2481385

[88] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE: automatically generating user interfaces. In Proceedings
of the 9th international conference on Intelligent user interfaces. ACM, 93–100.

[89] Kiev Gama, Lionel Touseau, and Didier Donsez. 2012. Combining heterogeneous service technologies for
building an Internet of Things middleware. Computer Communications 35, 4 (2012), 405–417. http://www.
sciencedirect.com/science/article/pii/S0140366411003586

[90] Michelle Gantt and Bonnie A. Nardi. 1992. Gardeners and Gurus: Patterns of Cooperation Among CAD Users.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 107–117. DOI:http://dx.doi.org/10.1145/142750.142767

[91] Xiaofeng Gao, Ran Gong, Yizhou Zhao, Shu Wang, Tianmin Shu, and Song-Chun Zhu. 2020. Joint Mind Model-
ing for Explanation Generation in Complex Human-Robot Collaborative Tasks. In 2020 29th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN). IEEE, 1119–1126.

[92] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. Personalization of Context-
Dependent Applications Through Trigger-Action Rules. ACM Trans. Comput.-Hum. Interact. 24, 2, Article
14 (April 2017), 33 pages. DOI:http://dx.doi.org/10.1145/3057861

[93] Kevin A Gluck and John E Laird. 2019. Interactive Task Learning: Humans, Robots, and Agents Acquiring New
Tasks through Natural Interactions. Vol. 26. MIT Press.

[94] Cristian González Garcı́a, B. Cristina Pelayo G-Bustelo, Jordán Pascual Espada, and Guillermo Cueva-
Fernandez. 2014. Midgar: Generation of heterogeneous objects interconnecting applications. A Domain Spe-
cific Language proposal for Internet of Things scenarios. Computer Networks 64 (May 2014), 143–158. DOI:
http://dx.doi.org/10.1016/j.comnet.2014.02.010

[95] Google. 2016. Android Developer Reference - Activity. (2016). http://developer.android.com/
reference/android/app/Activity.html

[96] Google. 2019. Advertising ID |Android Developers. (2019). http://www.androiddocs.com/google/
play-services/id.html

[97] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against
app descriptions. In Proceedings of the 36th International Conference on Software Engineering (ICSE ’14).
1025–1035.

[98] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo Igarashi. 2009. Generating Photo
Manipulation Tutorials by Demonstration. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09). ACM, New
York, NY, USA, 66:1–66:9. DOI:http://dx.doi.org/10.1145/1576246.1531372

[99] Thomas RG Green. 1989. Cognitive dimensions of notations. People and computers V (1989), 443–460.
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&
dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_
r0--XLyLr6718

189

http://dx.doi.org/10.1145/192426.192466
http://dx.doi.org/10.1145/3290605.3300527
http://dx.doi.org/10.1145/3290605.3300527
http://dx.doi.org/10.1145/2470654.2481385
http://dx.doi.org/10.1145/2470654.2481385
http://www.sciencedirect.com/science/article/pii/S0140366411003586
http://www.sciencedirect.com/science/article/pii/S0140366411003586
http://dx.doi.org/10.1145/142750.142767
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1016/j.comnet.2014.02.010
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.androiddocs.com/google/play-services/id.html
http://www.androiddocs.com/google/play-services/id.html
http://dx.doi.org/10.1145/1576246.1531372
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718

BIBLIOGRAPHY

[100] T. R. G. Green and M. Petre. 1996. Usability Analysis of Visual Programming Environments: A ’Cognitive
Dimensions’ Framework. Journal of Visual Languages & Computing 7, 2 (June 1996), 131–174. DOI:http:
//dx.doi.org/10.1006/jvlc.1996.0009

[101] H Paul Grice, Peter Cole, Jerry Morgan, and others. 1975. Logic and conversation. 1975 (1975), 41–58.

[102] Jonathan Grudin and Richard Jacques. 2019. Chatbots, humbots, and the quest for artificial general intelligence.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–11.

[103] Dominique Guinard, Vlad Trifa, Thomas Pham, and Olivier Liechti. 2009. Towards physical mashups in
the web of things. In Networked Sensing Systems (INSS), 2009 Sixth International Conference on. IEEE, 1–4.
http://ieeexplore.ieee.org/abstract/document/5409925/

[104] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.
1926423

[105] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute Schmid, and Ben-
jamin Zorn. 2015. Inductive Programming Meets the Real World. Commun. ACM 58, 11 (Oct. 2015), 90–99.
DOI:http://dx.doi.org/10.1145/2736282

[106] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, and others. 2017. Program synthesis. Foundations and
Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[107] Anhong Guo, Junhan Kong, Michael Rivera, Frank F Xu, and Jeffrey P Bigham. 2019. StateLens: A Reverse
Engineering Solution for Making Existing Dynamic Touchscreens Accessible. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (UIST 2019). 15.

[108] Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan. 2018. DialSQL: Dialogue Based Structured Query Gen-
eration. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). ACL, Melbourne, Australia, 1339–1349. DOI:http://dx.doi.org/10.18653/v1/
P18-1124

[109] Daniel C. Halbert. 1993. SmallStar: programming by demonstration in the desktop metaphor. In Watch what I
do. MIT Press, 103–123.

[110] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. 2007. Programming by a Sample: Rapidly
Creating Web Applications with D.Mix. In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST ’07). ACM, New York, NY, USA, 241–250. DOI:http://dx.doi.org/
10.1145/1294211.1294254

[111] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’99). ACM, New York, NY, USA, 159–166. DOI:http:
//dx.doi.org/10.1145/302979.303030

[112] Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-Based User Interface Retrieval. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM, New York,
NY, USA, 1–10. DOI:http://dx.doi.org/10.1145/3290605.3300334

[113] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in Trigger-Action Programming.
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp ’15). ACM, New York, NY, USA, 215–225. DOI:http://dx.doi.org/10.1145/2750858.
2805830

[114] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu Zhang, and Guofei Jiang. 2015.
SUPOR: Precise and Scalable Sensitive User Input Detection for Android Apps. In 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association, Washington, D.C., 977–992. https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/huang

190

http://dx.doi.org/10.1006/jvlc.1996.0009
http://dx.doi.org/10.1006/jvlc.1996.0009
http://ieeexplore.ieee.org/abstract/document/5409925/
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/2736282
http://dx.doi.org/10.18653/v1/P18-1124
http://dx.doi.org/10.18653/v1/P18-1124
http://dx.doi.org/10.1145/1294211.1294254
http://dx.doi.org/10.1145/1294211.1294254
http://dx.doi.org/10.1145/302979.303030
http://dx.doi.org/10.1145/302979.303030
http://dx.doi.org/10.1145/3290605.3300334
http://dx.doi.org/10.1145/2750858.2805830
http://dx.doi.org/10.1145/2750858.2805830
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/huang
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/huang

BIBLIOGRAPHY

[115] Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P. Bigham. 2016. InstructableCrowd: Creating IF-THEN
Rules via Conversations with the Crowd. ACM Press, 1555–1562. DOI:http://dx.doi.org/10.1145/
2851581.2892502

[116] Connor Huff and Dustin Tingley. 2015. “Who are these people?” Evaluating the demographic characteristics
and political preferences of MTurk survey respondents. Research & Politics 2, 3 (2015), 2053168015604648.

[117] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1986. Direct manipulation interfaces. (1986).

[118] Soshi Iba, Christiaan J. J. Paredis, and Pradeep K. Khosla. 2005. Interactive Multimodal Robot Programming.
The International Journal of Robotics Research 24, 1 (Jan. 2005), 83–104. DOI:http://dx.doi.org/
10.1177/0278364904049250

[119] IFTTT. 2016. IFTTT: connects the apps you love. (2016). https://ifttt.com/

[120] Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J. Brostow. 2019. HILC: Domain-Independent
PbD System Via Computer Vision and Follow-Up Questions. ACM Trans. Interact. Intell. Syst. 9, 2-3, Article
16 (March 2019), 27 pages. DOI:http://dx.doi.org/10.1145/3234508

[121] Mohit Jain, Pratyush Kumar, Ishita Bhansali, Q Vera Liao, Khai Truong, and Shwetak Patel. 2018a. FarmChat:
A Conversational Agent to Answer Farmer Queries. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 4 (2018), 170.

[122] Mohit Jain, Pratyush Kumar, Ramachandra Kota, and Shwetak N Patel. 2018b. Evaluating and informing the
design of chatbots. In Proceedings of the 2018 Designing Interactive Systems Conference. ACM, 895–906.

[123] Chakajkla Jesdabodi and Walid Maalej. 2015. Understanding Usage States on Mobile Devices. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). ACM,
New York, NY, USA, 1221–1225. DOI:http://dx.doi.org/10.1145/2750858.2805837

[124] Jiepu Jiang, Wei Jeng, and Daqing He. 2013. How do users respond to voice input errors?: lexical and pho-
netic query reformulation in voice search. In Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM, 143–152.

[125] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew Fredrikson, Yuvraj Agarwal,
and Jason I Hong. 2018. Why Are They Collecting My Data? Inferring the Purposes of Network Traffic in
Mobile Apps. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4
(2018), 1–27.

[126] Simon L. Jones, Denzil Ferreira, Simo Hosio, Jorge Goncalves, and Vassilis Kostakos. 2015. Revisitation
Analysis of Smartphone App Use. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA, 1197–1208. DOI:http://dx.
doi.org/10.1145/2750858.2807542

[127] Daniel Jurafsky and James H Martin. 2019. Dialogue Systems and Chatbots. Speech and Language Processing
(2019).

[128] Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers, Gonzalo Ramos, Kathy Lee, and John C. Tang. 2010. Mobile
Taskflow in Context: A Screenshot Study of Smartphone Usage. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA, 2009–2018. DOI:http:
//dx.doi.org/10.1145/1753326.1753631

[129] Amy K. Karlson, Brian R. Meyers, Andy Jacobs, Paul Johns, and Shaun K. Kane. 2009. Working overtime:
Patterns of smartphone and PC usage in the day of an information worker. In Pervasive computing. Springer,
398–405. http://link.springer.com/chapter/10.1007/978-3-642-01516-8_27

[130] Tejaswi Kasturi, Haojian Jin, Aasish Pappu, Sungjin Lee, Beverley Harrison, Ramana Murthy, and Amanda
Stent. 2015. The Cohort and Speechify Libraries for Rapid Construction of Speech Enabled Applications for
Android. In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
441–443.

191

http://dx.doi.org/10.1145/2851581.2892502
http://dx.doi.org/10.1145/2851581.2892502
http://dx.doi.org/10.1177/0278364904049250
http://dx.doi.org/10.1177/0278364904049250
https://ifttt.com/
http://dx.doi.org/10.1145/3234508
http://dx.doi.org/10.1145/2750858.2805837
http://dx.doi.org/10.1145/2750858.2807542
http://dx.doi.org/10.1145/2750858.2807542
http://dx.doi.org/10.1145/1753326.1753631
http://dx.doi.org/10.1145/1753326.1753631
http://link.springer.com/chapter/10.1007/978-3-642-01516-8_27

BIBLIOGRAPHY

[131] Artem Katasonov, Olena Kaykova, Oleksiy Khriyenko, Sergiy Nikitin, and Vagan Y. Terziyan. 2008. Smart
Semantic Middleware for the Internet of Things. ICINCO-ICSO 8 (2008), 169–178. https://pdfs.
semanticscholar.org/4665/130fd1236d7cf5636b188ca7adcc4fd8d631.pdf

[132] Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005. Learning to Transform Natural to Formal Lan-
guages. In Proceedings of the 20th National Conference on Artificial Intelligence - Volume 3 (AAAI’05). AAAI
Press, Pittsburgh, Pennsylvania, 1062–1068. http://dl.acm.org/citation.cfm?id=1619499.
1619504

[133] Simon Khalaf. 2015. Seven Years Into The Mobile Revolution: Content is King. . . Again. (2015).

[134] Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y. Ko, and Sung-Ju Lee. 2019. X-Droid: A Quick and
Easy Android Prototyping Framework with a Single-App Illusion. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (UIST ’19). ACM, New York, NY, USA, 95–108. DOI:
http://dx.doi.org/10.1145/3332165.3347890

[135] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[136] James Kirk, Aaron Mininger, and John Laird. 2016. Learning task goals interactively with visual demonstra-
tions. Biologically Inspired Cognitive Architectures 18 (2016), 1–8.

[137] James R. Kirk and John E. Laird. 2019. Learning Hierarchical Symbolic Representations to Support Interactive
Task Learning and Knowledge Transfer. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. 6095–6102. DOI:http://dx.doi.org/10.24963/ijcai.2019/
844

[138] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi,
Joseph Lawrance, Henry Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43, 3 (April
2011), 21:1–21:44. DOI:http://dx.doi.org/10.1145/1922649.1922658

[139] Per Ola Kristensson, Stephen Brewster, James Clawson, Mark Dunlop, Leah Findlater, Poika Isokoski, Benoı̂t
Martin, Antti Oulasvirta, Keith Vertanen, and Annalu Waller. 2013. Grand Challenges in Text Entry. In CHI
’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’13). ACM, New York, NY, USA,
3315–3318. DOI:http://dx.doi.org/10.1145/2468356.2479675

[140] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad, Scott R. Klemmer, and
Jerry O. Talton. 2013. Webzeitgeist: Design Mining the Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 3083–3092. DOI:http://
dx.doi.org/10.1145/2470654.2466420

[141] Kazutaka Kurihara, Masataka Goto, Jun Ogata, and Takeo Igarashi. 2006. Speech pen: predictive handwrit-
ing based on ambient multimodal recognition. In Proceedings of the SIGCHI conference on human factors in
computing systems. ACM, 851–860.

[142] Igor Labutov, Shashank Srivastava, and Tom Mitchell. 2018. LIA: A natural language programmable personal
assistant. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. 145–150.

[143] J. E. Laird, K. Gluck, J. Anderson, K. D. Forbus, O. C. Jenkins, C. Lebiere, D. Salvucci, M. Scheutz, A.
Thomaz, G. Trafton, R. E. Wray, S. Mohan, and J. R. Kirk. 2017. Interactive Task Learning. IEEE Intelligent
Systems 32, 4 (2017), 6–21. DOI:http://dx.doi.org/10.1109/MIS.2017.3121552

[144] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data.
Biometrics (1977), 159–174.

[145] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agarwala, Jason Linder, and Eytan
Adar. 2013. PixelTone: A Multimodal Interface for Image Editing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 2185–2194. DOI:http:
//dx.doi.org/10.1145/2470654.2481301

192

https://pdfs.semanticscholar.org/4665/130fd1236d7cf5636b188ca7adcc4fd8d631.pdf
https://pdfs.semanticscholar.org/4665/130fd1236d7cf5636b188ca7adcc4fd8d631.pdf
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://dx.doi.org/10.1145/3332165.3347890
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.24963/ijcai.2019/844
http://dx.doi.org/10.24963/ijcai.2019/844
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/2468356.2479675
http://dx.doi.org/10.1145/2470654.2466420
http://dx.doi.org/10.1145/2470654.2466420
http://dx.doi.org/10.1109/MIS.2017.3121552
http://dx.doi.org/10.1145/2470654.2481301
http://dx.doi.org/10.1145/2470654.2481301

BIBLIOGRAPHY

[146] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons Learned for Usable AI. AI Mag-
azine 30, 4 (Oct. 2009), 65–67. http://www.aaai.org/ojs/index.php/aimagazine/article/
view/2262

[147] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2001. Your Wish is My Command. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, Chapter Learning Repetitive Text-editing Procedures
with SMARTedit, 209–226. http://dl.acm.org/citation.cfm?id=369505.369519

[148] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2003. Programming by Demonstration
Using Version Space Algebra. Mach. Learn. 53, 1-2 (Oct. 2003), 111–156. DOI:http://dx.doi.org/
10.1023/A:1025671410623

[149] Chunggi Lee, Sanghoon Kim, Dongyun Han, Hongjun Yang, Young-Woo Park, Bum Chul Kwon, and Sungahn
Ko. 2020a. GUIComp: A GUI Design Assistant with Real-Time, Multi-Faceted Feedback. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, New York, NY, USA, 1–13.
DOI:http://dx.doi.org/10.1145/3313831.3376327

[150] Hsin-Ying Lee, Weilong Yang, Lu Jiang, Madison Le, Irfan Essa, Haifeng Gong, and Ming-Hsuan Yang. 2020b.
Neural Design Network: Graphic Layout Generation with Constraints. European Conference on Computer
Vision (ECCV) (2020).

[151] Tak Yeon Lee, Casey Dugan, and Benjamin B. Bederson. 2017. Towards Understanding Human Mistakes of
Programming by Example: An Online User Study. In Proceedings of the 22Nd International Conference on
Intelligent User Interfaces (IUI ’17). ACM, New York, NY, USA, 257–261. DOI:http://dx.doi.org/
10.1145/3025171.3025203

[152] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter: Automating & Sharing
How-to Knowledge in the Enterprise. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’08). ACM, New York, NY, USA, 1719–1728. DOI:http://dx.doi.org/10.1145/
1357054.1357323

[153] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language Interface for Relational
Databases. Proc. VLDB Endow. 8, 1 (Sept. 2014), 73–84. DOI:http://dx.doi.org/10.14778/
2735461.2735468

[154] Hao Li, Yu-Ping Wang, Jie Yin, and Gang Tan. 2019. SmartShell: Automated Shell Scripts Synthesis from
Natural Language. International Journal of Software Engineering and Knowledge Engineering 29, 02 (2019),
197–220.

[155] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s What I Did: Sharing
and Reusing Web Activity with ActionShot. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA, 723–732. DOI:http://dx.doi.org/10.
1145/1753326.1753432

[156] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. 2016. Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541 (2016).

[157] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. 2017. Adversarial Learn-
ing for Neural Dialogue Generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, 2157–2169. DOI:
http://dx.doi.org/10.18653/v1/D17-1230

[158] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2019. LayoutGAN: Synthesizing
Graphic Layouts with Vector-Wireframe Adversarial Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019).

[159] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems (CHI ’17). ACM, New York, NY, USA. DOI:http://dx.doi.org/10.1145/3025453.
3025483

193

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://dl.acm.org/citation.cfm?id=369505.369519
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1145/3313831.3376327
http://dx.doi.org/10.1145/3025171.3025203
http://dx.doi.org/10.1145/3025171.3025203
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.1145/1753326.1753432
http://dx.doi.org/10.1145/1753326.1753432
http://dx.doi.org/10.18653/v1/D17-1230
http://dx.doi.org/10.1145/3025453.3025483
http://dx.doi.org/10.1145/3025453.3025483

BIBLIOGRAPHY

[160] Toby Jia-Jun Li, Jingya Chen, Brandon Canfield, and Brad A. Myers. 2020. Privacy-Preserving Script Sharing
in GUI-Based Programming-by-Demonstration Systems. Proc. ACM Hum.-Comput. Interact. 4, CSCW1, Article
060 (May 2020), 23 pages. DOI:http://dx.doi.org/10.1145/3392869

[161] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers. 2020a. Multi-Modal Repairs
of Conversational Breakdowns in Task-Oriented Dialogs. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology (UIST 2020). ACM. DOI:http://dx.doi.org/10.1145/
3379337.3415820

[162] Toby Jia-Jun Li and Brent Hecht. 2014. WikiBrain: Making Computer Programs Smarter with Knowledge
from Wikipedia. (2014).

[163] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Tom M. Mitchell, and Brad A.
Myers. 2018. APPINITE: A Multi-Modal Interface for Specifying Data Descriptions in Programming by
Demonstration Using Verbal Instructions. In Proceedings of the 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC 2018).

[164] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A. Myers. 2017. Programming IoT Devices by Demon-
stration Using Mobile Apps. In End-User Development, Simone Barbosa, Panos Markopoulos, Fabio Paterno,
Simone Stumpf, and Stefano Valtolina (Eds.). Springer International Publishing, Cham, 3–17.

[165] Toby Jia-Jun Li, Tom Mitchell, and Brad Myers. 2020b. Interactive Task Learning from GUI-Grounded Natural
Language Instructions and Demonstrations. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (ACL 2020). ACL, 215–223. https://www.aclweb.
org/anthology/2020.acl-demos.25

[166] Toby Jia-Jun Li, Lindsay Popowski, Tom M. Mitchell, and Brad A. Myers. 2021. Screen2Vec: Semantic
Embedding of GUI Screens and GUI Components. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (CHI ’21). ACM.

[167] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell, and Brad A. Myers.
2019. PUMICE: A Multi-Modal Agent that Learns Concepts and Conditionals from Natural Language and
Demonstrations. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
(UIST 2019) (UIST 2019). ACM. DOI:http://dx.doi.org/10.1145/3332165.3347899

[168] Toby Jia-Jun Li and Oriana Riva. 2018. KITE: Building conversational bots from mobile apps. In Proceedings of
the 16th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2018). ACM.

[169] Toby Jia-Jun Li, Shilad Sen, and Brent Hecht. 2014. Leveraging Advances in Natural Language Processing to
Better Understand Tobler’s First Law of Geography. In Proceedings of the 22Nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (SIGSPATIAL ’14). ACM, New York, NY, USA,
513–516. DOI:http://dx.doi.org/10.1145/2666310.2666493

[170] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang, Matthew Fredrikson, Yuvraj Agarwal,
and Jason I. Hong. 2017. PrivacyStreams: Enabling Transparency in Personal Data Processing for Mobile
Apps. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 76 (Sept. 2017), 26 pages. DOI:
http://dx.doi.org/10.1145/3130941

[171] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020b. Mapping Natural Language In-
structions to Mobile UI Action Sequences. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. ACL, Online, 8198–8210. DOI:http://dx.doi.org/10.18653/v1/
2020.acl-main.729

[172] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020a. Widget Captioning: Gen-
erating Natural Language Description for Mobile User Interface Elements. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). ACL, Online, 5495–5510. DOI:
http://dx.doi.org/10.18653/v1/2020.emnlp-main.443

[173] Percy Liang, Michael I. Jordan, and Dan Klein. 2013. Learning dependency-based compositional semantics.
Computational Linguistics 39, 2 (2013), 389–446.

194

http://dx.doi.org/10.1145/3392869
http://dx.doi.org/10.1145/3379337.3415820
http://dx.doi.org/10.1145/3379337.3415820
https://www.aclweb.org/anthology/2020.acl-demos.25
https://www.aclweb.org/anthology/2020.acl-demos.25
http://dx.doi.org/10.1145/3332165.3347899
http://dx.doi.org/10.1145/2666310.2666493
http://dx.doi.org/10.1145/3130941
http://dx.doi.org/10.18653/v1/2020.acl-main.729
http://dx.doi.org/10.18653/v1/2020.acl-main.729
http://dx.doi.org/10.18653/v1/2020.emnlp-main.443

BIBLIOGRAPHY

[174] Zhung-Xun Liao, Shou-Chung Li, Wen-Chih Peng, P.S. Yu, and Te-Chuan Liu. 2013. On the Feature Discovery
for App Usage Prediction in Smartphones. In 2013 IEEE 13th International Conference on Data Mining (ICDM).
1127–1132. DOI:http://dx.doi.org/10.1109/ICDM.2013.130

[175] Henry Lieberman. 2001. Your wish is my command: Programming by example. Morgan Kaufmann.

[176] Henry Lieberman and Hugo Liu. 2006. Feasibility studies for programming in natural language. In End User
Development. Springer, 459–473.

[177] Henry Lieberman, Hugo Liu, Push Singh, and Barbara Barry. 2004. Beating Common Sense into Interactive
Applications. AI Magazine 25, 4 (Dec. 2004), 63–63. DOI:http://dx.doi.org/10.1609/aimag.
v25i4.1785

[178] H. Lieberman and D. Maulsby. 1996. Instructible agents: Software that just keeps getting better. IBM Systems
Journal 35, 3.4 (1996), 539–556. DOI:http://dx.doi.org/10.1147/sj.353.0539

[179] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-User Development: An Emerging
Paradigm. In End User Development. Springer, Dordrecht, 1–8. DOI:http://dx.doi.org/10.1007/
1-4020-5386-X_1

[180] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau. 2009. End-user Programming of
Mashups with Vegemite. In Proceedings of the 14th International Conference on Intelligent User Interfaces (IUI
’09). ACM, New York, NY, USA, 97–106. DOI:http://dx.doi.org/10.1145/1502650.1502667

[181] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. 2018b. Reinforcement
Learning on Web Interfaces Using Workflow-Guided Exploration. CoRR abs/1802.08802 (2018). http:
//arxiv.org/abs/1802.08802

[182] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng, Shaun Burley, Cynthia Taylor,
Aniket Kittur, and Brad A. Myers. 2019. Unakite: Scaffolding Developers’ Decision-Making Using the Web. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19). ACM,
New York, NY, USA, 67–80. DOI:http://dx.doi.org/10.1145/3332165.3347908

[183] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha Kumar. 2018a. Learning
Design Semantics for Mobile Apps. In Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology (UIST ’18). ACM, New York, NY, USA, 569–579. DOI:http://dx.doi.org/
10.1145/3242587.3242650

[184] LlamaLab. 2016. Automate: everyday automation for Android. (2016). http://llamalab.com/
automate/

[185] Ewa Luger and Abigail Sellen. 2016. ”Like Having a Really Bad PA”: The Gulf Between User Expectation
and Experience of Conversational Agents. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY, USA, 5286–5297. DOI:http://dx.doi.org/10.
1145/2858036.2858288

[186] Wendy E. Mackay. 1990. Patterns of Sharing Customizable Software. In Proceedings of the 1990 ACM Con-
ference on Computer-supported Cooperative Work (CSCW ’90). ACM, New York, NY, USA, 209–221. DOI:
http://dx.doi.org/10.1145/99332.99356

[187] I. Scott MacKenzie and R. William Soukoreff. 2002. Text entry for mobile computing: Models and methods,
theory and practice. Human–Computer Interaction 17, 2-3 (2002), 147–198. http://www.tandfonline.
com/doi/abs/10.1080/07370024.2002.9667313

[188] Christopher J. MacLellan, Erik Harpstead, Robert P. Marinier III, and Kenneth R. Koedinger. 2018. A Frame-
work for Natural Cognitive System Training Interactions. Advances in Cognitive Systems (2018).

[189] Pattie Maes. 1994. Agents That Reduce Work and Information Overload. Commun. ACM 37, 7 (July 1994),
30–40. DOI:http://dx.doi.org/10.1145/176789.176792

[190] Jennifer Mankoff, Gregory D Abowd, and Scott E Hudson. 2000. OOPS: a toolkit supporting mediation tech-
niques for resolving ambiguity in recognition-based interfaces. Computers & Graphics 24, 6 (2000), 819–834.

195

http://dx.doi.org/10.1109/ICDM.2013.130
http://dx.doi.org/10.1609/aimag.v25i4.1785
http://dx.doi.org/10.1609/aimag.v25i4.1785
http://dx.doi.org/10.1147/sj.353.0539
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1145/1502650.1502667
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/1802.08802
http://dx.doi.org/10.1145/3332165.3347908
http://dx.doi.org/10.1145/3242587.3242650
http://dx.doi.org/10.1145/3242587.3242650
http://llamalab.com/automate/
http://llamalab.com/automate/
http://dx.doi.org/10.1145/2858036.2858288
http://dx.doi.org/10.1145/2858036.2858288
http://dx.doi.org/10.1145/99332.99356
http://www.tandfonline.com/doi/abs/10.1080/07370024.2002.9667313
http://www.tandfonline.com/doi/abs/10.1080/07370024.2002.9667313
http://dx.doi.org/10.1145/176789.176792

BIBLIOGRAPHY

[191] Christoper Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52Nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations. DOI:http://dx.doi.org/10.
3115/v1/P14-5010

[192] R. Marin, P. J. Sanz, P. Nebot, and R. Wirz. 2005. A multimodal interface to control a robot arm via the web: a
case study on remote programming. IEEE Transactions on Industrial Electronics 52, 6 (Dec. 2005), 1506–1520.
DOI:http://dx.doi.org/10.1109/TIE.2005.858733

[193] Rodrigo de A. Maués and Simone Diniz Junqueira Barbosa. 2013. Keep Doing What I Just Did: Automat-
ing Smartphones by Demonstration. In Proceedings of the 15th International Conference on Human-computer
Interaction with Mobile Devices and Services (MobileHCI ’13). ACM, New York, NY, USA, 295–303. DOI:
http://dx.doi.org/10.1145/2493190.2493216

[194] Richard G. McDaniel and Brad A. Myers. 1997. Gamut: Demonstrating Whole Applications. In Proceedings
of the 10th Annual ACM Symposium on User Interface Software and Technology (UIST ’97). ACM, New York,
NY, USA, 81–82. DOI:http://dx.doi.org/10.1145/263407.263515

[195] Richard G. McDaniel and Brad A. Myers. 1999. Getting More out of Programming-by-demonstration. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’99). ACM, New York,
NY, USA, 442–449. DOI:http://dx.doi.org/10.1145/302979.303127

[196] John H McDonald. 2009. Handbook of Biological Statistics. Vol. 2. Sparky House Publishing.

[197] Michael McTear, Ian O’Neill, Philip Hanna, and Xingkun Liu. 2005. Handling errors and determining con-
firmation strategies—An object-based approach. Speech Communication 45, 3 (2005), 249 – 269. DOI:
http://dx.doi.org/10.1016/j.specom.2004.11.006 Special Issue on Error Handling in Spo-
ken Dialogue Systems.

[198] Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. 2014. From Today’s Augmented Houses to Tomorrow’s
Smart Homes: New Directions for Home Automation Research. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’14). ACM, New York, NY, USA, 105–
115. DOI:http://dx.doi.org/10.1145/2632048.2636076

[199] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. 2013. A Machine Learn-
ing Framework for Programming by Example. 187–195. http://machinelearning.wustl.edu/
mlpapers/papers/ICML2013_menon13

[200] Rada Mihalcea, Hugo Liu, and Henry Lieberman. 2006. NLP (Natural Language Processing) for NLP (Nat-
ural Language Programming). In Computational Linguistics and Intelligent Text Processing (Lecture Notes in
Computer Science), Alexander Gelbukh (Ed.). Springer Berlin Heidelberg, 319–330.

[201] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient Estimation of Word Representa-
tions in Vector Space. arXiv:1301.3781 [cs] (Jan. 2013). http://arxiv.org/abs/1301.3781 arXiv:
1301.3781.

[202] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013b. Dis-
tributed representations of words and phrases and their compositionality. In Advances in neu-
ral information processing systems. 3111–3119. http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality

[203] Robert C Miller and Brad A Myers. 2002. Multiple selections in smart text editing. In Proceedings of the 7th
international conference on Intelligent user interfaces. ACM, 103–110.

[204] Francesmary Modugno and Brad A. Myers. 1994. Pursuit: Graphically Representing Programs in a Demon-
strational Visual Shell. In Conference Companion on Human Factors in Computing Systems (CHI ’94). ACM,
New York, NY, USA, 455–456. DOI:http://dx.doi.org/10.1145/259963.260464

[205] Shiwali Mohan and John E. Laird. 2014. Learning Goal-Oriented Hierarchical Tasks from Situated Interactive
Instruction. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI’14). AAAI
Press, 387–394.

196

http://dx.doi.org/10.3115/v1/P14-5010
http://dx.doi.org/10.3115/v1/P14-5010
http://dx.doi.org/10.1109/TIE.2005.858733
http://dx.doi.org/10.1145/2493190.2493216
http://dx.doi.org/10.1145/263407.263515
http://dx.doi.org/10.1145/302979.303127
http://dx.doi.org/10.1016/j.specom.2004.11.006
http://dx.doi.org/10.1145/2632048.2636076
http://machinelearning.wustl.edu/mlpapers/papers/ICML2013_menon13
http://machinelearning.wustl.edu/mlpapers/papers/ICML2013_menon13
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://dx.doi.org/10.1145/259963.260464

BIBLIOGRAPHY

[206] Brad Myers, Robert Malkin, Michael Bett, Alex Waibel, Ben Bostwick, Robert C Miller, Jie Yang, Matthias
Denecke, Edgar Seemann, Jie Zhu, and others. 2002. Flexi-modal and multi-machine user interfaces. In Pro-
ceedings. Fourth IEEE International Conference on Multimodal Interfaces. IEEE, 343–348.

[207] Brad. A. Myers. 1986. Visual Programming, Programming by Example, and Program Visualization: A Tax-
onomy. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’86). ACM,
New York, NY, USA, 59–66. DOI:http://dx.doi.org/10.1145/22627.22349

[208] Brad A. Myers. 1993. Peridot: creating user interfaces by demonstration. In Watch what I do. MIT Press,
125–153.

[209] Brad A. Myers. 1998. Scripting graphical applications by demonstration. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 534–541.

[210] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Programmers Are Users Too:
Human-Centered Methods for Improving Programming Tools. Computer 49, 7 (July 2016), 44–52. DOI:
http://dx.doi.org/10.1109/MC.2016.200

[211] Brad A. Myers, Amy J. Ko, Chris Scaffidi, Stephen Oney, YoungSeok Yoon, Kerry Chang, Mary Beth Kery,
and Toby Jia-Jun Li. 2017. Making End User Development More Natural. In New Perspectives in End-User
Development. Springer, Cham, 1–22. DOI:http://dx.doi.org/10.1007/978-3-319-60291-2_
1

[212] Brad A. Myers and Richard McDaniel. 2001. Sometimes you need a little intelligence, sometimes you need a
lot. Your Wish is My Command: Programming by Example. San Francisco, CA: Morgan Kaufmann Publishers
(2001), 45–60. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8085&
rep=rep1&type=pdf

[213] Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural Programming Languages and Environments.
Commun. ACM 47, 9 (Sept. 2004), 47–52. DOI:http://dx.doi.org/10.1145/1015864.1015888

[214] Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu. 2018. Patterns for how users
overcome obstacles in voice user interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–7.

[215] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In
Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML’10).
Omnipress, Madison, WI, USA, 807–814.

[216] Bonnie A Nardi. 1993. A small matter of programming: perspectives on end user computing. MIT press.

[217] Bonnie A. Nardi, James R. Miller, and David J. Wright. 1998. Collaborative, Programmable Intelligent Agents.
Commun. ACM 41, 3 (March 1998), 96–104. DOI:http://dx.doi.org/10.1145/272287.272331

[218] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. 2017. Exploring API Em-
bedding for API Usages and Applications. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE, 438–449. DOI:http://dx.doi.org/10.1109/ICSE.2017.47

[219] Don Norman. 2013. The design of everyday things: Revised and expanded edition. Basic books.

[220] Philippe Oechslin. 2003. Making a faster cryptanalytic time-memory trade-off. In Annual International Cryp-
tology Conference. Springer, 617–630.

[221] Sharon Oviatt. 1999a. Mutual disambiguation of recognition errors in a multimodal architecture. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. ACM, 576–583.

[222] Sharon Oviatt. 1999b. Ten Myths of Multimodal Interaction. Commun. ACM 42, 11 (Nov. 1999), 74–81. DOI:
http://dx.doi.org/10.1145/319382.319398

[223] Sharon Oviatt and Philip Cohen. 2000. Perceptual user interfaces: multimodal interfaces that process what
comes naturally. Commun. ACM 43, 3 (2000), 45–53.

197

http://dx.doi.org/10.1145/22627.22349
http://dx.doi.org/10.1109/MC.2016.200
http://dx.doi.org/10.1007/978-3-319-60291-2_1
http://dx.doi.org/10.1007/978-3-319-60291-2_1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8085&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8085&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1015864.1015888
http://dx.doi.org/10.1145/272287.272331
http://dx.doi.org/10.1109/ICSE.2017.47
http://dx.doi.org/10.1145/319382.319398

BIBLIOGRAPHY

[224] John F. Pane, Brad A. Myers, and others. 2001. Studying the language and structure in non-programmers’
solutions to programming problems. International Journal of Human-Computer Studies 54, 2 (2001), 237–264.
http://www.sciencedirect.com/science/article/pii/S1071581900904105

[225] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M. Marlin. 2013. Practical
Prediction and Prefetch for Faster Access to Applications on Mobile Phones. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’13). ACM, New York, NY,
USA, 275–284. DOI:http://dx.doi.org/10.1145/2493432.2493490

[226] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy Liang. 2018. Mapping natural lan-
guage commands to web elements. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. ACL, Brussels, Belgium, 4970–4976. DOI:http://dx.doi.org/10.18653/v1/
D18-1540

[227] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on Semi-Structured Tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing. http://arxiv.org/abs/1508.00305 arXiv:
1508.00305.

[228] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word Rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’14). ACL, Doha, Qatar, 1532–1543. DOI:http://dx.doi.org/10.3115/v1/D14-1162

[229] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers) (NAACL ’18). ACL, New Orleans, Louisiana, 2227–2237. DOI:http://dx.doi.org/10.
18653/v1/N18-1202

[230] Benny Pinkas and Tomas Sander. 2002. Securing passwords against dictionary attacks. In Proceedings of the
9th ACM conference on Computer and communications security. ACM, 161–170.

[231] Antonio Pintus, Davide Carboni, and Andrea Piras. 2011. The Anatomy of a Large Scale Social Web for
Internet Enabled Objects. In Proceedings of the Second International Workshop on Web of Things (WoT ’11).
ACM, New York, NY, USA, 6:1–6:6. DOI:http://dx.doi.org/10.1145/1993966.1993975

[232] Volkmar Pipek and Helge Kahler. 2006. Supporting Collaborative Tailoring. In End User Development, Henry
Lieberman, Fabio Paternò, and Volker Wulf (Eds.). Springer Netherlands, Dordrecht, 315–345. DOI:http:
//dx.doi.org/10.1007/1-4020-5386-X_15

[233] Martin Porcheron, Joel E. Fischer, Stuart Reeves, and Sarah Sharples. 2018. Voice Interfaces in Everyday
Life. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article Paper 640, 12 pages. DOI:http://dx.doi.org/10.1145/3173574.
3174214

[234] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. 2000. NaturalJava: A Natural Language
Interface for Programming in Java. In Proceedings of the 5th International Conference on Intelligent User Inter-
faces (IUI ’00). ACM, New York, NY, USA, 207–211. DOI:http://dx.doi.org/10.1145/325737.
325845

[235] Siyuan Qi, Baoxiong Jia, Siyuan Huang, Ping Wei, and Song-Chun Zhu. 2020. A Generalized Earley Parser
for Human Activity Parsing and Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2020).

[236] Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit Study of Text Entry Suggestion Interaction. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY,
USA, 83–88. DOI:http://dx.doi.org/10.1145/2858036.2858305

[237] Lenin Ravindranath, Arvind Thiagarajan, Hari Balakrishnan, and Samuel Madden. 2012. Code in the Air:
Simplifying Sensing and Coordination Tasks on Smartphones. In Proceedings of the Twelfth Workshop on Mobile
Computing Systems & Applications (HotMobile ’12). ACM, New York, NY, USA, 4:1–4:6. DOI:http://dx.
doi.org/10.1145/2162081.2162087

198

http://www.sciencedirect.com/science/article/pii/S1071581900904105
http://dx.doi.org/10.1145/2493432.2493490
http://dx.doi.org/10.18653/v1/D18-1540
http://dx.doi.org/10.18653/v1/D18-1540
http://arxiv.org/abs/1508.00305
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.1145/1993966.1993975
http://dx.doi.org/10.1007/1-4020-5386-X_15
http://dx.doi.org/10.1007/1-4020-5386-X_15
http://dx.doi.org/10.1145/3173574.3174214
http://dx.doi.org/10.1145/3173574.3174214
http://dx.doi.org/10.1145/325737.325845
http://dx.doi.org/10.1145/325737.325845
http://dx.doi.org/10.1145/2858036.2858305
http://dx.doi.org/10.1145/2162081.2162087
http://dx.doi.org/10.1145/2162081.2162087

BIBLIOGRAPHY

[238] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. ACL.
http://arxiv.org/abs/1908.10084

[239] V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and C. Loge. 2006. The Smart Home Concept
: our immediate future. In 2006 1ST IEEE International Conference on E-Learning in Industrial Electronics. 23–
28. DOI:http://dx.doi.org/10.1109/ICELIE.2006.347206

[240] André Rodrigues. 2015. Breaking Barriers with Assistive Macros. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility (ASSETS ’15). ACM, New York, NY, USA, 351–
352. DOI:http://dx.doi.org/10.1145/2700648.2811322

[241] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin Schmidt, and Hansjörg
Schmauder. 2013. Insights into Layout Patterns of Mobile User Interfaces by an Automatic Analysis of An-
droid Apps. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS ’13). ACM, New York, NY, USA, 275–284. DOI:http://dx.doi.org/10.1145/2494603.
2480308

[242] Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Bren-
dan Roof, Noah A Smith, and Yejin Choi. 2019. Atomic: An atlas of machine commonsense for if-then reason-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 3027–3035.

[243] Ritam Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-Jun Li, and Xiang ’Anthony’
Chen. 2020. Geno: a Developer Tool for Authoring Multimodal Interaction on Existing Web Applications. In
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST 2020).

[244] Albrecht Schmidt. 2015. Programming Ubiquitous Computing Environments. In End-User Development (Lec-
ture Notes in Computer Science), Paloma Dı́az, Volkmar Pipek, Carmelo Ardito, Carlos Jensen, Ignacio Aedo,
and Alexander Boden (Eds.). Springer International Publishing, 3–6. DOI:http://dx.doi.org/10.
1007/978-3-319-18425-8_1

[245] Klaus Schwab. 2017. The Fourth Industrial Revolution. Crown Publishing Group, USA.

[246] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hierarchical neural network models. In The 30th AAAI Conference
on Artificial Intelligence (AAAI ’16).

[247] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Minfan Zhang, Afsaneh Fazly,
and Iqbal Mohomed. 2020. VASTA: a vision and language-assisted smartphone task automation system. In
Proceedings of the 25th International Conference on Intelligent User Interfaces. 22–32.

[248] Lanbo She and Joyce Chai. 2017. Interactive Learning of Grounded Verb Semantics towards Human-Robot
Communication. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada, 1634–1644. DOI:
http://dx.doi.org/10.18653/v1/P17-1150

[249] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum. 2011. LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field. SIGMETRICS Perform. Eval. Rev. 38, 3 (Jan. 2011),
15–20. DOI:http://dx.doi.org/10.1145/1925019.1925023

[250] Hyo Sang Shin. 2012. Visual Reading and The Snowball of Understanding (1 edition ed.). Cheese Cake &
Linco Global.

[251] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (Aug.
1983), 57–69. DOI:http://dx.doi.org/10.1109/MC.1983.1654471

[252] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, and Nicholas Diakopou-
los. 2016. Designing the User Interface: Strategies for Effective Human-Computer Interaction (6 edition ed.).
Pearson, Boston.

199

http://arxiv.org/abs/1908.10084
http://dx.doi.org/10.1109/ICELIE.2006.347206
http://dx.doi.org/10.1145/2700648.2811322
http://dx.doi.org/10.1145/2494603.2480308
http://dx.doi.org/10.1145/2494603.2480308
http://dx.doi.org/10.1007/978-3-319-18425-8_1
http://dx.doi.org/10.1007/978-3-319-18425-8_1
http://dx.doi.org/10.18653/v1/P17-1150
http://dx.doi.org/10.1145/1925019.1925023
http://dx.doi.org/10.1109/MC.1983.1654471

BIBLIOGRAPHY

[253] Katie A. Siek, Gillian R. Hayes, Mark W. Newman, and John C. Tang. 2014. Field Deployments: Knowing
from Using in Context. Springer New York, New York, NY, 119–142. DOI:http://dx.doi.org/10.
1007/978-1-4939-0378-8_6

[254] Timothy Sohn, Kevin A. Li, William G. Griswold, and James D. Hollan. 2008. A Diary Study of Mobile Infor-
mation Needs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08).
ACM, New York, NY, USA, 433–442. DOI:http://dx.doi.org/10.1145/1357054.1357125

[255] Z. Song, A. A. Cardenas, and R. Masuoka. 2010. Semantic middleware for the Internet of Things. In 2010
Internet of Things (IOT). 1–8. DOI:http://dx.doi.org/10.1109/IOT.2010.5678448

[256] Vijay Srinivasan, Saeed Moghaddam, Abhishek Mukherji, Kiran K. Rachuri, Chenren Xu, and Em-
manuel Munguia Tapia. 2014. MobileMiner: Mining Your Frequent Patterns on Your Phone. In Proceedings of
the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’14). ACM,
New York, NY, USA, 389–400. DOI:http://dx.doi.org/10.1145/2632048.2632052

[257] Gaurav Srivastava, Saksham Chitkara, Kevin Ku, Swarup Kumar Sahoo, Matt Fredrikson, Jason I. Hong, and
Yuvraj Agarwal. 2017a. PrivacyProxy: Leveraging Crowdsourcing and In Situ Traffic Analysis to Detect and
Mitigate Information Leakage. CoRR abs/1708.06384 (2017). http://arxiv.org/abs/1708.06384

[258] Shashank Srivastava, Igor Labutov, and Tom Mitchell. 2017b. Joint concept learning and semantic parsing
from natural language explanations. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 1527–1536.

[259] Tom Stocky, Alexander Faaborg, and Henry Lieberman. 2004. A Commonsense Approach to Predictive Text
Entry. In CHI ’04 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’04). ACM, New York,
NY, USA, 1163–1166. DOI:http://dx.doi.org/10.1145/985921.986014

[260] Anselm Strauss and Juliet M. Corbin. 1990. Basics of qualitative research: Grounded theory procedures and
techniques. Sage Publications, Inc.

[261] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret Burnett, Thomas Dietterich, Erin Sullivan, Russell Drum-
mond, and Jonathan Herlocker. 2007. Toward Harnessing User Feedback for Machine Learning. In Proceedings
of the 12th International Conference on Intelligent User Interfaces (IUI ’07). ACM, New York, NY, USA, 82–91.
DOI:http://dx.doi.org/10.1145/1216295.1216316

[262] Yu Su, Ahmed Hassan Awadallah, Miaosen Wang, and Ryen W. White. 2018. Natural Language Interfaces with
Fine-Grained User Interaction: A Case Study on Web APIs. In The 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, USA, 855–864. DOI:
http://dx.doi.org/10.1145/3209978.3210013

[263] Bernhard Suhm, Brad Myers, and Alex Waibel. 2001. Multimodal Error Correction for Speech User Interfaces.
ACM Trans. Comput.-Hum. Interact. 8, 1 (March 2001), 60–98. DOI:http://dx.doi.org/10.1145/
371127.371166

[264] Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky. 2015. Understanding User’s Cross-Domain Intentions
in Spoken Dialog Systems. In NIPS Workshop on Machine Learning for SLU and Interaction.

[265] Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky. 2016a. HELPR: A Framework to Break the Barrier
across Domains in Spoken Dialog Systems. In International Workshop on Spoken Dialog Systems.

[266] Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky. 2016b. An Intelligent Assistant for High-Level Task
Understanding. In Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI ’16).
ACM, New York, NY, USA, 169–174. DOI:http://dx.doi.org/10.1145/2856767.2856818

[267] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin Jia. 2017. Some Recipes Can Do
More Than Spoil Your Appetite: Analyzing the Security and Privacy Risks of IFTTT Recipes. In Proceedings of
the 26th International Conference on World Wide Web (WWW ’17). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, 1501–1510. DOI:http://dx.doi.org/10.
1145/3038912.3052709

200

http://dx.doi.org/10.1007/978-1-4939-0378-8_6
http://dx.doi.org/10.1007/978-1-4939-0378-8_6
http://dx.doi.org/10.1145/1357054.1357125
http://dx.doi.org/10.1109/IOT.2010.5678448
http://dx.doi.org/10.1145/2632048.2632052
http://arxiv.org/abs/1708.06384
http://dx.doi.org/10.1145/985921.986014
http://dx.doi.org/10.1145/1216295.1216316
http://dx.doi.org/10.1145/3209978.3210013
http://dx.doi.org/10.1145/371127.371166
http://dx.doi.org/10.1145/371127.371166
http://dx.doi.org/10.1145/2856767.2856818
http://dx.doi.org/10.1145/3038912.3052709
http://dx.doi.org/10.1145/3038912.3052709

BIBLIOGRAPHY

[268] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, and Amy J. Ko. 2018. Rewire:
Interface Design Assistance from Examples. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). ACM, New York, NY, USA, 1–12. DOI:http://dx.doi.org/10.1145/
3173574.3174078

[269] Ahmad Bisher Tarakji, Jian Xu, Juan A. Colmenares, and Iqbal Mohomed. 2018. Voice Enabling Mobile
Applications with UIVoice. In Proceedings of the 1st International Workshop on Edge Systems, Analytics and
Networking (EdgeSys’18). ACM, New York, NY, USA, 49–54. DOI:http://dx.doi.org/10.1145/
3213344.3213353

[270] Jaime Teevan, Amy Karlson, Shahriyar Amini, A. J. Bernheim Brush, and John Krumm. 2011. Understanding
the Importance of Location, Time, and People in Mobile Local Search Behavior. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI ’11).
ACM, New York, NY, USA, 77–80. DOI:http://dx.doi.org/10.1145/2037373.2037386

[271] Michael Toomim, Steven M. Drucker, Mira Dontcheva, Ali Rahimi, Blake Thomson, and James A. Landay.
2009. Attaching UI Enhancements to Websites with End Users. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 1859–1868. DOI:http:
//dx.doi.org/10.1145/1518701.1518987

[272] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word Representations: A Simple and General Method
for Semi-Supervised Learning. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL ’10). ACL, USA, 384–394.

[273] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014. Practical Trigger-action
Programming in the Smart Home. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’14). ACM, New York, NY, USA, 803–812. DOI:http://dx.doi.org/10.1145/
2556288.2557420

[274] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken, Noah Picard, Diane Schulze,
and Michael L. Littman. 2016. Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT
Recipes. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16).
ACM, New York, NY, USA, 3227–3231. DOI:http://dx.doi.org/10.1145/2858036.2858556

[275] David Vadas and James R Curran. 2005. Programming with unrestricted natural language. In Proceedings of
the Australasian Language Technology Workshop 2005. 191–199.

[276] Priyan Vaithilingam and Philip J Guo. 2019. Bespoke: Interactively synthesizing custom GUIs from command-
line applications by demonstration. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology, UIST, Vol. 19.

[277] Niels van Berkel, Chu Luo, Theodoros Anagnostopoulos, Denzil Ferreira, Jorge Goncalves, Simo Hosio, and
Vassilis Kostakos. 2016. A Systematic Assessment of Smartphone Usage Gaps. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM.

[278] Dinusha Vatsalan, Peter Christen, and Vassilios S Verykios. 2013. A taxonomy of privacy-preserving record
linkage techniques. Information Systems 38, 6 (2013), 946–969.

[279] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text Entry Evaluations Based on
Genuine Mobile Emails. In Proceedings of the 13th International Conference on Human Computer Inter-
action with Mobile Devices and Services (MobileHCI ’11). ACM, New York, NY, USA, 295–298. DOI:
http://dx.doi.org/10.1145/2037373.2037418

[280] Keith Vertanen, Per Ola Kristensson, Mark Dunlop, Ahmad Sabbir Arif, and James Clawson. 2016. Invisid
Text Entry and Beyond. In CHI ’16 Extended Abstracts on Human Factors in Computing Systems.

[281] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kristensson. 2015. VelociTap:
Investigating Fast Mobile Text Entry Using Sentence-Based Decoding of Touchscreen Keyboard Input. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM, New
York, NY, USA, 659–668. DOI:http://dx.doi.org/10.1145/2702123.2702135

201

http://dx.doi.org/10.1145/3173574.3174078
http://dx.doi.org/10.1145/3173574.3174078
http://dx.doi.org/10.1145/3213344.3213353
http://dx.doi.org/10.1145/3213344.3213353
http://dx.doi.org/10.1145/2037373.2037386
http://dx.doi.org/10.1145/1518701.1518987
http://dx.doi.org/10.1145/1518701.1518987
http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/2037373.2037418
http://dx.doi.org/10.1145/2702123.2702135

BIBLIOGRAPHY

[282] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Commun. ACM
57, 10 (2014), 78–85. http://dl.acm.org/citation.cfm?id=2629489

[283] Geraldine P Wallach and Katharine G Butler. 1994. Language learning disabilities in school-age children and
adolescents: Some principles and applications. Allyn & Bacon.

[284] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query Synthesis from Input-Output
Examples. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD ’17).
ACM, New York, NY, USA, 1631–1634. DOI:http://dx.doi.org/10.1145/3035918.3058738

[285] Xiaolei Wang, Andrea Continella, Yuexiang Yang, Yongzhong He, and Sencun Zhu. 2019. LeakDoctor: Toward
Automatically Diagnosing Privacy Leaks in Mobile Applications. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 3, 1, Article 28 (March 2019), 25 pages. DOI:http://dx.doi.org/10.1145/3314415

[286] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). ACL, New
Orleans, Louisiana, 1112–1122. DOI:http://dx.doi.org/10.18653/v1/N18-1101

[287] Kristin Williams. 2020. The IoT Codex: A Book of Paper Engineering Techniques for Authoring and Com-
posing Embedded Computing Applications. In Proceedings of the 11th Annual Workshop on the Intersection of
HCI and PL (PLATEAU ’20).

[288] Jacob O. Wobbrock and Brad A. Myers. 2006. Analyzing the Input Stream for Character- Level Errors in
Unconstrained Text Entry Evaluations. ACM Trans. Comput.-Hum. Interact. 13, 4 (Dec. 2006), 458–489. DOI:
http://dx.doi.org/10.1145/1188816.1188819

[289] Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel. 2003. EdgeWrite: A Stylus-based Text Entry Method
Designed for High Accuracy and Stability of Motion. In Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology (UIST ’03). ACM, New York, NY, USA, 61–70. DOI:http://dx.
doi.org/10.1145/964696.964703

[290] Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun Li, and Ming Zhou. 2019. A Sequential Matching Framework
for Multi-Turn Response Selection in Retrieval-Based Chatbots. Computational Linguistics 45, 1 (March 2019),
163–197. DOI:http://dx.doi.org/10.1162/coli_a_00345

[291] Volker Wulf. 1999. “Let’s See Your Search-tool!”—Collaborative Use of Tailored Artifacts in Groupware. In
Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work (GROUP ’99). ACM,
New York, NY, USA, 50–59. DOI:http://dx.doi.org/10.1145/320297.320303

[292] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Michael L Seltzer, Andreas Stolcke, Dong Yu, and
Geoffrey Zweig. 2017. Toward human parity in conversational speech recognition. IEEE/ACM Transactions on
Audio, Speech, and Language Processing 25, 12 (2017), 2410–2423.

[293] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and Shobha Venkataraman. 2011.
Identifying Diverse Usage Behaviors of Smartphone Apps. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference (IMC ’11). ACM, New York, NY, USA, 329–344. DOI:
http://dx.doi.org/10.1145/2068816.2068847

[294] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen, Andrew Campbell, and Tanzeem
Choudhury. 2013. Preference, Context and Communities: A Multi-faceted Approach to Predicting Smartphone
App Usage Patterns. In Proceedings of the 2013 International Symposium on Wearable Computers (ISWC ’13).
ACM, New York, NY, USA, 69–76. DOI:http://dx.doi.org/10.1145/2493988.2494333

[295] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. 2012. Fast App Launching for Mobile
Devices Using Predictive User Context. In Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services (MobiSys ’12). ACM, New York, NY, USA, 113–126. DOI:http://dx.doi.
org/10.1145/2307636.2307648

202

http://dl.acm.org/citation.cfm?id=2629489
http://dx.doi.org/10.1145/3035918.3058738
http://dx.doi.org/10.1145/3314415
http://dx.doi.org/10.18653/v1/N18-1101
http://dx.doi.org/10.1145/1188816.1188819
http://dx.doi.org/10.1145/964696.964703
http://dx.doi.org/10.1145/964696.964703
http://dx.doi.org/10.1162/coli_a_00345
http://dx.doi.org/10.1145/320297.320303
http://dx.doi.org/10.1145/2068816.2068847
http://dx.doi.org/10.1145/2493988.2494333
http://dx.doi.org/10.1145/2307636.2307648
http://dx.doi.org/10.1145/2307636.2307648

BIBLIOGRAPHY

[296] Jackie (Junrui) Yang, Monica S. Lam, and James A. Landay. 2020. DoThisHere: Multimodal Interaction
to Improve Cross-Application Tasks on Mobile Devices. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology (UIST ’20). ACM, New York, NY, USA, 35–44. DOI:http:
//dx.doi.org/10.1145/3379337.3415841

[297] Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019. Model-based Interactive Semantic Parsing: A Uni-
fied Framework and A Text-to-SQL Case Study. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, 5447–5458. DOI:
http://dx.doi.org/10.18653/v1/D19-1547

[298] Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, and Yu Su. 2020. An Imitation Game for Learning Se-
mantic Parsers from User Interaction. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association for Computational Linguistics, Online, 6883–6902. DOI:
http://dx.doi.org/10.18653/v1/2020.emnlp-main.559

[299] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the 22Nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’09). ACM, New York, NY, USA, 183–192. DOI:http://dx.doi.org/10.1145/1622176.
1622213

[300] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig. 2018. Learning to Mine Aligned Code and Natural
Language Pairs from Stack Overflow. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). 476–486.

[301] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-Purpose Code Generation.
CoRR abs/1704.01696 (2017). http://arxiv.org/abs/1704.01696

[302] Shumin Zhai, Michael Hunter, and Barton A. Smith. 2002. Performance Optimization of Virtual Keyboards.
Human–Computer Interaction 17, 2-3 (Sept. 2002), 229–269. DOI:http://dx.doi.org/10.1080/
07370024.2002.9667315

[303] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020. Interactive Program Synthe-
sis by Augmented Examples. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (UIST ’20). ACM, New York, NY, USA, 627–648. DOI:http://dx.doi.org/10.1145/
3379337.3415900

[304] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O. Wobbrock. 2017. Interaction
Proxies for Runtime Repair and Enhancement of Mobile Application Accessibility. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA, 6024–6037.
DOI:http://dx.doi.org/10.1145/3025453.3025846

[305] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annotation of Mobile Application Inter-
faces in Methods for Accessibility Repair and Enhancement. In Proceedings of the 31st Annual ACM Symposium
on User Interface Software and Technology (UIST ’18).

[306] Zhenliang Zhang, Yixin Zhu, and Song-Chun Zhu. 2020. Graph-based Hierarchical Knowledge Representation
for Robot Task Transfer from Virtual to Physical World. 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2020).

[307] Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang, Shijian Li, Zhaohui Wu, Gang Pan, and Anind K.
Dey. 2016. Discovering Different Kinds of Smartphone Users Through Their Application Usage Behaviors.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp ’16). ACM, New York, NY, USA, 498–509. DOI:http://dx.doi.org/10.1145/2971648.
2971696

[308] Yu Zhong, Yue Suo, Wenchang Xu, Chun Yu, Xinwei Guo, Yuhang Zhao, and Yuanchun Shi. 2011. Smart
Home on Smart Phone. In Proceedings of the 13th International Conference on Ubiquitous Computing (Ubi-
Comp ’11). ACM, New York, NY, USA, 467–468. DOI:http://dx.doi.org/10.1145/2030112.
2030174

203

http://dx.doi.org/10.1145/3379337.3415841
http://dx.doi.org/10.1145/3379337.3415841
http://dx.doi.org/10.18653/v1/D19-1547
http://dx.doi.org/10.18653/v1/2020.emnlp-main.559
http://dx.doi.org/10.1145/1622176.1622213
http://dx.doi.org/10.1145/1622176.1622213
http://arxiv.org/abs/1704.01696
http://dx.doi.org/10.1080/07370024.2002.9667315
http://dx.doi.org/10.1080/07370024.2002.9667315
http://dx.doi.org/10.1145/3379337.3415900
http://dx.doi.org/10.1145/3379337.3415900
http://dx.doi.org/10.1145/3025453.3025846
http://dx.doi.org/10.1145/2971648.2971696
http://dx.doi.org/10.1145/2971648.2971696
http://dx.doi.org/10.1145/2030112.2030174
http://dx.doi.org/10.1145/2030112.2030174

BIBLIOGRAPHY

[309] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan. 2013. Prophet: What App You Wish to Use Next.
In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication
(UbiComp ’13 Adjunct). ACM, New York, NY, USA, 167–170. DOI:http://dx.doi.org/10.1145/
2494091.2494146

204

http://dx.doi.org/10.1145/2494091.2494146
http://dx.doi.org/10.1145/2494091.2494146

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	An End-User Programmable Intelligent Agent
	Challenges
	My Approach

	Contributions
	Outline

	Background
	Programming by Demonstration
	Natural Language Programming
	Multi-modal Interfaces
	End User Development for Task Automation
	Understanding App Interfaces
	Breakdown Handling in Task-Oriented Dialogues

	The Sugilite System
	Introduction
	Example Usage Scenario
	Order Starbucks Coffee
	Additional Examples

	Sugilite's Key Features
	Multi-Modal Interaction
	Script Generalization
	Error Checking and Handling
	Manual Script Editing

	System Implementation
	Conversational Interface
	Background Accessibility Service
	Recording Handler
	Execution Handler
	Sugilite API

	User Study
	Participants
	Sample Tasks
	Procedure
	Results
	Time Trade-off
	Subjective Feedback
	Discussion

	Chapter Conclusion

	The Data Description Problem
	Introduction
	Formative Study
	Appinite's Design and Implementation
	UI Snapshot Knowledge Graph Extraction
	Instruction Parsing
	Interaction Proxy Overlay

	User Study
	Participants
	Tasks
	Procedure
	Results
	Discussion

	Chapter Conclusion

	Learning Task Conditionals and Concepts
	Introduction
	Formative Study
	App GUI Grounding Reduces Unclear Concept Usage
	Unmet User Expectation of Common Sense Reasoning
	Frequent Omission of Else Statements

	Pumice's Design
	Example Usage Scenario
	Design Features

	System Implementation
	Semantic Parsing
	Knowledge Representations

	User Study
	Participants
	Procedure
	Tasks
	Results
	Discussion

	Chapter Conclusion

	Applications in Smart Home Scenarios
	Introduction
	Epidosite's Advantages
	Example Usage Scenario
	Epidosite's Key Features
	Notification and App Launch Triggers
	External Service Triggers
	Cross-app Interoperability

	System Implementation and Technical Limitations
	Chapter Conclusion

	Breakdown Repairs in Task-Oriented Dialogues
	Introduction
	Problem Setting
	Frame-Based Task-Oriented Conversational Agents
	Design Goals

	Background
	Studies of Breakdowns in Conversational Interfaces
	Multi-Modal Mixed-Initiative Disambiguation Interfaces

	The Design of SOVITE
	Communicating System State with App GUI Screenshots
	Intent Detection Repair with App GUI References
	Slot Value Extraction Repair with Direct Manipulation

	Implementation
	Generating the App GUI Screenshot Confirmations
	Finding Relevant Intents from Apps and App Screens

	User Study
	Participants
	Study Design
	Results

	Discussion
	Limitations and Future Work
	Chapter Conclusion

	Privacy in Sharing Demonstrated Scripts
	Introduction
	Related Work
	Sharing and Cooperations in End User Development
	Identifying Personal & Private Information in Data Sharing

	Background
	Sugilite Scripts
	Data Descriptions and GUI Snapshot Graphs
	Sources of Personal Information Leaks
	Threat Model

	Our Approach
	Overview
	Information Entries as App Context-Content Pairs
	Background Data Collection
	Identifying Personal Information for PBD Script Sharing
	The Interactive Interface
	Rebuilding Scripts with Obfuscated Information by Script Consumers

	Evaluation
	Accuracy of Identifying Potential Personal Information
	User Study

	Limitations
	Future Work
	Chapter Conclusion

	The Semantic Representation of GUIs
	Introduction
	Our Approach
	Dataset
	Models
	Training Configurations
	Baselines
	Prediction Task Results

	Sample Downstream Tasks
	Nearest Neighbors
	Embedding Composability
	Screen Embedding Sequences for Representing Mobile Tasks

	Potential Applications
	Limitations and Future Work
	Related Work in Embedding Natural Language
	Chapter Conclusion

	Limitations, Future Work, and Conclusion
	System Limitations
	Platform
	Runtime Efficiency
	Expressiveness
	Brittleness

	Future Work
	Generalization in Programming by Demonstration
	Human-Agent Co-Creation
	Field Study of Sugilite

	Conclusion

	A Need-finding Study for Understanding Text Entry in Smartphone App Usage
	Introduction
	Related Work
	Pre-Survey
	Longitudinal Study
	Participants
	Tracking Tool
	Study Procedure
	Dataset

	Results
	Characterizing Text Entry Behaviors in App Usage
	Text Entry in Cross-application Interactions

	Discussion
	Conclusion and Future Work

	Bibliography

