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Abstract

From predictive medicine to autonomous driving, advances in Arti�cial Intelligence (AI)

promise to improve people’s lives and improve society. As systems that utilize these ad-

vances increasingly migrated from research labs into the real world, new challenges emerged.

For example, when and how should predictive models �t into physicians’ decision-making

work�ow such that the predictions impact them appropriately? These are challenges of

translation: translating AI systems from systems that demonstrate remarkable technological

achievements into real-world, socio-technical systems that serve human ends. My research

focuses on this critical translation; on the user experience (UX) design of AI systems.

The prevalence of AI suggests that the UX design community has e�ective design meth-

ods and tools to excel in this translation. While this is true in many cases, some challenges

persist. For example, designers struggle with accounting for AI systems’ unpredictable er-

rors, and these errors damage UX and even lead to undesirable societal impacts. UX design-

ers routinely grapple with technologies’ unanticipated technical or human failures, with a

focus on mitigating technologies unintended consequences. What makes AI di�erent from

other interactive technologies? – A critical �rst step in systematically addressing the UX de-

sign challenges of AI systems is to articulate what makes these systems so di�cult to design

in the �rst place.

This dissertation delineates whether, when, and how UX of AI systems is uniquely di�-

cult to design. I synthesize prior UX and AI research, my own experience designing human-

AI interactions, my studies of experienced AI innovation teams in the industry, and my ob-

servations from teaching human-AI interaction. I trace the nebulous UX design challenges

of AI back to just two root challenges: uncertainty around AI systems’ capabilities and the

complexity of what systems might output. I present a framework that unravels their e�ects

on design processes; namely AI systems’ “design complexity framework”. Using the frame-

work, I identify four levels of AI systems. On each level, designers are likely to encounter a

di�erent subset of design challenges: Current design methods are most e�ective in eliciting,



addressing, and evaluating the UX issues of Level 1 systems (probabilistic systems, systems

with known capability with few possible outputs); Current methods are least e�ective for

Level 4 systems (evolving, adaptive systems, systems that can learn from new data post-

deployment and can produce complex outputs that resist abstraction or simulation). Level

2 and 3 are two intermediate levels.

I further demonstrate the usefulness of this framework for UX research and practice

through two case studies. In both cases, I engaged stakeholders in their real-world contexts

and addressed a critical challenge in �tting cutting-edge AI systems into people’s everyday

lives. The �rst is the design of a clinical decision-support system that can e�ectively col-

laborate with doctors in making life-and-death treatment decisions. It exempli�es Level 1

systems. The second project is an investigation of how Natural Language Generation sys-

tems might seamlessly serve the authors’ communicative intent. This illustrates Level 4

systems. It reveals the limits of UX design methods and processes widely in use today. By

teasing apart the challenges of routine UX design and those distinctively needed for AI sys-

tems, the framework helps UX researchers and design tool makers to address AI systems’

design challenges in a targeted fashion.
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Chapter 1

Motivation and Introduction

1.1 Understanding the Nature of AI’s Design Challenges

1.1.1 A Motivational Case

Let me start with a story that exempli�es the central challenge this dissertation aims to address and the

bene�ts of addressing it.

I began my Ph.D. research by studying the design of a decision support tool (DST) meant to aid

clinicians in deciding whether and when to implant an arti�cial heart into an end-stage heart failure

patient. The system extracts insights from previous implant recipients’ medical records and then predicts

the life expectancy of unseen patient cases. Over the past thirty years, a majority of such clinician-facing

DSTs – from expert systems [6, 129] to regression risk models [29, 32, 131] – struggled when moving

from the lab and into clinical practice. Despite compelling evidence of their e�ectiveness in research

labs, in most cases clinicians rarely used these tools.

As a user experience (UX) researcher, I naturally took a user-centered design approach [24] to this

challenge. I conducted a �eld study, observing how advanced heart failure teams made implant decisions

in day-to-day practice. I observed various attitudinal and contextual barriers that are likely to prevent

clinicians from slowing down or deviating from their work routine, to consult a computer [133].

These observations informed the design of a new form of DST, one that automatically generates the

slides used in a clinician meeting [140]. It subtly embeds the machine predictions into clinicians’ ex-

isting work routine, rather than pulling them away from it. It predicts post-implant complications to

1



inform clinicians’ decision discussion, rather than making the decision for them. This new design draws

inspirations from early HCI research, for example, Tolmie et al.’s classic notion of “Unremarkable Com-

puting” [120], that technologies that augment users’ existing routines can have signi�cant importance

for their lives yet remain unobtrusive. It also draws inspirations from an early HCI lesson in participa-

tory design, that we need to make technical advances that skill workers instead of de-skilling them [31].

A simulation-based �eld evaluation demonstrated that clinicians were more likely to encounter and em-

brace such a DST in their practice. As such, this work o�ered one practical solution to the long-standing

challenge of DSTs’ real-world adoption.

Interestingly in the past few years, this work found renewed relevance as intense research interest

rose in the intersection of user experience (UX) and arti�cial intelligence (AI). Researchers encountered

similar barriers when moving state-of-the-art machine learning (ML) systems into clinical practice, bar-

riers such as work�ow integration and gaining clinicians’ trust [4, 19, 59, 74, 130]. These are challenges

that UX design communities have routinely grappled with, both in research and in practice. The heart-

implant DST project, in this light, exempli�es how this rich body of UX research (e.g. designing skilling

technologies, unremarkable computing) and practical methods (e.g. �eldwork, simulation-based rapid

prototyping) can o�er a valuable point of departure for improving human-AI interactions.

New questions also arise as researchers start to shift their attention from understanding the clinical

contexts to crafting clinician-AI interaction. Consider a UX design issue of AI, for example, clinicians’

trust AI suggestions. To what extent do the lessons learned in designing simple regression-based DSTs

truly generalize to designing the deep-learning-based ones? Does “AI” bring unique challenges in ethics

and fairness – ones that fundamentally di�er from other data-driven, networked technologies – as public

sentiment sometimes suggests? Consider UX design methods and tools – Are the existing UX design

methods (e.g. �eld work, sketching, prototyping) that are su�cient for addressing UX issues for many

DSTs, also su�cient for AI-powered ones? Current research does not always make these distinctions.

A critical and necessary �rst step in systematically moving clinical AI systems into practice – rather

than every ethnographic and design work addressing one UX issue for a system that addressed one

clinical decision – is to articulate what distinctive challenges make designing UX of AI so di�cult in the

�rst place.
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1.1.2 Whether, Why, and How

UX of AI Is Uniquely Di�cult to Design?

One goal of this dissertation is to delineate whether, why, and how the user experience (UX) design of AI

is distinctly di�erent from the UX design of computational technologies in general. The preceding case

study exempli�es the conditions that make now an opportune time for this inquiry:

1. Bridging UX’s and AI’s ways of knowing and practices are becoming increasingly important, as AI’s

technological advances increasingly migrate from research labs into the real world. From predictive

medicine to autonomous driving, these technologies promise to improve people’s lives and societies.

Many have already enjoyed remarkable success; Others, however, faced new challenges. For exam-

ple, how should predictive models integrate into physicians’ decision-making processes, such that

the predictions a�ect them appropriately? Modern Natural Language Generation (NLG) systems can

provide phrase-or-sentence-level writing suggestions upon user request, but what kinds of sugges-

tions do authors want? These are challenges of translation: translating AI as a technological advance

in research labs into a real-world sociotechnical system e�ectively serving human ends.

UX design research and practical methods have much to o�er for addressing these challenges. Of par-

ticular relevance are bodies of research under the banners of human-centered machine learning, inter-

active machine learning, algorithm perception and interaction intelligibility, mixed-initiative systems,

among others.

2. Challenges persist in addressing the UX design challenges of AI, especially among practitioners who do

not specialize in both UX and AI. The prevalence of AI in today’s society seems to suggest that the

UX communities have already become experts at designing human-AI interactions. Indeed, AI-related

HCI research has been in rapid growth, and many AI products and services have been remarkably

successful. Interestingly, recent research also reveals something else; that even seasoned UX profes-

sionals can struggle with integrating AI into the practice [30, 41, 52, 60, 61]. Their reported challenges

are rarely emphasized or formally studied.

3. The core challenges AI brings to UX design are not yet well-understood and rarely formally studied. There

exists no agreed-upon set of root causes around which one can easily summarize the challenges that

AI brings to UX design. Some researchers have speculated that AI systems’ technical complexity

3



causes their UX problems, such as explainability and fairness. Others considered AI’s unpredictable

system behaviors as the cause [52]. Some argued that AI is just “a new and di�cult design material,”

suggesting that over time, known UX methods will likely address these challenges as UX professionals

become more familiar with the technology [30]. Others argued that user-centered design needs to

change in order to work for AI [35, 42]. These proposals rarely share key citations that indicate

emerging agreements.

4. Researchers have taken a remarkable heterogeneity of approaches to address AI’s UX design challenges.

However, human-centered AI remains relatively disparate between its vast and soft goals (e.g., clinician-

AI partnership) and valuable yet system-or-domain-speci�c solutions (e.g., improving physician-AI

collaboration on a narrow clinical decision, with a particular kind of data-driven system). Researchers

who study particular UX issues of AI struggle to tease out the unique challenges AI brings to the issue,

or to avoid reinventing the wheel. Researchers who design particular systems struggle to assess or

articulate the extent to which their solutions generalize to other systems or to other human condi-

tions.

A critical �rst step in systematically addressing the UX design challenges of AI is to articulate the

distinctive challenges that make it di�erent or di�cult to design in the �rst place. Researchers need

to �rst understand how general HCI challenges and uniquely AI challenges are confounded, in order

to tease them apart later and address them in a targeted fashion. It is in this context, that I worked to

identify a useful structure to the currently fuzzy problem space of UX design of AI.

1.2 An Operational Bounding of AI

for Understanding Its Design Complexities

A sophisticated understanding of AI’s design challenges is hampered at the start by the di�culty of

pinning down a precise de�nition of “AI”. What is commonly referred to as AI encompasses many dis-

connected technologies (e.g., decision trees, Bayesian classi�ers, computer vision, etc.). The technical

boundary of AI, even in technical AI research communities, is disputed and continuously evolving. (More

comprehensive reviews of AI de�nitions can be found elsewhere [63, 128]).

I would further argue that the question of “what is AI” is inherently intertwined with that of “what

4



about AI makes its UX so di�cult to design”. If a precise, agreed-upon de�nition of AI did exist, then UX

researchers could just investigate the latter question by comparing the e�ectiveness of existing design

methods on AI systems and non-AI ones. Teasing out AI’s unique design challenges would not be a

dissertation-worthy inquiry in the �rst place.

The concept of AI is so vast, nuanced, and controversial that it is worth deferring a precise de�nition

for the moment. Instead, I will work to choose a loose, operational de�nition of “AI” as a starting place

of my inquiry. I will then examine whether various systems that are considered as AI by this de�nition

indeed require new HCI design methods.

Existing de�nitions of AI generally fall into two camps. One describes AI as computers that perform

tasks typically associated with the human mind (“AI is whatever machines haven’t done yet” [51]). The

other de�nes AI in relation to computational mechanisms. I chose a widely-adopted de�nition from the

latter camp, because the focus is this work is AI as a computational advance, rather than what people

perceive as “intelligent”.

In this work, AI refers to computational systems that interpret external data, learn from such

data, and use those learnings to achieve speci�c goals and tasks through �exible adaptation.

[54]

Again, I do not intend to draw a technical boundary of what counts as AI here. I also do not consider

this de�nition as valuable for UXers in working with AI. Instead, I will use this de�nition only as a

starting place to examine AI’s design complexities. For example, this de�nition describes AI as “learning”

from data, yet does not specify what counts as “learning.” (It remains an issue of debate in technical AI

communities.) Therefore within this dissertation, I will consider the challenges designers reported in

working with a full range of data-driven systems, including machine learning, classic expert systems,

crowd-sourcing, etc. I will then examine whether the challenges are di�erent across the spectrum from

systems that most people would agree “learned” from data to those did not. This way, I can start to

separate the design challenges that are unique to AI and those that UX design routinely copes with.
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1.3 Research Methods Overview

With this initial bounding, I set out to investigate whether, why, and how human-AI interaction is

uniquely di�cult to design and innovate. I wanted to identify a coherent, useful framework that can

give structure to the currently tangled problem space in the intersection between UX design and AI.

Four threads of research have been leading me towards this goal.

First, I systematically analyzed research literature at the intersection of UX and AI. The analysis cov-

ers the research discourses under several di�erent banners, such as human-centered machine learning,

human-AI interaction design, AI/machine learning as design material, the design of intelligent systems,

designing for/with data, and many more. I analyzed this body of literature by cataloging the many de-

sign challenges that literature has reported, as well as the solutions it has proposed (e.g. [131]). I also

analyzed the literature with a practice focus. For example, we worked to identify clusters of prior HCI

research where AI’s technological advances (e.g. clinical machine learning) have frequently take similar

interactive forms, indicating potential opportunities for design innovation [135].

I then started to design a variety of AI applications �rst-hand [133, 134, 139, 140, 146]. These applica-

tions span the domains of healthcare, mobile computing, online social networks, and more. I undertook

empirical studies of actual stakeholders and use contexts as the basis of my design. Each design ad-

dressed a critical challenge in moving AI from research labs valuably into the real world, such as user

acceptance, human-agent teamwork, accessibility, and human agency. These in-depth, hands-on Re-

search through Design projects enabled me to develop a felt understanding of AI’s design challenges, as

well as the solutions that naturally emerged from the process.

Next, I investigated how the researchers and practitioners in the technology industry leveraged – or

failed to leverage – AI in their respective domains of interest [109, 136]. This includes empirical studies

with nearly 150 industry practitioners of the industry best practices as well as the intuitive approaches of

HCI practitioners and AI engineers who are new to human-AI interaction. Similar to Research through

Design, this empirical approach underscores that design knowledge arises from, and in response to,

concrete problems and situations [46, 103]. This approach also complements my �rst-hand design expe-

riences, since it covers a more diverse set of AI-related systems, many of which have been deployed for

many years.
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Synthesizing the observations and learnings from all these approaches, I worked to delineate whether,

when, and how human-AI interaction is uniquely di�cult to design with established HCI methods [141].

For over a year, I iteratively proposed and critiqued many candidate theoretical constructs. At the end of

this process, I was able to trace the nebulous challenges of human-AI interaction design back to just two

root challenges: 1) uncertainty surrounding AI’s capabilities, and 2) AI’s output complexity, spanning

from simple to adaptive complex. I outlined a conceptual framework that explicates how the root chal-

lenges unfold in concrete UX design scenarios. This mapping also presents a prioritized, constructive

agenda for future research opportunities.

One limitation of this work is that the case studies are mainly from my own research and design

experiences. This is neither a representative sample nor a comprehensive one. The meta-analysis nature

of this dissertation’s research goal calls for an extensive collection of AI design projects, ideally covering

all kinds of AI systems for all kinds of design contexts. This is beyond what one dissertation can achieve.

The synthesis of my experience and the resulting framework is intended to serve as a moderate �rst step

in this direction.

1.4 Thesis Overview

Like many other research e�orts and knowledge creation processes, the process of formulating the con-

ceptual framework is a lot messier than the above Methodology section implies. I therefore report my

research �ndings in the order of general-speci�c-general, rather than chronologically.

This dissertation centers around the framework which outlines AI’s design complexities, and pro-

ceeds in four stages:

• In Chapter 2, I set the stage by reviewing the routine challenges of UX design and the established

methods and processes for addressing them (2.1). Against this backdrop, I catalog the many human-AI

interaction design challenges that prior research has reported as well as solutions proposed (2.2). The

contrast between the two (2.3) served as a springboard for rethinking how I can deepen the under-

standings of AI’s design challenges.

For example, traditional UX research highlights designers’ ability to “have a re�ective conversation”

with their design material; that they can learn what the technology can do tacitly in the process of mak-
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ing novel things with it (e.g., through fast, iterative prototyping). In contrast, prior HCI/AI research

frequently cited AI systems’ technical complexity as causing UX design challenges, therefore focused

on teaching designers how the technology works. This contrasts puts the distinction between AI’s ca-

pabilities and its inner workings in the spotlight. It foregrounds my investigations into AI’s design

challenges.

• In Chapter 3, I describe the AI design complexity framework, my answer to the question of whether,

when, and how UX of AI is uniquely di�cult to design. I identify two sources of AI’s design com-

plexities, and unravel their e�ects on design processes. I make the argument that UX design expertise

remains valuable for AI. Established design methods and processes can readily address the UX issues

of some AI systems, particularly those that produce simple outputs and do not continue to learn from

new data post-deployment (e.g., most clinically-deployed DSTs). I refer to them as Level 1 systems for

simplicity. Some other systems expose the limits of current UX design methods and practices. For ex-

ample, some AI systems continue learn from new, unseen data post-deployment (e.g. Facebook news

feed ranker) and can generate outputs that resist easy simulation (e.g. machine-generated utterances).

Such systems problematize the conventional lab-based UX prototyping methods, most of which treat

a system’s capabilities and limits as bounded and interactions prescriptive.

• Chapters 4-6 describe case studies in detail, demonstrating the usefulness of the framework for future

UX research. In Chapter 4, I describe the design process of a clinical decision support system for

arti�cial heart implant patient selection (the project that was brie�y described in section 1.1.1). This

project exempli�es the design of Level 1 systems. Using the framework, I illustrate how existing UX

design methods can address its many critical UX issues and encourage practitioners to embrace such

AI systems in their daily practice.

• In Chapter 5, I describe the design process of a generative writing assistant, a Level 4 system. Modern

Natural Language Generation (NLG) systems can provide phrase-or-sentence-level writing sugges-

tions upon user request, but what kinds of suggestions do authors want? With the range of users’

desired generative functionalities, which can the system reliably provide for users? Traditionally, UX

designers explore these questions through rapid and iterative prototyping, probing user needs as well

as technical capabilities and limits. However, machine-generated texts – especially their seemingly
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unpredictable and bizarre errors – are di�cult to simulate with traditional prototyping methods. In

this case, “AI” reveals the limits of the existing UX design methods.

As part of this project, I created a set of tools for rapid prototyping human-AI collaborative writing in

real-world contexts, in collaboration with many NLG researchers [139]. I created a new prototyping

method that can simulate the interactions of various NLG systems, including their seemingly unpre-

dictable and bizarre errors. This method enabled us to test the not-yet-built NLG systems in users’

natural writing contexts. The observations from the user study became a vantage point for the later

design and development of generative writing assistants. Using the framework, I discuss the advances

these emergent design tools make for designing Level 4 systems more broadly and the challenges re-

main for future research.

• Chapter 6 continues the investigation into the design of Level 4 systems. I describe the design practices

of some of the experienced UX designers who regularly create new products and services that use AI

or machine learning to enhance UX; in order words, the current industry best practices of UX design of

AI. I illustrate how their collective approach and re�ections, though focused on varying systems and

human contexts, echo many of the �ndings from the above-two projects. I discuss how the industry

best practices reveal new insights around UX design education and insights on the kinds of design

tools needed for supporting UX design innovation with AI.

• In Chapter 7, I summarize the takeaways and provide suggestions for future research.

This dissertation intends to make three contributions. First, it provides a synthesis of many human-

AI interaction design challenges and emergent solutions in the literature. Second, it proposes a con-

ceptual framework that gives structure to the currently fuzzy problem space of human-AI interaction

design. The framework o�ers an alternative lens for understanding AI’s UX design challenges. It draws

attention to AI’s design complexity rather than technical complexity; It draws attention to how AI hin-

ders the interaction design process rather than the end product. Finally, this dissertation o�ers two

detailed case studies, exemplifying how researchers can e�ectively broach into AI’s UX design opportu-

nities and challenges by distinguishing how they relate to and di�er from UX design in general. Taken

together, this dissertation provides a �rst step towards connecting islands of prior research and building

a smoother pathway between AI’s technological advances and valuable AI-enabled user experiences.
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Chapter 2

Related Work

UX designers integrate known technologies into novel and valuable new applications and services [68].

To envision things that have never before existed, designers innovate by engaging in re�ective conver-

sations with the technology hand as their design materials [105]. Schön, and many design theorists that

followed, have described how designers “re�ect in action”; how they learn tacitly what the technology

can do and conceive of what they want to make with it while in the act of designing and making [103].

In this chapter, I start by a brief review of building blocks of UX design expertise that enables and

facilitates this creative process. This include the cognitive skills and processes that prior research identi�ed

as essential for designing good UX, the hands-on design activities and techniques through which these

cognitive processes unfold, and the design knowledge accumulated through the process (Section 2.1).

Against this backdrop, I review the challenges that prior research has reported in designing UX of AI as

well as the proposed solutions (2.2). The juxtaposition of these two threads of work lays the ground for

investigating the challenges of working with AI as a design material. It inserts new questions: Does AI

require new design processes, new design activities, new methods, or some combination of the above?

What makes UX of AI appear uniquely di�cult to design? These questions drive the inquiry of this

dissertation.

11



2.1 From Technological Advance to User Experience

Before discussing the UX design challenges of AI, it is useful to �rst consider what makes a UX design

“good”, what the common challenges are (in terms of design thinking, acting, and knowing), and how

UX research has supported these aspects of UX design of previous new technologies.

2.1.1 Design Thinking: Cognitive Skills and Processes

Don Norman coined the term “user experience” as a counter-movement to the dominant, task-related

“usability” paradigm at the time [85]. By his de�nition, UX encompasses “all aspects of the end user’s

experience” with a technology system. Engineering is the process of creating technologies that allow

new technical capabilities. UX design is the process of creating everything that framed the experiences

of known technologies [68].

Pinning down a universal matrix of “good” UX design is di�cult, because of its all-encompassing

nature [69]. While there exists widely-accepted rubrics for evaluating usability [83], an appropriate

evaluation matrix for a UX design is often dependent on the technology and its design situation.

Facing this challenge, prior design and cognitive science research has considered the quality of a UX

design through the cognitive sophistication involved in producing it [67]. In his seminal book Sketching

User Experiences: Getting the Design Right and the Right Design, Buxton suggests that two considerations

are necessary for a good UX design: what a system needs to accomplish for users (“design the right

thing”) and how it would accomplish it (“get the design right”) [18].

Two broad kinds of cognitive skills are essential for achieving both goals, both identifying the right

things to design and designing the thing right. One is divergent, creative thinking; The other is con-

verging, judicious thinking [67, 106]. Through divergent thinking, designers acquire many possible

frames of the users’ true needs and consider a great number of alternative solutions in parallel. Through

converging thinking, designers elaborate on these problem framings and the solution possibilities, an-

ticipate the consequences of these choices, and consciously selecting the best ones. The iterative process

of divergent-convergent thinking engenders “good” UX designs; designs that are both innovative and

thoughtful.

This kind of cognitive process underpins some of the most widely adopted UX design processes
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Figure 2.1: A technology-driven design innovation process [11, 97]

(Figure 2.1). The most well-known may be the “double-diamond” user-centered design process [24]. This

work�ow takes a target user group or a problematic situation as a starting place. It highlights the need

to systematically investigate user needs (divergent thinking in the problem space) before developing any

solutions; “the last thing that you should do when sketching an interactive system is to write code” [18].

Another example is the agile design/development process, a technology-driven innovation process

[97]. In this case, designers chose a technology (e.g., a patent) as their starting place; as the material

for their design. Designers then work to understand the capabilities and limits of the technology and

the various design possibilities it might a�ord (divergent thinking in the problem space). They then

systematically search for the users and activities that would bene�t from the technology the most (con-

vergent thinking, problem space). Next, they design a minimal viable product for the target users, re�ne
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it iteratively, and pivot when necessary (divergent-convergent thinking in the solution space) [11]. This

process leads designers to maximally explore both the problem and solution space of their design, even

though they have committed to a technology as part of the solution from the beginning.

In this dissertation, I will consider both design conditions and examine whether and how AI desta-

bilizes the cognitive processes of design. The case study in Chapter 4 starts with a pre-identi�ed UX

problem and explores a user-centered design process of AI. Chapter 5 starts with Natural Language

Generation (NLG) as pre-identi�ed part of the design solution.

2.1.2 Design Actions: Hands-on Activities and Methods

Designers carry out their cognitive processes through hands-on design activities; They re�ect-in-action

[103]. For example, they map out sticky notes when brain-storming; They draw sketches of the user

interface; They build interactive prototypes. In undertaking these activities, designers are not merely

externalizing the ideas that are already in their minds. Rather, new ideas emerge as they re-con�gure,

amplify, or de-contextualize various factors of the diagrams, sketches, and prototypes.

Good design techniques and tools, such as sticky notes and paper prototypes, are valuable primarily

as a tool for design thinking [18, 33, 45, 112]. Lim et al. have argued that good prototypes and prototyping

techniques can serve as both manifestation of designers’ emergent ideas as well as their �lters [66].

When facing new or di�cult technologies, research communities have created new techniques and

tools to help. For example, new design methods such as service blueprint and customer journey map

emerged from the newfound interest in services as a design material. Both provide new language for

talking about the complex and amorphous social relations and technological ecologies surrounding the

software and hardware o�ered to users [108]. This new language includes customer journey and touch

points and value co-creation, to name a few [142]. Moussette’s Sketching Haptics provides another ex-

ample. He had a desire to work with haptics; however, he had no easy way of playing with haptics as a

design material in order to develop tacit knowledge of what could be [77]. He therefore produced a set

of haptic sketches; a set of physical prototypes that embodied his felt understanding of what experien-

tial potentials haptics possess. These techniques and tools help designers with conceptualize the design

space and externalize design ideas. Novel Wizard-of-Oz prototyping techniques have helped to expe-

dite the feedback loop between the proposed design of complex systems and the resulting UX, thereby
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facilitating the �ltering of design ideas and provoking new ones [66, 96].

2.1.3 Design Knowing: Technologies as Design Material

Through the iterative process of design ideation and evaluation, designers also learn about technolo-

gies at hand. Speci�cally, designers investigate a technology’s functional capabilities and limits as they

manipulate it and use it in di�erent designs. They develop a felt understanding of its experiential a�or-

dances and qualities [86] by observing how users interact with and experience it. These understandings

then inform and expand the later design iterations. Prior research has refereed to this knowledge as a

“designerly understanding” of technology, because it is tightly related to the speci�c purpose of design;

of innovating new things out of existing technological capabilities [28, 123]. It di�ers from engineers’

typical way of knowing, which focuses on creating new technical capabilities [68, 104].

This tacit, designerly way of knowing has tremendous implications for how UX research supports

designers working with new or partially understood technologies in practice. The design methods and

tools mentioned above – service blueprinting, haptic sketches, and various Wizard-of-Oz techniques –

are good examples. Rather than educating designers about the technology directly, these methods aid

designers to more easily “see” the new design possibilities it opens up as well as its manifestation on UX.

In so doing, these methods allow designers to develop knowledge about the technology that in�uences

their design.

UX research has also hosted workshops as a way of sensitising practitioners to emerging technolog-

ical capabilities. For example, design researchers have made intriguing sensitizing concepts for interac-

tive textiles [81]; they held workshops to expose haptics’ design possibilities beyond a buzzing phone to

design practitioners [77]. Similar to other forms of design knowledge transfer, the workshops transfer

new technology to practitioners by facilitating them to grasp and feel its capabilities (e.g., the design pos-

sibilities interactive textiles o�er), rather than to teaching them its inner workings (e.g., how interactive

textiles work).

When working with complex technologies that are di�cult to “play with” hands-on, designers often

need to work with developers and collaboratively explore, evaluate, and understand the design oppor-

tunities the technology o�ers. HCI research has previously created boundary objects to facilitate such

collaborations [89]. Boundary objects support dialog and consensus-building between people coming
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from di�erent perspectives (areas of expertise) [14].

The title of this dissertation “pro�ling AI as a design material” is a reference to this body of prior

work. Through this dissertation, my goal is to provide an initial sketch of a designerly understanding of

AI; an understanding of “AI” not in its role in technological advance, but in its characteristics relating to

design thinking and acting. This understanding can bene�t our �eld by establishing more solid ground

upon which we can more purposefully innovate UX design methods for AI.

2.2 From AI’s Technological Advances to User Experience

UX and AI researchers have produced a wealth of valuable, novel UX designs of AI in recent years

(see [135] for a comprehensive review). Interestingly, they have also reported many challenges they

encountered in the process [41, 52, 60, 61]. These challenges span across many application domains and

various types of intelligent systems [15, 98, 125]. When discussing these challenges, researchers have

chosen a number of di�erent frames, including human-AI interaction design, AI/machine learning as a

design material, the design of intelligent systems, designing for/with data, and many more [12, 34, 65,

88, 98, 102].

Below I catalog these challenges and emergent solutions identi�ed in prior work. I map them to

the double diamond user-centered design process (Figure 2.2) and to a diagram displaying a technology-

driven innovation process (Figure 2.3). I will argue for a need to better unpack what is known and

unknown about the UX design challenges of AI, particularly, whether AI calls for new design thinking,

new design activities and methods, new design tools, or some combination of the above.

2.2.1 Reported Challenges

Across HCI and UX communities, researchers and practitioners have reported challenges in working

with AI at almost every step of a user-centered design process. From left to right on Figure 2.2, they

reported:

• Challenges in understanding how AI works: Recent research frequently cited AI systems’ algorithmic

complexity as the cause of many human-AI interaction problems. For example many deep learning

systems’ working mechanisms remain an active area of research within technical AI communities.
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This raises UX concerns such as explainability and intelligibility, transparency, ethics [1, 2, 43]. More-

over, UX-practice-focused research has showed that some designers struggle with understanding less

complex AI systems as well; They treated AI largely as black magic: “inputs come in... some magic

happens... and all your business needs are met!" [30]

• Challenges in understanding AI capabilities (�rst divergent thinking stage): Designers frequently report

that it is di�cult to grasp what AI can or cannot do. This hampers designers’ brainstorming and

sketching processes from the start [30, 52, 135, 138].

• Challenges in envisioning many novel, implementable AI things for a given UX problem (in both divergent

thinking stages): AI-powered interactions can adapt to di�erent users and use contexts, and they can

evolve over time. Even when designers understand how AI works, they often found it di�cult to ideate

many possible new interactions and novel experiences with much �uidity [30, 134].

• Challenges in iterative prototyping and testing human-AI interaction (in both convergent thinking stages):

One core practice of HCI design and innovation is rapid prototyping, assessing the human conse-

quences of a design and iteratively improving on it. HCI practitioners cannot meaningfully do this

when working with many AI systems. As a result, AI’s UX and societal consequences can seem impos-

sible to fully anticipate. Its breakdowns can be especially harmful for under-served user populations,

including people with disabilities [113].

HCI researchers have tried two approaches to addressing this challenge. One approach is to create

Wizard of Oz systems or rule-based simulators as an early-stage interactive AI prototype (e.g., as in

[26, 58, 96, 111]). This approach enables HCI professionals to rapidly explore many design possibili-

ties and probe user behaviors. However, this approach fails to address the UX issues that will come

from unanticipated AI inference errors. The second approach is to create a functioning AI system,

and deploy it among real users for a period of time [136]. This time-consuming, �eld-trial prototyping

process enables designers to fully understand AI’s intended and unintended consequences. However,

it loses the value that comes from rapid and iterative prototyping. This approach does not protect

teams from over-investing in ideas that will not work. It does not allow them to fail early and often.

• Challenges in crafting thoughtful interactions (in the last convergent thinking stage): Designers struggled

to set user expectations appropriately for AI’s sometimes unpredictable outputs [2]. They also worried
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about the envisioned designs’ ethics, fairness, and other societal consequences [30, 52].

• Challenges in collaboratingwith AI engineers (throughout the design process): For many UX design teams,

AI technical experts can be a scarce resource [42, 136]. Some designers also found it challenging to

e�ectively collaborate with AI engineers, because they lacked a shared work�ow, boundary objects,

or a common language for sca�olding the collaboration [42, 56, 139].

Figure 2.2: Mapping the human-AI interaction design challenges in the literature [30, 52, 134, 136] onto
a user-centered design process (Double Diamond [24])

.

Propelled by these challenges, a few researchers speculated that, when working with AI, designers

should start with an elaborate matching process that pairs existing datasets or AI systems with the users

and situations that are most likely to bene�t from the pairing [11, 135]. This approach deviates from more

traditional user-centered design in that the target user or UX problem is less �xed. It is more similar to

an agile, technology-driven innovation process that focuses on the creation and continual evaluation

of a minimal viable product (MVP) [97]. In this light, I also mapped the human-AI interaction design

challenges onto an MVP innovation process. However, it seems a similar set of design challenges that

curbed user-centered design also thwarted technology-driven design innovations (Figure 2.3, from left

to right). For example:
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• Challenges in understanding AI capabilities;

• Challenges in mapping out the right user stories and user cases of a “minimum viable” AI system,

or envisioning how it can be applied in less obvious ways [30];

• Challenges in collaborating with AI engineers.

Figure 2.3: Mapping UX design challenges of AI in prior research on a technology-driven design inno-
vation process [11, 97]

I found no agreed-upon set of root causes or themes around which one can easily summarize these

challenges. Some researchers suggested that AI systems’ technical complexity causes the interaction

design problems [21]. Some considered the unpredictable system behaviors as the cause [52]. Some

argued that AI appeared to be di�cult to design because AI is just “a new and di�cult design material,”

suggesting that over time, known HCI methods will likely address these challenges [30]. Others argued

that user-centered design needs to change in order to work for AI [42, 135]. These proposals rarely share

key citations indicative of emerging agreements.

2.2.2 Proposed Facilitators

UX researchers have started to investigate how to make it easier to design UX design of AI. I identify

�ve broad themes in this body of work; research under the banner of “human-AI interaction design” or

“UX design of AI”:

1. Improving designers’ technical literacy. An increasing amount of research suggests that UX designers
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need some technical understanding of AI to productively work with it. Designer-facing AI education

materials have become available to help (e.g., [20, 44, 48, 49]). The book Machine Learning for De-

signers, for example, reviews concepts of supervised and unsupervised learning, as well as common

analogies of how machine learning works [48]. However, substantial disagreement remains in what

kinds of AI knowledge are relevant to UX design, and in how advanced a technical understanding is

good enough for designers [21, 121, 137].

2. Facilitating design-oriented data exploration. This body of work encourages designers to investigate

the lived-life of data and discover AI design opportunities [12, 13, 34]. For example, [88] investigated

users’ music app metadata as a material for designing contemplative music experience and [50] ex-

plored the design opportunities around intimate somatic data. Notably, this body of work often used

terms like data-driven or smart systems; It was not always clear when the authors speci�cally aimed

at AI.

3. Enabling designers to more easily “play with” AI in support of design ideation, so as to gain a felt sense of

what AI can do. This work created interactive machine learning (iML) tools and rule-based simulators

as AI prototyping tools, for example, Wekinator for gesture-based interactions [36] and the Delft AI

Toolkit for tangible interactions [124]. This body of work can be seen as an extension of the classical

ways of design knowledge transfer: by allowing designers to play with their design material and

develop a tacit understanding of its capabilities and design a�ordances.

Noteworthily, almost all iML tools are application-domain-speci�c. In order to make the systems

accessible to designers and maximally automate data prepossessing and modeling, these systems had

to limit the range of possible in/outputs, and therefore focused on particular application domains

[91, 92].

4. Aiding designers in evaluating AI outputs. In recent years, technology companies have proposed more

than a dozen human-AI interaction principles and guidelines (see a review by [114]). These guidelines

covered a comprehensive list of design considerations such as “make clear how well the system can

do, what it can do” [2] and “design graceful failure recovery” [47].

5. Creating AI-speci�c design processes. Some researchers have proposed that AI may require design

processes less focused on one group of users, and instead on many user groups and stakeholders [38];
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processes focused less on fast, iterative prototyping, and instead on existing datasets and functioning

AI systems [135]; or processes focused less on one design as the �nal deliverable to engineers, and

instead on closer, more frequent collaborations [42].

These themes demonstrated the remarkable heterogeneity of approaches researchers have taken to

address the challenges around human-AI interaction design. Similar to most design methods published

within HCI research, I found little to no empirical evaluations of the proposed design tools, guidelines,

or work�ows. It is di�cult to control for and measure improvements in a design process to show that a

method is producing better designs. Throwing AI into the mix only seems to increase this challenge.

2.3 Summary of Related Work

The preceding review on UX and AI revealed an remarkable set of insights and approaches to this com-

plex problem space. In order to gain new insights, I have put this body of work against the backdrop

of routine UX design challenges and facilitators. The juxtaposition of these two threads of work inserts

new questions: Whether and when does AI require new design processes, new design activities, new

methods, or some combination of the above? What exactly makes UX of AI appear uniquely di�cult to

design?

Prior research has not yet formally investigated these questions. AI brings challenges to almost all

stages of a typical design process. However, the proposed AI design methods and tools have mostly fo-

cused on the two ends of this creative process (Figure 2.2 and 2.3); either helping designers to understand

what AI is and can do generally, or enhancing the evaluation of the �nal design. The central activities of

an interaction design process, (i.e. sketching and prototyping) and underlying cognitive design process

(designerly conversation with AI as a design material), are under-explored. Research through Design

(RtD) projects are rare when it comes to designing and innovating human-AI interaction [135]. In the

following chapters, I take an RtD approach and search for a more incisive examination of AI’s UX design

challenges.
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Chapter 3

A Framework of

AI Systems’ Design Complexities

In this Chapter, I will describe the conceptual framework, my answers to the question of whether, when,

and how UX of AI is uniquely di�cult to design (3.2). Speci�cally, I identify two sources of AI’s design

complexities, and unravel their e�ects on design processes. In 3.3, I demonstrate its usefulness to human-

AI interaction designers, to researchers of AI’s HCI issues, and to AI design method innovators and tool

makers. The subsequent Chapters will present case studies that further unpack the uses and usefulness

of the framework.

3.1 Research Process

Earlier in section 1.2, I identi�ed an operational bounding of AI as a starting place of my inquiry: In

this work, AI refers to computational systems that interpret external data, learn from such data, and

use those learnings to achieve speci�c goals and tasks through �exible adaptation [54]. Within this

bounding, I curated a set of AI design process from my own research, design, and teaching experience,

in searching for a more incisive examination of AI’s UX design challenges. Below is a brief overview

of these projects. All projects described below except teaching have been published at DIS and CHI

[132, 134, 136, 138, 139, 140].
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3.1.1 Making AI Things via Research through Design

First, I draw on my own experience in designing a wide range of AI systems. These systems range from

simple adaptive user interfaces [134], to large-scale crowdsourced transportation information systems

[146]; from clinical decision supports [133, 140] to natural language productivity tools [139]. I under-

took empirical studies of actual stakeholders and use contexts as the basis of each design. Each design

addressed a critical challenge in moving AI from research labs valuably into the real world, such as user

acceptance, human-agent teamwork, accessibility, and human agency.

For space considerations, this thesis will only detail one clinical decision support project (Chapter

4) and the natural language productivity tool project (Chapter 4). Both addressed the challenges of user

acceptance, human-AI teamwork, and human agency, though among very di�erent user populations and

use scenarios.

3.1.2 Studying Practitioners

I have studied HCI/UX practitioners and their AI engineer collaborators in two projects. The �rst project

focused on novice AI product designers [138]. I interviewed 14 product designers/managers and sur-

veyed 98 more to understand how they incorporated, or failed to incorporate, AI in their products. I also

interviewed the 10 professional AI engineers they hired to better understand where and how designers

sought help. The second project focused on experienced UX practitioners [137]. I interviewed 13 design-

ers who had designed AI applications for many, many years, in order to understand how they work with

AI di�erently compared to working with other technologies. Synthesizing and contrasting the �ndings

across these two studies, I was able to see how novice and expert designers approached designing AI

di�erently.

3.1.2.1 Teaching UX Design of AI Applications

Another set of observations come from teaching. My collaborators and I hosted a series of Designing

AI workshops. Each workshop lasted for a day, with one instructor working with 2-3 students. The

instructor �rst gave a half-hour introduction to AI, and then provided students with a dataset and a

demonstrational AI system. Students were asked to design new products/services with these materials
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for an enterprise client. 26 HCI Master students from two universities attended the workshop. All

had little to no technical AI background. Throughout the series, I experimented with di�erent ways of

introducing AI. I observed how students used the AI technical knowledge in their design, where and

how they struggled, and which challenges they were able to resolve with known design methods.

We also taught a one semester design studio course: Designing AI Products and Services. Approxi-

mately 40 undergraduate and master students took the course. About half had a computer science or

data science background. In comparison to the workshops, the course allowed us to observe students

working with a more diverse set of AI systems and design tasks, e.g. designing crowd as a proxy for AI,

designing simple UI adaptions, designing natural language interactions.

3.1.3 Synthesizing a Conceptual Framework

With this diverse set of design processes and observations, I synthesized a framework meant to give

structure to the many challenges around human-AI interaction design. I started by proposing many

themes that might summarize these challenges. I then analyzed the emergent themes via a�nity dia-

gramming, with a focus on the characteristics of AI that may sca�old a full range of design challenges.

Speci�cally, I critiqued these frameworks based on three criteria:

• Analytical leverage: The framework should e�ectively sca�old a wide range of AI’s design opportuni-

ties and challenges. It should help separate design challenges unique to AI from others;

• Explanatory power : The framework should help researchers articulate how a proposed design method/tool/

work�ow contributes to the challenges of human-AI interaction design, and the limits of its general-

izability.

• Constructive potential: The framework should not only serve as a holder of AI’s known challenges and

solutions; It should also provide new insights for future research.

I proposed and discussed with mentors and collaborators more than 50 thematic constructs and

frameworks. Two faculties within the Carnegie Mellon HCI institute, an external faculty, and an industry

researcher participated in this process. All have spent at least 5 years researching AI and HCI. I also

presented and discussed this work to two research groups. One included about 40 HCI researchers and

the other included 12 machine learning researchers. They provided additional valuable critiques and
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helped us re�ne the framework.

3.2 The AI Design Complexity Framework

My synthesis identi�ed two attributes of AI that are central to the struggles of human-AI interaction de-

sign: capability uncertainty (uncertainties surrounding what the system can do and how well it performs)

and output complexity (complexity of the outputs that the system might generate). Both dimensions

function along a continuum. Together they map the problem space of human-AI interaction design.

3.2.1 Two Sources of AI Design Complexity

3.2.1.1 Capability Uncertainty

When speaking of the capabilities of AI, I broadly refer to the capability an AI system o�ers (e.g., detect

spam emails, rank news feeds, �nd optimal driving routes), how well it performs, and the kinds of errors

it produces. These characteristics are a result from available capabilities of learning algorithms, available

datasets, and the interaction in-between. These characteristics determine the UX design possibilities it

can a�ord.

The capabilities of AI are highly uncertain. I illustrate this by walking through the lifetime of an AI

system, moving from an algorithmic emergent in AI research labs to situated user experience in the wild

(Figure 3.1, left to right).

AI’s capability uncertainty is at its peak in the early design/development stage, when designers

work to understand what design possibilities an AI algorithm can o�er generally before committing

to a dataset. What might seem like a blue-sky AI design idea may suddenly become possible because of

a newly available dataset. It may also become possible if designers can successfully harvest their own

dataset from user interaction traces. This approach gives designers a relatively high degree of control

over the data they will eventually work with. However, it is often very di�cult to estimate how long

it might take to collect enough high-quality data and to achieve the intended functionality. It can seem

even more di�cult to understand the gap between what the data appear to promise and what the AI

system built from that data can concretely achieve. This great uncertainty in AI’s capabilities makes it

di�cult for designers to evaluate the feasibility of their emergent ideas, thereby hindering their creative
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Figure 3.1: A framework of AI’s UX design complexities. It illustrates The conceptual pathway translat-
ing between AI’s capabilities and thoughtful UX designs. AI’s capability uncertainty and output complex-
ity add additional steps (the colored segments) to a typical HCI pathway, make some systems distinctly
di�cult to design. Designers encounter these challenges from left to right when taking a technology-
driven innovation approach; right to left when following a user-centered design process.

processes.

What AI can do for a UX problem at hand becomes clearer once a functioning AI system is built.

Designers can measure their performance and error modes, and then make design choices accordingly

(“lab performance” in Figure 3.1).

Importantly, some AI systems continue to learn from new data after deployment (labeled as “de-

ployed system performance over time”). In the ideal case, the system will “grow,” integrating new in-

sights from new data and adapting �exibly to more varieties of users and use contexts. Unfortunately,

the new data might also drive system performance in the wrong direction. Tay, the Twitter bot, provides

an extreme example [82]. More typically, the system’s performance improves for users and use contexts

that have produced rich data. It performs worse for less frequent users and less typical situations. That

the system capability can constantly evolve, �uctuate, and diversify is another part of AI’s capability

uncertainty. For these “living systems” (systems that continue to learn from new data post-deployment),

their lab performance should only be viewed as an initial estimate.

Finally, user pro�les and use contexts could also impact an AI system’s capability. Many context-

aware and personalization systems fall into this category. Consider the social media news feed ranker,

Amazon shopping recommendations, and ride-hailing app’s driver-rider matching as examples. It is

not di�cult to conceptualize what these systems can do in general (e.g., ranking news, recommending

items). However, it is no trivial task to envision, for a particular user in a particular use context, what
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error the AI system might make, and how the user might perceive that error in-situ. Anticipating the

situated, user-encountered capability of AI is di�cult, yet it is fundamental to UX design.

3.2.1.2 Output Complexity

The second source of AI’s UX design challenges concerns what an AI system produces as a possible

output. While capability uncertainty is responsible for the HCI design challenges around understanding

what AI can do, AI’s output complexity a�ects how designers conceptualize the system’s behaviors in

order to choreograph its interactions.

Many valuable AI systems generate a small set of possible outputs. Designing interactions for these

systems is similar to designing for non-AI systems that generate probabilistic outputs. A face detection

tool, for example, outputs either “face” or “not face.” To design its interactions, the designer considers

four scenarios: when a face is correctly detected (true positive), when no face is detected (true negative),

when there is no face and a face is mistakenly detected (false positive), and when the image contains

a face but the system fails to detect it (false negative). Designers consider each condition and design

accordingly.

When designing systems that produce many possible outputs, sketching and prototyping become

more complex and cognitively demanding. Imagine designing the interactions of a driving route rec-

ommender. How many types of errors could the recommender possibly produce? How might a user

encounter, experience, and interpret each kind of error, in various use contexts? How can interaction

design help the user to recover from each error elegantly? Some simulation-based methods or iML tools

can seem necessary for prototyping and accounting for the route recommender’s virtually in�nite vari-

ability of outputs. The route recommender exempli�es the many AI systems that produce open-ended,

adaptive outputs. The traditional, manual sketching and prototyping methods struggle to fully capture

the UX rami�cations of such systems.

The system outputs that entail most design complexities are those that are di�cult to simulate. Con-

sider Siri as an example. Similar to route recommenders, Siri can generate many, many possible outputs.

Yet unlike route recommenders, the relationship between Siri’s in- and outputs follow complex patterns

that cannot be concisely described. As a result, rule-based simulators cannot meaningfully simulate Siri’s

utterances; nor can a human wizard. I refer to such AI system outputs as “complex.”
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Notably, output complexity is not output unpredictability. While prior research often viewed AI

systems’ unpredictable errors as causing UX troubles, I argue that AI’s output complexity is the root

cause. Let us illustrate this by considering how designers might account for AI errors when designing

two di�erent conversational systems. One is Siri. The other is a system that always replies to user

requests with a random word picked from a dictionary. While highly unpredictable, the interactions

of the latter system can be easily simulated by a random word generator. Then following a traditional

prototyping process, designers can start to identify and mitigate the AI’ costly errors. In contrast, Siri’s

outputs are only quasi-random, therefore resist abstraction or simulation. To date, it remains unclear

how to systematically prototype the UX of such systems, in order to account for its breakdowns.

3.2.2 Two Complexity Sources Taken Together

Figure 3.2: The AI design complexity map. Not all “AI” systems are equally di�cult to sketch or proto-
type. This map shows what subset of the AI design challenges a system is likely to involve.

I argue that a wide range of UX design challenges stem from AI’s capability uncertainty and output

complexity. For instance, designers struggled to understand what AI can and cannot do even when

they understood how AI works [30]; This is because the capabilities of an AI system can be inherently
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uncertain and constantly evolving. Designers struggled to rapidly prototype human-AI interaction [139]

because the interactions of two mutually adaptive agents resist easy abstraction or simulation. Designers

struggled to follow a typical user-centered design work�ow when designing human-AI interactions [42,

135]. This is because the central point of a double diamond process is to identify a preferred future, a

de�ned design goal that existing technologies can achieve. However, AI systems have capabilities that

do not fully take shape until after deployment, so the preferred future can seem like “a funnel of what’s

possible", rather than what is concretely achievable.

Figure 3.1 maps the challenges onto the translation process between technological capabilities and

user experience. When taking a user-centered design approach, designers will encounter the challenges

from the right to left. Taking a technology-driven design innovation approach, from left to right. This

diagram explains why a similar set of design challenges appeared to have thwarted both technology-

driven and user-centered AI design processes.

AI’s evolving capabilities and adaptive behaviors have made it a particularly powerful material for

HCI and UX design. The same qualities also bring distinctive design challenges. Human-AI interaction

design and research, therefore, should not simplistically reject AI’s capability uncertainty or output com-

plexity/unpredictability. Rather, it is important to understand how to leverage these distinctive qualities

of AI for desirable human ends, while minimizing their unintended consequences.

3.3 E�ects on UX Design Processes and Activities

Below I demonstrate the usefulness of the framework. Speci�cally, I map how AI’s design complexities

unfold as designers undertake concrete UX design processes and activities (section 3.3.1) and address spe-

ci�c HCI issues (3.3.2). This mapping illuminates valuable research opportunities for AI design method

innovators and tool makers (3.3.3).

3.3.1 Four Levels of AI Systems

The framework can help expose whether and how a given AI system is di�cult to design with traditional

HCI design processes and methods. The UX design challenges of Level 1 systems, systems with known

capability with few possible outputs, overlap with and extend those that UX research has long been
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investigating. Existing HCI sketching and prototyping methods, therefore, are better suited to cover

Level 1 systems then others. New challenges emerge when designers work with systems that produce

a broad set of possible outputs, and when the deployed system continues to learn from new user data.

Therefore, for practitioners, the framework can help identify the low-hanging fruit in integrating AI into

their practice. For HCI researchers, the framework can help identify the unique challenges of human-AI

interaction design and make a targeted contribution.

To make the framework easier to use as an analytical tool, I summarized four levels of AI systems ac-

cording to their design complexity (Figure 3.3). I demonstrate its usefulness using Levels 1 and 4 systems

as examples since they represent the two extremes of AI’s design complexity. The design challenges of

Level 4 are also a superset of issues encountered in Levels 2 and 3.

Figure 3.3: Four levels of AI systems, derived from AI’s design complexity framework.

3.3.1.1 Level 1: Designing Probabilistic Systems

Level 1 systems learn from a self-contained dataset. They produce a small, �xed set of outputs. Examples

of Level 1 systems include face detection in camera apps, adaptive menus that ranks which option the

user is more likely to choose, text toxicity detectors that classify whether or not a sentence is profane,

31



and many more. The clinical machine learning system that predicts arti�cial heart implant outcomes,

which I will study in detail in Chapter 4, also �ts here.

I argue that designers can design the UX of these systems in relatively similar ways as designing

non-AI, probabilistic systems. They are less likely to encounter the distinctive challenges of human-

AI interaction design. Consider this design situation: a design team wants to help online community

moderators to more easily promote civil discourse by using a text classi�er that �ags toxic comments.

• Few challenges in understanding AI capabilities: By “playing with” the system, the designers can de-

velop a felt understanding of what the classi�er can and cannot do: How well does it perform for

di�erent use contexts? What kinds of prediction errors (e.g., false positive and false negative errors)

are likely? How do users (in this case, community moderators and participants) perceive and react to

such errors? Because the system will not learn from new data, these understandings will remain valid

post-deployment.

Noteworthily, I am not arguing that understanding AI capabilities is easy. On the contrary, conclusive

answers to these questions remain a topic of discussion among HCI/AI research communities. How-

ever, I argue that these challenges can be seen as an extension of the classic challenges of designerly

conversation with their technological design materials (See 2.1) rather than brand new. Therefore,

Level 1 systems can be seen as a place where the application of fairly traditional HCI knowledge and

methods can help.

• Few challenges in envisioning novel and technically feasible designs of the technology: Designers can

easily imagine many use scenarios in which the �agging-profane-text functionality can provide value.

• Few challenges in iterative prototyping and testing: Because the outputs of the system are limited (pro-

fane, not profane), designers can enumerate all the ways in which the interactions may unfold (false

positive, false negative, etc.) and making interactive prototypes accordingly.

• Few challenges in collaborating with engineers: Once the designers understand the functionality and

the likely performance and errors of the classi�er, they can design as usual and provide wireframes as

a deliverable to engineers at the end of their design process.

Language toxicity detection is a complex technical problem at the frontier of AI research. However,

because the system’s capabilities are bounded and the outputs are simple, existing HCI design methods
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are su�cient in supporting designers in sketching, prototyping, and assessing its interactions. Language

toxicity exempli�es Level 1 systems; They are valuable, low-hanging fruits for HCI practitioners to in-

tegrate into today’s products and services.

3.3.1.2 Level 4: Designing Evolving, Adaptive Systems

Level 4 systems learn from new data even after deployment. They also produce adaptive, open-ended

outputs that resist abstraction. Search engines, newsfeed rankers, automated email replies, a recom-

mender system that suggests “items you might like,” would all �t in this category. In Chapter 5, I will

describe in detail my design process of a natural language generation system, a Level 4 system.

In designing such systems, designers can encounter a full range of human-AI interaction design

challenges. Consider the face recognition system within a photos app. It learns from the photos the user

uploaded, clusters similar faces across photos, and automatically tags the face with the name inferred

from the user’s previous manual tags.

• Challenges in understanding AI capabilities: The system’s performance and error modes are likely to

change as it learns from new images and tags. Therefore it is di�cult to anticipate what the system

can reliably do, when and how it is likely to fail. This, in turn, makes it di�cult to design appropriate

interactions for these scenarios.

• Challenges in envisioning novel and technically feasible designs of the technology: Re-imagining many

new uses of a face-recognition-and-tagging tool – beyond tagging people on photos – can be di�cult.

This is because its capabilities are highly evolved and specialized for its intended functionality and

interactions.

• Challenges in iterative prototyping and testing: The system’s capabilities evolve over time as users

contribute more images and manually tags, challenging the very idea of rapid prototyping.

• Challenges in collaborating with engineers. The system requires a closer and more complex HCI-AI

collaboration than as in a traditional double-diamond process. Engineers and designers need to collab-

orate on understanding how the face-recognition performance will evolve with users’ newly uploaded

photos and tags, how to mitigate the AI’s potential biases and errors, as well as how to detect AI errors

from user interactions so as to improve system learning.
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Figure 3.4: An example of the framework in use. Using the framework, researchers can easily outline
the problem space of a human-AI interaction issue of their interest, for example, the issue of AI fairness.

Face recognition and tagging are a relatively mature technology that many people use every day.

However, because its capabilities are constantly evolving and the outputs are diverse, systematically

sketching, prototyping, and assessing the UX of face tagging remains challenging. This exempli�es

Level 4 systems. These are opportune areas for HCI and RtD researchers to study human-AI interaction

and design, without getting deeply involved in technological complexities.

3.3.2 The Anatomy of AI’s HCI Issue

For researchers who study speci�c human-AI interaction design issues (e.g., fairness, intelligibility, users’

sense of control, etc.), the proposed framework gives a preliminary structure to these vast issues. Take

as an example the challenges surrounding accounting for AI biases, a challenge that many critical AI

systems face across application domains such as healthcare and criminal justice. Building a “fair” AI

application is widely considered as di�cult, due to the complexity both in de�ning fairness goals, in

detecting underlying biases, and in algorithmically achieving the de�ned goals. Prior research has been

addressing these challenges by promoting interaction design guidelines [2, 72].

The framework provides a more holistic structure to the problem space of “AI fairness” (Figure 3.4).

It illustrates that the current work has mostly focused on building “a fair AI system pre-deployment”;

that algorithmic fairness is only part of the whole “AI fairness” problem space. There is a real need for

HCI and AI research in collaboratively translating fairness as an optimization problem into a feature of

AI the socio-technical system (Figure 3.4, blue segment), and into a situated, user experience of fairness

(yellow segment). The framework suggests a tentative agenda for these important future research topics.

3.3.3 Implications for Design Methods and Tools

Finally, the proposed framework intends to allow for a more principled discussion on how research

might support the UX design activities of AI (i.e., sketching and prototyping). It can help researchers to
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articulate the contribution of their emergent AI design methods/tools/work�ows as well as their scope

of generalizability. Finally, it can provide new insights into how to address the remaining challenges.

Consider UX prototyping methods of AI as an example.

1. Identifying root challenges. Current research typically attributes the di�culty of prototyping AI

to AI’s technical complexity or reliance on big data. However, HCI routinely grapples with complex,

resource-intensive technologies using simple prototypes. What makes AI unique? The framework sug-

gests that the root challenges are that AI’s capabilities are adaptive and its outputs can autonomously

diverge at a massive scale. Such systems problematize the conventional HCI prototyping methods that

treat technology’s a�ordance as bounded and interactions prescriptive. These methods can work when

prototyping AI as an optimization system in the lab (Level 1). They could fail in fully addressing AI’s

rami�cations over time as a real-world, sociotechnical system.

2. Articulating the contributions and limits of emergent design methods/tools/processes. To make pro-

totyping human-AI interaction easier, researchers have created simple-rule-based simulators [13, 124])

as AI prototyping tools. Mapping the characteristics of rule-based interactions onto the AI design com-

plexity map (Figure 3.3), it becomes evident that rule-based simulators are most e�ective in prototyping

level 1-2 systems. They can be particularly valuable for systems that generate a broad set of outputs

(level 2) where traditional, manual prototyping methods struggle. However, rule-based simulators can-

not easily prototype systems that autonomously learn from user-generated data (level 3-4). These are

living, sociotechnical systems; the rules that map their inputs to outputs evolve in complex ways over

time.

3. Providing new insights for future research. Framing level 3 and 4 AI systems as living, sociotech-

nical systems reveal new insights into how we might more e�ectively prototype their interactions. For

example, computer-supported cooperative work (CSCW) research has investigated how to prototype

workplace knowledge sharing systems whose a�ordance co-evolves with its users’ behaviors, the inter-

actions among its users, and the organizational contexts at large [62]. These are living, sociotechnical

systems with uncertain capabilities and complex outputs as well. This body of work, though not typ-

ically considered as related to AI, could o�er a valuable starting place for considering how we might

design prototype human-AI interactions in the wild, over time. In this light, the proposed conceptual

framework o�ers actionable insights for addressing the challenges of prototyping AI methodologically.
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Chapter 4

A Case Study of Designing Level One

Systems (Probabilistic Systems)

In the previous chapter, I have identi�ed two sources of AI’s design complexities (namely, capability

uncertainty and output complexity) and presented a framework that illustrates their e�ects on the design

processes of four levels of AI systems. Level one systems learn from a self-contained dataset and produce

a small, �xed set of out-puts. I have argued that fairly traditional UX design methods can help elicit,

address, and evaluate the UX issues of these systems. More di�cult are level four systems, systems that

learn from new data even after deployment.

This Chapter describes the design process of a level one system (probabilistic system). It is a clinical

decision support tool (DST) that aids arti�cial heart implant patient selection, a life-and-death decision.

Currently, all clinically deployed AI and ML systems cannot learn from new training data without addi-

tional Food and Drug Administration (FDA) approval [37]. Therefore, clinically-deployed DSTs are by

de�nition level one systems.

I �rst describe my user-centered design process, using a set of commonplace design methods. This

process led to a near-future solution to the long-standing challenge of situating DSTs in doctors’ critical

decison making processes (section 4.3-4.4). I re�ect on the virtue of the UX design processes and methods

for designing level one systems, as well as opportunities for further research (section 4.5).
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4.1 Designing a Decision Support Tool for Arti�cial Heart Implant

The idea of leveraging machine intelligence in healthcare in the form of decision support tools (DSTs) has

fascinated healthcare and AI researchers for decades. With the adoption of electronic medical records

and the explosive technical advances in machine learning (ML) in recent years, now seems a perfect time

for DSTs to impact healthcare practice.

Interestingly, despite their success in labs, the vast majority of DSTs struggled when they moved to

clinical practice [32, 53, 55]. Clinicians rarely use them [29, 32, 129]. Even when they do, the performance

of the clinician-DST team rarely exceeds that of the clinicians alone [5, 6, 64]. In a review of deployed

DSTs, healthcare researchers ranked the lack of HCI considerations as the most likely reason for failure

[80, 126]. This includes a lack of consideration for clinicians’ work�ow and the collaborative nature

of clinical work. However, little HCI research has studied the context of healthcare decision making

with a focus on how to best integrate and situate a DST. Few studies that investigated DST in use are lab

studies; instead, studies have often substituted undergraduate students for patients and medical students

for clinicians. [107].

I collaborated with biomedical researchers on the design of a DST supporting the decision to im-

plant an arti�cial heart. The arti�cial heart, VAD (ventricular assist device), is an implantable electro-

mechanical device used to partially replace heart function. For many end-stage heart failure patients

who are not eligible for or able to receive a heart transplant, VADs o�er the only chance to extend their

lives. Unfortunately, many patients who received VADs die shortly after the implant [8]. Modern DSTs

can learn from previous implant outcomes (as in MIMIC II Databases [99]) and predict the likely trajec-

tory a patient will take post-implant. Such a DST should help identify the patients who are mostly likely

to bene�t from the therapy.

Like almost all other prognostic DSTs, it currently takes a context-less, prototypical form: It takes in

a list of patient condition measures and produces an individualized prediction of patient trajectory, such

as likely post-implant life expectancy [7]. Given the known challenges of DST deployment and the wide

gap between DST technology and clinical reality, I followed a user-centered design process to designing

the heart-implant DST. This e�ort unfolded in three stages.

1. Understanding clinical reality: I �rst conducted a �eld study at three hospitals. I wanted to better
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understand the clinical decision process around a VAD implant and the clinical reality in general,

so as to identify relevant design requirements and the key touch points where I might situate a

prognostic DST that clinicians would �nd useful in their practice.

2. Designing a new DST for clinical practice: I wanted to o�er a concrete solution to the long-standing

challenge of e�ectively situating DSTs in clinical practice.

3. Field evaluation of the new design: I wanted to probe clinicians’ responses to the new DST design,

when it is situated in their day-to-day work�ow. I wanted to explore whether the insights and the

design would likely to generalize to other clinical decisions beyond arti�cial heart implant patient

selection.

4.2 Understanding Clinical Reality

4.2.1 Field Study Design

In the �rst stage of the project, I wanted to understand how the decision making process to implant a

VAD unfolds in the clinical environment. I wanted to know who participates and where decision-making

happens, and to probe on when clinicians think an intelligent system might o�er support for their work.

I wanted to identify contextual barriers that might prevent people from engaging with a DST and to

identify the times and places it might add the most value.

To address these needs, I chose to conduct a qualitative �eld study consisting of observations and

semi-structured interviews. I chose an ethnographic approach so as to capture the richness of context,

and also because this has become a standard HCI approach when designing new software systems meant

to improve work. We analyzed our data using a�nity diagrams [73] and by creating a service blueprint

[10] that documents the decision pathway for individual patients.

I carried out this research at three di�erent implant hospitals all in the United States, all of which

regularly perform VAD implantation. In two of the hospitals we performed interviews and observations.

In the third, we only performed interviews, as we could not secure permission to make observations

for legal and privacy reasons. The three facilities vary geographically and in scale. Their performance

rankings range from top 5 to top 60 in the United States. Despite great inter-site di�erences we observed,

I report �ndings that all three facilities share.
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• Hospital 1: large-scale service performing over 60 heart transplants and over 100 VAD implants

per year;

• Hospital 2: moderate-sized service performing over 20 heart transplants and over 30 VAD implants

per year;

• Hospital 3: relatively small service performing about 20 heart transplants and 40-50 VAD implants

per year;

I conducted observations in two Advanced Heart Failure services for 6 to 14 hours a day for 13 days.

The observed VAD teams cared for approximately 75 patients who were formally or informally being

considered for an implant. I followed attending cardiologists across all decision-related settings includ-

ing morning rounds, clinician-patient consultations, clinician-to-clinician conversations, and weekly

implant meetings. I observed out-patients from both General and Advanced Heart Failure clinics and

in-patients from Advanced Heart Failure wards, Intensive Care Units, and Emergency Rooms.

I conducted IRB approved interviews with a total of 24 VAD clinical team members from 3 hospitals,

covering many di�erent roles and statuses that participate in decision-making. Interviewees were cho-

sen according to their level of involvement in VAD decision-making. My research collaborators at each

hospital recommended an initial set of interviewees. I then expanded this set by recruiting others we

observed to play important roles in the decision-making. I con�rmed our �ndings with a VAD cardiolo-

gist, a mid-level resident intern, and a VAD coordinator. Field notes were recorded using pen and paper.

Interviews were audio-recorded and transcribed.

Below, I �rst give an overview of the decision process around a VAD implant, including the partic-

ipants and their work practices. I then highlight the decision-makers’ needs for decision support given

the informational, social, and environmental contexts where the decisions get made. These needs are

sometimes in tension with the stand-alone, walk-up-and-use form that existing DSTs typically take.

4.2.2 Overview of the Observed Decision Landscape

The clinical decision to implant a VAD involves many clinician roles and unfolds across many clinical

contexts. Table 4.1 provides a high-level summary of the decision-makers and contexts.

The clinical environment is extremely hierarchical; however, it is also collaborative across status lev-
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els. While many roles contribute to and execute on the implant decision, only a small and stable coalition

has a �nal say. I refer to these ultimate decision-makers as implant physicians. These are mostly cardi-

ologists, though at some sites surgeons and/or senior nurse practitioners also participate. The midlevels

refer to other clinical members of the VAD team and also the non-clinical members who focus on insur-

ance, social support, and VAD-related care coordination. The consults include other support services and

physicians outside of the implant team. Implant physicians function at the top of the hierarchy, leading

major decision-related activities. They decide who transitions from clinic to hospitalization and who

gets classi�ed as a di�cult case and gets being discussed at an implant meeting.

At clinics, implant physicians monitor out-patients and hospitalize them for a formal VAD evaluation.

When an out-patient gets hospitalized and becomes an in-patient, a group of clinicians visit the patient

every morning during rounds: they visit each patient after a brief deliberation in the hallway outside

the patient’s room, where they establish a care plan for the day. The attending cardiologist of the week

picks and presents the “di�cult” cases during a weekly implant meeting, where all available clinicians

can voice their opinions. The attending cardiologist and surgeon take away a collective decision for

each presented case. If approved for implant, they pick a surgery date. They may stop the procedure if

a patient’s condition changes prior to surgery.

4.2.3 Potential Barriers of DST Adoption and Use

I observed many barriers that could negatively impact the use and perceived value of a prognostic DTS

situated in VAD implant hospitals.

4.2.3.1 Attitudinal barrier

First and most importantly, VAD physicians expressed no desire for a prognostic decision support. They

view the decision to implant a VAD as easy: As long as patients have no de�nitive exclusion conditions,

they will all get a VAD after failing on an identical, escalating sequence of less aggressive treatments.

Under this strategy, clinicians thoughtfully order tests to detect red �ags, and then deliberately and

iteratively adjust daily medications to resolve the red �ags. They spend much more time on daily care

decisions than on the implant decision itself.

In factoring patient condition to implant decisions, physicians’ tried-and-true precedence works for
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Decision-Making Procedure

Participating Clinicians Clinic Ward Round Weekly Meeting

Implant
Physicians

Cardiologists ∎ ∎ ∎

Surgeons ◻ ◻ ∎

Medical
Midlevels

Nurse Practitioners ◻ ◻ ∎

Fellow & Interns ◻ ∎ ◻

Physician Assistant ◻

Registered Nurses ◻

VAD Coordinators ∎

Social Finance Coordinator
Midlevels Social Workers ∎

Palliative Care ∎

Consults
Pharmacists
Nutritionists On Demand
Other physicians

Table 4.1: Clinicians and activities of a VAD implant team. They unequally participate in routine
decision-making activities. ∎marks the clinicians who lead or always attend the activity; ◻marks those
who attends occasionally or in a subset of hospital sites.

the majority of their cases. For the grey cases, implant physicians did not imagine that algorithmic

predictions would help. While all physicians knew about the availability of VAD risk models, none used

them in practice. Physicians’ rationale for not using these models presented a number of barriers that a

prognostic DST would likely face.

Clinicians know how to do their jobs. As trivial as it sounds, it is a missing perspective in DST

literature that has instead focused on the clinicians as a source of errors, biases, overcon�dence, and

communication breakdowns. This assumption behind DST development and design, though not imme-

diately evident in interfaces, perhaps seeds the attitudinal barrier I observed. Many of interview partic-

ipants implied that makers of current prognostic systems want to replace their expertise with inhuman

technology.

4.2.3.2 Informational Barrier

The commonly assumed function of a prognostic DST is to predict the likely post-implant life expectancy

based on a list of quantitative measures. I observed a mismatch between clinicians’ information needs

and such a DST information �ow.
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At the input end, DSTs take in quantitative and explicit inputs, while challenging decisions are often

characterized by unavailable or ambiguous medical and/or social evidence. Clinicians are unlikely to

use a tool that only does the easiest part of their job; telling them a textbook case is, “textbook”. Even

if they approach the system when facing a di�cult case, they might �nd it di�cult to �ll in some of the

blanks, such as diagnosis for an emergency-room-path patient. They might �nd the information that

most concerns them is not captured in the prediction, such as the patient’s home life and social support,

which are critical and di�cult factors most often not captured in the medical history.

In terms of DST output, physicians need support for action taking. Consultation between cardiologist

and surgeon best captures this: Is this case too risky to operate on? No? Ok, then do it. A probabilistic

prediction can be obscure in telling whether to execute a therapy or not, to do it now or to “wait and

see”. DSTs only predict outcomes of “conducting a therapy now”, with little sense of waiting and seeing.

4.2.3.3 Social Barrier

When faced with di�cult cases, implant physicians turned to their colleagues. The consultative collab-

orations were frequent and clinicians generally found them e�cient and e�ective. Implant physicians

relied on teamwork. Within a shift cycle, one attending cardiologist cares for all in-patients: often more

than 40 patients per week. Each patient gets assigned a primary nurse and resident intern who prepare

information and monitor unfolding situations. The nurse and intern handle all reporting and documen-

tation, and they prevent patients from falling though the cracks. Cardiologists also consult surgeons for

surgical risks, and pharmacists for nuanced medication changes. For patients with other organ compli-

cations, they turn to physicians with corresponding expertise.

Attending cardiologists �uently integrate inputs from colleagues through various routine and ad-hoc

activities. During rounds, for example, they request midlevel follow-ups right after visiting a patient;

they call other cardiologists whenever a problem emerges; they always consult pharmacists right af-

ter rounds and before ordering medications. Unlike EMR use, these collaborations happen when and

where decisions get made. The implant physicians trust this social decision support process; they often

immediately act on their colleagues’ input.

Such a hierarchical but collaborative clinical culture poses a two-fold challenge for DST use. First,

decision makers (physicians) and computer users (the midlevels) rarely overlap at the point of decision-
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making. Second, physicians have great trust in their social network of other physicians, who help them

make more di�cult decisions. It seems unlikely they will move towards computational support and

away from social support when things are di�cult.

4.2.3.4 Environmental Barrier

Interaction with computers presents many challenges in a ward environment where most in-patient

clinical decisions happen. During the 4-to-6-hour rounds, clinicians visit more than 30 patient rooms.

They are constantly moving and conversing, logging in and out of the EMR. Everything they have with

them must �t into their pockets because before and after visiting each patient’s room they must wash

their hands, and sometimes put on and take o� disposal gowns and gloves as well [71].

These barriers naturally strati�ed across decision makers and computer users. For example, cardiol-

ogists give oral orders during meetings with patients, and a midlevel will take notes and enter them into

EMR at a later time. A few midlevels would carry a computer with them when rounding. They often

skipped the in-room patient conversations because of the hassle hand washing presented. As a result,

almost no decision-making ever takes place in front of a computer.

4.3 Designing an “Unremarkable” AI

The observations above forced me to re�ect on the traditional forms most prognostic DSTs take. Most

require clinicians to recognize when computational advice would be useful and then make an explicit

e�ort to access a DST [80]. In addition, most imagine a single decision maker participating in making

the decision at a single time and place [116].

With the �eld observation �ndings in mind, I set out to design a new form of DST for implant

patient selection and, more broadly, explore how to overcome its real-world adoption barriers that many

prognostic DSTs face. I had two design goals:

1 - Embedding DST in current work�ow: Clinicians, especially cardiologists and surgeons, need to

naturally encounter the DST within their current decision-making work�ow, because they are unlikely

to recognize when they might need help and then walk up to a computer for help;

2 - Slowing down decision-making only when necessary: The DST outputs need to be easily ignored
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in most patient cases that are textbook. However, it should also be present enough to slow the decision-

making down when there is a meaningful disagreement between the clinicians’ view and the DSTs view

of the situation;

These views are very di�erent from the convention of DST design in which decision supports are

always available, waiting for clinicians to walk up and use at any point across the decision-making

process. Instead, I wanted to tailor the DST for particular moments in the process, such that clinicians

do not have to take pause and invent sequences of action anew. I wanted the DST to naturally augment

the actions of decision making, rather than pulling the user away from doing their routine work.

4.3.1 Making Clinical DST Unremarkable

Tolmie et al. [120] introduced the notion of unremarkable computing when discussing how ubiquitous

computing should arrive and create its place in people’s homes. They argued that technology can aug-

ment people’s actions in ways that have a wealth of signi�cance but seem unremarkable, because its

interactions are “so highly situated, so �tting, so natural”. They argued that home technology should

not only be more intelligent, it should also be more subservient to people’s daily routines. In doing so,

the technology becomes part of the routines, part of the very glue of their everyday life.

I draw connections between this ambition and my aforementioned design goals. I also draw connec-

tions between this notion of routine and VAD decision making. While these are daunting life-and-death

decisions, the implant decisions are part of a work routine for clinicians. To �t into their practice, the

DST needs to be subservient to the day-to-day decision-making work�ow they engage in.

I wanted to operationalize this idea of unremarkable technology in the context of critical, clinical

decision making. This is a di�cult goal because it requires a right level of “unremarkableness" such that

the DST does not constrain clinicians’ decision making �ow except when it needs to.

4.3.2 Design Process

To situate a DST into the current VAD decision-making routine, I �rst needed to identify a time and place

where clinicians should naturally and impactfully encounter it. I chose the multidisciplinary patient

evaluation meetings, for a number of reasons. First, the meeting is a rare social touch point where most

clinicians involved in the decision are present, and they are actively forming a collective decision about
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patient treatment. Second, it is one of the few decision points where a computer is present and being

used. Third, decision meetings are common across hospital sites. VAD centers in the US are legally

required to take a multidisciplinary approach to patient care, therefore regularly scheduled meetings

are common. Globally, these meetings are also recommended [110]. Fourth, multidisciplinary meetings

have become an increasingly common best practice in organ transplantation [94]. Designing DST for

decision meetings therefore could potentially generalize beyond VADs to include a number of other

clinical decisions.

Next, I considered how to �t the DST comfortably within the meetings. Drawing lessons from prior

work [90, 133], I wanted to embed the DST into Electronic Medical Records (EMR) to minimize the e�ort

needed from clinicians to type in patient information. I also wanted to augment clinicians’ paperwork to

provide them additional motivation for adoption. I therefore integrated the DST output into a meeting

slide generator, a system that automatically extracts patient information from EMR and populates slides

for the decision meeting, which could be projected or printed.

I sketched what the DST predictions output might look like. I iterated on the design based on feed-

back of two collaborating clinicians (an attending cardiologist and a nurse practitioner). The �nal design

was a small line chart that showed a patient’s predicted chance of survival (Figure 4.1). It also showed

the most likely causes of death, such as right ventricular failure or renal failure. These predictions inform

clinicians’ discussion about the implant decision, rather than indicating the decision to them. Taking a

lesson from early HCI work in participatory design, I need to make technical advances that skill workers

instead of de-skilling them [31].

I placed this chart in the top-right corner of the slide summarizing an individual patient’s current

state. The subtlety was a deliberate choice toward achieving the right level of unremarkableness. In

the most common case, when the DST agreed with the clinicians’ assessment, the visual display of the

agreement could help clinicians gain trust in the system without slowing them down. In the rare case

that the DST prediction con�icted with the clinicians’ assessment, the DST could slow the decision

down. Everyone attending the meeting would see the disagreement. I speculated this would apply

social pressure on the senior physicians to rationalize and articulate their decision making. I speculated

it could also encourage the medical students, residents and other mid-level clinicians to participate in the

discussion when they disagreed with the senior clinician’s decision. It could allow them to disagree by
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Figure 4.1: The decision meeting slide design. We designed a DST that automatically generates decision-
meeting slides for clinicians with subtly embedded machine prognostics at the top right corner.

pointing to the con�ict with the DST and not claiming that they personally knew more than the senior

physician.

I worked out the detailed contents of the slide with the two collaborating clinicians. I also referenced

the meeting printouts and workup checklists currently in use.

I wanted to �nalize the design by populating with real patient data. However, a variety of policies

and legal regulations would not allow this. As a work-around, I asked our clinical collaborators to help us

populate the slides with synthetic patient cases. Interestingly, they found it very challenging to generate

a prototypical patient case including dozens of vital signs and test results. They instead selected elements

across several of their former patient cases, removing identi�able demographic information and molding

parts of the medical condition to disguise the identity.

In my �nal design (Figure 4.1), the DST outputs are in the top right corner of the slide, next to a

summarized patient history visualization. Patient test results are categorized and put in the center. The

patient demographics and links to social and �nancial evaluations are on the left.

4.4 Experience Prototyping and Evaluation

Next, I conducted a �eld evaluation of the new DST design. I had several questions I wanted to an-

swer with the assessment, including: (1) Would clinicians naturally encounter the DST within their
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current work�ow? (2) Would clinicians accept computational decision support in the public context of

the meeting? (3) Does placing the prediction in the corner present the right amount of unremarkabil-

ity? Speci�cally, does the DST get ignored when its predictions align with the clinicians’ judgment, and

would it slow decisions down when its output con�icts with clinicians?

4.4.1 Methods

4.4.1.1 Assessment in VAD Implant Centers

I gained access to three U.S. hospitals that regularly perform VAD implantation. Two were sites from our

formative �eld study and one was new. The facilities varied geographically and in scale. The smallest

we studied performs about 40 VAD implants a year; the largest performs over 100.

I wanted to assess our design within the context of an actual implant decision meeting in order to

observe whether it impacted discussion. Unfortunately, this proved to be impractical. None of the sites

would allow me to present slides showing information for the patients they were currently implanting.

All felt this could impact the life and death decision. The clinicians doing the VAD implants were quite

busy. They would only agree to interact with a single design. They did not have the time for me to make

revisions and then revisit. Finally, one of the sites had a speci�c policy preventing us from observing the

decision meeting. They would only participate in one-on-one interviews.

In reaction to these restrictions, I re-designed the evaluation process with the goal of making the

most use of the participant pool within one round of assessment. I carried out all following procedures

in hospital C. In hospital B, I carried out all except (3) presenting at a decision meeting. In hospital A, I

carried out all procedures except (4) interviewing all physicians and surgeons.

(1) At each site, I �rst interviewed the mid-levels to understand their practice around the decision

meeting, and to probe the DST design’s �t in their respective hospitals. When necessary, I adjusted the

designs to �t speci�c hospital’s routine practice;

(2) My research collaborator at each site recommended one attending physician to be our confeder-

ate. I conducted interviews with them, discussing the DST design and con�rming there was no glaring

mismatch between the design and the practice at their respective sites;

(3) The confederate physician presented the patient case with the DST on display in the decision

meeting. I observed clinicians’ responses and discussions;
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(4) Finally, I interviewed the rest of the VAD team to further individually discuss the DST design.

In total, I interviewed nine attending cardiologists or surgeons and eight mid-level clinicians. Each

interview lasted for at least one hour. The DST design was presented in two hospitals’ multidisciplinary

decision meetings. Field notes were recorded using pen and paper. Interviews were audio-recorded and

transcribed. I analyzed the data using a�nity diagrams [73] and by performing thematic analysis.

4.4.1.2 Assessing Generalizability of the DST Design

I chose to situate the DST within slides used for decision meetings partially because these meetings are

best practices in other critical medical domains as well. To gain some insights as to if this design might

generalize, I chose to probe a small set of clinicians from other medical domains who participate in these

meetings.

To recruit these participants, I asked participants from the VAD study to help me identify other clini-

cal domains and decisions that have interdisciplinary decision meetings. I then interviewed 6 physicians

from these domains. Their practices include decisions meetings for pediatric surgery, pediatric critical

care, adult cardio-thoracic surgery, internal medicine emergency care, orthopedic surgery, and obstet-

rics/gynecology. I audio-recorded, transcribed and analyzed these interviews using the same methods

as we used for our VAD participants.

4.4.2 Findings

4.4.2.1 Validating the New Design Goal of “Unremarkable” AI

My observations suggested that most clinicians involved in the VAD implant decision would likely en-

counter the DST output if it was included as part of an individual patient’s information presented at

the decision meeting. All three facilities hosted a weekly implant decision meeting. Clinicians of all

ranks and roles attended, ranging from seasoned surgeons to residents, to nurse practitioners to social

workers to palliative care coordinators. Although the weight that the meetings carried for in�uencing

an implant decision appeared to vary across the three sites, the occurrence of the meetings was one of

the few events that happened everywhere.

These meetings o�ered one of the extremely few situations where senior clinicians actively discussed

decisions in proximity of a computer. Meetings in all three hospitals had a shared computer projecting
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patient information. Two hospitals projected dedicated meeting materials. The other projected patient

pro�les from the EMR. Clinicians described the other key decision points as “just talk on the �y” with

no EMR access or paper records in hand. The other decision points most often only included attending

physicians and surgeons. “Everything is happening live.” Mid-level clinicians, who spend more time with

each individual patient, did not participate in the decisions made outside of the meeting.

None of my interview participants expressed any resistance to the including DST output within the

context of the decision meeting. One site (Hospital C) had already made the e�ort to manually include

DST data into their meeting but had abandoned this practice due to their loss of con�dence in its quality.

Seasoned physicians and surgeons voiced their appreciation for what a prognostic DST might bring,

stating that it would “give its perspective” and o�er a chance for an “occasional recalibration.” Clinicians

also shared that making an objective decision could sometimes be hard. The decision to not implant was

usually a death sentence for a patient. “When I really like this patient, really want to help him or her, it

sometimes helps to get a more factual view.” (Cardiologist, B5)

Seasoned physicians shared that their dream DST should play a role similar to mid-level clinicians.

They should provide additional context for the seasoned physicians’ decision. The DST could provide

additional context and a di�erent perspective to the senior physicians. They recognized the value a

DST might bring from its statistical consideration across many cases. “The value is you are looking at

thousands of cases, I’m looking at 100 and overweighting the last three I saw.” They also shared that input

from mid-levels was not always “taken really into account”.

Mid-levels agreed they only inform and support the discussions. They did not make decisions.

My role in selecting patients for VAD... hmm. I don’t select patients. But I do talk about it... We are

there to help discuss patients. (Nurse practitioner, B2)

A lot of what I do in that meeting is to give people perspective and context. (VAD Coordinator, B1 and

A3)

Mid-level clinicians enthusiastically welcomed the idea of a decision meeting slide generator. They

envisioned a number of possible bene�ts. They shared that the slide generator would automate work

that is not currently billable. At hospital A and B, meeting slides were prepared by sta� who had little to

no medical training. Physicians could get frustrated with the result, characterizing the un�ltered mate-
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rials as being prepared by “amateurs.” These sta� members could not personalize patient presentations

because they could not risk skipping information that might prove to be critical. Mid-levels felt they

could bene�t from the automation and seasoned physicians felt they would bene�t by the removal of

the copious, irrelevant data being pulled out of the EMR.

Mid-level clinicians viewed the slides as a potentially important vehicle for communicating their

opinions to physicians. In all three hospitals, senior physicians set the agenda for decision meetings.

They decided which patients to present, and during the meeting, they called out the information that

they felt was important enough to discuss. This hierarchical culture was well captured by the design of a

custom patient review tool at hospital C. Two VAD coordinators customized a patient review dashboard

within EMR in order to help themselves better track medical tests and share results within the team.

Although cardiologists and surgeons rarely used the tool, they controlled which pieces of information

could be placed on the dashboard and which elements would not be included when the patient case was

classi�ed as urgent.

Mid-levels often doubted that their voice was heard or that their expertise was considered. They

were hesitant to directly disagree with a physician. They described the situation as more complicated

than just the power dynamics. They shared that the cardiologists were incentivized to implant more

patients and to implant sicker patients. They found themselves often advocating for patient mortality

(let the patient die). Mid-levels felt their opinions focused on post-implant quality of life. Unlike the

physicians, mid-levels worked intimately “with all the problems that can come from a patient that maybe

shouldn’t have been implanted.” They noted there was no right or wrong answer between length of life

and quality of life. They shared it was often hard to argue with great con�dence that letting patients die

was better than o�ering them a small chance to live. In such situations, mid-levels frequently cited “you

never know what will happen” as a reason to not to pursue further discussion with attending physicians.

Some shared that over time, they had slowly removed themselves from the decision making.

There is risk strati�cation for each patient, but I don’t know... It’s like, we talk about it, but I don’t know

if it’s really taken really into account. (Nurse practitioner, B2)

Mid-levels consider the ability to organize the contents of meeting slides as one way to increase their

in�uence. Meeting slides provide additional, visual presence they could use in support of the facts they

felt were important. This would make it less like they were only sharing an opinion with the physicians.
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The meeting slides could be facts in a space where only the seasoned physicians’ opinions carried any

weight. They felt the formality the meeting slides carried was unparalleled to any other artifact they had

access to. A prognostic DST that indicates post-surgery quality of life could potentially amplify their

voices.

There is not a way to present (my reasoning) formally. It’s just me saying: ‘This, this and this’. [...] I

think it’s good to have something visual for anybody to see. It’s like, OK. LOOK. Let’s slow down a bit

here. (Nurse practitioner)

4.4.2.2 Intricacies of Designing a Right Level of Remarkableness

Both seasoned physicians and mid-levels expressed appreciation for DSTs that could slow them down

“only when necessary". They liked this aspect of our design. Furthermore, clinicians’ discussions and

questions depicted many unexpected intricacies in this notion of the “right" level of unremarkableness.

These discussions o�er valuable insights for further re�nement of the new DST design.

• Is the Model Validated by Clinical Trials? Clinicians commonly expressed a need to know more about

the model’s source and credibility. When they learned that the model presented has not been rigorously

validated through clinical trials and published in prestigious clinical journals, they suggested I was

wasting their time. Physicians also desired a model that had been validated with data from their own

hospital. “It’s better to be home-grown.”

• Are the Predictions Based on Clinicians’ Best E�orts? Physicians highlighted that the predictive mod-

els, regardless of how well they measure medical uncertainties, would never replace human, clinical

decision-making. They viewed their own decision making as focused on managing and reducing un-

certainties. “If we think that we will be able to tell everybody what to do based on a model, we ignore

the fact that we also have tools and mechanisms for dealing with the uncertainty that is inherent when

putting VADs in patients.” (Cardiologist)

• Does DST Prediction Mean Causality or Correlation? There was a sense that if the DST predictions were

not based on causal factors, then the predictions should not be presented at all. Clinicians described

di�erentiating correlation (predication) versus causality as a central part of their clinical decision mak-

ing.
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• Are Data-Driven Prognostics Facts OR Predictions? Clinicians frequently asked us to clarify whether

DST prognostics are predictions that carry agency and subjectivity, or if predictions are facts rooted in

historic data. I sensed they wanted to limit discussions to facts, including how heart failure has played

out for the patient they were treating and the statistics from previous, similar cases.

• Are the Predictions Individual Medicine OR Population Medicine? Most clinicians seemed to �nd the

notion of personalized predictions di�cult to grasp. Some voiced strong concerns that using DST was

the same as applying “populational statistics” to individual patient decision making.

• What Does “Now” Mean in DST Predictions? The DST visualized the patient outcome predictions. For

example, it shows that the patient’s post-implant life expectancy is 21 days if a VAD was implanted

now, under the condition shown on the slides. Clinicians were confused by this notion of “now”

because it was extremely unlikely that they would implant a patient on the same day as the decision

meeting. “Is that 21 days from today? If we are gonna lose the patient in 21 days [21 days following after

implant], can we just wait?”

• DSTs Do Not Account For the X Factors. Clinicians said that the DST would only ever be one factor in

their decision because of “X factors”; the many factors beyond a patient’s condition that impacts the

implant decision. One X factors they spoke of was O/E ratio (observed-to-expected mortality ratio).

The O/E ratio is a rating that measures the surgeon and care teams’ performance. Surgeons cared about

keeping a high rating. They described the implant decision for high-risk patients as “taking on new

O/E ratio debts.” This seemed to strongly in�uence whether they take on another high-risk patient. It

seemed to depend strongly on how many patients had recently had poor outcomes.

4.4.2.3 Generalizability Beyond Ariti�cial Heart Implant

The interviews with clinicians outside of VAD centers showed that multidisciplinary decision meetings

take place across many clinical domains for some of their most aggressive interventions. They are also

referred to as internal medicine panel meetings, tumor boards, or �oor meetings (referring to meetings

between critical and general care physicians). These meetings happen widely because for patients are

very sick and are being considered for their last-option surgical intervention, their illness usually have

involved multiple organs. Treating them requires physicians from multiple clinical domains. Multidis-
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ciplinary meetings therefore occurred naturally.

Esophageal cancer, COPD, diabetes, cystic �brosis, LITERALLY everything in psychiatry, gastric bypass,

end stage renal disease, hernia repair, syndromes like Down and Turner, any disease that requires man-

agement with meds with nasty side e�ects, and even emergency room situations to expedite processes.

Any of the above diseases the approach has to be multidisciplinary almost by de�nition because they

a�ect multiple systems and usually but not always the last option is a surgical intervention. (Pediatric

surgeon)

To summarize, the �ndings of the �eld evaluation suggested that an “unremarkable” DST may more

e�ectively �t into clinical practice, as it can naturally augment clinicians’ current routine of decision

making, rather than pulling them away from it. Taking lessons from prior HCI work, we should not

only make AI more intelligent, but make them highly situated in people’s routines. In doing so, AI can

become part of the decision-making routines, part of the very glue of clinicians’ everyday work. The

DST as a meeting slide generator o�ers an initial design examplar in this new direction.

4.5 Re�ecting on UX Design Expertise and Methods for AI

Next, I want to take a step back and examine this case study from a UX design method and process

perspective. The design process I followed (user study, design, and then user testing) is not new. Nor are

the design methods used (�eldwork, simulation-based prototype and testing). Yet, this classic approach

provided a solution to the long-standing challenge of enabling clinician-AI collaborative decision mak-

ing. What has previous research missed? What can future research in designing AI draw from this case

study?

4.5.1 Designing the User Experience, rather than the Usability, of AI

DSTs, despite compelling evidence of their e�ectiveness in lab studies, have often failed in clinical prac-

tice, in improving patient outcomes [5, 19]. Prior research investigated this challenge mainly through

lab studies, in part because of the restricted access to the clinical environment [25, 115, 119, 131]. Most

lab studies took what will a DST predict as a given, and focused on other critical issues including better

information presentation and visualization, the accuracy of risk communication, trustworthiness, ease
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of use for medical information, etc. Borrowing language from Buxton [18], most prior works focused

on designing the predictions right, rather than considering what are the right predictions to make for

clinicians in the �rst place.

This project focused mostly on identifying the right AI thing to o�er clinicians. What predictions, if

any, do clinicians desire and perceive as valuable? Among these desired predictions, which can existing

datasets and algorithms reliably o�er? What role should the DST place functionally and socially in the

clinical decision-making process? Relatedly, when and where should it intervene? Only limited prior

work has asked these questions.

My exploration in this previously under-explored problem space revealed new design opportunities.

On the AI side (Figure 4.2, top row), end-of-life healthcare decision-making is a very human decision,

while data-driven DSTs, even if they o�er 100% accurate predictions, embody evidence-based part of the

decision making. This realization pushed me to design a DST that informs decision discussion rather

than the decision itself. It pushed me to think beyond binary life-or-death predictions, and instead

try to illustrate risks of post-implant complications and quality-of-life losses, as much as available EMR

datasets and algorithmic can o�er. On the human side (Figure 4.2, bottom row), I leveraged the rich social

context and made it a part of the clinician-DST interaction design. Situated in the decision meetings,

a socially aggregated decision point, the DST could leverage mid-level clinicians to advocate for its

information and value to the decision-makers. These observations and design ideas are unlikely to come

out of usability-focused lab studies or out-of-context clinician interviews.

This shift of focus from usability to UX in DST design is not trivial. I analogize this shift to that

from designing desktop computers to designing ubiquitous computing [127]. Both break away from the

convention of designing a more user-friendly AI system/desktop computer, and instead try to reshape

AI/computation to better �t in people’s day-to-day lives. Both mark an HCI paradigm shift that calls for:

1. New ethnographic and design work that re-imagines when, where, and how people may perceive

AI/computation as valuable;

2. New technological and interaction design innovations that together enable AI/computing devices to

deliver value when, where, and how it is needed;

3. A renewed understanding of what “AI”/“computer” is and means for people and for societies at
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Figure 4.2: case study of level one system design process, against the backdrop of the AI design com-
plexity framework.

large;

Future research shall advance this work by systemically searching for new opportunities in situating

AI into people’s everyday work and lives meaningfully yet unobtrusively (even when that everyday work

is making life-and-death decisions!). The software development community has learned over many years

that HCI and UX should be considered early in the development process and not added as an afterthought

at the end. Similarly, this works promotes the idea that users’ needs, desires, and work contexts should

also be considered at the early stages of the AI design and development process.

4.5.2 Experience Prototyping Clinician-AI Interaction

Previous research frequently suggests that human-AI interaction is extremely di�cult to “prototype”,

citing AI systems’ technical complexity and unanticipated errors as the reason [30, 52]. As a result,

simulation-based evaluation of AI systems is uncommon in the research literature. (An exception is

prototyping natural language interactions [96], which the next chapter will discuss in detail.)

This case study provides an alternative perspective on this common perception. It demonstrates

that many UX design methods (�eldwork, simulation-based prototyping and testing) remained valuable

and su�cient for designing level one AI systems – systems that produce simple outputs and do not

continue to learn post-deployment. The primary goal of prototyping is to allow designers, users, and

other stakeholders to gain a �rst-hand appreciation of the future conditions the design creates, through
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active engagement with the prototype [17]. The simulation-based prototype used in this study achieved

this goal because it was able to recreate the critical experiential aspects of the DST use (the social and

physical contexts of clinical decision-making) without making a fully working prototype. These early

lessons from research on experience prototyping and remain valuable to UX design of AI [17, 66].
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Chapter 5

A Case Study of Designing Level 4

Systems (Evolving, Adaptive Systems)

Let us now shift our attention to Level four systems. Level four systems learn from new data even after

deployment. They also produce adaptive, open-ended outputs that resist abstraction. I have previously

(3.3) argued that level four systems reveal the limits of the UX design methods and processes widely

in use today. This chapter demonstrates this. More importantly, I demonstrate that a clearer mapping

of AI’s design challenges can illuminate opportunities for future research on new design methods and

tools.

5.1 Project: Designing an Intelligent Text Editor

This project is a collaboration with a group of NLP researchers on integrating Natural Language Gen-

eration (NLG) Systems into a Word document editor, with the goal of improving the authors’ writing

experience. Prior HCI research has utilized NLG for providing writing assistance in a number of ways,

most typically, suggesting next sentences as inspiration [23, 100]. But what functionalities do authors

want, and what interaction design can allow the machine generated text seamlessly serve authors’ com-

municative intent?

With these questions in mind, I attempted to rapidly experiment with many tentative NLP design

ideas and broadly explore how NLP might improve the authoring experience. I wanted to use story-
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boards, UI wireframes, paper prototypes, and other simple, tangible instruments to sketch out early

design ideas and probe users’ reactions [18, 33]. I soon encountered many unexpected challenges. Com-

mon sketching tools and techniques deal with tangible interactions and are ine�ective at abstracting the

experience of language or a conversation. A number of technical aspects of language intelligence fur-

ther complicate its UX design. For example, data-driven interactions vary across users, adapt to di�erent

contexts, and evolve over time, and it can be di�cult for designers to envision such divergent courses of

interaction or to visualize using traditional wireframes and prototypes [3, 30, 48, 134].

These challenges led me to explore how to design NLP-powered user experiences, and what sketching

and prototyping actually mean in the context of intelligent language interactions. I took a Research

through Design approach [145] to our project at hand. My goal was twofold:

1. Provide a rare, �rst-person account of the sketching and prototyping process of a NLP-based prod-

uct, as well as an articulation of the challenges we encountered.

2. Explore new design methods and tools for designing intelligent language interactions. My re�ection-

in-action during this project provides some solutions to these challenges.

In what follows, I o�er a �rst-person account of the intelligent text editor project. I identify �ve

challenges that are central to designing language interactions in practice. I also describe a set of instru-

ments that became e�ective for my design process: a new form of wireframes that illustrated abstract

language-interaction design ideas and became an e�ective boundary object; a set of NLP technical prop-

erties that are closely relevant to UX design; and a new prototyping method that enabled us to rapidly

simulate various kinds of NLP errors. Finally, I will discuss how these �ndings reveal under-explored

research questions and new insights in supporting UX design of NLP and AI more broadly.

5.2 Related work

When I speak of NLP technologies, I broadly refer to any computer manipulation of natural language,

ranging from simply counting word frequencies, to giving meaningful responses to human utterances

[9]. Some examples of modern canonical NLP problems are information retrieval, machine translation,

dialogue systems, and question answering.

HCI research on NLP systems does not discuss the design process. While o�ering creative, user-
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centered systems, researchers in this area typically describe one design solution, followed by its imple-

mentation and subsequent user study evaluation (e.g., [23, 75, 100]).

An exception is the work on prototyping conversational AI. Researchers simulated system behaviors

with wizard or rule-based simulators so as to rapidly explore many interaction possibilities [22, 27, 57,

111]. For example, prototyping tools for speech interfaces [58] enabled designers to quickly test their

conversation scripts in Wizard-of-Oz (WoZ) experiments. Unlike the aforementioned, common sketch-

ing methods, WoZ does not facilitate designers to experiment a technology’s capabilities and limits.

Instead, it frees designers from the technical complexities and limitations of NLP and facilitate exper-

imentation on interactions. In this light, recent HCI work started to call for demystifying NLP [78],

arguing that UX designers need to possess some technical understanding of NLP to be able to design

with it [75, 101].

5.3 Method

5.3.1 Research Through Design

I wanted to identify challenges of sketching NLP within the context of one speci�c project and share my

learning.

I chose a Research through Design (RtD) approach because, in alignment with my goals, RtD under-

scores that design knowledge arises from, and in response to, concrete problems and situations [46, 103].

I �rst immersed myself in the concrete design problems of the project (designing a writing assistant),

and then o�ered an intentional accounting of the project to allow for objective re�ections on procedu-

ral, pragmatic, and conceptual insights [40]. To achieve the methodological transparency needed for

capturing my own design activities, I followed Bayazit’s three-stage process [93]:

(1) Knowledge elicitation in an unstructured and unanalyzed form. Throughout the project, I wrote

project dairies and weekly summaries, documenting my design activities. I documented all regular

project meeting and impromptu conversations with my collaborators (n=24), and how the conversations

a�ected my later design activities. The regular meetings took place among all HCI and NLP researchers

in the project three times a week. Additionally, in the �nal weeks of the project, I conducted 14 formal

interviews with 9 external NLP researchers. I recorded audio of these meetings, each lasting approx-
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imately one hour. This resulted in more than 36 pages of description of my own design thinking and

activities, as well as 9 hours of interview recordings, documenting major conversations between design

and NLP expertise.

(2) Data analysis and interpretation. After the project ended I performed a thematic analysis on the

data collected to identify key instances of challenges and re�ection-in-action that happened during the

design process. I transcribed the meeting recordings, and re�ected on whether and how they shaped my

later design trajectory. Finally, I sought agreement on interpretations across project members.

(3) Finding validation. I presented the �ndings respectively to all project members as well as to

external NLP researchers. They validated my interpretations of our design journey and understandings

of NLP’s technical capabilities.

5.3.2 Collaboration with AI Researchers

The project team included a number of HCI researchers as well as 4 NLP researchers. One specialized in

computational linguistics; the other three in language modeling and deep learning. Later in the project,

I started to design with techniques that are not typically used in writing assistance. I interviewed other

NLP researchers in the organization. Their expertise ranged from conversational agents, search, machine

translation and more.

5.4 Findings

Below I will �rst provide an overview of the design process of the intelligent text editor. I will then detail

�ve challenges we encountered when sketching, as well as the solutions emergent in my re�ection in

action.

5.4.1 Overview of the Challenges Encountered

I began by following a traditional user-centered design process [24]. First, I conducted a contextual

inquiry study of 18 participants to understand their needs and wants in writing. I invited them to record

their screen for 40 minutes as they were writing one of their own documents. I then conducted an

1-hour interview. Participants walked us through their thought process in writing during the time of
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Figure 5.1: “The notebooks", an emergent form of wireframe for sketching abstract, language interac-
tions. It bounded my design thinking to focus on envisioning “the right thing to design" and deferred
detailed interaction design tasks.

screen recording and discussed their unmet needs and wants toward writing assistance.

Next, I envisioned many intelligent functionalities that users would be likely to �nd valuable. When

doing so, I encountered several challenges: (1) How can I sketch language interactions abstractly? (2)

How can I design with data scientists without data at hand? (3) How can I better understand and stretch

NLP’s technical limits? (4) Within these limits, how can I envision novel, less obvious applications of

NLP?

After addressing these challenges, I proceeded with a small set of design ideas. For example, I en-

visioned an ask-your-reader function that compares a user’s writing with examples from their target

venues, helping them to account for readers’ likely expectations. I created prototypes of these early

ideas and tested them in a second user study. In this process, I encountered another challenge: (5) How

can I prototype an intelligently �awed UX?

5.4.2 How to Abstractly Sketch Language Interactions?

Early in the project, I wanted to focus on “designing the right thing” rather than making detailed inter-

action design choices. Surprisingly, untangling the two turned out to be a challenge.

Traditionally designers address this challenge by drawing storyboards. Storyboards capture the con-

texts and the holistic experiences of a macroscopic design idea, while dismissing its interface and inter-

action details. This doesn’t work for language interactions; language as a form of interaction carries

both the interface and the utility it manifests. I did not know how to sketch one without the other, nor

did I know how to sketch language interactions abstractly.

Adding to this challenge is the transient nature of authors’ need for assistance. This entails two

complex design tasks: Designing the trigger of the interaction so that the authors only interact with
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the NLP function when they want to; and designing the trigger of the NLP function such that it applies

to the right part of the author’s writing. While these two are interaction details, I found them di�cult

to ignore because they are signi�cant mediators of the perceived value of our designs. As a result, the

looming question “Am I designing another Clippy?" frequently derailed the team discussion of a design

idea from its utility to its interaction details.

How to stay abstract when sketching NLP? My solution to this challenge was a new format of wire-

frame, namely the notebook (Figure 5.1). It is an abstract representation of the moment when a user

requests intelligent assistance: against the backdrop of what has been written in the document, the

writer selects a part of the text and requests an intelligent assistance function from a drop-down menu.

The user may additionally specify whether the assistance function should overwrite their writing, or

display the response elsewhere as a reference. The user may also specify other information as additional

inputs into the intelligent function.

Notably, the notebook does not depict a design idea. It is highly unlikely that the �nal design will re-

quire users to type their requests via such computer-program-like commands. Rather, it is an instrument

that facilitates my design thinking and sketching.

The notebook bounded my design problem at hand, that is, assume that users have made the right

judgments on what intelligent function to apply to which text, and they are willing to make great e�orts

to make the function happen, what functions can AI o�er? The notebook prompted us to freely imagine

valuable functionality o�erings while deferring other detailed design choices.

Before I created the notebook, I had drawn many di�erent representations of language interactions;

some were literal and visually resembled a text editor, others abstract and conceptual. Only the notebook

caught on and was later organically adopted by the whole team. Upon later re�ection, the notebook

caught on because it embodied the team’s initial stances in designing intelligent writing assistance.

These stances are 1) we wanted machine intelligence to support authors’ writing as a process, not a

resulting product [79]; and 2) we refused to assume that authors need or want help in writing, hence the

intelligent assistance is passive by default and only became proactive upon user request.

Embodying these stances, the notebook became “a very e�ective problem framing” (designer diary,

week 3) for me. For the rest of the design process, the notebook representation evolved every time when I

reframed the design problem. For instance, after I had discovered in the user study that most participants
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Axes of NLP Capabilities What It Takes to Extend the Capabilities

Text Length. Words are easier to computationally process
than phrases, than sentences, than paragraphs and �nally a
document. Knowledge beyond the written texts (e.g., common
sense) is the most di�cult to process.

Escalating an intelligent functionality, for ex-
ample, from word level to sentence level, re-
quires building new models and “there is no
guarantee how well it will work.”

Classi�cation - Comprehension - Generation
Assessing or classifying a piece of text is easier than compre-
hending it (i.e. pinpointing the problem in this text), than text
generation.

Escalating intelligent functionality along this
axes requires building a new model and col-
lecting additional or new labeled datasets for
building it.

[classi�cation only] E�orts Needed to Label Training
data.
If it is easy and fast for humans to make an agreed-upon judg-
ment of its class, curating a labeled dataset for this intelligent
classi�er is likely to be practical.

Time, e�ort and often �nancial costs. Medi-
cated by the amount of labeled data needed.

Likelihood to �nd training data that resemble the envi-
sioned input/output pairs. We cannot presume a model that
performs well on a benchmark research corpus would natu-
rally perform in other texts.

Transferring or generalizing an existing
model to a di�erent corpus requires building
new models and “there is no guarantee how
well it will work.”

Table 5.1: NLP Capabilities, Limits and What It Takes to Extend the Capabilities

outlined in the same document what they want to say before they worked to improve on how to say it, I

included outlines as part of the notebook framework. These outlines externalize users’ communicative

goals and can serve as a valuable source for more situated and personalized interactions and functionality.

Including the outline in the notebook suggests that: 1) I can imagine new intelligent design possibilities

with outlines as a resource; and 2) motivating authors to externalize their communicative goals will be

one of my later interaction design goals.

5.4.3 How to Design with Data Scientists Without Data?

With the notebook framework, I started to ideate many writing assistance utilities that, based on our

user study, users are likely to �nd useful. The �rst round of ideation generated 19 design ideas. To

my great surprise, according to the NLP researchers, none of the ideas were promising from a technical

feasibility perspective. These ideas “need ten more years to make it happen,” they said, only half-joking.

Eager for more insights, I asked the NLP researchers: why are these designs technically unfeasible?

Why does this functionality work in this research publication, but doesn’t work for this design? What

is feasible then? However, technical researchers were unable to answer these questions. They could not

articulate NLP’s technical limits with our abstract design ideas. “It’s di�cult to say; It depends on data.”
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“The function you described is too abstract; I need to look at the data.” For example, when I asked Would

these two models you are building work for our users? I received:

Scientist 2: Both models are sort of data agnostic. So as long as the data [users’ writing] is

somewhat analogous to what we have now, it should, theoretically, translate very easily.

Scientist 5: That’s true for any model, right? So really, we don’t know. We need to look at the

data.

In order to rapidly explore the design space, I could not a�ord to collect data before sketching. Data

collection, prepossessing and exploration take up more than 80% of the total ML e�ort [143]. The ques-

tion became: how can I partner with NLP scientists without a text corpus at hand?

After experimenting with numerous ways to explain my design ideas, I arrived at one boundary

object [14] that e�ectively sca�olded my conversation with NLP researchers – a more developed version

of the notebook. This version of the notebook was projected on a Text Editor wireframe, resembling a

user interface (Figure 5.2a). When I embedded my design ideas within the notebook framework, NLP

researchers no longer asked for data and became able to engage in feasibility discussions about abstract

design ideas.

Interpreted as a design problem framing for me, the notebook represents a language model for NLP

researchers: when a user triggers an intelligent function to be applied to a selected snippet of text, the

content and paratext of the Word document at that moment constitutes potential training data. The

selected text is the model’s runtime input. The envisioned function outputs are modeling goals.

The notebook became a shared representation and a means of translation between the two worlds

of UX and NLP. It sca�olded my discussions with NLP researchers for the rest of the project. I described

my design ideas by describing what they would look like on the notebook. NLP researchers then gave

feedback on whether these are su�cient sources of data for building intelligence. They also proposed

additional kinds of data that could boost model performance. Drawing on user study �ndings, I consid-

ered what additional data might be present or attainable through user interactions, and iterated on our

designs. This process iterated smoothly and required no data collection or cleaning e�orts.
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5.4.4 How to Understand and Stretch Technical Limits?

You are really good at designing things we cannot build. We are good at making things that users don’t

use. (NLP researchers 2 & 9, weeks 3 & 5)

My �rst-round sketching produced design ideas that are uniformly beyond the limits of existing

technical capabilities or existing datasets. It is worth noting that, when I envisioned these designs, I did

not imagine NLP as a crystal ball. I drew the ideas from NLP literature; I intended to innovate writing

assistance by amplifying or re-contextualizing these existing techniques. Below are two examples of my

initial design ideas:

• Rephrasing the selected text in a more positive tone (seems possible based on existing work on style

transfer between di�erent sentiments);

• Identifying whether the selected text is logically coherent with its context (seems possible based on

textual entailment analysis techniques [39]);

How can I understand NLP’s technical capabilities and limits from an UX perspective? Realistically,

to what extent can I push these limits to enable novel designs?

A set of technical boundaries became clear to me after many discussions with NLP researchers,

through negotiating with them and iterating on my design ideas. I describe these boundaries via four

measures of NLP’s technical di�culty: text length, text classi�cation-comprehension-generation, e�ort

needed for labeling (for classi�cation problems only), and likelihood to �nd training data that resemble

the envisioned input/output pairs (Table 5.1). This set of measures enabled me to eventually �nd the

intersection design space between what is valuable to users and what is technically feasible.

Taken together, the four axes depict an algorithmic approach to language processing that is quite

di�erent from typical authors’. Authors start writing with a big idea in mind, then sca�old its constituent

supporting ideas, structure paragraphs, sentences, and so on. In contrast, language models �rst parse a

sub-word, then a word, then a phrase, a sentence, and so on. Comprehending the big idea underlying

the written texts is considered “the holy grail of NLP research”; It is so challenging that “when we �gure

this out, the whole �eld of NLP would have become a solved problem”.

Because of this di�erence, my early design ambition to support the experience of writing – the ongo-

ing process of translating the big idea to texts – has unknowingly led us toward technically challenging
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Figure 5.2: Left: A developed version of the Notebook (Figure5.1), used as boundary object between
HCI and NLP researchers. “Contexts” that can help inform intelligent function outputs are marked
blue. Middle and Right: Reframing the problem of designing writing assistance as other canonical NLP
technical problems. This expands our design space to the intersection between what authors want and
what existing NLP capabilities can do.

designs. In order to generate any implementable design ideas, I cannot naively project authors’ goals

onto intelligent functions. I need to identify technically achievable intermediate steps toward their goals.

By quickly assessing the four measures I was able to “gut-check” the feasibility of new design ideas

and weigh their promise of UX gain against the technical e�ort they required. For example, the “ef-

forts required for labeling” stands as a reminder that I cannot presume many seemingly trivial skills

that authors master can be easily automated. This is because “humans generally don’t have a sense of

classi�cation or labelling. It’s unclear when they used common sense, biases, or their world knowledge. But

algorithms require labelling (to learn these)” (Designer note, week 7).

Take the aforementioned design idea “paraphrasing in a more positive tone” as an another example. It

is technically out of reach because of its low likelihood to �nd training data that resemble the envisioned

input/output pairs (axis 4), as an NLP researcher explained:

We don’t have the training data at the scale that we need. [If] Say: here is a mangled version of the

sentence, here is a cleaned up, positive version of it, times 50 million pairs. If we had that, it (building

the intelligence) will be trivial. But it’s very unlikely to have this kind of data.

68



5.4.5 How to Envision Less Obvious NLP Applications?

With some understanding of the technical limits, I sketched new design ideas that NLP researchers con-

sider as implementable, or “at least have a clear direction to work from”. However, I found my own design

ideas rather unsatisfying. State-of-art NLP can assess or classify writings, but cannot easily pinpoint

causes of the problems or generate suggestions on how to improve. This seemed a textbook recipe of a

frustrating user experience. As a result, most of my design ideas are word or phrase-level alternations,

“many variations of auto-complete and auto-correct basically”.

How can I envision technically feasible NLP designs that have not been imagined before? How can

I expand this narrow intersection between what is value to users and what can be built?

I addressed these questions with a classic designerly approach: taking designing writing assistance

as a wicked problem [16] and seeking reframings. My initial problem framing underlying the original

notebook wireframe is that the writing assistance functionality comprehends and generates texts as the

author writes. As described in the last section, this framing is prone to technically challenging design

solutions. Authors are inherently better than algorithms at comprehending their un�nished writing and

at predicting their unformed ideas, which is a wicked problem that cannot be accurately modeled.

I reframed the relationship between authors and writing assistants as other canonical NLP problems,

speci�cally human-AI conversations, information retrieval/search, and question answering. (Figure 5.2

illustrates how I abstracted users’ writing into many text components, and then mapped them onto other

NLP problems.) Each of these alternative framings exposed me to a new set of technical capabilities in a

di�erent NLP sub-domain. I demonstrate how these new framings broadened the design space through

the two design ideas they spurred.

5.4.5.1 A Context-aware, Rhetorical Search Function

Search is a relatively matured NLP sub-domain. Conceptualizing AI-assisted writing as a search experi-

ence introduced many near-future design possibilities into my design space. Instead of algorithmically

generating responses to authors, a search function can simply retrieve relevant writings based on author

requests. It does not require large datasets or the collection of labels.

I started to ideate intelligent search tools that users are likely to �nd useful. I observed and in-
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terviewed participants in our user studies about how they sought information during writing. I noticed

that, prior to writing, most participants outlined and organized their thoughts in the forms of bullet lists,

tables, and even drawings. Yet many struggled with translating the organization of thought into a lin-

ear, natural �ow. Authors therefore searched online for rhetorical structures that they could borrow, for

example, one participant, P7, Google’d “[quotation mark][comma] in comparison to [quotation mark]” to

search for examples of connecting ideas of contrastive relationship. However, this carefully constructed

search query does not actually work as he expects. Modern search engines expand and rewrite search

queries based on similar searches, user search history and so on, optimizing for �nding content that is

relevant to the query topically rather than rhetorically. Participants like P7 could not �nd the writing

examples he sought.

To support this unmet need I sketched a rhetorical search function. It searches the web for text that

is similar in language structure and composition to the author’s query. It takes into considerations the

topic and style of the authors’ current document to optimize the relevance of the search results. When an

author selects a part of their bullet-list outline (e.g., “Issue A: good/bad examples") the writing assistance

tool then searches for contents online that contain contrastive examples relevant to Issue A and sorts

by di�erent ways of transitioning between them. Rather than optimizing for topic relevance, this search

functionality helps users �nd better ways to organize and connect their thoughts. It can be implemented

with readily available search techniques.

These search functions can also serve as a stepping stone to future, more ambitious intelligent de-

signs. The search results that authors adopted as training data for future generative language models.

5.4.5.2 An Asking-Your-Reader Function

Another useful reframing is conversational AI, that is, reframing the role of writing assistance as a

conversation partner of the author. This reframing asserted new design questions: Whom would authors

like to talk to during writing and for what purpose? What information can conversational assistance

o�er? These design questions naturally expanded our design space beyond “helping writers verbalize

what they have in mind”, and prompted us to imagine utilities NLP can provide as an outsider to the

author’s world.

With these questions in mind, I asked participants whom and how they asked for feedback while
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writing. I found they often picked those who are close to their target readers as their “beta-readers”.

Participants worked to translate their often egocentric writing into a style that meets the expectations

and needs of their target readers. Many read other documents from their target venue to infer the

expected length, lexical complexity, or level of detail that they should write in.

I see this as an excellent opportunity for NLP technologies to help authors, as algorithms are good

at rapidly summarizing or characterizing a sizable collection of documents. I therefore designed an “ask

your reader” function. It mines documents from an author-identi�ed venue. The author can request

insights about these documents or make comparisons between their own writing against it. For instance,

“Am I writing too formally?” “How long is a typical introduction section in [venue]?” In this design

writing assistance does not assist authors in writing per se, but supports their communication with their

target readers.

Through these two design exemplars, I demonstrated that design problem reframing helped the team

envision novel forms and functions of existing NLP techniques, expanding the design space of technically

feasible writing assistance.

5.4.6 How to Prototype an Intelligently Flawed UX?

I generated a prioritized set of intelligent functions o�ering ideas informed by the our initial user study

and bounded by existing NLP capabilities. I then turned to building a low-�delity prototype to rapidly

experiment on these ideas with users. I wanted to test the ideal behavior of the envisioned intelligent

functionalities with users to see if I was pursing the right design directions. I also wanted to probe users’

reactions to a more realistic range of NLP-powered behaviors and errors to account for these reactions

and expectations when improving on our design.

But how can I realistically simulate NLP’s errors without spending months building fully-functioning

systems? I experimented with a series of prototyping methods in collaboration with 9 NLP researchers.

5.4.6.1 Failed Attempts

Wizard-of-Oz is a common way to prototype NLP. However, I learned early in the project that algorithms

make errors that are unlike human errors. For example, even state-of-art NLP can fail in text compre-

hension or generation because of a lack of common sense knowledge. To enable wizards to simulate NLP
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behaviors we need to prevent them from accessing their common sense, which is extremely di�cult.

Beyond unrestricted Wizard-of-Oz experiments I also considered using a rule-based simulator to

prototype intelligent input/outputs. I encoded some rules (e.g., manually speci�ed decision trees) into

the prototype. However, NLP researchers pointed out that a rule-based simulator at best could behave

as well as a rudimentary ML system. Their capabilities are far behind state-of-art technology.

I attempted to use publicly available, pre-built NLP models to power the prototype, yet failed for

similar reasons. These application-agnostic toolkits only include the most matured kinds of NLP tech-

nologies. Their level of sophistication is not close to state-of-art NLP technologies either.

I then experimented building simple ML/NLP models to simulate modern NLP’s behaviors, using

publicly available datasets and o�-the-shelf toolkits such as AllenNLP [118]. This failed for a number

of reasons. First, preparing the datasets is itself a daunting task. Next, integrating NLP toolkits that

were built upon di�erent platforms, in di�erent programming languages into one prototype further

complicates the prototype building. Finally, I built a simple model yet its performance was just not good

enough for a user study. When an algorithm-generated sentence makes sense but reads awkwardly, the

awkwardness washed out all other user “experiences". The sentence reads simply, awkward.

5.4.6.2 Successful Attempts

I prototyped my design ideas with an alternative WoZ method. For each NLP-powered interaction, I

designed a di�erent hybrid of WoZ and o�-the-shelf toolkits to best simulate the likely errors. The design

of each hybrid mimics the likely architecture of its underlying NLP system. This method highlights

that di�erent intelligent features produce di�erent kinds of errors, each of which can have di�erent

UX consequences. In order to better capture these consequences, I needed to better orchestrate WoZ

behaviors to simulate NLP behaviors. Below are a few examples:

(1) Simulating context-awareness with machine translators: Most of my designs took authors’ writ-

ing as an input and provide context-aware, personalized writing suggestions. Our prototype read the

authors’ writing in English, translated to a foreign language using existing machine translation services,

and translated back to English. The output of this process simulated the noise in "context" detection.

Language technologies could fail at extracting relevant contexts from authors’ writing. There instead

of taking their writing into full account, my prototype removed parts of it that algorithms could not
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easily comprehend through the two rounds of translations. I used online machine translation services

to build this prototype. To simulate context awareness of lower quality, I selected the second, third, and

fourth ranked translations that the translator provided, so that more context and meaning were lost in

the translation.

(2) Intelligent functions that assess or categorize author’s writing: I simulated the results based on

what kinds of errors were more likely to happen (precision, recall, etc.) and which assessments/categorizations

were more error-prone.

(3) Simulating generative writing assistance with a multi-wizard simulator: When a user study par-

ticipant requested a piece of machine-generated text, multiple wizards and a meta classi�er worked in

the background. Each produced a response that excelled at one aspect of the text generation. For exam-

ple, one wizard produced a topically relevant response, the second wizard took charge of the response

�uency, the third focused on the coherence between the generated text and the writers, the forth added

domain knowledge to the response, the �fth generated random words, and so on. The meta classi�er

assembled all of the wizards’ responses into the �nal response returned to the user.

I designed these wizards’ roles based on common models of generative neural networks. I simulated

di�erent kinds/degrees of generative errors by tuning the weights that each wizard carried. As such, I

was able probe user study participants on their preference among various designs of a generative writing

assistance as well as their error tolerance. Below I brie�y describe some of the user study results and

discuss how they informed my later design iterations and re�nement.

5.4.6.3 E�ectiveness of the Prototypes

In the second user study, I invited the 18 participants to use the prototypes as they were writing one of

their own documents. To my knowledge, this is di�erent from almost all previous HCI work on writing

assistance systems, in which researchers typically invited participants to write on pre-determined top-

ics for a particular time duration (e.g., as in [23, 100]). My prototypes triggered unexpected reactions,

ones that are distinctively di�erent from either previous HCI studies or what the participants verbally

described as desirable from an intelligent text editor.

Is Adopting Machine Generated Writing Plagiarism? One of the functionalities o�ered in the

prototype is generating sentence-or-phrase-level writing suggestions. For example, when participants
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Figure 5.3: This prototype interface is a simple text editor. At any time of their writing, users type @
to signal the start of an intelligent function request and Enter to end. When they click on a request,
intelligent assistance pops out. This prototype probes users’ needs and wants for writing assistance, and
their reactions to the simulated intelligent responses.

type “@ add an opening with a quote” (@ signals a request for intelligent assistance) and click on the

request, the prototype surfaces a list of opening sentence suggestions. Participants in the initial user

study expressed a desire for such functionalities for they can save writers’ e�orts to search for relevant

quotes, examples, or references online and to integrate into their own writings.

“Even if I just liked this sca�olding (in the machine-generated suggestion), I wouldn’t take these exact

words. It’s like... In my school, �ve or six consecutive words from any other piece of media that isn’t

referenced as a quote are considered plagiarism. People get expelled from school [...] It’s a societal

judgemental thing.” (P9)

Interestingly, when participants saw the machine-generated suggestions to their own writing, they

instantly became more resistant and expressed a much stronger sense of ownership or their writing

than they had initially expressed. “Isn’t this plagiarism?” Few participants described adopting a machine

suggestion directly as “stealing a sentence from another article” and “it just feels wrong!”

Instead of accepting machine-suggested sentences, most participants browsed many, many sugges-

tions, and from di�erent suggestions picked parts of the sentences, semantics, word choices or references

that they liked, and integrated them into their own writing. Some participants clicked the “refresh” key

more than 20 times – corresponding to more than 60 di�erent writing suggestions, “just to get a vibe.”
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Even machine-generated sentences have rami�cations beyond themselves.

“Some of the things, the inspirational stu� (quote), I need to know that (machine-generated) content

better as my name is attached to this document, and I need to refer to it and talk to it.” (P9)

“I need to scout out the (machine-generated) sentence. That kind of sentences has been written a million

times. It is not really the point that they are trying to get. That’s just a way of seeding the context.”

(P5)

Almost all participants �rmly believed that the machine-generated sentence suggestions have larger

contexts and rami�cations. The true intent of sentences, the philosophical stance of the author, reside in

these larger contexts, “at least two paragraphs later”. Participants shared that they needed to “make sure

this article (source article of the suggested sentence) is going where I thought was going”, in order to assess

whether the suggestion aligns with their writing. However, our prototype, as well as almost all sentence-

level generative algorithms, do not produce such contexts, therefore simply is unable to respond to such

user requests.

5.4.7 Summary of Emergent Solutions

Earlier in this chapter, I detailed the �ve challenges we encountered. In the process, three instruments

became useful to the design process.

• The notebooks. The notebooks are a set of wireframes that illustrate abstract language interaction de-

sign ideas. The notebooks ended up playing three important roles in the design process: They enabled

me to externalize and communicate early-stage, abstract, language-based design ideas (challenges 1

& 4). They also served as a boundary objects between designers and data scientists (challenge 2) and

between designers and users (challenge 5), which enabled conversations among UX, design and NLP

expertise;

• A set of NLP properties that are closely relevant to UX design, including “axes of NLP capabilities”

and “what it takes to extend them”. Understanding these properties helped me frame the design space

within current technical limits (challenge 2);

• An alternative WoZ prototyping method. For each NLP-powered interaction, I designed a di�erent

hybrid of WoZ and o�-the-shelf toolkits to best simulate the likely errors (challenge 5). This method
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shares the goals of traditional WoZ in enabling fast prototyping of NLP. In addition, my method high-

lights that di�erent intelligent features produce di�erent kinds of errors; each kind can have very

di�erent UX consequences.

5.5 Re�ecting on UX Design Expertise and Methods for AI

This project o�ers a point of reference for discussing and addressing the challenges of designing gen-

erative language interactions. Do the challenges I encountered in this project generalize to other AI

systems? What are the root causes of these di�erent challenges? Relatedly, to what extent do the emer-

gent solutions generalize to other design situations? Answers to these questions have the potential to

improve the UX design and innovation of many natural language generation and AI systems at large.

To jump start this discussion, below I discuss the challenges I encountered and solutions emerged

in this case study again the AI design complexity framework as backdrop. My goal is to extend the

value of my situated �ndings from this case study to designing level four AI systems more generally, in

a structured and rigid manner.

This project highlights the value of UX design expertise for making AI’s technical advances valuable

for people in real-world scenarios. The team identi�ed a priorities list of users’ desired NLP functionali-

ties before spending months and even years in collecting data and training a generative model, thereby

minimizing the risks of making the wrong thing. It was particularly important in the early design stages

– the process of exploring many broad ideas before drafting concrete UIs or dialogues. For example, what

kind of writing assistance do people even want? Identifying “the right thing to make” and prototyping

early on in the design/development process can minimize the risks of spending months and even years

in collecting the wrong data or training an undesired generative model.

This study also surfaced a number immediate research opportunities in supporting UX practice:

1) developing new sketching and prototyping techniques for language interaction design, 2) understand-

ing NLP’s design a�ordance and limits, and 3) designing and evaluating the UX of evolving AI systems.
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5.5.1 Sketching and Prototyping Techniques for NLP

Sketching and rapid prototyping are cornerstones of HCI’s creative activities [18]. Designers carry out

their design thinking through these hands-on activities [103]. However, it was not intuitive how to

conceptualize, design, or evaluate language interactions abstractly.

NLP systems are di�cult to sketch or prototype because language interactions are di�cult to abstract

for both. On one hand, most sketching techniques and tools in designers’ tool-belts, such as storyboards

and wireframes, have evolved over the last two decades under the dominance of the graphical user in-

terface, which is not directly applicable to language interactions. On the other hand, machine-generated

language can make errors incomprehensible to humans and are di�cult-to-anticipate. It could seem

that only building a working NLP system can reveal its likely behaviors. Abstraction is essential to

any early design ideation, yet a missing perspective in NLP HCI literature. Most assume that designers

start designing by “writing linear dialog examples” [58]. WoZ studies often simulated NLP interactions

with rule-based systems or crowd intelligence; Deliberations are lacking on whether these are e�ective

abstractions of NLP system outputs.

Upon re�ection, all �ve challenges I encountered involve some aspect of abstracting NLP interac-

tions. For example, challenge 1 dealt with abstracting language interaction design ideas into di�erent

problem framings e�ective for design deliberation. Challenges 2, 4, and 5 struggled to elicit relevant

experiential qualities of language interactions, in order to create meaningful boundary objects or low-

�delity prototypes.

In this light, I argue that supporting sketching and prototyping language interactions abstractly is

an important yet under-engaged issue for HCI/design research. To summarize, this case study revealed

three aspects of abstraction, o�ering a starting place for this line of research.

1. Abstracting language interactions as ways of framing its design problems

2. Abstracting NLP capabilities to frame its design space realistically

3. Abstracting NLP’s experiential qualities to enable rapid UX prototyping

Figure 5.4 maps these three aspects onto the problem space of human-AI interaction design. The

�rst two aspects concern how to “identify the right thing to design” with NLP; the other “design the

thing right”. In addressing these challenges, future work may take inspirations from previous work on
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Figure 5.4: Case study of level one system design process, against the backdrop of the AI design com-
plexity framework.

designerly abstractions of di�cult technology materials, such as visualizations, taxonomic vocabulary,

and sensitizing concepts [76, 87, 95]. In doing so, the UX community can develop a robust family of

methods for designing language interaction abstractly, thereby enabling its UX design innovation.

5.5.2 Understanding NLP’s Design A�ordance and Limits

Let me expand on the issue of “abstracting NLP capabilities”.

Previous research reported that some UX designers could fail to understand NLP/machine learning

“speci�cally,” even when they understand how the systems generally work [30]. My experience in this

project echos this observation. My early sketches of writing assistance revealed a signi�cant gap be-

tween how I wanted to support users ideally and what NLP can build realistically. This gap is hazily

assumed yet rarely discussed in HCI research. Much work – exempli�ed by the many unrestricted WoZ

studies – instead has focused on the design possibilities NLP inspired. This orientation leads to some

NLP researchers’ claim that “HCI people design useful things that we cannot build; we make things that

nobody uses.”

In parallel to works that freely imagine possible futures, there should also be research on creating

products that wisely attend to state-of-art NLP’s capabilities and limits. Towards this goal, more work

needs to investigate respective advantages and disadvantages of human and arti�cial language intelli-

gence in order to choreograph harmonious interactions in-between.

In this case study, three aspects of NLP were relevant to the writing assistant design, as they emerge

naturally in my design activities: (1) High-level understandings of NLP’s capabilities and limits, which
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oriented our design ideation; (2) NLP’s capabilities given the available data and development resources,

which informed our design deliberation and the trade-o� between UX gains and technical investigations;

and (3) Each design’s likely errors and other experiential qualities, which enabled rapid prototyping and

helped us account for unexpected system behaviors. Table 5.1 provides a glimpse into what a designerly

understanding of NLP capabilities might look like.

Future research should evaluate and improve this set of NLP design properties. Moreover, enabling

practitioners to develop their own tacit understanding of NLP opens up new research opportunities and

promises real impact on UX practice. For example, what new boundary objects that help designers more

e�ectively collaborate with NLP scientists and understand the technical capabilities and limits applicable

to their respective design problems?

5.5.3 Designing and Evaluating the UX of Evolving AI Systems

One limitation of this case study is that it does not include an evaluation of the envisioned NLP systems.

I do not know whether my understanding of NLP’s capabilities and limits has indeed led to novel and

technically feasible designs, as my NLP researcher collaborators believed. Beyond the early prototyping

study, I do not have evidence that the users will indeed appreciate and enjoy using the writing assistants.

This evaluation is di�cult. Deep-learning-powered NLP systems require an unwieldy amount of data,

and collecting the data from users’ organic interaction traces can take years. This is beyond what the

timeline of this project allowed.

But more pertinently, even if there was enough time, it is unclear how to evaluate the UX design of an

evolving AI system; a system whose technical performance and error modes are constantly �uctuating

and evolving with its users’ interaction traces. Consider Tay the Microsoft Twitter bot as an extreme

example. Positive results of a UX evaluation today do not indicate that the system will continue to deliver

good UX tomorrow.

In this sense, level four AI systems (systems that continue to learn from new data post-deployment)

revealed a non-trivial limitation of current UX prototyping and evaluation methods: They cannot man-

ifest or evaluate the evolving UX of an evolving AI system over time (Figure 5.4 yellow parts). It is very

di�cult to fully anticipate how users’ behaviors will evolve over time and how the interactive NLP sys-

tems’ behaviors will evolve accordingly. In this case study, the team worked to anticipate and mitigate
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this human-AI co-evolvement based on the designer’s and the NLP researchers’ intuition. Are there bet-

ter, more rigid ways to design the interactions of two mutually adaptive agents? Future research should

critique and improve the design process described in this case study, seeking better, more systematic

methods of designing and prototyping living AI systems.
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Chapter 6

Beyond Case Studies: Investigating

Industry Best Practice of Designing AI

Previous chapters have presented Research through Design projects as case studies. They demonstrated

the bene�ts and limits of UX design methods in designing AI systems, and also raised new questions

for UX design research. For example, how can we design or evaluate the interactions between two

mutually-adaptive agents, an evolving AI system and its users?

In this chapter, I investigate the design practices of some of the few UX designers who regularly

create new products and services that use ML to enhance UX. I hoped that their rich experience and

practices could reveal new insights into the questions around UX design of AI.

I interviewed 13 designers who all had at least four years of experience designing AI/machine learning-

enhanced UX. The interviews produced several interesting �ndings: 1) Designers shared that they knew

very little about how machine learning (ML) works, and this was not a priority for them. They instead

used designerly abstractions and popular exemplars to explain what ML is and to communicate design

ideas with each other. 2) ML projects are longer in preparation and scope than other design projects.

During the preparation stage, designers evolved their ideas in close collaboration with data scientists;

They did not deliver fully formed designs to a technical team. 3) New design activities and techniques

have emerged as designers try to embrace the data-driven culture. They “play with” quantitative data –

in di�erent ways and for di�erent purposes – throughout all phases of a design project.
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Education Professional
Role

Example Design Project Org
Size

Exp.
(years)

HCI Design Manager Intelligent features in multiple messaging or
conversation apps

>10,000 10+

Design Design Manager Intelligent features in a media consumption app
to better match content providers and users

>10,000 10+

Design UX Designer Decision support app for physicians 1,000 -
10,000

10+

Design Designer-turned
PM

Language learning app; patient coaching app. 100 -
1,000

10+

Design & HCI Designer Intelligent tutoring feature for education apps <100 10+
CS and HCI Designer-turned

entrepreneur
New messaging and e�ciency apps <100 10+

Design & HCI Designer Recommender in a shared service app >10,000 7-10
CogPsy UX researcher Intelligent reminder in a social media app >10,000 7-10
EE & Design UX designer New wearable health product >10,000 5-7
HCI Designer Recommender in a text processing software >10,000
Design Service designer New health coaching app >10,000 5-7
Psychology UX researcher Intelligent feature in a social media app >10,000 4
HCI UX researcher Intelligent content recommendation for a media

consumption product
>10,000 4

Table 6.1: Interview Participants. I interviewed UX designers who had more than four years of experience
in designing ML-enhanced products. Many had more than 10 years of related experience.

6.1 Method

I conducted retrospective interviews with UX design practitioners who have played an active role in

creating widely adopted ML-driven products. I interviewed 13 participants. All had designed products

and services that enhance UX with ML for more than 4 years. Most had worked on these types of products

and services for more than 10 years. Nine participants designed products used by more than one billion

users. Two worked on successful special-purpose ML applications: a clinical decision support systems

and a wearable health coaching system. The others worked to extend existing products with new ML

features. Table 6.1 provides a summary of the participants’ background and the type of projects they

described in our study.

I asked all participants to complete a pre-interview survey where they described their education and

professional background, as well as their familiarity with concepts from UX design, statistics, machine
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learning, and data storage. I then interviewed participants, asking them to walk us through a recent

design case where they used ML to improve the UX. Throughout the interviews, I probed them to get

details on their process and to surface the triggers that drove speci�c decisions for what to do and how

to work.

At the end of the interview, I asked participants to re�ect on what they viewed as the major di�er-

ences between how they design when working with ML and when working on products and services

that don’t use ML. I asked them to share, “the things you wish you had known about before you started

your career in designing ML systems”.

I recorded and transcribed the interviews. I then reviewed the transcripts, pulled out important

insights, and used a�nity diagrams to synthesize across the interviews in order to identify thematic

patterns. I created and consolidated process models detailing how the di�erent projects unfolded and

how the designers collaborated with data scientists.

6.2 Findings

I organized my �ndings around three themes: work participants did to understand ML capabilities,

changes to the design process that seem directly related to working with ML, and new, AI-speci�c design

activities participants have undertaken.

6.2.1 Designerly Understanding of AI

Participants characterized their ML literacy as “understanding at a very high level... [at the level of]

knowing what a classi�er is and what a label is.” Interestingly, participants did not feel their lack of

technical knowledge hindered their ability to design or to collaborate with data scientists. They shared

that they worked on the design issues, not the technical issues, and that working with ML required “. . .

more design savvy”. Several participants claimed designing the user interaction was “the actual challenge.”

I don’t think of ML as a�ecting my interaction designs or not. I think about it more like

impacting certain algorithms that are inputs into users’ experience. (P14)

Most claimed that they learned to work with ML similarly to how they learned to work with other

interactive technologies. “ML is just like JavaScript”, several participants claimed. They did not seem to
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view themselves as technology experts, but instead as UX design experts who had great comfort working

with a variety of technologies, and ML was one of these.

The way designers spoke about ML has little overlap with the way education materials meant to

teach ML for engineers. Participants rarely spoke of ML in technical terms. For example, they never

talked about supervised or unsupervised learning (common starting point for teaching ML). Instead,

they appeared to think with, and work with, abstractions; simple insights about an ML capability had had

implicitly linked with generating value for users. These were much more abstract than design patterns.

More similar to design patterns, they often used exemplars to communicate these abstractions.

Q: What does machine learning do?

P7: Some try to recognize intent, a bit like auto-correct. Some are intent prediction like Clippy.

Anyone who is working on assistive technology, is working on some class of that problem.

In the excerpt above, P7 describes ML using abstractions of its capabilities: recognize intents and

predict intents. He then ground these capabilities through the use of exemplars: auto-correct and Clippy.

I found this manner of describing ML across most participants.

Participants most often described the capabilities of ML as it related to the user’s utility. Their ab-

stractions narrowly oriented towards both the users and scenarios related to their designs. They never

spoke of general taxonomies of ML functionality or speci�c algorithms. Some examples:

We use machine learning so that we can build something that can personalize for a lot of people.

(P3)

In consumer tech, we try to raise the level of abstraction [of user commands] rather than doing

everything manually. (P7)

ML gets users directly into the task they really need to do. (P1)

We are doing a recommendation system of sorts. As a product designer [not a technologist], I

think about that as how canwe show an evolving relationship between a user and our service... [I

want users] foreseeing our relationship improve, where the relationship is the recommendations

we are giving them. (P14)

The abstractions almost always appeared with exemplars. The abstractions served as a general in-

sight about an ML capability and provided an understanding of how it worked. The design exemplars
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provided speci�c interaction possibilities and a glimpse of a possible felt experience. In our interviews,

participants frequently referenced widely-known exemplars including Clippy, autocorrect, email spam

�ltering, and Tay the Twitter bot. They used these to help describe the capabilities of ML; the form,

function, and user experience; and the potential breakdowns that might occur.

The number and variety of exemplars participants used varied wildly, and those with the largest

working sets seemed to be the most successful and comfortable at using ML to enhance UX. Participants

working at AI-focused organizations had a signi�cant advantage in building their working set of exem-

plars and abstractions. These organizations had data scientists frequently giving demos as one way to

sensitize their design teams to emerging ML capabilities. “So many people demo for me. I don’t even know

whom to call if I have an idea and want to consult a data scientist.” Participants at smaller or less AI-

focused organizations had much more limited access to data scientists. They appeared to consider and

propose fewer design alternatives. They were also more likely to use only the most familiar interaction

forms, such as recommender or reminder, when describing their process.

6.2.2 Design Process and Collaboration

Participants shared that working with ML took much longer than when designing other UX products

and services. I wanted to synthesize the actual time span ML projects required. However, I found that

none of our participants had worked on an ML product from its initial ideation until its �nal release. I

could see that some ML projects had lasted for more than four years.

ML has a di�erent time-frame for design iteration. Longer initial development, but then ongoing

iteration. It felt like building a feature versus building a framework. When you ship it, it’s not

the end of it. They cycle, and data drives the next step. (P3)

A consolidation of participants’ design process narratives revealed an ML design process. It starts

with a long preparatory stage (stage 1), during which designers and data scientists identify a design

goal that is both technically viable and that appears to have a high likelihood of improving the user’s

experience. Once a team had settled on the design goal, scientists and developers implemented the

system and designers crafted its interaction design (stage 2). In stage 3, they together invested in frequent

iterative releases and assessments in order to improve user adoption.

All participants described stage 2 in their ML projects. Stage 2 is a central stage that all projects that
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participants described went through. Stage 1 happened only at the large, AI-focused organizations. Few

projects had made it to stage 3. Below I describe three distinct design stages.

6.2.2.1 Stage 1: Concept Development

New ML design seemed to only happen within the AI-focused organizations. It started with a long,

preparatory stage involving two activities. First, participants collected log data form current services

their organization provided. Participants examined the log with sensitivity to speci�c patterns. They

often seemed to search for patterns they thought might be there more than they would data mine to

discover unexpected patterns. They imagined what user behavior might be worth learning and what

learned interactions might be valuable for users. One designer described this process as “just me being

really excited about the product” (P14).

Second, participants would share these inchoate ideas with data scientists. This happened informally,

outside of any speci�c development projects, and they had iterative interactions, where they might return

to the same data scientists with new or re�ned ideas. They noted that the data scientists had a very

di�erent view of scenario-based design. They used scenarios to validate what an idea might be instead

of using scenarios to generate and re�ne new ideas. “Data scientists use scenarios to validate designers’

assumptions about how the product should work, [and then] toss back ideas”.

The conversation between designers and data scientists focused on identifying a design goal worth

pursuing. Often this would lead the discussion away from working with ML. The discussions focused

on coming up with a “good enough” idea, and it did not address either its exact technical feasibility or

experiential quality. Participants particularly pushed the data scientists to understand what might be

technically possible.

(I) framed the questions not as do you know what would work, but in your gut, do you think

this would be possible. Possible on a scale of 1-10. (P8)

The level of detail I’ll need to discuss with [the data scientists] is understanding the capability

of what could be possible. I didn’t need to get into speci�c detail about it. (P3)

Those [design ideas] are a series of aspirations. Rather than saying what data do we have [...]

Could we challenge the data team to �gure out how to get close to that? (P9)

86



The collaboration at this stage focused on co-evolving a shared vision between the two areas of

expertise, an ideal user experience that was worth pursing and ML could potentially help achieve. This

shared vision often took form of a unique abstraction of ML capabilities that emerged out of both UX

and ML. Instead of saying “machine learning”, designers and data scientists might select an expression

better suited to the context of their product. For example, some used “a�nity” to describe the match

between a user and a piece of content. Others used “personalization” to describe the intended, evolution

of the relationship between the product and the user. Participants characterized these discussions as a

chance for both sides to learn from the others’ expertise.

There is no such a framework or something, but I think later there is a kind of an acknowl-

edgment when we talk about “personalization”... An acknowledgment that a more personalized

experience is a better experience that one is less likely to walk away from. (P14)

I gained a better understanding of the capabilities of the algorithms. The data scientist gained

a better understanding of what was worth pursuing. (P3)

6.2.2.2 Stage 2: Interaction Design and Assessment

Stage 1 produced preliminary understanding of the data, and it established a shared vision between the

designers and the data scientists that met the company’s goals. Stage 2 focused on re�ning this vision.

In many organizations, this was the stage when UX designers were invited to join a project. During

stage 2, participants described developing “a funnel of visions, a funnel of what exists and what is possible

in the company” (P8). This would advance towards de�ning a single, valuable ML feature that was both

experientially valuable and technically feasible.

It’s de�nitely an ongoing process. We had a lot of basic things to get working. [...] Once we get

that improved, then we will probably be adding more ML stack onto the system. (P14)

Design is always about a new product and a complete, larger vision. But that doesn’t make it

easy to build. We chunk. We talk about stages of development. (P8)

Once a product idea was clearly formulated and agreed upon, participants shared that they would

next put the required resources in place. Participants would start to design the interactions in paral-

lel with the technical development. Participants explored many possibilities. They also spoke about
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assessing their interaction designs based on following criteria:

• Could users produce e�ective labels needed to train the ML system?

• Could users make sense of the ML inference [or adaptation] and did they view it as valuable?

• Could users easily recover from ML [inference] errors?

Participants used a combination of traditional UX methods such as user studies, sketching, and us-

ability testing. They also engaged in continued negotiations with technologists. Collectively, these ac-

tivities allowed them to craft the user experience. This iterative process continued until the interaction

design had matured to a point it could be handed over to a front-end development team.

Today, most new features for online products and services only see broad release after passing a

series of A/B tests, and the same process was used for ML features. These tests are meant to reduce

the risk of user abandonment and/or reduction in new user conversion rates. Almost all participants

spoke of A/B testing as a critical part of improving their design, and this related to both improving the

algorithms’ performance and improving the interaction. In most cases, the participants shared that they

o�ered users the option to turn a new ML feature o�. This appeared to help them view passing of the

A/B tests as less challenging.

6.2.2.3 Stage 3 - Release and Continued Re�nement

Few of the projects described by participants made it to stage 3. One notable exception was P7’s worked

on a message classi�er. At the beginning of stage 3, they worked to improve the poor adoption rate.

This became “a really key moment in thinking about design of systems like this”. Stage 3 had to do with

re�nement that could make a project successful.

We had a classi�er that predicts whether or not an incoming message is important . . . and the

performance is scary good. ... However, a vast majority of users didn’t turn the feature on or

soon opted out. When you dug into why that was, people would say “I don’t even know what’s

important to me, how am I gonna trust the ML system to know it’s important to me?”

The core insight my research team had was that people are trying to �gure out whether they

are gonna trust that system, and the way they �gure it out to think of it as a person. If I hand a

stack of messages to a person, someone I don’t know, is it possible that person could �gure out

88



Figure 6.1: Participants’ familiarity with concepts from statistics, UX design and machine learning.

with some accuracy if that message is important to me. Most people’s take was “no, I barely

know it myself”.

Stage 3 sent the UX designers into the �eld to investigate how people used their system in order

to improve the design. The team improved the design by moving away from a binary classi�cation

(important or not important) to a small set of categories. The new design made it clear why something

might not be important by classifying it as “promotional materials,” something the team felt any human

would be able to do. The new design used the same ML technology and proved to be a huge success.

The few participants who had projects reach stage 3 stated that such a re-design was inevitable

because some mental model issues are di�cult to catch before products launch. They felt they “have to

do this level of work on the design side” (P2, 7, 13) so that users cannot only recover from the errors, but

can understand the errors, and at the same time preserve some level of trust in the system.

P1 describing why design problems for a chatbot auto-reply feature were unforeseeable:

We help you [users] say that you already gonna say. We do it a bit faster. We are actually

in�uencing what you are saying, but not predicting what you are saying.

6.2.3 New Design Activities To Embrace a Data-Driven Culture

I probed participants on what they needed to be e�ective and what UX students should know in order

to e�ectively envision ML innovations. Their responses collectively revealed an acknowledgement that

they all worked in data centric environments, and that designers needed to embrace this data centricity

in order to have impact. They spoke of the importance of learning to speak the language of quantitative

data and data science (e.g., telemetry, analytics, A/B testing, covariance, correlation). In the pre-interview

surveys, participants responded that they worked with these concepts constantly (Figure 6.1). “This is

how engineers measure and businesses do things. This can in�uence how you design.”
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To help embrace a more data-centric culture, participants shared that they engaged in new design

activities. They used a combination of qualitative and quantitative methods to advocate for their design.

Speci�cally, they developed new skills around collecting telemetry data (data remotely collected from

current products and services), and they generated data visualizations as one way of making sense of

their data. In addition to working with data, participants shared that their collaborating data scientists

share their role as a user advocate and as facilitator of incorporating domain experts’ insights; something

that did not happen with other technical development e�orts.

6.2.3.1 Designing Telemetry Data

Participants frequently asked ML specialists about how people use the product, how they feel about it,

and what problems they had that could be recti�ed by design. To help answer these questions, partici-

pants shared that they designed telemetry systems so their products can better track users’ interactions.

They used the data to capture meaningful and accurate snapshots of user behaviors.

Designers began to de�ne their design goals in relation to the user behavioral data collected tele-

metrically, in the form of a “matrix for a good experience” (P2, 8, 12). This matrix would later be used

to measure the success of their designs through a suite of A/B tests. Designers use these matrices to

“in�uence the engineers to think a di�erent way, not in terms of single A/B test, but a suite of tests.” The

telemetry data thus became a space of exchange between designers and data scientists. The data helped

to expand the narrow scope of A/B tests and to more holistically address user experience over a larger

course of interactions.

6.2.3.2 Designing Data Visualizations

Participants worked to interpret user behavior data. Most utilized customized dashboards that translated

mundane log data snapshots into user stories and insights. Several taught themselves to create data

visualization tools and visualizations for the data scientists, engineers, and fellow designers in their

organizations. They designed dashboards and visualizations to combine an immersive and an analytical

way of understanding, so that the quantitative analysis of user behavior “do not privilege data scientists”.

Data scientists have their methods, and I have my bag of tricks. They have kernels and clusters,

and we are good at telling rich, compelling user stories. How can we look at hundreds and
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thousands of attempts, and also reach out to inquire more about what happened, what the

breakdown was? (P14)

A few designers further utilized these data visualizations as vehicles for conducting user studies. One

participant recalled that the �rst thing he did when joining the project was to list “a series of questions

about user behavior that data analytics can answer” (P8). They then bookmarked the corresponding data

matrix on the telemetry analytic tool the team used. Every morning they checked the new incoming

log data against this matrix. When they noticed an intriguing user behavior, they emailed the user to

inquire the back story, details, and sometimes set up follow-up interviews. They labeled this method as

“qualitative study in a quantitative scale.”

6.3 Re�ecting on UX Design Expertise and Methods for AI

6.3.1 Towards Designerly Understandings of AI

The case studies in the previous chapter demonstrated the complexities around understanding AI sys-

tems’ design a�ordance and limits. This study echoes this challenges. The designers comprehend ML in

notably di�erent ways than its textbook de�nitions; they understand ML largely through abstractions

and examplars.

The abstractions served as a frame through which designers re�ected on the design challenges at

hand and made new assertions about how ML might provide value for users. They freed designers from

grappling with technical limitations when sketching, empowering them to envision ML applications

that moved beyond current archetypical forms. They served as boundary objects, allowing designers to

discuss what users value with data scientists and to address issues of context. They also fostered new

design ideas, serving as bridges between technical capabilities and design possibilities.

I suspect that many of the abstractions participants shared would generalize well beyond the speci�c

applications they were working on. For example, participants stated that ML enables “an experience

personalized for everyone” (P3), “an evolving relationship with the users” (P14), and “handling more abstract

user instructions” (P7), and these typically matched with other UX values that HCI research has raised

over time [42, 135]. Extending, evaluating, and documenting these abstractions o�ers a clear space for

design research.
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A robust set of these abstractions would help to evolve the understanding of ML as a design material.

It could function as a kind of taxonomy that is likely to be radically di�erent from ones used by data

scientists; a taxonomy focused on the match of contextual capability and user value.

6.3.2 Boundary Objects for Bridging UX and AI Technical Expertise

The practitioner interviews captured an intimate, constant, cross-disciplinary collaboration when cre-

ating ML products. This is somewhat di�erent from the design and technical collaborations found in a

traditional UX design [24], where designers typically deliver a fully formed design to a technical team

to implement. I see opportunities for new collaboration tools that help designers better work with data

scientists. Previous work, including the case study in the previous chapter, has proposed the use of

boundary objects that sca�old the conversation between UX and ML expertise in creating AI-mediated

interactions [134]. Similar work could be potentially valuable for many other application domains of

ML.

The interviews showed that designers who lacked e�ective access to data scientists explored fewer

design ideas and more often quickly resorted to familiar designs of ML. Previous design research has

focused on enabling and improving designer and data scientist collaboration, assuming that capable

data scientists are readily available [42, 134]. However, this study indicates that this assumption in not

always true. Many designers in our study lacked access to dedicated or even pro�cient data scientists,

especially the ones working at startups, small technology companies, and non-IT-focused companies.

Despite e�orts to make ML available to everyone [117, 122], the fact that pro�cient data scientists were

scarce might be a reality that most designers will face.

There is a real need for design tools and methodologies that support designers who lack constant

access to capable data scientists. For example, ML tools for designers could simulate the role of the data

scientists, enabling designers to quickly evaluate the feasibility of their ideas when sketching. I also see

opportunities for constructive design research to demonstrate creative designs that use o�-the-shelf, ML

plug-ins; designs that do not need intensive ML development e�ort to implement.
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6.3.3 Designing and Evaluating the UX of Evolving AI Systems

Previously in the “sketching NLP” case study (5.5.3), I raised the question of how to evaluate the UX

design of evolving AI systems. These systems continue to learn post-deployment, and therefore their

technical performance and error modes are constantly �uctuating and evolving with user interaction

traces. The practices of experienced UX designers o�er one possible solution – a divide-and-conquer

approach. They �rst identi�ed the right problem for the system to solve, validated its technical feasi-

bility, and then iterated on the diverging-converging ideation process to craft the right manifestation of

the intelligent functionality. In this regard, I found their overall approach to be similar to mine in the

sketching NLP project.

What is unique about the experienced practitioners’ approach, however, is the new design activities

they have undertaken in order to anticipate and monitor the users’ interaction traces. They taught

themselves to capture “rich and compelling user stories” from telemetry data that were di�erent from

the data scientists’ insights. By “playing with” data, designers frequently ask: How do users use the

system? How will their interactions a�ect the systems’ behaviors? What is the matrix for a good user

experience? Answers to these questions would help designers anticipate and design the co-evolvement

of user and system behaviors (Figure 6.2 yellow parts).

Figure 6.2: The current industry best practice in designing and developing UX of AI, against the backdrop
of the AI design complexity framework.

Future research should examine and improve this design process. One advantage of this process

is that it did not require designers to acquire extensive ML skills, use many new tools, or radically

change their familiar design activities. After a working ML application was launched, designers would
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go through a second design and evaluation process, �xing the design problems that the initial iteration

failed to capture. However, a complete ML design process seemed to take way more time than a con-

ventional Double Diamond UX process [24]. Can the function and form of human-AI interaction design

be addressed at once? Are there new ways to prototype and evaluate the technical viability and design

quality before product launch? Answers to these questions have the potential to radically lower the cost

of developing ML systems, and to enable many more resource-sensitive organizations to introduce ML

to their products and services.

At a higher level, the procedural knowledge of designing AI marks a clear space for HCI design

research. Existing work has o�ered valuable declarative knowledge and conceptual understandings of

ML from a design perspective (i.e., [65, 70]). Embedding this growing body of new knowledge into

organizational and procedural contexts opens up new research opportunities and promises real impact

on UX practice. The AI design complexity framework has o�ered an initial outline of the problem space.

Now it is an opportune time for the HCI design community to have a re�ective discussion on how

designers might most productively traverse this problem space, in order to create novel and meaningful

user experiences.
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Chapter 7

Summary and Future Work

From predictive medicine to autonomous driving, AI promises to improve people’s lives and societies.

On the path to realize these promises, new challenges have emerged as these systems migrate from re-

search labs into the real world. How should predictive models integrate into physicians’ decision-making

processes, such that the predictions a�ect them appropriately? How could natural language genera-

tion systems provide personalized, valuable writing suggestions without being perceived as plagiarism?

These are challenges of translation: translating AI’s remarkable technological advance in research labs

into real-world sociotechnical systems valuable to human e�orts. These are challenges where UX design

expertise has much to o�er and challenges that design practitioners and academics will continue to face

in the future.

The case studies in the dissertation work have illustrated these challenges in addition to the value UX

design expertise brings to them. I consider this work as a continuation of the many prior HCI research

e�orts of the human-centered design tradition. When computers started evolving from something that

only trained operators use to one that everyone can use, user-centered design methods and processes

emerged in response [84]. When the tech industry began moving from hardware products to hard-

ware platforms (e.g., from mobile phone as a hardware product to smartphones as one component of a

software-hardware-service system), service design techniques such as service blueprinting emerged in

response [144]. In these previous waves of technological advances, new design methods and processes

followed. They respond to the design complexities of the new technology and supports designers in

bringing their human-centered sensitivities to bear on these challenges.
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Prior research in the intersection of UX and AI suggests (possibly unknowingly) that we are at the

cusp of a similar transformation. Designers have reported various challenges in integrating AI into their

current practice. They have speculated that familiar user-centered design methods and processes need

to change for AI [38, 42]. However, the core characteristics of AI that create a mis�t to existing UX

design methods have rarely been formally studied. As a result, there exists no principled discussion on

to what extent and how UX design needs to change for AI.

It is in this context that I undertake this investigation into whether, when, and how AI is uniquely

di�cult to design. I have arrived on an initial AI design complexity framework that can explicate the

nebulous challenges of human-AI interaction design and trace them back to just two root challenges:

evolving capabilities whose limits are di�cult for designers to grasp and complex, adaptive interactions

that resist simulation. I argued that systems that share these characteristics – whether they technically

are “AI” or not – problematize the conventional HCI prototyping methods that treat technology’s af-

fordance as static or bounded and interactions as prescriptive. These systems call for new UX design

methods and tools.

This framework is not �xed nor �nal. It is limited in that it draws mainly from my own research,

design, and teaching experiences. The case studies presented in this work, though illustrative, are neither

a representative sample nor a comprehensive one. The meta-analysis nature of my research goal calls

for an extensive collection of AI design projects, ideally covering all kinds of AI systems for all kinds of

design contexts. This is beyond what the course of a Ph.D. can achieve. The synthesis of my research

experience and the resulting framework is intended to serve as a moderate �rst step in the direction

towards fostering an accurate and insightful understanding of AI as a design material. I hope more

researchers will join me, re�ecting on their respective design and research experiences, critiquing and

improving this framework.

This is not to undermine the advance this dissertation makes. I argue that its primary contribution

is framing AI as a material for UX design. It takes as a starting point a move from design as an

afterthought to machine learning and system building, to design as a way of thinking and acting about

what AI thing to make in the �rst place. As trivial as it might sound to those from a human-centered

tradition, this is a largely missing perspective in the current human-AI interaction research. Most have

instead solely focused on UX design of AI as issues of better communicating predictions in order for
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users to adopt, appreciate, or follow AI’s right suggestions while rejecting its errors. The case studies

presented in this work have provided vivid examples: Despite a large body of research in AI, healthcare,

and HCI that has focused on the adoption challenges decision support systems face, few have studied

how clinicians work and how AI might �t into their day-to-day work. Despite much research on natural

language generation (NLG) and its human evaluation, few have asked: What do authors want and don’t

want from the technology? Also illustrated in the case studies is the impact asking these questions could

bring to AI: Clinical machine learning systems can more e�ectively impact clinicians’ decision making,

not only in research labs, but in clinical practices. NLG systems can mitigate and even prevent user

adoption challenges when they are created with human needs and agencies in mind from the start.

At a higher level, I analogize the implications of taking AI as a design material to those of Weiser’s

vision of Ubiquitous Computing [127]. Both break away from the convention of designing a more user-

friendly AI system/desktop computer, and instead systematically reshape AI/computation to better �t in

people’s day-to-day lives. Both mark a paradigm shift that calls for:

1. New ethnographic and design work that re-imagines when, where, and how people may perceive

AI/computation as valuable;

2. A new wave of technological and interaction design innovations that together enable AI/computing

devices to deliver value when, where, and how it is needed;

3. A renewed understanding of what “AI”/“computer” is and means for people and for societies at

large.

4. New practitioner-facing processes and tools that then integrate and transfer the above innovations

and insights to practicing communities, thereby materializing AI/computation’s impact in every-

day technology products and services.

This dissertation o�ers an initial step along these lines, towards this ambitious paradigm shift.
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