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ABSTRACT

Current user interface toolkits provide effective techniques for acting on user input. How-
ever, many input handling systems make the assumption that all input events are certain,
and are not built to handle ambiguity such as multiple possible inputs from a recognizer.
This is unfortunately at odds with recent interaction trends towards voice, gesture and
touch, all of which come with a great deal of uncertainty.

This dissertation presents a new user interface architecture that treats user input as an
uncertain process, approximates the probability distribution over possible interfaces us-
ing Monte Carlo sampling, and enables interface developers to easily build probabilistic
user interfaces without needing to think probabilistically. This architecture is embodied in
the JULIA toolkit: a JavaScript User interface Library for tracking Interface Alternatives. To
demonstrate the versatility and power of this architecture, the dissertation presents a
collection of applications and interaction techniques built using the JULIA toolkit. This ar-
chitecture provides the foundation for a new era of nondeterministic user interfaces that
leverage probabilistic models to better infer user intent.
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1.1

INTRODUCTION

Current user interface toolkits provide effective techniques for modeling, tracking, inter-
preting, and acting on user input. However, many modern input handling systems make
the assumption that all input events have precise properties. This type of input handling
works very well for input mechanisms such as keyboards and mice, however it works less
well when the input to the system is less precise, such as with recognition-based inputs
(voice and gesture) and touch. In these cases, recognition algorithms and sensing tech-
niques often output a series of guesses indicating possible inputs the user may have pro-
vided. However, modern input systems are not built to easily handle multiple possible in-
puts, and as a result many systems use heuristics to convert these multiple possibilities
into a single, precise value. Unfortunately, this greatly reduces the information the user
interface toolkit has about a user’s input, making the system error-prone. Maintaining
information about alternate input interpretations and likelihoods throughout the input
handling process could allow user interface toolkits to incorporate more information
when making decisions.

Motivating Examples

Consider the example of touch input where a user touches not a single point, but an en-
tire area. Research by Moscovich shows that using the entire touch area for input can
lead to interaction improvements (Moscovich 2009), and it is likely that further extending
this representation to a distribution of likelihoods across possible touch locations could be
even more beneficial, as is hinted by Weir in (Weir et al. 2012). Although the capacitive
sensor arrays on most touch input devices are capable of detecting the entire area that a
finger touches, this area is often boiled down to a single point (usually the centroid of the
touch). This information reduction can cause problems in certain situations. Consider the
scenario in Figure 1.1 where a user intends to press one of two buttons, however the cen-
ter of his touch lies directly between the two. While a close inspection of the picture
would indicate that the red button is more likely to be the intended target, a conventional
input system would actually do nothing because the centroid of the touch lies directly be-
tween both buttons and hits neither target. In contrast, a user interface toolkit that
looked at the entire area of the touch and considered the likelihood of each button press
relative to the other would make a better decision.



As another example, consider the following scenario: a person is trying to tell a voice-
controlled system to share a picture she just took with a friend. This type of scenario is
increasingly common, especially with wearable interfaces such as Google Glass (Google
2013). The user says “send picture to John”, and the voice recognition returns with three
possible commands:

1. Send picture to “Don”, with probability 0.5
2. Send picture to “John”, with probability 0.3
3. Send picture to “Ben” with probability 0.2

All three contacts, “Don”, “John” and “Ben” are in the person’s contact list, however she
sends emails to John far more frequently than to Don or Ben. A naive algorithm would
take the most likely recognized input that matches a contact “Don”, and send an email,
failing to take into account the frequency with which Amy sends emails to John. A more
sophisticated approach would be to take into consideration the frequency of emails sent
when deciding who to send an email to. In fact, it is likely that many well-built input sys-
tems do exactly this. Unfortunately, this currently requires modification of either the
voice recognition engine or the user interface logic, both of which are undesirable. A bet-
ter approach would be to build in this sort of consideration of what a user might do
(which we refer to as prior likelihoods) directly into the user input handling system, re-
moving the need for developers to write custom code.

Our final example comes from touch interaction. The specific scenario here is inspired
from an interaction in the application “Paper” from 53Designs (53Designs 2012). Consider
a painting application that supports two separate two-fingered gestures: pinch to zoom,
and rotating two fingers either clockwise or counterclockwise to undo/redo editing oper-
ations (Figure 1.2). Both actions (actions are operations that update interface state) can-
not be executed at once. Therefore, when a user touches down with two fingers, the

/

Figure 1.1: A user touches between the red and blue button, the cross indicates the centroid of the
touch, which is used to determine the finger’s target by conventional input systems. He intends to
press the red button, and more of his finger overlaps the red button than the blue. However, the
centroid of his touch is directly between both buttons.



state of the system is uncertain: it is unclear whether the user intends to zoom or undo
an action. When a user moves slightly, a naive program may immediately make a decision
and change its state to zooming or undo, based on whether the user’s fingers moved
slightly apart or slightly in a clockwise direction. A more intelligent algorithm would wait
longer until there is sufficient evidence to confidently say that a user is intending to either
zoom or undo. Although some programs may implement logic to delay a decision until the
program is confident about a user’s decision, this requires significant custom logic to be
implemented in the user interface, and as a result many interfaces do not do this, favor-
ing the immediate (but error-prone) decision instead.

Examples of uncertainty in user interfaces go beyond just voice and touch input, however.
A vision recognition system that recognizes how many fingers are lifted when a user
opens his or her hand may return the following results: five fingers with confidence 0.5,
four fingers with confidence 0.4, and three fingers with confidence 0.1. Consider now
what happens in an interface that has only four options, and asks a user to raise some
number of fingers to select an option. A naive system would automatically take the input
with the highest confidence (5 fingers), and fail, as there are only four options available.

There is evidence beyond these simple examples to suggest that maintaining information
about input alternatives could serve to help user interface toolkits make more informed
decisions about what to do given some input from the user (Mankoff 2001). Not only
does tracking input alternatives (and their likelihoods) enable user interface toolkits to
use more information when making decision, it also allows user interface toolkits to rec-
ognize when input is truly ambiguous and delay action.

However, while a user interface toolkit that handles uncertain inputs may have several
benefits, it might also have the drawback of requiring application developers to think
about likelihoods when they are developing applications. For example, when a compo-
nent of the user interface (which | will refer to as an interactor) such as a button receives
an input event that has a probability of 0.5, the interactor must keep track of this proba-
bility when making future decisions. This adds a great deal of complication to the logic of
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Figure 1.2: Two finger gesture example. 1. User presses down with two fingers. It is now ambiguous
whether they want to execute a zoom (2A) or rotation gesture (2B).
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interactors, making these interactors more difficult to develop. This dissertation presents
a user interface toolkit that maintains information about input uncertainty throughout
the input dispatch process (determining which interactors should handle input) without
requiring developers to think probabilistically.

Contribution

New interaction modalities such as touch input, voice recognition, and free space gesture
hold the promise of enabling more natural interaction. These recognition-based inputs
also come with a fair amount of uncertainty, which current input toolkit are not built to
handle. This dissertation presents a new user interface architecture that treats user input
as an uncertain process, approximates the probability distribution over possible interfac-
es using Monte Carlo sampling, and provides tools for interface developers to easily build
probabilistic user interfaces. Importantly, alternate interfaces (and their likelihoods) are
managed by the architecture itself, allowing for interface developers to reap the benefits
of probabilistic interfaces without needing to think probabilistically. This new user inter-
face architecture is embodied in the JULIA toolkit: a JavaScript User interface Library for
handling Input Alternatives. The specific contributions of this dissertation are as follows:

* A new architecture for modeling and dispatching uncertain user input, using Mon-
te Carlo sampling to approximate the probability distribution over possible inter-
face states.

* A system for generating fluid interactive feedback which continuously communi-
cates alternative (or future) input interpretations as a user is interacting and al-
lows her to disambiguate intent.

* An APl and library which allows user interface developers to easily build probabil-
istic interfaces. This includes a mechanism for specifying interactor behavior using
probabilistic state machines, a rich set of classes for developing interactive feed-
back, and a built-in mechanism for adjusting likelihood of future actions based on
past input.

* A large collection of interaction techniques and applications which demonstrate
the versatility and power of the toolkit. These include demonstrations of how to
leverage prediction to accelerate interaction, how to build interfaces that allow
users to easily switch between multiple input interpretations, and how to perform
Bayesian inference to adapt interface behavior.
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1.4

1.5

Organization

The thesis is organized as follows: first, | cover prior work. | also give a brief primer on
Monte Carlo modeling of probabilistic phenomena, which is at the core of the system.
Next, | provide an architectural overview of the JULIA toolkit. | then explain in detail each
component of the toolkit, and provide a collection of applications and interaction tech-
niques developed using the toolkit.

Audience

This dissertation is intended primarily for developers of user interface toolkits and user
interfaces. It assumes a basic knowledge of what makes up a user interface toolkit, as well
as basic knowledge of computer science terminology. The toolkit this dissertation de-
scribes serves three primary sets of stakeholders: end users, application developers, and
toolkit developers. End users are the people that use applications developed using the
JULIA toolkit. Application developers make build the applications that end users consume.
Application developers build their applications out of pre-built user interface components
such as buttons and scrollbars. We call these user interface components interactors. Ap-
plication developers may also want to occasionally write custom interactors to fit their
needs. Finally, toolkit developers build components of the toolkit. They develop logic to
control the dispatch of user input, the interactors provided in the toolkit (e.g. buttons,
sliders), and any other tools such as graphical user interfaces (GUIs) for designing the lay-
out of applications. The primary requirement of the JULIA toolkit is to make it as simple as
possible for toolkit developers and application developers to create understandable,
beautiful, and easy to use interfaces for end users.

Terminology

Throughout this thesis, | use the term likelihood instead of probability when describing
input alternatives. This choice of terminology is intentional; the values associated with a
particular input alternative are an approximation of the probability that an input alterna-
tive is the ‘correct’ or ‘intended’ input. Because modeling every possible alternative, and
its probability, is difficult (and potentially infeasible), we use the term likelihood to em-
phasize that this is an estimate of probability. These likelihoods aren’t necessarily guaran-
teed to represent the true probability, rather they are an estimate of the probability, and
we make our best effort to ensure that these estimates represent the true probability dis-
tribution of the system.

When describing an input event property that has several alternative values, each of
which has a particular likelihood, | use the structure provided by probability density func-
tions (PDFs) and probability mass functions (PMFs). A PDF is a function which describes



the likelihood that some continuous random variable has some observable value. Similar-
ly, a PMF is a function which describes the relative likelihood that some discrete random
variable is equal to some observable value. For example, a Boolean variable (which can
have one of two values: True or False) can be represented as a PMF with probability of
0.2 of being true and 0.8 of being false. As another, more complicated, example, say we
want to have a way to represent the location a user intended to hit given a touch cen-
troid, and the major and minor axis of the touch. Then, for each pixel coordinate on a
screen, there is some likelihood that the user intended to hit this particular pixel when
they touched the screen. Many of these pixels will have a likelihood of 0, but some (near
the center of the touch) will be higher. Because pixels are discrete values, a PMF de-
scribes the likelihood of each pixel being the users intended point of interaction. Most of
the input events and other properties that the JULIA toolkit interacts with are represent-
ed with PMFs, with the exception of real-valued numbers.

Finally, | use the term definite to refer to a variable, property or entity that does not have
any uncertainty associated with it. Conventional input events are definite, while probabil-
istic input events contain multiple possible alternatives, labeled with likelihood. | will also
sometimes refer to samples. These samples are objects that do not contain any uncertain
properties, but that are created by randomly sampling properties from objects that do
have uncertain properties. These samples have a sample weight attached to them to indi-
cate this sample’s likelihood in the space of possible input states.



2 BACKGROUND

In a world of logic gates that almost never fail and machines that always follow a strict set
of predetermined rules, uncertainty is a black sheep. Uncertain logic is not easy to think
about or troubleshoot; yet despite this, uncertainty has been widely adopted within the
broader field of computer science. Probabilistic programming is a burgeoning field in
computer science, and researchers have developed entire programming languages de-
signed to simplify probabilistic reasoning, e.g. Church (Goodman et al. 2012).

In the domain of user interfaces, uncertainty arises during three different phases of the
input handling process: at the sensor level, during input interpretation, and during appli-
cation action. At the sensor level, uncertainty arises when sensor values do not fully re-
flect actual input, and when noise threatens to drown out actual signal. During input in-
terpretation, errors often arise because of misrecognition of input, misunderstanding of
whether the user is trying to perform input, and errors regarding which target the user
intends to interact with. Finally, during application action, uncertainty is often caused by
systems that try to perform prediction, or when noisy inputs do not accurately communi-
cate user intent.

There is a wide body of research that aims to improve interaction by handling uncertainty
at each of these levels individually. One of the primary ideas behind the JULIA toolkit is
that if we handled uncertainty in a comprehensive and general way across these levels,
we could create better interfaces. In this chapter, | will first show how existing research
improves interaction by handling uncertainty—often in a problem or modality-specific
way—at each of the three levels mentioned above (2.1 “Interaction Techniques”). During
this exposition, | will argue that the interaction techniques presented could be further
improved by integrating information across different levels of the input dispatch process
in a general way.

After discussing interaction techniques, | will describe existing systems that have been
built with uncertainty in mind, and point to the gap that this dissertation work fills (2.2
“Systems and Toolkits”). There has been some work that tries to handle inputs with un-
certainty, but little work models likelihood directly at the toolkit level. This dissertation
models likelihood at the toolkit level, with the aim of abstracting away as much probabil-
istic reasoning as possible away from the developer. Table 2.1 summarizes the literature
reviewed in this chapter. The JULIA toolkit provides a solution that carries uncertainty
across all three levels of the input handling process, making it possible for improvements
at each level of the input handling process to work in concert and provide a better user
experience.



Interaction techniques

Toolkits, systems, and frameworks

Directly tracks input
Alternatives and/or
likelihoods

Circumventing
uncertainty without
directly modeling it

Directly computes
likelihoods

Tracks alternatives
without directly
computing likelihoods

Where uncertainty is handled
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Table 2.1 Overview of interaction techniques and toolkits that deal with uncertain input, organized first by
where uncertainty is handled (sensor, input interpretation, application action), then by the type of contribu-
tion (interaction techniques, toolkits/systems), and finally by how uncertainty is handled (directly computes
likelihoods or not).
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Interaction Techniques

The effects of misinterpretation of error-prone inputs often lead to significant user frus-
trations (Frankish et al. 1995). These problems are so common that many of them have
specific names, for example the “Fat Finger Problem” and “Midas Touch”. Table 2.2 pre-
sents a list of common problems caused by misinterpretation of uncertain inputs, which |
will explain in subsequent sections. Much research has gone into developing interaction
techniques to solve these specific problems. Some interaction techniques do this by ex-
plicitly modeling uncertainty (Weir 2012; Williamson 2003); others use clever tricks or
heuristics (Henze et al. 2011; Vogel & Baudisch 2007; Balakrishnan 2004). As mentioned
in the introduction of this chapter, | organize these problems according to where uncer-
tainty arises in the input handling process: at the sensor level, during input interpretation,
and during application action (Table 2.2).

Many interaction techniques focus on solving these problems by reducing uncertainty
immediately when it arises, however in many cases interactions could be further im-
proved by considering uncertainty across several stages. For example, information pro-
vided later on could help support initially less likely interpretations, or refute more likely
interpretations. In the voice input example mentioned in Chapter 1, the information
about Amy’s frequently contacted friends could be useful when detecting which name
she spoke, and vice versa. This section explicates the specific problems mentioned in Ta-
ble 2.2, and reviews interaction techniques that solve these problems, with the aim of
illustrating how incorporating information across different levels would serve to improve
user experience.

. . Uncertainty during input Uncertainty during
Uncertainty from sensor noise . . s .
interpretation application action
“Midas Touch”
“Fat Finger” problem Palm Rejection The Plight of Clippy
Sensor Noise Targeting Error Recovery
Misrecognition of Gestures and Voice

Table 2.2 Common problems caused by uncertainty, and where these problems arise.

Sensor Level

Sensor input lies at the foundation of interaction—errors at this level propagate to an
alarming degree and are difficult to recover from. At the sensor level, uncertainty arises
when sensor values do not reflect actual input, and when noise obscures or distorts the
signal. | refer to these two problems as sensor imprecision and sensor noise, respectively.
Many modern input handling systems do minimal work to handle this uncertainty; a clas-
sical example is touch input, where a touch area is boiled down to a single point.
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In this section | will show several ways that researchers have found to mitigate errors due
to uncertainty in sensor input. Unfortunately, without an ability to disseminate this in-
formation further in the input dispatch process, the utility of these techniques is limited.

Uncertainty Due to Sensor Imprecision

The most well-known problem caused by uncertainty due to sensor imprecision is the
“Fat Finger Problem”. This refers to the common problem that our fingers are unable to
target small items on a touchscreen partially due to target occlusion, but also due to the
fact that most touchscreens convert the entire finger’s touch area into a single point
when sending it to the system. Users have a very difficult time knowing exactly where
their touch input will land, thus making it difficult to hit small targets.

There is a large body of work that aims to solve this particular problem, with two general
approaches. One body of work modifies touch location to generate better guesses of the
user’s likely intent. In a probabilistic setting, many of these algorithms could be easily
modified to output not a single guess, but a set of guesses and likelihoods. Second, sever-
al techniques aim to adjust interaction when input is uncertain. These techniques could
greatly benefit from a fully probabilistic approach.

As an example of the first approach, some work aims to determine an offset function that
maps the sensed touch location to an ‘intended touch location” given extra information
about the touch (such as pitch, roll and yaw). Holz et al. introduce adjustments to a touch
point offset based off of information such as finger pitch and yaw, which they obtain
through a fingerprint scanner(Holz & Baudisch 2010; Holz & Baudisch 2011) (Figure 2.1).
Henze et al. take advantage of big data to determine an offset function by analyzing mil-
lions of taps obtained from a mobile phone game in “100,000,000 taps” (Henze et al.
2011). In both cases, the works presented output a single guess for an intended touch lo-
cation. However, since the algorithms are fundamentally trying to predict where a user’s
intended touch would be, it would be natural for these approaches to instead output a
set of possible values, which could then be propagated further into the input handling
process, where additional information for resolving ambiguity may be available.

Another approach is to directly model touch input as an uncertain process and infer in-
tended touch location given sensed location. Weir et al. show how to improve touch ac-
curacy by modeling touch as an uncertain process and learning offset functions based on
previous actions (Weir et al. 2012). Related to this, AnglePose performs probabilistic in-
ference on the pose of the finger using a particle filter, and then uses this information to
improve pointing accuracy (Stewart & Murray-smith 2011). Both of these techniques al-
ready treat input as uncertain. While currently these systems output a single guess, it
would be natural for these approaches to output a set of guesses (and likelihoods) in a
probabilistic setting.

10
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Figure 2.1: Examples of existing interaction techniques for reducing touch uncertainty. Left: Holz

determines touch offset using information about finger pitch, roll, and yaw. Right: Moscovich treats

entire touch area as interaction region.
Moving away from offset functions and into interaction techniques, one approach to
solve the fat finger problem at the sensor level is to change or augment touch interaction
to help users target small objects. Contact area interaction (Moscovich 2009) builds in-
teractors that use the entire touch area for interaction. This work treats the entire touch
area as equally likely (Figure 2.1). This interaction is an example of something that could
benefit from using a distribution over possible values.

Another interaction technique that would greatly benefit from having a distribution over
possible touch values is the Shift interaction technique. When a user’s touch is ambiguous
between two small touches, Vogel et al. create an enlarged callout showing a copy of the
area occluded by a touch, allowing the user to more precisely specify their intended
touch location (Vogel & Baudisch 2007). One of the nice features of the work is that this
callout only pops up when input is ambiguous in between several buttons. This technique
determines input as uncertain via a simple distance based heuristic, and would greatly
benefit for more holistically derived likelihoods.

Moving away from touch interaction, uncertainty due to sensor imprecision arises in oth-
er input techniques where sensing is systematically imprecise, or where precision de-
creases in certain situations. For example, gaze tracking using low-cost commodity
webcams (Sewell & Komogortsev 2010) suffers from imprecision due to user head
movement and difficulty in identifying irises under varying light conditions. Information
that causes these systematic errors may be obtained separately, and used to adjust con-
fidence in eye tracking. Location sensing using a magnetometer, as demonstrated in
(Harrison & Hudson 2009), changes in precision based on the magnet’s distance to the
sensor due to the quadratic drop-off of the magnetic field strength. Adjusting system pa-
rameters based on sensor precision in this domain is promising, but unexplored.

Uncertainty Due to Sensor Noise

A second major issue that occurs at the sensor level is sensor noise. Many modern sen-
sors such as accelerometers, microphones, and gyroscopes hide their true signal amidst a
haze of background data. To handle this noise, two approaches are common. First, many
systems aim to reduce noise using probabilistic methods. These methods lend themselves
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well to outputting a series of guesses, rather than one concrete value. A second approach
is to adjust the dynamics of a system based on the certainty of sensor values, something
that would greatly benefit from a probabilistic approach.

Two approaches are common for reducing sensor noise. First, filtering uses probabilistic
methods on a continuous stream of data. A common such filter is called a Kalman Filter
(Welch & Bishop 2006, Kalman 1960), which first tries to predict the next value of the sig-
nal, and then filter out or modify values which diverge widely from the prediction, hence
are unlikely to be correct. Second, sensor fusion combines signals from multiple sensors
to produce a more accurate, unified signal. This approach combines sensor readings from
multiple sources, weighing them by the reliability of the source. As a result, the combined
signal tends to be more reliable than each signal individually. A common application of
sensor fusion lays in GPS/INS, the use of Global Positioning System (GPS) signals to cor-
rect for errors in Inertial Navigation Systems (INS). INS measurements are often accurate
only for a short period of time, but often drift over time. GPS signals are used to correct
for this drift using a Kalman Filter. The idea central to sensor fusion can be used in user
interfaces not just to improve accuracy of individual sensors, but also to improve overall
interaction. Now, the signals are guesses about user input during different phases of in-
put handling (sensor level, input interpretation action). As with sensor fusion, combining
information at these different levels reduces overall error in an input handling system.

A second approach to handling sensor noise is to adjust the dynamics of a system based
on the noise level of incoming sensors. The idea behind this is drawn from horseback rid-
ing—a horse senses the certainty with which its handler controls it. When the handler’s
actions are confident, the horse obeys, however, when the handler is tentative (for ex-
ample, if the rider is injured somehow), the horse makes its own decisions. Using this
same idea, FingerCloud (Rogers et al. 2010) tracks the (uncertain) 3D position of a finger
above a mobile device to control mobile map navigation. In FingerCloud the uncertainty
of finger position increases with the height from the display, and the system adapts its
controls accordingly, allowing for application-controlled behavior when the finger is far
from the display, and more fine-grained control when the finger is closer (and thus its po-
sition more certain). FingerCloud shows an example of something that is currently not
possible in input systems, because applications have no way of knowing how uncertain
the input they are handling is. Exposing information about uncertainty across different
levels would enable FingerCloud-like interactions for all types of interaction.

The research above shows some ways that researchers have found to mitigate these er-
rors, unfortunately these interaction techniques have no way to propagate information
about uncertainty to other interactors in the dispatch system. For example, FingerCloud
adapts its positioning controls based on uncertainty of measurement, but cannot actually
adjust how buttons or other controls respond to the position given. Without an ability to
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disseminate the information these new interaction techniques generate further in the
input dispatch process, the utility of these techniques is limited.

Input Interpretation

During input interpretation, errors often arise due to misunderstanding of whether the
user is trying to perform input (when the user is interacting), errors regarding which tar-
get the user intends to interact with (what the user intends to interact with), and misrec-
ognition of input (recognition error). Much research has gone into solving each of these
individual problems. In this section, | briefly touch on heuristics-based approaches to-
wards handling many of these problems, however the solution space of this related work
is vast, and beyond the scope of this thesis. There is, however, a sprinkling of solutions
that handle this uncertainty by directly modeling input interpretation as uncertain. In this
section, | will thoroughly investigate solutions that directly model uncertainty. Further, |
illustrate how some of the interaction techniques which use heuristics to handle uncer-
tainty could instead be modeled probabilistically to achieve better results.

When is the User Interacting?

Many new input techniques such as gaze-based input, free-space gesture, and voice hold
the promise of providing natural interaction. However, because these natural interactions
mimic what humans already do in real life, it is difficult for systems to determine when a
user intends to direct their actions towards a system versus not. This problem manifests
itself in many forms, depending on the input modality.

In gaze-based interfaces, the “Midas Touch Problem” refers to the problem that users
have no easy way to distinguish looking towards an object from acting on it. One ap-
proach is to use gesture to switch input modes between targeting and action (Istance et
al. 2008). Another approach is to perform selection by explicitly not looking at a target
(referred to as anti-saccades) to perform selection (Huckauf et al. 2005). In many situa-
tions, just looking at gaze simply is not enough, systems need to be able to integrate in-
formation from other sensors (or other parts of input process) when making decisions
about user action.

When performing in-air gestures or speaking, it is often unclear whether a user’s actions
are intended for the system. This challenge of determining intention to interact has been
addressed by Bohus et al. (Bohus & Horvitz 2009), where Bohus looks at head position
and orientation to determine whether a user intends to address a virtual agent. One great
feature of this system is that it produces a likelihood for intention to interact, meaning
that this information can be easily carried into the decision-making process. Furthermore,
it could easily combine information from earlier on in the dispatch process when making
decisions.
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In the domain of touch and pen input, one major problem that arises is in ignoring palm
input when a user is writing with a pen on a tablet. This problem is more generally re-
ferred to as palm rejection. One solution is to use non-capacitive sensor layer which does
not respond to human touch. Unfortunately, adding a second sensing layer for touch in-
put is expensive, and does not support a full range of interactions. Specifically, when pen
interactions are combined with touch, e.g. as in Hinckley’s “Pen + Touch” (Hinckley et al.
2010), a system must determine which touches are intentional vs. not. One approach is
simply to disable all touch inputs when a pen is present, but again this does not align well
with the natural interactions provided by Pen + Touch. Many projects reject palms based
on touch size (Zeleznik et al. 2010; Murugappan et al. 2012; Hinckley et al. 2010). Another
technique is to ‘hold’ a surface in place and prevent its manipulation by touch (Zeleznik et
al. 2010). A third approach is to define ‘rejection regions’ where all touch input is ignored.
Several patents exist to address the issue (Yeh & Chen 2011; Hinckley et al. 2012). One
interesting approach presented in UnMousePad (Rosenberg & Perlin 2009) is to classify
touches as either point touches (a pen) or as area touches (palm). The approach present-
ed by UnMousePad could be especially beneficial when combined with other information
about application context, etc. to make palm detection more accurate.

What is the User Interacting With?

In addition to the challenge of determining whether a user intends to perform input, the
challenge of what the user is intending to target is an additional problem that arises with
many new inputs. Even taking into account sensor inaccuracies, a user may often simply
miss a button or other interactive element such that even the most accurate sensor
would not be able to detect the intended target.

There are many approaches to solving these problems that use heuristics and clever in-
teraction techniques. A few also use probabilistic inference. Starting off with the most
widely used example, many mobile operating systems combine touch input with charac-
ter-level word inference to assist users when typing (MacKenzie, 2002). For example, iOS
enlarges the hit area of keyboard keys according to which keys have been pressed already
(Bellegarda et al. 2012). In a similar vein, Williamson incorporates a language model in his
gestural text entry system to improve text entry accuracy in in “Dynamics and Probabilis-
tic Text Entry” (Williamson 2003). In this application, Williamson uses a language model
to allow for text entry using continuous movements. The application changes its dynamics
to reduce effort in entering likely text. Researchers have long worked on techniques for
artificially facilitating pointing at small and distant targets in user interfaces. Balakrishnan
provides a good overview of the vast amount of research in this area (Balakrishnan 2004).
In his overview, Balakrishnan found that while many of the techniques provided work well
for distant, sparse targets, they do not work well in the common situation where multiple
targets are located in close proximity. This very problem is an area where the probabilistic
toolkit could provide great value, as it could easily enable a combination of information
from many sources to make intelligent decisions.
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2.1.2.3 Recognition Error

Another major challenge in input interpretation lies in recognition-based input. Recogni-
tion-based inputs are inputs resulting from complex, inference-based algorithms, many of
which output a list of guesses along with confidences. Due to the complex nature of these
inputs, and because they are frequently improperly handled, these inputs are a large
source of errors in user interfaces. Two of the most common recognition based inputs are
speech recognition inputs and gesture inputs.

Speech recognition is a notoriously difficult problem that has been challenging research-
ers for decades. Researchers have come up with many ideas to improve speech recogni-
tion accuracy. The classic choice in speech recognition is the Hidden Markov Model. In
(Rabiner 1989), Rabiner explains how Hidden Markov models are combined with infor-
mation about the grammar of a language, the user’s current task, and word sequence
models to help disambiguate multiple likely recognized words. There is a large body of
work in the speech recognition community related to leveraging other inference tools, as
well as other information about grammar and voice to improve recognition accuracy,
however this vast space of literature is beyond the scope of this review.

A second approach to improving speech recognition in the field of human computer in-
teraction is to leverage information from other input sources to help disambiguate recog-
nition results. An inspiration for this work comes from the “Put That There” system de-
veloped in 1980, when Bolt combined speech input with voice to provide fluid, natural
interaction (Bolt 1980). The research in this area is so large that it has a name for itself—
multimodal interaction (though, as pointed out in (Oviatt 1999b), it is important to note
that multimodal input is not confined to just improving speech and pointing systems). The
challenge of multimodal input is to combine multiple sources of uncertain input to pro-
vide mutual disambiguation. In “Mutual disambiguation of recognition errors in a
multimodal architecture” (Oviatt 1999a), Oviatt shows how combining inputs from
multiple sources can lead to improvement in voice recognition, particularly for people
with hard-to-recognize accents. Wu and Oviatt further present statistical methods for
reducing recognition error by fusing probabilities from multiple sources in (Oviatt &
Cohen 1999). Additionally, in (Eisenstein & Davis 2005), Eisenstein shows how hand
gestures can be used to segment spoken sentences during dialogue. Eisenstein also shows
how gesture can be used to improve coreference resolution in natural language
processing in (Eisenstein & Davis 2006). Note that while multimodal input may also serve
to provide natural interactions, (Oviatt 1996) provides a good example of this, the main
focus of the work as covered in this review is in how fusing multiple input sources can
serve to reduce ambiguity. Multimodal input is, of course, not just limited to improving
voice recognition. In (Eisenstein & Davis 2004), Eisenstein et al. use voice to improve
recognition of visual gestures. Additionally, Kettebekov et al. illustrate how prosodic
synchronization (segmenting gestures based on the rhythm of speech) can be used to
improve gesture segmentation in continuous gesture scenarios (Kettebekov et al. 2005).
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The work | just described illustrates the benefits of fusing multiple input sources in
improving voice recognition accuracy. Now, just imagine how much more of an
improvement in interaction we could get if we could not only combine information about
inputs, but also take into account a user’s preferences, their previous actions, and other
contending inputs when making decisions about interaction.

Speech recognition isn’t the only type of input that presents challenges for researchers,
however. In fact, gesture recognition is a much more commonly encountered challenge.
Detection of pre-defined gestures is increasingly common on mobile phones and other
touch inputs, as users try to do more and more things on their mobile devices. While ges-
ture languages with only a few inputs generally perform accurately, recognition rates
drop significantly as more gestures are added to the language. Fortunately, many gesture
recognition programs provide gesture alternatives, and likelihoods for these alternatives.
Two such systems are Gesture Studio (LU 2013), and the S1 Recognizer (Wobbrock et al.
2007). Several interaction techniques to mitigate these problems present themselves. Oc-
topocus (Bau & Mackay 2008) provides a dynamic guide for gesture-based interfaces
which adjusts its feedback according to gesture probabilities. Also, in “Fluid Sketches”
(Arvo & Novins 2000), Arvo et al. provide continuous feedback about recognized gestures
to users. This dynamic feedback is crucial and unfortunately largely absent from many us-
er interfaces. In addition to visual feedback, some researchers have also worked to pro-
vide auditory feedback according to probabilities of various gestures (Williamson &
Murray-Smith 2002). This works shows an additional benefit of systematically tracking
probabilities: the opportunity for rich and expressive feedback about gesture recognition
results.

Application Action

Once input is interpreted by a user interface toolkit (e.g. the system decided a specific
button was pressed, or that the user said some word), an application must decide what
specific actions to take (i.e. close a window, or initiate a Google search for the word
“spork”), if any. The basic problem of any input system during the application phase is to
determine what the user intends to do, given information about sensed input, and the
interpretation of this input. During this phase, uncertainty is often caused by systems that
try to guess what a user is trying to do, or when inaccurate input interpretations do not
communicate user intent. Many of the interaction techniques regarding misinterpretation
of noisy inputs have been covered in the above sections, therefore this section will focus
on uncertainty that arises when systems try to predict a user’s intent. Knowledge about
alternative inputs is especially valuable during the action phase, which can integrate
knowledge about the higher level application state, a user’s previous actions, and infor-
mation about alternate inputs to make better decisions.
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2.1.3.1 Uncertainty Due to Prediction of User Intent

The former task of performing inference to automate tasks or provide suggestions to us-
ers is a wide area of research called Adaptive and Intelligent User Interfaces. An early and
insightful example into the problem comes from the domain of user agents: programs
that act as ‘personal assistants’ to the user. The most well-known user agent is Microsoft
Clippy, whose unfortunately constant interruptions at inopportune moments led the
agent to be widely disliked. The failure of Microsoft Clippy points to a common challenge
when dealing with uncertainty: it is difficult to know a user’s intended action given limited
data such as where their mouse is and what they’re typing. At a high level, this is the
same problem that the probabilistic user interface toolkit aims to support: helping appli-
cations better make decisions about actions given noisy, uncertain input. The tradeoffs in
this decision process are considered at length in Horvitz’s “Principles of Mixed-Initiative
User Interfaces” (Horvitz 1999). Mixed initiative user interfaces, as Horvitz refers to them,
consider not only the user’s uncertain internal state, but also the cost of interrupting the
user, as well as the cost of continuing without interruption, when deciding on an action.
Providing systematic tracking of uncertainty would allow systems to connect logic provid-
ing high level inference of user intention to lower level input dispatch, where uncertainty
may also arise. In other words, maintaining information about alternatives and likelihoods
at the input event level may serve to help programs such as user agents make better de-
cisions.

The inference engine prototype that the Clippy office assistant was based off of came
from the Lumiere project, which looked at user’s actions and aimed to predict what they
would do next (Horvitz et al. 1998). Five years later, Liu et al. aimed to improve upon this
core idea by similarly looking at a user’s interaction history and come up with formatting
shortcuts in Microsoft Word based on a user’s actions to help speed up the document ed-
iting process (Liu et al. 2003). Both these approaches are highly personalized, as they look
at an individual’s interaction history to improve their predictions. But when making deci-
sions about actions, it is good to not only consider the user, but also the noise of the tools
they are using, as well as the accuracy of recognition algorithms used to interpret this in-
put.

Like the LookOut project in Horvitz’s “Mixed Initiative User Interfaces” project, many oth-
er applications delay action under uncertainty (though many real world applications do
not consider the cost of this delay). For example, some direct manipulation touch inter-
faces such as Paper by 53Designs(53Designs 2012) use two fingers to trigger multiple ges-
tures. In the case of Paper, a two finger pinch zooms out, two finger expansion zooms in,
and two fingers rotating initiates an undo mechanism. When a user touches her fingers
down and moves initially, the application cannot be confident in what the user’s intended
gesture is. The application does not change modes until it is confident in the user’s deci-
sion. This is a common problem in many modern interfaces, and each new program must
implement its own custom logic to delay this action. The intention for the JULIA toolkit is
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to facilitate this action delay naturally, without requiring the developer to even think
about delaying of action. In the JULIA toolkit, this delaying of action until a system is suffi-
ciently certain will just work.

This section has given an overview of the types of ambiguity present in inputs, current
approaches to solve them, and illustrated how maintaining information about uncertainty
throughout the input handling process could facilitate the fusion of all of these innova-
tions. In the next section | cover the topics of feedback and feedforward: communicating
uncertain system state to users.

Visualizing System State

Feedback is a crucial component to user interfaces: the visibility of system status is listed
by Jacob Nielsen as one of the 10 criteria for heuristic evaluation of interface usability
(Nielsen 1993). In today’s world of complex, gesture-based interfaces where the interac-
tions to trigger commands are unclear, gesture discoverability is equally important: users
must understand which gestures are available (affordance), what actions their interac-
tions may cause, what actions their interactions could lead to (feedforward). Naturally, a
great deal of thought has already been put into methods for providing feedback and feed-
forward in the research literature, as well as in real-world applications.

In this section | will explore existing work relating to showing feedback about uncertainty
in user interfaces, both to motivate the importance of such a component in the JULIA
toolkit, and also to show how such uncertainty might be handled in my toolkit.

Feedback and Feedforward

Feedback in the context of Human Computer Interaction refers to any information re-
turned from the computer to the user in response to action (Wensveen et al. 2004). Fig-
ure 2.2 illustrates a diagram showing the role of feedback in human computer interaction.
Many systems give feedback about changes of state within a system (i.e. a button going
from start state to down state). In the real world many environments provide a priori in-
formation about how an artifact can be used. This is defined by Norman as affordances
(Norman, 1988), and by (Wensveen et al. 2004) as ‘inherent’ feedback. One challenge for
providing affordances in, for example, gesture-based interfaces on surfaces is that it is
difficult to provide affordances for a wide range of gestures beyond swipes and taps. Such
challenges also exist in other domains such as in-air gesture. To compensate for this some
interfaces provide suggestions for how to continue gestures when they are started. This is
called feedforward. Examples of feedforward techniques are the GestureBar (Bragdon et
al. 2009) and Interface Ghosts (Vanacken et al. 2008). Bau provides an excellent overview
of feedback and feedforward mechanisms in his dissertation work (Bau 2010). He con-
trasts two approaches for feedforward and feedback: a conventional approach (Principle
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1, Figure 2.2) where feedforward is given, input executed, and feedback about that input
is given; and the ‘interaction streams’ approach, where feedforward and feedback are
given in a constant feedback loop. Examples of interaction streams are in Octopocus (Bau
& Mackay 2008) and Fluid Sketches (Arvo & Novins 2000). Interaction streams not only
support the learnability of interfaces but also allow for a feedback loop for users to refine
their gestures.

Principle 1
Feedforward Input Feedback

Principle 2 System information Feedback

rate Input Input

- Input Input
Hi gh Input p P
rate - . — — — —
Systeminformation  Feedforward Feedback Feedforward Feedback

Figure 2.2: The role of feedback and feed forward in interfaces, as presented by Bau et al.(Bau
2010).

2.2.2 Existing Feedback Mechanisms for Uncertain Input

2.2.21

When input interpretation is ambiguous, users must understand not only how to provide
this disambiguation, but also whether they have succeeded in their disambiguation dur-
ing their continuous interaction. Techniques such as dialogue boxes are not sufficient. The
disambiguation interface must be a continuous interaction stream: a rapid-fire conversa-
tion between human and computer, ensuring that the computer fully understands cor-
rectly the user’s intention.

Input Interpretation

Examples of such fluid feedback mechanisms exist. In “Predictive Uncertain Displays”
(Williamson 2006), Williamson uses inference to continuously update a visual display of a
user’s interpreted action. In fact, feedback is central to Williamson’s thesis that user in-
teraction can be thought of as a continuous control process (Williamson 2006). William-
son further explores this same idea in the domain of audio feedback (Williamson &
Murray-Smith 2002), where the authors give audio feedback about tilt-based gestures.
The feedback explored in this domain all relates to the idea that a continuous feedback
loop in interfaces with uncertainty is paramount.
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Ripples is an example of an excellent feedback system that is being used in a real inter-
face, (Wigdor et al. 2009). Here, it is the input interpretation, and the existence of input
that is ambiguous. Touch interfaces sometimes seem unresponsive or error prone due to
a lack of basic feedback about how a touch gets interpreted, e.g. as a tap, swipe, or not at
all. Small, high fidelity feedback provides nuggets of valuable information to the user
about a system’s interpretation of the user’s input, so that he/she can understand why
their input is getting misinterpreted.

Additionally, Li (Li 2009) describes the input SDK on the Android platform which gives
feedback to the user about whether their current input is being interpreted as finger
movement or as part of a gesture. Again, this illustrates feedback about interpretation
ambiguity, rendering two possible bits of information that the user can adjust so that his
input gets properly interpreted.

Future Input Interpretations

Moving on to providing information about possible input interpretations (in contrast to
interpreted gestures), feedforward is an equally important player in the domain of am-
biguous input. One clever idea for when and how to provide feedforward stems from the
insight that people hesitate when they are uncertain of their actions. In accordance with
this, Hover Widgets (Grossman et al. 2006) give guidance about possible gestures when
the user hovers their pen over a tablet. This is a very clever idea that unfortunately does
not get used nearly enough, perhaps because it is too difficult to implement in traditional
Ul toolkits.

Octopocus is another example of continuous feedforward. As we will see later, this tech-
nique overlays all possible gesture completions directly on the interaction, adjusting the
opacity of each gesture according to its likelihood. Octopocus presents feedback and
feedforward as well as information about gesture likelihoods in a constant loop. Similar
techniques present themselves in the tabletop interaction space. ShadowGuides
(Freeman et al. 2009) provides an interface for teaching touch gestures using the image
of the hand as seen by the IR sensor on the Microsoft Surface. Finally, Ghosts in the Inter-
face (Vanacken et al. 2008) provide tutorials similar to ShadowGuides when users begin
executing actions.

Subjunctive Interfaces — Moving Beyond the Single State
Document Model

The previous two sections discussed feedback techniques for communicating a system’s
interpretation of the user’s input: what the user intended to do. Although the systems
described may briefly track alternate interpretations of input, these input systems are still
maintaining a single state, accomplishing one possible task. Therefore, to consider, e.g.
alternate floor plans or different design choices, users must undo and redo their actions.
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This is called the single state document model (Terry & Mynatt 2002), and makes working
with alternate scenarios laborious.

A body of related work provides mechanisms for supporting multiple scenarios. In 2008,
Aran Lunzer coined the term “Subjunctive Interfaces” to describe such interfaces that
support the exploration of multiple scenarios (Lunzer & Hornbak 2008). The term is
based off of the Subjunct-TV presented in Godel, Escher, Bach (Hofstadter 1979), a TV
which played the same football game in many different alternate universes, where turn-
ing the TV knob allowed a viewer to switch possible universes. A number of subjunctive
interfaces were explored before the term was coined, however.

For example, Side Views (Terry & Mynatt 2002) is an interesting example of an early
feedback technique which gave previews of the results of multiple alternative actions as
opposed to input interpretation. Feedback about possible actions gets displayed in an in-
terface as possible outcomes. These lenses into other ‘possible worlds’ are reminiscent of
the Magic Lenses work pioneered by Bier and Stone in 1993 (Bier et al. 1993). Igarashi’s
work on interactive beautification (lgarashi & Matsuoka 1997) and suggestive interfaces
(Igarashi & Hughes 2001) show possible drawings (e.g. different snap targets, alternate
interpretations) in an interactive graphical editor. | will revisit these interactive beautifica-
tion techniques in further chapters. In a similar vein to Side Views, Parallel Paths (Terry et
al. 2004) presents a model of interaction that facilitates the generation, manipulation,
and comparison of alternate solutions.

The body of work in subjunctive interfaces is especially interesting because it provides a
rich set of interaction techniques for interacting with alternatives beyond even what is
explored in this thesis. This thesis focuses on fusing and presenting multiple alternatives,
one of which is eventually selected to disambiguate intentional input. In contrast, both
Parallell Paths (Terry et al. 2004) and the RecipeSheet (Lunzer & Hornbaek 2008) provide
facilities for manipulating alternatives interpretations directly. The ideas presented in
subjunctive interfaces contain a wide range of possibilities for future work.

It is important to note, however, a key difference between the subjunctive interfaces and
interaction techniques presented in the previous few sections. While the end results
achieved by these methods look similar to what the JULIA toolkit can make, the contribu-
tion of the work is different. These interfaces and interaction techniques are contributing
just that: interface designs and interaction techniques. The contribution of this thesis is in
an architecture that can enable simple construction of all of the interaction techniques
presented, and more.

Each implementation in each paper is distinct from the other, and in many cases it is diffi-
cult to generalize the implementation of one system to another. Additionally, though a
few techniques (Octopocus, interactive beautification, et al.) do track likelihoods to de-
termine what to display, tracking of likelihoods is not a core part of these systems. The
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probabilistic toolkit does these very two things: it provides a software architecture for
tracking interface alternatives, and their likelihoods. As will be seen in Chapter 10, the
probabilistic input architecture enables the implementation of much of this prior work
under one system.

While the work described above does not focus on the user interface system or architec-
ture level, this is not to say that there is no prior work on toolkits for supporting ambigu-
ous interpretation of input. In the next section | review toolkits that have begun to treat
uncertainty in a principled way, and point to the research gap that the JULIA toolkit fills.

Systems and Toolkits

Input handling systems and user interface toolkits provide a general, reusable way to
handle user input. By being general, toolkits are able to support many different types of
interactions in a unified way, as well as mix and match different components without
worrying how they have to work together. Toolkits typically automate tasks that the pro-
grammer would otherwise have to do him or herself. Also, since they are reused for many
things, sophisticated/best-practice approaches can be used, which would probably not
get built for every application. In addition to providing frameworks for handling many
common tasks, toolkits also provide a library that the programmer can directly pull inter-
active objects from. Current input handling abstractions are by now highly evolved and
work very well for what they are intended to do. However, they assume there is no un-
certainty in the input, and this causes problems in the presence of uncertain, recognition-
based inputs. When input is uncertain, disambiguation of uncertain inputs is often left to
the developer. As a result, many applications end up growing in complexity to deal with
this uncertainty.

Some systems and tools in the research literature aim to handle this ambiguity that arises
during the input handling process. The systems and toolkits in this area fall into three
broad categories. First, one set of systems aim to solve the specific problem of input fu-
sion: providing disambiguation for multiple possible interpretations of inputs when multi-
ple different input types (e.g. speech and gesture) are fused together. The second catego-
ry of systems aims to provide a reusable structure for handling inputs in the face of alter-
natives for all input types. The final category of systems aims to treat user input as a
completely uncertain process, arguing that the user’s intention is a hidden state that can
only be observed using noisy sensors, and providing a general method for processing user
input by viewing user input as a control loop.

In this section, | will go over the systems and tools that represent more general solutions
than the interaction techniques just described, point out the areas that the JULIA toolkit
covers, as well as gaps in the research literature that the JULIA toolkit fills.
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Disambiguation During Input Fusion

Multimodal input systems hold the promise of providing natural, efficient interaction.
However, to implement these interactions, systems must be able to fuse inputs from dif-
ferent sources (e.g. speech and touch), understanding that different inputs are somehow
related. This problem is commonly referred to as input fusion, and programs that perform
this task are called input fusion engines. Lalanne provides a good overview of many of
these systems (Lalanne et al. 2009). | will be focusing specifically on the problem of how
these input fusion engines perform ambiguity resolution, and then describe the ambiguity
resolution architecture of a few specific systems.

A fusion engine can be thought of as a black box that takes several streams of input and
combines them. These multiple input streams often come from different data sources, for
example one stream could be from voice, and another stream could be from touch. The
fusion engine identifies inputs that co-occur in time (for example, pointing to an object
and saying the word “on”), determines if two multimodal inputs are compatible, and out-
puts ‘fused events’ that represent interpretations of these fused inputs. During this type
of fusion, two sources of ambiguity arise. First, it is unclear which inputs should be com-
bined with one another. For example, if a user says “there”, and points with two fingers,
it is unclear whether the phrase “there” should be combined with one finger, another, or
both. Second, individual recognizers may actually have recognition error. For example,
the phrase “there” may accidentally be interpreted as “hare” “their” or “there”. Three
general approaches present themselves when aiming to resolve these ambiguities.

First, many engines use heuristic-based approaches such as preferring one modality over
another (e.g. speech over gesture). Second is an interactive approach: when multiple in-
terpretations are possible, the engine shows a list of selectable alternatives (called an n-
best list). Finally, a small number of engines use a probabilistic approach, computing like-
lihoods of different interpretations, and resolving accordingly.

The earliest system with directly computed likelihoods was the Quickset system (Cohen

et al. 1997). In this system, a multimodal integration agent combines inputs from multiple
sources (voice and pen), getting likelihood scores for each recognized input. The integra-
tion engine then adjusts likelihoods, accounting for compatibilities of inputs specified by
an input grammar. The recognized results are then sent to an application for further ac-
tion. Shortly thereafter, The TYCOON system (Martin et al. 1998) provided a fusion meth-
od that also computed probabilities, however these probabilities were adjusted based on
how closely events occurred in time. In the TYCOON system, decisions about ambiguities
were made by looking at probabilities directly. Another system that directly used proba-
bilities to determine actions was the mutual disambiguation architecture provided by Kai-
ser et al. (Kaiser et al. 2003). Kaiser’s system provides fusion of three different inputs
(speech, gaze, gesture). The fusion engine combines inputs by looking for events close in
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time that satisfy an input grammar, and multiplies likelihoods of individually recognized
results to determine the likelihood of the fused gesture.

One final approach that combines multiple inputs is the XWand system by Wilson and
Shafer (Wilson & Shafer 2003). In this system, Wilson uses a Bayesian network to fuse
multiple input sources, as well as a user’s previous actions, to determine the user’s most
likely next action. In fact, XWand goes beyond other systems by bringing in a model of
prior probabilities on user actions based on a user’s previous actions. Unfortunately, the
XWand system is custom-built for a specific task and does not provide a reusable compo-
nent.

With the exception of the XWand, the output of all of these systems is essentially a rec-
ognized event combined with a likelihood. Additionally, uncertainty about inputs is not
handled end to end—they provide only part of the solution. Most of these systems han-
dle uncertainty primarily at the input interpretation level only, not action. Additionally, in
these systems, it is still up to the application developer to manage the uncertainties. The
goal of the JULIA toolkit is to handle these ambiguities under the covers, so that develop-
ers mostly do not need to worry about alternatives and likelihoods.

Systems for Disambiguation of Recognition-Based Inputs

Moving beyond input fusion and to the handling of ambiguous inputs (the outputs of in-
put fusion), toolkit-level support for tracking ambiguous inputs was pioneered by the
work of Mankoff and Hudson. Mankoff’s dissertation presents a dispatch process and
mediation system (Mankoff 2001) that maintains recognized alternatives for as long as
possible, potentially deferring or mediating actions based on the alternatives present.
Mediation refers to the process of deciding which action to execute, given a list of ac-
tions; it may be interactive (e.g. an N-Best list) or automatic (e.g. picking the alternative
with the highest likelihood). Mankoff provides more detail about these mediation tech-
niques in her 2000 paper about the OOPS toolkit (Mankoff et al. 2000). The OOPS toolkit
also focuses on providing backwards compatibility with existing interfaces, and has the
ability to model uncertainty through the input dispatch and handling process without re-
quiring developers to change what they do. Additionally, the toolkit provides sophisticat-
ed notions for when to resolve uncertainty as opposed to when to defer or mediate, and
provides a structured approach for how to do mediation.
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2.3.3

Fig 2.3: The OOPS toolkit tracks not only an event hierarchy, but also alternative interpretations. For

example, while a traditional input toolkit would only take the most likely recognized input, a circle

(left), the OOPS toolkit would track both the rectangle and the circle (right).
OOPS accomplishes this by tracking not only individual events, but event hierarchies, as
well as possible alternative interpretations generated from the event hierarchy. An event
hierarchy organizes individual, low-level events into higher level, recognized events. For
example, a circle gesture is made up of a down event, followed by a series of move
events, and finally by an up event. When input is ambiguous, OOPS performs mediation
(either via an interface, or automatically), and delays any action until ambiguity is re-
solved. Developers are able to pick from a variety of mechanisms for resolving ambiguity
(called mediators), and all alternative input tracking is performed at the toolkit level, so
developers don’t need to worry about ambiguity themselves.

While the OOPS toolkit covers a lot of ground, one drawback of the system is that it does
not directly track likelihoods during the input handling process. While simply tracking in-
put alternatives is good, there are certain advantages to directly tracking probabilities.
For example, directly tracking probabilities allows for appropriate display of feedback,
and also allows input systems to change their dynamics to provide ‘interaction rails’ for
users, making it easier for them to provide accurate input.

Input as an Uncertain Process; Interfaces as Control
Systems

The final system relevant to the JULIA toolkit has a fundamental goal which is similar to
the goals of this toolkit: design and build a system which treats input honestly: as a fun-
damentally uncertain process. The system is described in the dissertation work of Wil-
liamson (Williamson 2006), which argues for a unique approach to input handling: that an
interface can be described as the continuous control of a point in an ‘intention space’,
and that the dynamics of an input system form a series of control loops that define the
communication between the sensed input and the goal space by extending inference over
time. Like the work presented here, Williamson uses Monte Carlo methods to implement
the inference, feedback and control system for his interactions. The dissertation shows
how dynamics of a system can be altered based on the likelihood of outcomes: buttons
can be made easier or harder to press based on the system’s belief of a user’s intent. Ad-
ditionally, Williamson provides a way to synthesize feedback about the (uncertain) state
of a system, as does this toolkit (this work will be presented in Chapter 7). While William-
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son’s system precisely tracks probabilities, the system described is radically different from
conventional user interfaces. This is not necessarily a bad thing, but does add significant
barriers towards the practical adoption of uncertainty in interfaces. In contrast, the JULIA
toolkit aims to provide some of the benefits of Williamson’s work, while maintaining an
appearance of having the event dispatch model that is so familiar to developers. While
under the covers the JULIA toolkit may be performing complex inference, the interface to
developers remains similar to the event dispatch model application developers are famil-
iar with.

Table 2.3 provides an overview of the research gap that the JULIA toolkit fills, by showing
how it supports all the features that related systems individually support. Not only does
the toolkit provide the extensibility and usability of Mankoff’s work, it also enables many
of the interaction techniques described earlier to be integrated into one single ecosys-
tem, removing the need for customized code and repetitive logic, and opening up proba-
bilistic input handling to a wider audience.

Prow'des Familiar to Tracks Tracks
Mechanism for . o
. . Developers | Alternatives | Likelihoods
Dispatching Inputs
JULIA v v v v
Conventional Toolkits v v
0O0PS v v v
Continuous U.ncertam v v
Interaction
XWand v v
TYCOON v v
QuickSet v v

Table 2.3 Overview of toolkits and systems for handling uncertain inputs.

2.4 Monte Carlo Approach

My system relies heavily on Monte Carlo methods (Metropolis & Ulam 1949; Hammersley
& Handscomb 1964), a broad class of algorithms which rely on repeated random sampling
of a distribution to understand how this distribution changes when it goes through some
process. For example, Monte Carlo methods are used to predict the output of wind farms,
given (uncertain) weather predictions. Monte Carlo methods all share a property that
probability distributions are approximated by a set of randomly selected samples (Figure
2.4). Note that each individual sample is definite, but collectively the samples represent a
distribution over possible values and their likelihoods.
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Given a set of samples that represent a distribution over alternatives for a single variable,
we can now make predictions about what would happen to this variable when it goes
through some process (which might itself have some uncertain components) by running
each individual sample through this process and looking at the resulting set of samples,
which represent the resulting distribution.

sample value: 0.0

sample weight: 0.5

Figure 2.4 lllustration of how JULIA toolkit uses samples to approximate a probability distribution.
The underlying probabilistic distribution (thick curve) is approximated by the set of samples, each of
which has a weight, indicating likelihood. Note that these samples represent an “ideal” sampling
where the distribution is sampled to match the distribution exactly. This is for illustration; only large
sets of samples so closely match an underlying distribution.

For example, imagine that a touchscreen can not only sense touch position but also touch
type: whether the touch is with a stylus, finger pad, nail, or knuckle (as is demonstrated in
(Harrison et al. 2011)). In this case, not only is there ambiguity regarding the location of
the touch, but also regarding the type of touch. Consider the scenario again in Figure 1.1,
but this time that the touch has an additional ambiguous field: touch type. This touch type
represents which part of the finger touches the screen, and can be one of pad, knuckle, or
nail. Furthermore, assume that the red button responds only to knuckle taps, and the
blue button only to pad taps. Now, consider what an input system would do with an input
event at the location in Figure 1.1, which now has 60% probability of being a knuckle and
40% probability of being a pad.

One thing the system could do is pick the most probable touch type (in this case knuckle),
and look at the centroid of the touch to determine which button to select. This is what a
conventional system would do, yielding no result. Another approach would be to try to
compute the likelihood of each button by manually computing the overlap area, account-
ing for the likelihood of the touch input at each point, then multiplying this by the likeli-
hood of a touch being a particular type (pad or knuckle). However, running this overlap
calculation for each button fails to take into account information about what type of
touch input the other button is listening for. In other words, the fact that the blue button
is not listening for knuckle affects the likelihood that the red button should be pressed,
given that the likelihood of a knuckle is 60%.

To accurately track the likelihood of each button being pressed, a user interface toolkit
(or application developer) would need to take into account the conditional probability of
each button given the state of the other button and the properties of a touch event.
While this simple example may be feasible to compute, this approach does not scale to
the complexity and dynamic nature of modern interfaces. Modern interfaces have many
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components which interact with each other, and components get added and removed
during program execution, meaning that developers would need to specify dependencies
not just between a myriad of existing components, but also between all possible compo-
nent configurations. Without an automated way to specify all conditional dependencies, a
purely analytic approach where probabilities are explicitly tracked is infeasible.

When a stochastic process is too complex to be computed analytically, we often turn to
Monte Carlo methods and approximate the probability distribution of the system using a
collection of samples. Applied to our button press problem, this leads us to draw a set of
event samples from this probabilistic input event, see what would happen to each event
sample if it were dispatched as it would be in a conventional user interface toolkit and
examine the results. This approach behind the JULIA toolkit, and is the key insight that
allows us to turn the highly complex problem of analytically tracking the probability dis-
tribution over possible interfaces into a more practical empirical one.

Note that unlike some Monte Carlo techniques, the JULIA toolkit is not performing simu-
lation. Rather, live user input is used to track the probabilities associated with ongoing
interactions.

Particle Filters

The probabilistic input architecture could be seen as highly related to the particle filter
approach for approximating nonlinear state estimate in stochastic systems (Gordon et al.
1993). Thus, there are several similarities between particle filters and the probabilistic
input architecture approach, which | would like to highlight in the spirit of promoting un-
derstanding of the architecture, and particle filters at large.

Particle filters refer to a set of algorithms for approximating the likelihood distribution of
some state space. This state space might be the position of a robot, the contour of a
hand, or in the case of probabilistic input, the state of all interactors in an interface.

In a particle filter algorithm, many particles (samples) are used to represent guesses
about the system’s actual state. For example, a set of particles can be used to represent
guesses about a robot’s location in a building. At each time step, every particle updates
its state based on input given to the system. In the case of a robot, these inputs are con-
trols (drive forward, left, right). In addition to controls, the system also has measure-
ments, in the case of a robot, this might be distance measurements to walls. At each time
step, the system then assigns an importance weight to every particle according to the
likelihood that the particle at that given state could produce the measurement observed.
Particles are then resampled according to their importance weight, reducing the number
of particles to a specified maximum quantity.
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In a probabilistic input architecture, the “system state” we are approximating is the inter-
face state. When a new input to the system arrives, we represent this input as a series of
possible measures (event samples). We then update all interface particles according to
these possible measurements. Every interface particle is paired with every possible
measurement. As with the update model of a particle filter, state transitions may have
probabilities associated with them. Each updated particle likelihood is then multiplied
with the likelihood that the input on this updated particle acted on is the ‘correct’ input
given the input event. In other words, each updated particle’s likelihood is multiplied with
the event sample likelihood. The event sample likelihood is essentially the ‘measurement
likelihood’ in a particle filter.

This analogy to particle filters places this dissertation in the larger context of state estima-
tion of stochastic systems, and points to a body of work (optimizations, algorithms) that
future explorations in the area of probabilistic input architectures may benefit from.

The next chapter gives an overview of the architecture that uses this Monte Carlo ap-

proach to approximate the probability distribution over possible interfaces based on un-
certain user input.
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3.1

ARCHITECTURAL OVERVIEW

Nearly all modern user interface toolkits implement user interfaces as a mostly inde-
pendent collection of interactive objects (interactors) managed by an infrastructure for
handling input, producing output, and numerous other tasks. The input-handling compo-
nent of these systems is mature and works very well for its task. In the next subsection |
will describe the structure of this process, then for the remainder of this section use this
structure to provide an overview of the system being presented in this dissertation.

Conventional User Interface Architecture

I http://www.juliaschwarz.net l C]C]

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam in dapibus massa. Sed

accumsan, lorem ut tincidunt semper, lorem ante congue augue, ac finibus leo elit id nibh

Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. [
Quisque consectetur omare placerat. Sed fermentum accumsan quam, a commodo . .

) ) edit text button button scroll view
augue tristique quis. Donec accumsan lectus sit amet vestibulum varius. Morbi eget

tincidunt ante. In a mi non mauris sollicitudin condimentum. Cras at nisl vulputate, |
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auctor porta nis id rutrum. Ut sed lacus tempor, aliquet massa in, elementum augue.

Figure 3.1 Example of interface hierarcy for a simple browser. Left: A sample rendering of a simple
web browser. Right: Interactor hierarchy.

The conventional input handling structure can be thought of as providing four major ca-
pabilities: (1) modeling of inputs, by providing a way to record all the relevant details of
what input happened (in the form of event records), (2) a process for dispatch of those
events — deciding which interactor object(s) should receive a given input, (3) facilities for
modeling interactor state, usually by using a state machine (4) updating interactor state
based on given inputs, (5) updating application state based on inputs, and finally (6) pre-
senting feedback to the user about interface state. By giving interactors structured, yet
independent, control over how they respond to input, this framework gains uniformity
and extensibility.

For the purpose of illustration, consider the scenario in Figure 1.1 under a conventional
user interface toolkit structure. In this scenario, the user has just touched down between
a red and a blue button. The touch event that would be delivered to the user interface
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would be a touch down event, with some location (x,y). Many toolkits also expose the
length of the major and minor axes of the touch ellipse. A conventional user interface
toolkit would then proceed to dispatch this touch down event to the interactors in the
interface.

The interactors in an interface are organized hierarchically, meaning that each element in
an interface has a parent and a child. The root of an interface is usually its main window,
which has a list of children. Each child may be an interactor such as a button, or a con-
tainer, which contains other interactors (for example a scrollable view). This hierarchy is
often referred to as the interactor tree. Figure 3.1 shows an example of an interactor tree
for a simple interface. When a new input event comes in, it is recursively dispatched
through this structure in a typically depth first manner. In our example from Figure 1.1,
the containing window would send the event to each button, which is usually determined
by the Z-ordering of the buttons.

mouse down &
inside region

Figure 3.2 Example of state machine for a button

When an interactor receives an event, it may update its internal state based on this
event. This is often done using a finite state machine. A finite state machine is a mathe-
matical abstraction commonly used in computer programs. Figure 3.2 shows a state ma-
chine commonly used for buttons. It consists of a finite number of states, and rules that
specify when to move between states, called transitions. A finite state machine can only
be in one state at a time, called the current state. When a new input arrives, a finite state
machine changes its current state according to the rules specified in its list of transitions.
In the context of user interfaces, the inputs that a state machine interprets are user input
events. For example, common inputs (as seen in Figure 3.2) are mouse down, mouse
move, and mouse up. In addition to updating its internal state, an interactor may also up-
date additional application state as a result of user input. The modeling of interactor state
via a state machine, updating internal state as result of input, and potentially updating
application state is managed by the toolkit.
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In the example of a yes/no button receiving a touch down event, the button would
change from the starting state to the down state. During this transition, the button object
would also update other variables to make the button look depressed. In this thesis, | will
refer to the sequence of operations performed to update interface and/or application
state as actions.

After an interactor has executed an action to update its state, the input system needs to
know whether to continue dispatching the input event to other interactors in the hierar-
chy, or stop. When an interactor declares that is has handled an event, event dispatch
stops. Most buttons handle events, but other interactors such as mouse cursors may wish
for dispatch to continue.

In our example, say the user’s finger was over the red button. In this case, the red button
would perform some action, it would mark the event as handled, and dispatch would
stop. This simple structure provides effective techniques for handling inputs. The struc-
ture for probabilistic user interfaces is similar, however at every step the toolkit tracks
not a single definite instance, but a set of instance samples which represent a distribution
over possible interfaces.

Probabilistic User Interface Architecture

The probabilistic user interface architecture accomplishes the same tasks as a conven-
tional input: input modeling, dispatch, state update, and rendering feedback. Figure 3.3
gives an overview of the input architecture. Developers represent interfaces using the
same hierarchical structure as in conventional interfaces. Internally however, the JULIA
toolkit maintains a distribution over possible interfaces, and their likelihoods, during each
phase of the input dispatch process.

One key difference between the conventional and probabilistic architecture is that the
JULIA toolkit does not immediately update interface state when an input is dispatched,
but rather gathers all possible update operations (called action requests) and decides
which actions, if any, to execute. A second key difference is that the JULIA toolkit includes
a mechanism for specifying interactor behavior using probabilistic state machines, a pow-
erful abstraction that easily enables behaviors such as tracking alternate input interpreta-
tion and incorporating Bayesian inference. These two differences add to both the com-
plexity of the architecture and the power of the resulting interfaces that the probabilistic
architecture enables.
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To accomplish this set of tasks, the JULIA toolkit relies on the Monte Carlo approach de-
scribed earlier to turn the problem of tracking a distribution over alternate inputs, states,
and actions into a more manageable, deterministic form. This approach abstracts away as
much probabilistic reasoning away from application developers as possible. In this chap-
ter | will give a high level overview of each of the components in the JULIA toolkit.
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Figure 3.3 Overview of probabilistic input architecture.

3.2.1 Probabilistic Events

To model probabilistic input events, which consist of input alternatives and their likeli-
hoods at the input level, probabilistic input event properties need to be expanded from a
single fact to estimates representing a range of possibilities. The JULIA toolkit takes as in-
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put probabilistic input events containing event alternatives, labeled with likelihood. The
JULIA toolkits then generates a set of event samples, which are obtained by randomly
sampling the input probabilistic events. The details of this sampling process are described
in Chapter 4. In aggregate, this set of event samples represents the distribution of possi-
ble inputs to the system.

Tracking Interface State Distribution via Samples

C) Cas)
(e ) (Ce2) () ()
(%)

p: 0.3 p:0.2
last_certain interface interface alternatives

Figure 3.4: The JULIA toolkit tracks a last_certain interface (the last certain interface state) along
with a collection of possible interfaces and their likelihoods. These are called weighted interface
samples.

The JULIA toolkit uses a collection of weighted interface samples to approximate the dis-
tribution over possible interface states, along with a last_certain interface which repre-
sents the last certain state of the interface (Figure 3.4). This approach is inspired by earli-
er work such as (Schwarz 2010) and (Hudson 1991). The decision to track alternatives at
the interface level is key, and contributes to the simplicity of this architecture compared
to other approaches such as tracking probabilities explicitly or using samples to approxi-
mate the uncertain state of individual interactors (rather than using samples to approxi-
mate the state of the entire interface).

Our approach begs the question: why not just analytically track the probabilities of all
possible interfaces, rather than using samples? Analytically tracking the probabilities of all
possible interface alternatives has the advantage of guaranteeing completeness: no al-
ternatives are left behind. However, as mentioned in section 2.4, this greatly increases
the complexity at the toolkit level, and requires the developer to specify conditional de-
pendencies for all other interactor states. Because of the complexity and dynamic nature
of modern interfaces, this problem is virtually intractable; in most interfaces there are
just too many conditional dependencies between interactors to track. The approach our
toolkit takes is to approximate a distribution over interfaces by using a collection of inter-
face samples, and watching how they change as probabilistic input are dispatched. While
it may not fully consider unlikely interface alternatives, it has the advantage of making the
toolkit tractable and easy for developers use.
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Figure 3.5: Example of sampling over interactor PMF to produce snapshots. A: A window contains two
buttons with the given PMF over variables; only one button may be in the down state at a time. B: The
system repeatedly samples the PMF over A to generate a set of samples using a naive algorithm. C:
One of these samples is impossible because both A and B are in the down state.

Another question one may ask is why not just use samples to track the probability
distribution over the states of individual interactors (Figure 3.5)? In other words, why
sample at the interface level? In fact, this is the approach taken in my previous work
(Schwarz et al. 2011). This however leads to incorrect distribution over actual interfaces,
because without knowledge of conditional dependencies is it impossible to know how the
state of one interactor affects another. For example, Figure 3.5 shows how tracking only
interactor state leads to an impossible scenario of two buttons being pressed simultane-
ously (assuming only one button can actually be pressed). Additionally, with this model it
is very difficult for interactors to take into account the state or values of other interactors
in the interface when updating their state, because again the actual distribution over in-
terface alternatives is not known. Sampling at the interface level solves both of these
problems: only actual possible interface elements are tracked, and each interactor can
trivially examine the state of other interactors within each interface sample.

One drawback of our approach is that the number of interface samples to track increases
exponentially as more input events are dispatched. Assuming 1 interface sample and x
input event samples at time t, the number of interface samples at time t + 1 is propor-
tional to x. This in turn means that the number of interface samples at time t + n is pro-
portional to x".

To make this problem tractable, reducing the number of interface alternatives at every
step is imperative. Our demonstration applications show that this reduction does not ad-
versely affect the user experience, as in practice most interfaces do not have a large
number of alternate states. While we have not spent any effort optimizing our algo-
rithms, our approach is highly parallelizable, as all operations on interface alternatives are
independent of one another. Interface and action request reduction can also be opti-
mized significantly. Even without any optimizations, however, our approach is already us-
able in moderately complex scenarios, as demonstrated via the applications in section
10.3.

35



3.2.3 Input Dispatch, Mediation, and State Update
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Figure 3.6: During input dispatch, every possible event sample gets dispatched to every possible
interface sample.

Conventional input dispatch consists of finding a list of interactors that a particular input
event should be dispatched to, and then delivering the input event to interactors in order,
until the input event is marked ‘handled’ by one of the interactors. The user interface
toolkit sends the input event to each interactor via a callback mechanism. The interactor
updates program state in this callback, and is responsible for notifying the user interface
toolkit about whether the event should be consumed or not, usually by modifying a prop-
erty of the input event (for example, by setting the ‘handled’ property to true). Once an
input event is consumed, the user interface toolkit stops sending the input event to other
interactors in the list. Each interactor implements a standard interface that encapsulates
this process, facilitating the selection of which interactor should receive an event and
then the actual delivery of that event.

The JULIA toolkit implements a similar process, with a few key differences. First, rather
than a single event, the JULIA toolkit dispatches a list of event samples to every alterna-
tive interface it is tracking (initially there is only one). Every event sample gets dispatched
to every interface sample (see Figure 3.6). Second, rather than updating program and in-
terface state in response to events, each interactor makes zero or more action requests,
each of which represents a possible program state update, and has a likelihood. Because
not all interactors handle events, dispatch of a single event sample to a single interface
alternative may result in a sequence of actions, appropriately referred to as an action re-
quest sequence. The JULIA toolkit then decides which action request sequences to accept,
reject, or defer (mediation) based on the types of action request sequences and their like-
lihoods. Then JULIA updates the distribution of interface alternatives according to the
mediation results, and resamples the set of interface alternatives to ensure that the
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number of interface alternatives (state update and resampling) to manage remains within
some limit. Likelihoods of input and interfaces alternatives are tracked throughout this
process.

Describing Interactors using Probabilistic State Machines

When an interactor receives an event, it is responsible for responding to that event. For
example, when a button receives a mouse down event, the button must record this in-
formation, change how it looks on screen to reflect this change in its internal state, and
perhaps execute other application code. More complex interactors such as draggable
icons and drawing canvases may have much more information that needs to be tracked.

Interactors in the JULIA toolkit also need to somehow track what state they are in, how-
ever this is a much more challenging task, as now an interactor’s state, and properties
associated with it, is uncertain. For example, if a button received a touch event where the
location of the touch indicated that only half of possible locations were in the region of
the button, the likelihood that the button was in the down state would be 0.5. Therefore,
developers writing code to control buttons must somehow track this likelihood value in
the logic of their code. While this may be manageable for an interactor as simple as a but-
ton, this task gets much more complex as the interactors gain complexity.

The JULIA toolkit abstracts the task of tracking distribution of interactor state away from
the developer by tracking all possible interfaces. This generalization implicitly tracks the
distribution over interactor states, appropriately incorporating dependencies between
interactors (e.g. two buttons cannot be pressed at once).

To further simplify interactor development, the JULIA toolkit provides a mechanism for
describing interactor behavior using probabilistic state machines adapted for user inter-
faces. These state machines allow for multiple transitions out of a single state for some
given input, as well as probabilistic transitions: transitions that can be taken with some
probability. Given a state machine description, the JULIA toolkit is able to appropriately
track the distribution over interactor state without requiring additional effort from the
developer. This greatly simplifies the task of tracking state for the developer, and also
enables access to powerful features such as leveraging Bayesian inference to adapt inter-
face response to users (‘learn as you go’), and incorporating behavior sequences to dis-
ambiguate intent (see the Smart Window Resizing example in section 10.1.3).
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3.2.5 Feedback
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Figure 3.7 Overview of feedback.

The final component of the JULIA toolkit is a feedback system which takes as input the
result of state update and resampling and generates meaningful feedback. This is done by
analyzing the differences between interface alternatives and generating a new, fused in-
terface which potentially combines multiple alternate representations in ways that pro-
motes understanding of interface state and allows the user to disambiguate their intent.
Examples of feedback mechanisms are generating n-best lists displaying alternate inter-
pretations, overlaying alternatives using opacity, and animating between alternate val-
ues. The feedback system is designed to be highly flexible, allowing for developers to ex-
periment with different modes of feedback and easily add their own feedback methods.

In addition to communicating system state, the feedback system allows users to disam-
biguate potentially ambiguous input interpretations. For example, items in an n-best list
may be selected to disambiguate input. This can be used in many situations. One example
described later on (section 10.3.2) is snapping: When drawing lines in a diagramming ap-
plication, users can select which control points to snap lines to. This is implemented un-
der the covers by tracking multiple alternate interfaces, each with a different snap target.
An n-best list presents the list of alternate interpretations, and users can select the cor-
rect interpretation.

In summary, the task of tracking multiple alternative inputs, interface states, actions, and
rendering feedback is a task which would be quite difficult to implement by hand. The
JULIA toolkit breaks this down into a much more manageable task by using a Monte Carlo
approach, tracking the likelihood of possible event samples, interface states, and actions.
The JULIA toolkit then uses this information to determine user intent and provide mean-
ingful feedback to users, allowing users to disambiguate when necessary. The next six
chapters provide a detailed description of each component of the probabilistic input ar-
chitecture.
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4 PROBABILISTIC EVENTS
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Figure 4.1: Scenario for an ambiguous button press. A user has pressed directly in between the ‘yes’
and ‘no’ buttons in a dialog. In such scenario, most conventional input systems will either execute the
‘yes’ action, execute the ‘no’ action, or do nothing, depending on where the centroid of the finger falls.
In the most modern user interface toolkits, all input is modeled as a discrete sequence of
input events, each of which records information about some significant occurrence that
may affect an interactive program. For example, mouse events are generated every time
a user presses down, releases, or moves a mouse, and key events are generated every
time keyboard keys are pressed. While the exact form of input events used in systems

varies somewhat, most can be characterized as recording the following five categories of
information:

The type of input event that occurred. A record of what occurred, such as “a key-

board key was pressed down”. The type of input determines the structure of the
remaining information in the event record.

2. A detailed value describing what happened, such as “Key cap #12” for a key press
event.

3. When the input happened. A timestamp.

4. Where the input happened. Most typically the (x, y) position of the primary point-
ing device.

5.

Important context associated with the input. A record of other values that might

modify the meaning of the input. A conventional example is the state of the modi-
fier keyboard keys (ctrl, alt, etc.).
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4.1

Most user interface toolkits have no systematic method for recording information about
uncertain properties of input events, or possible alternatives. For example, in Figure 4.1
the location of touch input event is ambiguous, and could be anywhere inside (or even
slightly outside of) the user’s touch area. In a modern user interface toolkit, such as UIKit
(part of the Cocoa Touch frameworks for iOS), or Windows Presentation Foundation (the
user interface toolkit for Windows-based applications), the user’s action will produce a
press event whose location is a single point, usually computed by taking the center of the
touch area. However, this representation fails to take into account the fact that the finger
touches an area, not a single point, and also that often a user’s intended touch location
does not actually match the touch centroid (Henze et al. 2011; Weir 2012).

To accurately model the uncertainty behind these new input types, we introduce the no-
tion of a probabilistic input event. A probabilistic input event is a PMF over possible input
events. For example, the probabilistic event representing the touch event in Figure 4.1
could be a PMF over a set of touch events whose coordinates can be anywhere near the
touch area. This may be represented as a PMF over X and Y. Additionally, the entire input
event may have some likelihood. Conventional inputs can also be represented as a prob-
abilistic input event which has only one alternative in its PMF and is marked with proba-
bility 1.0.

Representation via Sampling

class ProbabilisticEvent {

List<ProbabilisticEvent> getSamples (int maxNumberOfSamples) ;
float getLikelihood() ;

}

Figure 4.2 Interface for probabilistic input events. A probabilistic event implements a getSamples
method which returns a list of probabilistic events representing possible inputs. Additionally, each
probabilistic event has a likelihood. The likelihood of a probabilistic event is independent of the
likelihood of its samples.

Rather than analytically dealing with the PMF over probabilistic event properties, the
JULIA toolkit instead turns this input event into a collection of event samples. Each event
sample represents a single possible configuration of the input event. To facilitate this, all
probabilistic input events must implement a simple interface, described in Figure 4.2,
which generates a random sampling of events. To reduce the number of samples needed
to represent a distribution, event samples have a likelihood representing the frequency of
that sample in the distribution. As a result, event samples themselves are probabilistic
events that have deterministic properties, and a likelihood.
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4.2 Example

Figure 4.3 Example set of 100 individual event samples that may be sampled from a distribution of
touch event location. Each dot represents a sample. Each sample is weighted according to its
likelihood of being the actual touch location.

As an example, consider a voice recognition event voiceEvent which has two alterna-
tives: “cat”, p(“cat”) = 0.5 and “sat”, p(“sat”) = 0.5. If we call voiceEvent (100), we
should expect to receive a collection of at most 100 event samples, each sample repre-
senting either “cat” or “sat”. The sum of the likelihoods of “cat” events should roughly
equal the sum of likelihoods of “sat” events, however since this is random sampling, these
will not necessarily be equal, and subsequent calls to getSamples () will yield slightly
different results. This distribution could be represented using just two samples (with
equal likelihoods), or with 100 samples. The JULIA toolkit does not make strict require-
ments as to the number of samples generated as long as they are below the maximum
specified and they represent a random sampling of the underlying event distribution.

Note that if this voice recognition event had some other uncertain property, for example
a skewed distribution amongst alternatives for the speaker (“Mary”, “Jane”, “Bob”), then
the distribution would be appropriately distributed between six values, where the nor-
malized sum of sample weights for a (speaker, result) pair would be close to p(result) *
p(speaker) (assuming independence). Normalization here refers to the sum of weighted
samples that contain the given (speaker, result) pair divided by the sum of all weighted
samples. If the input event were not a voice recognition event, but rather a touch event,
the set of possible alternatives would be much larger, since the location of a touch has
many more possible values. Figure 4.3 illustrates an example of the event samples that
might be generated from the distribution of the touch event in Figure 4.1. Just as in the
voice detection example, each of the event samples from this touch distribution may
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4.3

have a likelihood, samples closer to the center would have higher likelihood than those
on the edges.

One drawback of the sampling approach is that large numbers of samples are often re-
quired to represent distributions where the state space is large: when input events have
many variables, or variables that can have many values. In practice, many of these event
samples result in the same actions (e.g. pressing a button), and so the interface state
space gets quickly reduced. Additionally, each dispatch sequence for an (event sample,
interface sample) pair is independent of others, allowing for optimization via paralleliza-
tion. Our examples demonstrate that we can achieve suitable performance (with little to
no optimization) using fewer than 100 samples per event. See Chapter 10 for a detailed
overview of examples.

Summary

In summary, this thesis introduces the notion of a probabilistic input event that repre-
sents a likelihood distribution over possible input events via weighted samples. While
conventional toolkits often throw away valuable information about possible alternate in-
terpretations in order to deal with input dispatch structure, this new representation al-
lows for all information about uncertainty (sensor uncertainty, recognition uncertainty) to
be retained into the input dispatch process. This information can be used later on to dis-
ambiguate certain edge cases such as when a user presses in between two buttons. De-
terministic inputs can still be represented using this notation, demonstrating that this
probabilistic representation is a more general representation of input events.

In the next chapter | will describe how the JULIA toolkit dispatches probabilistic input
event samples to interface alternatives, aggregating possible interface update operations
(and their likelihoods) in the process.
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INPUT DISPATCH
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Figure 5.1 Overview of input dispatch process

In the previous chapter | described how input events are modeled as probabilistic events,
and how the toolkit turns these events with uncertain properties into a collection of
event samples representing the underlying distribution of the input events. The next step
in the JULIA toolkit pipeline is to dispatch this list of event samples to the list of alternate
interfaces, and get a list of possible update operations that may be executed as a result.
Each possible update operation is called an action request.

Action Requests

Action requests represent computation to update the interface and possible program
state. In the JULIA toolkit, action requests contain the event sample that generated the
request, a function containing the code to execute the update, the interface alternative
that generated the action request, and the specific interactor that generated the request.

Some action requests update the state of just the user interface, however other action
requests may update program state outside of the interface. For example, an OnClick
handler for a button may terminate the program or save a file. Because the JULIA toolkit
only tracks distributions over interface (and not program) state, executing actions that
modify program state must also result in a deterministic interface state: the interface
state accompanying such an action must be certain and all other interface alternatives
must be removed. Such action requests are called final action requests and are marked
appropriately. Action requests that only update the user interface state are called feed-
back requests. It is currently the responsibility of interactor developers to determine
whether an action request is final or not, however our probabilistic state machine ab-
straction makes this task very simple. In the future, static or dynamic program analysis
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may also be used to determine whether an action request updates external program
state, simplifying the task even further for the developer.

5.2 Action Request Sequences

Action Request Sequence

action action action 3 action
request > request > request request

Event Sample Action Request Sequence

[ 38

action action action action
request > request > request > request

Action Request Sequence

action
request

action action action

request > request > request >

Figure 5.2. A single event dispatched to a single interface may generate several action request se-
quences.

During event dispatch, several different state operations may be executed as the event is
sent from one interactor to another. For example, a mouse event may cause a cursor to
update its position and a button to change its background color. Additionally, a single in-
teractor may wish to execute two forms of action, for example change its background
color and execute an OnClick handler. This sequence of actions is referred to as an action
request sequence.

During dispatch, a single interactor may return a list of alternate possible action request
sequences. Each action request sequence represents an alternate input interpretation,
and will yield an alternate (appropriately weighted) interface alternative. This is especially
useful for touch interactions, where the user’s intended gesture is only obvious after
some time.

For example, consider a touch-sensitive tablet with a scrollable text widget. When a user
initially touches down, it is unclear whether he wishes to scroll or select text. Most sys-
tems compensate for this by delaying action until a finger has travelled sufficiently far in
the horizontal or vertical direction to disambiguate intent. Unfortunately, this worka-
round is not always effective, and introduces a delay in interface response. Instead, it
would be nice if an interface could make an immediate guess as to the user’s intent, keep
both alternatives around, and disambiguate later when more information was available.
We implemented such a scrollable text view as a demonstration, it is discussed in detail in
section 10.1.5. This demonstration is implemented as a text view inside a scrollable con-
tainer (Figure 5.3). When the scrollable container receives an input, it first generates an
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5.3
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Figure 5.3 Left: Interface hierarchy for scrollable text view demo. Right: Users can disambiguate
intent by selecting an alternative.

action request corresponding to a scroll, then sends the event to its children. The children
return a list of action request sequences. The weights of these action request sequences
are then adjusted so that their sum is equal to the likelihood of the scroll request. If the
user’s motion indicates a scroll is more or less likely, the sequence weights are adjusted
appropriately. The sequences from the children, along with the scroll event, are then re-
turned to the parent. In this example the text view has returned an action request se-
guence with a single action to highlight text. The scroll view therefore returns two re-
quest sequences: one corresponding to highlighting text and the other to scrolling (both
sequences actually have just one action request in them). The JULIA toolkit then tracks
both operations and their likelihoods. Likelihoods are adjusted by the scrollable container
and text view, respectively. Tracking both alteranatives simultaneously allows JULIA to
immediately show feedback about the most likely alternative, and switch alternatives if
necessary. The user may also explicitly disambiguate by selecting an appropriate alterna-
tive (Figure 5.3). By tracking both operations (and their likelihoods), JULIA can both pro-
vide feedback about the most likely interaction, and quickly switch to the alternate inter-
pretation if necessary.

Dispatching Events

As with conventional input systems, JULIA dispatches each input event sample to the in-
terface tree of every interface alternative. The first interactor to receive an event is a
container—an interactor that contains other interactors. When it receives an input event,
a container sends the event to all children. If a child returns a single action request se-
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guence, this sequence is concatenated onto the current action request sequence being
tracked.

When a child interactor returns several different action request sequences c1, c2...,cn
(representing n different interpretations), the current action request sequence must now
branch into n new action request sequences (Figure 5.4 step 4). Each of these branches
now continues along with the dispatch process independently of other branches, accumu-
lating action requests accordingly. Figure 5.4 illustrates how action requests are accumu-
lated for a single (interface alternative, event sample) pair. The JULIA toolkit provides
several extensible container implementations, which we describe below.

The most basic container dispatches input to all children in depth-first order (after first
checking for in focus elements). Many of the examples described in this thesis use this
container.

Another container type is a scrollable container, containing a single immediate child
whose contents may be scrolled. This is the container used in the example in Figure 5.3.
When responding to touch input, this scroll container returns action request sequences
generated by child elements, as well as a possible sequence where the scroll container
itself handles the event (scrolling the contents). The likelihood of a container scrolling its
contents relative to not scrolling and instead allowing children to handle events is based
off of a simple heuristic (amount of vertical motion), but more sophisticated algorithms
are possible.

1. Event is sent to interactor a... 2. Which dispatches to b... 5. The event then goes to c... 8. The sequences are added
to the list of results.
Event Sample Event Sample Event Sample
— 38 — 38 — H 38
(2) = =1
(b))
3. b makes 2 6. c makes 1 Action Request C
- : : request... handled: true
Action Requests... Action Request A Action Request B
handled: false handled: true /
/ \ Action Request Se%lence Action Request Sequence
4. Which are added to| Action Reque%equence Action RquEst Sequence 7
2 sequences... 14 Y Action Re:}Zest A Action Request B
Action Request A Action Request B handled; false handled: true
handled: false handled: true r
Action Request C
handled: true
7. Which is added to all sequences where the
event is not handled

Figure 5.4: Diagram illustrating the sequence of steps used to dispatch events and accumulate
action requests.
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5.4

5.5

A final container type implemented in the JULIA toolkit is a container that dispatches an
event to its immediate children with identical probability. In other words, it dispatches an
event as if all children were at the same ‘level’. Every immediate child is given a chance to
handle the event, rather than prioritizing the first child. This is especially useful when
building a canvas where multiple possible interpretations are possible, e.g. a user may be
gesturing or drawing a line. This container allows each interactor (the gesture recognizer
and line) to be considered independently of one another.

The three container types described allow for a large range of interactive capabilities, but
of course many other containers implementing different dispatch policies are also possi-
ble, and may be implemented by extending one of the three containers provided.

Computing Likelihood of Action Requests

After dispatch finishes, each interface alternative yields zero or more action request se-
guences, each of which represents an alternate possible new state. The likelihood of each
action request sequence is multiplied by the likelihood of the event sample and interface
sample that it originated from:

L(ActionRequestSeq’) = L(ActionRequestSeq) * L(EventSample) * L(InterfaceAlternative)

Where L(x) represents the likelihood of X, and ActionRequestSeq’ represents the new ac-
tion request sequence.

This in turn yields a likelihood distribution of possible state update operations, which is
then sent to a mediation process (described in Chapter 7) to determine which state up-
date operations to execute, reject, or defer.

Example

For example, consider the interface presented in Figure 5.5. This interface has two but-
tons (A, B), and a set of diagnostic text fields in the corner communicating the number of
touches, touch locations, touch state. For the sake of example, assume each is a separate
interactor. Figure 5.5A shows the interactor tree. Consider when one event sample over-
lapping button A gets dispatched. The event is first dispatched to the diagnostics contain-
er, which in turn dispatches to each diagnostic. Each diagnostic returns a feedback re-
guest, but does not handle the event. The last diagnostic element, however, does return
two alternatives, one with the update text “foo” and the other with the update text “bar”
the other representing that the user intends to gesture. The diagnostics container view
then appropriately zips up these requests (Figure 5.5C) and returns the list of requests to
the root container. The root container then sends the down event to button A, which re-
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5.6

turns a feedback request and DOES handle the event, in both conditions. Button B does
not get to see the event. The resulting request sequences contain feedback requests to
update the diagnostic fields and change the state of the button.

One final difference to note in event handling is that dispatch of every input event gener-
ates some state update operation for an interface alternative. This means that even if no
interactors in an interface respond to an event, an update operation representing a self
transition (with no variable update) is generated for the given alternative, event pair. This
is necessary to avoid killing of interface alternatives that do not respond to a particular
event.

Summary

The dispatch process in the JULIA toolkit has several components which enable the prob-
abilistic input architecture to track interface distribution. First, it tracks a distribution of
possible interface update operations while still ensuring that each individual update op-
eration (or sequence of updates) is entirely deterministic. Second, instead of immediately
executing update operations, it aggregates all operations and their likelihoods. Finally, all
update operations (action request sequences) are independent of one another, ensuring
that no alternate interface state affects the state of another interface alternative. In
combination, these components allow for proper tracking of possible interface update
operations.

(diagnostic1)@iagnostic 2) Gliagnostic 3) ( button A 7( button B )

Action Request Sequence Action Request Sequence
diagnostic 1
9 [ button B ] action request d1 action request d1
handled: false handled: false
diagnostic 2
action request d2 action request d2
. . handled: false handled: false
diagnostic 3 button A

action request 'foo'
handled: false

action request 'bar'
handled: false

action request
btnA
handled: true

action request
btnA

handled: true

Figure 5.5 Example of dispatch process. A: interactor hierarchy of interface presented in B. C:
resulting Action Requests from dispatching an event sample over button B.
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Left out of this description was regarding how update operations are actually generated.
In other words, how do interactors determine what operations they wish to execute? In
the next section | will describe the probabilistic state machine abstraction used in JULIA to

simplify interactor development.
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6.1

DESCRIBING INTERACTORS USING
PROBABILISTIC STATE MACHINES

When an interactor receives an input event, it is responsible for replying with an action
request containing state update operations that it may want to execute. The JULIA toolkit
provides a convenient mechanism for tracking state and sending update requests—
probabilistic state machines.

Background

Deterministic finite state machines are a convenient abstraction for responding to input
events and tracking interactive state in conventional interfaces. The specific notion and
notation of deterministic automata was first introduced by McCulloch and Pitts in 1943
(McCulloch & Pitts 1943) and applied to interaction by Newman (Newman 1968), along
with Wasserman (Wasserman 1985). In many cases, the deterministic automata cannot
perform sufficiently complex computation to describe the behavior of an interactor.
Therefore, machine description languages similar to Augmented Transition Networks
(ATNs) (Woods 1970) are used. Though Augmented Transition Networks were introduced
to parse natural language, two features make them convenient for describing interfaces.
First, transitions in ATNs are conditioned not only on input state, but also on the output
of other finite automata (the transitions are recursive). Second, ATNs may read to and
write from a register. These two properties, in addition to making the language ATNs de-
scribe Turing complete, making them very convenient for specifying interactor behavior.

Many formal languages for describing interactor behavior have spun off from the basic
ATN. For example, in (Abowd & Dix 1994), Abowd distinguishes between input events
which signify an event that should be responded to (e.g. a mouse click) from status which
communicate the change of a variable (e.g. mouse position). Abowd then presents a lan-
guage for specifying the when to change variable constraints in response to input events.
Jacob et al.(Jacob et al. 1999) present a similar architecture where constraints are updat-
ed in response to changes in a state machine. In (Abowd 1992), Abowd provides a full
overview of formal languages for describing interactor and interface behavior.

While many of the proposed models simplify the description of interactors (and in some
cases interfaces) in many scenarios, few have been broadly adopted in commercial user
interface toolkits. While the true cause may never be known, one can speculate that mo-
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6.2

mentum plays a large role. Therefore, the description of probabilistic state machines used
in the JULIA toolkit was designed to be as similar to ATNs as possible.

State Machine Description

The state machines used in the JULIA toolkit are a probabilistic version of ATNs. As with
ATNs, transitions are conditioned not on just on input properties but also on the result of
functions called predicate functions. Additionally, transition functions may access interac-
tor or interface properties. The JULIA toolkit also introduced a few probabilistic augmen-
tations. First, multiple transitions may exist for identical inputs. When multiple transitions
are specified for the same input, multiple action requests (representing alternate repre-
sentations) are generated for each transition. Second, transition predicates return a score
indicating the likelihood that this transition should be taken given the input and current
interface state. Third, transitions contain update functions which indicate how program
or interface state would be updated in response to the transition. These update functions
are then turned into action requests. In the JULIA toolkit, developers specify the state
machine for an interactor as a JSON object. Figure 6.1 provides an example. As will be
seen shortly, state machine specification is simple and allows for the construction of
complex features.

One of the differences between a traditional ATN and the probabilistic machine is that,
like a nondeterministic state machine, a single input may lead to multiple resulting transi-
tions. For example, for the state machine in Figure 6.1, several mouse down transitions
emanate from the start state. When a mouse down event occurs over an interactor that is
in the start state, two transitions are valid: one where the interactor goes to the
click_down state, one where the interactor goes to the drag_down state. In this case, the
state machine generates two action requests representing two alternate interpretations.
In this case the likelihood for both alternatives will be the same, as is_in_region will
return the same likelihood (recall that predicate functions return the likelihood of taking a
transition). However, if the predicate function were different, the likelihood of alterna-
tives may change.

A second difference is the presence of predicate functions. A transition predicate is a
condition that must be met for a state machine to take a transition. It is represented as a
JavaScript function which returns a number between 0 and 1, representing the likelihood
that a transition should be taken. For example, in the state machine in Figure XYZ, the
is in region predicate returns 1 if the event is within the interactor region, and 0
otherwise. The predicate function may inspect properties of the interactor or interface
alternative in which the request belongs. In summary, predicate functions are a conven-
ient way to determine whether to take transitions. When combined with non-
determinism and likelihood weights, they can become very powerful, enabling features
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such as adapting interactor behavior based on past user actions as well as appropriately
responding to recognition likelihoods.

mouse down mouse down
Transition Format: insideRegion insideRegion
[event to transition on] onClickDown (feedback) onDragDown (feedback)
[predicate function] drag mous drag
[action (feedback or final)] down j~——mouseup —¥ mouse up

*if - then default is used. onClickDone (final) onDragDone (final)

defaullt probabiliy is 1 mouse move mouse move \
default action is nothi
1S hOthing motionLessThanThreshold -

- updateltemLocation (feedback)

start: [
{
to _state: “drag down”,
input type: “mousedown”,
predicate function: is in region,
feedback function: on drag down feedback
s
{

to state: “click down”,
input type: “mousedown”,
predicate function: is in region,
feedback function: on click down feedback
}
i
drag _down: [
{
to _state: “drag down”,
input type: “mousemove”,
predicate function: return true,
feedback function: update item location
s
{

to _state: “start”,
input type: “mouseup”,
predicate function: return true,
action function: on _drag done
}
i
click down: [
{
to _state: “start”,
input type: “mouseup”,
predicate function: check motion less than threshold,
feedback function: empty

Figure 6.1 Sample description for an interactor that is both draggable and clickable. Top: graphical
depiction. Bottom: description using JSON format.
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6.2.1

A third difference between ATNs and probabilistic state machines is the specification of
feedback and final action functions. These feedback and final action functions later get
encapsulated into feedback and final action requests. As a reminder, action requests rep-
resent computation to update the interface and possible program state. Some action re-
quests update the state of just the user interface, however other action requests may up-
date program state outside of the interface. Action requests that only update interactor
state are called feedback requests, requests that also update program state are called fi-
nal requests. A transition may contain one feedback function and/or one final function. A
transition may also contain neither an action nor feedback function. In this case, only the
current state machine state of the interactor is updated when the transition is taken.

A More Complex Probabilistic State Machine Description

Figure 6.2 demonstrates the state machine for a line brush: a brush that can draw either
horizontal, vertical, or unconstrained lines. The likelihood of horizontal and vertical lines
changes based on the amount of vertical/horizontal motion when a user is dragging. This
is the state machine for the line brush in the graphical object editor application presented
in section 10.3.2.

This example has two interesting features. First, the start state has several transitions on
the mouse down event, each of which represents a different interpretation (line, horizon-
tal line, vertical line). Second, the likelihood of the horizontal and vertical states change
based how much horizontal/vertical motion the user is exhibiting. These likelihoods are
specified by the functions probabilitylsHorizontal and probabilitylsVertical. For example, if
a user is moving their mouse vertically, the likelihood of the horizontal state decreases. As
with the scroll view example described in previous sections, this likelihood is implement-

mouse move

onGestureProgress (feedback)

mouse down

onGestureStart (feedback)

mouse up;

onFreeDone (final)

mouse move
probabilitylsHorizontal
onGestureProgress (feedback)

onGestureStart (feedback)

Transition Format:

[event to transition on]
[predicate function]
[action (feedback or final)]

mouse down

*if -, then default is used.
default probability is 1
default action is nothing

mouse up;

onHorizDone (final)

mouse up;
onVertDone (final)
mouse move
probabilitylsVertical
onGestureProgress (feedback)
mouse down

onGestureStart (feedback)

Figure 6.2: Example of state machine description for a line brush. Feedback and final actions are not
labeled for sake of clarity. The ‘free’ state represents an unconstratined line.
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ed using a simple heuristic (amount of vertical/horizontal motion), however more com-
plex models trained on user behavior (e.g. SVMs, regression) are also possible.

Now that I've provided a description of how state machine is specified, | will explain what
goes on under the covers to actually implement such a state machine using this example.

State Machine Operation

When an interactor described by a probabilistic state machine receives an input event
sample, it examines all outgoing transitions from its current state that match the input
event. For each transition that should be taken, the probabilistic state machine generates
an action request for every feedback and final action defined. Action requests are
weighted according to the likelihood value returned by the predicate function specified. If
a predicate function returns 0, no action request is added. As a reminder, these action
requests are added to action request sequences, whose likelihoods are later multiplied by
event sample and interface sample likelihood, as described in Section 5.4. When an action
request is added to an action request sequence, the likelihood of the overall sequence is
multiplied by the likelihood of the action request being added.

The generated action requests represent a future computation to update the state of the
interface (this includes updating the interactor state as well). If accepted, the action re-
guest first updates the current state of the interactor, then executes the update functions
provided in the feedback or final actions. If no function is specified, only the state of the
interactor is updated.

An Example

In the example FSM for the line brush described earlier, consider what happens after a
single mouse down event is sent. We are using a mouse event with a single sample here
to focus on the alternatives generated by the nondeterministic state machine, and to
demonstrate the probabilistic toolkit is valuable even for deterministic inputs such as the
mouse. The line brush is initially in the start state.

All transitions going from the start state are examined, and all 3 transitions (free, horiz,
vert) have their predicate function return a probability value larger than 0. For each of
these transitions, a different action request is generated, with the probability specified by
the predicate function. Assume that the transitions to horiz, vert, and free all return 1. In
response, the state machine creates three action requests, each with a weight of 1 (re-
member, the likelihoods of the event sample and interface sample will be multiplied in
after the requests have been returned to the dispatcher). Note that the sum of likeli-
hoods is greater than one; these likelihoods will be normalized later. These three requests
are all returned by the interactor to its parent. The requests go up the interface tree until
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being sent to the dispatcher, which multiplies in event sample and interface sample likeli-
hoods. Because all three requests are feedback requests, all requests are accepted. There
are now three alternate interfaces, where the line brush is in the free, horiz, and vert
state. All interfaces have the same likelihood. Subsequent mouse move events will serve
to adjust the probabilities: vertical motions will cause horiz to be less likely, and vice ver-
sa. The likelihood of the ‘free’ state will not change much.

Incorporating User Behavior Models via
Probabilistic Transitions

As an example of the power of probabilistic transitions, | will now describe how the
mechanism of probabilistic transitions can be used to easily incorporate a predictive
model of user behavior into probabilistic user interfaces. User behavior patterns are a
gold mine of information that can be used to not only predict what a user is likely to do,
but also perform educated guesses about user intention when their input is ambiguous.
For example, if a user presses between the “File” and “Edit” buttons in the middle of
working on a document, and the system knows that the user very frequently presses the
Edit button in this scenario, the system should be able to guess that a user wishes to
press edit, and select this option. Such predictive models are used in systems such as
speech recognition and touch typing, however they have yet to move to interfaces more
generally because there is no good mechanism for integrating such models. The JULIA
toolkit provides a mechanism for integrating behavioral models to determine intended
actions, this is implemented using the probabilistic transition mechanism.

The user behavior model has two methods of note: recordTransition(interactor_id,
transition_id) to record that a particular transition for some interactor has been tak-
en, and likelihoodForTransition(interactor id, transition_id) that returns
the likelihood that the user’s next action is to take the given transition for a given interac-
tor.

Behavior models can vary widely in complexity. The simplest (and default) model returns
the same value regardless of input. A slightly more interesting model is to record the last
transition executed and increase the likelihood of repeating the same transition. For ex-
ample, if a user executes a vertical swipe gesture, this model would guess his next gesture
is more likely to again be a vertical swiping gesture as opposed to any other action. An
even more interesting model would be to use a markov chain based on recorded behav-
ior. Note that here | used the word “action” instead of transition. Really what this behav-
ior model is doing is recording the likelihood of user actions (execute gesture A, press
button B). Since some actions do not always correspond to a single transition in a state
machine (perhaps several are required), a little extra logic is needed to specify when mul-
tiple transitions are equivalent to the same action.
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To incorporate behavioral models into the JULIA toolkit, all that is required is to augment
the probabilistic state machine mechanism so that it multiplies the likelihood returned
from the predicate function for a transition with the likelihood of taking that transition
from the behavior model. As a proof of concept, the JULIA toolkit uses the two simple
models presented above (uniform distribution and increasing the likelihood of the most
recent transition) to provide a very basic form of incorporating user behavior models.
Several demos presented later use these behavioral models to adjust the likelihood of
actions (see Section 10.1.9).

Note that the models presented use a simplifying assumption: they assume that the like-
lihood of a user taking a transition from the model is independent of the input event. Of
course, more complex models may be integrated. The beauty of the approach used here
is that the models may be arbitrarily complex. Developers may integrate arbitrarily com-
plex behavioral models without needing to change any interface code—all that is needed
is to change the behavior model. This example highlights the deep power of probabilistic
transitions. It allows us to incorporate behavioral models at the user interface toolkit lev-
el, something that has never been done before.

Summary

Probabilistic state machines are a simple way of describing powerful interactor behavior
that has yet to be seen in existing interfaces in such a general form. As was demonstrated
in Sections 6.2.1 and 6.4, this abstraction enables behaviors such as tracking alternate in-
put interpretation and incorporating Bayesian inference via user behavior models. The
simple examples of the clickable/draggable buttons and line brush were just the tip of the
iceberg: such probabilistic state machines can be used to implement gesture recognizers,
complex inference, and more. The examples in sections 10.2 and 10.3 illustrate further
capabilities that probabilistic state machines enable.

The next chapter describes how the action request sequences returned by the interactors
and dispatch process are examined to determine which actions to execute (if any), and
what happens when input is ambiguous. This process is called mediation.
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MEDIATION
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Figure 7.1: Overview of mediation phase to decide which actions should be executed, rejected, or
deferred for later.

In Chapter 5 | showed how the JULIA toolkit dispatches a collection of input event sam-
ples to a collection of interface alternatives and obtains a list of actions. The next step is
for the JULIA toolkit is to decide which actions, if any, to take. In a conventional toolkit,
this step does not even exist because at most one action will be selected and it is simply
executed. However, here we dispatch events to many potential interfaces, amassing a
collection of possible actions and their likelihoods. The reason for this is because we do
not know the exact value for the input nor the exact state that the user intending for the
interface to be in before the input arrived. Therefore, we are unsure of the exact action.
When all interactors have had their say, the JULIA toolkit needs to somehow figure out
what should happen, and update program state accordingly.

Updating program and interface state will be covered in the next chapter, this chapter
focuses only on mediation: the process of deciding which operations to execute. Media-
tion is performed by a Mediator object which takes in a list of possible action request se-
guences (output from the dispatch phase) and outputs a list of mediation results: a collec-
tion of new action request sequences with a decision to either accept, reject, or defer
each action. This component is entirely modular, meaning different mediation algorithms
can be used. The mediation algorithms and strategies build off of the original concepts of
mediation provided by Mankoff in (Mankoff, 2001). There are two steps to the mediation
process: aggregation of actions, and action resolution.

Action Aggregation

In many cases, the dispatch process will result in multiple action request sequences that
represent similar or identical update operations. For example, when 100 event samples
(located at slightly different locations) are all sent to a button, the button may return 100
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action requests that change the button’s state to down and update the button’s appear-
ance to reflect that it is depressed. In some cases, the update operation corresponding to
the transition may update interface state according to properties in the event sample (for
example, moving an item according to the location of the event sample), but in this ex-
ample the update operation only served to change the button’s background color. There-
fore, all action request sequences would, after update, result in the same interface in the
end. These action requests represent requests that can be combined into a single request
whose likelihood is the sum of all 100 original requests.

To identify action requests that can be aggregated, the mediator examines the update
code in the action request to determine whether two action requests would, after up-
date, result in sufficiently similar resulting interfaces. For action requests stemming from
probabilistic state machines, two action requests are not sufficiently similar if they do not
result in the same state machine state. The mediator also analyzes an action request’s
update code to determine whether properties of the input event are used. Action re-
guests whose code is identical, that do not use event properties, and whose code does
not result in different interactor states, may be aggregated. If two action requests have
identical code but use an input event’s properties, then two action requests may be ag-
gregated only if their event samples are equal. Action requests are aggregated by adding
likelihoods (we can add samples because event samples are assumed to be independent
of one another), all other properties remain the same. Moreover, the input event at-
tached to each action request does not change when two requests are aggregated—the
input event from the first action request is used. Right now input events for similar re-
guests are either not used or identical, so this naive removal of input events when aggre-

()
(1.1,03) B

(1.2,0.1)

04

0,0 1 2
Callback Target Likelihood
OnPress A 0.17
OnPress A 0.17
OnPress A 0.17
OnPress A 0.17
OnPress B 0.17
OnPress B 0.17

Callback Target Likelihood
OnPress A 0.67
OnPress B 0.33

Figure 7.2 Example Action Request aggregation from example in Figure 1.1. For the sake of
simplicity, we assuming that both A and B are in the start state with likelihood 1. Top: six touch
down events are sent to interactors. Middle: action samples are generated as a result of state
machine transitions. Each sample includes information about relevant variables (locations of
event), callback, and target. Bottom: Action Requests are aggregated according to target and
callback.
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gating action requests is sufficient. More sophisticated input event aggregation methods
are possible, and are left for future work. Fortunately, action aggregation is implemented
via a pluggable abstraction that can be replaced with other, more nuanced aggregation
methods. For example, an aggregation method could aggregate all action requests that
yield the same end state and update the event being operated on to be the mean value of
all sample probabilistic events in candidate action request sequences. This would have
the effect of generating a ‘mean action request’ across a list of action request sequences.

Figure 7.2 illustrates the action sample aggregation process for a simple button press. In
this example, assume that both buttons are in the start state with likelihood 1, and thus
that each interactor has only one sample representing its state distribution. If each in-
teractor had more samples, then the six alternate events could have caused more action
requests to spawn (since every event gets sent to every state sample), and then the ex-
ample would not fit comfortably on the page. Additionally, assume that only six touch
down event samples are generated from a touch. Four of the touch down events overlap
Button A, which would cause four separate transitions from the start to down state in a
button (a separate transition for each of the four event samples that overlap Button A).
Each transition spawns an action request to handle the OnPress update function. We will
further assume that the OnPress action does not actually use any properties of the input
event. Similarly, two of the touch down events overlap Button B, causing two transitions.
Once again, each of these two transitions spawns an action request. A total of six action
requests get sent to the mediation subsystem. For the sake of simplicity, assume that all
event and state samples have equal likelihood. Since all requests originate from the same
transition, two resulting requests are aggregated: one for Button A and one for Button B,
with A being the more likely request.

Action Resolution

Since these aggregated actions cannot all be executed, the mediation system must now
decide to accept zero or more aggregated actions. All remaining actions are either reject-
ed, or, if the system cannot yet make a final decision, deferred. As we will discuss in the
next section, when an action is deferred, the mediator typically shows feedback to seek
more information from the user. As with action aggregation, mediation algorithms are
pluggable. Developers can use one of a library of provided mediators, or make their own.
In the next paragraph | will describe the default mediation heuristic used in my examples.

The default mediation algorithm implemented in the current version of the JULIA toolkit
runs as follows: First, the algorithm rejects requests below some developer-specified min-
imum likelihood. Next, the algorithm determines the likelihood of the most probable final
action. It then considers all actions requests with likelihood within a developer specified
delta of that maximum. | will refer to this region of within a small delta of the maximum
as the “equivalence region”. If there is one final action within the equivalence region, that
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Figure 7.3: Given a set of Action Requests, the mediator sorts Action Requests (diamonds)
according to likelihood, then checks to see if any requests are within some small amount (in this
case, 0.4) from the maximum value (“equivalence region”). If an Action Request is within the
equivalence region, the set is too close to call, and the mediator does not execute action (“deferral”).
All requests in this example are final Action Requests.

action is accepted and all other actions are rejected (Figure 7.3). If there are multiple final
actions within the equivalence region, the interaction is considered “too close to call”. In
this case, the mediator rejects all actions below the equivalence region, defers the final
actions within the equivalence region, and accepts all feedback actions. If no final actions
are accepted, and no final actions are deferred, then all feedback actions are always ac-
cepted.

Deferral

When actions are non final (feedback actions), the resulting interfaces from all update
operations are probabilistically tracked until a user either disambiguates explicitly or im-
plicitly through their behavior. However, final actions update program state, and thus
need to be resolved. When multiple final actions are too close to call, the mediator defers
this action. Deferral is handled in a separate logic path from the regular input loop, as il-
lustrated in Figure 7.4.

The goal of deferral is to give the user an opportunity to disambiguate their intent before
a decision is made. For example, if two final action requests are both very likely, it would
be best if a user could provide input about their intent before the system decides for
them. To accomplish this, the system provides a disambiguation interface rendering each
of the deferred alternatives. This disambiguation interface is rendered using the same
feedback system as will be discussed in Chapter 9, Figure 7.5 shows an example. Once
again, the JULIA toolkit provides an extensible and customizable collection of mediation
methods. The default mediation method is to display an “N-best list” choice dialog to the
user, a common approach as described in (Mankoff 2001). To communicate the results of
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Figure 7.4 Diagram describing input-feedback-action loop, along with separate deferral loop (steps
5b -8b).

final actions, final action requests may optionally include a special draw function, which is
called after the alternative is rendered to give a user further information about this action
alternative. For example, if a final action may close an application, the draw method for
the final action may render the text “close” onto the resulting interface alternative. This
does not update the interface in any way (it is a temporary change).

Once the disambiguation interface is rendered, users must choose an alternative. Contin-
uing to interact with the main interface implies selecting the most likely alternative, as
this is displayed as the main interface on the screen. The details of ‘continuing to interact
with the main interface’ is up to the developer of mediation mechanism to decide, we
define this as a click on the main interface. Once the user chooses an alternative, the up-
date code associated with this action request gets executed, the selected interface gets
set as the new certain interface, and the regular dispatch process resumes.

The approach currently implemented has a few drawbacks, which we discuss here. Im-
provements to this approach are possible and we leave this for future work. The primary
drawback of this approach is that mediation is forced immediately whenever any ambigu-
ity arises. In other words, this does not allow mediation to incorporate the possibility of
alternative interpretations that don’t arise until after mediation is immediately invoked.
For example, if a final action arises and another action may arise a little bit later, the se-
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A

Figure 7.5 Example of deferral. User executes a circle gesture (A-C), several interpretations are
likely. The most likely interface is displayed by default, and possible alternatives are displayed as an
n best list (D). The user may then select one of the alternate interpretations, or continue interacting
using the most likely interpretation.

cond interaction will never be displayed to the user because the first action ambiguity
needs to be immediately resolved. This specific area is an area ripe for future work.

Summary

The mediation process is responsible for determining which operations to execute. The
component is pluggable, allowing for alternative, developer-specified mediation to easily
be used without interrupting the rest of the interface. When final actions must be re-
solved, the mediator either resolves these itself, or asks the user for assistance (if it is too
close to call). This process of waiting for as long as possible (via feedback actions) for fur-
ther input has significant advantages over conventional dispatch, which immediately acts
on all input events as they occur. By considering multiple interpretations and allowing de-
cision to be deferred until a later time, the mediator allows for the JULIA toolkit to con-
sider far more information than is available in conventional input toolkits when making a
decision about interface action.
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Figure 8.1: Overview of interface update.

After the mediator chooses which operations to execute, the JULIA toolkit needs to up-
date its distribution over interface alternatives to reflect the new update operations. Eve-
ry accepted action request represents one potential new interface state. The likelihood of
an accepted request implies the likelihood of the resulting interface alternative. For ex-
ample, if two action requests are accepted, this means that two interface states are pos-
sible. If only one action request is accepted, only one interface state is possible (this is
always the case when a final action is accepted). Cancelled action requests represent an
invalid new state, therefore cancelled requests simply do not get executed (and the re-
sulting interface sample does not get put into the new distribution). The interface update
process is responsible for updating the distribution over interface states.

The interface update phase can be broken into three parts: cloning interfaces, updating
clones, and resampling alternate interfaces. Accepted action requests contain a reference
to the alternate interface that generated the request, as well as an action function to up-
date this interface. Interface update is performed by executing the interface update op-
eration on the alternative. Because multiple action requests may refer to the same inter-
face alternative, the first phase of interface update is to clone interface alternatives for
every action request.

Note that it is possible for two action requests to come from the same transition from the
same interface alternative, where one is a feedback action and one is a final action. To
ensure that both are executed on the same interface alternative, one option is to com-
bine requests like this during the action aggregation step (Section 7.1), turning the update
function into a function that first executes the feedback update code, then the final up-
date code. This will ensure that cases where action requests from the same transition on
the same alternative are updating only one new interface alternative, not two.
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Cloning Interfaces

Cloning interface alternatives is a fairly straightforward process. Every interactor imple-
ments a clone method that executes a deep copy of all properties and returns a copy of
itself. Interfaces are cloned recursively according to the interactor hierarchy. While this
current method is fairly inefficient, the area is ripe for optimization. The sequential nature
of the interface alternatives makes the problem suitable for compression using, for ex-
ample, incremental data structures (Tanin et al. 1996). More sophisticated lossless com-
pression methods are also possible (Ziv & Lempel 1977).

One challenge that arises in dealing with interface clones is referring to interface ele-
ments. For example, if a developer has a variable pointing to a button in her original inter-
face, this variable will no longer point to the proper button (or rather buttons, since likely
there are now several alternate buttons that the variable could point to). If the developer
wishes to update properties of other interactors (say change the text of a button) as part
of an interface update operation, how does she accomplish this?

One approach is to assign each interactor an ID and refer to the interactor by ID. Every
Container View (including the root view) implements a findvViewById () method
which can be used to find and modify views in an update function. Thus, for any update
operation that involves other interactors, the root view for that interface alternative first
finds the view of interest by ID, then updates its values accordingly.

Another option is to store references to objects themselves directly in the JULIA object
that manages alternate interfaces, and modify these references appropriately during the
update function call. Other approaches are also possible, including modifying the imple-
mentation language or binding the variables to different values according to the interface
alternatives being updated. For our example implementation, however, we found that
the simple method of tracking interactor IDs worked well.

Updating Cloned Interfaces

After interfaces are cloned, they must be updated with the appropriate update functions.
The process for this is actually fairly simple: every action request is simply executed with-
in the context of the newly cloned interface. Because the update function is executed
within the context of an interface copy, no other interface alternatives are modified dur-
ing this process, only the particular alternative interface corresponding to the new action
request is modified. As a result, every alternate interface after the update function is
complete represents an alternate representation unaffected by any others. The likelihood
of this alternative is simply equal to the likelihood of the corresponding action request
(which is in turn computed based on the likelihood of event samples and the result of ac-
tion request aggregation).
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Note that this model of tracking alternate interfaces is very convenient—if at any point
the user wishes to select a particular alternate representation as a final representation
(such as with final action requests, or through some other mediation process, some of
which will be discussed in chapter 9), updating the interface distribution to reflect this is
merely a matter of throwing out all other alternative interpretations.

On the other hand, a large number of action requests can lead to too many interface al-
ternatives to manage, causing the number of alternate interfaces to explode exponential-
ly. To solve this problem, the JULIA toolkit reduces the number of interface alternatives,
which will be discussed in the next section.

Interface Resampling

After interface alternatives have been cloned and updated, it is possible that there will be
too many alternatives to reasonably track. For example, a simple touch event with 100
samples could lead to 10,000 or more new interface alternatives. The final step that must
be taken is resampling to reduce the total sample count. If left unchecked, over time the
number of alternate interface samples will grow exponentially. This increase occurs each
time multiple event samples arrive and are combined with interface alternatives. Howev-
er, state distributions can generally be adequately approximated by a limited number of
samples.

Before performing resampling, the JULIA toolkit reduces the number of interfaces by
identifying sufficiently similar interfaces. The heuristics to identify identical action re-
guests do not always catch all update operations that yield identical (or sufficiently simi-
lar) updates. For example, consider an update operation that sets the x position of an in-
teractor to touchEvent.x modulo 10. Now consider two event samples whose x coordi-
nates are 11 and 21. Both update operations will set the x position of an interactor to 1,
however the action requests would be considered different because they used a different
event sample as a parameter. As a result, an additional reduction step is needed.

Interface Reduction

Interface reduction takes a list of alternate interfaces and reduces this set to a smaller set
of interfaces. In contrast to resampling, the aim of reduction is merely to combine similar
or identical interfaces. Interface reduction is designed as a pluggable component, the
JULIA toolkit provides a library of several reduction strategies. These reduction compo-
nents are actually re-used in a later phase of feedback, which I will discuss in section 9.2.

To assist with interface reduction, every interactor implements an isSimi-
larTo () method which is used to compare interfaces. For example, two container in-
teractors are similar if all of their children are identical, and if the two containers have
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similar properties. Two interactors governed by probabilistic state machines are equal if
their current state machine states are equal, and if all other properties are equal. The de-
fault interface reduction implementation uses this equals () method to determine if
two interface alternatives may be combined.

The default interface reduction algorithm in the JULIA toolkit combines similar alterna-
tives as determined by the isSimilarTo () method, however other reduction strate-
gies are also possible. For example, if interface samples differ only by the position of one
interactor, this set of interface alternatives may be combined into a single interface with
that interactor positioned at the mean of the positions of all samples. This reduction
strategy is implemented in the JULIA toolkit and is discussed in section 8.3.1. Once again,
because this reduction stage is entirely pluggable, reduction strategies may be inter-
changed and developed as interface developers see fit.

Resampling Possible Interfaces

To avoid an explosion of possible interfaces, the JULIA toolkit ensures that the number of
interface alternatives after each input processing step is no larger than a configurable
threshold. | will refer to this threshold as MAX_POSSIBLE_INTERFACES. After reduction, it
is likely that the number of possible interfaces is still larger than
MAX_POSSIBLE_INTERFACES. Therefore, JULIA needs to resample and renormalize the
interface distribution.

The resampling algorithm in the JULIA toolkit is pluggable, and can be replaced with any
number of algorithms. The algorithm in the JULIA toolkit is a naive algorithm to perform
resampling: it simply takes the most likely MAX_POSSIBLE_INTERFACES interface samples.
This approach works well for the applications of moderate complexity presented in this
thesis, however has the disadvantage of removing the most unlikely samples. In the fu-
ture we hope to provide more sophisticated resampling methods leveraging importance
resampling. These methods adjust the probability distribution of the samples being drawn
to ensure that likely unlikely (but important) samples are drawn, and then adjusts the
weights of these drawn samples according to their likelihood in the original distribution. A
common technique used in particle filters is sequential importance resampling, intro-
duced by Gordon (Gordon et al. 1993). Because of the modular nature of resampling, al-
gorithms such as sequential importance resampling may easily be integrated without dis-
turbing the toolkit architecture at large. After resampling, the resulting set of state sam-
ples is a reduced set representing the new state distribution of the interactor.

Updating to a Certain State

The point of tracking interface alternatives to better infer a user’s actual intent. In other
words, the higher level goal of the input system is to correctly determine the actual cer-

66



8.5

tain interface state. When the mediation system has sufficient information to disambigu-
ate input, when input is actually unambiguous, or when a user manually disambiguates
input via interaction (e.g. select an item in an n-best list), the toolkit should update its
state distribution to reflect having a single, certain state.

In section 3.2.2 | mentioned that the state of interface alternatives is represented by a list
of interface alternatives as well as a last_certain interface representing the last certain
state the interface was in. The JULIA toolkit has several ways of updating this last_certain
view. First, when a mediator returns a single action request as being accepted, only one
interface update operation is possible (all others were deemed invalid). Thus, the particu-
lar update operation is executed and the resulting interface is set as the last_certain in-
terface, with probability 1. Second, when a user selects a particular alternative as ‘cor-
rect’, he/she is explicitly telling the input systems what the deterministic state is, and thus
the particular alternative that should be set as the last_certain interface. Correcting for
this is merely a matter of setting the alternative selected by the user as the last_certain
interface and throwing away all other interpretations.

In contrast to other systems that have complex processes for resolving actions (Mankoff
2001, Schwarz 2010), the JULIA toolkit’s mechanism is simple and elegant. Selecting a def-
inite alternative is just a matter of updating the last certain interface.

Summary

The interface update phase is responsible for updating interface samples and downsam-
pling this set of updated interfaces to appropriately reflect the new distribution of inter-
face state. By cloning interface alternatives and executing update operations in the con-
text of these cloned alternatives, the update phase is able to generate new state distribu-
tions without altering the state of other alternate interfaces. Downsampling is a key com-
ponent that makes the operation of the JULIA toolkit feasible, without this the list of al-
ternatives would grow to be far too large. By maintaining a reasonable number of inter-
face alternatives at each step, the update phase ensures a reasonable approximation of
the distribution of interface state.

The final phase in the JULIA toolkit is feedback, which is responsible for providing a mean-
ingful rendering of interface state to the user, and allowing them optionally disambiguate
their intent. The feedback phase is covered in the next chapter.
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PRESENTING FEEDBACK

One of the key components of any user interface is a visual representation of the system
state to the user. Users must be in a perpetual input-action-feedback loop in order to ef-
fectively interact with a computer. The above chapters have covered how input represen-
tation, state update, and action change when input is uncertain. This chapter provides an
overview of how feedback changes under uncertainty, and provides an architecture for
easily making these changes while requiring minimal developer effort.

The primary difference uncertainty brings is that rather than having a single, certain inter-
face, the system is now dealing with a probability distribution over possible interfaces.
The feedback system presented in this chapter provides the following facilities to deal
with this new challenge:

* Reduction —reducing a large set of alternatives to a smaller set of ‘salient’ alterna-
tives.

* |dentifying Differences Between Interface Alternatives — an algorithm for identi-
fying differences between interface alternatives.

* Visualizing Uncertainty and Interacting with Feedback- an API for building feed-
back objects that combine interface alternatives (and their likelihoods) into a sin-
gle interface that communicates system state and allows users to specify which
alternative is the ‘correct’ alternative.

* Adjusting feedback based on context —an APl allowing developers to dynamically
determine what feedback to show.

This architecture allows developers to easily experiment with different feedback tech-
niques by allowing developers to easily switch between feedback methods as well as de-
velop new feedback techniques. Just as with subjunctive interfaces (Lunzer & Hornbaek
2008), developers are able to change the method of rendering alternatives, as well as
how alternatives are fused. To demonstrate the power and generality of our architecture,
this chapter will also cover 12 feedback techniques already implemented using this sys-
tem.
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9.1

9.2

Overview
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Figure 9.1: Overview of feedback process.

In a conventional interface, an interactor is made up of a set of properties; every time an
interface property changes the interface system renders the new interface onto the
screen. In the probabilistic input architecture, we now have not a single interface, but a
distribution (PMF) over possible interfaces. The goals of the feedback system are three-
fold. First, the feedback system should support rendering and combination of interface
alternatives in a manner that is understandable to users. Second, this rendering should be
efficient. Finally, the feedback system should be modular and extensible: developers
should be able to pick between a number of different feedback strategies as well as de-
velop their own.

To support this, | designed a modular feedback system whose components may be easily
switched out and modified, along with a library of feedback techniques to allow develop-
ers to generate understandable feedback of uncertain interfaces. The feedback system
has four stages (Figure 9.1). First, the system obtains a collection of interface samples
from the result of interface update as discussed in Chapter 8. Next, the system may re-
duce a potentially large number of alternate interfaces into a representative subset. This
subset is then fused into a single combined interface using one of many possible feedback
algorithms. Finally, the fused interface is rendered to the screen.

Reducing the Number of Alternatives to Show

In many cases, the number of interface alternatives exceeds what could reasonably be
communicated to the user, even when considering only the most likely interfaces. There-
fore, our input system must reduce the number of interface alternatives in an efficient
manner, while still representing the initial distribution as closely as possible. Several pos-
sibilities present themselves.

One method is simply to pick the N most likely interfaces and show then using one of the
feedback techniques described below. While simple, this has the disadvantage of not rep-
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9.3

resenting a large number of interfaces. For example, if there were 100 alternative inter-
faces, all of which had a particular interactor in a different location, showing only the top
3 versions would fail to communicate the possibilities. An alternate approach is to reduce
the number of interfaces using one of the interface reduction techniques provided in the
interface reduction step of interface update (Section 8.3.1).

For example, one such interface reduction algorithm that would be particularly useful is
to aggregate all possible values from interface alternatives into a single interface. This re-
duction algorithm turns each property of an interactor into a PMF over all values the
property takes on across all interface alternatives. In other words, now each property (for
example, the x coordinate of a location) is not a single value, but a list of values. Interfac-
es that have new interactors in them would have these interactors added in the final in-
terface.

This reduced interface (or interfaces) can then be fed into different feedback algorithms.
As will be seen shortly, these algorithms can then take this list of properties and render
the mean, standard deviation, or other aggregated properties as they see fit. One final
note about this particular aggregation approach is that instead of combining all values,
interfaces may first be clustered and then combined (although we leave the implementa-
tion of this in a library for future work).

One major advantage of this reduction step is that it is often doing the same operation as
interface reduction in Section 8.3.2. This means that all reduction algorithms implement-
ed for feedback may be used in interface update, and vice versa. Developers may write an
aggregation algorithm once and reap the benefits in multiple parts of the toolkit.

Identifying Differences Between Interface
Alternatives

When giving feedback about interface alternatives to the user, it is important to identify
which interface components are different from a ‘ground truth’ (in this case, the last cer-
tain state). As mentioned in sections 3.2.2 and 8.4, the JULIA toolkit tracks a last_certain
interface representing the last certain interface state. Rather than comparing all alterna-
tives to each other, JULIA compares alternative interfaces to this last interface state to
determine which components have changed.

Several methods for determining differences are possible. First, all interactors already
implement an isSimilarTo () method to identify similar interfaces during action ag-
gregation (section 8.3), which can be used to similarly identify specific differences in inter-
faces. Interactors are marked as ‘dirty’ when they differ from the last_certain interface.
Any interactor is dirty if it does not exist in the last_certain interface, or if its state has
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9.4

changed between interfaces. Similarly, containers with different numbers of children (ei-
ther added or removed) or children of different orderings are marked dirty. These dirty
bits can also be set during state update, since state update by definition modifies proper-
ties. Rather than comparing all interfaces to the last_certain interface, our implementa-
tion modifies the dirty bit during state and container update, assuming that interactors
can not be changed at other times.

Once differences have been identified, different feedback objects can examine these dif-
ferences to provide more meaningful feedback to the user, for example highlighting spe-
cific objects that have changed.

The Feedback Object: Specifying What Type
of Feedback to Show

In conventional interfaces, interactor developers need to implement their own feedback
rendering. Implementing this in the context of probabilistic interfaces leads to extra work,
inconsistent visual styles, and errors. One of the aims of the work presented here is to
abstract communication of uncertain system state away from the developer in order to
facilitate a consistent and reusable way to communicate ambiguity. Importantly, it should
be very easy for developers to specify what form of feedback to show, and for developers
to write their own forms of feedback either by extending existing feedback algorithms or
writing their own.

Rendering feedback in the JULIA toolkit is handled through a feedback object which is re-
sponsible for taking interface alternatives and generating a resulting fused interface
which is then rendered to the screen. This involves performing reduction, identifying dif-
ferences, and finally fusing this information into a single interface which will be displayed
on the screen. Note that some of these steps, e.g. interface reduction and identifying dif-
ferences are themselves implemented as interchangeable objects, allowing for maximum
code reuse. Also note that a feedback object only needs to implement a draw method
that takes a list of alternatives, meaning feedback can be arbitrarily simple or complex.
For example, later on we will introduce meta-feedback objects, which are feedback ob-
jects that contain other feedback objects, and choose which feedback to display based on
contextual information.

Developers specify which feedback to show by specifying which feedback object to use in
their interface. For example, one form of feedback is to simply render the most likely in-
terface to the screen by calling draw () on the root of the most likely interface. This is
the default feedback method used in our input system and is what conventional interfac-
es do.
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9.5

9.5.1

Figure 9.2 Example of Octopocus-inspired feedback technique of overlaying multiple alternate
interpretations using opacity (left), blur (middle) and saturation (right) to reflect probability. The dot is
the location of the touch position. The user is drawing an arrow pointing right.

Feedback objects implement a very simple interface: They have a single draw() method
which takes a canvas to draw on along with a list of interface alternatives (the result of
interface updates). This simple interface allows for a surprisingly complex set of opportu-
nities, which we describe below. Developers may implement their own feedback meth-
ods, use one of the many feedback methods provided in the JULIA toolkit, or extend an
existing library feedback method.

Visualizing Uncertainty

As seen in step 3 of Figure 9.1, the fusion step takes a list of interactor trees (each tree
represents an interface alternative) and fuses these trees. The simplest option, what in
practice conventional interfaces do, is to render the most likely interface. In fact, this is a
good option in many cases. However, when several interfaces are highly likely, or when
the user indicates indecision (e.g. via a dwell), it is worthwhile to communicate alternate
possible interface states by visualizing the uncertainty to the user. Below we describe
several feedback methods we have implemented to demonstrate the generality of our
approach.

Overlay Multiple Versions

Inspired by the feedback techniques presented in Octopocus (Bau & Mackay, 2008), we
observed that it may occasionaly be beneficial to overlay interface alternatives on the
interface, passing alternatives through various filters. here, all alternatives of an
interactor are grouped into a single container, which can render these alterantives as it
sees fit. The overlay container can adjust the size or appearance of child interactors
(alternate versions of a single interactor) based on probability. For example, it may use
alpha compositing, adjust contrast or blur based on likelihood values. Figure 9.2
illustrates our explorations of different forms of feedback for the Octopocus interaction
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9.5.3
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Figure 9.3 Example of animation feedback. Text fields fade through alternate values.

technique. For background, the Octopocus interaction technique aims to help users learn
gestures by overlaying all possible gesture completions on the screen, so that users may
better understand how to move their finger to complete a certain action. The feedback
visualization techniques explored for communicating probability included adjusting
sharpness, opacity, scale, contrast, and rendering separate visualizations (e.g. progress
bars and text). Another example of overlay in existing work is to draw a ‘dashed’ or
‘impermanent’ version of a possible alternative, as shown in Igarashi’s interactive
Beautification (lgarashi & Matsuoka 1997). To support this, interactors expose a
‘drawAmbiguous ()’ method which can render an interactor using dashed lines as with
Igarashi’s work, or in any other form desired.

Animate Between Alternatives

Animation can be used to switch between input alternatives or convey number of alter-
native interfaces. For example, individual interface elements may jitter or pulse with a
frequency according to the number of alternative representations (Figure 9.3).

More practically, individual interface elements may fade between possible values. To the
best of our knowledge this form of feedback has not yet been explored in the literature,
and provides a new area of feedback to be evaluated and explored by research practi-
tioners.

The advantage of our toolkit is that it allows for these feedback methods to be easily im-
plemented and explored, without requiring any effort on behalf of the interface develop-
er. Developers of feedback may work entirely independently of the interface implement-
er.

N-Best Lists

The goal of the N-Best list is to quickly show a small number (typically less than 5) of al-
ternatives near the area of interaction. This family of feedback methods is similar to the
work presented in Side Views and more generally the work on Subjunctive Interfaces cov-
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ered in Section 2.2.3. The most likely interface is rendered in the main interaction area,
and interface alternatives are rendered near the point of interaction, or at some other
developer-specified location (Figure 9.4). These alternatives can be rendered in several
different ways, which we describe below.
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Figure 9.4 Examples of N-Best lists. Left: when it is unclear which folder a user intends to drag, sev-
eral alternatives pop up. Center: when several gesture recognition results are possible, show alterna-
tives. Right: It is unclear whether a user wishes to drag the rectangle or resize, show alternative op-
tions.

First, scaled versions of the entire interface may be rendered (Figure 9.4, right). While
simple to implement, this has the disadvantage of being difficult to interpret. One alter-
native is to render only the interface components that have changed (Figure 9.4, Left,
Center). This is done by comparing each interface alternative to the most likely view,
marking which interactors are different (have different properties or do not exist in the
original), and rendering these to the screen. However, rendering only the changed views
removes the interface context and can also be difficult to interpret.

A third approach is to render a scaled version of every interface alternative and highlight
the changed regions (Figure 9.5, left). Developers can dynamically switch between any of
these feedback methods merely by changing the type of feedback. Many other approach-
es are possible, for example summarizing changes as text, or adding animation. The exist-
ing N-Best Lists can easily be extended to add these changes with minimal developer ef-
fort.

add i |

add | add |

add |

Figure 9.5 Examples of alternate N Best list renderings. Left: Highlight changed regions, Center:
Communicate probability using opacity. Right: Communicate probability using text.
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9.5.4

9.6

Alternatives are sorted by probability and displayed left to right (though of course other
display strategies are also possible), and various filters or effects may be applied to alter-
natives to communicate the likelihood of every alternative, for example opacity, size, and
contrast. We also implemented a simple thermometer visualization comparing likelihood
(a completely full thermometer indicated probability 1).

Rendering Aggregate Properties

As mentioned in Section 9.2, the results of different interface reduction algorithms may
be fed into different types of feedback to create interesting forms of aggregate feedback.
For example, we can take the output of the property aggregator discussed in Section 9.2
to render the mean, mode, median, and standard deviation of different interface proper-
ties. Figure 9.5 shows an example of rendering the mean and standard deviation of a cur-
sor’s position, with a simple overlay of all possible values on the left.

There is a wide body of work on visualization of uncertain information which this aggre-
gate feedback mechanism can implement. Some examples are explored in (MacEachren
1992) and (Pang et al. 1997). The beauty of the approach in this toolkit is that it now ena-
bles the rendering and exploration of these visualization techniques in the domain of user
interfaces, something that has not yet been demonstrated before.

Interacting With Feedback

In many cases, visualization of uncertainty naturally leads to a desire to resolve this un-
certainty. The concept of mediation is covered in Section 6, however because feedback
and mediation are so closely linked, a treatment of mediation in this section is warranted
here.

As an example, we have implemented several methods for selecting interface alternatives
during and after interaction. While most of our examples are implemented using some

A. B. C. D. K

) | N
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Figure 9.6 Example of interactive feedback. After a user executs a gesture, several alternatives are
possible. If she selects the rectangle, this alternative will be selected. If she ignores the n-best list,
the circle will remain on the screen.
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form of N-Best list, alternative selection may also be possible using different feedback
methods.

As discussed in Section 8.4, the implementation for selecting alternatives is very simple:
when a user selects an alternative, this alternative is marked as ‘certain’ and all other al-
ternatives are removed. For example, in Figure 9.6, after a user executes a gesture, sever-
al interface alternatives are presented, representing alternate interpretations of her ges-
ture. She selects one of them and this is set as the certain interface.

Additionally, in Figure 9.7 the user wishes to drag a box, but the system interprets her ac-
tions as resizing the box. She wishes to change to an alternate interpretation. This is ac-
complished by dragging his finger/mouse through the proper alternative, as with crossing
interfaces. Afterward, the correct alternative is selected. Note that a limitation of this in-
teraction is that the square in the selected alternative may become dragged into a posi-
tion that is unintended. A second limitation is that an n-best list item may obscure the
location where a user wishes to drag the item, causing an n-best list item to be uninten-
tionally selected.

A similar effect can be achieved by pressing a key mid-interaction, or by using voice input.
Alternatives disappear after a timeout or after a user completes a gesture. Other error
correction strategies such as those reviewed by Bourguet (Bourguet 2006) are possible
and easily added in our architecture.
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Figure 9.7 Example of interactive feedback. A user wishes to drag the left box, however it is being
resized instead (A). While keeping the mouse down, she moves over to the leftmost interface
alternative, which represents a drag (A dotted line, B, C). Once she crosses over the desired
alternative, it is selected.
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9.7 Feedback About Future Events

In addition to providing feedback on the current state of an interface (and its alterna-
tives), it is possible to emulate potential future events and render the possible future in-
terfaces resulting from them. For example, input prediction models might predict future
pointer locations or future events given past behavior. These input event predictions (and
their likelihoods) can be simulated through our system as probabilistic events, and the
resulting alternatives presented as feedback to the user and make them available to be
selected as shown in the previous section. This could both provide prompting indicating
to novices what follow-on possibilities there are, and provide an automated and general-
ized mechanism for the system to produce shortcut interactions for expert users without
having to explicitly build such shortcuts into every part of the interface.

Figure 9.8 shows an example of future feedback discussed in the ‘predictive menus’
demonstration from Section 10.1.6. This demonstration depicts a menu that seems to
predict which items a user is likely to select based on their current selection and their
past behavior. Note that the menu interactor is actually nothing special and does not
have any prediction logic. The event prediction is handled by a separate component,
while feedback is handled by the JULIA toolkit.

Here feedback about possible menu selections can be used to speed up menu selection
and also educate users about common menu options. The results of prediction can be
communicated using any of the techniques above. In the development of this demo, | was
able to experiment with all 12 different feedback techniques presented, Figure 9.8 shows
a few of the most promising options.

Surprisingly, | found the opacity overlay (Figure 9.8 bottom left) to work well in educating
novices about commonly used menu items, something unexpected that came from easily
being able to select different feedback techniques.

There are several ways that future event prediction can be implemented, here we cover
two alternate methods. First, after each mouse or key event is dispatched, a special
‘event predictor’ event source may separately dispatch a new ‘prediction’ event repre-
senting alternate future follow-on inputs. As a result, all future interface states caused by
prediction are fully reversible, meaning the resulting alternate interfaces always get gen-
erated and rendered. A distribution over possible interfaces is generated from this pre-
dicted input event, and results are rendered to the screen. This is the method used to im-
plement prediction in predictive menus. Note that this method does not require the de-
velopment of special interactors.

A second approach is to generate event prediction in response to transitions on interactor
states. For example, when the menu interactor makes a particular transition, it may gen-
erate a new ‘prediction’ event that needs to be dispatched to the interface. This is a simi-
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lar approach to that used in generation of draggable events discussed in Section 10.3.2.
Again, all predictions generate feedback actions, which in turn generates a list of alter-
nate interfaces that are rendered to the screen using the same feedback mechanisms
used for current ambiguous alternatives.

Presenting feedback about possible future events is a strong and unexpected capability
that comes as a result of the architecture being general and extensible. This approach will
become especially useful as event prediction becomes more popular. Our feedback ap-
proach makes it easy to communicate possible future events (and their likelihoods) with-
out requiring any additional work.
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Copy Copy
Paste Paste 3
Edit>Transform->Froe...
Delete Delete
Transform> Transform>
Edit->Copy
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Edit->Cut 0.07
Copy
Edit->Copy 0.13
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Edit->Paste 0.14
Delele Edit>Delete 006
Transform> Edit->Find..->Find... 0.07
Edit->Find...->Replace... 0.04
Edit->Find..->Delete... 0.01
Edit->Transform->Scale 0.04
Edit->Transform->Rotate 0.04
Edit->Transform->Free... 0.14
Edit->Transform->Blur->Gaussian... 0.07
Edit->Transform->Blur->Box... 0.01
Edit->Transform->Blur->Motion..  0.14

Figure 9.8. Several examples of feedback about future events. The user has moved his mouse over
the Edit menu, the likelihood of each subsequent menu item selection is presented in the bottom right
and is based on past behavior. Top Left: An n best list of the 4 most likely alternatives is displayed.
Top Right: A more compressed n best list is displayed, this time showing a custom rendering of menu
commands. Bottom Left: Every interface alternative is overlaid, with opacity reflecting likelihood.
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9.8

9.8.1

9.8.2

Meta-Feedback: Adjusting Feedback Based
on Context

In many cases developers may wish to alter the feedback method used based on the like-
lihoods of alternatives, input types used, or even (within an interface) the interactors that
have ambiguity.

To support this and allow for maximal flexibility, we introduce the notion of meta-
feedback objects: feedback objects which decide what form of feedback to display given
system state. Meta-Feedback objects are just feedback objects that contain other feed-
back objects. Meta-Feedback objects analyze the inputs or alternatives and select which
feedback object to use for rendering based on context. Because meta-feedback objects
implement the feedback interface, meta-feedback can be combined in any order, allow-
ing for arbitrarily complex feedback.

Below we give examples of several meta-feedback objects implemented in our system as
examples.

Inspecting Interface Likelihoods

When several alternatives are likely, developers may want to render another form of
feedback, for example an N-Best list (see section 7.5.1). The DeltaLikelihood feed-
back object allows developers to specify a threshold and feedback types indicating what
feedback is shown at which threshold levels. For example, if feedback should be shown
when there is more than one interface within probability 0.5 of the most likely interface,
the developer would specify a delta of 0.5, and two feedback types MostLikelyFeedback
and opacityFeedback. When the next most likely interface is within delta > 0.5, the most
likely interface is shown, otherwise all interfaces within 0.5 of the most likely interface
are overlaid using opacity.

User Hesitation

Another scenario when developers may want to show feedback is when users indicate
indecision, for example when a cursor is dwelling on the screen. The bwell Feedback
object shows the most likely interface until a user dwells on the screen, at which point it
displays a new feedback type specified by the developer. This feedback can be combined
with the peltaLikelihood object to only show feedback when the user has dwelled and
interface alternatives are within some threshold of one another.
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9.8.3

9.8.4

9.8.5

9.9

Input Type

The InputTypeMetaFeedback object allows developers to adjust the feedback rendered
based on the type of input event. For example, one could render the mean interface
when users are using mouse, and change the feedback method to show only the most
likely interface when the keyboard is used. Developers may adjust this using a special
feedback type, InputTypeMetaFeedback, specifying a mapping from input type to feed-
back.

Number of alternatives

Certain types of feedback, for example N-Best lists, may not be appropriate when the
number of alternatives is large. Therefore, it may be desirable to adjust the type of feed-
back based on the number of interface alternatives present. Developers may use the
NAlternativesMetaFeedback feedback type to adjust the feedback based on the
number of alternatives.

Which interactors are ambiguous

Not all types of feedback are appropriate for all interactors. For example, a feedback to
render the mean interface is appropriate for a cursor but not a text field. Developers may
specify a mapping between interactor id (or interactor type) to a feedback object via an
InteractorMetaFeedback object, adjusting feedback accordingly. This feedback type
first splits an interface according to the filters specified for a feedback object. It then ren-
ders feedback appropriately according to each filter type, using the feedback object speci-
fied for that filter type. The resulting renderings are then layered on top of one another
appropriately.

Summary

In this chapter, | have proposed building a rendering system that renders the uncertain
state of an interface while allowing developers to stick to a conventional and familiar
method for rendering interfaces. Five general forms of feedback were presented, each of
which can be easily configured in several ways leading to dozens of different feedback
techniques that may be implemented.
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1 0 VALIDATION BY DEMONSTRATION

10.1

The aim of the JULIA toolkit is to provide a robust mechanism for handling uncertainty
across input sensing, interpretation, and application action in a general, re-usable fashion.
To demonstrate the viability of the JULIA toolkit, | explore a total of 17 case studies, in the
form of interaction techniques and applications. The 17 case studies discussed in this
chapter illustrate that the probabilistic input architecture handles many different kinds of
ambiguity, enables rendering of a wide variety of feedback, is easy to work with, can be
used to implement traditional deterministic user interfaces, and can be implemented on a
wide variety of platforms. Additionally, the demonstrations illustrate that even without
any optimizations the architecture performs well enough to be usable in fairly complex
interfaces.

This chapter is organized as follows: first, | present nine new interaction techniques de-
veloped using the probabilistic input architecture that demonstrate not only that this new
architecture provides a foundation for a multiplicity of new interaction techniques, but
also that the architecture can handle a wide range of ambiguity types. Next, | present
seven feedback techniques that demonstrate the versatility of the probabilistic input ar-
chitecture. Third, | present three more complex applications to demonstrate that the ar-
chitecture scales well to full interfaces, and is backwards compatible. Finally, | describe
the platforms that successive versions of the toolkit were implemented on, demonstrat-
ing that the architecture works well in a desktop, mobile and web environment. Table 8.1
gives an overview of the work presented in this chapter. The demonstrations discussed in
these chapters were built using different iterations of the JULIA toolkit with somewhat
differing architectures, ambiguity representations and state update methods (see Section
10.4). While in actuality they were built using different iterations, it will become evident
that each of these demonstrations could have been built using just the final version of the
toolkit. The breadth and code simplicity of these demonstration applications show that
this toolkit is not only powerful, but is also simple to work with and can be made to per-
form reasonably well within the near future.

Interaction Techniques

In this section | will present nine new interaction techniques developed using the proba-
bilistic input architecture. These techniques demonstrate not only that this new architec-
ture provides a foundation for a range of new interaction techniques, but also that the
architecture can handle a wide range of ambiguity types.
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Table 10.1: Overview of completed validation presented in this chapter. Work is organized by type (Interaction
Technique vs. Application), and then criteria are presented.
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10.1.1 Probabilistic Buttons

mouse down
insideRegion
onDown (feedback)

mouse up

Transition Format:
[event to transition on]
[predicate function]
[action (feedback or final)]

*if '--', then default is used.
default probability is 1
default action is nothing

root

}

}

i0:0.53

onDown() {
changeBackgroundColor();

onClick() {
invokeOnClickListeners();

i1:0.31

I button II button I

I button II button I

button button

n

i3:0.04

i4:0.03

| bution

Figure 10.1. Top: state machine for a button. Feedback and final actions are present on the start >
down transition and down - up transition. Bottom: Example of interface distribution (bottom right)
and feedback (bottom left) from a touch event.

The example of the two-button dialogue runs throughout this dissertation, and this ex-
ample demonstrates handling uncertainty at the sensor level. Specifically, the touch sen-
sor in this example introduces sensor imprecision, as it is unclear which specific location
the user intends to target when he or she is touching the screen. By representing the
touch location as a distribution of possible touches, then aggregating all possible update
operations, the JULIA toolkit is able to integrate the likelihood of possible button press
states over a set of possible locations and determine the button that the user most likely
hit. If two buttons are equally likely, then the toolkit does not execute action and waits
for further user disambiguation. Note that it is also possible, through the use of probabil-
istic transitions, to incorporate a prior belief about the likelihood of a button being
pressed. The two button dialog demonstrates how a simple button can be made to re-
spond intelligently to user behavior.
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As Figure 10.1 illustrates, the state machine logic for these buttons is very similar to that
of a standard button. The probabilistic toolkit does all of the heavy lifting regarding track-
ing of alternatives and likelihoods, so the developer does not need to worry about it. As
can be seen from the simple state machine description, this example demonstrates how
the logic for one of the most basic interactors remains simple under the JULIA toolkit be-
cause the system takes care of tracking likelihoods and alternatives.

The demo illustrated in Figure 10.1 was written in JavaScript for the third iteration of the
toolkit (see section 10.4). In this demo, 20 event samples are generated for each touch
event, and at most 10 alternative interfaces are maintained. The button demonstration,
including the specification of the button interactor, totaled to about 150 lines of uncom-
pressed JavaScript code.

10.1.2 Ambiguous Sliders

Sliders (Figure 10.2) demonstrate handling of uncertainty at the input interpretation and
sensor level. At the input interpretation level, one form of ambiguity is target ambiguity:
it is sometimes unclear which particular interactor a user intends to interact with. In this
demonstration, users can actuate sliders at a distance, meaning they do not need to be
directly over the sliders to manipulate them. To determine the likelihood of actuation,
each slider computes the distance between it and the current move event, as well as the
direction of motion of the finger. As shown in Figure 10.2, all viable target sliders show
feedback. This example demonstrates how the JULIA toolkit sends inputs to multiple in-
teractors, computes action likelihoods, and delays action when input is uncertain, allow-
ing instead for the interactors to provide application feedback.

This demo was written for desktop, for the first iteration of the toolkit. This particular it-
eration did not use event samples (see Schwarz 2010), however | estimate that about 20
event samples per touch event, down sampling to 10 alternate interfaces at each step
would do a more than adequate job of supporting this interaction technique. The demon-
stration code totaled about 200 lines of C# code.

- W —

. B . :

Figure 10.2: Sliders provide feedback when a user moves in between two sliders.
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10.1.3 Smart Window Resizing

Smart window resizing demonstrates how my toolkit handles target ambiguity. In this ex-
ample (Figure 10.3), when a user presses down, it is unclear whether she intends to resize
a window by moving horizontally, or move the icon beneath the window. Subsequent
motions serve to disambiguate this: horizontal motion means a window resize, while
more vertical motion indicates movement of the icon.

8 Cropper Tool o[ ]

Figure 10.3: lllustration of implicit disambiguation for touch input. Left: User presses down and moves
diagonally, moving the icon. Right: User presses down and moves horizontally, resizing the window
instead. When the user presses down, both interactors are equally likely to respond. The user’s
motion later disambiguates their intention and interactors in our framework respond appropriately.

Figure 10.4 shows the state machine for both the resizable window (left), and the icon
(right). When a user initially touches down (Figure 10.3, left), her finger overlaps both the
icon and the resizable window, making both the icon and window possible interpreta-
tions. As the user moves her finger vertically, the transition weight on the resize transi-
tion in Figure 10.4 decreases, and the interpretation that the window is being resized be-
comes less likely. Appropriate feedback is drawn to the screen. When the user releases
her finger, the interpretation for icon movement is sufficiently more likely than a window
resize, that this final action gets accepted and a new deterministic interface is set. This
demo is implemented in JavaScript, with 20 samples per input event and at most 10 inter-
face samples at the end of each dispatch loop.
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Icon Probabilistic State Machine

mouse down & inside
region;
onDown (feedback)

mouse up;

mouse move;

onDragProgress (feedback)

Resizable Window Probabilistic State Machine

mouse move

onDragProgress (feedback)

mouse down
insideRegion

onMoveStart (feedback
mouse up;

onMoveDone (final)

mouse move
resizeVerticalScore
mouse down
near top
onResizeStart (feedback

resize
top

mouse up

anResizeDone (final)

mouse up LI

QnResizeDone (final)

mouse move
mouse down resizeHorizontalScore
near top

onResizeStart (feedback)

onResizeVertProgress (feedback)

onResizeHorizProgress (feedback)

onDown() {
downMousePos = getMousePos();
downlconPos = getlconPos();
sendDragBeganEvent();

}

onDragProgress() {
positionChange = getMousePos -
downMousePos;
iconPos = downlconPos + positionChange;
sendDragProgressEvent();

}

onDragDone() {
// send a new event in
sendDragCompletedEvent();
}

Predicate Functions:
insideRegion() {
if(mouselnsideBoundingBox()) {
return 1;
}
return O;

}

resizeVerticalScore() {
angle = absoluteValue(getAngleOfDrag());
/I remapValue(min_in, max_in, min_out, max_ol
return remapValue(45, 90, 0, 1, angle);

}

resizeHorizontalScore() {
angle = absoluteValue(getAngleOfDrag());
/I remapValue(min_in, max_in, min_out, max_ol
return remapValue(90, 45, 0, 1, angle);

}

Action Functions

onMoveStart() {
downMousePos = getMousePos();
downWindowPos = getWindowPos();
}
onResizeStart() {
downMousePos = getMousePos();
downWindowSize = getWindowSize();

}

onResizeStart() {
downMousePos = getMousePos();
downWindowSize = getWindowSize();

}

onResizeHorizProgress() {
positionChange = getMousePos -
downMousePos;
windowSize = downWindowsSize + positionCh:

}

onDragProgress() {
positionChange = getMousePos -
downMousePos;
windowPos = downWindowPos + positionCha

}

Figure 10.4 Probabilistic state machine description for resizeable window and icon interactors
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10.1.4 Text Entry in a Form

name (last, first) | name (last, first) } name (Jast, first).

dnhxx::m‘dd‘_v}}yll 2 | keep going... dob (mm/ddyyyy) | keep going dob (mavddiyyyy)

cmail: 4122 | keep going... emai & ‘ keep going email
ssn; | & 1 n:

phone:

favorite fruit:

favorite color:

Figure 10.5 Behavior of probabilistic text entry. A user is typing his phone number. Initially (left), email,
ssn and phone are possible inputs. Once the user has typed more than 9 characters (middle) ssn is no
longer an option. Finally the user clicks the ‘phone’ field, and this is selected as ground truth (right).

Smarter text entry illustrates how target ambiguity is resolved during the feedback phase.
Although the text a user is typing is certain, where this text should go may be ambiguous.
Many forms don’t respond when a user starts typing text without first selecting a text
box, and those that do respond often do so by selecting the topmost text box. Things get
even more complicated when a speech interface is in use, especially given that speech is
often used because of physical or visual impairments that eliminate the ability to use a
pointer.

The JULIA toolkit can address this problem with text fields that change their action likeli-
hood based on what content they expect to receive. If several text boxes can receive in-
put, the JULIA toolkit delays action and provides feedback accordingly.

| implemented two examples — smart text delivery and speech text entry. Both examples
deliver text to a form with several different fields, e.g. name, phone number, and email.
Because it is initially unclear which text field should handle input, the JULIA toolkit ends
up tracking n alternate interfaces when a voice or key event is dispatched, where n is the
number of form fields. This creates n alternate interfaces, each of which has a different
text box in focus. Subsequent key events are dispatched to the text field in focus, likeli-
hoods of alternatives are adjusted based on how well the entered text matches what the
field expected. As the input becomes less likely, the transition likelihood decreases (or
becomes zero). Once the transition likelihood is zero, no interfaces are generated as a re-
sult of input and the alternative is removed.

Figure 10.5 demonstrates the behavior of these new text fields. When a user types text
without having first selected a textbox, all text boxes which have not yet been filled in
show the typed text in gray. A user can then continue typing or select the correct textbox.
The textboxes have a special behavior attached to them: If a text box is selected, the al-
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ternative corresponding to this text box is set to the last_certain, or correct view. Note
that this is all handled by the toolkit, the text box merely sends a request to finalize inter-
face ambiguity. When a user presses enter, all text fields send a final action requests with
a corresponding likelihood.

For speech input, recognition results often contain multiple uncertain interpretations,
such as “2” and “q”. All uncertain interpretations are sent to all text fields and shows
feedback appropriately, as before. The likelihood of a recognition result is propagated to
the likelihood of different interface alternatives. When a user says the word ‘next’ or
pauses long enough, the text fields send final action requests, and the most likely inter-

face alternative (corresponding to the most likely text field) is selected.

The form demo also incorporates a simple Bayesian behavioral model to further disam-
biguate results. Since people tend to fill out forms top to bottom, the topmost entry is
initially more likely than others. Also, given the index of the last entered element, the
next highest element is more likely than other elements.

The probabilistic input form demonstrates three features of the JULIA toolkit. First, the
example shows how the likelihood scores of recognition events are directly translated to
interface likelihoods rather than immediately being thrown out. This example also
demonstrates that the JULIA toolkit works well for new input types such as voice input.
Finally, the example demonstrates how voice recognition uncertainty can be combined
with a behavioral model to further reduce uncertainty.

For this demonstration, 20 event samples are tracked, and interfaces are down sampled
to 10 alternatives at each step. This demo was implemented using the third iteration of
the toolkit, and totals about 200 lines of JavaScript code.

10.1.5Rapid Disambiguation Between Text Selection and
Scrolling for Touch Interfaces

Selecting text can be very cumbersome on mobile devices, requiring a press and hold in-
teraction. The reason for this is that when the finger touches down it is unclear whether a
user intends to interact with the scrollable content or the scroll view itself. Touch-based
operating systems take a seemingly ad-hoc approach of requiring a press and hold to trig-
ger a text selection. Our probabilistic approach easily circumvents this issue by simulating
both alternatives and waiting for future finger movements to disambiguate the interac-
tion. Figure 10.6 illustrates this disambiguation. The algorithm uses a simple heuristic: the
total amount of vertical or horizontal motion to adjust the likelihood of selecting text vs.
scrolling. The most likely interface is presented on screen. When a user pauses, the alter-
nate interpretation is shown on screen. Users can switch to this interpretation simply by
tapping on it.
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root i0:0.94 i1:0.06

Figure 10.6 Demonstration of disambiguation between text selection and scrolling. Both alterna-
tives are tracked with likelihoods (bottom row, center, bottom row, right). The most recent certain
state is also tracked (bottom row, left). In this case the system believes the user is scrolling with
likelihood 0.94. A user may switch interpretations by selecting the alternative in the top left corner.

This demo was implemented in JavaScript. 20 event samples are generated for every key
event, and interfaces are downsampled to 10 alternatives at each step.

10.1.6 Predictive Menus

Menus in desktop applications can often be complicated and difficult to learn. Further-
more, with the exception of the ‘recent items’ list many applications support, along with
the ill-fated adaptive menu feature provided in Microsoft Office 2003 (Microsoft 2003),
menus rarely adapt to our behavior. In fact, it has been shown that changing the menu
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items themselves to e.g. put more commonly used items up top is actually less efficient
(Findlater 2004). Nevertheless, it would be nice if menus could take advantage of usage
behavior to predict what users will select and accelerate menu selection. Additionally, for
novice users, it would be beneficial to visualize commonly used menu items.

To solve both of these problems, | built a predictive menu system which supports both of
these requirements without rearranging or modifying the underlying menu. Figure 10.7
shows an example. Menu items have different selection likelihoods given the currently
selected menu item. These likelihoods are built using the Markov assumption, and based
on user history. Given the likelihood of menu items, the predictive menu shows one of
several developer or user-specified interfaces.

First, the menu can show the most likely interface, corresponding to a conventional menu
system. Second, the menu can overlay possible future menu selections given current in-
put (Figure 10.7), adjusting the opacity based on the likelihood of selecting a particular

App  File I Help App  File ﬁHelp £l -
Edit->Transform->Blur->Motion..
Find... > Find... > :
Cut Cut 2]
Edit->Paste
Copy Copy
Paste Paste 3
Edit->Transform->Free...
Delete Delete
Transform> Transform> 4
[l 2] 3] a
= -
App  File m Help
Find... >
cut item p(item given state)
Edit->Cut 0.07
Copy g
Edit->Copy 0.13
Paste 3
Edit->Paste 0.14
Delets Edit>Delete 0.06
Transform> Edit->Find...->Find... 0.07
Edit->Find...->Replace... 0.04
Edit->Find...->Delete... 0.01
Edit->Transform->Scale 0.04
Edit->Transform->Rotate 0.04
Edit->Transform->Free... 0.14
Edit->Transform->Blur->Gaussian... 0.07
Edit->Transform->Blur->Box... 0.01
Edit->Transform->Blur->Motion.. ~ 0.14

Figure 10.7 lllustration of predicted menus. A user has moved his mouse over the Edit menu, the likelihood
of each subsequent menu item selection is presented in the bottom right and is based on past behavior.
Top Left: An n best list of the 4 most likely alternatives is displayed. Top Right: A more compressed n best
list is displayed, this time showing a custom rendering of menu commands. Bottom Left: Every interface
alternative is overlaid. with opacitv reflectina likelihood.
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item. Third, the menu can show an n-best list of possible menu item selections, ordered
by likelihood. Thus, when the user selects Edit..., the most likely menu item, Gaussian
Blur, is shown as the most likely completion. Users can then either select the completion
or press the corresponding key to jump right to that option. Several renderings of n best
lists are possible, as shown in Figure 10.7.

Although the capabilities of this demo are fairly complex, the implementation is no more
complex than that of a normal hierarchical menu. In fact, more complexity is devoted to
the implementation of the hierarchical menu itself than to rendering predictions. Menus
respond to mouse events, behaving in the same manner as standard hierarchical menus.
Menus also respond to special “select menu item” events, which specify a specific menu
item to select. When a menu item is selected, the menu interactor determines a list of
predicted future events (and likelihoods) and dispatches a new probabilistic event, which
generates a distribution of events samples according to the prediction likelihoods. Each of
these probabilistic events is then handled by the menu interactor, and interface alterna-
tives representing possible future selections are generated. These alternatives are then
displayed as interactive n-best lists or as overlaid feedback.

This example demonstrates several things. First, it shows how the JULIA toolkit supports
prediction of future events. Second, it demonstrates how prediction of future events can
accelerate interactions. More importantly, it demonstrates how complex interactions
such as predicting future actions and showing completion can be added to interfaces with
minimal developer effort. The JULIA toolkit handles all complexity regarding tracking in-
terface alternatives, rendering feedback, and disambiguation.

10.1.7 Ninja Cursors

To further demonstrate how the probabilistic input architecture enables complex interac-
tion techniques can be built using simple logic, we re-implemented a version of Ninja Cur-
sors (Kobayashi 2008). Ninja cursors is an interaction technique that uses multiple cursors
to reduce target selection time. Rather than manipulating a single cursor, users manipu-
late an array of cursors distributed evenly across the screen. The original technique used
a clever set of heuristics to ensure that no more than a single cursor was present inside a
target at a time. Figure 10.8 demonstrates the behavior of this interaction technique.
Multiple evenly spaced cursors are generated as samples from a special Probabilistic Nin-
ja Cursor event. To disambiguate multiple inputs, Kobayashi changed the behavior of cur-
sors to ensure that no more than one cursor was inside a button at a time. Our approach
is slightly different: Button press likelihood is proportional to the proximity of a cursor to
the center of the button. When button press likelihoods are too close, the mediator de-
fers action, and an n-best list is displayed to the user, allowing him to disambiguate (Fig-
ure 10.7).
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Figure 10.8 Demonstration of Ninja cursors. Rather than a single cursor, the user has a grid of cursors.
The user wishes to select the target outlined in green (circle with solid line). Several other cursors overlap
this target (dashed and dotted lines). After clicking, the toolkit selects the most likely interface, and shows
the three most likely alternatives (dashed lines). The least likely alternative (dotted line) is not shown.
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Note that this implementation allows for likelihoods to be adjusted by more than just
proximity to button center. For example, eye gaze can be used to further adjust likeli-
hoods. Other context such as previous actions may also be used.

Once again, while the resulting interaction is complex, the implementation of this interac-
tion technique is fairly simple, requiring only a small modification to the default button
interactor to add a likelihood to the transition of the mouse click event, and the creation
of a new NinjaCursor mouse event. This demonstration is yet another example of how
novel and fairly complex interaction techniques can be implemented using very little ex-
tra work. Once again, developers do not need to worry about the actual tracking of alter-
natives, rendering alternatives, or disambiguation. This is all handled by the toolkit.

This demonstration was implemented using the third iteration of the JULIA toolkit. For
Ninja cursors, the number of event samples equaled the number of Ninja Cursors desired.
In our case, this was 25 evenly spaced cursors. Interface samples were reduced to 10. In
total, the demonstration was written in about 350 lines of JavaScript code.

10.1.8 N Best List for Gestures

We also re-implemented the disambiguation method for gestures mentioned in (Mankoff
2001) to further show the generality of our approach. Specifically, we built an n-best list
for a gesture recognizer. Gesture recognizers can be notoriously inaccurate, and when
these gestures perform actions that are difficult to back out of, this can be very frustrat-
ing. To avoid this, we built an n-best list for gesture recognizers which allows users to dis-
ambiguate their gesture if several gesture interpretations are likely. Figure 10.9 demon-
strates the behavior.

We implemented a simple shape drawing application where users draw shapes via ges-
ture (circle, triangle square). When a user draws a gesture, the most likely shape is drawn
to the screen. If multiple interpretations are likely, alternate interfaces containing results

A. B. C. D.

1
g D O
L3

Figure 10.9 Example of N Best list for gestures. User executes a circle gesture (A-C), several
interpretations are likely. The most likely interface is displayed by default, and possible alternatives
are displayed as an n best list (D). The user may then select one of the alternate interpretations, or
continue interacting using the most likely interpretation.
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of other gestures (in our application, drawing different shapes) are displayed. The user
may then switch to an alternate interpretation, or continue their interaction if the current
shape is correct.

A JavaScript implementation of the $1 recognizer is used (Wobbrock 2007). When a ges-
ture is recognized, a final action request is sent. The mediator used here executes the fi-
nal action in an alternate interface and presents the result. This example was implement-
ed with 20 samples per event and at most 10 interface samples, and demonstrates once
again the versatility of the toolkit.

10.1.9 Bayesian Drawing: Leveraging Prior Probabilities to
Adjust Future Action Likelihood

As a final demonstration of how prior actions can be used to adjust the likelihood of fu-
ture actions, | discuss a behavior implemented in the flagship application (graphical object
editor) in Section 10.3.2. Specifically, this application guesses the shape a user is drawing
based on their motion and past actions

Users draw shapes or lines by dragging out the bounding box of the shape. Horizontal,
vertical, and unconstrained lines may be drawn, in addition to rectangles and ellipses. If
the user dwells in the middle of an interaction, an n-best list pops up, allowing the user to
disambiguate. Likelihood of shapes and lines drawn depends on motion: horizontal mo-
tions reduce the likelihood of vertical lines, and vice versa. Additionally, a user’s last ac-
tion adjusts the likelihood for their next actions. If a user drew an ellipse last, an ellipse is
more likely.

The implementation again for this interaction is fairly simple. Lines and shapes are sepa-
rate interactors, they are placed in a container that dispatches to each child with equal
likelihood (this is part of JULIA’s standard library of interactors). The line recognizer ad-
justs its likelihood for horizontal/vertical lines according to line motion. Both the line and
shape recognizers have probabilistic transitions to the down state, which examine the last
action and adjust likelihood accordingly.

This demonstration was implemented in JavaScript using the third iteration of the toolkit.
20 samples per event were generated, leaving at most 10 alternatives at the end of each
dispatch step. This demonstration shows how to incorporate priors into application logic.
Once again, the framework does all of the heavy lifting.
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10.2 Feedback Techniques

In addition to implementing several new interaction techniques, | have also implemented
six feedback techniques: three existing, and three new, to demonstrate the versatility of
the feedback system implemented.

10.2.1 Side Views

The N-Best list fusion technique discussed in Section 7.5.2 provides an implementation of
a Side Views-like interaction. Side View is a technique described by Terry et al.(Terry &
Mynatt 2002) for providing persistent, on-demand previews of commands. One im-
provement my approach provides over side views is the ability to communicate the likeli-
hood of alternatives, as can be seen in Figure 10.10. In particular, the feedback tech-
niques use opacity, scale and blur to communicate the likelihood of alternatives.

10.2.2 Octopocus

To demonstrate the versatility of the Overlay feedback method, we implemented an Oc-
topocus-like feedback technique published by Bau et al. A similar interaction technique is
also described in Bennet et al.’s paper on SimpleFlow (Bennett et al. 2011). For
background, the Octopocus interaction technique aims to help users learn gestures by
overlaying all possible gesture completions on the screen as a user is performing a
gesture, so that users may better understand how to move their finger to complete a
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Figure 10.10 Examples of N-Best lists presented throughout this thesis, aggregated for clarity. N-Best
lists provide a similar functionality as Side Views.
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certain action. The state machine for the Octopocus interactor is presented in Figure
10.11. The likelihood of each gesture is adjusted based on the likelihood of each gesture
at each point in time. This likelihood is in turn used to adjust the likelihood of transition
probabilities for each of the possible gesture interpretations.

In addition to the reimplementation of the above existing techniques, several novel feed-
back techniques are presented in Chapter 9, including rendering possible future states,
animating between alternatives, and having side views highlight only the changed inter-
face states.

mouse move
gesture1Probability
drawGesture1 (feedback)

mouse down

Transition Format:
mouse up event condition
probability function

onGesturetDone (final) action (feedback or final)

e if '--', then default is used.
mouse up default pro_bab_nny is 1
- default action is nothing
onGestureDone (final)

mouse move
gestureNProbability

mouse down
- drawGestureN (feedback)

Figure 10.11 Example of Octopocus-inspired interaction technique of overlaying multiple alternate
interpretations using opacity (left), blur (middle) and saturation (right) to reflect probability. Bottom:
state machine for Octopocus-inspired interaction technique.
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10.3 Applications

In addition to the interaction techniques presented above, | implemented three more
complex applications using the probabilistic input architecture. These applications
demonstrate the scalability of the approach in terms of interface complexity. Not only is
the probabilistic architecture able to appropriately track interface alternatives and likeli-
hoods, but the development burden on developers is similar to what would be required
for conventional applications.

10.3.1 GesturePaint

GesturePaint was developed for the second iteration of the JULIA toolkit. This painting
application demonstrates carrying of uncertainty from the sensor, to input interpretation,
and finally action level. Additionally, the application delays action until it is certain of an
interpretation. Below | briefly describe several of the interactors used in this application.

All of my example interactors were written in very much the same form as a conventional
interface, without having to think or code probabilistically. The programmer doesn’t have
to be concerned with probabilities because the system does it for them in a nice, trans-
parent way. The GesturePaint application itself is written entirely without regard to un-
certain events, and is a relatively simple application consisting of roughly 400 lines of
code with the same setup code and logic as any standard paint application.

My paint application allows users to “stamp” (add onto the canvas) images onto their
painting. To support this | developed a stamp interactor that can be both moved and
pressed. The stamp interactor uses three states to accomplish this. The state machine has
two state properties — the drag start position and the touch ID (to support multitouch).

house stamp y house stamp
A — 4 z ] start: 0.7
down : 0 - down : 0
s I moving : 0.23
moving : 0 = tree stamp
house stamp y start0.62
B Start: 0.12 " down:(.)038
down : 0.88 100 Gving : 0.

moving : 0 | fy\xf’_\‘LB

house stamp 4 .
C smon?
dewn : 0.33 ] :
moving : 0 - L
@ \
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s e
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-'n 031 a
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Figure 10.12: Screenshots of feedback provided by stamp interactors. The dotted circles have been
added to indicate the position of the user’s finger, and the numeric probability displays at the left are
for illustration, but would not normally appear in such an interface. Left: Press feedback: A: Stamp not
pressed. B: Stamp depressed completely when press is unambiguous. C: Stamp depressed partially
when press is ambiguous. Right: Move feedback. A: User pressed in between the house and tree
when beginning their drag, overlapping the tree more than the house. B: Both the house and tree are
shown, with the tree being less transparent than the house reflecting overlap difference.
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Stamps provide feedback to indicate the likelihood that they are being pressed vs. moved.
Stamps provide press feedback by manipulating the shadow to make the interactor ap-
pear depressed in proportion to the likelihood that they are pressed (Figure 10.12, left).
To provide feedback about moving, stamps show a ‘ghost’ version of the moved stamp.
The transparency of the ghost stamp is based on the stamp’s move likelihood (Figure
10.12, right). Sometimes multiple stamps might be selected or moved ambiguously (be-
cause the initial touch overlapped both interactors). To accommodate this, each stamp
uses an alpha value corresponding to its move likelihood, which helps the user to see
what the system thinks is happening (Figure 10.12, right).

This has the advantage that the user can back out of an incorrect interpretation before
any final actions are invoked (by moving the stamp away from and then back to its origi-
nal position). Importantly, | do not explicitly support this escape mechanism: it is a natural
solution that arises from an understanding that dragging and pressing are both possible.

The specific feedback used by the stamp class is different for different transitions. How-
ever, all of them use likelihood as a drawing parameter (for shadow size, transparency,
etc.). Outside of this parameter, the stamp has no other code that uses probabilities.

Stamps demonstrate the impact of uncertainty about which exact screen location the us-
er intends to touch, what direction the user is moving, what interactor is being targeted,
and so on. In these examples uncertainty arises directly from the properties of individual
input events (at the sensor level). Another source of uncertainty is recognized input, as in
the case of gesture recognition. Gestures that are prefixes of one another (such as ‘c’, ‘g’
and circle gestures) are especially problematic. Many applications are designed to avoid
common prefixes or provide sophisticated feedback because of the resulting high degree

of ambiguity.

My framework handles this sort of uncertainty without requiring any special effort by the
developer. By default, the recognizer is called repeatedly after each new input event (e.g.,
TOUCH_MOVE) arrives. Each time, it generates a probabilistic gesture event which con-
tains a distribution specifying the probability that each possible gesture is the correct in-

canvas canvas canvas

start: 0 start: 0 start: 0
Moving : 0.38 Mibving : 0.2 moving : 0.99
gircle : 0.13 circle : 0.

t:0.01

circle: 0

t:0

x:0

c:0 X )
g:0

b:0.01

help: 0

“

Figure 10.13: Screenshots of the canvas interactor as user draws a figure 8. The “c” and circle
gesture share a common prefix. Dotted line indicates finger location. Left: Initially a ‘c’ gesture is
most likely (probability 0.47). Feedback indicates that c is the most likely interpretation, though a
circle is possible. Middle: The system becomes confident that the gesture is a circle, reflecting this
in feedback (also evident in state distribution). Right: As the user completes the figure 8, the
canvas believes the user is painting and removes all gesture feedback.
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terpretation. During event sampling, this event is divided into event samples for individu-
al gestures (e.g., a circle gesture, a ‘c’ gesture, etc.), weighted by likelihood.

| developed a canvas interactor for my paint application that handles both ‘moving’ (for
painting) and gesture events. Figure 10.14 shows the gestures the canvas recognizes. The
canvas interactor has 9 states (one for each recognized gesture as well as a start and
moving state), and 37 transitions. The canvas provides feedback about the canvas state
(paint and interpreted gestures) using transparency. Figure 10.13 illustrates what hap-
pens when the user paints an 8 shape on the canvas. Because 8 shares a common prefix
with ‘c’ and ‘circle’, the top hypothesis shifts from ‘c’ to ‘circle’ to painting on the canvas
as the user draws. The canvas interactor demonstrates the toolkit’s support for recogni-
tion ambiguity: this interactor supports recognition of gestures with common prefixes
without any additional complex logic to handle ambiguity.

Developers working in a conventional input handling framework could certainly imple-
ment this canvas, however they would need to track not only the gesture probabilities,
but also would need to include logic to determine when to decide whether the user is
painting or gesturing. In my framework, the developer handles all of this simply by includ-
ing both gestures and raw down/move/up events on transitions in the canvas’s state ma-
chine. The underlying system handles all logic relating to tracking probabilities and decid-
ing between paint and gesture events.

Each of these interactors is interesting individually, but the interactions become even
more interesting when the interactors are combined in an application. In addition to am-
biguity about touch location and gesture, for any user action it is always unclear whether
a user intends to paint on the canvas, execute a gesture, click on a button, or move a
stamp. The success of the paint application hinges on its ability to manage multiple alter-
native interpretations across multiple interactors for as long as possible (i.e., until the us-
er lifts his/her finger, at which point the system needs to act). The framework | developed
ensures that the application gives appropriate feedback about each possible action to the
user. When the user lifts her finger, the framework acts appropriately (either resolving
input when the resulting action is clear or prompting the user to disambiguate). No
changes are required to the interactors described above for this to happen: Thanks to my
framework, this complex application simply works.

toggle color U make house stamp

clear screen .
B change brush size

toggle garbage

P help
make tree stamp

Figure 10.14: Gestures recognized by the Canvas Interactor
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The power of my framework is clear when all of these interactors are combined together.
While it might be feasible to write these interactors individually using a conventional in-
put framework, writing an application that correctly handles uncertainty across interac-
tors would be extremely difficult, and not reusable. For example, in a hand built solution,
it would be difficult to remove one type of interactor (say, a stamp) and replace it with
another, whereas my framework handles this via cancellation and acceptance of actions.
The JULIA toolkit provides a general method for handling uncertain input, tracking inter-
active state and resolving ambiguous actions.

This implementation was built using the second iteration of the JULIA toolkit, and used
about 20 event samples for every touch input event. The application totaled about 150
lines of application code (for interactor setup and event handling, this doesn’t include the
code to describe interactor behavior).

10.3.2 Graphical Object Editor

The graphical object editor is a drawing tool inspired by Igarashi’s work on interactive
beautification (lgarashi & Matsuoka 1997) and Zeleznik’s Lineogrammer (Zeleznik et al.
2008). It also leverages concepts from Lunzer’s subjunctive interfaces work (Lunzer &
Hornbaek 2008). The Graphical Object Editor was developed for the third iteration of the
JULIA toolkit. In addition to the features demonstrated by GesturePaint in section 10.3.1,
this application also demonstrates incorporation of prior action into future behavior,
proper maintenance of interface alternatives, more complex and nuanced interactions,
generations of new events in response to existing events, and rendering of feedback to
allow for disambiguation. Below | describe the application behavior and implementation.

The graphical object editor is a diagramming application that allows for drawing and ma-
nipulation of shapes and lines. Users may draw rectangles or ellipses using free form ges-
tures (e.g. draw a circle to make a circle) or by dragging out a bounding box. They may
also draw straight lines: unconstrained, horizontal or vertical. The application tracks a us-
er’s previous action and adjusts the likelihood of shapes accordingly such that the most
recently drawn shape is most likely (all other things being equal).

Shapes and lines may be dragged and resized. When multiple actions are possible, the
toolkit tracks all options and their likelihoods. A line’s endpoints snap to control points on
shapes. If multiple snap points are possible, all alternative shapes are tracked. Items can
be removed by being dragged to the bottom of the screen. When being dragged, appro-
priate feedback shows up indicating the removed region. Of course, the user may also
simply wish to place an item near the bottom of the screen. Once again, both alternatives
are tracked. When a user pauses or dwells, an n-best list appears showing the most likely
interpretations. Users can then disambiguate their intent by tapping on an alternative.
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Many of the controls in this application are actually borrowed from the interaction tech-
niques presented earlier. For example, drawing lines are the same as presented in section
10.1.9. Drawing shapes by freehand is done using the same gesture recognizer in section
10.1.8. Drawing shapes by specifying the bounding box is nearly identical to lines, the only
differences being in the feedback rendered, the resulting event handlers, and in the re-
moval of logic that considers horizontal and vertical lines.

The interactors for the ellipse and rectangle shapes are similar to the window interactor
in section 10.1.3. Lines have similar logic. In addition to being resized and dragged, lines
can also snap to different geometry. To do this, the line queries all targets. For every
snappable point, a new action request is generated, updating the line endpoint to the
snap position. After a dwell timeout, JULIA renders feedback, which is an n-best list as de-
scribed in 9.5.3.

One interactor is custom for this application, however: the ‘remove’ button. The remove
button only appears when a draggable item is selected. When a draggable item is
dropped over the remove button, that item is removed from the canvas. This is imple-
mented through the generation of new events in response to drag begin and drag end
interactions. After drag interaction begins, any draggable object sends a new DragBegan
event. This injecting is performed through special call in the JULIA toolkit. However, under
the covers the dispatch logic for this call is almost identical to normal dispatch. The only
difference is this event is not dispatched to all possible interfaces, just to the specific in-
terface called from. The trash button then handles these drag began and drag end events.
Note that this behavior does not happen on all interface alternatives, only the ones
where an element is actually being dragged.

Once again, much of the complex behavior in this application: tracking of alternatives,
disambiguation, is built into the toolkit. Many interactors here have already been imple-
mented, the power comes from when everything is combined. The success of the graph-
ical object editor hinges on its ability to manage multiple alternative interpretations for as
long as possible, and to easily be able to disambiguate between alternatives. The proba-
bilistic architecture ensures that the application gives appropriate feedback about each
possible action to the user. When the user lifts her finger, the framework acts appropri-
ately (either resolving input when the resulting action is clear or prompting the user to
disambiguate). No changes are required to the interactors described above for this to
happen.
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Figure 10.15: lllustration of a few features of the graphical object editor. Gray dot indicates touch
location. A: When a user drags on an empty area, he may create either a line, rectangle, or ellipse.
The most recent shape is weighted to be more likely. B: Line endpoints may be moved, they snap to
different endpoints. Multiple endpoint candidates may be chosen (hollow circles in alternative views),
or the user may continue free manipulation (solid circle). C: When the intended target of a drag is
ambiguous (first alternative shows an alternate line, second alternative shows creating a new line,
third shows a snap), alternatives are shown. D: Lines may be dragged to the bottom to be removed,
or (as the alternative shows), a user may opt to just move the line to the bottom of the screen. E:
Boxes may be moved or resized, the main interface shows drag feedback, alternative shows resize
feedback. F: When a box is very small, all alternatives are shown, allowing the user to disambiguate.
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Figure 10.16: Example of user dragging a line from the edge of a box (dotted line shows drag). User
begins drag, initially belief is box resize. Eventually, likelihood of box resize diminishes, line draw is
next. After a pause, all alternatives are shown.

As an example, consider what happens when a user starts dragging on the edge of a box
(Figure 10.16). Several interpretations are possible: dragging the rectangle, resizing the
rectangle, drawing a line, drawing a rectangle, drawing an ellipse. All alternatives are con-
sidered, the most likely, a drag, is displayed. As the user continues dragging upward, the
horizontal resize becomes less likely. The user pauses, and all alternatives are displayed
on the screen. As the user continues, the updates dynamically update. Finally, the user
selects the alternative for a line, and continues drawing, now with a line visible. When the
user releases his finger, an OnLineCompleted handler is called, which adds a new line ob-
ject to the screen. Note that this is the same interaction as the Window resizing example
presented in section 10.1.3.

This type of interaction would be very difficult to implement in a conventional user inter-
face framework. In fact, one would need to build something almost as complex as the
probabilistic input system itself to properly handle all cases (such as, for example, the re-
move button appearing only when draggable items are selected). In contrast, this applica-
tion was written largely without regard to probability, and its fairly complex operation
was described in only a few hundred lines of JavaScript. As with other applications, this
application could be run with just 20 samples per event, and up to 10 alternatives tracked
at once. This application demonstrates the power of the probabilistic input architecture:
it enables development of complex interfaces without requiring complex programming.

10.3.3 Backwards compatibility

The JULIA toolkit can be used to simulate traditional, deterministic input. This is merely a
matter of disallowing nondeterministic state machines and only having one event sample.
In this situation, only one interface alternatively is maintained and updated. In this repre-
sentation, specification of the state machine, as well as dispatch, transforms into exactly
the same algorithms that are used to dispatch conventional input.
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10.4 Platforms

To demonstrate that the probabilistic input architecture is language and platform inde-
pendent, we implemented different iterations of the architecture in three different plat-
forms: a Windows desktop platform, the Windows Phone platform, and a web platform
(Chrome, JavaScript + SVG). Additionally, the architectural concepts used were refined in
every interation, so that the final iteration represents over three iterations of successive
improvements.

The first iteration of the JULIA toolkit (Schwarz et al. 2010) was developed in C# to run on
the Windows 7 platform. It was developed using the Windows Presentation Foundation
(WPF) toolkit. The toolkit ran on a Dell XT2 touchscreen tablet with an Intel Core 2 Duo
1.2 GHz processors and 3GB of RAM. | chose a laptop mostly for convenience of develop-
ment and the availability of touch input. Many interactions were touch interactions in a
desktop environment, which is often a very challenging interface.

The second iteration of the JULIA toolkit (Schwarz et al. 2011) was built for the Windows
Phone OS on top of the XNA game framework, which has a primitive input handling sys-
tem supporting only polling for input but not events. | chose the phone because touch
input is a widely used medium that contains a large amount of uncertainty (i.e., the in-
tended location of the touch event is uncertain). The phone also illustrates that my ap-
proach works on systems with relatively low amounts of memory and processing power.
The development and testing for this version of the tool was done on a phone with
512MB of RAM and a 1GHz processor, which compared to typical modern desktop or lap-
top machines is quite limited (and even current top of the line phones). | support touch,
gesture, and accelerometer-based shake events. The framework has about 2,000 lines of
C#t code, and the 10 demos | wrote totaled about 1,000 lines of C# code.

The third iteration is implemented in JavaScript and the HTML5 APIs. The toolkit hooks
into existing touch event handlers, overriding them with probabilistic event handlers and
dispatching input via the JULIA toolkit. The JavaScript platform was chosen to illustrate
the versatility of the toolkit and make the resulting toolkit and demos easier to share. The
implementation supports mouse, keyboard, touch, and voice input. Finally, this imple-
mentation demonstrates that the probabilistic architecture can be implemented on a uni-
versally used platform: the web browser. The development and testing for the third itera-
tion was done on a computer with 16 GB of RAM and a quad core, 2.3GHz processor. This
toolkit supports touch, mouse, keyboard, and voice recognition events (from the Google
Chrome Voice APIl). The toolkit and demos were developed and tested in the Chrome
browser. The toolkit (including the library of interactors and feedback objects) totals to
about 8,000 lines of uncompressed JavaScript code, and the 14 demos written total about
1,600 lines of JavaScript code. Collectively, these implementations demonstrate that the
architecture is platform and language agnostic.
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11

11.1

CONCLUSION

This dissertation has presented a new user interface architecture that treats user input as
an uncertain process, approximates the probability distribution over possible interfaces
using Monte Carlo sampling, and provides tools for interface developers to easily build
probabilistic user interfaces. Importantly, alternate interfaces (and their likelihoods) are
managed by the architecture itself, allowing for interface developers to reap the benefits
of probabilistic interfaces without needing to think probabilistically. To recap, the contri-
butions of this thesis are as follows:

* A new architecture for modeling and dispatching uncertain user input, using Mon-
te Carlo sampling to approximate the probability distribution over possible inter-
face states.

* A system for generating fluid interactive feedback which continuously communi-
cates alternative (or future) input interpretations as a user is interacting and al-
lows her to disambiguate intent.

* An APl and library which allows user interface developers to easily build probabil-
istic interfaces. This includes a mechanism for specifying interactor behavior using
probabilistic state machines, a rich set of classes for developing interactive feed-
back, and a built-in mechanism for adjusting likelihood of future actions based on
past input.

* A large collection of interaction techniques and applications which demonstrate
the versatility and power of the toolkit. These include demonstrations of how to
leverage prediction to accelerate interaction, how to build interfaces that allow
users to easily switch between multiple input interpretations, and how to perform
Bayesian inference to adapt interface behavior.

This architecture provides the foundation for a new era of user interfaces which handle
uncertainty gracefully to better infer user intent.

Limitations

Several limitations of the work are alluded to throughout the thesis, warranting a more
careful discussion. These limitations fall into two categories. First, the current toolkit re-
quires significant CPU and memory resources. Second, the usability of many of the tech-
niques, along with the APIs used, has not been tested.
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Figure 11.1: CPU profile of dispatch process obtained during dispatch of a single input event. Most
time is spent in the View.subClass.clone method, cloning interface alternatives (rectangular boxes
outlined in red).

One drawback of our approach is that large numbers of samples are often required to
represent distributions where the state space is large: when input events have many vari-
ables, or variables that can have many values. In many cases, the state space for user in-
terfaces is not that large, and thus tens of samples are often sufficient (as is demonstrat-
ed by our interaction techniques and applications). However, the current approach
breaks down for cases with large amounts of ambiguity where hundreds or even thou-
sands of samples are required.

This dissertation work focused on developing early concepts in using Monte Carlo tech-
niques for managing uncertainty, and did not focus heavily on optimizations to allow for
simulation of large numbers of samples. However, many optimizations are possible. A
CPU profile of toolkit in operation (Figure 11.1) reveals that most time is spent cloning
interfaces. Several optimizations are possible here. First, each dispatch sequence for a
(event sample, interface sample) pair is independent of others, meaning we can execute
update operations in parallel. Additionally, rather than copying all interface properties,
we can use incremental data structures (Tanin et al. 1996) to store interface alternatives.
This will not only reduce the time required to clone alternatives but will also reduce the
memory footprint. Many other optimizations are possible and left for future work.

A second limitation of this work is that the interaction techniques and applications pre-
sented in this dissertation were not evaluated for usability. While our validation by
demonstration is suitable for the contribution of this work, the practicality of the demon-
strations presented remains unknown. Many interaction techniques (such as animating
between alternate versions of interfaces), are interesting but questionable in terms of
usability. Further investigation is needed into the usability of the interaction techniques
presented.
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Additionally, the developer-facing APl (probabilistic state machines) was not rigorously
validated. While an informal validation based on number of interaction techniques and
code simplicity is presented, a more formal evaluation is needed before the approach can
be determined as ready for practical use. These evaluations will likely point out problems
that will lead to improvements, which will in turn be their own valuable contributions.

Despite these limitations, the work presented in this thesis is a great leap forward in the
domain of architectures for handling uncertain input, and the demonstrations provided
show the feasibility of the Monte Carlo approach—a surprising and positive result.

11.2 Future Work

The probabilistic input architecture lays the foundation for an entirely new type of user
interface architecture, however this is just the tip of the iceberg. Most of the work need-
ed to bring this architecture into practice lies before us. Several avenues of future work
present themselves: improving performance of the toolkit, developing more complex in-
terfaces, and building more sophisticated features.

In addition to the performance improvements mentioned in the previous section, the in-
terfaces in the demos and applications, while complex, still do not approach the complex-
ity of most real applications. A further avenue of future work may be to track multiple
alternative program states, to remove the need to decide on all final actions. Finally, the
probabilistic input architecture lends itself nicely to input prediction and Bayesian simula-
tion. A more general method that allows for systematic integration and interface im-
provement would be interesting to explore. In short, there’s an enormous body of work
to explore, and the future of probabilistic input is a promising field that | hope to see
flourish in the near future.
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