
Asking	and	Answering	Questions	about	the	
Causes	of	Software	Behavior	

Amy	J.	Ko	
May	2008	

CMU-HCII-08-106	
CMU-CS-08-122	

Human-Computer Interac0on Ins0tute 
School of Computer Science 
Carnegie Mellon University 

Pi=sburgh, PA 15213 

Thesis Commi=ee: 
Brad A. Myers (Chair) 

Bonnie John 
Jonathan Aldrich 

Gail Murphy (University of Bri0sh Columbia) 

Submitted	in	partial	ful<illment	of	the	requirements		
for	the	Degree	of	Doctor	of	Philosophy	

Copyright	©	2008,	2022	Amy	J.	Ko.	All	rights	reserved.	

This	 work	 was	 supported	 by	 the	 National	 Science	 Foundation,	 under	 NSF	 grant	
IIS-0329090,	 by	 the	EUSES	Consortium	under	NSF	 grant	 ITR	CCR-0324770,	 by	 an	
NDSEG	 Fellowship	 and	 by	 an	 NSF	 Graduate	 Research	 Fellowship.	 Any	 opinions,	
<indings,	 conclusions,	 or	 recommendations	 expressed	 in	 this	material	 are	 those	 of	
the	author	and	do	not	necessarily	re<lect	those	of	the	National	Science	Foundation.	



ii

Keywords:	 debugging,	 program	 understanding,	 Whyline,	 natural	 programming,	
end-user	software	engineering,	reverse	engineering,	productivity,	defect,	fault,	Alice,	
Java,	Eclipse,	program	slicing,	execution	trace,	instrumentation,	Crystal



ABSTRACT 

Program	 understanding	 accounts	 for	 the	 bulk	 of	 software	 development	 work.	
Unfortunately,	little	is	known	about	why	it	is	so	dif<icult.	To	investigate	this	problem,	
multiple	 developer	 populations	were	 observed	 debugging.	 These	 studies	 revealed	
that	developers	start	by	asking	questions	about	program	behavior,	but	must	answer	
by	 speculating	 about	 the	 code	 responsible.	 For	 example,	 a	 developer	 wondering,	
“Why	didn’t	this	button	do	anything	after	I	pressed	it?”	must	conceive	of	a	potential	
explanation	 such	as	 “Maybe	because	 its	 event	handler	wasn’t	 called”	and	 then	use	
breakpoint	 debuggers,	 print	 statements,	 and	other	 low-level	 tools	 that	 instrument	
and	analyze	code	to	verify	their	explanation.	The	studies	showed	that	not	only	is	this	
process	 poorly	 supported	 by	 current	 tools,	 but	 also	 that	 developers	 form	 valid	
explanations	for	only	10-20%	of	their	attempts.	

A	new	kind	of	program	understanding	tool	called	a	Whyline	was	developed,	which	
allows	 a	 developer	 to	 ask	 “why	 did”	 and	 “why	 didn’t”	 questions	 directly	 about	 a	
program’s	output.	In	response,	the	tool	determines	which	parts	of	the	system	and	its	
execution	 are	 related	 to	 the	 output,	 also	 identifying	 any	 false	 assumptions	 the	
developer	 might	 have	 about	 what	 occurred	 during	 the	 execution	 of	 the	 program.	
This	 interaction	 helps	 developers	 avoid	 speculating	 about	 the	 cause	 of	 output,	
instead	 allowing	 the	 Whyline	 <ind	 code	 related	 to	 the	 output	 in	 question.	 Three	
prototypes	were	developed,	supporting	Alice	(a	programming	language	designed	for	
building	 interactive	 3D	 worlds),	 the	 Java	 programming	 language,	 and	 a	 word	
processing	application	for	end	users.	In	controlled	experiments,	all	three	prototypes	
signi<icantly	 reduced	 time	 to	 complete	 debugging	 tasks	 (20-800%	 faster)	 and	
signi<icantly	increased	success	rates	(by	20-200%).	

iii



ACKNOWLEDGMENTS 

I	would	like	to	thank	my	advisor,	Brad	Myers,	for	his	critical	eye	and	foresight.	It	has	
been	a	pleasure	learning	from	his	experience	and	insights	for	these	past	six	years.	I	
am	 also	 deeply	 indebted	 to	 Margaret	 M.	 Burnett,	 who	 took	 a	 chance	 on	 me	 the	
summer	after	my	freshman	year	at	Oregon	State,	allowing	me	to	discover	the	world	
of	research	and	all	its	perils	before	I	decided	to	pursue	graduate	school.	Without	her	
early	guidance	and	encouragement,	my	years	as	a	Ph.D.	student	would	have	been	far	
less	productive.	

My	committee	members	also	deserve	thanks	for	their	encouragement	and	criticism.	
Bonnie	 John	 was	 especially	 helpful	 in	 looking	 for	 confounds	 in	 my	 experimental	
designs.	 Jonathan	 Aldrich	 shared	 crucial	 perspectives	 on	 my	 work	 from	 the	
programming	 languages	 and	 software	 engineering	 communities.	 Gail	 Murphy	 has	
been	 a	 strong	 supporter	 of	my	work	 and	 she	 provided	 invaluable	 insight	 into	 the	
workings	of	the	software	engineering	research	community.	

Every	 dissertation	 is	 a	 joint	 effort	 and	 mine	 is	 no	 exception.	 My	 family	 deserves	
special	 thanks,	 including	my	wife	Katherine,	my	daughter	Ellen,	my	 father	Robert,	
my	mother	Judi	and	my	brother	Bryan.		

I	also	offer	thanks	to	several	students,	faculty,	staff	and	friends	that	have	made	this	
work	possible,	including	Rob	Adams,	Turadg	Aleahmad,	Sonya	Allin,	Htet	Htet	Aung,	
Lisa	Anthony,	Danviel	Avrahami,	Aruna	Balakrisnan,	Ryan	Baker,	Aaron	Bauer,	Laura	
Beckwith,	 Andrew	 Begel,	 Kenneth	 Berger,	 Katie	 Bessiere,	 Jake	 Biel,	 Moira	 Burke,	
Polo	Chau,	Sarah	Culberson,	Michael	Colbenz,	Marian	D’Amico,	Laura	Dabbish,	Scott	
Davidoff,	Rob	DeLine,	Anind	Dey,	Tawanna	Dillahunt,	Nathalie	Dima,	Matt	Easterday,	
Brian	 Ellis,	 Martin	 Erwig,	 Andrew	 Faulring,	 James	 Fogarty,	 Jodi	 Forlizzi,	 Valentina	
Grigoreanu,	 Darren	 Gergle,	 Gahgene	 Gweon,	 Elspeth	 Golden,	 Chris	 Harrison,	 Gary	
Hsieh,	Jason	Hong,	Scott	Hudson,	Amy	Hurst,	Sara	Kiesler,	Miryung	Kim	Ho,	Robert	
Kraut,	 Queenie	 Kravitz,	 Thomas	 LaToza,	 Johnny	 Lee,	 Joonhwan	 Lee,	 Sandi	 Lowe,	
Neema	Moravegi,	Bilge	Mutlu,	Nachi	Nagappan,	Yoko	Nakano,	Jeff	Nichols,	Christine	
Neuwirth,	Sue	O’Connor,	 John	Pane,	Randy	Pausch,	Madhu	Prabaker,	 Ido	Roll,	Chris	
Scaf<idi	 ,	 Peter	 Scupelli,	 Mary	 Shaw,	 Fleming	 Seay,	 Jeff	 Stylos,	 Karen	 Tang,	 Cristen	

iv



Torrey,	Angela	Wagner,	Erin	Walker,	Jake	Wobbrock,	Jeff	Wong,	Ruth	Wylie,	Thomas	
Zimmermann,	 and	 many	 others.	 Each	 of	 these	 individuals	 helped	 spark	 an	 idea,	
lifted	 me	 out	 of	 the	 Ph.D.	 doldrums	 with	 a	 kind	 word,	 said	 something	 that	
questioned	my	assumptions,	or	cast	a	new	perspective.	

Thank	you	also	to	the	corporate	and	governmental	sponsors	of	this	work,	including	
the	National	Science	Foundation,	the	Department	of	Defense,	Microsoft,	and	Adobe.	I	
was	 also	 generously	 supported	 by	 a	 NSF	 Graduate	 Research	 Fellowship	 and	 a	
National	Defense	Science	and	Engineering	Graduate	Fellowship.	

v



TABLE OF CONTENTS 

Abstract	 iii	
Acknowledgements	 iv	
Table	of	Contents	 vi	
List	of	Figures	and	Tables	 x	

Introduction	 	1
1. The	Problem	 	........................................................................................................2
2. A	Solution	 	..............................................................................................................2
3. An	Approach	 	........................................................................................................3
4. De<initions	 	............................................................................................................5
5. Contributions	 	......................................................................................................6
6. Outline	 	....................................................................................................................6

Related	Work	 	8
1. Studies	of	Program	Understanding	 	...........................................................9
2. Causes	of	Software	Errors	 	.............................................................................13
3. Program	Understanding	Tools	 	.....................................................................25
4. Summary	 	...............................................................................................................35

Breakdowns	in	Alice	 	37
1. The	Alice	programming	environment	 	......................................................38
2. Alice	in	the	Field	 	................................................................................................38
3. Alice	in	the	Lab	 	...................................................................................................41
4. An	Analysis	of	Breakdowns	 	...........................................................................44
5. Limitations	 	...........................................................................................................62
6. Summary	 	...............................................................................................................63

Learning	Barriers	in	VB.NET	 	65
1. Method	 	...................................................................................................................66
2. Six	Learning	Barriers	 	.......................................................................................68
3. Discussion	 	.............................................................................................................72
4. Limitations	 	...........................................................................................................74
5. Summary	 	...............................................................................................................74

vi



Exploring	Java	Code	in	Eclipse	 	76
1. Method	 	...................................................................................................................77
2. Results	 	....................................................................................................................83
3. Limitations	 	...........................................................................................................102
4. Implications	for	Theory	 	..................................................................................105
5. Implications	for	Tools	 	......................................................................................108
6. Summary	 	...............................................................................................................114

Information	Needs	at	Microsoft	 	116
1. Method	 	...................................................................................................................117
2. Task	Structure	 	.....................................................................................................118
3. Information	Needs	 	............................................................................................119
4. Quantifying	Information	Needs	 	...................................................................128
5. Most	Common	Information	Needs	 	.............................................................129
6. Rating	Information	Needs	 	.............................................................................130
7. Discussion	 	.............................................................................................................132
8. Summary	 	...............................................................................................................136

The	Whyline	Concept	 	138
1. Asking	about	Output	 	........................................................................................139
2. Questions	from	Code	 	........................................................................................140
3. Explaining	Causality	 	.........................................................................................141
4. Summary	 	...............................................................................................................142

A	Whyline	for	Alice	 	143
1. An	Example	 	..........................................................................................................144
2. User	Interface	 	......................................................................................................147
3. Implementation	 	..................................................................................................148
4. Evaluation	 	.............................................................................................................152
5. Discussion	 	.............................................................................................................155
6. Limitations	 	...........................................................................................................158
7. Summary	 	...............................................................................................................159

A	Whyline	for	Applications	 	160
1. An	Example	 	..........................................................................................................161
2. User	Interface	 	......................................................................................................162
3. Implementation	 	..................................................................................................167
4. Evaluation	 	.............................................................................................................170
5. Discussion	 	.............................................................................................................174

vii



Appendix	 245	

Bibliography	 304	

6. Summary	 	...............................................................................................................175

A	Whyline	for	Java	 	176
1. An	Example	 	..........................................................................................................177
2. User	Interface	 	......................................................................................................179
3. Implementation	 	..................................................................................................192
4. Evaluation	 	.............................................................................................................218
5. Discussion	 	.............................................................................................................232
6. Summary	 	...............................................................................................................234

Limitations	and	Future	Work	 	236
1. Limitations	 	...........................................................................................................236
2. Future	Work	 	.........................................................................................................243
3. Summary	 	...............................................................................................................249

Conclusions	 250

viii



FIGURES 

Figure	1.1.	On	the	top,	a	question	about	the	color	of	a	rectangle	using	the	
Whyline	for	Java.	On	the	bottom,	the	corresponding	answer,	showing	
the	source	of	the	black	color	and	the	causes	of	its	creation	(gSlider	was	

used	twice	instead	of	bSlider).

4

Figure	1.2.	A	historical	map	of	the	contributions	in	this	dissertation	and	their	
corresponding	chapters.	The	arrows	represent	the	approximate	<low	of	
ideas	from	studies	to	tools	and	tools	to	studies.	The	height	of	the	boxes	
approximate	the	time	spent	on	each	portion	of	the	research.

7

Figure	2.1.	Dynamics	of	software	error	production,	based	on	Reason's	
systemic	view	of	failure.	Each	layer	has	latent	errors	(the	holes),	
predisposing	certain	types	of	failures.	Layers	also	have	defenses	against	
failures	(where	there	are	no	holes).	Several	layers	of	failure	must	go	
unchecked	before	software	errors	are	introduced	into	code.

17

Figure	3.1.	The	Alice	2	programming	environment. 35

Figure	3.2.	A	‘Building	Virtual	Worlds”	programmer	<ine-tuning	an	animation. 37

Figure	3.3.	An	image	from	the	recording	of	a	study	participants’	work	on	the	
Pac-Man	task.

40

Figure	3.4.	A	framework	for	describing	the	causes	of	software	errors	based	
on	chains	of	cognitive	breakdowns.	Breakdowns	occur	in	speci<ication,	
implementation,	and	runtime	activities.	A	single	breakdown	is	read	
from	left	to	right	and	consists	of	one	component	from	each	column	
within	an	activity.	The	cause	of	a	single	software	error	can	be	thought	of	
as	a	path	through	these	various	types	of	breakdowns,	by	following	the	
“can	cause”	arrows	between	and	within	the	activities.

43

Figure	3.5.	An	example	of	a	chain	of	cognitive	breakdowns,	where	a	
programmer	has	several	breakdowns	while	implementing	a	recursive	
sorting	algorithm.

46

Figure	3.6.	Deductively	reconstructing	the	causal	chain	of	breakdowns	
represented	in	Figure	3.5,	using	a	programmer’s	actions	and	verbal	
utterances.

49

ix



Figure	3.7.	A	segment	of	one	of	P2’s	cognitive	breakdown	chains.	The	last	
breakdown	shown	here	did	not	cause	further	breakdowns	until	20	
minutes	later,	after	the	camera	position	made	it	apparent	that	Pac	was	
still	jumping.

54

Figure	3.8.	A	model	of	the	major	causes	of	software	errors	during	
programmers’	use	of	Alice.	Each	line	represents	a	causal	link	between	
one	type	of	breakdown	and	another;	the	number	on	the	line	represents	
the	proportion	of	the	type	of	link	out	of	all	links	in	all	chains.	(This	does	
not	include	numbers	for	the	links	between	software	errors,	runtime	
faults,	and	runtime	failures,	since	it	was	only	possible	to	identify	errors	
that	led	to	failures;	also,	the	numbers	do	not	add	to	100%	because	not	
all	types	of	breakdowns	are	shown).

59

Figure	4.1.	In	overcoming	barriers,	learners	risk	making	invalid	assumptions	
that	often	lead	to	error.

63

Figure	4.2.	Learning	barriers	overcome	with	invalid	assumptions	often	led	to	
insurmountable	barriers	of	a	different	type.	

64

Figure	4.3.	For	surmountable	barriers,	the	percent	of	each	type	overcome	
with	invalid	assumptions,	and	the	type	of	barrier	to	which	the	
assumptions	led.

70

Figure	5.1.	The	Paint	application. 75

Figure	5.2.	The	<lashing	taskbar	noti<ication	(top)	and	one	of	the	arithmetic	
interruption	tasks	(bottom).

78

Figure	5.3.	Developers’	division	of	labor	in	terms	of	time	on	activities.	The	
vertical	bars	represent	one	standard	deviation	above	and	below	the	
mean.

83

Figure	5.4.	The	developers’	actions	for	the	Thickness	and	Yellow	tasks. 84

Figure	5.5.	The	package	explorer,	<ile	tabs,	and	scroll	bars	of	Eclipse	2.0. 90

Figure	5.6.	A	model	of	program	understanding	in	which	developers	search	
for	relevant	information	and	relate	it	to	other	relevant	information	
while	collecting	information	necessary	for	eventually	implementing	a	
solution.

101

x



Figure	5.7.	The	50	lines	of	code	and	other	information	that	developer	B	
indicated	as	relevant,	portrayed	in	a	mockup	of	a	workspace	that	help	
developers	collect	relevant	information	for	a	task	in	one	place,	
independent	of	the	structure	of	a	program.

106

Figure	5.8.	Jasper,	an	Eclipse	plug-in	that	allows	developers	to	gather	
arbitrary	fragments	of	Java	code	in	a	single	view.

108

Figure	6.1.	An	excerpt	from	J’s	observation	log. 112

Figure	6.2.	The	backgrounds	and	task	structures	of	the	17	observed	
developers.	The	right	edge	of	each	task	block	indicates	the	reason	for	
the	task	switch	(Tasks	are	labeled	time	blocks	with	coded	ends	(thin	
line	for	done,	thick	line	for	blocked,	jagged	line	for	interrupted).	When	a	
task	gets	broke	up	by	interruptions	or	blocking,	we	draw	its	fragments	
at	the	same	vertical	level	to	show	resumption.

114

Figure	6.3.	Types	of	information	developers	sought,	with	search	times	in	
minutes;	perceptions	of	the	information’s	importance,	availability,	and	
inaccuracy;	frequencies	and	outcomes	of	searches;	and	sources,	with	
the	most	common	in	boldface.

123

Figure	6.4.	Information	needs	per	participant. 124

Figure	7.1.	Asking	about	precursors	to	output	presumes	that	the	fault	did	
occurred	before	the	precusor,	which	is	not	always	the	case.

133

Figure	8.1.	The	Alice	programming	environment,	before	the	world	has	been	
played:	(1)	the	object	list,	(2)	The	3D	world	view,	(3)	the	event	list,	(4)	
the	currently	selected	object’s	properties,	methods,	and	questions	tabs,	
and	(5)	the	code	area.

137

Figure	8.2.	Ellen	expected	Pac	to	resize,	but	he	did	not. 138

Figure	8.3.	Ellen	explores	the	questions	and	decides	to	ask	“Why	didn’t	Pac	
resize	.5?”	which	highlights	the	code.

138

Figure	8.4.	The	Whyline’s	answer	shows	a	visualization	of	the	runtime	
actions	preventing	Pac	from	resizing.	Ellen	uses	the	time	cursor	to	
“scrub”	the	execution	history,	and	realizes	that	Pac	did	not	resize	
because	isEaten	was	true.

139

Figure	8.5.	A	false	proposition	answer,	which	explains	to	the	developer	that	
the	code	they	though	did	not	execute,	actually	did	execute.

144

xi



Figure	8.6.	An	invariant	answer,	which	explains	to	the	developer	that	the	
code	can	never	be	reached.

145

Figure	9.1.	The	answer	for	why	“Teh”	was	changed	to	“The”	The	“?”	in	the	
upper	left	shows	where	the	F1	key	was	pressed.	

154

Figure	9.2.	Menus	resulting	from	typing	F1,	showing	sub	menus	for	character	
and	paragraph	properties.

156

Figure	9.3.	A	question	menu	about	whitespace. 156

Figure	9.4.	The	“global”	why	menu,	showing	recent	commands	that	did	and	
did	not	execute.

157

Figure	9.5.	The	user	typed	“g”	in	Figure	5	while	“helpful”	was	selected,	so	
“helpful”	was	deleted.	Crystal	inserts	an	invisible	marker	in	the	text	so	a	
question	will	appear	about	the	deleted	object.

157

Figure	9.6.	The	answer	to	“Why	is	the	‘p’	bold?”,	explaining	that	the	user	set	
the	property	using	the	toolbar	button.

158

Figure	9.7.	The	answer	shown	for	when	a	property’s	value,	in	this	case	the	
font	size,	is	inherited	from	a	style.

158

Figure	9.8.	Percent	of	people	in	each	group	that	completed	the	tasks	and	the	
overall	average.	Taller	bars	are	better.

164

Figure	9.9.	For	the	participants	who	could	complete	the	task,	the	average	
time	they	took,	with	bars	showing	the	standard	error	of	the	mean.	
Shorter	bars	are	better.

165

Figure	10.1.	Using	the	Whyline:	(a)	The	developer	demonstrates	the	
behavior;	(b)	after	the	trace	loads,	the	developer	<inds	the	output	of	
interest	by	scrubbing	the	I/O	history;	(c)	the	developer	clicks	on	the	
output	and	chooses	a	question;	(d)	the	Whyline	provides	an	answer,	
which	the	developer	navigates	(e)	in	order	to	understand	the	cause	of	
the	behavior	(f).

170

Figure	10.2.	The	main	Whyline	window,	showing	the	user’s	launch	
con<igurations	on	the	left	and	saved	recordings	on	the	right.

172

Figure	10.3.	The	launch	con<iguration	window. 172

Figure	10.4.	The	loading	progress	bar	in	the	Whyline	window. 173

xii



Figure	10.5.	Hovering	over	graphical,	textual,	and	exception	output.	The	
graphical	and	textual	output	both	include	pop-ups	indicating	the	
temporal	context	of	the	output	(such	as	“after	this	was	printed”	and	
“after	this	window	repainted”).

174

Figure	10.6.	Questions	about	properties	of	a	rectangle. 175

Figure	10.7.	Questions	about	<ields	and	methods	that	indirectly	affect	output. 175

Figure	10.8.	The	time	slider,	showing	only	mouse	(the	left-most	icon	is	
selected,	indicating	this	<ilter).

175

Figure	10.9.	Time	relatively	for	positively	and	negatively	phrased	questions. 176

Figure	10.10.	Token	level	highlighting	in	the	Java	Whyline	source	viewer	and	
crosshatching	over	an	unfamiliar	source	<ile.

177

Figure	10.11.	Three	types	of	selections	(tokens,	lines,	and	methods)	and	the	
menus	for	each	shown	upon	clicking.

178

Figure	10.12.	Some	event	selections	will	show	multiple	<iles,	if	multiple	<iles	
are	relevant	to	the	selection.	The	example	above	shows	both	the	use	of	
the	<ield	color	and	the	assignment	to	the	<ield	color,	because	the	user	
has	selected	a	question	about	why	the	<ield	color	had	its	current	value.

179

Figure	10.13.	Threads	separated	along	the	y-axis. 180

Figure	10.14.	The	meaning	of	various	colors	in	the	Java	Whyline. 180

Figure	10.15.	Followup	questions	about	the	selected	execution	event. 182

Figure	10.16.	An	answer	showing	(1)	a	collapsed	invocation,	(2)	a	hidden	call	
context,	(3)	several	instructions	not	executed	and	(4)	a	conditional	that	
evaluated	in	the	wrong	direction,	preventing	the	desired	instruction	
from	executing.

183

Figure	10.17.	The	source	<ile	outline	and	search	<ield. 184

Figure	10.18.	The	simpli<ied	output	history	and	time	controller,	which	shows	
the	position	of	the	currently	selected	event	in	the	visualization.	

184

Figure	10.19.	The	object	watch	window	(top)	and	the	threads,	call	stacks,	
locals	and	objects	(bottom).

185

Figure	10.20.	Algorithm	getSources,	which	gathers	instructions	that	could	

produce	a	value	for	a	given	instruction’s	argument,	and	getArraySources,	

which	gathers	instructions	that	could	produce	values	for	an	array.

195

xiii



Figure	10.21.	The	textual	output	question	user	interface. 199

Figure	10.22.	Algorithms	markAffectors	and	markInvokers,	which	mark	methods	

and	<ields	that	affect	or	invoke	output	(the	two	algorithms	do	not	invoke	
each	other).

202

Figure	10.23.	All	supported	questions	for	a	graphical	output	event	in	the	Java	
Whyline	prototype,	showing	six	types	of	questions	currently	supported	
by	the	prototype	(numbered	1-6)	and	three	types	of	menus.	For	each,	
the	content	on	the	left	lists	the	meaning	of	the	question	(items	in	[]’s	
represented	nested	menus	of	the	speci<ied	type)	and	the	content	on	the	
right	gives	an	example	screen	shot.

203

Figure	10.24.	Algorithm	whynotvalue,	which	explains	why	a	certain	dynamic	

data	dependency	did	not	occur.

210

Figure	10.25.	ArgoUML	bug	3121,	titled	“Remove	‘Report	Usage	Statistics’	
since	it	does	not	do	anything.”

216

Figure	10.26.	ArgoUML	bug	3128,	titled	“Problems	with	two	classes	with	the	
same	name	in	different	packages”.

217

Figure	10.27.	For	task	1,	the	number	of	successful	participants	and	the	time	
on	task.

218

Figure	10.28.	For	task	2,	the	number	of	successful	participants	and	the	time	
on	task.

219

xiv



TABLES 

Table	2.1.	Studies	classifying	“bugs”,	“errors”	and	“problems”	in	various	
languages,	expertise,	and	programming	contexts.

13

Table	2.2.	Actions	performed	during	programming	activity. 16
Table	2.3.	Types	of	skill	breakdowns,	adapted	from	[Reason	1990].	The	➞	

means	“causes.”
19

Table	2.4.	Types	of	rule	breakdowns,	adapted	from	[Reason	1990]. 21
Table	2.5.	Types	of	knowledge	breakdowns,	adapted	from	Reason	[1990]. 23
Table	3.1.	For	the	BVW	study,	programmers’	self-rated	programming	

language	expertise,	their	total	observed	work	time,	and	the	tasks	that	
they	worked	on	during	observations.

37

Table	3.2.	Details	about	the	four	participants	of	the	Pac	Man	study. 40
Table	3.3.	A	summary	of	skill,	rule,	and	knowledge	breakdowns,	which	can	be	

used	to	answer	deductive	questions	from	observations.	
51

Table	3.4.	Programming	and	debugging	time,	and	the	number	of	software	
errors,	breakdowns,	and	chains,	as	well	as	chain	length,	by	programmer.

55

Table	3.5.	Breakdowns	split	by	activity	and	type. 56
Table	3.6.	Frequency	and	percent	of	breakdowns	and	software	errors	by	type	

of	information	and	the	average	debugging	time	for	software	errors	in	
each	type	of	information.

56

Table	3.7.	Software	errors	and	debugging	time	by	cognitive	breakdown	type	
and	action.	Only	actions	causing	software	errors	are	shown.

57

Table	4.1.	The	seven	Visual	Basic.NET	tasks. 64
Table	5.1.	The	<ive	maintenance	tasks. 77
Table	5.2.	Developer	actions	transcribed	from	the	screen-captured	videos. 80
Table	5.3.	Task	completion	statistics	for	the	ten	developers,	including	the	

average	time	spent	on	each	task	and	the	number	of	actions	per	task	per	
developer.

82

Table	5.4.	Types	of	dependencies	navigated,	the	average	percent	of	each	type	
for	a	developer,	and	the	tools	that	developers	used	to	perform	each.

87



Table	5.5.	An	approximation	of	developers’	task	contexts	for	THICKNESS	and	
LINE,	derived	from	edits,	dependency	navigations,	and	searches.

93

Table	8.1.	Frequency	of	question/answer	types	in	each	study	and	times	the	
Whyline	was	found	useful	for	each.

146

Table	9.1.	Fields	and	methods	of	the	command	objects	in	Crystal.	Properties	
in	bold	are	novel.

159

Table	10.1.		All	of	the	supported	keyboard	commands	in	the	Whyline	
visualization.

182

Table	10.2.	The	55	different	kinds	of	events	recorded	by	the	Java	Whyline.	
The	constant,	value,	and	argument	categories	contain	8	events	each,	to	
cover	each	of	the	8	primitive	types	in	Java.	The	group	of	six	events	at	the	
bottom	are	custom	instrumentation	to	capture	certain	I/O	events.

191

Table	10.3.	The	<ile	hierarchy	of	a	recorded	Whyline	trace. 193
Table	10.4.	Statistics	about	tracing	slow	down,	trace	size	with	and	without	

compression,	and	trace	loading	time,	on	<ive	open	source	Java	programs,	
averaged	over	ten	runs.	The	pro<iling	times	were	computed	using	the	
YourKit	Java	pro<iler	with	tracing	mode	on	(rather	than	sampling).	
Lines	of	code	for	each	program	were	computed	omitting	whitespace	
lines.

211

Table	10.5.	Nine	bug	reports	and	the	Whyline	questions	that	could	be	asked. 212
Table	12.1.	Knowledge	contributions	from	empirical	studies	of	developers. 242
Table	12.2.	Technical	contributions	across	three	Whyline	prototypes. 243

ii



1.

INTRODUCTION 

Software	 is	 buggy	 for	many	 reasons.	Developers	write	 programs	purposefully	 and	
carefully,	but	despite	their	best	efforts	at	vigilance,	they	miss	things,	they	skip	edge	
cases,	 they	 overlook	 exceptional	 circumstances.	 Sometimes	 conditions	 and	
requirements	 change	 and	 the	 original	 assumptions	 in	 a	 program’s	 design	 are	
violated.	 In	other	cases,	 companies	 sacri<ice	quality	 for	 time-to-market	 in	order	 to	
survive.	

Of	course,	software	errors	are	only	a	problem	when	they	result	in	software	failures.	
When	 they	do,	 there	 are	 often	 long	periods	 of	 disarray	 as	 developers	 scramble	 to	
diagnose	 the	 problems.	 For	 example,	 in	 2007,	 the	 Canadian	 Revenue	 Agency’s	
electronic	 tax	 <iling	system	experienced	an	undiagnosed	 failure	 for	almost	a	week,	
causing	mass	confusion	over	temporary	<iling	guidelines	due	to	the	bug .	On	January	1

24th,	 2004,	 the	 Mars	 rover	 Spirit	 ceased	 communications	 with	 mission	 control.	
Engineers	worked	 for	nearly	 a	week	on	 the	 theory	 that	 the	 rover	was	 in	 a	 reboot	
loop	 caused	 by	 hardware	 failure,	 only	 to	 <ind	 that	 the	 problem	was	 due	 to	 a	 <ile	
system	beyond	capacity .	2

What	makes	these	incidents	so	problematic	is	not	the	initial	failure,	but	the	repeated	
failures	 that	 occur	 as	 engineers	 work	 tirelessly	 to	 diagnose	 the	 problems.	
Unfortunately,	 <inding	 the	 causes	 of	 these	 software	 failures	 is	 no	 simple	 task.	 In	
2002,	the	National	Institute	of	Standards	and	Technology	estimated	that	30-90%	of	
the	 costs	 in	 successfully	 developing	 software	 are	 in	 testing	 and	 debugging;	 they	

 http://www.cbc.ca/canada/story/2007/03/08/tax-computer.html1

 http://www.planetary.org/blog/article/000007022



Chapter	1:	Introduction	 2

further	found	that	the	average	error	takes	17.4	hours	to	<ind	and	<ix	[Tassey	2002].	
According	to	the	respondents	of	the	study,	the	top	reason	for	these	numbers	is	the	
lack	of	 effective	 tools.	Every	day,	millions	of	 software	developers	work	 to	 improve	
the	 world’s	 software	 infrastructure,	 but	 must	 do	 so	 with	 little	 more	 than	 a	
breakpoint	and	a	print	statement.	

1.1. THE PROBLEM 

An	 essential	 part	 of	 knowing	 what	 kinds	 of	 diagnostic	 tools	 could	 help	 these	
developers,	 is	 knowing	 precisely	 why	 this	 diagnostic	 activity	 is	 so	 dif<icult.	 I	
performed	several	 studies	 that	examined	 this	question	and	a	common	explanation	
emerged.	For	any	given	software	failure,	there	must	be	some	observable	symptom	of	
the	 failure	 (if	 there	were	not,	we	would	not	 know	of	 the	 failure).	 This	might	 be	 a	
wrong	 value	 on	 a	 display,	 the	 lack	 of	 response	 on	 the	 other	 end	 of	 a	 network	
connection,	 or	 any	 other	 variety	 of	 unexpected	 behavior.	 When	 a	 developer	 sees	
such	 a	 failure,	 they	 must	 guess	 about	 its	 cause.	 This	 guess	 determines	 what	
breakpoints	they	might	set,	what	print	statements	they	might	write,	and	what	tools	
they	might	use	 to	 explore	 the	 code.	The	problem	 is	 that	novices	and	experts	 alike	
usually	 guess	 wrong	 the	 <irst	 time.	 They	 search	 and	 test	 and	 eventually	 discover	
some	other	fact	about	the	program	that	leads	them	closer	to	the	cause,	but	only	after	
exploring	other	unrelated	code.	To	make	matters	worse,	many	failures	are	a	lack	of	
feedback.	For	example,	a	developer	might	press	a	button	and	expect	it	to	have	some	
effect,	but	see	nothing.	In	these	situations,	there	is	little	feedback	that	the	developer	
can	use	to	speculate	about	the	cause	of	the	problem.	

1.2.  A SOLUTION 

What	if	instead	of	speculating	about	the	cause	of	a	failure,	developers	could	analyze	
the	observable	 symptoms	of	 a	 failure	directly?	 For	 example,	 if	 a	 developer	 saw	an	
incorrect	 value	 in	 a	user	 interface,	what	 if	 the	developer	 could	 click	on	 that	 value	
and	ask	why	it	was	produced?	If	they	did	not	see	a	value	but	they	expected	one,	what	
if	they	could	ask	why	it	did	not	appear?	If	such	a	tool	existed,	the	tool	could	take	the	
developer	 from	 the	 faulty	output	 to	 the	 code	 responsible,	 eliminating	much	of	 the	
guesswork	required	by	today’s	tools.	This	leads	to	my	thesis:	



Chapter	1:	Introduction	 3

A tool that allows developers to ask ques0ons explicitly about a program’s 
output and behavior can significantly improve developers’ produc0vity and 
solu0ons with debugging and soTware maintenance tasks, rela0ve to 
conven0onal program understanding tools.  

The	goal	of	this	dissertation	work	is	to	investigate	this	claim,	inventing	new	ways	of	
understanding	program	execution	by	asking	questions	about	program	output.	These	
inventions	center	around	the	concept	of	a	Whyline,	which	is	a	kind	of	tool	that	allows	
a	developer	 to	 ask	 “why	did”	 and	 “why	didn’t”	 questions	 about	program	behavior.	
The	tool	derives	questions	directly	from	the	program	itself	by	performing	a	number	
of	 static	 and	 dynamic	 program	 analyses	 based	 on	 a	 recording	 of	 the	 program’s	
execution.	 It	 then	 answers	 the	 developer’s	 questions	 using	 additional	 analyses,	
helping	 the	 developer	 to	 explore	 the	 causal	 relationships	 between	 the	 queried	
output	and	the	program’s	execution.		

To	illustrate,	consider	the	question	in	Figure	1.1.	In	this	example,	the	user	expected	
the	black	rectangle	to	be	blue,	since	the	blue	color	slider	was	at	its	maximum	value.	
The	 user	 can	 choose	 a	 question	 about	 the	 color	 of	 the	 rectangle	 and	 the	 system	
responds	 with	 an	 answer	 that	 shows	 where	 the	 black	 color	 originated.	 The	
developer	 can	 then	 follow	 up	with	 other	 questions,	 such	 as	 where	 the	 individual	
color	 components	 of	 the	 color	 originated.	 This	 is	 only	 a	 glimpse	 of	 the	 range	 of	
interactions	with	Whyline	tools.	As	shown	in	later	chapters,	these	types	of	questions,	
which	 allow	 developers	 to	work	 backwards	 from	 output,	 can	 dramatically	 reduce	
the	time	required	to	diagnose	a	program	failure.	

1.3. AN APPROACH 

The	 approach	 throughout	 this	 work	 is	 classic	 Human-Computer	 Interaction	
research.	 This	 dissertation	 explores	 program	 understanding	 and	 debugging	 as	
human	 activities,	 observing	 different	 populations	 of	 programmers	 and	 different	
kinds	 of	 tools,	 looking	 for	 commonalities.	 These	 studies	 are	 each	 grounded	 in	 a	
different	 type	 of	 methodology	 and	 gather	 a	 different	 type	 of	 data,	 leading	 to	
convergent	validity,	a	 triangulation	of	evidence.	The	results	of	 these	studies	and	of	
the	process	itself	was	the	Whyline	concept.	The	process	of	designing	each	Whyline	
prototype	was	grounded	 in	empirical	evidence,	both	 from	 the	original	 studies	and	
from	many	iterations	of	usability	testing	and	redesign.		



Chapter	1:	Introduction	 4

The	 <inal	 step	 in	 the	 process	 was	 to	 assess	 the	 Whyline’s	 impact	 on	 developers’	
work.	 If	 program	 understanding	 is	 a	 hypothesis-driven	 task	 that	 fails	 because	
developers	 must	 guess,	 then	 a	 tool	 that	 avoids	 speculation	 about	 the	 causes	 of	
output	 should	 help	 people	 be	 more	 successful	 than	 those	 using	 traditional	
debugging	 tools.	The	 <inal	 chapters	of	 this	dissertation	 test	 this	claim	across	 three	
studies	and	show	it	to	be	true	for	a	variety	of	program	understanding	tasks.	

 

Figure	1.1.	On	the	top,	a	question	about	the	color	of	a	rectangle	using	the	
Whyline	for	Java.	On	the	bottom,	the	corresponding	answer,	showing	the	
source	of	the	black	color	and	the	causes	of	its	creation	(gSlider	was	used	twice	
instead	of	bSlider).



Chapter	1:	Introduction	 5

1.4. DEFINITIONS 

There	 are	 a	 number	 of	 terms	 and	 phrases	 used	 in	 this	 dissertation	 that	 deserve	
some	consistent	use	(despite	their	inconsistent	use	in	HCI	and	software	engineering	
literature).	 First	 and	 most	 importantly	 are	 various	 classi<ications	 of	 people	 who	
write	 code.	 In	 this	 dissertation,	 developer	 is	 used	 to	 refer	 to	 anyone	 who	 writes	
computer	code	in	order	to	have	a	computer	take	some	later	action.	Novice	developers	
are	 those	 who	 have	 little	 practice	 at	 this	 activity;	 skilled	 developers	 have	 more	
experience.	 Professional	 developers	 get	 paid	 to	 write	 code.	 End-user	 programmers	
write	 code	 to	 support	 some	 other	 work	 task	 or	 hobby	 (writing	 code	 is	 not	 their	
primary	goal).	This	dissertation	uses	the	generic	term	of	developer	to	encompass	all	
of	these	categories	and	does	not	assume	any	particular	experience	or	context.	

There	 are	 many	 types	 of	 software	 development	 activities	 mentioned	 in	 this	
document.	Program	understanding	is	any	process	a	developer	undergoes	to	develop	
an	explanation	of	how	a	program	executed	or	will	execute.	There	are	many	named	
activities	 of	 this	 kind	 that	 are	 distinguished	 by	 their	 goals.	Debugging	 is	 program	
understanding	 with	 the	 goal	 of	 understanding	 a	 particular	 class	 of	 program	
executions	 that	 exhibit	 an	 undesirable	 behavior.	 Reverse	 engineering	 is	 program	
understanding	with	the	goal	of	understanding	the	larger	architectural	relationships	
between	program	elements.	Enhancement	 tasks	are	 reverse	 engineering	 tasks	 that	
have	 the	 goal	 of	 <inding	 an	 appropriate	way	 to	 add	 new	 features	 into	 an	 existing	
program	design.	

Because	 this	dissertation	 is	 largely	about	debugging,	 it	 is	 also	 important	 to	 clarify	
the	meaning	of	bug	and	related	terms.	Error	and	defect	are	used	interchangeably	to	
refer	to	some	program	code	that	results	in	a	fault	and/or	failure.	A	fault	is	a	program	
state	 that	 can	 cause	 a	 failure.	 A	 failure	 is	 some	 pattern	 of	 program	 output	 that	 is	
inconsistent	 with	 a	 program’s	 intended	 behavior.	 Bug	 can	 refer	 to	 any	 one	 or	 a	
combination	 of	 error,	 fault,	 or	 failure.	 Regarding	 executions	 of	 programs,	 an	
execution	event	(or	event	 for	 short),	 refers	 to	a	particular	execution	of	a	particular	
instruction	in	a	program’s	code.	A	cause	of	an	execution	event	is	any	other	execution	
event	 that	was	necessary	 for	 an	event	 to	occur.	Causes	 are	 typically	control	 events	
(branches	 and	 other	 conditional	 logic)	 and	 data	 events	 (uses	 and	 assignments	 of	
variables	and	other	memory).	



Chapter	1:	Introduction	 6

1.5. CONTRIBUTIONS 

Throughout	this	dissertation,	there	are	a	number	of	major	contributions:	

• A	framework	for	modeling	the	cognitive	causes	of	software	errors.	

• A	methodology	for	reconstructing	the	causes	of	software	errors	from	video	
and	verbal	data.	

• Evidence	that	developers	verbalize	“why	did”	and	“why	didn’t”	questions	in	
response	to	program	failures,	but	form	false	hypotheses	about	the	causes	of	
program	failures	on	almost	every	<irst	attempt.	

• Evidence	that	developers	of	all	levels	of	expertise	often	investigate	problems	
that	do	not	exist,	because	they	misinterpret	or	misperceive	program	output.		

• Evidence	that	guessing	incorrectly	about	the	causes	of	a	program	failure	
leads	developers	of	all	expertise	to	spend	more	than	half	their	time	(on	
average)	investigating	irrelevant	code.		

• Evidence	that	users’	questions	about	program	failures	tend	to	specify,	to	
varying	degrees	of	clarity,	both	what	went	wrong	and	when	by	referring	to	
visible	entities,	physical	devices,	or	user	actions	(and	rarely	code).	

• Three	Whyline	prototypes:	for	the	Alice	programming	environment,	for	a	
word	processor,	and	for	graphical	and	textual	Java	programs.	

• Algorithms	for	extracting	“why”	questions	from	source	code	and	execution	
history.	

• Algorithms	for	answering	“why”	questions	using	both	modi<ied	existing	
techniques	and	new	techniques.	

• Timeline	visualizations	representing	answers	that	help	developers	explore	
control	and	data	dependencies	related	to	the	subject	of	their	questions.	

• Evidence	for	all	three	prototypes	that	people	are	signi<icantly	more	
productive	and	successful	when	given	access	to	Whyline	tools.	

1.6. OUTLINE 

As	an	aid	to	the	reader,	Figure	1.2	provides	a	map	for	the	content	in	this	dissertation	
and	depicts	the	<low	of	ideas	over	time	between	studies	and	tools.	



Chapter	1:	Introduction	 7

This	document	itself	has	two	major	parts.	The	<irst	explores	program	understanding	
tools	 and	 how	 they	 are	 used	 today.	 Chapter	 2	 discusses	 the	 history	 of	 studies	 of	
program	 understanding	 in	 a	 variety	 of	 disciplines	 and	 then	 illustrates	 the	 design	
space	of	debugging	and	program	understanding	tools.	Chapters	3	through	7	discuss	
several	of	my	own	studies,	exploring	the	challenges	of	program	understanding.	

The	 rest	 of	 the	 dissertation	 discusses	 the	 Whyline	 concept.	 Chapter	 8	 is	 the	
philosophical	core	of	the	dissertation,	summarizing	both	the	<indings	of	the	studies	
of	 program	 understanding	 and	 illustrating	 the	Whyline	 concept,	 which	 embodies	
these	<indings.	Chapters	9,	10,	and	11	explore	the	Whyline	concept	in	three	domains	
of	software	development	and	use,	including	a	simple	3D	programming	environment,	
a	word	processing	application,	and	Java	development	by	experienced	programmers.	
Chapter	 12	 discusses	 limitations	 and	 future	 research	 directions	 of	 the	 Whyline	
approach	and	Chapter	13	concludes.	

Figure	1.2.	A	historical	map	of	the	contributions	in	this	dissertation	and	their	
corresponding	chapters.	The	arrows	represent	the	approximate	Zlow	of	ideas	
from	studies	to	tools	and	tools	to	studies.	The	height	of	the	boxes	approximate	
the	time	spent	on	each	portion	of	the	research.



2.

RELATED WORK  3

Researchers	have	approached	the	problem	of	program	understanding	from	a	variety	
of	perspectives,	studying	the	people	who	do	it	and	their	strategies,	but	also	inventing	
a	 range	 of	 tools	 and	 techniques	 to	 support	 it.	 This	 chapter	 explores	 both	 of	 these	
perspectives	and	attempts	to	describe	a	conceptual	foundation	in	which	they	can	be	
understood.	To	do	this,	this	chapter	explores	two	major	areas	of	research:	the	history	
of	studies	of	programmers	understanding	software	and	the	design	space	of	program	
understanding	tools	(as	opposed	to	a	chronology).	

To	 frame	 this	 discussion,	 it	 is	 important	 to	 note	 that	 software	 is	 a	 unique	 kind	 of	
artifact,	 with	 particular	 dynamic	 characteristics.	 The	 execution	 of	 a	 program	 has	
inherent	causality,	determined	by	a	program’s	code	and	other	particular	factors	such	
as	input	and	hardware	behavior.	This	means	that	program	execution	is	often	easily	
reproducible	and	can	be	understood	systematically.	We	can	think	of	the	execution	of	
a	program	resulting	 in	 a	history	of	execution	 events	 (variable	 assignments,	 control	
passing	 from	 function	 to	 function).	We	 can	 think	 of	 this	 sequence	 of	 events	 as	 an	
execution	history.	Of	course,	computers	execute	software	at	millions	of	 instructions	
per	second	and	so	these	execution	histories	can	be	quite	large.	

Within	this	conception,	the	dif<icult	thing	about	program	understanding	is	that	of	all	
the	events	in	an	execution	history,	a	developer	is	typically	interested	in	only	a	few.	In	
this	sense,	program	understanding	is	like	a	search	task.	The	goal	of	debugging	is	to	
<ind	one	or	more	sets	of	 the	code	 fragments	 in	a	program	that	 can	be	modi<ied	 to	

 Portions of this chapter appear in [Ko 2005c].3



Chapter	2:	Related	Work	 9

prevent	a	speci<ic	program	failure.	In	a	reverse	engineering	task,	the	goal	is	to	<ind	a	
set	of	code	fragments	related	to	some	architectural	feature.	In	order	to	successfully	
determine	any	such	set,	 the	programmer	must	 search	a	 space	of	execution	events,	
code,	all	of	the	dependencies	between	the	two,	and	perhaps	even	different	versions	
of	the	program	as	they	change	over	time.	This	is	no	simple	search.	

2.1. STUDIES OF PROGRAM UNDERSTANDING 

Given	 these	 de<initions,	 let	 us	 discuss	 various	 factors	 that	 in<luence	 this	 search,	
including	cognitive	factors	(in	a	developer’s	head),	social	factors	(in	the	developer’s	
community	or	 team),	 and	 technical	 factors	 (in	 the	program’s	 code	and	 its	 changes	
over	time).	The	goal	of	this	section	is	not	to	cover	all	of	the	studies	that	have	been	
done	on	this	topic,	but	instead	highlight	historical	milestones	in	the	<indings	of	such	
studies,	as	they	relate	to	debugging	and	program	understanding.	

2.1.1.  COGNITIVE FACTORS 

There	 is	 a	 long	 history	 of	 empirical	 research	 on	 debugging	 and	 program	
understanding,	 dating	 back	 to	 the	 1950’s	 (called	 psychology	 of	 programming	 and	
empirical	 studies	 of	 programming,	 among	 other	 names).	 These	 bodies	 of	 work	
largely	 focus	 on	 forming	 predictive	 theories	 of	 developer	 behavior	 and	 providing	
insight	 into	 the	 fundamental	dif<iculties	of	program	understanding.	 Since	 the	mid-
seventies,	 researchers	 have	 categorized	 the	 various	 types	 of	 “bugs”	 that	 people	
insert	into	programs,	leading	to	a	variety	of	insights.	For	example,	Eisenberg	studied	
novice	bugs	 in	APL	and	proposed	categories	such	as	“Gestalt	bug,”	which	occurred	
when	a	programmer	did	not	 foresee	the	side	effects	of	a	command	[Eisenberg	and	
Peele	1983].	Subsequent	studies	focused	on	novice	mistakes	in	other	languages,	but	
as	 software	became	more	ubiquitous,	 the	 focus	moved	 to	more	skilled	developers.	
For	example,	Knuth	recorded	all	of	the	debugging	he	performed	in	the	development	
of	 TeX	 [Knuth	 1989],	 revealing	 that	 the	 majority	 of	 his	 mistakes	 were	 due	 to	
oversights,	which	 he	 labeled	 “surprise	 scenarios.”	 Eisenstadt	 interviewed	 industry	
developers	 and	 found	 that	 50%	 of	 the	 debugging	 dif<iculties	 were	 attributable	 to	
two	 sources:	 large	 temporal	 or	 spatial	 chasms	 between	 the	 root	 cause	 and	 the	
symptom,	 and	 bugs	 that	 rendered	 debugging	 tools	 useless	 [Eisenstadt	 1997].	 Of	
course,	these	results	are	biased	by	the	fact	that	Eisenstadt	only	interviewed	people	
about	memorable	bugs.	



Chapter	2:	Related	Work	 10

Researchers	 also	 studied	 program	 understanding	 from	 a	 theoretical	 perspective,	
performing	controlled	studies	to	investigate	how	developers	approached	the	task	of	
understanding	or	debugging	a	program.	In	one	of	the	earliest	investigations	into	the	
cognitive	 processes	 of	 software	 development,	 Brooks	 found	 that	 debugging	 and	
other	understanding	activities	were	primarily	hypothesis-driven	 [Brooks	1972]:	 to	
explain	 how	a	program	performs	 a	 particular	 function,	 a	 developer	 generates	 and	
tests	a	hypothetical	explanation	of	the	program’s	behavior	using	both	cognitive	and	
external	resources.	Studies	by	Littmann	et	al.	[1986]	and	Gugerty	and	Olson	[1986]	
found	that	skilled	programmers	tended	to	form	more	accurate	hypotheses	about	the	
causes	of	program	behavior	than	novices,	and	that	novices	often	inserted	errors	into	
their	 programs	 while	 debugging	 because	 of	 their	 inaccurate	 hypotheses.	 Gilmore	
[1992]	 studied	 existing	models	 of	 programmers’	 debugging	 strategies,	 which	 had	
primarily	described	debugging	as	only	a	fault	localization	activity,	and	proposed	that	
hypothesis	 formation	 and	 testing	 is	 central	 not	 only	 to	 program	 understanding	
tasks,	 but	 also	 to	 implementation	 and	 design	 activities.	 Vans	 and	 von	Mayrhauser	
replicated	many	of	these	<indings	in	a	study	of	a	larger	system	[1999].	

In	addition	to	studying	hypothesis	 formation	 in	program	understanding,	a	number	
of	 studies	 characterized	developers’	 strategies	 for	hypothesis	 testing.	 For	example,	
Koenemann	and	Robertson	[1991]	argued	that	developers	 follow	primarily	an	“as-
needed”	 strategy	 for	 understanding	 programs,	 in	 which	 developers’	 process	 was	
unplanned	 and	 opportunistic.	 This	 contrasts	 with	 the	 <indings	 of	 Littman	 et	 al.	
[1986],	who	argued	that	skilled	programmers	 followed	a	more	systematic	strategy	
than	novices,	characterized	by	concrete	plans	and	guided	navigations	of	a	program’s	
dependencies.	It	has	since	been	shown	that	both	skilled	and	novice	developers	use	a	
combination	 [Baniassad	 2002,	 Robillard	 2004],	 but	 that	 systematic	 strategies	 are	
generally	 more	 productive	 than	 “as-needed”	 strategies	 [Boehm	 1976,	 Pennington	
1987,	 Robillard	 2004].	 Katz	 and	 Anderson	 [1988]	 identi<ied	 other	 less	 common	
strategies	for	hypothesis	testing,	including	hand-simulation	of	a	program’s	execution	
and	 more	 rigorous	 causal	 reasoning.	 Few	 of	 these	 studies	 investigate	 how	
developers	 actually	 form	 their	 hypotheses,	 nor	 what	 factors	 in<luence	 their	
formation.	This	is	a	central	issue,	given	that	many	of	the	dif<iculties	that	developers	
had	in	these	studies	were	due	to	false	hypotheses.	

More	recently,	studies	have	considered	the	questions	that	programmers	ask	during	
understanding	 tasks.	 Sillito	 et	 al.	 identi<ied	 44	 questions	 that	 center	 around	 the	
concept	of	a	focus	point,	which	are	places	in	source	code	related	to	the	developer’s	



Chapter	2:	Related	Work	 11

goal.	 They	 group	 these	 questions	 around	 <inding	 initial	 focus	 points,	 building	 on	
focus	points,	connecting	 focus	points,	and	 integrating	 focus	points,	but	 the	speci<ic	
questions	generally	focus	on	code	speci<ic	questions	such	as	“Where	are	instances	of	
this	class	created?”	or	“Is	there	an	exemplar	for	this?”	LaToza	et	al.	describe	a	similar	
study,	 framing	 program	 understanding	 tasks	 as	 “fact	 <inding”	 missions,	 driven	 by	
developers’	 efforts	 to	 discover	 properties	 of	 the	 program	 at	 varying	 levels	 of	
abstraction	[LaToza	2007].	These	newer	studies	are	largely	consistent	with	those	in	
past	decades,	but	have	arisen	out	of	a	need	to	characterize	program	understanding	
in	the	context	of	much	larger	and	more	complex	application	development.	They	have	
also	strived	to	be	more	concrete	about	the	types	of	questions	that	developers	ask.	

2.1.2.  SOCIAL FACTORS 

Several	previous	studies	have	documented	 the	social	nature	of	development	work,	
much	of	it	<inding	that	despite	stereotypes,	software	developers	communicate	with	
each	 other	 quite	 often.	 Perry,	 Staudenmayer	 and	 Votta	 reported	 that	 over	 half	 of	
developers’	 time	was	 spent	 interacting	with	 coworkers	 [Perry	1994].	Much	of	 this	
communication	 is	 to	 maintain	 awareness.	 de	 Souza,	 et	 al.	 [2003]	 found	 that	
developers	send	emails	before	check-ins	to	allow	their	peers	to	prepare	for	changes.	
Collocation	is	a	central	 factor	in	determining	the	quality	of	awareness	information.	
Seaman	and	Basili	found	that	the	ability	to	meet	face	to	face	facilitates	awareness	in	
ways	that	are	unavailable	in	distributed	situations,	where	communication	is	remote	
[Seaman	 1998].	 Similarly,	 coordination	 problems	 can	 be	 exaggerated	 across	 sites	
because	 of	 the	 lack	 of	 spontaneous	 communication	 channels	 [Gutwin	 2004].	
Developers	also	communicate	to	obtain	knowledge	[Hertzum	2002].	LaToza,	Venolia	
and	 DeLine	 describe	 the	 role	 of	 the	 “team	 historian,”	 who	 possesses	 knowledge	
about	the	origins	of	a	project	and	its	architecture	[LaToza	2006].	To	determine	who	
to	ask,	developers	often	gauge	expertise	by	inspecting	check-in	logs	[de	Souza	2003],	
but	such	information	is	not	always	accurate	[McDonald	1998].	One	consequence	of	
developers’	 frequent	 communication	 is	 the	 fragmentation	 of	 time.	 Gonzalez,	Mark	
and	Harris	 found	that	developers	average	about	3	minutes	on	a	 task	and	about	12	
minutes	in	an	area	of	work	before	switching	[Gonzalez	2005].	These	switches	occur	
due	 to	 changing	 task	 priorities	 and	 getting	 blocked	 [Perry	 1994].	 Perlow	 related	
how	one	software	group's	frequent	interruptions	created	a	sense	of	a	"time	famine”
—having	too	much	to	do	and	not	enough	time	[Perlow	1999].	



Chapter	2:	Related	Work	 12

Dependencies	are	also	a	central	factor	in	software	development.	Developers	use	bug	
reports,	 content	 management	 systems,	 and	 version	 control	 systems	 to	 manage	
dependencies	 and	notify	 coworkers	 of	 new	dependencies	 [de	 Souza	2003].	 Teams	
will	clone	software	to	avoid	dependencies,	even	though	they	later	have	to	duplicate	
<ixes	 to	 the	 cloned	 code	 [LaToza	 2006].	 Developers	 also	 rush	 their	 activities	 to	
minimize	dependencies	between	their	code	and	recently	committed	changes	in	the	
repository	 [de	 Souza	 2003].	 Unfortunately,	 the	 previous	 research	 has	 failed	 to	
explore	 this	 notion	 of	 dependency	 in	 the	 context	 of	 program	 understanding.	 For	
example,	we	 know	 little	 about	what	 kinds	 of	 dependencies	 are	 dif<icult	 to	 <ind	 or	
which	ones	developers	commonly	look	for.	

2.1.3. TECHNICAL FACTORS 

Another	reason	 that	program	understanding	 is	dif<icult	 is	 that	modern	software	 is	
inherently	complex:	the	parts	of	a	system	that	are	related	to	a	developer’s	particular	
task	 are	 often	 distributed	 throughout	 a	 system’s	 modules,	 and	 can	 interact	 in	
unpredictable	 ways	 when	 a	 program	 executes	 [Eick	 2001,	 LaToza	 2005].	 This	 is	
complicated	by	the	fact	that	most	useful	software	undergoes	a	brief	period	of	rapid	
development,	followed	by	a	much	longer	and	more	costly	period	of	maintenance	and	
adaptation	 to	 new	 contexts	 of	 use	 [Boehm	 1976,	 Lehman	 1985].	 The	 fact	 that	
software	 can	 change	 rapidly	 and	 in	 unpredictable	 ways	 only	 exacerbates	 the	
cognitive	and	social	challenges	mentioned	earlier.	

Another	 technical	 concept,	proposed	by	 [Murphy	2005]	 (and	 independently	 in	 the	
work	described	in	Chapter	5),	is	that	of	a	task	context:	the	parts	and	relationships	of	
artifacts	 relevant	 to	a	developer	during	work	on	a	maintenance	 task.	A	number	of	
important	 contributions	 have	 been	 built	 around	 this	 concept,	 including	 ways	 of	
representing	 task	 contexts	 [Reiss	 1996,	 Robillard	 2003b],	 tools	 that	 enable	
developers	 to	 manually	 build	 a	 task	 context	 by	 selecting	 program	 elements	
[Robillard	2002],	 and	methods	of	 automatically	 inferring	 the	 relevant	 task	 context	
based	 on	 a	 developer’s	 investigations	 in	 a	 development	 environment	 [Robillard	
2003a][Robillard	 2005].	 Each	 of	 these	 tools	 is	 inspired	 by	 the	 notion	 that	 every	
program	is	 <lush	with	 technical	dependencies,	both	 internal	ones	(such	as	 “line	36	
calls	method	M”),	 but	 also	external	ones,	 linked	by	natural	 language	 (for	 example,	
“bug	283	is	related	to	component	C”).	



Chapter	2:	Related	Work	 13

2.2. CAUSES OF SOFTWARE ERRORS 

Since	much	of	program	understanding	is	debugging,	it	is	also	helpful	to	understand	
where	errors	in	source	code	come	from.	Many	of	the	causes	of	these	errors	lie	in	the	
same	problems	of	human	cognition	that	cause	dif<iculty	in	debugging.	

2.2.1. CLASSIFICATIONS OF ERRORS 

Prior	 work	 on	 classifying	 common	 programming	 dif<iculties—summarized	
chronologically	 in	 Table	 2.1—has	 been	 reasonably	 successful	 in	 motivating	 novel	
and	 effective	 tools	 for	 <inding,	 understanding	 and	 repairing	 software	 errors.	 For	
example,	 in	 the	 early	 ‘80’s,	 the	 Lisp	 Tutor	 drew	 heavily	 from	 analyses	 of	 novices’	
software	 errors	 [Anderson	 1985]	 and	 nearly	 approached	 the	 effectiveness	 of	 a	
human	 tutor.	 More	 recently,	 the	 testing	 and	 debugging	 features	 of	 the	 Forms/3	
visual	spreadsheet	language	[Burnett	2001]	were	largely	motivated	by	studies	of	the	
type	and	prevalence	of	spreadsheet	errors	[Panko	1998].	

Table	2.1.	Studies	classifying	“bugs”,	“errors”	and	“problems”	in	various	
languages,	expertise,	and	programming	contexts.	
Study	 Bug/Error/

Problem
Description Comments

Gould	
1975	
Novice	
Fortran

Assignment	bug Software	errors	in	assigning	variables’	values Requires	understanding	of	
behavior

Iteration	bug Software	errors	in	iteration	algorithms Requires	understanding	of	
language

Array	bug Software	errors	in	array	index	expressions Requires	understanding	of	
language

Eisenberg	
1983	
Novice		
APL	

Visual	bug Grouping	related	parts	of	expression

Naive	bug Iteration	instead	of	parallel	processing ‘…need	to	think	step-by-step’

Logical	bug Omitting	or	misusing	logical	connectives

Dummy	bug Experience	with	other	languages	interfering ‘…seem	to	be	syntax	oversights’

Inventive	bug Inventing	syntax

Illiteracy	bug Dif<iculties	with	order	of	operations

Gestalt	bug Unforeseen	side	effects	of	commands ‘…failure	to	see	the	whole	picture’

Johnson	et	
al.	1983		
Novice	
Pascal

Missing Omitting	required	program	element Software	errors	have	context:	
input/output,	declaration,	
initialization	and	update	of	
variables,	conditionals,	and	scope	
delimiters.

Spurious Unnecessary	program	element	

Misplaced	 Required	program	element	in	wrong	place

Malformed	 Incorrect	program	element	in	right	place

Spohrer	&	
Soloway	
1986		
Novice	
Basic

Data-type	
inconsistency	

Misunderstanding	data	types

‘All	bugs	are	not	created	equal.	
Some	occur	over	and	over	again	in	
many	novice	programs,	while	

Natural	language	 Applying	natural	language	semantics	to	code

Human-interpreter Assuming	computer	interprets	code	similarly	

Negation	&	whole-
part	

Dif<iculties	constructing	Boolean	expressions



Chapter	2:	Related	Work	 14

Despite	the	successful	use	of	these	classi<ications,	in	hindsight	it	is	clear	that	that	the	
classi<ications	 do	 not	 actually	 classify	 software	 errors,	 but	 rather,	 the	 complex	
relationships	 between	 software	 errors,	 runtime	 faults,	 runtime	 failures,	 and	
cognitive	 failures.	 Nevertheless,	 in	 analyzing	 these	 classi<ications,	 four	 salient	
aspects	of	software	errors	emerge.	

The	<irst	is	a	software	error’s	surface	qualities:	the	particular	syntactic	or	notational	
anomalies	that	make	a	code	fragment	incorrect.	Eisenberg’s	dummy	bug	is	a	class	of	

Duplicate	tail-digit	 Incorrectly	typing	constant	values
Some	occur	over	and	over	again	in	
many	novice	programs,	while	
others	are	more	rare…Most	bugs	
result	because	novices	
misunderstand	the	semantics	of	
some	particular	programming	
language	construct.’

Knowledge	
interference	

Domain	knowledge	interfering	w/	constants

Coincidental	
ordering	

Malformed	statements	produce	correct	
output

Boundary	 Unanticipated	problems	with	extreme	values

Plan	dependency	 Unexpected	dependencies	in	program	

Expectation/
interpretation

Misunderstanding	problem	speci<ication

Knuth		
1989	
While	
writing	
TeX	in	
SAIL	and	
Pascal	

Algorithm	awry Improperly	implemented	algorithms ‘proved…incorrect	or	inadequate’
Blunder	or	botch Accidentally	writing	code	not	to	

speci<ications
‘not…	enough	brainpower’

Data	structure	
debacle

Software	errors	in	using	data	structures “did	not	preserve…invariants”

Forgotten	function Missing	implementation ‘I	did	not	remember	everything’

Language	liability Misunderstanding	language/environment

Module	mismatch Imperfectly	knowing	speci<ication ‘I	forgot	the	conventions	I	had	built’

Robustness Not	handling	erroneous	input ‘tried	to	make	the	code	bullet-
proof”

Surprise	scenario Unforeseen	interactions	in	program	
elements

‘forced	me	to	change	my	ideas’

Trivial	typos Incorrect	syntax,	reference,	etc. ‘my	original	pencil	draft	was	
correct’

Eisenstadt	
1993	
Industry	
experts	
COBOL,	
Pascal,	
Fortran,	C

Clobbered	memory	 Overwriting	memory,	subscript	out	of	
bounds

Also	identi<ied	why	software	errors	
were	dif<icult	to	<ind:	cause/effect	
chasm;	tools	inapplicable;	failure	
did	not	actually	happen;	faulty	
knowledge	of	specs;	“spaghetti”	
code.

Vendor	problems Buggy	compilers,	faulty	hardware

Design	logic	 Unanticipated	case,	wrong	algorithm

Initialization Erroneous	type	or	initialization	of	variables

Variable Wrong	variable	or	operator	used

Lexical	bugs Bad	parse	or	ambiguous	syntax

Language Misunderstandings	of	language	semantics

Panko	
1998	
Novice	
Excel

Omission	error Facts	to	be	put	into	code,	but	are	omitted
Quantitative	errors:	“errors	that	
lead	to	an	incorrect,	bottom	line	
value”

Logic	error Incorrect	or	incorrectly	implemented	
algorithm	

Mechanical	error Typing	wrong	number;	pointing	to	wrong	
cell

Overload	error Working	memory	unable	to	<inish	without	
error Qualitative	errors:	“design	errors	

and	other	problems	that	lead	to	
quantitative	errors	in	the	future”

Strong	but	wrong	
error

Functional	<ixedness	(a	<ixed	mindset)

Translation	error Misreading	of	speci<ication

Study	 Bug/Error/
Problem

Description Comments



Chapter	2:	Related	Work	 15

syntax	 oversights;	 Knuth’s	 trivial	 typos	 and	 Panko’s	 mechanical	 errors	 simply	
describe	unintended	text	in	a	program;	Gould	identi<ies	particular	surface	qualities	
of	 erroneous	 assignment	 statements	 and	 array	 references	 in	 his	 study	 of	 Fortran.	
Clearly,	 the	 surface	 qualities	 of	 software	 errors	 are	 greatly	 in<luenced	 by	 the	
language	 syntax.	While	 it	may	 seem	 that	 these	 qualities	 have	 little	 to	 do	with	 the	
actual	 cause	of	 software	errors,	 the	 fact	 that	 they	are	 common	enough	 to	warrant	
their	own	category	suggests	that	syntax	can	be	a	cause	of	software	errors	on	its	own.	

Other	categories	allude	to	several	cognitive	causes	of	software	errors.	For	example,	
Eisenberg’s	 inventive	 bug,	 Spohrer	 and	 Soloway’s	 data-type	 inconsistency,	 and	
Johnson’s	 misplaced	 and	 malformed	 categories	 all	 refer	 to	 programmers’	 lack	 of	
knowledge	 about	 language	 syntax,	 control	 constructs,	 data	 types,	 and	 other	
programming	 concepts.	 Knuth’s	 forgotten	 function	 category	 and	 Eisenstadt’s	
variable	 bugs	 suggest	 attentional	 issues	 such	 as	 forgetting	 or	 a	 lack	 of	 vigilance.	
Eisenstadt’s	 design	 logic	 bugs	 and	 Knuth’s	 surprise	 scenario	 category	 indicate	
strategic	 issues,	 referring	 to	 problems	 like	 unforeseen	 code	 interactions	 or	 poorly	
designed	algorithms.	

A	third	aspect	of	software	errors	is	the	programming	activity	in	which	the	cause	of	
the	 software	 error	 occurred.	 For	 example,	 Knuth’s	 module	 mismatch	 bugs	 and	
Spohrer	 and	 Soloway’s	 expectation	 and	 interpretation	 problems	 all	 occur	 in	
speci<ication	 activities,	 in	 which	 the	 programmer’s	 invalid	 or	 inadequate	
comprehension	 of	 design	 speci<ications	 later	 led	 to	 software	 errors.	 Spohrer	 and	
Soloway’s	 plan	 dependency	 problem	 occurs	 during	 algorithm	 design	 activities,	 in	
which	unforeseen	interactions	eventually	led	to	software	errors.	

A	fourth	and	<inal	aspect	of	software	errors	is	the	type	of	action	that	led	to	the	error.	
The	 classi<ications	 suggest	 six	 types	 of	 programming	 actions,	 which	 are	 listed	 in	
Table	2.2	with	examples.	For	instance,	programmers	can	introduce	software	errors	
when	creating	code,	but	the	creation	of	speci<ications	can	also	predispose	software	
errors	 (as	 in	 Spohrer	 and	 Soloway’s	 expectation/interpretation	 problems).	
Programmers	 also	 reuse	 code,	 modify	 speci<ications	 and	 code,	 design	 software	
architectures	and	algorithms	and	explore	code	and	runtime	data.	The	classi<ications	
also	 blame	 the	 understanding	 of	 speci<ications,	 data	 structures,	 and	 language	
constructs	for	several	types	of	software	errors.	



Chapter	2:	Related	Work	 16

While	these	classi<ications	go	a	long	way	in	conveying	the	scope	and	complexity	of	
several	 aspects	 of	 software	 errors,	 they	 only	 go	 so	 far	 in	 relating	 these	 aspects	
causally.	For	example,	what	looks	like	an	erroneously	coded	algorithm	on	the	surface	
may	have	 been	 caused	by	 an	 invalid	 understanding	 of	 the	 speci<ications,	 a	 lack	 of	
experience	 with	 a	 language	 construct,	 misleading	 information	 from	 a	 debugging	
session,	or	 simply	momentary	 inattention.	Each	possible	 cause	motivates	different	
interventions.	

2.2.2. HUMAN ERROR IN PROGRAMMING ACTIVITY 

To	fully	understand	how	the	interaction	between	a	programmer	and	a	programming	
system	 can	 lead	 to	 software	 errors,	 a	 more	 general	 discussion	 of	 the	 underlying	
cognitive	 mechanisms	 of	 human	 error	 is	 necessary.	 James	 Reason’s	 Human	 Error	
[Reason	 1990],	 grounded	 in	 studies	 of	 engineering	 and	 organizations	 as	 well	 as	
human	cognition,	provides	a	solid	foundation	for	this	discussion.	This	section	adapts	
two	aspects	of	his	research	 to	 the	domain	of	programming:	 (1)	a	systemic	view	of	
the	causes	of	failure,	and	(2)	a	brief	catalog	of	common	failures	in	human	cognition.	

Reason	 distinguishes	 between	 active	 errors,	 whose	 effects	 are	 felt	 almost	
immediately,	 such	 as	 syntax	 errors	 that	 prevent	 successful	 compilation	 or	 invalid	

Action Examples	of	the	action	in	programming	activity
Creating Writing	code,	or	creating	design	and	requirement	speci<ications
Reusing Reusing	example	code,	copying	and	adapting	existing	code
Modifying Modifying	code	or	changing	speci<ications
Designing Considering	various	software	architectures,	data	types,	algorithms,	etc.
Exploring Searching	for	code,	documentation,	runtime	data

Understanding Comprehending	a	speci<ication,	an	algorithm,	a	comment,	runtime	
behavior,	etc.

Table	2.2.	Actions	performed	during	programming	activity.	



Chapter	2:	Related	Work	 17

algorithms,	and	latent	errors,	“whose	adverse	consequences	may	lie	dormant	within	
the	 system	 for	 a	 long	 time,	 only	becoming	 evident	when	 they	 combine	with	other	
factors	to	breach	the	system’s	defenses”	[Reason	1990].	The	fundamental	idea	is	that	
complex	 systems	 have	 several	 functional	 layers,	 each	 with	 potential	 latent	 errors	
that	 predispose	 failure,	 but	 also	 with	 a	 set	 of	 defenses	 that	 prevent	 latent	 errors	
from	becoming	active.	From	this	perspective,	failures	are	ultimately	due	to	a	causal	
chain	of	failures	both	within	and	between	layers	of	a	system.	

These	 ideas	are	applied	 to	 software	engineering	 in	Figure	2.1.	The	 <igure	portrays	
four	 layers,	 each	 with	 its	 own	 type	 of	 latent	 errors	 and	 defenses.	 On	 the	 left,	
speci<ications	 act	 as	 high-level	 defenses	 against	 software	 errors,	 but	 if	 they	 are	
ambiguous,	 incomplete,	 or	 incorrect,	 they	 may	 predispose	 programmers	 to	
misunderstandings	 about	 a	 software	 system’s	 true	 requirements.	 By	 improving	
software	 engineering	 practices,	 there	 will	 be	 fewer	 latent	 errors	 in	 design	
speci<ications,	 which	 will	 prevent	 programmers’	 invalid	 or	 incomplete	
understanding	 of	 speci<ications.	 Programmers,	 the	 next	 layer	 in	 Figure	 2.1,	 have	
knowledge,	 attention,	 and	 expertise	 to	 defend	 against	 software	 errors.	 However,	
programmers	 are	 also	 prone	 to	 cognitive	 breakdowns	 in	 these	 defenses,	 which	
predispose	software	errors.	The	next	section	discusses	these	breakdowns	in	detail.	
The	 third	 layer	 in	 Figure	 2.1,	 the	 programming	 system,	 consists	 of	 several	
components	 (compilers,	 libraries,	 languages,	environments,	 etc.).	Each	has	a	 set	of	
defenses	 against	 software	 errors,	 but	 also	 a	 set	 of	 latent	 usability	 issues	 that	
predispose	the	programmer	to	cognitive	breakdowns,	and	thus	software	errors.	For	
example,	compilers	defend	against	syntax	errors,	but	 in	displaying	confusing	error	
messages,	may	misguide	programmers	in	correctly	repairing	the	syntax	errors.	The	
last	 layer,	 the	program,	has	 the	 latent	errors	known	as	 software	errors,	which	 can	
eventually	lead	to	a	program’s	runtime	failure.	

It	 is	 important	 to	 note	 that	 latent	 errors	 in	 these	 layers	 only	 become	 active	 in	
particular	circumstances.	Just	as	a	program	may	only	fail	with	particular	input	and	
in	 particular	 states,	 programming	 systems,	 programmers,	 and	 speci<ications	 may	
only	fail	in	particular	situations.	

Within	 the	 broad	 view	 of	 software	 errors	 portrayed	 in	 Figure	 2.1,	 this	 section	
focuses	on	the	programmer’s	latent	errors—what	I	will	call	cognitive	breakdowns—
and	how	the	programming	system	might	be	involved	in	predisposing	these	cognitive	
breakdowns.	 Reason’s	 central	 thesis	 about	 human	 behavior	 is	 that	 in	 any	 given	



Chapter	2:	Related	Work	 18

context,	 individuals	 will	 behave	 in	 the	 same	 way	 they	 have	 in	 the	 past	 in	 that	
context.	 Under	 most	 circumstances,	 these	 “default”	 behaviors	 are	 suf<icient;	
however,	 under	 exceptional	 or	 novel	 circumstances,	 they	 may	 lead	 to	 error.	 In	
programming,	this	means	that	when	solving	problems,	programmers	tend	to	prefer	
programming	 strategies	 that	 have	 been	 successful	 in	 the	 past.	 These	 default	
strategies	are	usually	successful,	but	they	sometimes	break	down—hence	the	term	
cognitive	breakdowns—and	lead	to	software	errors.	

In	order	to	clarify	the	sources	of	these	breakdowns,	Reason	discusses	three	general	
types	of	cognitive	activity,	each	prone	to	certain	types	of	cognitive	breakdowns.	The	
most	proceduralized	of	the	three,	skill-based	activity,	usually	fails	because	of	a	lack	of	
attention	given	to	performing	routine,	skillful	patterns	of	actions.	Rule-based	activity,	
which	is	driven	by	learned	expertise,	usually	fails	because	the	wrong	rule	is	chosen,	
or	 the	 rule	 is	 inherently	 bad.	 Knowledge-based	 activity,	 centered	 on	 conscious,	
deliberate	problem	solving,	suffers	from	cognitive	limitations	and	biases	inherent	in	
human	cognition.	This	section	discusses	all	three	types	of	cognitive	activity	and	their	
accompanying	breakdowns	in	detail.	

Skill-based	activities	are	routine	and	proceduralized,	where	the	focus	of	attention	is	
on	 something	 other	 than	 the	 task	 at	 hand.	 Some	 skill-based	 activities	 in	

	

Figure	2.1.	Dynamics	of	software	error	production,	based	on	Reason's	systemic	
view	of	failure.	Each	layer	has	latent	errors	(the	holes),	predisposing	certain	
types	of	failures.	Layers	also	have	defenses	against	failures	(where	there	are	
no	holes).	Several	layers	of	failure	must	go	unchecked	before	software	errors	
are	introduced	into	code.



Chapter	2:	Related	Work	 19

programming	 include	 typing	 a	 text	 string,	 opening	 a	 source	 <ile	 with	 a	 <ile	 open	
dialog,	 or	 compiling	 a	 program	 by	 pressing	 a	 button	 in	 the	 programming	
environment.	These	are	practiced	and	routine	 tasks	 that	can	be	 left	 in	 “auto-pilot”	
while	 a	 programmer	 attends	 to	 more	 problem-oriented	 matters.	 An	 important	
characteristic	of	skill-based	activities	is	that	because	attention	is	focused	internally	
on	 problem	 solving	 and	 not	 externally	 on	 performing	 the	 routine	 action,	
programmers	may	not	notice	important	changes	in	the	external	environment.	

Table	2.3	lists	Reason’s	two	categories	of	skill	breakdowns.	Inattention	breakdowns	
are	 a	 failure	 to	 pay	 attention	 to	 performing	 routine	 actions	 at	 critical	 times.	 For	
example,	imagine	a	programmer	<inishing	the	end	of	a	for	loop	header	when	the	<ire	

alarm	goes	off	 in	his	of<ice.	When	he	returns	 to	 the	 loop	after	 the	 interruption,	he	
fails	to	complete	the	increment	statement,	introducing	a	software	error.	Inattention	
breakdowns	may	also	occur	because	of	the	intrusion	of	strong	habits.	For	example,	
consider	a	programmer	who	tends	to	save	modi<ications	to	a	source	<ile	after	every	
change	so	that	important	modi<ications	are	not	lost.	At	one	point,	he	deletes	a	large	
block	of	code	he	thinks	is	unnecessary,	but	immediately	after,	realizes	he	needed	the	
code	 after	 all.	 Unfortunately,	 his	 strong	 habit	 of	 saving	 every	 change	 has	 already	
intruded,	 and	he	 loses	 the	 code	permanently	 (a	 good	motivation	 for	 sophisticated	
undo	mechanisms	in	programming	environments).	

Inattention Type Events	resulting	in	breakdown

Failure	to	attend	
to	a	routine	action	
at	a	critical	time	
causes	forgotten	
actions,	forgotten	
goals,	or	
inappropriate	
actions.

Strong	habit	
intrusion

In	the	middle	of	a	sequence	of	actions	➞	no	attentional	
check	➞	contextually	frequent	action	is	taken	instead	of	
intended	action

Interruptions
External	event	➞	no	attentional	check	➞	action	skipped	
or	goal	forgotten

Delayed	
action

Intention	to	depart	from	routine	activity	➞	no	
attentional	check	between	intention	and	action	➞	
forgotten	goal

Exceptional	
stimuli

Unusual	or	unexpected	stimuli	➞	stimuli	overlooked	➞	
appropriate	action	not	taken

Interleaving
Concurrent,	similar	action	sequences	➞	no	attentional	
check	➞	actions	interleaved

Overattention Type Events	resulting	in	breakdown

Attending	to	
routine	action	
causes	false	

Omission
Attentional	check	in	the	middle	of	routine	actions	➞	
assumption	that	actions	are	already	completed	➞	action	
skipped



Chapter	2:	Related	Work	 20

Overattention	breakdowns	occur	when	attending	to	routine	actions	that	would	have	
been	better	left	to	“auto-pilot.”	For	example,	imagine	a	programmer	has	copied	and	
pasted	 a	 block	 of	 code	 and	 is	 quickly	 coercing	 each	 reference	 to	 a	 contextually	
appropriate	variable.	While	planning	his	next	goal	in	his	head,	he	notices	that	he	has	
not	been	paying	 attention	 and	 interrupts	his	 “auto-pilot,”	 accidentally	 looking	 two	
lines	 down	 from	 where	 he	 actually	 was.	 He	 falsely	 assumes	 that	 the	 statements	
above	were	already	coerced,	leaving	several	invalid	references	in	his	code.	

Rule-based	activities	involve	the	use	of	cognitive	rules	for	acting	in	certain	contexts.	
These	rules	consist	of	some	condition,	which	checks	for	some	pattern	of	signs	in	the	
current	 context.	 If	 the	 current	 context	matches	 the	 condition,	 then	 corresponding	
actions	are	performed.	For	example,	 skilled	C	programmers	 frequently	employ	 the	
rule,	“If	some	operation	needs	to	be	performed	on	the	elements	of	a	list,	type	for(int 

i = some_initial_value; i < some_terminating_value; i++),	 choose	 the	 initial	 and	

causes	false	
assumption	about	
progress	of	action. Repetition

Attentional	check	in	the	middle	of	routine	actions	➞	
assumption	that	actions	are	not	completed	➞	action	
repeated

Table	2.3.	Types	of	skill	breakdowns,	adapted	from	[Reason	1990].	The	➞	
means	“causes.”	



Chapter	2:	Related	Work	 21

terminating	 values,	 then	 perform	 the	 operation.”	 These	 rules	 are	 much	 like	 the	
concept	 of	 programming	 plans	 [Spoher	 1986],	 which	 are	 thought	 to	 underlie	 the	
development	of	programming	expertise	[Davies	1994].	

Table	 2.4	 lists	 Reason’s	 two	 categories	 of	 rule	 breakdowns,	 the	 <irst	 of	 which	 is	
wrong	 rule.	 Because	 rules	 are	 in<luenced	 by	 prior	 experience,	 they	make	 implicit	
predictions	about	the	future	state	of	the	world.	These	predictions	of	when	and	how	
the	 world	 will	 change	 are	 sometimes	 incorrect,	 and	 thus	 a	 rule	 that	 is	 perfectly	
reasonable	in	one	context	may	be	selected	in	an	inappropriate	context.	For	example,	
one	common	breakdown	 in	Visual	Basic.NET	 is	 that	programmers	will	use	 the	 “+”	
operator	 to	 add	 numeric	 values,	 not	 realizing	 that	 the	 values	 are	 represented	 as	
strings,	 and	 so	 the	 strings	 are	 concatenated	 instead.	Under	normal	 circumstances,	
use	 of	 the	 “+”	 operator	 to	 add	 numbers	 is	 a	 perfectly	 reasonable	 rule;	 however,	
because	there	were	no	distinguishing	signs	of	the	variables’	types	in	the	code,	it	was	
applied	inappropriately.		

Empirical	studies	of	programming	have	reliably	demonstrated	many	other	types	of	
wrong	 rule	 breakdowns.	 For	 example,	 Davies’	 framework	 of	 knowledge	
restructuring	in	the	development	of	programming	expertise	suggests	that	a	 lack	of	
training	 in	structured	programming	can	 lead	to	 the	 formation	of	rules	appropriate	
for	 one	 level	 of	 program	 complexity,	 but	 inappropriate	 for	 higher	 levels	 of	
complexity	[Davies	1994].	For	example,	in	Visual	Basic,	the	rule	“if	some	data	needs	
to	 be	 used	 by	 multiple	 event-handlers,	 create	 a	 global	 variable	 on	 the	 form”	 is	
appropriate	for	forms	with	a	small	number	of	event-handlers,	but	quickly	becomes	
unmanageable	in	programs	with	hundreds.	Similarly,	Shackelford	studied	the	use	of	
three	types	of	Pascal	while	loops,	<inding	that	while	most	students	had	appropriate	
rules	for	choosing	the	type	of	loop	for	a	problem,	the	same	rules	failed	when	applied	
to	similar	problems	with	additional	complexities	[Shackelford	1993].	

Wrong	Rule Type Events	resulting	in	breakdown

Use	of	a	rule	
that	is	
successful	in	
most	

Problematic	
signs

Ambiguous	or	hidden	signs	➞	conditions	evaluated	with	
insuf<icient	info	➞	wrong	rule	chosen	➞	inappropriate	
action

Information	
overload

Too	many	signs	➞	important	signs	missed	➞	wrong	rule	
chosen	➞	inappropriate	action

Favored	rules Previously	successful	rules	are	favored	➞	wrong	rule	
chosen	➞	inappropriate	action



Chapter	2:	Related	Work	 22

The	second	 type	of	 rule	breakdown	 is	 the	use	of	a	 bad	 rule:	one	with	problematic	
conditions	or	actions.	These	rules	come	from	learning	dif<iculties,	inexperience,	or	a	
lack	of	understanding	about	a	particular	program’s	semantics.	For	example,	Perkins	
and	 Martin	 demonstrated	 that	 “fragile	 knowledge”—inadequate	 knowledge	 of	
programming	concepts,	algorithms,	and	data	structures,	or	an	inability	to	apply	the	

most	
contexts,	but	
not	all. Favored	signs

Previously	useful	signs	are	favored	➞	exceptional	signs	
not	given	enough	weight	➞	wrong	rule	chosen	➞	
inappropriate	action

Rigidity
Familiar,	situationally	inappropriate	rules	preferred	over	
unfamiliar,	situationally	appropriate	rules	➞	wrong	rule	
chosen	➞	inappropriate	action

Bad	Rule Type Events	resulting	in	breakdown

Use	of	a	rule	
with	
problematic	
conditions	or	
actions.

Incomplete	
encoding

Some	properties	of	problem	space	are	not	encoded	➞	rule	
conditions	are	immature	➞	inappropriate	action

Inaccurate	
encoding

Properties	of	problem	space	encoded	inaccurately	➞	rule	
conditions	are	inaccurate	➞	inappropriate	action

Exception	proves	
rule

Inexperience	➞	exceptional	rule	often	inappropriate	➞	
inappropriate	action

Wrong	action Condition	is	right	but	action	is	wrong	➞	inappropriate	
action

Table	2.4.	Types	of	rule	breakdowns,	adapted	from	[Reason	1990].	



Chapter	2:	Related	Work	 23

appropriate	knowledge	or	strategies—was	to	blame	for	most	novice	software	errors	
when	 learning	 Pascal	 [Perkins	 1986].	 Not	 knowing	 the	 language	 syntax—in	 other	
words,	 not	 encoding	 or	 inaccurately	 encoding	 its	 properties—can	 lead	 to	 simple	
syntax	errors,	malformed	Boolean	logic,	scoping	problems,	the	omission	of	required	
constructs,	 and	 so	 on.	 An	 inadequate	 understanding	 of	 a	 sorting	 algorithm	 may	
cause	 a	 programmer	 to	 unintentionally	 sort	 a	 list	 in	 the	 wrong	 order.	 Von	
Mayrhauser	 and	 Vans	 illustrated	 that	 programmers	 who	 focused	 only	 on	
comprehending	surface	level	features	of	a	program	(variable	and	method	names,	for	
example),	and	thus	had	an	insuf<icient	model	of	the	program’s	runtime	behavior,	did	
far	worse	in	a	corrective	maintenance	task	than	those	who	focused	on	the	program’s	
runtime	behavior	[von	Mayerhauser	1997].	

In	 knowledge-based	 activities,	 Reason’s	 last	 type	 of	 cognitive	 activity,	 the	 focus	 of	
attention	 is	 on	 forming	 plans	 and	 making	 high-level	 decisions	 based	 on	 one’s	
knowledge	 of	 the	 problem	 space.	 In	 programming,	 knowledge-based	 activities	
include	 forming	 a	 hypothesis	 about	 what	 caused	 a	 runtime	 failure,	 or	
comprehending	 the	 runtime	 behavior	 of	 an	 algorithm.	 Because	 knowledge-based	
activities	rely	heavily	on	the	interpretation	and	evaluation	of	models	of	the	world	(in	
programming,	models	of	a	program’s	semantics),	they	are	considerably	taxing	on	the	
limited	 resources	 of	 working	 memory.	 This	 results	 in	 the	 use	 of	 a	 number	 of	
cognitive	“shortcuts”	or	biases,	which	can	lead	to	cognitive	breakdowns.	

Table	2.5	describes	these	biases,	and	how	they	cause	breakdowns	in	the	strategies	
and	plans	that	people	form.	One	important	bias	is	bounded	rationality	[Simon	1956]:	
the	idea	that	the	problem	spaces	of	complex	problems	are	often	too	large	to	permit	
an	exhaustive	exploration,	and	thus	problem	solvers	“satis<ice”	or	explore	“enough”	
of	the	problem	space.	Human	cognition	uses	a	number	of	heuristics	to	choose	which	
information	 to	 consider	 [Reason	 1990]:	 (1)	 evaluate	 information	 that	 is	 easy	 to	
evaluate	 (selectivity);	 (2)	 only	 evaluate	 as	much	 as	 is	 necessary	 to	 form	 a	 plan	 of	
action	 (biased	 reviewing);	 (3)	 evaluate	 information	 that	 is	 easily	 accessible	 in	 the	
world	or	in	the	head	(availability).	

Because	of	the	complexity	of	programming	activity,	bounded	rationality	shows	up	in	
many	 programming	 tasks.	 For	 example,	 Vessey	 argues	 that	 debugging	 is	 dif<icult	
because	 the	 range	 of	 possible	 software	 errors	 causing	 a	 runtime	 failure	 is	 highly	
unconstrained	 and	 further	 complicated	 by	 that	 fact	 that	 multiple	 independent	 or	
interacting	software	errors	may	be	to	blame	[Vessey	1989].	Gilmore	points	out	that,	



Chapter	2:	Related	Work	 24

because	of	their	limited	cognitive	resources,	programmers	generally	only	consider	a	
few	hypotheses	 of	what	 software	 errors	 caused	 the	 failure,	 and	usually	 choose	 an	
incorrect	 hypothesis.	 This	 not	 only	 leads	 to	 dif<iculty	 in	 debugging,	 but	 often	 the	
introduction	of	further	software	errors	due	to	incorrect	hypotheses	[Gilmore	1992].	
For	example,	in	response	to	a	program	displaying	an	unsorted	list	because	the	sort	
procedure	was	 not	 called,	 a	 programmer	might	 instead	 decide	 the	 software	 error	
was	an	 incorrect	 swap	algorithm,	 and	attempt	 to	modify	 the	already	 correct	 swap	
code.	

The	 second	 type	 of	 knowledge	 breakdown	 is	 the	 use	 of	 a	 faulty	 model	 of	 the	
problem	 space.	 For	 example,	 human	 cognition	 tends	 to	 see	 illusory	 correlations	
between	 events;	 it	 tends	 to	 ask	 questions	 that	 con<irm	 beliefs	 rather	 than	 refute	
them	(conJirmation	bias).	These	biases	lead	to	oversimpli<ied	or	incorrect	models	of	
the	problem	space.	Individuals	also	display	overcon<idence,	giving	undue	faith	to	the	
correctness	and	completeness	of	their	knowledge.	This	results	in	strategies	that	are	
based	 on	 incomplete	 analyses.	 For	 example,	 spreadsheet	 users	 exhibit	 so	 much	
overcon<idence	in	their	spreadsheets’	formulas	that	a	single	test	case	is	often	enough	
to	 convince	 them	 of	 their	 spreadsheet’s	 correctness	 [Wilcox	 1997].	 Corritore	 and	
Wiedenbeck	 have	 shown	 that	 programmers’	 overcon<idence	 in	 the	 correctness	 of	
their	mental	models	of	a	program’s	semantics	was	often	the	cause	of	software	errors	
in	programmers’	modi<ications	[Corritore	1999].	

Bounded	
Rationality Type Events	resulting	in	breakdown

Problem	space	
is	too	large	to	
explore	
because	
working	
memory	is	
limited	and	
costly.

Selectivity Psychologically	salient,	rather	than	logically	important	task	
information	is	attended	to	➞	biased	knowledge

Biased	reviewing
Tendency	to	believe	that	all possible	courses	of	action	have	been	
considered,	when	in	fact	very	few	have	been	considered	➞	
suboptimal	strategy

Availability
Undue	weight	is	given	to	facts	that	come	readily	to	mind	➞	facts	
that	are	not	present	are	easily	ignored	➞	biased	knowledge

Faulty	Models	
of	Problem	
Space

Type Events	resulting	in	breakdown

Formation	and	
evaluation	of	

Simpli<ied	
causality

Judged	by	perceived	similarity	between	cause	and	effect	➞	
knowledge	of	outcome	increases	perceived	likelihood	➞	invalid	
knowledge	of	causation



Chapter	2:	Related	Work	 25

2.3. PROGRAM UNDERSTANDING TOOLS 

Although	the	previous	sections	reveal	a	great	deal	of	knowledge	about	the	nature	of	
errors	 and	debugging,	 little	 of	 the	 research	 informed	 the	design	of	debugging	 and	
program	 understanding	 tools.	 Nevertheless,	 as	 long	 as	 people	 have	 had	 to	
understand	programs,	researchers	have	devised	new	technologies	to	help.	Some	of	
these	 technologies	 are	 interactive,	 playing	 a	 supporting	 role	 in	 organizing	
information	 about	 program	 execution.	 Others	 are	 automated,	 trying	 to	 detect	
properties	 of	 programs	 to	 report	 back	 to	 a	 developer.	 Others	 still	 de<ine	 query	

Formation	and	
evaluation	of	
knowledge	
leads	to	
incomplete	or	
inaccurate	
models	of	
problem	space.

Illusory	correlation
Tendency	to	assume	events	are	correlated	and	develop	
rationalizations	to	support	the	belief	➞	invalid	model	of	
causality

Overcon<idence
False	belief	in	correctness	and	completeness	of	knowledge,	
especially	after	completion	of	elaborate,	dif<icult	tasks	➞	invalid,	
inadequate	knowledge

Con<irmation	bias
Preliminary	hypotheses	based	on	impoverished	data	interfere	
with	later	interpretation	of	more	abundant	data	➞	invalid,	
inadequate	hypotheses

Table	2.5.	Types	of	knowledge	breakdowns,	adapted	from	Reason	[1990].	



Chapter	2:	Related	Work	 26

languages	 for	 developers	 to	 learn	 and	 use	 in	 order	 to	 search	 for	 particular	 facts	
about	a	program’s	design	and	behavior.		

Rather	than	organize	the	work	in	this	section	by	chronological	appearance	in	history	
or	by	tool	categories	(e.g.,	slicing	tools,	tracing	tools),	this	section	discusses	tools	in	
terms	 of	 their	 strategic	 goal:	 what	 approach	 does	 each	 type	 of	 tool	 take	 to	
supporting	developers’	 exploration	 of	 a	 program’s	 execution?	The	particular	work	
highlighted	 were	 chosen	 to	 represent	 a	 particular	 type	 of	 support	 and	 not	
necessarily	research	milestones.	

2.3.1. MODIFYING EXECUTION 

The	 simplest	 strategy	 for	 searching	 execution	 history	 is	 to	 change	 the	 program’s	
execution	until	it	does	what	is	intended	(a	naive	guess	and	check	strategy).	Although	
this	 is	 not	 likely	 to	 be	 effective	 at	 a	 large	 scale,	 it	 is	 rational:	 it	 ensures	 a	 tight	
feedback	 loop	 between	 a	 change	 to	 the	 code	 and	 a	 corresponding	 change	 in	 the	
program	 output;	 such	 feedback	 loops	 are	 a	 reasonable	 way	 of	 understanding	 the	
behavior	 of	 a	 program.	 Of	 course,	 there	 are	 obvious	 problems	 with	 this	 strategy	
(having	 to	undo	each	change,	 forgetting	 to	undo	a	 change,	 etc.),	but	 the	 idea	 itself	
works	quite	well	 if	 the	changes	 to	 the	program’s	execution	are	 limited	 to	program	
input.	 Zeller	 and	 Hildebrandt	 [2002a]	 describe	 an	 approach	 which	 intelligently	
subdivides	failure	and	success	inducing	inputs	until	<inding	a	test	case	for	a	which	a	
single	granular	change	can	determine	whether	the	program	fails.	A	related	strategy	
is	to	simply	“start	over,”	eliminating	code	that	one	believes	is	contributing	to	a	failure	
and	 slowly	 rewriting.	 In	 general,	 these	 approaches	 search	 the	 space	 of	 possible	
program	executions,	rather	than	the	space	of	a	single	execution.	

It	 is	 interesting	 to	 note	 that	 this	 approach	 to	 debugging	was	 not	 initially	 possible	
since	 computer	 systems	 were	 not	 always	 interactive.	 The	 same	 holds	 true	 today	
when	testing	and	debugging	programs	that	take	considerable	time	to	start	and	test.	
Even	with	today’s	powerful	computers,	this	approach	is	only	feasible	for	small	test	
cases	 and	 small	 programs.	 If	 the	 test	 cases	 are	 too	 large,	 it	 may	 take	 too	 long	 to	
simplify	all	of	 the	 information	 in	the	test	case	by	hand.	 if	 the	program	 is	 too	 large,	
the	likelihood	that	the	developer	is	modifying	the	right	code	is	low.	



Chapter	2:	Related	Work	 27

2.3.2. WATCHING EXECUTION 

Another	simple	approach	to	understanding	program	execution	is	to	simply	watch	it	
execute,	 step	by	 step.	One	of	 the	 <irst	 tools	 to	enable	watching	was	 the	breakpoint	
debugger.	 Breakpoint	 debuggers	 have	 been	 available	 since	 at	 least	 the	 1940’s	
[Stockham	1960],	but	researchers	continued	to	improve	their	utility	and	generality	
[Kessler	 1990].	 Breakpoint	 debuggers	 allow	 developers	 to	 specify	 the	 lines	 of	 a	
program	on	which	to	pause	a	program’s	execution.	If	a	statement	with	a	breakpoint	
is	executed,	the	program	pauses	and	the	developer	can	inspect	variables’	values	and	
the	execution	stack	and	can	step	through	the	program’s	execution.	While	this	can	be	
helpful	 in	many	cases,	 these	tools	have	several	problems.	They	provide	developers	
access	to	a	vast	amount	of	runtime	information,	but	a	very	slow	means	of	searching,	
exploring,	 and	 navigating	 the	 information.	 Breakpoint	 debuggers	 cannot	 help	 a	
developer	determine	why	a	line	of	code	did	not	execute.	Furthermore,	if	a	developer	
steps	over	a	crucial	point,	breakpoint	debuggers	do	not	allow	developers	to	undo	the	
operation	and	go	back.	Some	researchers	have	addressed	this	problem	by	simulating	
reverse	execution	by	recording	an	execution	history	[Lewis	2003],	while	others	have	
devised	methods	 of	 “undoing”	 a	 running	 program’s	 execution	 [Akgul	 2004,	 Ungar	
1997].	 One	way	 of	 using	 these	 tools	 is	 to	 <ind	 the	 point	 in	 time	 that	 the	 program	
behaved	improperly	or	produced	incorrect	output	and	step	backwards	from	there.	

Many	of	the	constraints	imposed	by	breakpoint	debuggers	are	absent	in	interpreted,	
interactive	 programming	 languages	 and	 environments,	 such	 as	 Lisp	 [McCarthy	
1978].	 Lisp	 interpreters	 allow	 developers	 to	 not	 only	 pause	 execution	 and	 step	
through	function	evaluations,	but	also	inspect	nearly	anything	in	memory	and	even	
evaluate	 full	 Lisp	 expressions	 on	 the	 data	 in	 memory,	 potentially	 altering	 the	
program’s	 execution.	 Skilled	Lisp	users	often	 speak	with	 fondness	of	 the	ability	 to	
keep	a	Lisp	interpreter	and	Lisp	program	running	for	many	days,	reusing	all	of	the	
program	state	accumulated	over	time	in	order	to	test	and	re<ine	smaller	parts	of	a	
program	 without	 ever	 having	 to	 restart.	 All	 of	 these	 features	 are	 simply	 ways	 to	
watch	and	inspect	program	execution.	

An	 interesting	 form	 of	 stepping	 now	 out	 of	 fashion	 was	 called	 “algorithmic	
debugging”	[Fritzon	1992].	These	tools	step	through	the	execution	of	some	part	of	
the	 program	 and	 ask	 the	 developer	 to	 verify	 the	 values	 of	 variables.	 There	 were	
many	variants	on	this	approach	that	attempted	to	minimize	how	much	information	a	
developer	had	to	validate.	The	central	limitation	of	this	approach,	besides	the	sheer	



Chapter	2:	Related	Work	 28

number	of	decisions	required	by	the	user,	is	that	people	are	often	poor	at	knowing	
whether	 an	 intermediate	 value	 in	 a	 program	 is	 correct	 [Phalgune	 2005].	 It	 also	
requires	developers	to	verify	many	parts	of	a	program’s	execution	that	may	not	be	
relevant	to	the	developers’	task,	or	may	already	be	known	to	be	correct.	

Another	way	to	watch	program	execution	is	to	visualize	it,	utilizing	the	power	of	the	
human	visual	system	to	detect	patterns.	One	approach	is	to	show	program	executing	
over	time,	but	abstract	away	irrelevant	details	and	visualize	particular	information.	
For	 example,	 Incense	 [Myers	 1980][Myers	 1983]	 was	 one	 of	 the	 <irst	 systems	 to	
allow	custom	programmer-speci<ied	displays	of	data	structures,	to	help	developers	
detect	 problems	 in	 the	 data	 in	memory.	 Mukherjea	 and	 Stasko	 [1994]	 describe	 a	
variety	 of	 algorithm	 animations	 and	 animation	 authoring	 tools,	 which	 allow	
developers	 to	 see	 operations	 on	 data	 structures	 as	 a	 program	 executes.	 A	 related	
approach	 [Gestwicki	2002]	visualized	 the	 internal	state	of	speci<ic	data	structures,	
explicitly	showing	the	transfer	of	data	between	different	data	structures	in	the	code.		
Baecker	 [1997]	 described	 a	 number	 of	 algorithm	 animation	 techniques	 for	
comparing	the	behavior	and	performance	of	various	sorting	algorithms.	While	there	
is	 evidence	 that	 such	 visualizations	 can	 make	 the	 complexity	 of	 programs	 and	
algorithms	 less	 intimidating,	 there	 is	a	general	 consensus	 that	 these	visualizations	
are	only	helpful	when	directly	associated	with	the	source	code	corresponding	to	the	
animated	behavior	[Kehoe	2001].	Such	animations	must	also	be	hand-coded	for	each	
situation.	 Rather	 than	 showing	 program	execution	 over	 time,	 some	 tools	 visualize	
execution	events	on	a	timeline,	using	space	instead	of	time.	Jackson	[2001]	describes	
a	visualization	of	high	level	Java	synchronization	events	to	support	the	identi<ication	
of	 indeterminacy	 and	 deadlocks.	 Briggs	 [1996]	 describes	 a	 timeline	 visualization	
that	shows	different	tasks	and	their	dependencies.		

One	key	limitation	of	all	approaches	to	watching	program	execution	is	that	they	rely	
on	 a	 developer	 to	 specify	 a	 place	 or	 time	 in	 a	 program’s	 execution	 to	 inspect.	 If	
setting	 a	 breakpoint,	 a	 developer	 must	 guess	 what	 line	 is	 relevant.	 If	 viewing	 a	
visualization,	the	developer	must	guess	which	patterns	are	related	to	their	problem.	
If	 they	 choose	 the	 wrong	 place	 or	 time,	 the	 tools	 will	 still	 help	 them	 gather	
information,	but	only	about	irrelevant	code.	Another	limitation	is	that	these	tools	are	
inherently	 control-focused.	 They	 allow	 a	 developer	 to	 see	 where	 a	 program	 is	
executing	and	even	what	data	 is	used	 to	do	so,	but	 they	do	not	reveal	 information	
about	where	data	 comes	 from	or	where	data	 goes.	 If	 a	 developer	 is	 trying	 to	 <ind	
where	 a	 value	 was	 computed,	 they	 will	 either	 have	 to	 manually	 trace	 backwards	



Chapter	2:	Related	Work	 29

through	the	code	to	<ind	its	origin,	or,	guess	the	origin	and	step	ahead	to	see	if	they	
are	correct.	There	is	also	the	problem	of	watching	things	that	did	not	happen.	If	the	
code	with	a	breakpoint	is	never	executed,	the	program	will	never	pause.	

2.3.3. SAMPLING EXECUTION 

One	way	to	explore	a	program	execution	from	a	data-centric	perspective	is	to	sample	
certain	events	during	its	execution	and	analyze	the	data	gathered.	The	earliest	form	
of	sampling	support	include	the	dump	and	the	trace,	both	developed	on	the	EDSAC	
in	 the	 1940’s	 [Satterthwaite	 1975]	 (these	 were	 some	 of	 the	 earliest	 program	
understanding	 tools	 in	 general).	 A	 dump	 contains	 all	 of	 the	 values	 in	 part	 of	 a	
program’s	memory	space,	and	is	typically	used	to	help	a	developer	<ind	problematic	
data	 in	 memory.	 One	 major	 problem	 with	 a	 dump	 is	 that	 it	 is	 only	 a	 snapshot,	
whereas	the	problem	may	have	occurred	earlier	or	later	in	the	program’s	execution.	
Dumps	 also	 contain	 a	 lot	 of	 information	 irrelevant	 to	 a	 problem.	 Likely	 the	most	
popular	 form	 of	 sampling	 is	 the	 print	 statement,	 which	 essentially	 allows	 ad	 hoc	
instrumentation	 of	 code	 in	 order	 to	 record	 a	 customized	 trace	 of	 a	 program’s	
execution.	 This	 overcomes	 the	 some	 disadvantages	 of	 breakpoint	 debuggers,	
allowing	 programmers	 to	 instrument	 any	 part	 of	 the	 code	 they	 think	 may	 be	
responsible	 and	 ignore	 parts	 that	 they	 think	 are	 not.	 Aside	 from	 the	 obvious	
disadvantages	 of	 inserting	 instrumentation	 code	 throughout	 a	 code	 base,	 print	
statements	 also	 require	 a	 programmer	 to	 make	 a	 commitment	 about	 what	 code	
might	be	responsible	for	a	failure.	

As	computers	became	more	powerful,	researchers	developed	methods	of	recording	
execution	 histories	 [Boothe	 2000][Lewis	 2003][Pothier	 2007].	 Some	 used	 this	
recordings	to	support	re-execution,	others	to	support	reverse	execution,	and	others	
still	 to	support	exploration	of	 the	data	 in	a	random	access	 fashion.	The	promise	of	
these	tools	is	to	allow	developers	to	get	access	to	any	information	they	need	about	a	
program’s	execution	more	quickly,	 for	example,	by	 searching	 the	execution	history	
or	by	only	recording	particular	parts	of	a	program’s	execution.		

The	limitation	of	any	sampling	approach	is	how	it	presents	the	sampled	information	
to	the	developer,	since	each	presentation	will	reveal	different	characteristics	of	the	
sampled	data.	Dumps	will	 reveal	a	single	state	at	particular	 time;	print	statements	
will	 result	 in	 a	 console	 full	 of	 potentially	 relevant	 events;	 recordings	 result	 in	 a	
wealth	of	information	that	the	developer	must	search	by	some	sort	of	query.	In	all	of	



Chapter	2:	Related	Work	 30

these	 situations,	 the	 developer	 still	 has	 to	 guess	 the	 “what”	 and	 “when,”	 which	
ultimately	decides	what	information	they	analyze.	If	they	guess	incorrectly,	they	will	
simply	<ind	irrelevant	information	more	quickly.	

2.3.4. ANALYZING CAUSES OF EXECUTION 

Rather	 than	 simply	 watching	 parts	 of	 a	 program	 execute,	 another	 approach	 is	 to	
follow	 causal	 relationships	 in	 code	 and	 execution.	 After	 all,	 program	 execution	 is	
largely	deterministic	and	governed	by	fairly	simple	control	and	data	dependencies.	

There	 are	 a	 number	 of	 tools	 that	 support	 the	 manual	 exploration	 of	 program	
dependencies.	Modern	 IDEs	 support	 showing	 the	 declaration	 of	 a	method	 from	 a	
method	 call,	 the	 callers	 of	 a	 method,	 the	 uses	 of	 a	 variable.	 These	 types	 of	
navigations	allow	the	user	 to	 track	where	a	program	can	execute	and	what	data	 it	
can	use.	Robillard	and	Murphy	describe	a	tool	that	helps	developers	navigate	static	
dependencies	 in	 code	 and	 combine	 them	 into	 a	 concern	 graph	 [Robillard	 2002].	
Robillard	 and	 Murphy	 also	 describe	 techniques	 for	 inferring	 potentially	 relevant	
code	based	on	a	developer’s	navigation	through	a	program’s	source	code	[Robillard	
2003a]	and	Robillard	describes	a	technique	for	inferring	other	relevant	code	based	
on	a	developer’s	 current	 location	 in	 the	 source	 code	 [Robillard	2005].	All	 of	 these	
approaches	 essentially	help	 a	developer	navigate	 static	 dependencies	 in	 a	program	
(relationships	known	at	 compile-time).	These	are	often	 less	helpful	 for	debugging,	
however,	 because	 of	 their	 lack	 of	 precision:	 they	 help	 a	 developer	 understand	 a	
program’s	behavior	for	all	possible	executions,	not	for	a	particular	one.	

Automatic	 tools	 for	 analyzing	 dependencies	 began	much	 earlier	 in	 history.	Weiser	
[1982]	 found	 that	 developers	were	 navigating	 these	 dependencies	 and	 decided	 to	
de<ine	 an	 automated	 approach	 to	 extracting	 these	 dependencies	 called	 a	program	
slice.	As	originally	conceived,	Weiser	de<ined	a	slice	to	be	“expressed	as	the	values	of	
some	sets	of	 variables	 at	 some	set	of	program	statements.”	A	 static	program	slice,	
given	 a	 particular	 variable	 in	 a	 program,	 computes	 all	 of	 the	 program	 statements	
that	could	affect	the	value	of	the	variable	in	all	possible	executions	of	the	program.	A	
dynamic	 program	 slice	does	 the	 same,	 but	 for	 a	 particular	 program	execution	 at	 a	
particular	time.	The	result	of	these	analyses	is	typically	a	set	of	program	statements,	
highlighted	in	a	source	code	viewer.	This	helps	developers	focus	only	on	the	parts	of	
the	program	that	affect	the	variable	of	 interest.	Recent	advances	have	made	slicing	
both	time	and	space	ef<icient	 [Wang	2004].	There	are	also	many	variants	[Baowen	



Chapter	2:	Related	Work	 31

2005],	including	forward	slicing,	which	analyzes	the	data	that	a	variable	affects,	and	
hierarchical	 slicing	 [Wang	 2007],	 which	 divides	 a	 slice	 into	 syntactic	 structural	
phases.	Another	recent	approach	called	thin	slicing	[Sridharan	2007],	only	includes	
“producer	statements”	in	a	slice	(those	statements	which	transitively	produce	values	
for	 the	 variable	 queried),	 excluding	 control	 dependencies,	 Java	 heap	 accesses	 and	
pointer	dereferencing.	Unfortunately,	 even	dynamic	 slicing,	which	was	designed	 to	
produce	a	smaller,	more	speci<ic	subset	of	a	program’s	statements	for	investigation,	
can	select	a	up	to	a	third	of	a	program’s	statements	for	inspection	[Zhang	and	Gupta	
2004].	Furthermore,	slicing	tools	are	only	helpful	if	the	developer	is	asking	about	a	
relevant	 variable;	 to	 select	 such	 a	 variable,	 developers	 must	 again	 guess	 what	
variable	 is	 relevant,	 and	 then	 navigate	 to	 it	 in	 the	 source	 code.	 Despite	 these	
limitations,	 there	 is	 evidence	 that	 slicing	 tools	 can	 help	 developers	 debug	 small	
programs	more	ef<iciently	than	conventional	tools	[Francel	2001].	

A	number	of	approaches	outside	of	software	engineering	share	characteristics	with	
slicing.	 For	 example,	 there	 are	 a	 number	 of	 approaches	 within	 the	 areas	 of	
knowledge	 systems	 and	 the	 semantic	 web	 that,	 given	 some	 system	 for	 drawing	
conclusions	from	a	knowledge	repository,	can	also	generate	some	explanation	about	
how	these	conclusions	were	drawn.	For	example,	McGuinness	and	da	Salva	 [2004]	
describe	 a	 system	 for	 generating	 explanations	 of	 what	 information	 sources	 were	
used	in	a	semantic	web	querying	system	using	a	variety	of	proof	systems.	

2.3.5. ASSERTING EXECUTION 

The	debugging	 tools	described	 in	previous	sections	are	 largely	 interactive.	A	more	
automated	approach	is	to	have	a	developer	form	declarative	assertions	about	what	
they	expect	of	a	program’s	execution	and	let	a	tool	evaluate	these	assertions	as	the	
program	 executes.	 At	 the	 most	 primitive	 level,	 these	 are	 assertion	 statements	
inserted	 into	 the	 code	 halting	 the	 program	 whenever	 the	 assertion	 is	 violated	
[Rosenblum	1995].	These	assertions	are	typically	written	in	the	target	language	and	
allow	side-effects,	enabling	a	developer	to	state,	for	example,	that	the	result	of	some	
computation	is	within	some	range	or	that	when	reaching	a	particular	 function,	 the	
program	 is	 in	a	particular	mode.	These	assertions	are	used	primarily	 for	detecting	
failures,	but	can	also	be	used	to	check	the	 intermediate	states	of	a	program	that	 is	
already	misbehaving.	Assertions	can	also	be	used	to	guide	a	developer	to	a	bug	by	
contrasting	user-written	assertions	with	computer	generated	assertions.	Wallace	et	



Chapter	2:	Related	Work	 32

al.	[2002]	describe	a	spreadsheet	that	extracts	computer-generated	assertions	from	
data	passing	through	cells.	When	users	write	assertions	of	their	own	(typically	in	the	
form	of	legal	ranges	for	a	cell),	the	system	can	highlight	con<licts	between	user	and	
computer	assertions.	The	user	can	then	<ind	the	problem	by	analyzing	the	con<lict.	

Some	assertions	are	global	in	nature	and	cannot	be	written	within	the	context	of	a	
single	 function.	 Recent	 approaches	 support	 the	 assertion	 of	 certain	 relationships	
between	 objects	 and	 data	 structures	 in	memory.	 For	 example,	 Lencevicius	 [2003]	
and	 Potanin	 [2004]	 support	 the	 expression	 of	 constraints	 on	 object	 relationships	
(“no	 two	 nodes	 may	 point	 to	 the	 same	 expression”).	 The	 system	 evaluates	 these	
constraints	as	 the	program	executions	and	when	one	violated,	 the	tool	noti<ies	 the	
developer	so	they	may	take	action.	Model	checking	is	a	more	general	approach	to	this	
problem.	 Tools	 such	 as	 ESC/Java	 [Detlefs	 1998],	 Fluid	 [Greenhouse	 2005],	 and	
PRE<ix	[Bush	2000]	aim	to	detect	errors	statically	by	verifying	particular	properties	
of	 programs	 that	 are	 indicative	 of	 errors.	 One	 advantage	 of	 these	 declarative	
approaches	 is	 that	 they	 do	 not	 generally	 require	 human	 intervention,	 except	 to	
utilize	the	results	of	the	analysis.	Many	analyses,	however,	require	a	program	to	be	
annotated	 in	 particular	 ways	 to	 facilitate	 analyses;	 for	 example,	 ESC/Java	 [Bush	
2000]	 requires	 developers	 to	 supply	 speci<ications	 of	 the	 program’s	 intended	
behavior	 as	 code.	 Such	 annotations	 lead	 to	 a	 “garbage	 in,	 garbage	 out”	 problem,	
placing	the	ef<icacy	of	the	analyses	largely	in	the	hands	of	developers.	Furthermore,	
these	tools	can	generally	only	con<irm	a	developer’s	hypothesis	about	the	cause	of	a	
program’s	behavior	and	cannot	discon<irm	a	false	hypothesis.	

2.3.6. COMPARING EXECUTIONS 

Searching	 a	 single	 execution	history	 can	be	 somewhat	 limited,	 since	 an	 error	may	
only	manifest	 itself	under	speci<ic	conditions.	A	number	of	 tools	have	explored	the	
possibility	 of	 comparing	 multiple	 execution	 histories	 in	 order	 to	 detect	 errors	
through	aggregation	or	contrast.	For	example,	Sosic	and	Abramson	[1997]	discuss	a	
“relative”	debugger	that	determines	the	difference	between	two	different	versions	of	
a	 program	 in	 order	 to	 help	 developers	 <ind	 problems	 as	 a	 program	 evolves.	 The	
approach	requires	 the	developer	 to	write	a	 test	 case,	which	speci<ies	 the	expected	
correspondence	 between	 the	 two	 programs’	 executions.	 Then,	when	 the	 test	 case	
fails,	 the	 tool	 can	 compare	 the	 executions	 between	 the	 successful	 and	 failing	
executions,	isolating	the	cause	of	the	problem	to	some	change	in	the	program.	



Chapter	2:	Related	Work	 33

A	 related	 approach	 [Cleve	 2005],	 called	 delta	 debugging,	 requires	 a	 developer	 to	
supply	 a	 program,	 input	 on	 which	 the	 program	 succeeds,	 input	 on	 which	 the	
program	fails,	and	a	function	that	determines	whether	the	program	has	succeeded.	It	
returns,	if	possible,	a	description	of	the	execution	events	that	occurred	in	the	failing	
execution	 that	 did	 not	 occur	 in	 the	 successful	 execution,	 by	 comparing	 the	
executions	 in	 a	 experimental	 manner.	 This	 is	 a	 very	 powerful	 approach,	 often	
producing	 explanations	 of	 extreme	 brevity.	 Although	 this	 technique	 can	 be	 very	
precise	about	the	situations	that	caused	a	program	to	fail,	it	cannot	be	used	if	there	
is	 no	 known	 input	 that	 causes	 the	 program	 to	 succeed,	 if	 the	 program’s	 input	 is	
dif<icult	 to	 supply	 (for	 example,	 real-time	 or	 user	 input),	 or	 if	 the	 “success”	 is	
dif<icult	 to	 de<ine.	 Furthermore,	 even	 when	 it	 can	 provide	 an	 explanation	 of	 a	
program’s	failure,	developers	must	still	understand	the	parts	of	the	program	that	led	
to	the	failure	in	order	to	implement	a	solution.	There	are	also	many	tasks	that	do	not	
involve	a	program	failure,	but	still	require	developers	to	understand	the	causes	of	a	
program’s	behavior	in	order	to	modify	or	enhance	the	behavior.	Perhaps	the	greatest	
limitation	is	that	if	the	two	executions	are	different	enough,	the	code	referred	to	in	
the	explanation	may	be	far	from	the	actual	defect.	

Another	way	of	using	multiple	executions	is	to	detect	anomalies	and	invariants	in	a	
program’s	 execution	 using	 statistical	 methods.	 Miller	 and	 Myers	 used	 outlier	
detection	 to	 identify	 potential	 mismatches	 in	 regular	 expressions	 [Miller	 2001].	
Ernst	 [2000]	 discusses	 an	 approach	 of	 <inding	 program	 invariants	 by	 looking	 for	
patterns	 in	 variable	 values.	 Groce	 and	 Visser	 [2003]	 describe	 a	 related	 approach	
which	compares	differences	 in	 invariants	between	multiple	unique	executions	of	a	
failure.	Xie	and	Notkin	 [2004]	used	a	 similar	approach	 to	compare	 “value	spectra”	
changes	across	executions	of	different	program	versions.	Liblit	et	al.	[2003]	applied	
the	 same	 ideas,	 but	 across	 programs	 executing	 across	 many	 machines	 to	 extract	
samples	 of	 program	 executions	 in	 a	 distributed	 fashion.	 Brun	 and	 Ernst	 [2004]	
describe	 an	 approach	 to	 training	 machine	 learning	 models	 on	 characteristics	 of	
known	errors	and	using	the	models	to	classify	and	rank	properties	of	code	that	may	
lead	to	errors.	This	approach	also	relies	on	the	detection	of	invariants.	

2.3.7. INTERROGATING EXECUTIONS 

Some	tools	in	speci<ic	domains	have	directly	supported	“why”	questions	like	those	in	
the	Whyline.	 One	 example	 appeared	 in	 the	 ACR-R	 cognitive	 modeling	 framework	



Chapter	2:	Related	Work	 34

(described	 later	 in	 [Bothell	 2004]),	 in	which	 users	would	write	 “production	 rule”	
systems	 to	 model	 human	 cognition	 and	 performance.	 In	 some	 situations	 a	 user	
might	 expect	 one	 of	 these	 rules	 to	 “<ire”	 but	 it	 would	 not.	 ACT-R	 development	
environments	support	a	 “why	not”	analysis,	which	attempts	 to	show	the	user	why	
the	production	rule	did	not	<ire	by	tracing	back	into	the	reasoning	of	the	model.	The	
Soar	cognitive	modeling	framework	has	similar	support	as	ACT-R	(called	“smatches”	
for	“Soar	matches”)	[Laird	1990].	

Knowledge	 base	 systems	 in	 AI	 have	 a	 similar	 problem	 in	 that	 queries	 into	 a	
knowledge	 base	 often	 return	 “unknown”	 results.	 The	 knowledge	 base	may	 having	
missing	or	incorrect	information;	there	may	be	a	problem	with	the	inference	engine.	
Chalupsky	 and	 Russ	 [2002]	 describe	 a	 system	 that	 addresses	 this	 debugging	
challenge,	 generating	 a	 set	 of	 possible	 explanations	 that	 identify	 knowledge	 that	
may	have	been	missing	or	 inferences	that	may	have	been	skipped	by	the	 inference	
engine.	The	Amulet	user	interface	toolkit	[Myers	1997]	had	a	debugger	with	a	“why	
not”	 command	 for	 an	 object,	 which	 would	 explain	 why	 an	 object	 was	 not	 visible	
onscreen.	 Finally,	 Lieberman	 [2003]	 describes	 an	 approach	 to	 e-commerce	
debugging,	which	presents	a	timeline	of	relevant	web-service	events	to	explain	why	
a	package	has	not	 shipped,	 for	 example.	All	 of	 these	examples	of	 “why”	questions,	
while	similar	in	phrasing	to	the	Whyline,	differ	in	the	types	of	analysis	that	they	used	
to	 answer	 “why”	 questions.	 Most	 of	 the	 above	 used	 simple	 heuristics	 to	 reason	
backwards	through	the	behavior	of	the	system.	

The	Whyline	 concept	 described	 in	 this	 dissertation	 has	 already	 inspired	 question	
support	in	other	domains.	Clark	[2007]	describes	a	system	for	debugging	problems	
with	one-way	constraints	used	in	user	interface	design.	Abraham	and	Erwig’s	goal-
directed	debugging	[2005]	take	this	even	further,	allowing	the	user	choose	a	wrong	
value	 in	 a	 spreadsheet	 and	 specify	 the	 correct	 value.	 The	 tool	 then	 offers	 several	
change	 suggestions	 that	 would	 cause	 the	 program	 to	 compute	 the	 desired	 value.	
This	 is	 feasible	 because	 of	 the	 limited	 domain	 of	 spreadsheet	 functions	 and	 the	
functional	 aspect	 of	 spreadsheet	 languages.	 It	 remains	 to	 be	 seen	 if	 such	 change	
suggestions	are	feasible	(or	even	useful)	for	more	complex	imperative	languages.	



Chapter	2:	Related	Work	 35

2.4. SUMMARY 

It	is	clear	from	prior	work	that	program	understanding	is	hypothesis-driven:	people	
form	hypotheses	 about	 the	 causes	 of	 a	 program’s	 behavior	 and	 then	 test	 them	by	
gathering	evidence	about	its	execution.	It	is	a	social-technical	activity,	in	that	people	
use	 both	 tools	 and	 their	 peers	 in	 order	 to	 gather	 this	 evidence.	 Program	
understanding	also	poses	many	kinds	of	temporal	challenges:	software	changes	over	
time;	there	can	be	considerable	time	between	the	insertion	of	an	error	and	its	visible	
consequences;	for	many	failures,	there	is	also	a	long	time	between	the	failure	and	its	
cause	during	a	single	program	execution.	Because	of	all	of	 these	 factors,	where	 the	
search	 begins	 is	 crucial	 factor	 in	 determining	 success.	 If	 programmers	 start	 by	
analyzing	 code	 that	 has	 no	 causal	 relationship	 with	 the	 failure,	 they	 will	 spend	
considerable	 time	exploring	other	unrelated	 code.	This	 initial	 choice	of	what	 code	
might	be	related	determines	the	dependencies	they	follow,	the	coworkers	they	talk	
to,	 the	 analyses	 performed	 by	 automated	 tools,	 and	 the	 results	 they	 use	 to	make	
their	next	move.	Starting	the	search	by	guessing	is	bound	to	lead	to	problems.	

	
Figure	3.1.	The	Alice	2	programming	environment.



Chapter	2:	Related	Work	 36

Of	course,	most	of	these	studies	were	done	decades	ago	and	most	of	these	research	
tools	are	not	in	use.	Have	modern	IDEs	like	Eclipse	and	Visual	Studio	remedied	these	
challenges?	Which	of	these	<indings	remain	true	today?	What	are	the	consequences	
of	 approaching	 program	 understanding	 from	 a	 hypothesis	 formation	 and	 testing	
approach?	What	kinds	of	program	understanding	challenges	exist	 in	modern	 team	
software	development?	In	the	next	few	chapters,	I	will	describe	several	studies	that	
attempted	to	explore	these	questions	observationally	and	empirically.	



3.

BREAKDOWNS IN ALICE  4

My	 investigation	 into	program	understanding	activity	began	with	 two	exploratory,	
contextual	 studies	 of	 how	 program	 understanding	 relates	 to	 other	 software	
development	 work.	 The	 studies	 involved	 the	 use	 of	 the	 Alice	 2	 programming	
environment	 [Cooper	 2003],	 which	 had	 numerous	 users	 on	 the	 Carnegie	 Mellon	
campus	and	was	also	easy	to	learn	in	a	short	period	of	time.	This	meant	that	it	was	
possible	 to	 see	whole	 development	 cycles	 for	 a	 single	 program	 in	 little	 time.	 The	
goals	of	 the	studies	were	to	 identify	breakdowns	 in	programmers’	work	(a	concept	
from	 contextual	 inquiry	 [Holtzblatt	 1998])	 and	 consider	 new	 types	 of	 tools	 that	
might	prevent	these	breakdowns.	

There	 were	 several	 task	 design	 issues	 to	 consider.	 Because	 the	 goals	 were	
exploratory,	it	was	important	to	observe	tasks	of	varying	complexity.	Therefore,	the	
studies	 observe	 both	 experienced	Alice	 programmers	working	 on	 their	 own	 tasks	
and	 novice	 Alice	 programmers	 working	 on	 a	 prede<ined	 task.	 This	 allowed	
observations	of	situations	where	programmers	were	given	speci<ications,	as	well	as	
situations	where	programmers	were	free	to	de<ine	them	as	they	worked.	However,	
since	Alice	is	a	3D	programming	system,	a	large	part	of	writing	an	Alice	program	is	
creating	 the	 3D	 objects	 that	 are	 manipulated	 at	 runtime.	 Because	 creating	 these	
objects	 is	 largely	 direct	 manipulation	 and	 not	 programming,	 I	 explicitly	 avoided	
designing	or	observing	tasks	that	were	primarily	3D	object	design.	

 The results reported in this chapter appeared in part in [Ko 2003a], [Ko 2003b] and [Ko 2005c].4



Chapter	3:	Breakdowns	in	Alice	 38

3.1. THE ALICE PROGRAMMING ENVIRONMENT 

The	Alice	2	programming	environment,	shown	in	Figure	3.1,	was	designed	to	be	the	
best	<irst	exposure	to	programming.	As	such,	it	has	a	number	of	unique	features	that	
are	worth	mentioning.	First,	users	create	and	modify	code	by	dragging	and	dropping	
“tiles”	around	a	workspace,	rather	than	using	the	keyboard	to	type	and	edit	textual	
commands.	The	 language	 itself	 is	 strongly	 typed,	 enforced	by	 the	dragging	actions	
themselves	 (each	 3D	 object	 is	 its	 own	 unique	 type	 and	 variables	 de<ined	 in	
procedures	also	have	a	declared	 type).	The	 language	 is	 also	object-oriented	 in	 the	
sense	 that	 every	 3D	 object	 in	 the	 world	 has	 several	 prede<ined	 properties	 and	
behaviors.	 Each	 object	may	 also	 be	 given	 custom	 properties	 and	 procedures.	 The	
execution	model	is	multi-threaded	and	guided	by	a	global	event	list,	which	invokes	
various	 commands	 on	 the	 objects	 in	 the	 world.	 Alice	 is	 ultimately	 intended	 for	
creating	interactive	animations	and	provides	detailed	support	for	many	basic	kinds	
of	 3D	 transformations	 on	 objects	 and	 their	 parts.	 In	 some	 studies,	 Alice	 has	 been	
shown	 to	 raise	 grades	 and	 reduce	 attrition	 in	 computer	 science	 courses	 [Cooper	
2003][Moskal	2004].	

3.2. ALICE IN THE FIELD 

The	 <irst	 study	 explored	 the	 use	 of	 Alice	 in	 the	 context	 of	 the	 “Building	 Virtual	
Worlds”	(BVW)	course	offered	at	Carnegie	Mellon	University	in	the	Fall	of	2002.	The	
course	 required	 collaborations	 among	 programmers,	 modelers,	 sound	 engineers,	
painters,	and	students	of	other	expertise	to	create	a	new	interactive	3D	world.	The	
students	 were	 encouraged	 to	 work	 on	 their	 projects	 in	 a	 shared	 workplace,	 to	
facilitate	 face	 to	 face	 communication	 and	 collaboration.	 Each	 team’s	 class	
assignment	during	the	time	of	observations	was	to	use	Alice	to	prototype	a	complex,	
interactive,	 3D	 world	 over	 the	 course	 of	 two	 weeks.	 Since	 the	 projects	 were	
collaborative	 and	 unspeci<ied,	 the	 requirements	 for	 each	 programmer’s	 Alice	
program	were	 in	 constant	 <lux,	 and	 the	 three	 programmers’	 Alice	 programs	were	
unalike.	

3.2.1. METHOD 

The	Contextual	Inquiry	methodology	[Holtzblatt	1998]	was	employed	to	understand	
the	students’	work.	The	focus	of	the	observations	was	to	look	for	bottlenecks	in	the	



Chapter	3:	Breakdowns	in	Alice	 39

students’	activities.	The	experimenter	recruited	programmers	by	sending	e-mail	 to	
each	 BVW	 teams’	 class	 mailing	 list	 and	 soliciting	 participation.	 Three	 teams	
expressed	 interest	 and	 the	 observer	 scheduled	 separate	 times	 to	 observe	 each	 at	
work.	When	 <irst	meeting	each	 team,	 the	observer	explained	that	 the	 intentions	of	
the	 observations	 were	 to	 ‘‘learn	 about	 how	 the	 programmer	 used	 Alice.’’	 The	
observer	 described	 his	 role	 as	 an	 ‘‘interested	 learner’’	 and	 described	 the	
programmer’s	role	as	the	primary	speaker,	making	clear	that	 the	programmer	was	
the	domain	expert.	The	observer	 then	requested	 that	 the	programmer	 think	aloud	
while	 working,	 speci<ically	 explaining	 the	 rationale	 behind	 each	 decision	 made.	
Following	this	brie<ing,	the	observer	began	videotaping	the	computer	monitor	over	
the	programmer’s	shoulder	using	a	Sony	Digital	8	camcorder	while	the	programmer	
worked	on	their	own	self-initiated	tasks	using	Alice	(as	seen	in	Figure	3.2).	During	
observations,	the	experimenter	used	the	phrases	‘‘And	now?’’	and	‘‘Please	continue’’	
thirty	 seconds	 after	 silence,	 to	 remind	 the	 programmers	 to	 think	 aloud.	 If	 a	
programmer	left	the	computer	to	talk	to	a	team	member,	the	experimenter	followed	
the	 programmer	 and	 recorded	 the	 discussion.	 Observations	 ended	 when	 a	
programmer	had	 to	 stop	working.	 Programmers	were	paid	 $10	per	hour	 for	 their	
participation.	Details	about	the	participants	and	their	tasks	are	given	in	Table	3.1.	

Figure	3.2.	A	‘Building	Virtual	Worlds”	programmer	Zine-tuning	an	
animation.



Chapter	3:	Breakdowns	in	Alice	 40

ID Expertise Observed	Work	
time	(min)

Programming	Tasks

B1 Average	C++,	
Visual	Basic,	
Java

245 Parameterized	a	rabbit’s	hop	animation	
with	speed	and	height	variables		

Wrote	code	to	make	tractor	beam	catch	
rabbit	when	in	line	of	sight		

Programmatically	animated	camera	
moving	down	stairs		

Prevented	goat	from	penetrating	ground	
after	falling		

Played	sound	in	parallel	with	character	
swinging	bat.	

B2 Above	average	
C++,	Java,	Perl

110 Randomly	resized	and	moved	20	handle-
bars	in	a	subway	train

B3 Above	average	
C,	Java

50 Imported,	arranged,	and	
programmatically	animated	objects	
involved	in	camera	animation.

Table	3.1.	For	the	BVW	study,	programmers’	self-rated	programming	language	
expertise,	their	total	observed	work	time,	and	the	tasks	that	they	worked	on	
during	observations.



Chapter	3:	Breakdowns	in	Alice	 41

3.2.2. RESULTS 

Approximately	12	hours	of	observations	were	obtained	from	the	three	programmers	
over	 12	 sessions.	 Each	 of	 the	 sessions	 was	 reviewed	 for	 breakdown	 scenarios,	 in	
which	 a	 programmer’s	 strategy	 was	 dif<icult	 to	 perform	 or	 unsuccessful.	 Some	
breakdowns	were	related	to	code.	For	example,	the	students	reused	code	to	perform	
similar	operations	such	as	animations	or	calculations,	but	the	code	was	not	properly	
adapted	for	its	new	location	(this	is	the	problem	that	the	student	in	Figure	3.2	was	
working	 on).	 These	 bugs	 were	 particularly	 dif<icult	 to	 isolate	 because	 they	
propagated	 through	 complex	 animations,	 which	 depended	 on	 events.	 Most	
breakdowns,	 however,	 were	 related	 to	 testing	 and	 debugging.	 For	 example,	 the	
programmers	 used	 visual	 cues	 extensively	 in	 order	 to	 aid	 testing	 tasks.	 One	
programmer	assigned	the	color	of	an	object	to	the	triggering	of	an	event	handler	in	
order	to	verify	the	event	occurred	at	the	proper	time.	This	was	like	writing	a	print	
statement	or	setting	a	breakpoint	to	verify	that	a	particular	method	executed.	

Participants	 also	 had	 dif<iculty	 testing	 code	 in	 “isolation,”	 as	 one	 participant	
described	 it.	 For	 example,	 programmers	 were	 forced	 to	 wait	 for	 long	 animation	
sequences	 to	 complete	 in	 order	 to	 test	 the	 end	 of	 the	 sequence.	 To	 tweak	 an	
animation,	 programmers	 made	 a	 small	 modi<ication,	 wrote	 an	 event	 to	 run	 the	
animation	 when	 a	 key	 was	 pressed	 during	 runtime,	 ran	 the	 world,	 viewed	 the	
animation,	and	repeated.	Also,	to	test	a	program’s	response	to	an	event	in	a	speci<ic	
world	state,	the	programmer	had	to	manually	recreate	the	world	state,	and	cause	the	
event	to	occur.	Programmers	often	had	dif<iculty	answering	debugging	questions	of	
the	 form	 “when,”	 “why,”	 and	 “why	not.”	 Students	 also	 struggled	 to	 conceive	of	 and	
verify	 possible	 explanations.	 These	 questions	 marked	 the	 beginning	 of	 long	 and	
dif<icult	 investigations	 into	 the	 execution	 of	 a	 program	 and	 often	 failed.	 In	 most	
cases,	 the	 programmer	 just	 started	 over	 from	 scratch	 instead	 of	 trying	 to	 <ix	 the	
broken	code.	This	was	partly	due	to	the	dif<iculty	of	modifying	Alice	code	because	of	
its	rigid	drag	and	drop	editor.	

3.3. ALICE IN THE LAB 

One	 of	 the	 more	 interesting	 <indings	 from	 the	 <ield	 study	 of	 Alice	 was	 that	 each	
debugging	 session	 began	 with	 a	 “why”	 question.	 To	 explore	 this	 phenomenon	 in	
more	 detail,	 the	 next	 study	 attempted	 to	 reproduce	 this	 <inding	 in	 the	 lab	 and	



Chapter	3:	Breakdowns	in	Alice	 42

explore	 its	 nature	 in	 detail.	 The	 study	 involved	 4	 novice	 Alice	 programmers	 (all	
masters	students	 in	an	HCI	department)	and	was	performed	individually	at	a	desk	
with	a	PC	and	17’’	CRT.	Programmers	were	recruited	via	an	e-mail	mailing	list.		

3.3.1. METHOD 

In	contrast	to	the	BVW	study,	all	4	programmers	were	asked	to	complete	the	same	
task,	which	was	 to	 create	a	 simple	Pac-Man	game	with	one	ghost,	 four	 small	dots,	
and	 one	big	 dot	 (as	 in	 Figure	 3.3).	 After	 a	 15-min	 tutorial	 on	 how	 to	 create	 code,	
methods	and	events,	programmers	were	given	 the	 same	brie<ing	as	 in	BVW	study,	
and	were	then	given	these	requirements	for	the	Pac-Man	game:	

• Pac	must	always	move.	His	direction	should	change	in	response	to	arrow	
keys.	

• Ghost	must	move	in	randomly	half	of	the	time	and	towards	Pac	the	other	
half.		

• If	Ghost	is	chasing	and	touches	Pac,	Pac	must	<latten	and	stop	moving	
forever.		

• If	Pac	eats	big	dot,	ghost	must	run	away	for	5	seconds,	then	return	to	
chasing.		

• If	Pac	Man	touches	the	running	Ghost,	the	Ghost	must	<latten	and	stop	for	5	
seconds,	then	chase	again.	

Programmers	remained	at	the	desk	throughout	observations,	and	were	videotaped	
over	 the	 shoulder	 with	 a	 Sony	 Digital	 8	 camcorder.	 As	 with	 the	 BVW	 study,	 the	
experimenter	used	the	phrases	 ‘‘And	now?’’	and	 ‘‘Please	continue’’	as	reminders	to	
think	aloud.	Programmers	worked	for	90	minutes	or	longer	if	they	wished	to	work	
more	 on	 the	 game.	 Programmers	were	 paid	 $15	 for	 their	 participation	 as	 long	 as	

ID Expertise Work	time	(min)

P1 Above	average	Java,	C 95

P2 Below	average	C++,	Java 90

P3 Above	average	Java,	C++ 215

P4 Above	average	Visual	Basic 90



Chapter	3:	Breakdowns	in	Alice	 43

they	completed	at	least	90	minutes	of	work.	Table	3.2	lists	programmers’	self-rated	
programming	 language	expertise,	 their	 total	work	time.	All	participants	were	male	
except	 for	 P2.	 The	 questionnaire,	 tasks,	 and	 tutorial	 for	 this	 study	 appear	 in	 the	
Appendix.	

3.3.2. RESULTS 

There	were	 a	 number	 of	 interesting	 general	 <indings	 from	 the	 study,	 summarized	
here.	First,	the	data	was	broken	down	into	several	debugging	sessions.	This	process	
involved	tracing	backwards	through	each	session	and	inferring	the	goal	structure	of	
the	participants	based	on	their	actions	and	their	verbal	statements.	These	sessions	
were	 counted	 from	 when	 a	 “why”	 question	 was	 asked	 and	 ended	 when	 the	
developer	was	satis<ied	with	the	solution	to	 the	problem	or	gave	up,	moving	on	to	
another	 task.	 In	 analyzing	 these	 sessions	 in	 more	 detail,	 the	 <irst	 thing	 that	 was	
apparent	was	 that	when	participants	 noticed	 failures	while	 testing	 their	 program,	
they	verbalized	“why	did”	and	“why	didn’t”	questions	about	their	program’s	output	
and	 behavior	 (about	 68%	 of	 all	 of	 the	 participants’	 questions	 were	 “why	 didn’t”	
questions).	 They	 only	 asked	 “why	 didn’t”	 questions	 about	 behaviors	 that	 they	

Figure	3.3.	An	image	from	the	recording	of	a	study	participants’	work	
on	the	Pac-Man	task.



Chapter	3:	Breakdowns	in	Alice	 44

expected	to	happen	because	of	code	they	had	written	(or	thought	they	had	written).	
In	 looking	 at	 these	 debugging	 sessions	 in	 more	 detail,	 an	 average	 of	 46%	 of	
participants’	 time	was	 spent	 debugging.	 All	 of	 the	 time	 that	 each	 developer	 spent	
debugging	was	the	result	of	an	average	of	 two	or	 three	 false	hypotheses	about	 the	
cause	of	the	program’s	behavior.	Because	of	these	false	hypotheses,	about	half	of	all	
of	 the	 developers’	 errors	 were	 inserted	 while	 debugging	 some	 other	 error.	 No	
developer	 formed	 an	 accurate	 explanation	 of	 a	 program’s	 behavior	 on	 the	 <irst	
attempt.	

3.4. AN ANALYSIS OF BREAKDOWNS 

Although	the	results	of	each	study	in	this	chapter	stand	alone,	there	is	much	to	learn	
by	analyzing	them	together.	To	perform	this	analysis	more	systematically,	 this	next	
section	 formalizes	 the	 notion	 of	 a	 “breakdown”	 along	 with	 a	 process	 to	 identify	
causes	of	breakdowns	from	verbal	utterances	from	the	participants.	The	end	of	this	
section	 then	 uses	 this	 formalization	 to	 analyze	 the	 results	 from	 the	 two	 studies	
discussed	in	the	prior	sections.	

3.4.1. A FRAMEWORK FOR STUDYING THE CAUSES OF SOFTWARE ERRORS 

The	 causes	 of	 software	 errors	 are	 rarely	 due	 to	 a	 programmer’s	 cognitive	 failures	
alone:	 a	myriad	 of	 environmental	 factors,	 such	 as	 hidden	 or	 ambiguous	 cues	 in	 a	
programming	environment,	unfortunately	timed	interruptions,	or	poorly	conceived	
language	 constructs	 may	 also	 be	 involved.	 Thus,	 to	 truly	 support	 design,	 the	
programmer	and	 the	 programming	 system	 should	 be	 considered	 together.	 To	 this	
end,	there	are	a	number	of	concepts	to	de<ine:	

1. Programmers	 perform	 three	 types	 of	 programming	 activities:	 speci<ication	
activities	 (involving	 design	 and	 requirements	 speci<ication),	 implementation	
activities	(involving	the	manipulation	of	code),	and	runtime	activities	(involving	
testing	and	debugging).	

2. Programmers	perform	six	types	of	actions	while	interacting	with	a	programming	
system’s	 interfaces:	 design,	 creation,	 reuse,	 modi<ication,	 understanding,	 and	
exploration.	



Chapter	3:	Breakdowns	in	Alice	 45

3. Skill	breakdowns,	rule	breakdowns,	and	knowledge	breakdowns	occur	as	a	result	
of	the	interaction	between	programmer’s	cognitive	limitations	and	properties	of	
the	 programming	 system	 and	 external	 environment	 (as	 discussed	 in	 Chapter	
2.2.2).	

These	aspects	are	combined	into	two	central	ideas:	

1. A	cognitive	breakdown	consists	of	four	components:	the	type	of	breakdown,	the	
action	being	performed	when	the	breakdown	occurs,	the	interface	on	which	the	
action	is	performed,	and	the	information	that	is	being	acted	upon.	

2. Chains	 of	 cognitive	 breakdowns	 are	 formed	 over	 the	 course	 of	 programming	
activity,	 often	 leading	 to	 the	 introduction	 of	 software	 errors	 (as	 de<ined	 in	
Section	2.2.2).	

These	ideas	map	directly	to	elements	in	the	framework	portrayed	in	Figure	3.4.	The	
three	 grey	 regions,	 stacked	 vertically,	 denote	 speci<ication,	 implementation,	 and	
runtime	activities.	The	four	columns	contain	various	types	of	the	four	components	of	
a	breakdown.	Breakdowns	are	read	from	left	to	right	in	the	<igure,	with	‘[	]’	meaning	
“choose	 one	within	 the	 brackets.”	 For	 example,	 in	 speci<ication	 activities,	 a	 single	
breakdown	consists	of	one	of	three	categories	of	breakdowns,	one	of	three	types	of	
actions,	 one	 of	 three	 types	 of	 interfaces,	 and	 one	 of	 two	 types	 of	 information	
(therefore,	 the	 framework	can	describe	3	x	3	x	3	x	2	=	54	 types	of	breakdowns	 in	
speci<ication	 activities;	 in	 fact,	 because	 there	 are	 speci<ic	 types	 skill,	 rule,	 and	
knowledge	 breakdowns,	 there	 are	 even	 more).	 Thus,	 one	 possible	 breakdown	
described	by	the	framework	would	be	“a	knowledge	breakdown	in	understanding	a	
diagram	 of	 a	 design	 speci<ication.”	 The	 actions,	 interfaces,	 and	 information	 for	 a	
particular	 activity	 are	 determined	 by	 the	 nature	 of	 the	 activity.	 For	 example,	 in	
runtime	 activity,	 programmers	 explore	 and	 understand	 machine	 and	 program	
behavior,	but	they	do	not	create	or	design	it.	

Chains	of	breakdowns	are	represented	by	following	the	arrows	in	Figure	3.4,	which	
denote	 “can	 cause”	 relationships.	 For	 example,	 by	 following	 the	 arrow	 from	
speci<ication	 activities	 to	 implementation	 activities,	 we	 can	 say,	 “a	 knowledge	
breakdown	 in	 understanding	 a	 diagram	 of	 a	 design	 speci<ication	 can	 cause	 a	
knowledge	 breakdown	 in	 modifying	 code.”	 The	 framework	 allows	 all	 “can	 cause”	
relationships	 within	 each	 activity;	 for	 example,	 during	 speci<ication,	 “a	 software	
architect’s	 breakdowns	 in	 creating	 design	 speci<ication	 diagrams	 can	 cause	



Chapter	3:	Breakdowns	in	Alice	 46

programmers	 to	 have	 knowledge	 breakdowns	 in	 understanding	 them.”	 The	

	

Figure	3.4.	A	framework	for	modeling	the	causes	of	software	errors	based	on	
chains	of	cognitive	breakdowns.	Breakdowns	occur	in	speciZication,	
implementation,	and	runtime	activities.	A	single	breakdown	is	read	from	left	
to	right	and	consists	of	one	component	from	each	column	within	an	activity.	
The	cause	of	a	single	software	error	can	be	thought	of	as	a	path	through	these	
various	types	of	breakdowns,	by	following	the	“can	cause”	arrows	between	and	
within	the	activities.



Chapter	3:	Breakdowns	in	Alice	 47

framework	 also	 supports	 relationships	 between	 activities,	 as	 in	 “breakdowns	 in	
modifying	 design	 speci<ication	 documents	 can	 cause	 breakdowns	 in	 modifying	
code,”	or,	“breakdowns	in	understanding	code	in	an	editor	can	cause	breakdowns	in	
understanding	design	speci<ication	documents.”		

In	addition	to	describing	“can	cause”	relationships	within	and	between	activities,	the	
framework	 also	 describes	 relationships	 between	 software	 errors,	 runtime	 faults,	
runtime	 failures,	 and	 other	 breakdowns.	 For	 example,	 software	 errors	 can	 cause	
breakdowns	 in	 modifying	 code	 before	 ever	 causing	 a	 runtime	 fault:	 when	 a	
programmer	makes	a	variable	of	Boolean	 instead	of	 integer	 type,	any	 further	code	
that	assumes	the	variable	is	of	 integer	type	is	erroneous.	A	runtime	fault	or	failure	
can	cause	various	types	of	debugging	breakdowns	if	noticed.	

While	 the	 framework	 suggests	 many	 links	 between	 breakdowns,	 it	 makes	 no	
assumptions	about	 their	ordering.	High-level	software	engineering	processes,	such	
as	 the	waterfall	or	extreme	programming	models,	assume	a	particular	sequence	of	
speci<ication,	 implementation,	 and	 debugging	 activities;	 models	 of	 programming,	
program	 comprehension,	 testing,	 and	 debugging	 assume	 a	 particular	 sequence	 of	
programming	actions.	The	framework	describes	the	causes	of	software	errors	in	any	
of	these	models	and	processes.	

To	illustrate	how	these	chains	of	breakdowns	occur,	consider	the	scenario	illustrated	
in	 Figure	 3.5.	 A	 programmer	 had	 little	 sleep	 the	 night	 before,	 which	 causes	 an	
repetition	breakdown	(a	type	of	skill	breakdown	in	Table	2.3)	 in	 implementing	the	
swap	 algorithm	 for	 a	 recursive	 sorting	 algorithm;	 this	 causes	 a	 repeated	 variable	
reference.	At	the	same	time,	a	faulty	model	knowledge	breakdown	in	understanding	
the	algorithm’s	speci<ications	causes	an	overconJidence	breakdown	in	implementing	
a	statement	 in	the	recursive	call;	 this	causes	another	erroneous	variable	reference.	
When	 he	 tests	 his	 algorithm,	 the	 two	 software	 errors	 cause	 two	 runtime	 faults,	
causing	 the	 sort	 to	 fail.	 When	 observing	 the	 failure,	 the	 programmer	 has	 a	
problematic	 signs	 breakdown	 in	 observing	 the	 program’s	 output	 because	 it	 is	
displayed	 amongst	 other	 irrelevant	 debugging	 output,	 and	 he	 perceives	 a	 “10”	
instead	of	the	“100”	that	is	on-screen.	This	causes	the	programmer	to	have	a	biased	
reviewing	breakdown	 in	 understanding	 the	 runtime	 failure:	 he	 forms	 an	 incorrect	
hypothesis	about	the	cause	of	the	failure,	and	neglects	to	consider	other	hypotheses.	
This	 invalid	 hypothesis	 causes	 a	 selectivity	 breakdown	 in	modifying	 the	 recursive	
call,	ultimately	causing	in<inite	recursion.	



Chapter	3:	Breakdowns	in	Alice	 48

	

	
Figure	3.5.	An	example	of	a	cognitive	breakdown	chain,	where	a	programmer	
has	several	breakdowns	while	implementing	a	recursive	sorting	algorithm.



Chapter	3:	Breakdowns	in	Alice	 49

3.4.2. A METHODOLOGY FOR STUDYING THE CAUSES OF SOFTWARE ERRORS 

One	use	of	our	framework	is	as	a	vocabulary	for	the	causes	of	software	errors	in	a	
programming	system.	It	enables	statements	such	as	“This	window	in	the	code	editor	
might	 make	 programmers	 prone	 to	 problematic	 sign	 breakdowns	 in	 cutting	 and	
pasting	 code,	 since	 it	 obscures	 part	 of	 the	 pasted	 text.”	 In	 this	 sense,	 it	 can	
complement	other	 “broad-brush”	 frameworks	such	as	 the	Cognitive	Dimensions	of	
Notations	[Blackwell	2003].	However,	the	real	strength	of	the	framework	is	in	using	
it	to	guide	the	empirical	analysis	of	programming	systems,	with	the	goal	of	collecting	
design	insights	and	inspirations	that	would	have	otherwise	not	been	obvious.	

This	 section	 describes	 a	 methodology	 for	 performing	 such	 analyses.	 It	 has	 four	
major	steps:	

1. Design	an	appropriate	programming	task.	

2. Observe	and	record	suitably	experienced	programmers	working	on	the	task,	
using	 think-aloud	 methodology	 [Ericsson	 1984]	 to	 capture	 their	 decisions	
and	reasoning.	

3. Use	 the	 recordings	 to	 reconstruct	 chains	 of	 cognitive	 breakdowns	 by	
working	backwards	from	programmers’	software	errors	to	their	causes.	

4. Analyze	 the	 resulting	 set	 of	 chains	 of	 breakdowns	 for	 patterns	 and	
relationships.	

How	should	programmers	be	observed	and	what	should	be	recorded?	Because	the	
underlying	assumption	of	the	methodology	is	that	a	programming	system	is	prone	to	
a	 subset	 of	 all	 possible	 chains	 of	 breakdowns	 described	 by	 the	 framework,	
recordings	should	capture	all	four	aspects	of	a	cognitive	breakdown.	As	just	de<ined,	
a	 breakdown	 consists	 of	 four	 components:	 the	 type	 of	 breakdown,	 the	 action	
performed	 by	 the	 programmer,	 the	 interface	 used	 to	 perform	 the	 action,	 and	 the	
information	 acted	 upon.	 The	 latter	 three	 components	 are	 directly	 observable.	 For	
example,	by	watching	a	programmer	use	a	UNIX	environment	to	code	a	C	program,	
one	can	observe	 the	programming	 interfaces	 she	uses	 (emacs,	vi,	man	pages,	 etc.),	
the	actions	she	performs	using	these	interfaces	(editing,	shell	commands,	searching,	
etc.),	 and	 the	 information	 that	 she	 is	 acting	 upon	 (code,	 make<iles,	 text	 console	
output,	etc.).	The	only	unobservable	component	of	a	breakdown	is	its	type—one	of	



Chapter	3:	Breakdowns	in	Alice	 50

the	many	types	discussed	in	Section	2.2.2.	Merely	analyzing	a	programmer’s	actions	
will	not	 reliably	 suggest	 a	programmer’s	 goals	 and	decisions,	 since	a	 single	 action	
may	have	many	possible	motives.	Instead,	think-aloud	methodology	[Ericsson	1984]	
should	be	used	to	elicit	the	causes	of	programmers’	actions.	In	think-aloud	studies,	
the	 experimenter	 asks	 participants	 to	 provide	 self-reports	 of	 the	 decision-making	
and	rationale	behind	their	actions .	5

To	actually	record	breakdowns,	videotaping	programmers	at	work	or	recording	the	
contents	of	their	screen	using	video	capture	software	with	an	accompanying	audio	
recording	works	well.	While	 this	may	 seem	 like	 an	 unnecessarily	 large	 amount	 of	
data	 to	 gather	 and	 analyze,	 anything	 less	 than	 a	 full	 recording	 of	 a	 programmer’s	
interaction	 with	 a	 programming	 system	 can	 severely	 hinder	 the	 validity	 of	
assessments	of	the	causes	of	a	software	error.	In	our	experience,	observations	such	
as	the	pauses	between	clicks,	the	code	scrolled	to,	what	code	is	being	focused	on	and	
even	the	speed	of	scrolling	can	all	be	reliable	indicators	of	a	programmer’s	goals	and	
decisions	when	combined	with	verbal	utterances.	For	example,	many	environments	
show	tool	tips	when	the	mouse	cursor	is	hovered	over	particular	code	fragments;	by	
only	instrumenting	a	programming	system	to	record	high-level	actions	such	as	“tool	
tip	 shown,”	 “button	 pressed,”	 and	 “text	 deleted,”	 there	 would	 be	 no	 indication	 of	
whether	the	programmer	actually	meant	to	inspect	the	tool	tip,	or	whether	he	just	
happened	 to	 leave	 the	 mouse	 cursor	 at	 that	 position	 while	 he	 consulted	 some	
printouts	on	his	desk.	

To	 reconstruct	 chains	 of	 cognitive	 breakdowns	 from	 a	 recording,	 a	 deductive	
approach	in	which	one	asks	questions	about	a	software	error,	runtime	fault,	runtime	
failure,	 or	 cognitive	 breakdown	 in	 order	 to	 determine	 its	 cause	 works	 well.	 This	
backwards	reasoning	proceeds	until	no	further	causes	can	be	determined	from	the	
evidence.	 This	 process	 is	 illustrated	 in	 Figure	 3.6,	 which	 reconstructs	 the	 chain	
presented	in	Figure	3.5.	

The	 reconstruction	 begins	 from	 the	 program’s	 runtime	 failure,	 a	 stack	 over<low	
exception,	 by	 asking	 the	 deductive	 question,	 “What	 caused	 the	 stack	 over<low?”	
Deducing	the	chain	of	causality	from	this	failure,	to	the	runtime	fault,	from	the	fault	
to	 the	 software	 error	 is	 essentially	 debugging—to	 analyze	 the	 situation,	 one	must	
understand	 the	programmer’s	 code	well	 enough	 to	be	able	 to	determine	all	of	 the	

	The study followed Boren and Ramey’s guidelines for think aloud usability testing [Boren 2002]5



Chapter	3:	Breakdowns	in	Alice	 51

software	 errors	 that	 contributed	 to	 the	 program’s	 failure.	 This	 deduction	 can	 be	
done	 objectively,	 given	 enough	 knowledge	 of	 the	 program’s	 code	 and	 runtime	
behavior.	Performing	this	analysis	 from	the	videotape	requires	repeated	rewinding	
and	fast-forwarding,	and	thus	having	the	video	in	digital	format	is	quite	helpful.	

Once	 the	 software	 errors	 leading	 to	 the	 runtime	 failure	 have	 been	 deduced,	 one	
must	determine	what	 types	of	cognitive	breakdowns	 led	 to	 the	software	error.	For	
example,	 Figure	 3.6	 asks,	 “What	 caused	 the	 invalid	 recursive	 call?”	 Had	 the	

Figure	3.6.	Deductively	reconstructing	the	causal	chain	of	breakdowns	
represented	in	Figure	3.5,	using	a	programmer’s	actions	and	speech.



Chapter	3:	Breakdowns	in	Alice	 52

programmer	 said	 nothing	 about	 his	 actions,	 there	 would	 have	 been	 several	
explanations,	 but	 none	 with	 supporting	 evidence.	 However,	 because	 the	
programmer	said,	“Oh,	I	bet	it’s	because	that	recursive	call	was	supposed	to	go	<irst”	
and	 then	 proceeded	 to	 move	 the	 recursive	 call	 in	 his	 code,	 we	 can	 be	 relatively	
con<ident	 that	 it	was	an	availability	breakdown:	 the	programmer	assumed	that	his	
most	 recent	 changes	 to	 the	code	were	 responsible,	 rather	 than	 the	swap	code.	We	
then	 proceed	 to	 ask	 deductive	 questions	 about	 each	 breakdown,	 until	 no	 further	
causes	can	be	deduced	from	the	evidence.	

In	 some	 circumstances,	 there	 can	 be	 multiple	 events	 responsible	 for	 a	 single	
breakdown,	at	which	point	the	chain	is	split	in	two.	For	example,	in	Figure	3.6,	there	
are	 multiple	 reasons	 why	 the	 sort	 failed	 (two	 runtime	 faults,	 two	 corresponding	
software	errors,	and	thus	at	least	two	cognitive	breakdowns).	In	general,	chains	can	
branch	at	runtime	failures	(due	to	multiple	runtime	faults),	at	software	errors	(due	
to	 multiple	 cognitive	 breakdowns),	 and	 at	 breakdowns	 (due	 to	 multiple	 external	
events,	such	as	interface	problems	or	interruptions).	

How	 should	 a	 breakdown’s	 type	 be	 determined?	 The	 analyses	 have	 used	
programmers’	 verbal	 utterances	 and	 other	 contextual	 information	 to	 answer	
deductive	 questions	 about	 some	 action.	 For	 example,	 if	 a	 programmer	 types	 the	
wrong	variable	name	in	a	method	call,	our	deductive	question	would	be,	“Why	did	
the	programmer	use	variable	X	instead	of	variable	Y?”	This	question	is	answered	by	
considering	the	programmer’s	past	actions	and	verbal	utterances.	For	example,	if	the	
programmer	 said,	 “What	 do	 we	 have	 to	 send	 to	 this	 method?	 Um,	 I	 think	 X.”	 we	
might	deduce	that	he	had	a	biased	reviewing	knowledge	breakdown	because	he	was	
in	knowledge-based	cognitive	activity	and	only	considered	one	course	of	action.	

Detecting	Skill	Breakdowns
Skill-based	
activity	is	
when...

The	programmer...	
• Is	actively	executing	routine,	practiced	actions	in	a	familiar	context	
• Is	focused	internally	on	problem	solving,	rather	than	executing	the	routine	

actions



Chapter	3:	Breakdowns	in	Alice	 53

To	help	make	these	judgments	about	a	breakdown’s	type,	Table	3.3	summarizes	the	
various	 types	 of	 skill,	 rule,	 and	 knowledge	 breakdowns	 from	 Section	 2.2.2.	
Everything	in	this	table	speci<ic	to	programming	was	adapted	from	the	more	general	
research	on	human	error	in	[Reason	1990]	and	informed	by	experiences	analyzing	
the	data	in	the	studies	in	this	chapter.	This	table	can	be	used	to	<ind	an	appropriate	
answer	 for	 each	 deductive	 question.	 This	 table	 has	 been	 an	 indispensable	 aid	 in	
considering	 the	 possible	 explanations	 for	 a	 programmer’s	 behaviors.	 In	 our	
experience,	 when	 considering	 the	 context	 of	 some	 action,	 either	 a	 single	 type	 of	

Skill	
breakdowns	
happen	
when...

The	programmer...	
• Is	interrupted	by	an	external	event	(interruption)	
• Has	a	delay	between	an	intention	and	a	corresponding	routine	action	(delayed	

action)	
• Is	performing	routine	actions	in	exceptional	circumstances	(strong	habit	

intrusion)	
• Is	performing	multiple,	similar	plans	of	routine	action	(interleaving)	
• Misses	an	important	change	in	the	environment	while	performing	routine	

actions	(exceptional	stimuli)	
• Attends	to	routine	actions	and	makes	a	false	assumption	about	their	progress	

(omission,	repetition)
Detecting	Rule	Breakdowns
Rule-based	
activity	is	
when...

The	programmer...	
• Detects	a	deviation	from	the	planned-for	conditions	
• Is	seeking	signs	in	the	environment	to	determine	what	to	do	next

Rule	
breakdowns	
happen	
when...

The	programmer...	
• Takes	the	wrong	action	
• Misses	an	important	sign	(favored	signs)	
• Is	inundated	with	signs	(information	overload)	
• Is	acting	in	an	exceptional	circumstance	(favored	rules,	rigidity)	
• Misses	ambiguous	or	hidden	signs	in	the	environment	(problematic	signs)	
• Acts	on	incomplete	knowledge	(incomplete	knowledge)	
• Acts	on	inaccurate	knowledge	(inaccurate	knowledge)	
• Uses	an	exceptional,	albeit	successful	rule	from	past	experience	as	the	rule	

(exception	proves	rule)
Detecting	Knowledge	Breakdowns
Knowledge-
based	
activity	is	
when...

The	programmer...	
• Is	executing	unpracticed	or	novel	actions	
• Is	comprehending,	hypothesizing	or	otherwise	reasoning	about	a	problem	

using	knowledge	of	the	problem	space
Knowledge	
breakdowns	
happen	
when...

The	programmer...	

• Makes	a	decision	without	considering	all	courses	of	action	or	all	hypotheses	
(biased	reviewing)	

• Has	a	false	hypothesis	about	something	(con<irmation	bias)	
• Sees	a	non-existent	relationship	between	events	(simpli<ied	causality)	
• Notices	illusory	correlation,	or	does	not	notice	real	correlation	between	events	

(illusory	correlation)	
• Does	not	attend	to	logically	important	information	when	making	decision	

(selectivity)	
• Does	not	consider	logically	important	information	that	is	unavailable,	or	

dif<icult	to	recall	(availability)	
• Is	overcon<ident	about	the	correctness	and	completeness	of	their	knowledge	

(overcon<idence)



Chapter	3:	Breakdowns	in	Alice	 54

breakdown	stands	out,	or	none	do.	If	it	is	unclear	which	type	of	breakdown	was	to	
blame,	the	observations	are	probably	insuf<icient	for	objectively	deducing	the	cause	
of	the	cognitive	breakdown.	However,	even	in	this	case	it	is	useful	to	record	all	of	the	

Table	3.3.	A	summary	of	skill,	rule,	and	knowledge	breakdowns,	which	can	be	
used	to	answer	deductive	questions	from	observations.		



Chapter	3:	Breakdowns	in	Alice	 55

possible	interpretations,	since	programmers’	actions	or	decisions	that	have	yet	to	be	
analyzed	may	disambiguate	a	breakdown’s	type.	

Although	programmers’	verbal	utterances	can	be	a	valuable	and	reliable	indicator	of	
a	breakdown’s	type,	this	is	only	true	if	the	verbal	data	is	analyzed	in	a	reliable	way.	It	
is	 useful	 to	 test	 the	 reliability	 of	 interpretations	 by	 having	 multiple	 individuals	
reconstruct	 a	 subset	 of	 the	 software	 errors	 independently,	 and	 then	 checking	 for	
agreement	in	the	types	of	breakdowns	and	structure	of	chains	of	breakdowns.	This	
comparison	is	non-trivial,	since	it	involves	comparing	not	only	the	categories	chosen	
from	Table	 3.3	 (whether	 at	 the	 level	 of	 skill,	 rule,	 or	 knowledge	 breakdowns,	 or	 a	
<iner	grained	comparison	on	subtypes	of	these	breakdowns),	but	also	for	agreement	
on	the	causal	links	between	breakdowns.	Formalizing	such	a	comparison	technique,	
and	how	such	comparisons	might	be	converted	 into	reliability	statistics,	 is	outside	
the	scope	of	this	dissertation.	

Once	a	set	of	reliable	chains	of	cognitive	breakdowns	has	been	reconstructed	from	
observations,	there	are	a	wide	variety	of	questions	that	can	be	asked:	

• What	activities	are	most	prone	to	cognitive	breakdowns?	

• What	aspects	of	the	language	and	environment	are	involved	in	breakdowns?	

• What	types	of	actions	are	most	prone	to	breakdowns?	

• How	do	novice	and	expert	programmers’	types	of	breakdowns	compare?	

• What	breakdowns	tend	to	cause	further	breakdowns?	

3.4.3. BREAKDOWNS IN ALICE 

Because	 the	 programmers	 in	 each	 of	 the	 studies	 were	 responsible	 for	 their	 own	
design	speci<ications	(the	actual	implementation	of	their	requirements),	the	analysis	
only	 involved	chains	based	on	software	errors	 that	caused	 failures.	Errors	 that	did	
not	 cause	 failures	 could	 not	 be	 identi<ied:	 when	 speci<ications	 exist	 only	 in	 a	
programmer’s	head,	the	programmer	is	the	only	person	who	can	deem	that	program	
behavior	 violates	 a	 speci<ication.	 The	 observations	 across	 both	 studies	 resulted	 in	
895	minutes	of	recordings,	all	of	which	was	analyzed.	In	total,	it	took	about	40	hours	
to	analyze	the	15	hours	of	recordings.	The	<irst	phase	of	analysis	was	to	search	each	



Chapter	3:	Breakdowns	in	Alice	 56

recording	 for	 runtime	 failures	by	 <inding	 incidents	where	 a	programmer	 explicitly	
labeled	some	program	behavior	as	incorrect	(as	in,	“What?	Pac’s	not	supposed	to	be	
bouncing!”).	 Once	 these	 failures	 were	 found	 and	 time	 stamps	 were	 recorded	 for	
each,	 the	 next	 phase	was	 to	 informally	 scan	 the	 programmers’	 actions	 before	 and	
after	the	failure	in	order	to	get	a	sense	for	what	software	errors	were	responsible	for	
the	 runtime	 failure;	 in	many	 cases,	 the	 software	 errors	were	 obvious	 because	 the	
programmer	later	found	the	errors	after	debugging.	Once	the	software	errors	were	
determined,	deductive	questions	were	asked	about	each,	and	programmers’	verbal	
utterances	 in	close	 temporal	proximity	were	used	 to	determine	 the	answers.	Time	
stamps	were	 recorded	 for	 each	 of	 the	 breakdowns	 in	 the	 chain,	 along	with	 other	
contextual	details	such	as	the	interface	and	information	involved	in	the	breakdown.	

To	 illustrate	 the	nature	of	 these	analyses,	 consider	 the	example	of	Figure	3.7	 from	
one	of	P2’s	resulting	chains.	In	the	<igure,	the	instigating	breakdown	in	creating	the	
speci<ications	 for	 the	Boolean	 logic	 led	 to	 a	breakdown	 in	 implementing	 the	 logic,	
which	 led	 to	 incorrect	 logic	 in	 the	 code.	 At	 the	 same	 time,	 P2	 had	 another	
breakdown,	 assuming	 that	 a	 reference	 to	 “BigDot”	 was	 already	 included,	 but	 off-
screen,	when	in	fact	 it	was	not.	This	 led	to	a	missing	reference	error.	Both	of	these	
software	errors	caused	the	conditional	to	become	true	after	a	single	dot	was	eaten,	
causing	Pac-Man	to	bounce	before	he	had	eaten	all	of	 the	dots.	When	P2	observed	
the	failure,	she	had	a	breakdown,	in	only	forming	one	incorrect	hypothesis	about	its	
cause.	This	false	hypothesis	led	to	a	breakdown	in	modifying	the	expression,	which	
caused	Pac-Man	to	bounce	immediately,	before	eating	any	dots.	However,	because	P2	
had	moved	the	camera	position	to	look	down	on	Pac-Man,	the	failure	was	no	longer	
visible.	This	caused	P2	to	have	another	breakdown,	where	she	believed	the	earlier	
failure	 had	 been	 repaired	 because	 Pac-Man	 did	 not	 seem	 to	 be	 bouncing.	 Twenty	
minutes	later,	after	repositioning	the	camera,	she	noticed	that	Pac-Man	was	actually	
still	bouncing	at	runtime,	but	assumed	that	her	recently	modi<ied	code	was	to	blame,	
rather	 than	 the	still	 incorrect	Boolean	expression.	The	 interesting	 thing	about	 this	
example	is	that	it	illustrates	how	easily	a	single	mistake	can	propagate	throughout	a	
task.	Each	little	mistake	along	the	way	compounds	earlier	mistakes.	This	means	that	
the	cost	of	a	mistake	early	on	is	likely	to	be	underestimated.	

One	analyzer	reconstructed	breakdown	chains	like	the	one	in	Figure	3.7	from	all	of	
the	7	programmers’	runtime	failures.	A	second	analyzer	reconstructed	chains	for	a	
random	 10%	 of	 the	 runtime	 failures,	 to	 test	 for	 inter-rater	 reliability.	 Upon	
subjective	 comparison,	 the	 causal	 links	 between	breakdowns	 in	 the	 reconstructed	



Chapter	3:	Breakdowns	in	Alice	 57

chains	 were	 largely	 the	 same,	 although	 each	 of	 the	 analyzers	 noticed	 some	
breakdowns	 that	 the	 other	 had	 not	 (as	 noted	 in	 Section	 3.4.2,	 there	 is	 not	 yet	 a	
formal	method	 for	 performing	 such	 comparisons).	 Although	 the	 time	 to	 construct	
the	chains	was	not	recorded,	the	analysis	time	was	largely	dependent	on	how	much	
time	 the	 chain	 of	 breakdowns	 covered	 in	 the	 recording:	 for	 example,	 a	 chain	
spanned	 10	 minutes	 of	 video	 took	 twice	 as	 long	 to	 reconstruct	 than	 one	 that	

Figure	3.7.	A	segment	of	one	of	P2’s	cognitive	breakdown	chains.	The	last	
breakdown	shown	here	did	not	cause	further	breakdowns	until	20	minutes	
later,	after	the	camera	position	made	it	apparent	that	Pac	was	still	jumping.



Chapter	3:	Breakdowns	in	Alice	 58

spanned	5	minutes	 of	 video.	Overall,	 the	 analyses	 spanned	 approximately	 one	40-
hour	week.	

Over	 895	 minutes	 of	 observations,	 there	 were	 69	 root	 breakdowns	 (breakdowns	
with	no	 identi<iable	 cause)	and	159	 total	breakdowns.	These	 caused	102	software	
errors,	33	of	which	led	to	one	or	more	new	software	errors.	The	average	chain	had	
2.3	breakdowns	(standard	deviation	2.3)	and	caused	1.5	software	errors	(standard	
deviation	 1.1).	 Table	 3.4	 shows	 the	 proportions	 of	 time	 programmers	 spent	
programming	 and	 debugging.	 On	 average,	 46%	 of	 programmers’	 time	 was	 spent	
debugging	 (and	 thus	 a	 little	 more	 than	 half	 was	 spent	 implementing	 code	 and	
understanding	 the	 problem).	 The	 BVW	 programmers,	 whose	 code	 was	 more	
complex,	 had	 longer	 chains	 of	 breakdowns	 than	 the	 Pac-Man	 programmers’,	
suggesting	that	the	causes	of	their	software	errors	were	more	complex.		

Table	3.4.	Programming	and	debugging	time,	and	the	number	of	software	
errors,	breakdowns,	and	chains,	as	well	as	chain	length,	by	programmer.	

As	seen	in	Table	3.5,	about	77%	of	all	breakdowns	occurred	during	implementation	
activity;	 these	 tended	 to	 be	 skill	 and	 rule	 breakdowns	 in	 implementing	 and	
modifying	artifacts	and	knowledge	breakdowns	in	understanding	and	implementing	
artifacts.	About	18%	of	all	breakdowns	occurred	in	runtime	activity;	these	tended	to	
be	 knowledge	 or	 skill	 problems	 in	 understanding	 runtime	 failures	 and	 faults.	 The	
proportion	 of	 skill,	 rule,	 and	 knowledge	 breakdowns	 were	 about	 equal.	 The	 root	
breakdowns	 of	 most	 chains	 were	 knowledge	 breakdowns	 understanding	 runtime	
failures	and	runtime	faults	and	skill	and	rule	breakdowns	implementing	code.	

Table	3.5.	Breakdowns	split	by	activity	and	type.	

ID
Programming	

Time Debugging	Time #	of	Software	
Errors

#	of	
Breakdowns #	of	Chains Average	Chain	

Length
minutes minutes %	of	time Mean	(SD)

B1 245 142 58% 23 41 10 4.1	(3.5)

B2 110 35 32.8% 16 32 7 4.6	(3.3)

B3 50 11 22% 3 5 4 1.2	(0.5)

P1 95 23 36.8% 14 23 11 2.1	(1.7)

P2 90 30 33.3% 7 7 7 1.0	(0.0)

P3 215 165 76.7% 34 44 25 1.8	(1.2)

P4 90 27 30% 5 7 5 1.4	(0.5)

Total 895 554 46.4% 102 159 69 2.3	(2.2)

Activity Type	of	
Breakdown %	of	all	Breakdowns

Speci<ication
Skill 0%
Rule 3.1%



Chapter	3:	Breakdowns	in	Alice	 59

Table	 3.6	 shows	which	 aspects	 of	 Alice	were	most	 often	 involved	 in	 breakdowns.	
Most	breakdowns	 involved	 the	construction	of	algorithms	and	 the	use	of	 language	
constructs	and	animations.	This	is	to	be	expected,	since	the	majority	of	observations	
were	of	programmers	completely	new	to	the	Alice	programming	system.	

Table	3.6.	Frequency	and	percent	of	breakdowns	and	software	errors	by	type	
of	information	and	the	average	debugging	time	for	software	errors	in	each	
type	of	information.	

Table	 3.7	 shows	 the	 number	 of	 software	 errors	 and	 time	 spent	 debugging	 by	
problem	 and	 action.	 Most	 software	 errors	 were	 caused	 by	 rule	 breakdowns	 in	
implementing,	 modifying,	 and	 reusing	 program	 elements	 (rather	 than	
understanding	 or	 observing	 program	 elements).	 The	 variance	 in	 debugging	 times	
was	high,	and	the	longest	debugging	times	were	on	rule	breakdowns	in	reusing	code	
and	knowledge	breakdowns	understanding	code.	

Table	3.7.	Software	errors	and	debugging	time	by	cognitive	breakdown	type	
and	action.	Only	actions	causing	software	errors	are	shown.	

Speci<ication
Knowledge 1.2%
Total 4.4%

Implementatio
n

Skill 22%
Rule 28.3%
Knowledge 27%
Total 77.4%

Runtime
Skill 8.1%
Rule 0%
Knowledge 10.1%
Total 18.2%

Type	of	Information
Breakdowns Software	Errors	 Debugging	Time

Frequency %	of	all	
breakdowns Frequency %	of	all	errors Mean	(SD)	in	

minutes
Algorithms 37 23.3% 34 33.3% 4.8	(6.2)
Language	constructs 35 22% 31 30.4% 4.6	(5.5)
Animations 21 13.2% 19 18.6% 7.1	(6.9)
Runtime	Failures 20 12.6% - - -
Events 18 11.3% 10 9.8% 3.6	(4.2)
Runtime	Faults 9 5.7% - - -
Data	Structures 8 5% 7 6.9% 3.3	(4.1)
Run-Time	
Speci<ication

5 3.1% - - -

Environment 4 2.5% 1 1% 1.0	(		-		)
Requirements 2 1.3% - - -
Software	Failures 0 0% - - -

Breakdown Action Software	Errors Debugging	Time



Chapter	3:	Breakdowns	in	Alice	 60

This	analysis	 revealed	 four	major	causes	of	 software	errors	 in	 the	studies.	 In	each	
case,	the	Alice	design	shared	a	considerable	portion	of	the	blame.	The	most	common	
breakdowns	 that	 led	 to	 software	 errors	 were	 breakdowns	 in	 implementing	 Alice	
numerical	 and	 Boolean	 expressions	 (33%	 of	 all	 errors,	 from	 the	 “%	 of	 all	 errors”	
column	and	“Algorithms”	row	in	Table	3.6).	Most	were	breakdowns	in	implementing	
complex	 Boolean	 expressions.	 For	 example,	 when	 programmers	 in	 the	 Pac-Man	
study	 wanted	 to	 test	 if	 all	 <ive	 dots	 were	 eaten,	 their	 expressions	 were	 “if	 not	
(dot1.isEaten	 and	 dot2.isEaten...)”	which	 evaluates	 to	 true	 if	any	 dots	 are	 eaten.	 In	
other	 cases,	 whether	 or	 not	 they	 had	 created	 a	 correct	 expression,	 programmers	
suffered	from	breakdowns	in	modifying	the	expressions:	 for	example,	after	placing	
operators	for	and	and	or	into	the	code,	it	was	not	always	obvious	which	part	of	the	
expression	they	had	affected	because	the	change	was	off-screen	or	obscured.	

With	 so	 many	 software	 errors	 introduced	 because	 of	 the	 implementation	
breakdowns,	 the	 breakdowns	 in	 debugging	 (18%	 of	 the	 total,	 from	 Table	 3.5’s	
“Runtime”	total)	only	complicated	matters.	These	debugging	breakdowns	were	due	
to	 breakdowns	 in	 understanding	 runtime	 faults	 and	 failures.	 In	 particular,	
programmers	often	generated	only	a	single,	incorrect	hypothesis	about	the	cause	of	
a	failure	they	observed,	and	then	because	of	their	limited	knowledge	of	causality	in	
the	 Alice	 runtime	 system,	 generated	 an	 incorrect	 hypothesis	 about	 the	 code	 that	
caused	the	runtime	fault.	Because	Alice	provides	virtually	no	access	to	runtime	data,	
there	 were	 few	 ways	 for	 programmers	 to	 test	 their	 hypotheses,	 except	 through	
further	modi<ication	of	their	code.	

Breakdown Action Frequency %	of	errors Mean	(SD)	in	minutes

Skill
Implementing 15 14.7% 5.2	(4.3)
Modifying 14 13.7% 4.6	(7.1)
Reusing 4 3.9% 1.2	(1.2)
Total 23 22.5% 4.0	(5.1)

Knowledge

Implementing 15 14.7% 4.2	(4.8)
Modifying 5 4.9% 5.4	(4.0)
Reusing 1 1% 5.0	(		-		)
Understand 6 5.9% 6.8	(5.7)
Total 27 26.5% 5.3	(4.2)

Rule
Implementing 23 22.5% 4.2	(3.4)
Modifying 16 15.7% 4.7	(5.1)
Reusing 3 2.9% 6.6	(9.3)
Total 52 51% 5.1	(5.4)



Chapter	3:	Breakdowns	in	Alice	 61

The	 18%	 of	 knowledge	 breakdowns	 in	 “runtime”	 (in	 Table	 3.5),	 in	 turn,	 were	
ultimately	 responsible	 for	 nearly	 all	 of	 the	 24%	 of	 rule	 and	 skill	 breakdowns	 in	
modifying	 code,	 leading	 directly	 to	 software	 errors.	 This	 was	 because	 their	
hypotheses	about	the	cause	of	the	runtime	failure	had	led	them	to	the	wrong	code,	
or	 led	 them	 to	 make	 the	 wrong	 modi<ication.	 However,	 these	 modi<ication	
breakdowns	were	also	due	to	interactive	dif<iculties	in	modifying	expressions.	When	
programmers	tried	to	remove	intermediate	Boolean	operators,	they	often	removed	
other	 code	 unintentionally,	 and	 because	 the	 structure	 of	 the	 code	was	 not	 clearly	
visualized,	did	not	realize	they	had	introduced	new	errors	during	modi<ication.	

A	 <inal	 source	of	 software	errors,	 largely	 independent	of	 the	cycles	of	breakdowns	
described	 above,	 were	 the	 reuse	 breakdowns	 (7%	 of	 the	 total).	 These	 were	
breakdowns	 in	reusing	code	via	copy	and	paste,	caused	by	problems	 in	 the	copied	
code.	 In	 particular,	 after	 pasting	 copied	 code	 into	 a	 similar	 context,	 programmers	
began	 the	 task	 of	 coercing	 references	 from	 the	 old	 context	 to	 the	 new	 context.	
Oftentimes,	several	uncoerced	properties	were	off-screen,	causing	the	programmer	
to	 overlook	 the	 references.	 These	 software	 errors	 were	 very	 dif<icult	 to	 debug,	
because	 of	 breakdowns	 in	 understanding	 their	 copied	 code’s	 correctness.	 Thus,	
when	 programmers	 attempted	 to	 determine	 the	 cause	 of	 their	 program’s	 failure,	
their	 hypotheses	 were	 instead	 focused	 on	 other	 recent	 changes.	 Furthermore,	
because	these	software	errors	caused	complex,	unpredictable	runtime	interactions,	
programmers	rarely	found	them.	

Figure	 3.8	 summarizes	 these	 trends,	 portraying	 the	 most	 common	 causal	 links	
between	breakdowns	 in	 the	 set	 of	 chains.	 The	percentages	 on	 each	 line	 represent	
the	proportion	of	each	particular	type	of	causal	link	between	breakdowns	among	all	
links	in	the	data	set;	together,	they	account	for	approximately	74%	of	all	of	the	links	
in	the	chains	(the	remaining	26%	were	each	below	2%	of	the	data	set,	and	thus	are	
not	shown	in	the	<igure).	

Most	 of	 the	 root	 causes	 of	 software	 errors	 were	 from	 inexperience	 in	 creating	
Boolean	expressions	and	forgetting	to	fully	adapt	copied	code	to	a	new	context,	but	
the	 impact	 of	 these	 early	 software	 errors	 was	 compounded	 by	 dif<iculties	 with	
debugging	 and	 modifying	 the	 erroneous	 code.	 In	 particular,	 only	 18%	 of	 the	
breakdowns	 that	 occurred	while	 forming	 hypotheses	 about	 the	 causes	 of	 runtime	
faults	and	failures	(Table	3.5’s	total	for	“Runtime”)	were	the	cause	of	nearly	all	of	the	
software	errors	 introduced.	Therefore,	even	 in	the	simple	tasks	 in	this	study,	 there	



Chapter	3:	Breakdowns	in	Alice	 62

were	 complex	 relationships	 between	 the	 programming	 system’s	 interfaces,	 the	
programmers’	cognition,	and	the	resulting	software	errors.	

3.5. LIMITATIONS 

Across	 all	 of	 the	 methodologies	 used	 in	 the	 studies	 in	 this	 chapter,	 the	 greatest	
limitation	 is	 the	 reliance	 on	 subjective	 interpretations	 of	 the	 participants’	 intents	

Figure	3.8.	A	model	of	the	major	causes	of	software	errors	during	
programmers’	use	of	Alice.	Each	line	represents	a	causal	link	between	one	
type	of	breakdown	and	another;	the	number	on	the	line	represents	the	
proportion	of	the	type	of	link	out	of	all	links	in	all	chains.	(This	does	not	
include	numbers	for	the	links	between	software	errors,	runtime	faults,	and	
runtime	failures,	since	it	was	only	possible	to	identify	errors	that	led	to	
failures;	also,	the	numbers	do	not	add	to	100%	because	not	all	types	of	
breakdowns	are	shown).



Chapter	3:	Breakdowns	in	Alice	 63

and	 beliefs.	 This	 limitation	 comes	 directly	 from	 the	 reliance	 on	 verbal	 data.	 The	
degree	to	which	such	data	can	be	trusted,	as	discussed	in	section	3.4.2,	depends	on	
the	type	of	task	in	which	participants’	thought	aloud.	For	example,	the	participants	
in	 the	 studies	 in	 this	 chapter	were	working	 on	 largely	 high-level	 problem	 solving	
tasks,	rather	than	proceduralized	low-level	activities	such	as	typing.	This	 increases	
the	likelihood	that	what	the	participants	said	re<lects	at	some	level	what	they	were	
thinking.	Nevertheless,	 the	conclusions	made	 from	such	verbal	data	must	be	made	
cautiously	 and	 hopefully	 with	 other	 converging	 evidence	 from	 more	 reliable	
methodologies.	

Another	limitation	comes	from	the	vigilance	of	the	person	watching	the	videotapes.	
An	important	point	regarding	the	methodology	proposed	in	this	chapter	is	that	the	
causes	of	software	errors	can	be	quite	small	and	seemingly	insigni<icant,	making	it	
dif<icult	 for	 someone	 watching	 a	 video	 to	 know	what	 to	 look	 for	 and	 when.	 It	 is	
possible	 that	many	 interesting	 and	 explanatory	 events	 occurred	 in	 the	 video	 data	
that	the	video	observer	did	not	notice.	This	type	of	coding	of	behaviors	and	actions	
requires	 a	 degree	 of	 consistency	 and	 thoroughness	 unnatural	 to	 human	 attention.	
The	 recommendations	 made	 in	 this	 chapter	 may	 be	 one	 way	 to	 help	 focus	 an	
observer’s	attention	on	relevant	events.	

3.6. SUMMARY 

This	chapter	contributed	a	number	of	<indings	and	techniques:	

• A	framework	for	modeling	the	cognitive	causes	of	software	errors.	

• A	detailed	a	methodology	for	reconstructing	the	causes	of	software	errors	
from	video	and	verbal	data.	

• Characterizations	of	identi<ied	common	breakdowns	in	Alice.	

• Characterizations	of	the	relationship	between	different	types	of	breakdowns	
in	Alice	programming.	

• Evidence	that	developers	verbalize	“why	did”	and	“why	didn’t”	questions	in	
response	to	program	failures.	

• Evidence	that	developers	tended	to	form	false	hypotheses	about	the	causes	
of	program	failures.	

• Evidence	that	developers	tend	to	insert	new	errors	while	debugging.	



Chapter	3:	Breakdowns	in	Alice	 64

In	addition	to	providing	a	high-level	view	of	the	common	breakdowns	in	using	Alice,	
the	 actual	 process	 of	 reconstructing	 the	 chains	 of	 breakdowns	 directly	 inspired	
several	 design	 ideas	 for	 error-preventing	 programming	 tools.	 For	 example,	 the	
dozens	of	breakdowns	in	understanding	runtime	failures	provided	a	rich	source	of	
inspiration	 for	 the	 design	 of	 the	 Whyline.	 In	 the	 observations,	 immediately	 after	
programmers	 saw	 their	 program	 fail,	 they	 asked	 a	 question	 of	 one	 of	 two	 forms:	
“why	 did”	 questions,	 which	 assumed	 the	 occurrence	 of	 an	 unexpected	 runtime	
action,	 and	 “why	 didn’t”	 questions,	 which	 assumed	 the	 absence	 of	 an	 expected	
runtime	 action.	 It	was	 immediately	 obvious	 from	 looking	 at	 these	 chains	 that	 the	
programmers’	 implicit	 assumptions	 about	what	 did	 or	 did	 not	 happen	 at	 runtime	
had	gone	unchecked,	which	 led	 to	a	 lengthy	and	error-prone	debugging	session	 to	
determine	 if	 their	 false	 hypothesis	 was	 correct.	 Not	 only	 did	 the	 data	 from	 the	
studies	provide	the	key	inspiration	for	the	Whyline,	but	it	also	provided	a	valuable	
source	of	information	for	speci<ic	design	decisions.	For	example,	since	programmers	
could	easily	verbalize	their	why	questions	during	the	think-aloud,	why	not	directly	
support	an	interface	for	asking	these	questions?	Furthermore,	if	users	could	choose	
from	a	set	of	“why	did”	and	“why	didn’t”	questions	rather	than	generate	the	question	
themselves,	 they	 might	 not	 form	 incorrect	 hypotheses	 about	 their	 program’s	
runtime	behavior.	These	ideas	are	explored	in	later	chapters.	



4.

LEARNING BARRIERS IN VB.NET  6

Although	there	were	many	interesting	results	regarding	program	understanding	 in	
the	studies	in	the	previous	chapter,	the	greatest	weakness	is	their	generality.	It	may	
be	 that	many	of	 the	 <indings	were	due	 simply	 to	aspects	of	 the	Alice	environment	
itself	 and	 not	 fundamental	 to	 software	 development	 in	 general.	 To	 address	 this	
limitation,	 the	 study	 in	 this	 chapter	 considers	 another	 environment	 intended	 for	
beginners:	Visual	Basic.NET.	

The	 approach	 of	 the	 study	 was	 to	 look	 for	 “learning	 barriers”	 in	 not	 only	 the	
programming	 language,	 but	 the	 tools	 provided	 with	 the	 language,	 such	 as	 the	
debugger,	the	help	system,	the	searching	mechanisms,	libraries,	APIs,	and	so	on.	We	
know	much	about	the	learning	barriers	in	programming	languages	[Pane	1996],	but	
little	 about	 the	 rest.	 To	 clarify	 the	 phrase	 “learning	 barrier,”	 consider	 a	 beginning	
programmer,	 like	 the	 one	 portrayed	 in	 Figure	 4.1.	 Let	 us	 suppose	 Jill	 is	 a	 user	
interface	designer	who	 just	began	 learning	Visual	Basic.	 Shortly	 after	 starting,	 she	
realizes	that	she	must	learn	about	event	handlers	to	proceed.	This	poses	a	potential	
learning	 barrier.	 From	 an	 attention-investment	 perspective	 [Blackwell	 2000],	 she	
will	weigh	 the	 cost,	 risk,	 and	 reward	 of	 overcoming	 the	 barrier,	 and	 if	 the	 risk	 of	
failure	outweighs	the	reward,	she	may	abandon	VB	for	other	tools.	

Jill	may	also	decide	 that	progress	 is	worth	 the	 risk	of	 failure,	 but	 in	doing	 so,	will	
make	 several	 simplifying	 assumptions	 about	 VB’s	 language,	 environment,	 and	
libraries	 in	 trying	 to	 acquire	 the	 necessary	 knowledge	 (as	 discussed	 in	 Section	

 The results in this chapter appear in part in [Ko 2004b].6



Chapter	4:	Learning	Barriers	 66

2.2.2).	If	her	assumptions	are	valid	with	respect	to	the	programming	system,	she	will	
make	progress.	If	her	assumptions	are	invalid,	she	is	likely	to	make	an	error.	Within	
this	framework,	learning	barriers	are	aspects	of	a	programming	system	or	problem	
that	are	prone	to	such	invalid	assumptions.	

4.1. METHOD 

To	discover	learning	barriers	in	end-user	programming	systems	beyond	just	those	in	
languages,	the	study	involved	observations	of	40	non-programmers	learning	to	use	
Visual	 Basic.NET	 2003	 in	 a	 course	 called	 Programming	 Usable	 Interfaces	 (http://
www.bam.hcii.cmu.edu/pui	 offered	 in	 Fall	 2004).	 VB	 was	 a	 suitable	 candidate	
because	it	shares	many	features	with	other	end-user	programming	systems,	such	as	
an	imperative	syntax	and	limited	support	for	designing	visual	features	of	a	program	
and	 then	 augmenting	 them	 with	 code.	 It	 also	 has	 the	 added	 complexities	 of	 a	
compiled	 language,	 the	 Visual	 Studio	 environment	 and	 the	 object-oriented	 .NET	
framework.	

The	 study	 methodology	 sampled	 incidents	 of	 learners	 reaching	 insurmountable	
barriers:	 properties	 of	 VB	 or	 a	 programming	 problem	 that	 the	 learner	 could	 not	
understand	despite	considerable	effort.	Learners	were	 told	 that	 if	 they	were	stuck	
they	 could	 consult	 an	 oracle	 (the	 experimenters)	 for	 guidance.	 When	 learners	
sought	advice	via	e-mail	or	in	a	public	lab,	they	were	asked	to	report	(1)	what	they	
were	stuck	on,	(2)	how	they	became	stuck,	and	(3)	how	they	tried	to	get	“unstuck.”		
The	 oracles	 used	 the	 form	 shown	 in	 the	 Appendix	 to	 capture	 the	 barriers.	 The	
oracles	then	helped	learners	overcome	their	barrier.	Learners	worked	on	the	tasks	

Figure	4.1.	In	overcoming	barriers,	learners	risk	
making	invalid	assumptions	that	often	lead	to	error.



Chapter	4:	Learning	Barriers	 67

in	Table	4.1	over	5	weeks.	None	of	the	learners	who	sought	advice	had	taken	more	
than	one	programming	course.	

The	 sample	 included	74	 insurmountable	barriers	 (74	 instances	of	 students	asking	
for	 help),	 but	many	 of	 these	were	 reached	 as	 a	 result	 of	 invalid	 assumptions	 that	
learners	 had	 made	 to	 overcome	 earlier	 barriers	 (as	 shown	 in	 Figure	 4.2).	 By	
including	 these	 intermediate	 barriers,	 the	 <inal	 set	 included	 130	 barriers,	 all	
different	situations	in	which	a	learner	could	not	make	progress	without	help.		

The	 goal	 of	 the	 analyses	 was	 to	 extract	 from	 these	 130	 situations	 a	 small	 set	 of	
distinct	 categories	 that	 capture	 the	 strategic	goals	of	 the	 learners.	The	process	 for	
identifying	these	categories	involved	printing	out	each	scenario	onto	a	small	piece	of	
paper	and	manually	sorting	and	grouping	scenarios	that	seemed	similar	in	terms	of	
the	kind	of	 information	 that	 the	 learner	was	seeking	and	 the	artifacts	and	content	
involved.	This	process,	which	involved	two	people,	resulted	in	six	distinct	categories.	
Both	people	 involved	 in	 the	analysis	 then	 independently	classi<ied	all	130	barriers	

(1)	Create	a	form	that	computes	the	average	of	3	numbers	in	text	<ields.

(2)	Fix	a	form	so	that	it	sorts	the	names	in	the	list	reverse-alphabetically.

(3)	Write	a	program	that	is	impressive	in	its	utility	or	entertainment	value.

(4)	Create	a	form	with	a	chain	of	interaction	using	all	of	the	VB	widgets.

(5)	Design	an	alarm	clock	that	can	be	set	to	ring	at	a	certain	time.

(6)	Make	a	simulation	that	shows	3	elevators’	directions	and	<loors.

(7)	Design	a	copy	machine	interface	that	supports	collating	and	stapling.

Table	4.1.	The	seven	Visual	Basic.NET	tasks.



Chapter	4:	Learning	Barriers	 68

using	 the	 six	 categories,	 and	 94%	 of	 the	 data	 points	 were	 assigned	 the	 same	
category	by	both	people.	The	disagreements	were	discussed	until	100%	agreement	
was	attained.	

4.2. SIX LEARNING BARRIERS 

The	 six	 barriers	 are	 called	 design,	 selection,	 coordination,	 use,	 understanding,	 and	
information	barriers.	The	de<inition	of	each	relies	on	the	concept	of	a	programming	
interface,	 any	 element	 of	 a	 programming	 system’s	 language	 or	 accompanying	
libraries	that	can	be	used	to	achieve	some	software	behavior.	These	include	language	
constructs	 such	 as	 loops	 and	 operators,	 and	 library	 calls	 such	 as	 animations	 and	
math	routines,	as	well	as	any	of	the	APIs	included	in	the	programming	environment.	
Programming	 interfaces	 should	 not	 be	 confused	 with	 the	 user	 interfaces	 in	 an	
environment	 (compilers,	 editors,	 menus,	 etc),	 although	 they	 are	 conceptually	
equivalent.	

4.2.1. DESIGN BARRIERS 

Design	 barriers	 (4	 of	 130)	 are	 inherent	 cognitive	 dif<iculties	 of	 a	 programming	
problem,	 separate	 from	 the	 notation	 used	 to	 represent	 a	 solution	 (i.e.,	 words,	
diagrams,	 code).	 Several	 problems	 posed	 design	 barriers,	 including	 sorting,	
communication	between	forms,	conditional	logic,	and	event	concurrency.	

	

Figure	4.2.	Learning	barriers	overcome	with	invalid	
assumptions	often	led	to	insurmountable	barriers	of	a	
different	type.		



Chapter	4:	Learning	Barriers	 69

Half	 of	 the	 design	 barriers	 were	 insurmountable	 (2	 of	 4)	 because	 solutions	 to	 a	
problem	were	dif<icult	 to	 visualize.	 For	 example,	 a	 learner	working	on	 task	2	 (see	
Table	 4.1)	 was	 unable	 to	 conceive	 of	 a	 systematic	 way	 to	 sort	 names.	 Her	 best	
solution	was	“Just	keep	moving	the	names	until	 it	 looks	right!”	Learners	who	were	
able	 to	 conceive	 of	 a	 sorting	 algorithm	 made	 invalid	 assumptions	 about	 their	
solution.	For	example,	one	learner	successfully	tested	one	cycle	of	her	algorithm	on	a	
single	data	set	on	paper,	and	believed	it	to	be	correct.	When	her	algorithm	failed,	she	
faced	the	insurmountable	understanding	barrier	of	determining	what	her	algorithm	
did	and	did	not	do	at	runtime.	

4.2.2. SELECTION BARRIERS 

Selection	barriers	(13	of	130)	are	properties	of	an	environment’s	facilities	for	<inding	
what	 programming	 interfaces	 are	 available	 and	 which	 can	 be	 used	 to	 achieve	 a	
particular	 behavior.	 These	 emerged	 when	 learners	 could	 not	 determine	 which	
programming	interfaces	were	capable	of	a	particular	behavior.	

Half	 of	 the	 selection	barriers	were	 insurmountable	 (6	of	13).	Many	 learners	 faced	
selection	barriers	 in	task	5	 in	trying	to	get	their	program	to	keep	time.	Some	tried	
using	the	help	system,	but	could	not	guess	which	keywords	to	use.	If	they	happened	
to	 <ind	 a	 relevant	 article,	 they	were	 unable	 to	 understand	 the	 description	 of	 VB’s	
timing	 abilities.	 Many	 learners	 overcame	 selection	 barriers	 by	 using	 their	 peers’	
timing	code	as	examples,	but	faced	insurmountable	use	and	coordination	barriers	in	
adapting	them.	

4.2.3. COORDINATION BARRIERS 

Coordination	 barriers	 (25	 of	 130)	 are	 a	 programming	 system’s	 limits	 on	 how	
programming	 interfaces	 in	 its	 language	 and	 libraries	 can	 be	 combined	 to	 achieve	
complex	 behaviors—what	 one	 learner	 called	 “the	 invisible	 rules.”	 Learners	
encountered	these	when	they	knew	what	set	of	interfaces	could	achieve	a	behavior,	
but	did	not	know	how	to	coordinate	them.		

Most	coordination	barriers	were	overcome	with	invalid	assumptions	(20	of	25).	For	
example,	 learners	 correctly	 assumed	 that	 inter-form	 communication	 involved	
creating	 a	 new	 form	programmatically	 and	 accessing	 its	 data	 (in	 VB	 a	 “form”	 is	 a	
window).	However,	most	made	 invalid	 assumptions	 about	how	 to	 access	data	 and	



Chapter	4:	Learning	Barriers	 70

tried	to	“pull”	values	from	the	new	form	instead	of	“pushing”	values	to	the	old	form.	
Because	 form	 controls	 are	 inaccessible	 if	 their	 form	 is	 not	 visible,	 “pulling”	 led	 to	
runtime	 exceptions.	 Learners	 also	 overcame	 coordination	 barriers	 by	 <inding	
examples	that	revealed	VB’s	invisible	rules.	However,	as	with	selection	barriers,	they	
faced	use	barriers	and	further	coordination	barriers	adapting	when	trying	to	adapt	
these	examples	to	their	needs.	

4.2.4. USE BARRIERS 

Use	barriers	(36	of	130)	are	properties	of	a	programming	interface	that	obscure	(1)	
in	what	ways	 it	 can	be	used,	 (2)	how	 to	use	 it,	 and	 (3)	what	 effect	 such	uses	will	
have.	 These	 arose	when	 learners	 knew	what	 interface	 to	 use,	 but	were	misled	 by	
these	obscurities.	

About	 half	 of	 the	 use	 barriers	 were	 insurmountable	 (17	 of	 36),	 often	 because	 a	
programming	interface	did	not	indicate	in	what	ways	it	could	be	used.	For	example,	
task	4	required	learners	to	make	a	Label	 interactive,	but	many	did	not	know	that	a	
Label	could	 respond	 to	mouse	events.	 Some	overcame	 these	use	barriers	by	using	
VB’s	 facilities	 for	 obtaining	 a	 list	 of	 an	 object’s	methods.	 However,	 learners	made	
invalid	assumptions	about	how	to	use	the	methods	or	what	effects	they	would	have,	
passing	 syntactically	 correct	 but	 semantically	 incorrect	 parameters	 (also	 use	
barriers).	 Use	 barriers	 were	 also	 insurmountable	 when	 they	 involved	 syntax.	 For	
example,	learners	could	not	determine	how	to	declare	or	initialize	arrays;	when	they	
guessed,	 they	 made	 invalid	 assumptions,	 and	 encountered	 insurmountable	
understanding	barriers	in	determining	the	meaning	of	the	resulting	syntax	errors.	

4.2.5. UNDERSTANDING BARRIERS 

Understanding	 barriers	 (38	 of	 130)	 are	 properties	 of	 a	 program’s	 visible	 behavior	
(including	compile-	and	run-time	errors)	that	obscure	what	a	program	did	or	did	not	
do	 at	 compile	 or	 runtime.	 These	 emerged	when	 learners	 could	 not	 evaluate	 their	
program’s	behavior	relative	to	their	expectations.	

Most	understanding	barriers	were	insurmountable	(34	of	38).	Compile-time	errors	
were	 insurmountable	when	 learners	could	not	determine	what	parts	of	 their	code	
were	 deemed	 right	 or	 wrong	 by	 the	 compiler,	 based	 on	 its	 error	 message.	 For	
example,	when	 learners	wrote	a	 function	call	without	a	 ‘=’,	 they	received	the	error	



Chapter	4:	Learning	Barriers	 71

message	 “expected:	 =”.	 Learners	 faced	 an	 understanding	 barrier	 of	 determining	 if	
and	where	the	‘=’	should	be	placed,	and	why	it	was	“expected.”	

Runtime-errors	 and	 other	 unexpected	 behavior	 were	 insurmountable	 when	 they	
obscured	 what	 did	 or	 did	 not	 happen	 at	 runtime.	 For	 example,	 some	 learners	
wanted	to	pass	data	between	 forms,	but	did	not	know	how	to	create	references	 to	
forms	 to	 do	 so.	 To	 overcome	 this	 use	 barrier,	 they	 assumed	 that	 they	 could	
instantiate	a	form	of	the	appropriate	type	in	the	Form_Load	event	of	each	form,	not	
knowing	 this	would	 cause	 in<inite	 recursion	 and	 a	 stack	 over<low	 exception.	Most	
learners	did	not	associate	the	exception	with	their	earlier	assumption,	because	it	did	
not	suggest	a	relationship	to	their	code.	

In	other	cases,	 learners	expected	a	behavior	that	did	not	occur.	For	example,	many	
learners	 created	 a	 Timer	 object,	 assuming	 that	 it	 would	 start	 counting	 at	 runtime,	

when	 it	was	 in	 fact	 disabled	 by	 default.	When	 their	 label’s	 text	 did	 not	 update	 as	
expected,	they	overlooked	their	assumption,	and	as	a	result,	could	not	imagine	what	
prevented	 the	 label	 from	 updating.	 Most	 assumed	 that	 their	 update	 code	 was	
incorrect,	 and	 rewrote	 it.	 Of	 course,	 this	 led	 directly	 to	 the	 same	 understanding	
barrier.	

A	 common	 strategy	 for	 overcoming	 these	 barriers	 was	 to	 seek	 out	 potential	
explanations	 for	 the	 problems	 from	 other	 more	 experienced	 classmates.	 For	
example,	if	a	student	was	expecting	some	output	that	did	not	occur,	they	might	ask	a	
classmate,	 “why	do	you	 think	 this	 isn’t	happening?”	and	 the	classmate	would	offer	
some	actionable	explanation	such	as,	“Have	you	tried	inserting	a	print	statement	on	
this	 line,	 to	 see	 if	 the	 program	 reaches	 this	 point?”	When	 the	 teaching	 assistants	
showed	 students	 how	 to	 use	 print	 statements	 to	 print	 out	 information	 while	 the	
program	 executed,	many	 remarked	 that	 they	 did	 not	 know	what	 to	 print	 out	 that	
would	help	them	solve	their	problem.	

4.2.6. INFORMATION BARRIERS 

Information	 barriers	 (14	 of	 130)	 are	 properties	 of	 an	 environment	 that	 make	 it	
dif<icult	to	acquire	information	about	a	program’s	internal	behavior	(i.e.,	a	variable’s	
value,	 what	 calls	 what).	 These	 arose	 when	 learners	 had	 a	 hypothesis	 about	 their	
program’s	 internal	 behavior,	 but	 were	 unable	 to	 <ind	 or	 use	 the	 environment’s	
facilities	to	test	their	hypothesis.	



Chapter	4:	Learning	Barriers	 72

Many	 information	 barriers	were	 insurmountable	 (10	 of	 14)	 because	 the	 places	 to	
search	for	appropriate	tools	were	numerous,	or	it	was	unclear	how	to	use	a	tool.	For	
example,	 many	 learners	 accidentally	 closed	 VB’s	 property	 panel	 and	 could	 not	
determine	how	to	redisplay	it.	Some	learners	caused	null	pointer	exceptions,	but	did	
not	notice	that	the	exception	dialog	contained	a	link	to	the	code	responsible.	

Some	 learners	 overcame	 information	 barriers	 by	 assuming	 something	 about	 their	
program’s	behavior.	For	example,	when	learners	could	not	<ind	the	code	that	caused	
a	null	pointer	exception,	 they	deleted	all	of	 their	recently	modi<ied	code,	con<ident	
that	 part	 of	 it	 must	 be	 guilty.	 When	 learners	 encountered	 barriers	 in	 using	 VB’s	
debugger,	 rather	 than	 overcome	 them,	 they	 abandoned	 the	 debugger	 and	 simply	
guessed	which	statement	was	to	blame.	

4.3. DISCUSSION 

The	 six	 barriers	 are	 related	 to	 other	 concepts.	 For	 example,	 they	 share	
characteristics	 of	 Norman’s	 gulf	 of	 execution	 (the	 difference	 between	 users’	
intentions	and	the	available	actions)	and	gulf	of	evaluation	(the	effort	of	deciding	if	
expectations	have	been	met)	[Norman	1988].	Three	barriers	pose	gulfs	of	execution	
exclusively:	

• Design:	mapping	a	desired	program	behavior	to	an	abstract	description	of	a	
solution.	

• Coordination:	mapping	a	desired	behavior	to	a	computational	pattern	that	
obeys	“invisible	rules.”	

• Use:	mapping	a	desired	behavior	to	a	programming	interface’s	available	
parameters.	

Two	pose	gulfs	of	execution	and	evaluation:	

• Selection:	mapping	a	behavior	to	appropriate	search	terms	for	use	in	help	or	
web	search	engines,	and	interpreting	the	relevance	of	the	results.	

• Information:	mapping	a	hypothesis	about	a	program	to	the	environment’s	
available	tools,	and	interpreting	the	tool’s	feedback.	

Understanding	 barriers	 pose	 gulfs	 of	 evaluation	 exclusively,	 in	 interpreting	 the	
external	behavior	of	a	program	to	determine	what	it	accomplished	at	runtime.	



Chapter	4:	Learning	Barriers	 73

Norman’s	recommendations	on	bridging	gulfs	of	execution	and	evaluation	are	easily	
adaptable	 to	 programming	 system	 design.	 For	 example,	 Norman	 recommends	
bridging	 gulfs	 of	 execution	 by	 establishing	 visible	 constraints	 on	what	 actions	 are	
possible.	For	coordination	barriers,	this	might	involve	a	more	explicit	representation	
of	a	system’s	“invisible	rules.”	To	overcome	gulfs	of	evaluation,	Norman	recommends	
that	 a	 system’s	 state	 be	 accessible	 and	 understandable	 relative	 to	 users’	
expectations.	

The	 barriers	 are	 also	 related	 to	 each	 other.	 Figure	 4.3	 reveals	 common	 paths	 of	
failure	in	learning	VB.	The	edges	show	the	percent	of	each	type	of	barrier	that	was	
overcome	 with	 invalid	 assumptions	 and	 the	 type	 of	 barrier	 to	 which	 the	
assumptions	 led.	 (Since	 Figure	 4.3	 only	 show	 edges	 greater	 than	 10%	 and	 it	
excludes	insurmountable	barriers,	the	outgoing	edges’	of	each	node	do	not	add	up	to	
100%).		

Selection	barriers	tended	to	lead	to	use	barriers,	suggesting	that	preventing	invalid	
assumptions	 about	 programming	 interfaces’	 capabilities	might	 avoid	 assumptions	
about	 their	use.	 Furthermore,	 selection,	 coordination	 and	 use	 barriers—half	 of	 all	
observed—often	 led	 to	 understanding	 and	 information	 barriers.	 This	 implies	 that	
while	 debugging	 is	 a	 problem,	 a	 bigger	 concern	 is	 how	 prone	 VB’s	 programming	
interfaces	are	to	invalid	assumptions	prior	to	their	use.	

The	six	barriers	were	useful	for	classifying	observations	from	studies	of	several	end-
user	 programming	 systems.	 For	 example,	 one	 common	 information	 barrier	 in	 the	
Alice	programming	system	[Dann	2003]	is	that	variables’	values	are	inaccessible	at	
runtime	because	the	output	window	is	modal.	This	is	in	contrast	to	VB’s	information	
barriers,	 where	 the	 most	 common	 information	 barrier	 is	 determining	 where	 to	
insert	 print	 statements.	 This	 also	 in	 contrast	 to	 informal	 observations	 of	
Macromedia	Flash,	where	a	common	information	barrier	is	<inding	a	particular	line	

Figure	4.3.	For	surmountable	barriers,	the	percent	of	
each	type	overcome	with	invalid	assumptions,	and	the	
type	of	barrier	to	which	the	assumptions	led.



Chapter	4:	Learning	Barriers	 74

of	code	among	hundreds	of	frames.	Thus,	the	barriers	are	general	enough	to	capture	
differences	 between	 the	 barriers	 of	 at	 least	 three	 diverse	 programming	 systems.	
However,	because	the	barriers	have	not	been	applied	extensively,	 it	 is	unlikely	that	
they	describe	 all	possible	barriers.	With	more	data	 and	more	 experience	with	 the	
barriers,	other	categories	may	be	apparent.	

4.4. LIMITATIONS 

There	are	a	number	of	limitations	of	the	methodology	employed	in	this	study.	First,	
there	 are	 many	 kinds	 of	 learning	 contexts	 and	 the	 classroom	 is	 only	 one.	 The	
motivations	of	the	students	in	the	class	observed	may	differ	signi<icantly	from	those	
of	 a	 learner	 on	 their	 own	 at	 home,	 learning	 to	 program	 as	 a	 hobby.	 These	 other	
contexts	 may	 have	 resulted	 in	 a	 different	 notion	 of	 “insurmountability,”	 since	 the	
concept	of	 insurmountability	depends	directly	on	the	concept	of	motivation.	There	
may	also	have	been	some	variation	in	the	students’	willingness	to	ask	for	help;	some	
students	may	have	 been	 intimidated	by	 the	 teaching	 assistances	 or	 less	willing	 to	
ask	 for	 help.	 These	 particular	 students	 may	 have	 experienced	 different	 learning	
barriers	than	those	students	who	were	willing	to	ask	for	help.	

There	is	also	the	possibility	that	in	the	process	of	collecting	data	about	the	context	of	
the	students’	learning	barriers,	that	the	teaching	assistants	may	have	misunderstood	
the	 students’	 problems.	 All	 of	 the	 assistants	were	 familiar	with	 the	 programming	
environment	 and	 language,	 but	 there	 may	 have	 been	 details	 about	 the	 students’	
programs	that	the	assistants	overlooked,	causing	them	to	misinterpret	the	problem	
that	 the	student	was	having.	Other	kinds	of	misinterpretations	may	have	occurred	
when	 the	 barriers	were	 being	 categorized,	 because	 the	 only	 information	 available	
about	 each	 barrier	 was	 the	 information	 recorded	 on	 paper.	 This	 verbal	 detail,	
especially	since	it	lacked	any	visual	context,	could	have	been	misinterpreted.	

4.5. SUMMARY 

With	 respect	 to	 program	 understanding,	 the	 approach	 of	 identifying	 learning	
barriers	emphasized	a	number	of	students’	dif<iculties:	

• There	are	at	least	six	major	types	of	barriers	in	learning	to	use	programming	
systems	that	span	across	implementation,	APIs,	testing,	debugging,	and	
design.	



Chapter	4:	Learning	Barriers	 75

• About	20%	of	the	reported	problems	were	coordination	barriers,	involved	
multiple	objects	not	working	together	appropriately,	for	example,	
information	from	one	window	not	being	sent	to	another.	(Section	4.2.3).	

• In	the	majority	of	reported	problems,	students	were	stuck	because	
particular	behaviors	did	not	occur,	even	though	the	students	had	
implemented	code	for	the	behavior.	This	is	just	like	the	“why	didn’t”	
questions	observed	in	the	Alice	studies	(Section	4.2.5).		

• Students	struggled	to	even	form	a	hypothesis	about	the	cause	of	a	problem,	
and	so	many	recruited	help	from	their	more	experienced	peers	in	the	form	of	
hypotheses	such	as	“have	you	tried	to	do...?”	(Section	4.2.5).	

• About	11%	of	the	reported	problems	were	information	barriers,	in	which	
students	could	not	<ind	a	tool	in	the	environment	that	would	help	answer	
their	question,	or	could	not	understand	how	to	use	a	tool	that	they	had	
found.	(Section	4.2.6).	

All	of	these	results	were	consistent	with	the	<indings	of	the	Alice	studies.	



5.

EXPLORING JAVA CODE IN ECLIPSE  7

The	weakness	of	the	studies	described	in	previous	chapters	is	their	focus	on	novice	
programmers.	 To	 address	 this	 limitation,	 this	 chapter	 describes	 a	 study	 of	 several	
experienced	Java	developers	using	Eclipse	to	work	on	debugging	tasks.	The	goal	of	
the	study	was	to	gain	a	more	detailed	understanding	of	how	developers	form	their	
task	 contexts	 and	 how	 software	 development	 environments	 (SDEs)	 are	 related	 to	
this	 formation.	 Task	 contexts,	 discussed	 in	 [Murphy	 2005]	 and	 (identi<ied	
independently	 in	 [Ko	 2005b]	 as	 working	 sets),	 consist	 of	 all	 of	 the	 information	
relevant	 to	 a	 developers’	 software	 development	 task,	 potentially	 including	 code,	
speci<ications,	 documentation,	 bug	 reports,	 and	 other	 artifacts.	 This	 study	
investigated	the	following:	

• How	do	developers	decide	what	is	relevant?	

• What	types	of	relevant	information	do	developers	seek?		

• How	do	developers	keep	track	of	relevant	information?	

• How	do	developers’	task	contexts	differ	on	the	same	task?	

The	 next	 section	 describes	 the	 design	 and	 methodology	 of	 the	 study	 and	 the	
following	 section	 investigates	 Eclipse’s	 relationship	 to	 developers’	 work	 both	
qualitatively	 and	 quantitatively.	 The	 chapter	 concludes	 with	 a	 discussion	 of	 the	
limitations	 of	 the	 method	 and	 the	 implications	 of	 the	 study	 results	 on	 program	
understanding.	

 The results in this chapter appear in part in [Ko 2005b] and [Ko 2006b].7



Chapter	5:	Exploring	in	Eclipse	 77

5.1. METHOD 

Developers	 in	 the	 study	 were	 asked	 to	 correctly	 complete	 as	 many	 of	 <ive	
maintenance	 tasks	 over	 a	 70-minute	 period	 as	 possible,	 while	 responding	 to	
intermittent,	 automated	 interruptions.	 Three	 of	 the	 tasks	 were	 debugging	 tasks,	
requiring	developers	to	test	the	program	and	diagnose	a	particular	failure.	The	other	
two	tasks	were	enhancement	tasks,	which	required	developers	to	understand	some	
portion	of	the	system	and	modify	it	in	order	to	provide	a	new	feature.	Interruptions	
were	 included	 because	 of	 recent	 evidence	 that	 interruptions	 are	 frequent	 in	
software	 engineering	 workplaces	 [Gonzalez	 2004,	 Perlow	 1999].	 The	 decision	 to	
study	developers	in	the	lab	instead	of	in	the	context	of	developers’	actual	work	was	
driven	by	an	interest	in	comparing	multiple	developers’	strategies	on	identical	tasks.	
Had	each	developer	worked	on	different	code,	as	would	have	been	the	case	in	a	more	
realistic	 context,	 differences	 in	 developers’	 work,	 if	 any,	 could	 have	 been	 due	 to	
variations	in	their	strategies,	their	code,	or	more	likely,	some	combination	of	factors.	

5.1.1. PARTICIPANTS 

A	 total	 of	 31	 experienced	 Java	 developers	 from	 the	 local	 community	 participated,	
including	 both	 undergraduate	 and	 graduate	 students	 (some	 who	 were	 staff	
programmers).	Analyses	of	various	subsets	of	these	developers’	data	have	appeared	
in	other	publications	[Fogarty	2005][Ko	2005a][Ko	2005b];	the	analyses	here	focus	
on	 the	 10	developers	most	 experienced	with	 Java,	 based	 on	 a	 pre-test,	 self-report	
survey:	 seven	 described	 themselves	 as	 "Java	 experts"	 and	 the	 remaining	 three	
described	 themselves	 as	 having	 "above-average"	 Java	 expertise	 (the	 other	 21	
developers	described	 themselves	as	 “average”	or	below).	All	 reported	using	either	
Eclipse	 or	 Visual	 Studio	 "regularly,"	 and	 reported	 programming	 a	 median	 of	 17.5	
hours	 a	week	 (the	distribution	was	bimodal,	with	developers	programming	either	
less	 than	 20	 hours	 or	 more	 than	 35).	 Although	 all	 claimed	 some	 degree	 of	 Java	
expertise,	 having	 a	 variety	 of	 approaches	 to	 completing	 the	 tasks	 was	 important.	
Novice	 Java	programmers’	work	was	not	 of	 interest,	 however,	 because	 of	 the	 high	
variability	 in	 their	 knowledge	 and	 decision	 making	 [Curtis	 1981].	 The	 ten	
developers	studied	were	all	male,	had	ages	ranging	from	19	to	28,	and	included	six	
senior	computer	science	students,	two	doctoral	students	in	CS,	and	two	MS	students	
in	computer	engineering	and	information	systems.		



Chapter	5:	Exploring	in	Eclipse	 78

5.1.2. THE PAINT APPLICATION 

All	 of	 the	 tasks	 involved	a	program	called	Paint	 (shown	 in	Figure	5.1).	This	was	a	
Java	Swing	application,	implemented	with	nine	Java	classes	across	nine	source	<iles	
and	503	non-comment,	 non-whitespace	 lines	 (available	 at	http://www.cs.cmu.edu/
~natprog/data/paint.zip	and	also	in	the	Appendix).	The	application	allowed	users	to	
draw,	erase,	 clear	and	undo	colored	strokes	on	a	white	canvas.	 Its	 implementation	
was	based	on	 the	 PaintObjectConstructor	 class,	which	 created	 a	 single	 PaintObject	 for	

each	list	of	mouse	locations	accumulated	between	mouse	down	and	up	events.	The	
canvas	consisted	of	an	ordered	list	of	PaintObject	instances,	which	was	rendered	from	

least	 to	 most	 recent.	 The	 application	 declared	 two	 subclasses	 of	 PaintObject:	

PencilPaint	and	EraserPaint.	The	PencilPaint	class	painted	itself	by	iterating	through	the	

list	of	mouse	coordinates	and	drawing	beveled	 line	segments	between	consecutive	
pairs.	The	EraserPaint	class	subclassed	PencilPaint,	overriding	its	getColor()	method	to	

return	 the	 color	of	 the	 canvas,	 simulating	 the	 effect	 of	 an	 eraser.	Developers	were	
given	 no	 documentation	 about	 the	 implementation	 and	 the	 code	 was	 not	
commented.	

Although	 the	program	was	reasonably	complex	given	 its	small	 size	and	 the	 lack	of	
documentation	about	its	design,	it	was	not	as	complex	as	programs	that	have	been	
used	in	other	studies	[Robillard	2004],	which	were	on	the	order	of	tens	of	thousands	

 
Figure	5.1.	The	Paint	application.



Chapter	5:	Exploring	in	Eclipse	 79

of	lines	long.	The	primary	reason	for	studying	a	smaller	program	was	that	it	allowed	
an	 investigation	 of	 developers’	 work	 on	 several	 different	 tasks,	 and	 allowed	
detection	of	variations	in	developers’	strategies	on	these	different	tasks;	most	prior	
studies	have	focused	on	a	single	task	on	a	larger	system.	

5.1.3. TASKS 

Developers	were	given	a	sheet	of	paper	with	the	text	in	the	middle	column	of	Table	
5.1,	which	describes	<ive	invented	user	complaints	and	requests	(the	sheet	given	to	
participants	 appears	 in	 the	 Appendix).	 The	 task	 names	 in	 Table	 5.1	 are	 used	
throughout	 this	 chapter,	 but	 were	 not	 given	 to	 developers.	 The	 descriptions	
explained	 the	 requirements	 for	 each	 task,	 so	 that	 each	 developer	 would	 have	 a	
similar	understanding	of	the	functional	requirements.	The	last	column	of	Table	5.1	
describes	a	solution	to	each	problem,	 including	the	minimum	number	of	 lines	that	
had	to	be	added,	removed,	or	modi<ied,	and	in	how	many	<iles.	These	solutions	were	
deemed	 by	 the	 author	 of	 Paint	 to	 be	 most	 consistent	 with	 the	 program’s	 design.	
Because	 there	 were	 many	 valid	 solutions	 for	 each	 task,	 any	 solution	 that	 led	 to	
appropriate	 behavior	 (developers’	 actual	 code	 was	 veri<ied	 later	 before	 the	
analyses)	 was	 considered	 correct.	 The	 errors	 for	 the	 debugging	 tasks	 were	 not	
arti<icial,	but	emerged	during	the	actual	creation	of	Paint.	

5.1.4. TOOLS AND INSTRUMENTATION 

Developers	 were	 given	 the	 Eclipse	 2.1.2	 IDE	 (released	 in	 March	 of	 2004)	 and	 a	
project	with	 the	 9	 source	 <iles.	 They	were	 allowed	 to	 use	 debuggers,	 text	 editors,	
paper	 for	notes,	 and	 the	 Internet.	The	only	 resource	 they	were	not	 allowed	 to	use	
was	the	experimenter,	who	was	only	permitted	to	answer	clarifying	questions	about	
the	 functional	 requirements	 described	 in	 the	 task	 descriptions.	 The	 browser’s	
default	 page	 was	 the	 Java	 1.4	 API	 documentation.	 Developers	 used	 a	 PC	 with	
Windows	XP,	a	keyboard,	a	mouse	with	a	scroll	wheel,	and	a	17"	LCD.	Because	the	
analyses	would	involve	a	careful	inspection	of	developers’	actions,	even	at	the	level	
of	mouse	cursor	movements,	every	detail	of	developers’	work	was	captured	with	full	
screen-captured	videos	at	12	frames	per	second	in	24-bit	color,	as	well	as	audio.	The	
display	 was	 limited	 to	 a	 resolution	 of	 1024x768	 to	 prevent	 any	 impact	 of	 the	
recording	on	the	PC’s	performance.	



Chapter	5:	Exploring	in	Eclipse	 80

Name Task	Description Ideal	Solution

Table	5.1.	The	Zive	maintenance	tasks.



Chapter	5:	Exploring	in	Eclipse	 81

5.1.5. INTERRUPTIONS 

Interruptions	came	from	a	server	on	the	experimenter’s	machine	and	appeared	on	
the	developer’s	machine	as	a	<lashing	task	bar	item	with	an	audible	alert,	as	shown	
on	the	top	of	Figure	5.2.	The	interruptions	were	designed	to	require	developers’	full	
attention,	mimicking	real	interruptions	such	as	requests	from	coworkers	for	help	on	

SCROLL Users	complained	that	scroll	
bars	don’t	always	appear	after	
painting	outside	the	canvas,	but	
when	they	do	appear,	the	canvas	
doesn’t	look	right.	

Fix	Paint	so	that	(1)	the	scroll	
bars	appear	immediately	when	
painting	outside	the	visible	
canvas	and	(2)	the	canvas	is	
correctly	rendered	when	using	
the	scroll	bars	to	navigate	the	
canvas.

The	"preferred	size"	of	the	canvas	in	the	scroll	pane	
was	not	updated	as	strokes	were	created,	preventing	
the	scroll	bars	from	appearing	correctly	and	causing	
the	pane	to	only	repaint	a	<ixed	region.	Developers	
needed	to	understand	the	behavior	of	the	JScrollPane	
component	of	the	Swing	API.	The	best	correction	
involved	adding	code	to	call	setPreferredSize()	on	
the	canvas	to	update	its	size	whenever	a	mouse	release	
event	occurred	outside	the	canvas’s	current	
boundaries.	

Minimal	change:	add	5	lines	in	PaintCanvas.java.

YELLOW Users	complained	that	they	can’t	
select	yellow.	

Fix	Paint	so	that	users	can	paint	
with	the	color	yellow.

The	green	slider’s	value	was	referenced	twice	in	the	
colorChangeListener,	which	responded	to	slider	
events.	As	a	result,	the	blue	slider’s	value	was	ignored.	
The	best	correction	involved	changing	the	reference	to	
gSlider	to	bSlider.	

Minimal	change:	modify	1	line	in	PaintWindow.java.
UNDO Users	complained	that	the	"Undo	

my	last	stroke"	button	doesn’t	
always	work.	

Fix	Paint	so	that	the	Undo	my	
last	stroke	button	undoes	the	
last	stroke	or	clear	of	the	canvas.

There	was	no	repaint	call	after	the	undo	operation,	
causing	the	window	to	repaint	only	after	some	other	
operation	caused	the	window	to	repaint.	Other	nearby	
and	related	methods	did	call	repaint	after	their	
operation.	The	best	correction	involved	adding	a	call	to	
repaint()	after	the	operation.		

Minimal	change:	add	1	line	in	PaintWindow.java.
LINE Users	requested	a	line	tool.	

There’s	a	radio	button	for	it,	but	
it	doesn’t	work	yet.	

Create	a	line	tool	that	allows	
users	to	draw	a	line	between	
two	points.	Users	should	be	able	
to	see	the	line	while	dragging.

The	most	straightforward	solution	involved	
subclassing	the	PencilPaint	class	and	revising	its	
painting	algorithm	to	draw	a	single	line	segment	
between	the	<irst	and	most	recent	points	in	the	list	of	
mouse	coordinates.	

Minimal	Change:	create	a	new	class	<ile,	override	1	
method	with	a	new	painting	algorithm	of	at	least	10	
lines,	and	add	5	lines	in	two	other	<iles	to	attach	to	the	
class	to	radio	button	in	the	user	interface.

THICKNESS Users	requested	control	over	the	
stroke	thickness	of	the	pencil,	
eraser,	and	line	tools.	

Create	a	thickness	slider	that	
controls	the	stroke	thickness	for	
all	tools,	with	a	pixel	range	of	1	
to	50.

This	task	required	the	instantiating,	initializing	and	
adding	a	new	slider	to	the	user	interface,	and	
implementing	an	slider	event	listener	to	call	
setThickness()	on	the	PaintObjectConstructor	using	
the	slider’s	current	value.	

Minimal	change:	Add	12	lines	in	PaintWindow.java	
and	1	in	EraserPaint.java.



Chapter	5:	Exploring	in	Eclipse	 82

unrelated	projects	[Perlow	1999].	Thus,	when	clicked,	a	full-screen	dialog	appeared	
with	a	2-digit	multiplication	problem	and	a	text	box	for	the	answer,	as	shown	on	the	
bottom	of	Figure	5.2.	Although	the	developers	were	told	that	they	were	not	allowed	
to	use	any	external	resources	to	solve	these	problems,	most	found	them	so	dif<icult	
that	 they	 used	 the	 text	 <ield	 to	 store	 intermediate	 results	while	 the	 experimenter	
was	not	 looking.	The	server	sent	 interruptions	every	two	and	a	half	 to	three	and	a	
half	minutes.	The	order	of	the	multiplication	questions	was	<ixed	and	identical	for	all	
developers.	Each	question	was	unique	and	did	not	contain	0	digits.	

	
Figure	5.2.	The	Zlashing	taskbar	notiZication	(top)	
and	one	of	the	arithmetic	interruption	tasks	
(bottom).



Chapter	5:	Exploring	in	Eclipse	 83

5.1.6. PROCEDURE 

The	experiment	was	run	in	the	fall	and	spring	months	of	2004.	Developers	worked	
alone	 in	 a	 lab	 and	began	by	 completing	 a	 survey	on	 their	programming	expertise.	
They	were	then	told	that	they	would	be	given	<ive	user	complaints	and	requests	for	
an	application	and	would	have	70	minutes	to	complete	as	many	as	possible	(the	70	
minute	limit	was	made	to	keep	the	full	session	under	two	hours).	Developers	were	
told	they	would	be	paid	$10	for	each	request	correctly	completed.	They	were	then	
told	 that	 a	 <lashing	 taskbar	 item	would	 occasionally	 interrupt	 them	 and	 that	 they	
should	 click	 it	 "when	 they	 were	 ready"	 and	 answer	 the	 arithmetic	 problem	
presented.	 The	 experimenter	 then	 explained	 that	 they	 would	 lose	 $2	 for	 each	
interruption	 ignored	 or	 answered	 incorrectly	 (this	 was	 used	 to	 give	 skipping	 the	
interruptions	 some	 cost	 during	 the	 study,	 but	 was	 not	 actually	 enforced	 when	
developers	 were	 paid).	 Developers	 were	 then	 told	 that	 their	 work	 would	 be	
recorded	with	screen	capturing	software	and	were	 then	given	 the	user	complaints	
and	 requests	 and	 asked	 to	 begin.	 Afterwards,	 the	 experimenter	 tested	 the	
developers’	 solutions	 for	 correct	 behavior	 on	 the	 <ive	 tasks,	 paid	 the	 developer	
accordingly,	and	then	answered	any	questions	about	the	study.	

5.2. RESULTS 

This	 section	 discusses	 both	 qualitative	 and	 quantitative	 evidence	 for	 a	 number	 of	
patterns,	based	on	about	12	hours	of	 screen-captured	video	across	10	developers’	
work.	 The	 method	 for	 analyzing	 the	 videos	 involved	 two	 phases.	 The	 <irst	 phase	
involved	 looking	ahead	 in	each	developer’s	video	to	 <ind	what	code	they	 inspected	
and	modi<ied	 and	what	 behaviors	 they	 tested.	Because	 there	were	 only	 <ive	 tasks,	
this	was	enough	information	to	determine	the	task	they	were	working	on.	Once	the	
task	was	determined,	the	video	was	scanned	in	reverse	to	<ind	the	moment	when	the	
developer	 began	 the	 task.	 This	 was	 obvious	 from	 pauses	 in	 activity	 after	 the	
developer	 tested	 the	 behavior	 they	 were	 modifying	 or	 implementing	 in	 their	
previous	 task.	 Once	 the	 sequence	 of	 tasks	 that	 a	 developer	 worked	 on	 was	
determined,	each	task	was	then	observed	in	detail,	studying	developers’	 individual	
actions,	 navigations,	 and	 choices,	 attempting	 to	 infer	 their	 high-level	 goals,	 and	
noting	 any	 interesting	 patterns	 regarding	 information	 seeking	 and	 management.	
This	 process	 also	 produced	 a	 list	 of	 developer	 actions	 that	 were	 important	 to	



Chapter	5:	Exploring	in	Eclipse	 84

understanding	their	behavior.	These	are	 listed	 in	Table	5.2.	Two	people	performed	
all	of	these	observations	together	over	about	40	hours.	

Developer	Action

Reading	code,	identi<ied	by	text	caret	movement,	mouse	cursor	hovering,	text	selection,	
and	hovering	of	scroll	bars	in	a	<ixed	region.

Editing	code,	by	typing,	copy	and	pasting,	refactoring,	or	quick	<ixes.

Navigating	a	static	dependency,	including	any	navigation	from	or	to	method	declarations,	
method	calls,	class	declarations,	class	references,	and	declarations,	assignments,	and	uses	
of	variables.

Navigating	an	indirect	dependency,	between	code	fragments	that	were	indirectly	related	
by	two	or	more	static	dependencies.

Searching	for	text	strings,	within	a	<ile	or	the	whole	project.

Testing	Paint	by	executing	it	from	Eclipse.

Switching	to	documentation,	either	in	the	browser	or	inside	of	Eclipse.

Switching	to	Eclipse	from	Paint,	web	browser,	interruption,	etc.

Table	5.2.	Developer	actions	transcribed	from	the	screen-captured	videos.



Chapter	5:	Exploring	in	Eclipse	 85

In	the	second	phase,	the	actions	in	Table	5.2	were	logged	for	each	developer’s	work.	
The	 same	 two	 people,	 on	 separate	 computers,	 stepped	 through	 the	 video,	
cooperatively	 creating	 a	 single	 log	 of	 each	 action,	 its	 start	 and	 stop	 time,	 and	 if	
relevant,	a	description	of	the	code	that	was	operated	on	and	the	user	interface	that	
was	used	to	perform	the	action	(for	example,	static	dependencies	could	be	followed	
using	the	Eclipse	Open	Declaration	command,	using	one	of	the	commands	in	the	Java	
Search	 dialog,	 or	 manually).	 In	 addition	 to	 the	 actions	 in	 Table	 5.2,	 a	 number	 of	
inferences	 about	 developers’	 questions	 and	hypotheses	were	 also	 recorded,	 based	
on	the	information	they	investigated.	To	help	detect	navigations	of	dependencies	in	
the	program,	the	Paint	application’s	static	dependencies	were	enumerated	prior	to	
transcription.	Each	70	minute	video	took	about	3	to	4	hours	to	transcribe,	resulting	
in	 2,870	 actions	 (shown	by	 task	 and	 developer	 in	 Table	 5.3).	 During	 this	 process,	
there	 were	 never	 disagreements	 about	 whether	 a	 developer	 action	 had	 actually	
occurred,	but	there	were	many	cases	where	one	evaluator	missed	an	action	that	the	
other	 found.	 This	 synchronized	 logging	 caught	 many	 actions	 that	 would	 have	
otherwise	been	omitted.	

Once	the	transcripts	for	each	developer	were	created,	the	next	step	was	to	analyze	
the	patterns	that	observed	in	the	<irst	phase	of	the	analyses.	Throughout	this	section,	
per-developer	averages	for	reasonably	normal	distributions,	as	average	(±	standard	
deviation)	and	medians	for	other	distributions.	All	time	proportions	exclude	any	time	
spent	on	handling	the	interruptions,	which	accounted	for	an	average	of	22%	(±6)	of	
the	developers’	time.	

5.2.1. DIVISION OF LABOR 

Table	5.3	 lists	 the	number	of	developers	attempting	and	completing	each	task	and	
the	average	time	spent	on	each.	Developers	<inished	an	average	of	3.4	(±0.8)	tasks	in	
70	minutes.	 Almost	 everyone	 <inished	 the	YELLOW,	UNDO,	 and	THICKNESS	 tasks,	 but	
spent	most	 their	 time	on	 the	more	dif<icult	 tasks,	SCROLL	 and	LINE.	One	developer	
completed	all	<ive	correctly.	

Switching	to	a	source	Zile,	and	the	Eclipse	user	interface	used	to	do	so.

Reading	the	task	description,	indicated	by	experimenter	notes.

Starting	a	new	task,	identi<ied	by	the	task	structure	inferred.

Handling	an	interruption	by	clicking	on	the	taskbar	item.

Introducing	an	error	that	later	caused	Paint	to	behave	inappropriately.



Chapter	5:	Exploring	in	Eclipse	 86

The	bar	chart	shown	in	Figure	5.3	portrays	developers’	average	division	of	labor	in	
terms	 of	 the	 actions	 in	 Table	 5.2	 (some	 of	 the	 actions	 are	 grouped	 together,	 for	
example,	 the	 three	 types	 of	 application	 switching	 are	 grouped	 as	 “Switching	
Applications”).	 The	 error	 bars	 indicate	 the	 variation	 between	 participants.	
Developers	spent	about	a	<ifth	of	their	non-interrupted	time	reading	code,	a	<ifth	of	
their	 time	 editing	 code,	 a	 quarter	 of	 their	 time	 performing	 textual	 searches	 and	
navigating	dependencies,	and	a	tenth	of	their	time	testing	the	Paint	application.	An	
average	 of	 5%	 (±2)	 of	 each	 developer’s	 time	was	 spent	 switching	 and	 reorienting	
between	Eclipse,	 the	web	browser,	 interruptions	and	Paint.	Of	the	6%	(±4)	of	time	
that	was	spent	reading	the	Java	APIs,	nearly	all	of	 it	was	read	in	the	context	of	the	
JavaDoc	 documentation	 within	 the	 web	 browser,	 despite	 evidence	 that	 each	
developer	knew	 that	documentation	was	accessible	within	Eclipse.	 In	 a	 few	cases,	
developers	 used	 Google	 to	 search	 documentation	 and	 examples.	 Of	 course,	 each	

developer	 had	 a	 unique	 distribution	 of	 labor,	 as	 noted	 by	 the	 error	 bars.	 For	

Task Time	on	
Task

Number	of	Actions	per	Task	for	each	Developer	and	Success	
on	each	Task	

!	=	success	"	=	failure	#	=	not	attempted

A B C D E F G H I J Average

SCROLL 17	(±13)	
minutes

91	
"

27		
"

50	
"

56		
"

181	
"

131	
"

6		
"

27		
"

13	
"

63	
!

64.5	
(±55)

Table	5.3.	Task	completion	statistics	for	the	ten	developers,	including	the	
average	time	spent	on	each	task	and	the	number	of	actions	per	task	per	
developer.



Chapter	5:	Exploring	in	Eclipse	 87

example,	some	developers	spent	more	time	editing	than	others	and	correspondingly	
less	time	on	other	activities.	

5.2.2. TASK STRUCTURE 

The	actions	in	Figure	5.3	were	not	independent:	before	editing	code,	developers	had	
to	 determine	 what	 code	 to	 edit,	 and	 before	 determining	 this,	 they	 had	 to	 <ind	 it.	
Although	 all	 of	 these	 low-level	 actions	 were	 interleaved	 to	 some	 degree,	 the	
observations	 of	 developers’	 work	 indicated	 a	 higher-level	 sequence	 of	 choosing	 a	
task	 to	 work	 on,	 searching	 for	 task-relevant	 information,	 understanding	 the	
relationships	 between	 information,	 and	 editing,	 duplicating,	 and	 otherwise	
referencing	 the	 necessary	 code.	 Because	 developers’	 searches	 often	 failed	 and	
developers	often	inserted	errors	that	had	to	be	<ixed,	portions	of	this	sequence	were	
interleaved.	

To	 attempt	 to	 illustrate	 this	 sequence	 with	 data,	 the	 actions	 in	 Table	 5.2	 were	
grouped	in	into	four	categories:	searching,	navigating,	editing,	and	other.	In	the	<irst	
category	were	 textual	 searches	 and	 reading	 task	 descriptions;	 in	 the	 second	were	
static	 dependency	 navigations,	 switching	 between	 <iles,	 and	 reading	 API	
documentation	 to	 understand	 API	 dependencies;	 in	 the	 third	 were	 copying	 and	
editing	 code	and	 indirect	dependency	navigations	 (as	de<ined	 in	Table	5.2),	which	
occurred	 later	 in	 the	 task,	 once	 the	 developer	 had	 comprehended	 the	 necessary	
code.	The	remaining	actions,	such	as	testing	and	switching	<iles,	were	categorized	as	
other,	 since	 they	were	 activities	 that	 seemed	 to	 occur	 throughout	 the	 developers’	
work.	 Each	 action	 from	 the	 THICKNESS	 and	 YELLOW	 tasks	 was	 then	 categorized	
(allowing	 a	 comparison	 of	 one	 enhancement	 task	 and	 one	debugging	 task	 that	 all	
developers	completed).	

YELLOW 10	(±8)	
minutes

12		
!

94		
!

30		
!

124	
	!

25	
!

42	
!

25	
!

49	
!

36	
!

57	
!

49	(±35)

UNDO 6	(±5)	
minutes

13		
!

5		
"

18		
!

17		
!

17	
!

15	
!

63	
!

66	
!

44	
!

38	
!

30	(±22)

LINE 22	(±12)	
minutes

84		
"

0		
#

90		
!

54		
!

63	
!

0	
#

208	
"

50	
!

72	
!

49	
!

67	(±58)

THICKNESS 17	(±8)	
minutes

71	
!	

150	
!

64		
!

70		
!

52	
!

101	
!

66	
!

103	
!

38	
!

50	
!

77	(±33)



Chapter	5:	Exploring	in	Eclipse	 88

Using	these	categorizations,	each	developer’s	action	sequence	was	plotted,	resulting	
in	Figure	5.4.	The	vertical	axis	is	the	category	of	action	(excluding	the	other	category	
for	clarity),	and	the	horizontal	axis	is	time,	normalized	between	the	start	and	end	of	
work	on	 the	 task.	 The	 categorization	was	only	 an	 approximation:	 a	 textual	 search	
did	 not	 always	 indicate	 that	 the	 developer	 was	 looking	 for	 task	 relevant	 code,	
because	in	many	instances,	developers	used	textual	search	as	a	navigational	tool	to	
get	 from	 one	 place	 in	 a	 <ile	 to	 another.	 Within	 the	 plots,	 there	 were	 also	 several	
activities	interleaved.	For	example,	while	determining	where	to	add	a	declaration	for	
a	thickness	slider,	several	developers	also	inspected	the	nearby	slider	event	handler.	
Once	 developers	 had	 implemented	 a	 solution	 in	 both	 of	 these	 tasks,	 they	 often	
returned	to	correct	errors,	which	involved	further	navigations	and	edits.	

Despite	 the	 limitations	of	 the	 categorization,	 the	plots	 reveal	 several	 patterns.	 For	
example,	 there	were	 few	 early	 edits	 for	 the	 YELLOW	 task,	 which	was	 a	 debugging	
task.	One	explanation	for	this	may	be	that	there	was	little	to	edit	on	this	task	until	
the	developer	determined	the	cause	of	the	problem,	whereas	for	the	THICKNESS	task,	
there	were	several	 things	developers	could	edit	before	having	a	complete	solution.	

 
Figure	5.3.	Developers’	division	of	labor	in	terms	of	time	on	activities.	The	
vertical	bars	represent	one	standard	deviation	above	and	below	the	mean.



Chapter	5:	Exploring	in	Eclipse	 89

For	example,	when	inspecting	these	early	THICKNESS	edits,	they	were	all	situations	in	
which	 the	 developers	 inserted	 a	 declaration	 for	 a	 new	 thickness	 slider,	 and	 they	
knew	to	do	this	because	they	had	already	worked	on	the	YELLOW	task	and	knew	that	
a	slider	declaration	was	necessary.	

 
Figure	5.4.	The	developers’	actions	for	the	THICKNESS	and	YELLOW	tasks.



Chapter	5:	Exploring	in	Eclipse	 90

5.2.3. SEARCHING FOR TASK RELEVANT INFORMATION 

For	most	 tasks,	developers	began	by	 searching:	of	 the	48	 instances	of	 a	developer	
beginning	 work	 on	 a	 task,	 40	 began	 with	 a	 textual	 search	 for	 what	 developers	
perceived	to	be	a	task-relevant	identi<ier	in	the	code,	either	manually	or	using	one	of	
Eclipse’s	textual	search	tools.	The	remaining	8	began	by	browsing	the	<iles,	methods,	
and	<ields	in	the	Eclipse	package	explorer.	

For	the	debugging	tasks	(SCROLL,	YELLOW,	and	UNDO),	developers	used	symptoms	and	
surface	 features	 of	 the	program’s	 failure	 to	guide	 their	 searches.	 For	example,	8	of	
the	9	developers	who	attempted	the	SCROLL	task	<irst	resized	the	Paint	window	and	

noticed	that	the	canvas	was	only	partially	painted;	thus,	searched	for	a	method	with	
the	name	 "paint"	 in	 it,	which	always	 resulted	 in	 the	 paintComponent()	method	of	 the	

canvas,	 which	 was	 not	 responsible	 for	 the	 bug.	 An	 average	 of	 88%	 (±11)	 of	
developers’	 searches	 led	 to	 nothing	 of	 later	 use	 in	 the	 task.	 These	 failed	 searches	
were	at	 least	partially	responsible	 for	the	average	of	25	(±9)	minutes	of	 their	time	
(about	 36%)	 spent	 inspecting	 irrelevant	 code.	 That	 no	 one	 identi<ier	 in	 the	 code	
could	fully	represent	the	code’s	purpose	is	related	to	the	vocabulary	problem	[Furnas	
1987].	The	cost	of	these	incorrect	guesses	in	the	debugging	tasks	demonstrates	how	
much	the	developers’	early	perceptions	of	relevance	impacted	their	work.	

When	 developers	 began	 the	 enhancement	 tasks	 (LINE	 and	 THICKNESS),	 their	
investigations	of	the	source	code	were	driven	by	a	search	for	extension	points	in	the	
code	 (places	where	 additions	 to	 the	 code	would	be	 consistent	with	 the	program’s	
existing	architectural	design).	For	example,	5	of	the	developers	began	the	THICKNESS	
by	searching	for	how	the	other	sliders	were	implemented,	and	duplicating	the	code,	
3	 learned	 how	 to	 create	 an	 action	 object	 for	 the	 thickness	 slider,	 and	 2	 began	 by	
searching	for	how	the	stroke	thickness	might	be	set,	investigating	the	PaintObject	and	

PaintCanvas	 classes.	 Of	 the	 8	 developers	 who	 attempted	 the	 LINE	 task,	 3	 began	 by	

inspecting	 how	 the	 pencil	 and	 eraser	 tools	were	 implemented,	 eventually	 copying	
one	of	them,	and	2	began	by	investigating	how	the	application	created	paint	objects	
from	the	mouse	events,	2	began	by	investigating	the	Action	objects	de<ined	by	for	the	

pencil	and	eraser	tools,	and	1	began	by	investigating	how	to	render	lines.		



Chapter	5:	Exploring	in	Eclipse	 91

5.2.4. FORMING PERCEPTIONS OF RELEVANCE 

The	process	that	developers	used	to	determine	the	relevance	of	code	or	information	
involved	several	levels	of	engagement	with	information	and	several	types	of	cues	to	
which	developers	attended	in	order	to	decide	whether	to	continue	comprehending	
some	 information.	For	example,	a	common	progression	 in	 the	observations	was	as	
follows:	a	developer	would	look	at	the	name	of	a	<ile	in	the	package	explorer	in	order	
to	judge	its	relevance.	If	it	looked	interesting,	he	would	hover	over	the	<ile	icon	with	
the	mouse,	and	possibly	select	(but	not	open)	the	icon .	At	this	point,	if	he	thought	8

the	 name	 seemed	 relevant,	 he	 double-clicked	 on	 the	 icon	 to	 open	 the	 <ile,	 or	
expanded	 the	 node	 in	 the	 package	 explorer	 in	 order	 to	 inspect	 its	 contents.	
Developers	who	 expanded	 the	 explorer	 node	 hovered	 over	 the	 names	 of	methods	
and	<ields,	looking	for	relevant	identi<iers,	whereas	developers	who	opened	the	<ile	
tended	 to	 scroll	 through	 the	 <ile,	 skimming	 the	 code	 for	 identi<iers	 that	 looked	
relevant,	or	comments	that	might	explain	the	intent	of	the	<ile	(though	there	were	no	
comments).	 If	 developers	 found	 a	 method	 or	 algorithm	 of	 interest,	 they	 would	
inspect	it	more	closely,	sometimes	even	selecting	the	text	of	the	code	repeatedly.	

The	user	interfaces	that	Eclipse	provided	for	summarizing	code,	such	as	the	package	
explorer	 and	 search	 tools,	 determined	 the	 structure	 of	 these	 investigations.	 For	
example,	Eclipse’s	package	explorer	allowed	developers	to	consider	<ile	names	and	
identi<iers	 before	 looking	 at	 more	 detailed	 information.	 Had	 these	 interfaces	 not	
been	 available,	 developers	 would	 have	 had	 to	 open	 many	 more	 <iles	 and	 look	 at	

 Although the developers could see the names without hovering with the mouse, for some 8

developers, hovering seemed to be a common way of expressing additional interest in some name. 
Perhaps this was because hovering is the precursor to clicking.

Table	5.4.	Types	of	dependencies	navigated,	the	average	percent	of	each	type	
for	a	developer,	and	the	tools	that	developers	used	to	perform	each.



Chapter	5:	Exploring	in	Eclipse	 92

more	 information	 before	 <inding	 what	 they	 believed	 to	 be	 relevant	 code.	 One	

problem	with	 these	 summaries	was	 that	 they	were	often	misrepresentative	of	 the	
content.	The	most	glaring	examples	of	 this	 in	 the	data	 involved	misleading	names.	
For	 example,	 when	 developers	 worked	 on	 the	 YELLOW	 task,	 half	 of	 them	 <irst	
inspected	 the	 PencilPaint	 class,	 but	 the	 <ile	 that	 was	 actually	 relevant	 was	 the	

generically	named	PaintWindow.	

5.2.5. TYPES OF RELEVANCE 

There	were	several	types	of	relevant	information.	Developers	found	code	to	edit	and	
returned	 to	 it	 after	 referencing	 other	 information.	 In	 the	 enhancement	 tasks,	
developers	found	code	to	duplicate,	returning	to	it	for	reference	after	they	had	made	
changes	 to	 their	 copy	 of	 it.	 Developers	 also	 looked	 for	 code	 that	 helped	 them	
understand	 the	 intent	 and	 behavior	 of	 some	 other	 relevant	 code.	 For	 example,	
developers	 sought	 the	 documentation	 on	 the	 constructors	 of	 the	 JSlider	 class	

because	they	did	not	know	how	the	various	integer	arguments	would	be	interpreted.	
Developers	spent	time	investigating	helper	classes,	such	as	PaintObjectConstructor,	to	

help	 them	understand	 the	purpose	of	 other	 code	 they	had	 to	duplicate	 or	modify.	
Developers	 also	 looked	 for	 code	 to	 reference,	 to	 help	 determine	 the	 appropriate	
design	for	some	implementation.	For	example,	when	working	on	the	THICKNESS	task,	
all	of	the	developers	examined	the	way	that	the	author	of	the	Paint	had	instantiated	
and	added	user	interface	components	 in	order	to	guide	their	own	implementation.	
Of	course,	there	may	be	other	types	of	relevance	that	were	not	observed.	

Dependency	Type %	of	All Tools

Implicit	dependencies 42%	(±20) Find	dialog,	tabs

Class’s	declaration 10%		(±4) Open	declaration,	package	explorer,	tabs

Uses	of	a	variable 10%		(±5) Java	search,	<ind	dialog

Calls	to	a	method 8%		(±8) Java	search,	<ind	dialog

Variable’s	declaration 8%		(±4) Open	declaration,	<ind	dialog

Uses	of	variable’s	new	value 7%		(±4) Find	dialog

Method’s	declaration 6%		(±4) Open	declaration

Statement	assigning	a	variable 5%		(±5) Find	dialog

Uses	of	this	class 4%		(±3) Java	search,	<ind	dialog



Chapter	5:	Exploring	in	Eclipse	 93

5.2.6. NAVIGATING DEPENDENCIES OF RELEVANT INFORMATION 

After	 reading	 a	 segment	 of	 code,	 developers	 explored	 the	 code’s	 incoming	 and	
outgoing	dependencies.	During	 this	 exploration,	 developers	 generally	 followed	 the	
static	relationships	listed	in	Table	5.4.	Overall,	each	developer	navigated	an	average	
of	65	(±18)	dependencies	over	their	70	minutes	session;	these	were	inferred	during	
the	 transcription	 process,	 since	 few	 of	 them	 used	 Eclipse’s	 navigation	 commands.	
There	 were	 two	 types	 of	 dependency	 navigations	 transcribed.	 Some	 were	 direct	
dependencies	 that	 could	 be	 determined	 by	 static	 analyses,	 such	 as	 going	 from	 a	
variable’s	use	to	 its	declaration,	or	 from	a	method’s	header	to	an	 invocation	of	 the	
method.	 The	 other	 type	 of	 navigation	was	 of	 indirect	 dependencies,	 such	 as	 going	
from	a	variable’s	use	to	the	method	that	computed	its	most	recent	value.	These	were	
program	elements	that	were	indirectly	related	by	two	or	more	static	dependencies.	
Developers	tended	to	make	these	indirect	navigations	later	in	each	task,	as	seen	in	
the	 “editing”	 phases	 in	 Figure	 5.4.	 Developers’	 proportions	 of	 each	 type	 of	
dependency	navigation	are	given	in	Table	5.4.	

An	 average	 of	 58%	 (±20)	 of	 developers’	 navigations	were	 of	direct	 dependencies.	
Though	 every	 developer	 used	 Eclipse’s	 support	 for	 navigating	 these	 direct	
dependencies	(the	Open	Declaration	command	and	Java	Search	dialog)	at	least	once,	
only	two	developers	used	the	tools	more	than	once,	and	only	then	for	an	average	of	4	
(±2)	 navigations.	 Instead,	 they	 used	 less	 sophisticated	 tools	 such	 as	 the	 Jind	 and	
replace	dialog.	There	are	several	possible	reasons	why	they	chose	to	use	these	less	
accurate	 tools.	 Using	 the	 Java	 Search	 dialog	 required	 <illing	 in	 many	 details	 and	
iterating	 through	 the	 search	 results.	Then,	 in	using	both	 the	 Java	Search	 and	Open	
Declaration	tools,	new	tabs	were	often	opened,	incurring	the	future	cost	of	visually	
searching	 through	 and	 closing	 the	 new	 tabs	 if	 the	 <iles	 they	 represented	 did	 not	
contain	 relevant	 information.	 Developers	 used	 the	 Jind	 and	 replace	 dialog	 for	 an	
average	of	8	(±6)	of	their	navigations	of	direct	relationships,	and	spent	an	average	of	
9	(±5)	seconds	 iterating	through	matches	before	<inding	a	relevant	reference.	Also,	
in	 six	 cases	 of	 using	 the	 dialog,	 developers	 did	 not	 notice	 that	 "wrap	 search"	was	
unchecked	and	were	led	to	believe	that	the	<ile	had	no	occurrences	of	the	string.	One	
developer	 spent	 six	 minutes	 searching	 for	 a	 name	 elsewhere	 before	 <inding	 that	
there	were	several	uses	in	the	original	<ile.	

Many	of	 developers’	 direct	 navigations	 involved	navigating	between	multiple	 code	
fragments.	 Each	 developer’s	 transcript	 and	 video	 was	 inspected	 for	 direct	



Chapter	5:	Exploring	in	Eclipse	 94

navigations	that	returned	to	a	recently	viewed	location.	Overall,	an	average	of	27%	
(±13)	 of	 developers’	 navigations	 of	 direct	 dependencies	 returned	 to	 code	 recently	
navigated	 from.	 When	 inspecting	 these	 returns	 in	 the	 videos,	 some	 were	
comparisons,	 in	 which	 developers	 went	 back	 and	 forth	 between	 related	 code	
multiple	 times.	 Of	 course,	 since	 all	 developers	 used	 a	 single	 editing	 window,	
developers	 had	 to	 navigate	 back	 and	 visually	 search	 for	 their	 previous	 location,	
costing	an	average	of	9	(±7)	seconds	each	time	accumulating	to	2	(±1)	minutes	per	
developer	 overall.	 Eclipse	 support	 for	 navigating	 back	 to	 the	 previous	 cursor	
position	 rarely	 helped,	 because	 developers	 rarely	 went	 directly	 back	 to	 the	 most	
recent	location,	but	to	some	less	recent	location.		

An	average	of	42%	(±20)	of	developers’	navigations	were	of	 indirect	dependencies	
(this	 proportion	may	 be	 even	 higher,	 given	 the	 dif<iculty	 of	 detecting	 them	 in	 the	
videos).	Because	Eclipse’s	support	for	navigating	direct	dependencies	was	unhelpful	
for	 these,	 developers	 used	 the	 scroll	 bars,	 page	 up	 and	 down	 keys,	 the	 package	
explorer	and	the	<ile	tabs	instead.	When	navigating	within	a	<ile	using	the	scroll	bars,	
scroll	wheel,	or	page	up	and	down	keys,	developers	had	to	perform	visual	searches	
for	 their	 targets,	 costing	 each	 developer,	 on	 average,	 a	 total	 of	 10	 (±4)	 minutes.	
Three	developers	avoided	this	overhead	by	using	Eclipse’s	bookmarks	to	mark	task-
relevant	code	but	then	always	ended	up	having	more	than	two	bookmarks	to	choose	
from	and	could	not	recall	what	code	each	one	represented.	This	required	clicking	on	
each	bookmark,	which	was	no	 faster	 than	 their	average	scrolling	 time.	Bookmarks	
also	incurred	the	"cleanup"	costs	of	their	later	removal	when	starting	a	new	task.	To	
navigate	 indirect	 relationships	 that	were	between	 <iles,	 developers	 had	 to	 use	 the	
package	explorer	and	the	 Jile	 tabs.	When	several	 tabs	were	open	(as	 in	Figure	5.5),	
developers	 could	 not	 read	 the	 <ile	 names	 because	 they	 were	 displayed	 in	
abbreviated	 form	and	many	shared	 the	 common	pre<ix	of	 "Paint"	 in	 their	name.	 If	
the	package	explorer	had	several	expanded	nodes	(as	in	Figure	5.5),	developers	had	
to	scroll	to	<ind	their	targets.	Overall,	all	of	this	overhead	cost	each	developer	5	(±1)	
minutes.	

An	 average	 of	 34%	 (±23)	 of	 developers’	 navigations	 of	 indirect	 relationships	
returned	to	a	code	fragment	that	was	recently	 inspected.	When	investigating	these	
navigations	 in	 the	videos,	nearly	all	 seemed	to	be	 for	 the	purpose	of	 juxtaposing	a	
set	 of	 code	 fragments	 while	 editing	 many	 dependent	 fragments.	 In	 each	 of	 these	
cases,	developers	searched	for	an	average	of	10	seconds	(±14)	before	<inding	their	
target,	 costing	 an	 average	 of	 about	 2	 (±1)	minutes	 of	 visual	 search	per	 developer.	



Chapter	5:	Exploring	in	Eclipse	 95

Although	Eclipse	supports	viewing	multiple	<iles	side-by-side,	placing	any	more	than	
two	 <iles	 side-by-side	 would	 have	 incurred	 the	 interactive	 overhead	 of	 horizontal	
scrolling	within	each	of	the	views.	

5.2.7. REPRESENTING TASK CONTEXTS 

Task	contexts 	[Murphy	2005],	de<ined	at	the	beginning	of	this	chapter,	include	all	of	9

the	 information	 relevant	 to	 a	 developers	 software	 development	 task,	 potentially	
including	 code,	 documentation,	 speci<ications,	 bug	 reports	 and	 other	 information.			
Developers	in	this	study	kept	track	of	information	in	their	task	contexts	in	numerous	
ways.	 They	 used	 the	 package	 explorer	 and	 <ile	 tabs	 to	 keep	 track	 of	 <iles	 that	
contained	 relevant	 information.	 Each	 <ile’s	 scroll	 bars	 and	 text	 caret	 helped	
temporarily	 mark	 the	 most	 recent	 relevant	 segment	 of	 code.	 Two	 of	 the	 ten	
developers	used	bookmarks	to	mark	a	 line	of	code.	In	some	cases,	developers	even	
used	 the	 undo	 stack	 in	 order	 to	 access	 earlier	 versions	 of	 code	 they	 had	 since	
modi<ied.	 Outside	 of	 Eclipse,	 developers	 also	 used	 the	Windows	 task	 bar	 to	 keep	

 I identified this concept in [Ko 2005b] as a developers’ working set, but later settled on Murphy’s 9

phrase because it was more descriptive of the concept.

 
Figure	5.5.	The	package	explorer,	Zile	tabs,	and	scroll	bars	of	Eclipse	2.0.



Chapter	5:	Exploring	in	Eclipse	 96

track	 of	 running	 applications,	 and	 the	web	 browser’s	 scroll	 bars	 to	mark	 relevant	
sections	of	documentation.	Two	of	 the	developers	used	paper	notes	to	write	down	
important	information,	such	as	method	names.	These	interfaces	essentially	"cached"	
the	 efforts	 of	 developers’	 prior	 navigations	 by	 keeping	 track	 of	 the	 relevant	
information	 they	 had	 found,	 helping	 a	 developer	 to	 collect	 a	 set	 of	 relevant	
information	(their	task	context).	

Although	these	 interfaces	were	helpful,	 they	were	 far	 from	perfect.	The	scroll	bars	
only	helped	developers	remember	the	most	recent	relevant	section	of	code	in	a	<ile,	
and	as	soon	as	they	moved	it,	the	mark	was	lost.	Five	developers	temporarily	left	the	
LINE	and	SCROLL	tasks	to	work	on	easier	tasks,	but	because	part	of	their	task	context	
was	 represented	 by	 the	 open	 <ile	 tabs	 and	 the	 state	 of	 the	 package	 explorer	 (see	
Figure	5.5),	they	often	lost	their	task	context	when	closing	tabs	or	package	explorer	
nodes	 to	 make	 space	 for	 information	 relevant	 to	 the	 new	 task.	When	 developers	
returned	to	their	earlier	task,	they	spent	an	average	of	60	seconds	(±28)	recovering	
their	 task	contexts.	Furthermore,	 tabs	opened	during	previous	 tasks	made	 it	more	
dif<icult	 to	 <ind	 relevant	 tabs,	 because	 the	 tab	 names	 were	 truncated	 (as	 seen	 in	
Figure	5.5).	One	problem	with	the	package	explorer	was	that	developers	often	found	
a	relevant	method	or	<ield	in	a	<ile,	but	to	use	the	explorer	to	navigate	to	it,	they	had	
to	 keep	 the	 whole	 Jile	 expanded.	 For	 example,	 developers	 used	 the	 explorer	 to	
navigate	to	pencilAction	for	reference	during	the	LINE	task	(shown	in	Figure	5.5),	but	

in	doing	so,	they	also	had	to	show	all	of	the	irrelevant	code	in	Action.java.	

5.2.8. VARIATIONS IN DEVELOPERS’ TASK CONTEXTS 

It	was	unlikely	that	the	developers	in	the	study	would	all	<ind	the	same	code	relevant	
to	 a	 task,	 since	 each	 of	 the	 developers	 did	 the	 tasks	 in	 different	 orders	 and	 had	
different	 levels	 of	 experience	 with	 Java	 and	 the	 Swing	 API.	 This	 led	 to	 several	
questions:	

• What	information	did	all	developers	<ind	relevant,	and	how	did	it	relate	to	
the	code	that	was	actually	relevant	to	a	task?	

• How	did	developers’	task	contexts	differ?	

• How	often	did	developers	return	to	code	they	perceived	as	relevant?	

• What	granularity	of	information	did	developers	deem	relevant?	



Chapter	5:	Exploring	in	Eclipse	 97

Answering	 these	 questions	 requires	 knowledge	 of	 what	 code	 developers	 thought	
was	relevant,	and	what	code	they	did	not.	Because	this	information	was	unavailable
—and	 developers	 may	 not	 have	 even	 explicitly	 formed	 this	 knowledge—it	 was	
approximated	 by	 looking	 for	 developer	 actions	 that	 might	 indicate	 a	 developer’s	
decision	that	some	code	or	information	was	relevant.	Because	of	evidence	that	there	
were	 several	 stages	 involved	 in	 forming	 perceptions	 of	 relevance,	 the	 more	
preliminary	decisions	of	relevance	were	ignored,	such	as	opening	a	<ile	or	reading	a	
method,	and	instead	the	analysis	focuses	on	more	<inal	indicators:	(1)	editing	a	code	
fragment,	 (2)	 navigating	 a	 dependency	 from	 a	 particular	 line	 of	 code,	 and	 (3)	
dwelling	on	API	documentation	found	as	a	result	of	reading	a	particular	identi<ier	in	
a	particular	line	of	code.	Although	these	indicators	are	not	without	uncertainty,	they	
allowed	an	approximation	of	the	set	of	code	fragments	that	each	developer	may	have	
thought	 relevant.	 Unfortunately,	 what	 developers	 would	 have	 actually	 chosen	 is	
unknown,	and	so	the	error	in	the	approximation	cannot	be	assessed.	

These	 three	 indicators	 were	 used	 to	 select	 a	 subset	 of	 actions	 from	 developers’	
THICKNESS	 and	 LINE	 tasks	 that	 suggested	 decisions	 of	 relevance.	 These	 two	 tasks	
were	chosen	because	they	required	the	greatest	amount	of	code	to	write	and	modify	
in	order	to	successfully	complete,	but	also	because	most	developers	<inished	them.	
By	looking	for	indicators	such	as	the	text	caret	and	mouse	cursor	movement	and	text	
selections	in	the	video,	the	source	code	lines	or	other	information	that	the	developer	
may	have	decided	were	relevant	could	be	 inferred.	 In	most	cases,	 this	 information	
was	just	a	single	line,	but	others	were	sequences	of	lines,	and	more	rarely,	a	whole	
method.	This	analysis	resulted	in	approximations	of	each	developers’	task	contexts	
for	the	THICKNESS	and	LINE	tasks,	and	the	sequence	of	their	formation.	

ID Relevant	Information	for	THICKNESS Time	&	
Success

Relevant	Information	for	LINE Time	
and	

Success
A 36	lines		 PaintWindow	

	 	 EraserPaint	
	 	 PencilPaint	
	 	 JSlider	documentation	
14	returns	across	3	<iles.

17	min	

!
34	lines		 PencilPaint,		 	
PaintObjectConstructor	
	 	 PaintWindow	
	 	 PaintObject	
	 	 PaintCanvas	
	 	 LinePaint	class	created	
	 	 JRadioButton	documentation	
6	returns	across	3	<iles.

26	min	
"



Chapter	5:	Exploring	in	Eclipse	 98

The	resulting	sets	of	relevant	information	are	shown	for	all	10	developers	in	Table	
5.5.	The	<irst	column	is	the	developer	ID,	and	the	second	and	fourth	columns	contain	
the	number	of	relevant	 lines	for	the	THICKNESS	and	LINE	 tasks	respectively,	 the	<iles	
they	were	in	(in	order	of	decreasing	number	of	relevant	lines),	and	also	the	number	
of	times	relevant	code	was	returned	to.	The	third	and	<ifth	columns	list	the	amount	
of	time	each	developer	spent	on	the	tasks	and	whether	they	succeeded	or	not.	The	
minimum	number	of	lines	to	successfully	complete	each	task	was	12	for	THICKNESS	
and	15	for	LINE.	

B 50	lines		 PaintWindow	
	 	 PencilPaint	
	 	 PaintObject	
	 	 EraserPaint	
	 	 JSlider	documentation	
	 	 SliderDemo.java	example	code	
	 	 ChangeListener	
documentation		
39	returns	across	3	<iles

29	min	

!

(didn’t	attempt)

#

C 36	lines		 PaintWindow	
	 	 PencilPaint	
	 	 Actions 
	 	 PaintObjectConstructor	
15	returns	across	2	<iles

16	min	

!
13	lines		 Actions	
	 	 PaintWindow	
	 	 PaintObject	
	 	 PaintObjectConstructor	
	 	 LinePaint	class	created		
15	returns	across	3	<iles

25	min	
!

D 41	lines		 PaintWindow	
	 	 PaintObjectConstuctor	
	 	 LineThickness	class	created		
23	returns	across	2	<iles.

11	min	

!
12	lines		 Actions	
	 	 PaintWindow,	
	 	 LinePaint	class	created	
11	returns	across	3	<iles.

16	min	
!

E 18	lines		 PaintWindow	
	 	 EraserPaint,	
	 	 JSlider	documentation	
10	returns	across	1	<ile

	8	min	

!
16	lines		 PaintWindow	
	 	 PaintObjectConstructor	
	 	 PaintCanvas	
	 	 Actions	
	 	 LinePaint	class	created	
6	returns	across	2	<iles

30	min	
!

F 27	lines		 PaintWindow	
	 	 PaintCanvas	
	 	 PaintObjectConstructor	
Returned	19	times	across	1	<ile

21	min	

! (didn’t	attempt)
#

G 29	lines	 PaintWindow	
	 	 PaintObjectConstructor	
	 	 EraserPaint	
	 	 JSlider	documentation		
13	returns	across	3	<iles

10	min	

!
19	lines		 Actions	
	 	 PaintCanvas	
	 	 PaintObjectController	
	 	 PaintWindow	
	 	 PaintObjectConstructor	
	 	 PaintObject	
	 	 LinePaint	class	created	
	 	 Rectangle2D.Double	class		 	
Rectangle	class	
32	returns	across	4	<iles.

47	min	
"

H 31	lines		 PaintWindow	
	 	 EraserPaint 
  PaintObjectConstructor	
	 	 LinePaint	class	created			
16	returns	across	3	<iles.

35	min	

!
11	lines		 Actions	
	 	 PaintWindow	
	 	 PaintObject,	
	 	 LinePaint	class	created	
3	returns	across	1	<iles.

12	min	
!

I 26	lines		 PaintWindow	
	 	 EraserPaint	
7	returns	across	1	<ile

11	min	

!
13	lines		 Actions	
	 	 PaintWindow,	
	 	 PaintObjectConstructor	
	 	 LinePaint	class	created	
15	returns	across	3	<iles

20	min	
!

J 33	lines		 PaintWindow		
	 	 PaintObjectConstructor		
22	returns	across	1	<iles

11	min	

!
18	lines		 Actions	
	 	 PaintWindow	
	 	 PaintObjectConstructor	
	 	 PaintObject	
	 	 PencilPaint	
	 	 LinePaint	class	created	
9	returns	across	3	<iles

13	min	
!



Chapter	5:	Exploring	in	Eclipse	 99

What	information	did	all	developers	<ind	relevant,	and	how	did	it	relate	to	the	code	

Table	5.5.	An	approximation	of	developers’	task	contexts	for	THICKNESS	and	
LINE,	derived	from	edits,	dependency	navigations,	and	searches.



Chapter	5:	Exploring	in	Eclipse	 100

that	 was	 actually	 relevant	 to	 a	 task?	 In	 general,	 successful	 developers’	 relevant	
information	 included	 the	 parts	 of	 the	 program	 that	 were	 part	 of	 the	 solutions	
described	 in	 Table	 5.1.	 For	 example,	 everyone	 found	 similar	 segments	 of	 the	
PaintWindow	 class’s	 constructor	method	 relevant,	 because	 that	was	 the	 place	where	

the	 user	 interface	was	 constructed,	 and	 thus	where	 the	 thickness	 slider	would	 be	
added.	Everyone	who	was	 successful	 at	 creating	 a	 line	 tool	 found	 the	 Actions	 class	

relevant,	because	that	class	had	to	be	modi<ied	to	include	an	action	for	the	line	tool	
radio	button.	

How	did	 developers’	 task	 contexts	 differ?	One	way	was	 in	 how	much	 information	
they	deemed	 relevant.	 For	 the	THICKNESS	 task,	 developers	deemed	a	median	of	32	
lines	relevant,	and	for	LINE,	a	median	of	17	lines,	not	including	the	LinePaint	class	that	

each	developer	wrote,	which	was	generally	about	20	 lines	(the	median	 is	reported	
for	the	latter	task	because	the	distribution	was	non-normal.	For	both	of	these	tasks,	
this	was	about	7%	of	the	508	lines	in	the	whole	program.	Note	that	this	is	less	than	
the	standard	40	lines	visible	in	an	Eclipse	editor	or	other	standard	code	editor,	but	in	
none	of	these	editors	is	it	possible	to	show	these	exact	lines	together	in	a	single	view.	
Developers	also	differed	in	the	kind	of	information	they	found	relevant.	For	example,	
many	developers	consulted	documentation	on	the	JSlider	class,	and	many	looked	for	

examples	 on	 how	 to	 use	 the	 class.	 Other	 differences	 seemed	 due	 to	 strategy.	 For	
example,	 developers	 differed	 on	 which	 lines	 of	 PencilPaint	 were	 relevant	 to	 the	

THICKNESS	 task	because	some	noticed	 the	setThickness()	method,	but	 those	 that	did	

not	 changed	 the	 rendering	 algorithm	 instead.	Other	 differences	were	 due	 to	 prior	
understanding	of	the	program;	for	example,	some	developers	on	the	THICKNESS	task	
only	looked	at	the	few	<iles	necessary	to	modify,	possibly	because	they	learned	about	
other	 information	 in	 earlier	 tasks.	 Others	 indicated	 part	 of	 almost	 every	 <ile	 as	
relevant,	 possibly	because	 they	needed	or	wanted	 to	understand	more	 about	how	
the	strokes	were	being	generated	and	rendered.	

How	 often	 did	 developers	 return	 to	 code	 they	 perceived	 as	 relevant?	 For	 the	
THICKNESS	 task,	developers	 returned	an	average	of	18	 (±9)	 times	 to	 code	 that	was	
transcribed	as	relevant,	and	for	the	LINE	task,	an	average	of	12	(±9)	times.	Not	only	
does	 the	magnitude	 of	 these	 numbers	 give	 some	 validity	 to	 the	measurements	 of	
perceived	 relevance,	 but	 it	 also	 reinforces	 the	 earlier	 <indings	 of	 navigational	
bottlenecks	 in	 the	 Eclipse	 user	 interface	 (Section	 5.2.6).	 There	 was	 no	 linear	
relationship	between	the	time	that	a	developer	spent	on	a	task	and	the	number	of	



Chapter	5:	Exploring	in	Eclipse	 101

relevant	 lines	 of	 code	 deemed	 relevant.	 There	 was	 a	 linear	 relationship	 between	
time	on	task	and	the	number	of	returns	on	the	THICKNESS	task	(R²=.65,	F=17.8,	p	<	
.005),	but	not	for	LINE.	This	difference	may	be	explained	by	that	fact	that	most	of	the	
new	code	required	for	the	LINE	task	was	contained	within	a	single	method,	unlike	the	
THICKNESS	task.	

Although	the	method	of	deciding	what	code	a	developer	deemed	relevant	biased	the	
granularity	of	the	relevant	information,	it	was	possible	to	infer	from	the	videos	the	
higher	 level	 structures	 that	 developers	 may	 have	 thought	 relevant.	 Most	 of	 the	
developers’	 relevant	 information	 were	 single	 statements	 or	 pairs	 of	 statements,	
however	there	were	also	several	small	subsections	of	the	PaintWindow	constructor	that	

developers	 indicated	 as	 relevant.	 Developers	 indicated	 several	 whole	 methods	 as	
relevant,	 but	 these	 were	 generally	 getters,	 setters,	 and	 other	 simple	 methods.	
Developers	 rarely	 indicated	 the	 whole	 body	 of	 more	 complicated	 methods	 as	
relevant.	

5.2.9. IMPACT OF INTERRUPTIONS 

In	order	 to	understand	the	 impact	of	 interruptions,	developers’	actions	before	and	
after	the	interruption	were	compared	subjectively.	Interruptions	only	had	an	impact	
on	developers’	work	when	two	conditions	were	 true:	 (1)	 important	 task	state	was	
not	externalized	into	the	environment	at	the	time	of	acknowledging	the	interruption	
and	(2)	developers	could	not	recall	 the	state	after	returning	from	the	interruption.	
Developers	 were	 very	 careful	 to	 externalize	 important	 task	 state	 before	
acknowledging	the	interruption.	For	example,	 in	every	case	where	a	developer	was	
interrupted	while	he	was	performing	an	edit,	whether	large	or	small,	the	developer	
always	completed	the	edit	before	acknowledging	the	interruption.	This	was	even	the	
case	when	one	developer	had	 just	copied	the	entire	PencilPaint	class	 in	an	effort	 to	

convert	 it	 into	 a	 new	 LinePaint	 class:	 before	 acknowledging	 the	 interruption,	 he	

modi<ied	 the	 class	 name,	 constructor	 name,	 commented	 out	 the	 old	 rendering	
algorithm,	 and	 wrote	 a	 comment	 about	 an	 implementation	 strategy	 for	 the	 new	
algorithm.	 In	 other	 cases	 where	 the	 task	 state	 was	 stored	 implicitly	 in	 Eclipse,	
developers	 forgot	 to	 externalize	 the	 state.	 For	 example,	 seven	 developers	 were	
interrupted	just	after	repairing	a	syntax	error,	but	just	before	saving	the	changes.	If	
they	had	saved,	 it	would	have	caused	Eclipse	to	incrementally	compile	and	remove	
the	 syntax	 error	 feedback.	 Because	 they	 did	 not	 save,	 when	 they	 returned	 from	



Chapter	5:	Exploring	in	Eclipse	 102

interruptions,	 they	 often	 saw	 the	 underlined	 syntax	 error,	 and	 tried	 to	 repair	 the	
already	valid	code.	In	these	seven	cases,	developers	spent	an	average	of	38	seconds	
before	they	realized	that	Eclipse’s	feedback	about	the	syntax	errors	was	out	of	date	
because	 they	 had	 not	 invoked	 the	 incremental	 compiler	 (more	 recent	 versions	 of	
Eclipse	have	recti<ied	this	problem).	

5.3. LIMITATIONS 

5.3.1. MEASUREMENT ERROR 

Many	 of	 the	 <indings	 were	 based	 on	 subjective	 interpretations	 of	 developers’	
behaviors,	 so	 it	 is	 important	 to	 characterize	 the	 sources	 of	 error	 in	 the	
measurements	 and	 their	 impact	 on	 the	 <indings.	 All	 of	 the	 data	 reported	 in	 this	
chapter	was	based	on	 the	 transcription	of	developers’	 actions.	To	assess	 the	error	
rate	 in	 this	 transcription,	 three	 task	 sequences	 from	 different	 developers	 were	
randomly	 sampled	 and	 compared	 to	 the	 videos	 to	 look	 for	 events	 that	 may	 have	
been	 missed	 in	 the	 original	 transcription.	 This	 revealed	 3	 omitted	 dependency	
navigation	 actions	 and	 3	 transcription	 errors	 out	 of	 108	 actions.	 Therefore,	 one	
estimate	of	 the	error	 rate	 in	 the	data	would	be	about	5%.	 In	general,	 these	errors	
were	not	due	to	disagreements	about	whether	an	action	had	occurred	or	what	type	
of	action	it	was,	but	rather	to	the	high	level	of	dif<iculty	of	coding	particular	actions.	
For	example,	it	was	easy	to	identify	application	switching	and	code	editing,	but	more	
dif<icult	to	identify	dependency	navigations.	

This	error	rate	affects	a	number	of	results.	The	statistics	in	Figure	5.3	would	likely	
be	 impacted.	 For	 example,	 if	 5%	 of	 dependency	 navigations	 were	 missed,	 there	
would	probably	be	an	average	of	68	navigations	per	participant	instead	of	65.	This	
would	then	impact	the	estimate	of	the	time	spent	reading	code,	which	was	generally	
the	default	category	when	no	other	actions	were	observed.	The	transcription	error	
rate	also	 impacts	 the	proportion	estimates	of	kinds	of	navigations	(Table	5.4),	and	
likely	increases	the	number	of	navigations	that	were	coded	as	returns,	which	would	
increase	the	amount	of	time	estimated	that	developers	spent	doing	visual	searches	
and	 scrolling.	 Because	 the	 transcription	 errors	 were	 omissions,	 most	 of	 the	 raw	
numbers	reported	would	simply	increase,	so	the	interpretations	remain	the	same.	



Chapter	5:	Exploring	in	Eclipse	 103

Another	 source	of	 error	are	 the	 time	measurements,	which	were	 coded	 from	 time	
stamps	in	the	videos,	which	were	recorded	by	the	second.	Therefore,	the	time	spent	
on	each	task	could	change	slightly,	and	the	durations	reported	would	then	have	an	
error	 of	 ±	 2	 seconds,	which	 could	 cause	minor	 changes	 in	 estimates.	 Despite	 this	
source	of	error,	 the	error	 is	 likely	 to	be	distributed	 throughout	 the	measurements,	
and	so	it	likely	impacts	all	of	the	data	equally.	

The	estimates	of	code	that	developers	deemed	relevant	are	further	sources	of	error.	
These	estimates	were	conservative	in	the	sense	that	they	were	only	based	on	explicit	
actions	 taken	by	 the	developers;	 code	 that	 developers	may	have	 thought	 relevant,	
but	made	no	explicit	action	to	indicate,	was	not	included.	Therefore,	developers	may	
have	 deemed	 many	 more	 lines	 relevant,	 but	 probably	 not	 fewer.	 Furthermore,	
relevance	is	not	necessarily	discrete;	if	asked,	developers	may	just	indicate	a	general	
area	of	a	source	<ile.	

5.3.2. EXTERNAL VALIDITY 

Because	this	was	a	 lab	study,	 there	are	obvious	 limitations	on	this	study’s	external	
validity.	First,	the	size	and	complexity	of	Paint	program	is	not	representative	of	most	
heavily	 maintained	 software	 systems.	 This	 may	 have	 led	 to	 observations	 of	 work	
strategies	that	are	dramatically	different	from	those	when	developers	face	hundreds	
of	 thousands	 of	 lines	 of	 code,	 rather	 than	 hundreds.	 It	 is	 likely	 that	 the	 general	
strategies	 that	 developers	 used	 in	 this	 study	 would	 still	 be	 present	 in	 these	
situations,	 but	 particular	 activities,	 such	 as	 searching	 for	 relevant	 code	 and	
navigating	 dependencies,	might	 require	 different	 tools	 and	 occur	 at	 different	 time	
scales	 (for	 example,	 developers	 would	 probably	 not	 use	 the	 package	 explorer	 to	
navigate	 amongst	 thousands	 of	 items).	 This	 is	 partially	 con<irmed	 by	 some	 of	 the	
<indings	 of	 Robillard,	 Coelho	 and	 Murphy’s	 study	 of	 the	 medium-sized	 JEdit	
application	 [Robillard	 2004],	 in	which	 successful	 developers	 used	 Eclipse	 tools	 in	
much	more	systematic,	goal-driven	ways,	rather	than	browsing.	

In	 addition	 to	 the	 program	 itself,	 the	 tasks	 in	 this	 chapter’s	 study,	 which	 can	 be	
thought	 of	 as	 “quick	 <ix”	maintenance	 tasks,	may	 differ	 from	 other	 types	 of	 tasks,	
such	as	 impact	analysis	and	reverse	engineering.	The	tasks	 in	 this	study	were	also	
GUI-related	 tasks	 and	 it	 is	 unknown	whether	 developers	 strategies’	 differ	 for	 less	
visual	programs.	The	 lack	of	comments	 in	 the	source	code	 in	 this	study	 is	another	
limitation,	 especially	 given	 the	 importance	 of	 information	 cues	 suggested	 by	 the	



Chapter	5:	Exploring	in	Eclipse	 104

results	 in	 section	 5.2.4.	 Had	 these	 cues	 existed,	 developers	 may	 have	 performed	
more	successful	searches	and	less	navigation.		

The	limited	size	of	this	study’s	sample	and	the	limited	experience	of	the	developers	
in	 the	 sample	 both	 limit	 the	 study’s	 generalizability.	 It	may	 be	 the	 case	 that	 even	
within	 this	 population,	 there	 are	 variations	 in	 strategies	 that	 were	 not	 observed	
because	of	 the	small	sample.	Developers	with	more	experience	 in	 industry	may	be	
different	 because	 of	 their	work	 context	 and	 depth	 of	 experience.	 Developers	who	
work	in	teams	may	have	different	strategies	for	maintaining	code	that	do	not	involve	
the	 sequence	of	high-level	 activities	observed	 in	 the	 study.	For	example,	 it	may	be	
the	 case	 that	 rather	 than	 searching	 to	 <ind	 relevant	 code,	 developers	 seek	 out	 a	
colleague	they	know	to	be	more	experienced	for	a	particular	aspect	of	the	software	
and	 obtain	 hints	 about	 relevant	 code.	 Furthermore,	 because	 developers	 were	
unfamiliar	with	the	code,	 the	results	may	not	generalize	to	collaborative	situations	
in	 which	 developers	 are	 quite	 familiar	 with	 the	 code	 they	 are	 responsible	 for	
maintaining.	These	issues	are	explored	further	in	the	next	chapter.	

The	 study	 only	 considered	 one	 programming	 language	 and	 one	 development	
environment.	Some	of	 the	 <indings	would	obviously	be	different	 if	other	 languages	
and	 environments	 were	 used.	 For	 example,	 the	 dependencies	 that	 developers	
navigated	 depended	 on	 the	 types	 of	 dependencies	 expressible	 in	 Java	 (although	
most	widely-used	languages	are	quite	similar).	The	user	 interfaces	that	developers	
used	 to	 represent	 their	 task	 context	 would	 likely	 differ	 in	 command-line	
environments.	 For	 example,	 perhaps	 developers	 who	 use	 command-line	 tools	 are	
better	able	to	keep	their	task	context	in	memory,	and	are	less	reliant	on	their	tools.	
Or	perhaps	they	use	different	tools	as	memory	aids,	which	have	a	different	in<luence	
on	developers’	work.	

The	time	constraints	imposed	were	also	somewhat	arti<icial.	For	example,	there	may	
have	been	 little	 incentive	 for	developers	 to	deeply	 investigate	 any	problem	on	 the	
web	or	with	a	debugger	because	they	may	have	felt	pressured	to	complete	all	of	the	
tasks	in	the	70	minutes.	Furthermore,	they	may	have	felt	unable	to	leave	their	work	
and	 focus	on	some	other	non-development	 task,	 such	as	 learning	about	 the	Swing	
API	 for	 future	 use;	 this	 may	 have	 impacted	 their	 problem	 solving	 ef<icacy,	 given	
evidence	 that	 time	 away	 from	 dif<icult	 problems	 can	 help	 people	 change	 their	
mindsets	and	conceive	of	new	solutions	[Anderson	2000].	The	interruptions	in	the	
study	were	also	arti<icial	in	several	ways.	No	interruption	was	more	or	less	useful	to	



Chapter	5:	Exploring	in	Eclipse	 105

acknowledge	 than	 another;	 in	 reality,	 some	 interruptions	 are	 bene<icial	 [Gonzalez	
2004].	 Furthermore,	 no	 interruption	 was	 more	 or	 less	 valuable	 socially;	
interruptions	 by	 friends	 and	 family	 may	 have	 caused	 developers	 to	 acknowledge	
interruptions	 without	 <irst	 externalizing	 important	 task	 state,	 possibly	 leading	 to	
errors.	 Finally,	 all	 of	 the	 interruptions	 took	 a	 similar	 amount	 of	 time;	 in	 the	 real	
world,	some	interruptions	can	be	hours	or	days	long.	

The	 limitation	 of	 screen	 resolution	 to	 1024	 x	 768	 could	 have	 been	 the	 source	 of	
many	of	the	interactive	bottlenecks	that	were	observed	in	the	data.	It	is	possible	that	
with	 a	 larger	 screen	 resolution,	 many	 of	 these	 effects	 would	 disappear,	 or	 be	
lessened	 (certain	 kinds	 of	 cognitive	 limitations	 are	 known	 to	 disappear	 at	 larger	
screen	sizes	[Tan	2006]).	However,	while	more	space	would	leave	more	room	for	<ile	
tabs	and	result	in	fewer	off-screen	code	fragments,	this	could	have	easily	introduced	
issues	 with	 screen	 real	 estate	management,	 replacing	 one	 interactive	 bottleneck	
with	another,	because	of	the	single-windowed	nature	of	Eclipse	2.0	and	3.0.	

5.4. IMPLICATIONS FOR THEORY 

The	 <indings	 about	 developers’	 search	 strategies,	 the	 importance	 of	 the	 user	
interface	in	perceptions	of	relevance,	the	frequency	with	which	developers	returned	
to	certain	fragments	of	code,	and	the	variation	in	developers’	task	contexts	call	for	a	
model	of	program	understanding	based	on	information	seeking.	The	one	proposed	
here	 describes	 program	 understanding	 as	 a	 process	 of	 searching,	 relating,	 and	
collecting	 relevant	 information,	 by	 perceiving	 relevance	 cues	 in	 the	 programming	
environment.	

To	help	explain	this	model,	consider	a	program	and	its	metadata	such	as	comments	
and	documentation	as	a	graph	consisting	of	 individual	fragments	of	 information	as	
nodes,	 and	 all	 possible	 relationships	 between	 information	 (calls,	 uses,	 declares,	
deJines,	etc.)	as	edges.	 In	 this	representation,	 the	code	relevant	 to	a	particular	 task	
will	be	one	of	many	possible	subgraphs	of	this	graph,	with	the	particular	subgraph	
for	 a	 developer	 depending	 on	 the	 implementation	 strategy,	 the	 developer’s	
experience	and	expertise,	and	other	factors.	Using	this	representation,	it	is	possible	
to	think	of	a	developer’s	program	understanding	process	as	described	in	Figure	5.6.	

A	 developer	 begins	 a	 task	 by	 looking	 for	 a	 node	 in	 the	 graph	 that	 seems	 relevant	
(searching).	To	do	so,	they	use	cues	throughout	the	development	environment,	such	



Chapter	5:	Exploring	in	Eclipse	 106

as	 identi<ier	names,	 comments,	and	documentation,	 to	 form	perceptions	about	 the	
relevance	 of	 information.	 Once	 a	 developer	 has	 found	 what	 is	 perceived	 to	 be	 a	
relevant	 node,	 the	 developer	 attempts	 to	 understand	 the	 node	 by	 relating	 it	 to	
dependent	 nodes	 (relating).	 Because	 each	 node	 in	 the	 graph	 could	 have	 a	 vast	
number	of	related	nodes,	the	developer	uses	cues	in	the	programming	environment	
to	determine	which	relationship	seems	most	relevant.	After	choosing	and	navigating	
a	relationship,	the	developer	may	investigate	nodes	related	to	the	new	node,	and	so	
on,	or	return	to	a	previous	node.	If	at	any	point	in	this	cycle	of	relating,	the	developer	
believes	 there	 are	 no	more	 relevant	 cues,	 the	 developer	 drops	 out	 of	 the	 relating	
cycle	and	goes	back	to	searching	for	a	new	node	to	comprehend.	As	this	searching	
and	 relating	 continues,	 the	 developer	 gathers	 any	 nodes	 that	 seem	 necessary	 for	
completing	the	task,	whether	for	editing,	reference,	or	other	purposes	(collecting).	If	
at	 any	 point	 the	 developer	 believes	 that	 the	 nodes	 that	 have	 been	 collected	 are	
suf<icient	 to	 implement	 a	 solution	 for	 the	 task,	 the	 developer	 drops	 out	 of	 this	
understanding	 process	 altogether,	 and	 focuses	 on	 the	 information	 collected	 to	
implement	a	solution.	Problems	during	this	implementation	process	then	may	lead	
to	further	search,	relate,	and	collect	activities.	

Within	 this	 model,	 two	 factors	 are	 central	 to	 developers’	 success:	 (1)	 the	
environment	must	provide	clear	and	representative	cues	for	developers	to	judge	the	
relevance	of	information,	and	(2)	the	environment	must	also	provide	a	reliable	way	
to	 collect	 the	 information	 developers	 deem	 relevant.	 If	 an	 environment	 does	 not	
provide	good	cues,	it	may	lead	to	fruitless	investigations;	if	an	environment	does	not	
provide	an	effective	way	to	collect	information,	developers	will	have	to	retrace	their	
steps	to	locate	information	that	has	already	been	found.	

This	model	of	program	understanding	 is	directly	 informed	by	 information	foraging	
theory	 [Pirolli	 1999],	 which	 posits	 that	 people	 adapt	 their	 strategies	 and	
environment	 to	maximize	 gains	 of	 valuable	 information	 per	 unit	 cost.	 It	 proposes	
that	 a	 central	 mechanism	 of	 this	 adaptation	 is	 information	 scent:	 the	 imperfect	
"perception	of	the	value,	cost,	or	access	path	of	information	sources	obtained	from	
proximal	cues."	In	general,	these	cues	include	artifacts	such	as	hyperlinks	on	a	web	
page	 or	 graphical	 icons	 in	 a	 toolbar.	 In	 software	 development	 environments,	 they	
include	the	names	of	program	elements,	comments,	the	source	<ile	names,	and	so	on.	
Information	 foraging	 theory	 may	 suggest	 more	 rigorous	 explanations	 of	 how	
developers	might	form	their	perceptions	of	relevance,	so	future	work	should	further	
investigate	its	relationship	to	this	model.	



Chapter	5:	Exploring	in	Eclipse	 107

With	regard	to	existing	models	of	program	understanding,	the	model	proposed	here	

 
Fi
gu
re
	5
.6
.	A
	m
od
el
	o
f	p
ro
gr
am

	u
nd
er
st
an
di
ng
	in
	w
hi
ch
	d
ev
el
op
er
s	
se
ar
ch
	fo
r	
re
le
va
nt
	in
fo
rm

at
io
n	
an
d	
re
la
te
	it
	to
	o
th
er
	

re
le
va
nt
	in
fo
rm

at
io
n	
w
hi
le
	c
ol
le
ct
in
g	
in
fo
rm

at
io
n	
ne
ce
ss
ar
y	
fo
r	
ev
en
tu
al
ly
	im

pl
em

en
ti
ng
	a
	s
ol
ut
io
n.



Chapter	5:	Exploring	in	Eclipse	 108

is	largely	consistent	with	their	predictions;	the	difference	is	that	the	model	suggests	
a	lower-level	explanation	of	developers’	actions	than	prior	work.	For	example,	many	
models	 have	 argued	 that	 developers	 begin	 with	 questions	 and	 form	 hypotheses	
[Brooks	1972,	Vans	1999,	LaToza	2007];	 this	 corresponds	 to	 the	 searching	 part	of	
this	model,	 in	which	developers	ask	"What	 is	relevant?"	and	use	cues	to	both	form	
and	test	hypotheses	about	what	is	relevant.	Other	models	have	focused	on	high-level	
strategic	differences,	such	as	whether	developers	understand	programs	from	the	top	
down	or	bottom	up	[Corritore	2001,	Littmann	1986,	Vans	1999],	and	whether	they	
use	 systematic	 or	 as-needed	 strategies	 [Koenemann	 1991];	 recent	 work	 on	 these	
issues	 tend	 to	 suggest	 that	 developers	 do	 all	 of	 these	 [Robillard	2004].	Under	 the	
model	here,	a	top-down	strategy	involves	choosing	a	high-level	node	and	following	
more	speci<ic	dependencies;	a	bottom-up	strategy	is	just	the	reverse.	An	as-needed	
strategy	might	 involve	many	short	paths	 through	 this	graph,	whereas	a	 systematic	
strategy	 would	 likely	 involve	 longer	 and	 more	 consistent	 paths.	 The	 model	
presented	here	allows	 for	all	of	 these	possibilities,	and	predicts	 that	 the	particular	
strategy	 chosen	 depends	 on	 the	 cues	 provided	 in	 the	 environment.	 Models	 of	
knowledge	 formation	 during	 program	 understanding	 [Navarro-Prieto	 2001,	
Wiedenbeck	1993],	which	have	suggested	that	a	developer’s	mental	model	consists	
of	 relationships	 between	 code	 elements,	 and	 the	 purpose	 and	 intent	 of	 these	
elements,	 is	 consistent	 with	 the	 description	 of	 knowledge	 as	 the	 combination	 of	
paths	 that	 a	 developer	 has	 traversed	 in	 a	 program	 over	 time	 and	 their	 existing	
knowledge.	 Finally,	 because	 the	 model	 describes	 a	 pattern	 of	 activity	 that	 is	
fundamentally	 driven	 by	 cues	 offered	 by	 the	 environment	 and	 developers’	
perceptions	of	their	relevance,	it	is	also	consistent	with	research	on	the	in<luence	of	
the	visual	representation	of	code	on	program	understanding	[Baecker	1990,	Green	
1996,	Miara	1983,	Teasley	1994].	

5.5. IMPLICATIONS FOR TOOLS 

While	 no	 single	 navigational	 problem	 in	 any	 of	 the	 developers’	 activities	 incurred	
dramatic	 overhead,	 overall,	 navigation	was	 a	 signi<icant	 component	 of	 developers’	
time.	 The	 total	 time	 developers	 spent	 recovering	 task	 contexts,	 iterating	 through	
search	 results,	 returning	 from	 navigations,	 and	 navigating	 between	 indirect	
dependencies	 within	 and	 between	 <iles	 was,	 on	 average,	 19	minutes	 (35%	 of	 the	
time	 not	 spent	 answering	 interruptions).	 While	 much	 of	 this	 navigation	 was	 a	
necessary	part	of	developers’	work,	some	of	it	was	simply	overhead,	and	as	we	have	



Chapter	5:	Exploring	in	Eclipse	 109

seen,	 many	 of	 the	 navigations	 were	 repeated	 navigations	 that	 might	 have	 been	
avoided	had	more	helpful	 tools	been	available.	Although	 tools	are	only	part	of	 the	
complex	nature	of	software	engineering	work,	it	is	worthwhile	to	discuss	how	they	
might	impact	developers’	day-to-day	efforts.	

5.5.1. HELPING DEVELOPERS SEARCH MORE EFFECTIVELY 

Much	of	 the	 navigational	 overhead	 in	 our	 study	was	 caused	by	 developers’	 use	 of	
inadequate	 or	 misrepresentative	 cues	 in	 the	 development	 environment	 to	 guide	
searches	 (Section	 5.2.4).	 One	 approach	 to	 alleviating	 this	 is	 to	 provide	 better	
relevance	 cues.	 Some	 studies	 suggest	 that	 the	 most	 important	 information	 in	
understanding	code	is	its	purpose	and	intent	[LaToza	2006].	For	example,	a	method	
named	paintComponent	likely	does	something	close	to	what	it	describes.	Although	our	

data	suggests	that	names	are	an	important	way	to	indicate	purpose,	names	can	also	
be	 misleading,	 causing	 developers	 to	 form	 invalid	 perceptions	 of	 relevance.	
Comments	are	a	common	means	of	conveying	intent,	and	perhaps	if	written	well	and	
kept	 up	 to	 date,	 would	 be	 more	 indicative	 of	 purpose	 and	 intent.	 Imagine,	 for	
example,	 if	 the	 Eclipse	 package	 explorer	 annotated	 each	 <ile	 icon	 with	 a	 brief	
description	 of	 its	 purpose,	 extracted	 from	 Javadoc	 documentation.	 Another	 idea	

would	be	to	annotate	the	icons	with	the	number	of	other	<iles	using	the	code	in	the	
<ile	 to	help	 a	developer	know	how	 "important"	 the	 code	 is	 to	 a	project,	much	 like	
ranking	is	computed	in	search	engines.	Future	work	should	investigate	other	types	
of	 information	 that	 correlate	 with	 the	 relevance	 of	 information.	 For	 example,	
TeamTracks	helps	developers	explore	code	that	other	developers	found	relevant	in	
their	tasks	[DeLine	2005].	

Another	approach	is	to	provide	more	layers	of	cues	before	a	developer	has	to	read	
the	code	or	 information	 in	 full.	For	example,	 rather	 than	having	 to	double-click	an	
icon	representing	a	method	in	the	package	explorer	in	order	to	see	its	code,	hovering	
over	 the	 icon	might	 show	 its	 header	 comments	 or	 highlight	 all	 of	 the	 <iles	 in	 the	
project	that	use	the	<ile	being	hovered	over	(versions	of	Eclipse	and	other	IDEs	now	
have	 similar	 features).	 These	 extra	 layers	 would	 help	 developers	 decide	 that	
information	was	irrelevant	earlier,	without	having	to	inspect	the	information	in	full.	

Tools	such	as	Hipikat	have	 tried	 to	automatically	 <ind	potentially	relevant	code	 for	
developers	to	inspect	[Cubranic	2000].	However,	because	the	recommendations	are	



Chapter	5:	Exploring	in	Eclipse	 110

based	on	a	developers’	investigation	activities,	or	their	current	location	in	the	code,	
when	 the	 developer	 is	 investigating	 irrelevant	 code,	 these	 tools	 may	 recommend	
more	 irrelevant	 code.	 Furthermore,	 the	 relevance	 cues	 in	 these	 recommendations	
can	 be	 misleading,	 since	 these	 systems	 present	 the	 names	 of	 program	 elements.	
Recommender	 systems	 such	 as	 these	 should	 be	 further	 studied	 in	 order	 to	
understand	their	impact	on	developers’	perceptions	of	relevance.	

5.5.2. HELPING DEVELOPERS RELATE INFORMATION MORE EFFICIENTLY 

Once	 developers	 found	 relevant	 code,	 our	 observations	 suggest	 that	 they	 began	
navigating	its	dependencies,	using	relevance	cues	in	the	programming	environment	
to	decide	whether	to	continue	investigating,	and	if	so,	what	dependency	to	navigate.	
One	 reason	 that	 developers	 did	 not	 use	 Eclipse	 navigation	 commands	 to	 perform	
these	 navigations	 is	 the	 overhead	 that	 they	 incurred	 by	 opening	 new	 tabs	 and	
requiring	 a	 return	 navigation.	 One	 way	 to	 reduce	 this	 overhead	 is	 to	 make	
dependency	 navigations	 more	 provisional.	 For	 example,	 nearly	 one-<ifth	 of	
developers’	 time	was	 spent	 reading	 code	within	 a	 <ixed	 view	 in	 the	Eclipse	 editor	
(Section	 5.2.1),	 so	 it	 could	 be	 helpful	 to	 highlight	 dependencies	 in	 the	 code	
automatically	based	on	the	current	text	caret	position	or	text	selection	(Eclipse	does	
have	basic	support	 for	 this,	but	 it	must	be	 invoked).	Developers	also	spent	a	 lot	of	
time	 going	 back	 and	 forth	 between	 related	 code	 (Section	 5.2.6),	 so	 interaction	
techniques	 that	 allow	developers	 to	glance	 at	 related	 code	 could	 be	 helpful.	 Tools	
such	 as	 FEAT	 [Robillard	 2002]	 might	 be	 a	 good	 place	 to	 start,	 by	 replacing	 the	
context	menus	used	to	inspect	dependencies	with	something	requiring	fewer	steps.	

5.5.3. HELPING DEVELOPERS COLLECT INFORMATION MORE RELIABLY 

Collecting	information	was	central	to	developers'	success,	but	developers	currently	
have	 a	 limited	 number	 of	 ways	 to	 do	 it.	 Each	 has	 its	 own	 <laws:	 memorizing	
information	 tends	 to	 be	 unreliable	 [Altmann	 2001];	 writing	 it	 down	 is	 archial	 in	
some	sense,	but	slow,	imprecise,	and	requires	developers	to	re-navigate	to	relevant	
code;	 and	 <inally,	 using	 the	 interactive	 state	 in	 Eclipse	was	 precise,	 but	 unreliable	
(Section	 5.2.7).	 None	 of	 these	 approaches	 help	 developers	 compare	 information	
side-by-side,	which	our	study	suggests	was	quite	important	(Section	5.2.6).	



Chapter	5:	Exploring	in	Eclipse	 111

The	mockup	in	Figure	5.7	illustrates	one	way	that	these	fragments	could	be	collected	
and	viewed.	In	this	hypothetical	situation,	the	developer	has	already	found	all	of	the	
code	thought	relevant,	and	has	just	copied	the	rSlider	setup	code	in	order	to	create	

code	to	add	a	thickness	slider.	The	developer	is	in	the	middle	of	changing	rSlider	to	

tSlider	 in	 the	duplicated	 code.	The	basic	 concept	 of	 the	workspace	 is	 to	provide	 a	

single	place	for	developers	to	view	all	relevant	information	for	a	single	maintenance	
task	side-by-side,	in	order	to	eliminate	much	of	the	navigational	overhead	observed	
in	 our	 study.	 The	 rest	 of	 this	 section	 describes	 the	 features	 portrayed	 in	 our	
conceptual	workspace.	

One	 issue	with	collection	 tools	 is	how	 the	workspace	 refers	 to	 code	and	metadata	
internally.	For	example,	some	tools	have	used	a	virtual	<ile,	which	allows	developers	
to	combine	a	set	of	line	ranges	[Reiss	1996]	or	methods	[Chu-Carroll	2002],	and	edit	
it	 as	 if	 it	 were	 a	 single	 <ile.	 Robillard	 proposed	 the	 concept	 of	 a	 concern	 graph	
[Robillard	2003b],	which	 represents	 information	as	a	 set	of	 relationships	between	
program	elements	(such	as	declares	and	subclasses	relationships).	This	approach	is	
more	robust	to	changes	to	a	program,	but	the	tradeoff	 is	that	arbitrary	subparts	of	
the	smallest	granularity	element	(such	as	parts	of	a	method)	cannot	be	referenced	
(FEAT	can	reference	the	calls	and	uses	of	a	method,	but	not	arbitrary	lines	of	code).	
The	representation	envisioned	in	the	workspace	in	Figure	5.7	would	involve	regions	
of	code	that	one	could	imagine	a	developer	circling	on	a	code	printout;	this	approach	
might	better	match	the	granularity	in	which	developers	think	about	code.	

The	 interaction	 technique	 that	 developers	 might	 use	 to	 add	 information	 to	 this	
workspace,	once	 found,	 largely	depends	on	 the	representation	used	 to	refer	 to	 the	
information	(if	information	is	collected	as	lines	of	code,	for	example,	the	interaction	
technique	must	 allow	developers	 to	 select	 lines).	However,	 it	must	 also	 be	 simple	
enough	 that	 developers	 can	quickly	 specify	 the	 relevant	 information	 and	 continue	
with	 their	 task,	 uninhibited.	 Tools	 proposed	 in	 the	 past	 have	 tended	 to	 be	
heavyweight.	 For	 example,	 Desert	 [Reiss	 1996]	 requires	 users	 to	 know	 the	 line	
numbers	 beforehand	 and	 enter	 them	 manually.	 FEAT	 [Robillard	 2002]	 requires	
users	 to	 navigate	 a	 program	by	 its	 relationships,	 and	 add	 "relations"	 to	 a	 concern	
graph	through	a	contextual	menu,	which	is	a	somewhat	oblique	way	for	a	developer	
to	 say	 "this	 code	 is	 important	 to	 me."	 To	 add	 information	 to	 our	 workspace,	
developers	 could	 use	 a	 keyboard	 shortcut	 to	 add	 a	 single	 line,	 and	 possibly	 a	
gesturing	technique	with	the	mouse	to	circle	the	relevant	code	and	its	surrounding	



Chapter	5:	Exploring	in	Eclipse	 112

context.	This	would	be	quite	similar	to	the	snapshots	of	code	that	developers	claim	

	
Fi
gu
re
	5
.7
.	T
he
	5
0	
lin
es
	o
f	c
od
e	
an
d	
ot
he
r	
in
fo
rm

at
io
n	
th
at
	d
ev
el
op
er
	B
	in
di
ca
te
d	
as
	r
el
ev
an
t,	
po
rt
ra
ye
d	
in
	a
	m
oc
ku
p	
of
	a
	

w
or
ks
pa
ce
	th
at
	h
el
p	
de
ve
lo
pe
rs
	c
ol
le
ct
	re
le
va
nt
	in
fo
rm

at
io
n	
fo
r	
a	
ta
sk
	in
	o
ne
	p
la
ce
,	i
nd
ep
en
de
nt
	o
f	t
he
	s
tr
uc
tu
re
	o
f	a
	

pr
og
ra
m
.L

in
e
 t

o
o
l

T
h
ic

k
n
e
s
s

P
a
in

ti
n
g
 b

u
g

+
T
a

s
k
s

P
a

in
tO

b
je

c
t.

ja
v
a

p
r
o
t
e
c
t
e
d
 
i
n
t
 
t
h
i
c
k
n
e
s
s
;

p
r
o
t
e
c
t
e
d
 
C
o
l
o
r
 
c
o
l
o
r
;

 
 
 
 

p
u
b
l
i
c
 
v
o
i
d
 
s
e
t
C
o
l
o
r
(
C
o
l
o
r
 
c
o
l
o
r
)
 
{
 
t
h
i
s
.
c
o
l
o
r
 
=
 
c
o
l
o
r
;
 
}

p
u
b
l
i
c
 
v
o
i
d
 
s
e
t
T
h
i
c
k
n
e
s
s
(
i
n
t
 
t
h
i
c
k
n
e
s
s
)
 
{
 
t
h
i
s
.
t
h
i
c
k
n
e
s
s
 
=
 
t
h
i
c
k
n
e
s
s
;
 
}

E
ra

s
e

rP
a

in
t.

ja
v
a

p
u
b
l
i
c
 
v
o
i
d
 
s
e
t
T
h
i
c
k
n
e
s
s
(
i
n
t
 
t
h
i
c
k
n
e
s
s
)
 
{

 
 
 
 

 
 
t
h
i
s
.
t
h
i
c
k
n
e
s
s
 
=
 
2
5
;

 
 
 
 

}

P
a

in
tW

in
d

o
w

.j
a

v
a

p
r
i
v
a
t
e
 
J
P
a
n
e
l
 
r
P
a
n
e
l
,
 
g
P
a
n
e
l
,
 
b
P
a
n
e
l
;

p
r
i
v
a
t
e
 
J
S
l
i
d
e
r
 
r
S
l
i
d
e
r
,
 
g
S
l
i
d
e
r
,
 
b
S
l
i
d
e
r
;

.
.
.

p
r
i
v
a
t
e
 
A
c
t
i
o
n
s
 
a
c
t
i
o
n
s
;

.
.
.

p
r
i
v
a
t
e
 
C
h
a
n
g
e
L
i
s
t
e
n
e
r
 
c
o
l
o
r
C
h
a
n
g
e
L
i
s
t
e
n
e
r
 
=
 
n
e
w
 
C
h
a
n
g
e
L
i
s
t
e
n
e
r
(
)
 
{

 
 
 
 
 
 
 
 

 
 
p
u
b
l
i
c
 
v
o
i
d
 
s
t
a
t
e
C
h
a
n
g
e
d
(
C
h
a
n
g
e
E
v
e
n
t
 
c
h
a
n
g
e
E
v
e
n
t
)
 
{

 
 
 
 
 
 
o
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
.
s
e
t
C
o
l
o
r
(
n
e
w
 
C
o
l
o
r
(
r
S
l
i
d
e
r
.
g
e
t
V
a
l
u
e
(
)
,
 
g
S
l
i
d
e
r
.
g
e
t
V
a
l
u
e
(
)
,
 
g
S
l
i
d
e
r
.
g
e
t
V
a
l
u
e
(
)
)
)
;

 
 
 
 
 
 
r
e
p
a
i
n
t
(
)
;

.
.
.

p
u
b
l
i
c
 
P
a
i
n
t
W
i
n
d
o
w
(
i
n
t
 
i
n
i
t
i
a
l
W
i
d
t
h
,
 
i
n
t
 
i
n
i
t
i
a
l
H
e
i
g
h
t
)
 
{

 
 
.
.
.

 
 
r
P
a
n
e
l
 
=
 
n
e
w
 
J
P
a
n
e
l
(
n
e
w
 
F
l
o
w
L
a
y
o
u
t
(
)
)
;

 
 
r
P
a
n
e
l
.
s
e
t
O
p
a
q
u
e
(
f
a
l
s
e
)
;

 
 
r
P
a
n
e
l
.
a
d
d
(
n
e
w
 
J
L
a
b
e
l
(
"
R
e
d
"
)
)
;

 
 
r
S
l
i
d
e
r
 
=
 
n
e
w
 
J
S
l
i
d
e
r
(
0
,
 
2
5
5
,
 
0
)
;

 
 
r
S
l
i
d
e
r
.
s
e
t
O
p
a
q
u
e
(
f
a
l
s
e
)
;

 
 
r
S
l
i
d
e
r
.
a
d
d
C
h
a
n
g
e
L
i
s
t
e
n
e
r
(
c
o
l
o
r
C
h
a
n
g
e
L
i
s
t
e
n
e
r
)
;

 
 
r
P
a
n
e
l
.
a
d
d
(
r
S
l
i
d
e
r
)
;

 
 
/
/
 
H
e
r
e
'
s
 
m
y
 
c
o
d
e
.
 
I
'
m
 
g
o
i
n
g
 
t
o
 
a
d
d
 
a
 
t
h
i
c
k
n
e
s
s
 
s
l
i
d
e
r
.
.
.

 
 
t
P
a
n
e
l
 
=
 
n
e
w
 
J
P
a
n
e
l
(
n
e
w
 
F
l
o
w
L
a
y
o
u
t
(
)
)
;

 
 
t
P
a
n
e
l
.
s
e
t
O
p
a
q
u
e
(
f
a
l
s
e
)
;

 
 
t
P
a
n
e
l
.
a
d
d
(
n
e
w
 
J
L
a
b
e
l
(
"
R
e
d
"
)
)
;

 
 
t
S
l
i
d
e
r
 
=
 
n
e
w
 
J
S
l
i
d
e
r
(
0
,
 
2
5
5
,
 
0
)
;

 
 
t
S
l
i
d
e
r
.
s
e
t
O
p
a
q
u
e
(
f
a
l
s
e
)
;

 
 
|
r
S
l
i
d
e
r
.
a
d
d
C
h
a
n
g
e
L
i
s
t
e
n
e
r
(
c
o
l
o
r
C
h
a
n
g
e
L
i
s
t
e
n
e
r
)
;

 
 
r
P
a
n
e
l
.
a
d
d
(
r
S
l
i
d
e
r
)
;

 
 
.
.
.

 
 
o
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
 
=
 
n
e
w
 
P
a
i
n
t
O
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
(
t
h
i
s
)
;

 
 
o
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
.
s
e
t
C
l
a
s
s
(
P
e
n
c
i
l
P
a
i
n
t
.
c
l
a
s
s
)
;

 
 
o
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
.
s
e
t
C
o
l
o
r
(
n
e
w
 
C
o
l
o
r
(
0
,
 
2
5
5
,
 
0
)
)
;

 
 
o
b
j
e
c
t
C
o
n
s
t
r
u
c
t
o
r
.
s
e
t
T
h
i
c
k
n
e
s
s
(
5
)
;

 
 
.
.
.

J
S
l
i
d
e
r
.
c
l
a
s
s
 —

 
h

o
w

 d
o

 I
 g

iv
e

 i
t 

a
 

ra
n

g
e

?

S
lid

e
rD

e
m

o
.j
a

v
a

 
fr
o
m

 "
H

o
w

 t
o

 U
s
e

 
S

lid
e

rs
"

P
e

n
c
ilP

a
in

t.
ja

v
a

p
u
b
l
i
c
 
R
e
c
t
a
n
g
l
e
 
g
e
t
B
o
u
n
d
i
n
g
B
o
x
(
)
 
{

 
 
.
.
.

 
 
i
n
t
 
x
 
=
 
(
i
n
t
)
p
o
i
n
t
s
[
p
o
i
n
t
I
n
d
e
x
]
.
g
e
t
X
(
)
;

 
 
i
n
t
 
y
 
=
 
(
i
n
t
)
p
o
i
n
t
s
[
p
o
i
n
t
I
n
d
e
x
]
.
g
e
t
Y
(
)
;

 
 
i
f
(
x
 
-
 
t
h
i
c
k
n
e
s
s
 
/
 
2
 
<
 
m
i
n
X
)
 
m
i
n
X
 
=
 
x
 
-
 
t
h
i
c
k
n
e
s
s
 
/
 
2
;

 
 
e
l
s
e
 
i
f
(
x
 
+
 
t
h
i
c
k
n
e
s
s
 
/
 
2
 
>
 
m
a
x
X
)
 
m
a
x
X
 
=
 
x
 
+
 
t
h
i
c
k
n
e
s
s
 
/
 
2
;

 
 
i
f
(
y
 
-
 
t
h
i
c
k
n
e
s
s
 
/
 
2
 
<
 
m
i
n
Y
)
 
m
i
n
Y
 
=
 
y
 
-
 
t
h
i
c
k
n
e
s
s
 
/
 
2
;

 
 
e
l
s
e
 
i
f
(
y
 
+
 
t
h
i
c
k
n
e
s
s
 
/
 
2
 
>
 
m
a
x
Y
)
 
m
a
x
Y
 
=
 
y
 
+
 
t
h
i
c
k
n
e
s
s
 
/
 
2
;

 
 
.
.
.

D
o

c
k
e

d
 I

n
fo

–

R
e

c
o

m
m

e
n

d
a

ti
o

n
s

N
e

e
d

 t
o

 m
a

k
e

 a
 n

e
w

 l
is

te
n

e
r 

fo
r 

th
e

 
th

ic
k
n

e
s
s
 s

lid
e

r.
..

×

A
d

d
 a

 s
lid

e
r.

..
×

H
a

v
e

 t
o

 a
d

d
 s

o
m

e
 c

o
d

e
 t

o
 s

e
t 

u
p

 t
h

e
 

n
e

w
 s

lid
e

r
×

Is
 t

h
is

 a
 b

u
g

?
 I

t 
lo

o
k
s
 l
ik

e
 i
t's

 
s
u

p
p

o
s
e

d
 t

o
 b

e
 u

s
in

g
 t

h
ic

k
n

e
s
s
.
×

Is
 t

h
is

 r
ig

h
t?

 S
in

c
e

 t
h

ic
k
n

e
s
s
 

w
a

s
n

't 
c
h

a
n

g
in

g
 b

e
fo

re
, 

it
 m

ig
h

t 
n

o
t 

a
c
tu

a
lly

 w
o

rk
. 
T
e

s
t 

it
.

×

T
h
e
 m

e
th

o
d
 

s
e
t
T
h
i
c
k
n
e
s
s
(
)

 i
n
 

P
a
i
n
t
O
b
j
e
c
t
C
o
n
s
t
r
u

c
t
o
r
 

s
e
e
m

s
 r

e
la

te
d
 t
o
 

th
is

 c
o
d
e
.

C
h

a
n

g
e

L
is

te
n

e
r 

d
o

c
 (

J
a

v
a

 2
 P

la
tf

o
rm

 1
.4

)



Chapter	5:	Exploring	in	Eclipse	 113

they	see	when	trying	to	recall	the	shape	and	location	of	familiar	code	[Petre	1997].	

Given	 that	nearly	all	of	 the	navigational	overhead	 in	 the	study	was	due	 to	 the	way	
code	 and	 information	 was	 organized	 on-screen,	 the	 visual	 representation	 of	
information	 in	 collection	 tools	 is	 also	 an	 important	 issue.	 Desert	 [Reiss	 1996]	
presents	 relevant	 lines	 of	 code	 as	 a	 single	 integrated	 <ile;	 FEAT	 [Robillard	 2002]	
represents	concern	graphs	as	a	hierarchical	tree	and	requires	developers	to	select	an	
element	in	this	hierarchy,	and	use	a	pop	up	menu	to	request	the	source	<ile;	Concern	
Highlight	[Nistor	2006]	highlights	relevance	code	in	a	conventional	editor.	There	are	
several	problems	with	 these	approaches:	 (1)	 they	 treat	all	 information	as	 if	 it	had	
the	 same	 role	 in	 the	 task;	 (2)	 they	 do	 not	 support	 side-by-side	 comparison	 of	
information;	and	(3)	they	incur	much	of	the	same	interactive	overhead	observed	in	
relying	on	 <ile	 tabs	and	scroll	bars.	Our	proposal	 in	Figure	5.7	represents	 the	code	
and	 information	 that	 a	 developer	 deems	 relevant	 concretely,	 rather	 than	 using	
abstract	 icons	 or	 names.	 Not	 only	 does	 this	 avoid	 the	 navigational	 overhead	 of	
navigating	 to	 the	 information,	 but	 it	 affords	 other	 advantages:	 code	 can	be	placed	
side-by-side	in	order	to	aid	comparison	and	editing;	views	could	be	collapsed	to	the		
bar	on	the	left	of	Figure	5.7,	 in	order	to	allow	developers	to	focus	on	the	subset	of	
information	that	 is	necessary	for	the	current	task;	and	code	and	other	 information	
could	be	directly	annotated,	as	seen	throughout	Figure	5.7.	

Of	 course,	 there	 are	 some	 limitations	 to	 representing	 code	 concretely,	 rather	 than	
summarizing	it	and	allowing	users	to	navigate	to	it.	One	obvious	concern	is	whether	
such	a	workspace	would	be	able	to	<it	all	of	a	developer’s	relevant	information	on	a	
single	 screen.	To	 consider	a	 lower	bound,	developers	 in	our	 study	 found	about	30	
lines	of	 code	relevant	on	average.	To	consider	an	upper	bound,	a	 study	of	 the	CVS	
repository	of	GNOME,	which	 is	over	a	million	 lines	of	code,	 found	that	 the	average	
check-in	was	about	28	lines	of	code,	with	a	standard	deviation	of	38	and	a	maximum	
of	 237	 [Koch	 2000].	 This	 suggests	 that	 an	 average	 task,	 even	with	 a	 few	 lines	 of	
surrounding	 context	 for	 contiguous	 fragment,	 would	 be	 likely	 to	 <it	 inside	 a	 full-
screen	window.		

I	worked	with	student	Michael	Coblenz	to	explore	the	concept	in	Figure	5.7	in	more	
detail,	designing	the	Jasper	environment,	which	allows	Eclipse	developers	to	gather	
fragments	of	Java	code	relevant	to	their	current	task	[Coblenz	2006].	An	example	of	
this	 is	shown	in	Figure	5.8.	The	environment	allows	developers	to	select	ranges	of	
Java	 code	 from	 the	Eclipse	 Java	 code	editor,	 as	well	 as	documentation	 from	a	web	



Chapter	5:	Exploring	in	Eclipse	 114

page,	 and	 combine	 these	 selections	 into	 a	 single	 view.	 This	 allows	 a	 developer	 to	
save	the	task	context	for	later,	in	case	the	task	is	interrupted,	and	also	share	the	task	
context	 with	 other	 developers	 who	 may	 be	 collaborating	 on	 the	 task.	 The	
environment	automatically	sizes	and	lays	out	the	selections,	so	that	developers	can	
focus	on	the	information,	rather	than	its	presentation.	

One	challenge	of	implementing	the	workspace	was	how	to	reference	code	fragments.	
As	code	changes,	Jasper	must	detect	these	changes	and	decide	how	to	re-anchor	the	
selected	 code	 given	 the	 new	 changes,	 or	 whether	 to	 simply	 notify	 the	 developer	
about	unanchored	code.	Jasper	stores	code	references	as	a	project	name,	path	within	
the	project	 to	a	 <ile,	and	a	 line	number	range	within	the	 <ile.	 Jasper	also	stores	the	
last	known	text	of	the	item.	If	a	<ile	changes,	Jasper	searches	for	the	code	and	scores	
each	new	line	in	the	<ile	if	it	matches	the	last	known	text.	If	more	than	half	of	the	text	
was	found	based	on	this	scoring	mechanism,	the	code	is	reanchored;	otherwise,	the	
user	is	alerted	about	the	problem,	giving	feedback	about	the	change.	More	details	on	
the	exact	algorithms	used	are	available	in	[Coblenz	2006].	

5.6. SUMMARY 

The	 goal	 of	 this	 study	was	 to	 investigate	 the	 program	understanding	 strategies	 of	
developers	 with	more	 experience	 than	 in	 the	 studies	 in	 Chapters	 3	 and	 4.	 There	
were	a	number	of	<indings:	

• Developers	generally	form	hypothetical	explanations	of	program	execution	
and	then	use	a	variety	of	tools	to	verify	or	reject	their	explanations.	

Figure	5.8.	Jasper,	an	Eclipse	plug-in	that	allows	developers	to	gather	
arbitrary	fragments	of	Java	code	in	a	single	view.



Chapter	5:	Exploring	in	Eclipse	 115

• Developers	based	their	guesses	about	the	cause	of	program	execution	on	
surface	features	of	its	output,	such	as	labels	found	in	UIs	(Section	5.2.3).	

• 88%	of	developers’	hypotheses	about	the	causes	of	a	program	behavior	of	
were	false	(Section	5.2.3).	

• The	consequences	of	guessing	incorrectly	caused	developers	to	spend	an	
average	of	36%	of	their	time	investigating	irrelevant	code	(Section	5.2.3).	

• Developers	tend	to	form	task	contexts	of	relevant	code	in	order	to	capture	
the	information	necessary	to	<ind	a	bug	or	add	a	new	feature	(Section	5.2.7).	

• The	information	in	developers	task	contexts	can	vary	considerably	on	the	
same	task,	probably	due	to	differences	in	experience	and	in	the	actual	
process	of	gathering	relevant	code	(Section	5.2.8).	

• Information	foraging	theory	can	help	model	the	information	cues	that	
developers	use	to	guide	their	search	for	relevant	information	(Section	5.4).	

All	 of	 these	 <indings	 and	 ideas	 contributed	 to	 the	 Whyline	 concept	 and	 design,	
described	in	later	chapters,	as	well	as	inspiring	tools	like	Jasper	[Coblenz	2006].		



6.

INFORMATION NEEDS AT 
MICROSOFT  10

The	 central	 limitation	 of	 the	 prior	 studies	 was	 essentially	 that	 they	 all	 involved	
students.	 Therefore,	 the	 next	 study	 explored	 the	 daily	 lives	 of	 developers	 at	
Microsoft	 working	 on	 various	 Microsoft	 products.	 This	 study	 was	 an	 attempt	 to	
extend	 the	 ecological	 validity	 of	 my	 <indings	 by	 exploring	 the	 same	 issues	 in	 the	
software	development	industry.	

Rather	 than	 approach	 these	 observations	 with	 a	 narrow	 focus	 on	 program	
understanding,	 the	 focus	was	broader,	 exploring	 software	development	work	 from	
an	 information	 perspective.	 Some	 studies	 have	 investigated	 information	 sources,	
such	as	asking	other	people	 [LaToza	2006],	 looking	 in	code	repositories	 [de	Souza	
2003],	and	investigating	bug	reports	[Sandusky	2005].	Others	have	studied	means	of	
acquiring	 information,	 such	 as	 email,	 instant	 messages	 (IM),	 and	 informal	
conversations	 [Sandusky	 2005].	 Studies	 have	 even	 characterized	 developers’	
strategies	[Hertzum	2002],	for	example,	how	they	decide	whom	to	ask	for	help.		

While	 these	 studies	 provide	 several	 concrete	 insights	 about	 aspects	 of	 software	
development	work,	we	still	know	little	about	what	information	developers	look	for	
and	why	they	look	for	it.	For	example,	what	information	do	developers	use	to	triage	
bugs?	 What	 knowledge	 do	 developers	 seek	 from	 their	 coworkers?	 What	 are	
developers	 looking	 for	 when	 they	 search	 source	 code	 or	 use	 a	 debugger?	 By	

 The results in this chapter appear in part in [Ko 2007].10



Chapter	6:	Information	Needs	 117

identifying	 the	 types	 of	 information	 that	 developers	 seek,	 we	 might	 better	
understand	what	 tools,	 processes	 and	 practices	 could	 help	 them	more	 easily	 <ind	
such	information.	

To	understand	 these	 information	needs	 in	more	detail,	 a	 two-month	 <ield	 study	of	
software	developers	at	Microsoft	was	performed	in	the	summer	of	2006,	 involving	
17	groups	across	the	corporation,	focusing	on	three	speci<ic	questions:	

• What	information	do	software	developers’	seek?	

• Where	do	developers	seek	this	information?	

• What	prevents	them	from	<inding	information?	

The	observations	 identi<ied	several	 information	needs.	The	most	dif<icult	 to	satisfy	
were	design	questions:	 for	example,	developers	needed	 to	know	 the	 intent	 behind	
existing	 code	 and	 code	 yet	 to	 be	written.	Other	 information	 seeking	was	 deferred	
because	the	coworkers	who	had	the	knowledge	were	unavailable.	Some	information	
was	 nearly	 impossible	 to	 <ind,	 like	 bug	 reproduction	 steps	 and	 the	 root	 causes	 of	
failures.	

The	next	sections	discuss	the	study’s	methodology	and	then	detail	 the	 information	
needs	that	were	identi<ied	in	both	qualitative	and	quantitative	terms.	

6.1. METHOD 

The	 method	 was	 to	 record	 notes	 while	 observing	 developers’	 normal	 work.	 To	
recruit	developers,	250	developers	from	the	corporate	address	book	were	surveyed.	
Of	these,	55	responded	and	49	volunteered	for	observation.		

Each	 observation	 session	 was	 about	 90	 minutes	 and	 involved	 a	 single	 observer	
taking	handwritten	notes.	To	encourage	the	participants	to	narrate	their	work,	they	
were	asked	to	think	of	the	observer	as	a	newcomer	to	the	team	(in	Microsoft	terms,	
a	 “new	 hire”),	 doing	 a	 “job	 shadow.”	 The	 observer	 focused	 on	 recording	 goal-
oriented	 events	 like	 “<inding	 the	 method	 that	 computed	 the	 wrong	 value”	 rather	
than	low-level	events	like	keystrokes	or	menu	selections.	Since	the	observers	shared	
the	participants’	programming	background,	they	understood	much	of	the	work	and	
where	 and	 how	 information	 was	 obtained,	 without	 inquiry.	 In	 some	 cases,	 the	
observers	prompted	with	questions	 like	 “what	are	you	 looking	 for?”	 to	 learn	 their	



Chapter	6:	Information	Needs	 118

information	 needs,	 but	 most	 developers	 thought	 aloud	 without	 prompting.	 The	
observers	 time-stamped	the	recorded	events	and	conversations	each	minute.	After	
90	 minutes,	 the	 observers	 looked	 for	 a	 good	 stopping	 point	 and	 wrapped	 up.	
Immediately	 after	 each	 observation,	 the	 observers	 transcribed	 the	 handwritten	
notes,	as	in	the	excerpt	shown	in	Figure	6.1.	

During	 the	 allotted	 time	 for	 the	 study	 the	 observers	 were	 able	 to	 observe	 17	
developers,	which	was	enough	to	see	common	patterns	in	their	information	needs.	
(Section	6.2	 touches	 on	 the	 potential	 value	 of	 observing	more	developers.)	 Figure	
6.2	 describes	 these	 developers’	 experience	 levels,	 types	 of	 work,	 and	 phases	 of	
development	 and	 introduces	 the	 initials	 used	 to	 refer	 to	 them	 in	 this	 chapter.	 In	
Microsoft's	terminology,	dev	leads	manage	software	development	engineers	(SDEs	or	
devs)	while	also	performing	a	development	role.	 In	general,	 the	teams	developed	a	
variety	of	 applications,	 some	 internal	 components	 to	 the	 company,	other	end	user	
products,	and	all	developers	used	widely	varying	software	development	processes.	

6.2. TASK STRUCTURE 

The	 observations	 spanned	 25	 hours	 of	 work	 and	 resulted	 in	 357	 pages	 of	
handwritten	notes,	which	were	then	transcribed	into	4,231	time-stampted	rows	in	a	

9:41 am So this copies the files onto the server, then allocates a 
machine to do the setup. In the mean0me, I'm going to 
get this local fix [of this other bug] over [checked in].

9:41 am [opens diff tool to see changes he’s made to code]

9:43 am Oh damn, I have some mixed changes. Some are part of 
this DCR [design change request] I'm working on and 
some are part of a bug fix, so I have to mix it out. 

Figure	6.1.	An	excerpt	from	J’s	observation	log.	



Chapter	6:	Information	Needs	 119

spreadsheet.	 The	 logged	 activities	were	 partitioned	 into	work	 categories	 common	
across	 the	 participants:	 writing	 code;	 submitting	 code	 (check-ins);	 triaging	 bugs;	
reproducing	 failures;	 understanding	 program	 behavior;	 reasoning	 about	 design;	
maintaining	awareness;	and	non-work	activities	(e.g.	personal	phone	calls).	Causes	of	
task	 switching	 were	 also	 identi<ied:	 face-to-face	 dialogue;	 phone	 calls;	 instant	
messages	 (IM);	 email	 alerts;	 meetings;	 task	 avoidance;	 getting	 blocked;	 and	 task	
completion.	The	logs	were	annotated	with	these	switches,	based	on	remarks	like	“I	
want	 to	 get	 back	 to	my	 repro[duction]…”	 All	 of	 these	 causes	 of	 task	 switches	 are	
forms	 of	 interruption,	 except	 getting	 blocked	 and	 task	 completion.	 When	
participants	voluntarily	 switched	activities,	 the	 switch	 is	 labeled	as	blocked	 if	 they	
could	no	longer	make	progress	on	the	activity	(typically	due	to	an	information	need)	
and	task	avoidance	if	they	could	make	progress	but	chose	to	switch	anyway.	

Figure	 6.2	 visualizes	 these	 task	 switches,	 which	 occurred	 an	 average	 of	 every	 5	
minutes	(±	1.7),	mirroring	the	rate	reported	in	[Gonzales	2005].	Time	fragmentation	
varied	 considerably	 per	 participant.	 For	 example,	 M	 reproduced	 failures	 without	
interruption,	 whereas	 R	 was	 frequently	 blocked.	 Many	 interruptions	 were	 due	 to	
face-to-face,	 IM,	 or	 phone	 conversations,	 which	 occurred	 from	 0	 to	 6	 times	 per	
session	 (median	 of	 1),	 each	 lasting	 for	much	 of	 the	 session.	Developers	were	 also	
interrupted	 by	 noti<ications,	 such	 as	 email	 and	 alerts	 about	 changes	 to	 the	 bug	
database.	Developers	experienced	0	to	9	noti<ications	per	session	(median	of	1).		

Blocking,	shown	in	Figure	6.2	as	dark	vertical	bars,	occurred	when	information	was	
unavailable.	 Some	 blocks	 were	 about	 waiting	 for	 the	 results	 of	 compilations	 and	
tests	suites.	Developers	also	waited	for	email	replies	and	for	other	teams	to	submit	
changes	 or	 bugs.	 Other	 blocks	 were	 due	 to	 missing	 knowledge,	 like	 when	 a	
developer	stops	coding	to	learn	about	an	API.	Developers	were	blocked	a	median	of	
4	times	per	session	and	between	0	and	11	times	overall.	

6.3. INFORMATION NEEDS 

Of	 the	 4,231	 rows	 in	 the	 spreadsheet,	 there	 were	 334	 instances	 of	 information	
seeking	events,	which	were	then	abstracted	from	the	particulars	of	the	work	context	
into	 21	 general	 information	 needs.	 This	 section	 presents	 these	 information	 needs	
clustered	by	the	work	category	in	which	they	arose.	Throughout,	 the	 initials	of	the	
developers	for	whom	we	observed	a	trend	are	listed	within	braces.	



Chapter	6:	Information	Needs	 120

6.3.1. WRITING CODE 

Developers	had	several	questions	situated	in	the	code	they	were	writing:	

(c1)	 What	data	structures	or	functions	can	be	used	to	implement	this	behavior?	

(c2)	 How	do	I	use	this	data	structure	or	function?	

(c3)	 How	can	I	coordinate	this	code	with	this	other	data	structure	or	function?	

Although	 the	 <irst	 of	 these	 questions	 (c1)	 was	 uncommon,	 when	 it	 occurred,	
developers	searched	API	documentation	{K}	and	inspected	other	code	for	examples	
{H}.	 These	 searches	 can	 be	 thought	 of	 as	 a	 search	 through	 the	 space	 of	 existing	
reusable	 code;	 for	 example,	 K	 looked	 for	 an	 appropriate	 serialization	 API	 by	
searching	a	large	database	of	public	documentation.	

Once	a	developer	had	a	candidate	in	mind,	they	sought	its	syntactic	usage	rules	(c2).	
For	 example,	which	method	 is	 appropriate	 to	 call?	What	data	 structures	does	 this	
require?	What	 constructors	 does	 this	 class	 have?	 Developers	 used	 documentation	
when	 it	was	available	 {DFHJKN},	but	sometimes	needed	 to	use	code	 that	was	only	
fully	understood	by	its	author	{AFL}.	Others	found	example	code	from	which	to	infer	
rules	{GH}.	

Because	developers	 had	 to	 coordinate	APIs	with	 their	 own	 code,	 they	 also	 sought	
behavioral	usage	rules	(c3),	implicit	in	the	API	design.	For	example,	is	it	legal	to	call	
this	method	after	calling	this	other	method?	What	state	do	I	have	to	be	in	before	this	
call?	 Such	 information	 was	 rarely	 explicit.	 Developers	 used	 their	 colleagues	 {A},	
documentation	{K},	and	example	code	{HN}	to	infer	these	rules.	

6.3.2. SUBMITTING A CHANGE 

Developers	 had	 three	 primary	 questions	 when	 exposing	 their	 code	 to	 their	
teammates:	

(s1)	Did	I	make	any	mistakes	in	my	new	code?	

(s2)	Did	I	follow	my	team’s	conventions?	

(s3)	Which	changes	are	part	of	this	submission?	

Besides	building	their	code	to	assess	its	syntactic	correctness,	developers	answered	
questions	of	correctness	 (s1)	by	considering	 the	scenarios	and	range	of	 input	 that	



Chapter	6:	Information	Needs	 121



Chapter	6:	Information	Needs	 122

they	 intended	 to	 cover.	 They	 used	 debuggers	 {DKR},	 diff	 tools	 {R}	 and	 unit	 tests	
{BN},	but	primarily	relied	on	their	own	reasoning	{ADHJ}.	Another	common	<ilter	for	
mistakes	was	code	reviews.	Before	a	review,	developers	<irst	looked	for	mistakes:	

K: I think I'm ready to check in, so I'm just making sure I didn't do anything 
stupid. Like, I forgot to write those tests! Yeah, stupid like that. 

One	 developer	 wrote	 assertions	 {N},	 but	 these	 interfered	 with	 other	 developers’	
work	{ATU},	even	when	the	assertions	were	correct:	

A: I never want to see [that product’s] asserts but they always pop up. They 
have nothing to do with my work! 

Three	developers	used	static	analysis	tools	to	check	for	fault-prone	design	patterns	
{JKU},	but	expressed	disdain	for	such	tools’	false	positives	or	could	not	understand	
the	tools’	recommendations.	

Developers	also	considered	their	team’s	conventions	(s2).	Some	teams	required	tags	
or	other	documentation	to	be	embedded	in	method	headers,	which	developers	were	
careful	 to	 remember,	 often	 with	 the	 help	 of	 tools	 {BELN}.	 Sometimes	 two	
submissions	 intersected	 (like	 in	 the	 transcript	 in	Figure	6.1)	or	developers	had	 to	
merge	their	code	with	another’s	and	developers	had	to	determine	which	differences	
were	part	of	the	current	submission	(s3)	{JN}.		

6.3.3. TRIAGING BUGS 

Most	 developers	 were	 swamped	 with	 bug	 reports	 from	 tests,	 customers,	 and	
internal	 employees.	 Triage	 occurred	 in	 isolation	 as	 a	 developer	 partitioned	 their	
time	{AEJMNTUV},	but	also	in	triage	meetings	{LR}.	For	each	report,	the	goal	was	to	
determine:	

(b1)	 Is	this	a	legitimate	problem?	

(b2)	 How	dif<icult	will	this	problem	be	to	<ix?	

(b3)	 Is	the	problem	worth	<ixing?	

Assessing	legitimacy	(b1)	involved	deciding	whether	a	failure	was	due	to	a	problem	
with	the	code	or	an	unrealistic	con<iguration	of	a	test	{BL}:	



Chapter	6:	Information	Needs	 123

B: It might but not really be a failure. It might just be a setup problem. This 
par0cular component doesn't depend on anything. Probably locked a file, so it’s 
returning an exit code. Not a real failure. 

Legitimacy	 also	 depended	 on	 whether	 a	 report	 was	 a	 duplicate.	 People	 reported	
similar	 failure	 symptoms	 {L},	 but	 also	 different	 failure	 symptoms	 that	 developers	
believed	had	a	common	cause	{LT}:	

A: These subjects are just busted! I have a feeling I'm seeing the same bug. I'm 
going to do a quick search to see if there are busted subjects [in the bug 
database]—this one kinda sounds like it, blah blah, category name is 
corrupted? Ooh, screenshots are the same! 

Bug	triage	is	a	cost/bene<it	analysis.	To	assess	a	the	cost	of	repair	(b2),	developers	
considered	 whether	 a	 redesign	 would	 be	 necessary	 {CJTV},	 whether	 other	 teams	
might	be	affected	{V},	and	whether	a	 <ix	could	be	written	and	tested	by	a	deadline	
{V}.	 Teams	 also	 close	 bugs	 “by	 design,”	 treating	 them	 as	 work	 items	 for	 later	
releases:	

V’s teammate: I think the best thing is a new overlay to indicate something's 
going on. 

V: We can't do that by the release. Looks like a work item. 

Another	 factor	 affecting	 the	 repair	 cost	 was	 a	 reports’	 clarity	 {JLR}.	 Does	 it	 have	
detailed	 reproduction	 steps?	 Is	 the	 failure	 clearly	 described?	 Does	 it	 have	 hints	
about	 possible	 causes	 or	 an	 error	message?	Reports	with	 inadequate	 clarity	were	
rejected	{R}.	

On	the	bene<it	side	of	the	analysis	(b3),	developers	considered	the	number	of	users	
affected	{CJLV}	and	the	user	experience	{LRV}.	For	example,	V	discussed	a	<ix:	

V’s teammate: If we want to push it back, we can, but I think an overlay is 
easiest. 

V: But it's a totally broken experience for the user. 

If	there	was	a	known	workaround,	developers	might	focus	on	more	severe	bugs	{LV}.	

6.3.4. REPRODUCING A FAILURE 

To	reproduce	a	failure,	developers	asked:	



Chapter	6:	Information	Needs	 124

(r1)	 What	does	the	failure	look	like?	

(r2)	 In	what	situations	does	this	failure	occur?	

The	primary	source	for	both	of	these	types	of	information	was	bug	reports.	Reports	
would	 often	 include	 screen	 shots	 {MT},	 but	 more	 often	 developers	 relied	 on	 the	
descriptions	of	the	failure	to	help	them	imagine	its	appearance	{AELNRTU}.	

Developers	relied	heavily	on	the	bug	report’s	reproduction	steps	to	understand	the	
situations	 in	which	 a	 failure	 occurred	 (r2).	 Given	 the	 complex	 con<igurations	 that	
were	 necessary	 to	 reproduce	 some	 problems,	 even	 detailed	 steps	 omitted	 crucial	
state	{ERT}.	In	other	cases,	the	state	was	known,	but	dif<icult	to	reproduce	{AT}:	

A: Originally, the repro steps said I need a blog count [as a test case] but I 
couldn't set one up, so I went back and forth. 

To	 overcome	 this,	 some	 developers	 set	 up	 a	 remote	 desktop	 connection	with	 the	
report’s	 author,	 so	 that	 the	 full	 con<iguration	 was	 available	 for	 debugging	 {EL}.	
Developers	 would	 also	 guess	 what	 state	 was	 wrong	 and	 begin	 modifying	 their	
environment	and	test	cases	until	reproducing	the	failure:	

A: I'm looking at [the report] to see if I have this configured the same way, but 
I'm not gehng the problem. Maybe we've changed it in the past half year this 
has been open. 

In	one	situation	a	 failure	could	not	be	reproduced	and	 the	bug	had	 to	be	deferred	
{A}.	 The	 developer	 documented	 his	 attempts	 in	 the	 report	 for	 the	 sake	 of	 other	
testers	and	developers.	

6.3.5. UNDERSTANDING EXECUTION BEHAVIOR 

Developers	 had	 to	 understand	 unfamiliar	 code	 in	 several	 circumstances:	 using	
vendor	code	{GM};	joining	a	new	team	{V};	obtaining	ownership	of	code	{H};	during	
workload	balancing	{T};	or	when	debugging,	with	unfamiliar	code	on	the	call	stack	
{ENT}.	Each	time,	they	addressed	three	basic	questions:	

(u1)	 What	code	could	have	caused	this	behavior?	

(u2)	 What	is	statically	related	to	this	code?	

(u3)	 What	code	caused	this	program	state?	



Chapter	6:	Information	Needs	 125

Developers	 began	 these	 tasks	 with	 a	 “why”	 question	 and	 a	 hypothesis	 about	 the	
cause	of	the	failure:	

A: Why did I get gibberish? Storing field, given PPack, what is an MPField? I 
have no idea what this data structure contains. SPSField? I suspect SPS is just 
busted. 

Developers	 acquired	 their	 hypotheses	 (u1)	 by	 using	 their	 intuition	 {ALM},	 asking	
coworkers	 for	opinions	 {AFM},	 looking	at	 execution	 logs	 {F},	 scouring	bug	 reports	
for	 hints	 {ER},	 and	 using	 the	 debugger	 {GTU}.	 Although	 developers	 used	 many	
sources	to	obtain	hypotheses,	only	a	few	gathered	and	considered	more	than	one	at	
a	 time	{FM}	(it	 is	an	open	question	as	to	whether	this	 leads	to	more	success).	The	
accuracy	 of	 developers’	 hypotheses	 was	 only	 obvious	 to	 them	 in	 hindsight	 (the	
methodology	of	this	study	is	not	suited	to	knowing	just	how	accurate	they	were).	

To	 test	and	re<ine	hypotheses,	developers	asked	a	broad	array	of	questions	with	a	
variety	of	tools.	Many	of	these	questions	were	about	the	structure	of	the	code	(u2),	
like	what	 is	 the	deJinition	of	 this?	 and	what	calls	 this	method?	Such	questions	were	
easy	to	answer	with	tools.	Other,	more	broadly	scoped	questions,	like	what	code	does	
a	 similar	 operation?	 has	 no	 tool	 support,	 but	 developers	were	 good	 at	 answering	
them	with	search	tools.	

Developers	 answered	 questions	 about	 causality	 (u3)	 such	 as	where	 did	 this	 value	
come	from?	{ATU}	and	how	did	the	program	arrive	at	this	method?	{AM}	by	a	series	of	
lower	level	questions,	such	as	what	thread	is	the	program	in	right	now?	{AT}	what	is	
the	 value	 of	 this	 variable	 or	 data	 structure	 now?	 {AEMTU}.	 Sillito,	Murphy	 and	De	
Volder	 report	 similar	 indirect	 questioning	 [Sillito	 2006].	 These	 questions	 were	
primarily	 answered	 with	 breakpoint	 debuggers,	 which	 required	 developers	 to	
translate	their	questions	into	an	awkward	series	of	actions:	

A: Here we're formahng WSTValue…I can't do highligh0ng, so I go to Source 
Insight. Find where I am in devns—this is the guy [the code] that screwed up. 
ShiT F8, highlight all occurrences, where it gets its value from. Here's where we 
set it. So I want a breakpoint here. 

As	 developers	 re<ined	 their	 hypotheses,	 they	 changed	 their	 concern	 from	 the	
behavior	of	the	existing	system	to	the	hypothetical	behavior	after	some	change:	



Chapter	6:	Information	Needs	 126

T: There's no file there, so something forgot it and I have a suspicion of what it 
is. Might mean that the free code has to get moved later. 

Intuition	 was	 essential	 in	 answering	 all	 of	 these	 questions.	 The	 cost	 of	 testing	
hypotheses	 and	 the	 risk	 of	 a	 false	 hypothesis	 often	 prevented	 developers	 from	
<inding	a	root	cause.	Instead,	developers	frequently	assessed	the	value	in	continuing	
their	investigation,	stopping	when	they	were	satis<ied	{ATU}.	

6.3.6. REASONING ABOUT DESIGN 

Developers	sought	four	kinds	of	design	knowledge:	

(d1)	 What	is	the	purpose	of	this	code?	

(d2)	 What	is	the	program	supposed	to	do?		

(d3)	 Why	was	this	code	implemented	this	way?		

(d4)	 What	are	the	implications	of	this	change?	

The	purpose	of	code	(d1)	was	often	unclear	when	developers	found	an	API	to	use:	Is	
it	 a	 public	 artifact	 or	 intended	 only	 for	 a	 particular	 component?	 Is	 it	 regularly	
maintained	 or	 no	 longer	 used?	 Some	 developers	 inferred	 purpose	 by	 <inding	
example	API	uses	{GHK};	sometimes	they	directly	asked	the	code’s	author	{T}.	

Developers	needed	to	know	what	the	program	was	supposed	to	do	(d2),	for	example,	
to	evaluate	the	correctness	of	a	variable’s	value	{ABCDFMR}:	

D, yelling across the hall: Is 'B' not a legal license key le=er? 

Sometimes	 this	 assessment	was	 obvious.	 For	 example,	 a	 crash	 in	 a	 basic	 use	 case	
must	 be	 unintended.	 In	 other	 cases,	what	 a	 program	was	 supposed	 to	 do	was	 an	
explicit,	documented	decision:	

M: I just want to double check and make sure the convert key only shows up in 
languages that it's supposed to, based on the spec. 

It	was	rarely	suf<icient	 to	understand	the	cause	of	a	program	behavior.	Developers	
also	 needed	 to	 know	 the	 historical	 reason	 for	 its	 current	 implementation	 (d3)	
{AEHRTV}.	 For	 example,	 when	 assessing	 whether	 a	 variable’s	 value	 was	 “wrong,”	
developers	had	to	consider	whether	the	value	was	anticipated	by	the	designer	and	
explicitly	ignored	or	whether	it	was	overlooked.	They	would	do	this	by	investigating	



Chapter	6:	Information	Needs	 127

the	 code’s	 change	 history	 {AT}	 or	 by	 looking	 for	 bug	 reports	 that	 contained	 hints	
about	its	current	design	{ET}.	Developers	would	seek	this	design	rationale	from	the	
author	of	the	code	through	face-to-face	conversation	or	some	other	means	{TV},	but	
in	one	case	the	author	was	unavailable	{T}.	Even	when	developers	found	a	person	to	
ask,	identifying	the	information	that	they	sought	was	hard	to	express,	as	developers	
struggled	 to	 translate	 detailed	 and	 complex	 runtime	 scenarios	 into	 words	 and	
diagrams.	

The	consequences	of	decisions	were	also	important	(d4).	For	example,	when	triaging,	
developers	often	discussed	hypothetical	scenarios	{FHKLRV}:	

V’s teammate: Let’s go ahead and block and make it into a single opera0on. 

V: But the upgrade script needs to look for individualiza0on. 

Design	 knowledge	 of	 all	 types	 was	 scattered	 among	 design	 documents	 {M},	 bug	
reports	 {AHV},	 and	 personal	 notebooks	 {AHMT}.	 Email	 threads	 sometimes	
contained	 design	 rationale	 {CFJ},	 but	 were	 not	 shared	 globally.	 Code	 comments	
sometimes	contained	design	 rationale	 {H},	but	developers	hesitated	 to	write	 them	
because	 of	 the	 cost	 of	 submitting	 code	 changes.	 Developers	 rarely	 searched	 these	
sources,	because	such	sources	were	thought	to	be	inaccurate	and	out	of	date:	

H: Given that I'll be the one fixing the bugs, I need to make sure I know, not 
what we are doing, but why we are doing it. We have these big long design 
mee0ngs, and everybody states their ideas, and we come to a consensus, but 
what never gets wri=en in the spec is why we decided on that. Keeping track of 
that is really hard. 

These	 problems	 led	 all	 but	 two	 developers	 to	 defer	 decisions	 because	 of	missing	
design	knowledge.	

6.3.7. MAINTAINING AWARENESS 

Developers	worked	 to	keep	 track	of	hardware,	people	and	 information	needed	 for	
their	tasks:	

(a1)	 How	have	resources	I	depend	on	changed?	

(a2)	 What	have	my	coworkers	been	doing?	

(a3)	 What	information	was	relevant	to	my	task?	



Chapter	6:	Information	Needs	 128

Some	 awareness	 information	 was	 “pushed”	 to	 developers	 through	 IM	 clients	 and	
alert	 tools	 {BDEFLMN},	 and	 through	 check-in	 emails	 {CFJ}.	 Developers	 obtained	
other	 types	 of	 awareness	 by	 actively	 seeking	 it.	 One	 group	 had	 brief	 meetings	
throughout	the	day,	to	keep	aware	of	problems	that	teammates	were	working	on	and	
issues	on	which	they	were	blocked	{M};	other	groups	had	weekly	meetings	to	keep	
awareness	 about	 triage	 and	 design	 choices.	 Developers	would	 stop	 by	 coworkers’	
of<ices	 to	 update	 them	 on	 problems	 or	 to	 see	 what	 problems	 they	 were	 facing	
{AFGHJKLMRT}:	

F: I talked to [coworker] a bit about the execu0on, and gatherObjects() is on 
track, but I s0ll need to make the base class. 

F’s boss: Yeah, [coworker] talked to me about it. We need to make sure files are 
not delay assigned. He's in this big whoop-de-doo about it. 

Developers	 tracked	 their	 time	 and	 others’,	 checking	 their	 calendars,	 glancing	 at	
schedules	 and	 asking	 their	 managers	 about	 priorities	 {BCK}.	 Managers	
communicated	 to	 their	 developers	 about	 upcoming	 changes	 in	 informal	meetings,	
email	 announcements,	 or	 planning	meetings	 {FL}.	 Because	 developers	were	 often	
interrupted,	they	also	sought	awareness	about	their	own	work	(a3):	

G: Some0mes I have like 20 windows, 5 or 6 build windows, each one is a state 
that I'm working on and I lose it! If I could just save it…I would be really happy! I 
hate those midnight reboots. 

6.4. QUANTIFYING INFORMATION NEEDS 

The	 information	needs	discussed	 in	section	6.3	are	summarized	 in	Figure	6.3.	The	
time	spent	searching,	search	frequencies,	search	outcomes,	and	source	frequencies	are	
based	on	 the	observational	data	gathered.	The	outcomes	 include	when	developers	
acquired	 information,	deferred	 a	 search	with	 the	 intent	 of	 resuming	 it,	 or	gave	 up	
with	 no	 intent	 of	 resuming	 it;	 a	 few	 searches	 continued	 beyond	 the	 observations.	
Also,	 in	 two	 cases,	 a	 need	 was	 initially	 deferred,	 then	 satis<ied	 afterward	 by	 a	
coworker’s	email	response;	these	were	coded	as	acquired.	

The	 most	 frequently	 sought	 and	 acquired	 information	 includes	 whether	 any	
mistakes	 (syntax	 or	 otherwise)	 were	 made	 in	 code	 and	 what	 a	 developers’	
coworkers	have	been	doing.	The	most	often	deferred	information	was	the	cause	of	a	
particular	 program	 state	 and	 the	 situations	 in	 which	 a	 failure	 occurs.	 Developers	



Chapter	6:	Information	Needs	 129

rarely	gave	up	searching.	There	was	no	relationship	between	deferring	a	search	and	
whether	the	source	involved	people	(bug	reports,	face-to-face,	IM,	email)	versus	data	
sources	(code,	version	control,	etc.)	(χ2(1)=.6,	p	>	.05).	

Based	on	the	medians	in	Figure	6.3,	the	information	that	took	the	longest	to	acquire	
was	whether	 conventions	were	 followed	 (s2);	 based	on	maximums,	 the	 longest	 to	
acquire	was	knowledge	about	design	(d2,	d3)	and	behavior	(u1,	u3).	No	one	source	
of	 information	 consistently	 took	 longer	 to	 acquire	 than	 another	 (F(17,	 321)=.53,	
p>.05),	 nor	 was	 there	 a	 consistent	 difference	 in	 search	 times	 between	 sources	
involving	 people	 and	 sources	 that	 did	 not	 (F(1,	 339)=.07,	 p>.05).	 These	 times	 are	
misleading,	however,	as	many	of	the	maximums	were	on	deferred	searches,	so	they	
were	 likely	 longer	 than	 shown	 here.	 Further,	 developers	 gave	 up	 or	 deferred	
searches	because	 they	depended	on	a	person	known	 to	be	unavailable.	They	were	
also	expert	at	assessing	the	likelihood	of	the	search	succeeding	and	would	abandon	
a	search	if	the	information	was	not	important	enough.	

6.5. MOST COMMON INFORMATION NEEDS 

Figure	 6.3	 sorts	 the	 needs	 by	 frequency	 across	 all	 of	 the	 observations.	 Figure	 6.4	
shows	 a	 different	 sorting,	 by	 the	 number	 of	 participants	 for	 whom	 a	 need	 was	
observed.	 The	 most	 common	 need	 across	 participants	 was	 coworker	 awareness.	
Most	 of	 the	 information	 needs	 occurred	 among	 several	 developers	 from	 different	
teams	in	different	business	divisions,	which	suggests	that	these	are	representative	of	
development	work	 in	 general.	 A	 few	of	 the	 information	needs	 occurred	 for	 only	 a	
f e w	 p a r t i c i p a n t s ,	 w h i c h	 s u g g e s t s	 t h a t	 t h i s	 l i s t	 i s	 n o t	

a2 What	have	my	coworkers	been	doing? 15 ABCDEFHJKLMNRTU
u3 What	code	caused	this	program	state? 11 ABDEFGMNRTU
a1 How	have	resources	I	depend	on	changed? 10 ACEFGJKLRT
u1 What	code	could	have	caused	this	behavior? 9 AEFGLMRTU
c3 How	do	I	use	this	data	structure	or	function? 9 ADFGHJKLN
s1 Did	I	make	any	mistakes	in	my	new	code? 9 ABDFHJKNR
d2 What	is	the	program	supposed	to	do? 7 ABCDFMR
r2 In	what	situations	does	the	failure	occur? 7 ELMRTUV
b3 Is	this	problem	worth	<ixing? 7 BCJLRTV
u2 What's	statically	related	to	this	code? 6 AEHKNT
d3 Why	was	this	code	implemented	this	way? 6 AEHRTV
d4 What	are	the	implications	for	this	change? 6 FHKLRV
r1 What	does	the	failure	look	like? 5 AMNRT
c3 How	can	I	coordinate	this	with	the	other	code? 4 AHKN
s2 Did	I	follow	my	team's	conventions? 4 BELN
d1 What	is	the	purpose	of	this	code? 4 HKT



Chapter	6:	Information	Needs	 130

complete.	Observing	more	developers	over	longer	periods	of	time	could	reveal	other,	
less	 frequent,	 needs.	 (Had	 V	 not	 been	 observed,	 for	 instance,	 we	would	 not	 have	
seen	need	a3.)	

Many	 of	 the	 frequent	 information	 needs	 are	 problematic,	 in	 that	 searches	 for	 the	
information	were	 often	 unsatis<ied	 (deferred	 or	 abandoned)	 and	 had	 long	 search	
times.	The	most	 frequently	unsatis<ied	 information	needs	were	 the	 following,	with	
their	percentage	of	unsatis<ied	queries	and	maximum	observed	search	times:		

This	ranking	may	re<lect	 that	11	of	 the	17	participants’	 teams	were	 in	a	bug	<ixing	
phase.	In	particular,	the	information	needs	ranked	1,	3	and	4	are	largely	about	bug	
reproduction	and	the	ones	ranked	2	and	6	are	largely	about	evaluating	possible	<ixes	
for	bugs.	Nonetheless,	the	fact	that	these	information	needs	are	so	often	unsatis<ied	
and	take	such	a	long	time	clearly	hindered	developer	productivity.	

6.6. RATING INFORMATION NEEDS 

A	 survey	was	 deployed	 after	 the	 observations	 to	 investigate	 how	well	 the	 results	
generalized	 to	a	 larger	population	of	developers.	The	percentages	 in	 the	middle	of	
Figure	6.3	come	from	a	survey	of	42	different	developers	(of	550	contacted),	asking	
them	to	rate	their	agreement	with	statements	about	each	of	these	information	types,	
based	on	a	7-point	scale	from	strongly	disagree	to	strongly	agree.	The	bars	represent	
the	percent	of	developers	who	agreed	or	strongly	agreed	 that	 the	 information	was	
(from	 left	 to	 right)	 important	 to	making	progress,	unavailable	or	difJicult	 to	obtain,	
and	had	questionable	accuracy.	

b2 Is	this	a	legitimate	problem? 3 BLR
s3 What	changes	are	part	of	this	submission? 2 JN
b2 How	dif<icult	will	this	problem	be	to	<ix? 2 LR
a3 What	information	was	relevant	to	my	task? 1 V

u3 What	code	caused	this	program	state? 61% 21	min

d3 Why	was	the	code	implemented	this	way? 44% 21	min

r2 In	what	situations	does	this	failure	occur? 41% 49	min

u1 What	code	could	have	caused	this	behavior? 36% 17	min

a1 How	have	the	resources	I	depend	on	changed? 24% 9	min

d2 What	is	the	program	supposed	to	do? 15% 21	min

a2 What	have	my	coworkers	been	doing? 14% 11	min



Chapter	6:	Information	Needs	 131

The	 survey	 results	 reveal	 interesting	 trends.	 The	majority	 of	 developers	 rated	 the	

Fi
gu
re
	6
.3
.	T
yp
es
	o
f	i
nf
or
m
at
io
n	
de
ve
lo
pe
rs
	s
ou
gh
t,	
w
it
h	
se
ar
ch
	ti
m
es
	

in
	m
in
ut
es
;	p
er
ce
pt
io
ns
	o
f	t
he
	in
fo
rm

at
io
n’
s	
im
po
rt
an
ce
,	a
va
ila
bi
lit
y,
	

an
d	
in
ac
cu
ra
cy
;	f
re
qu
en
ci
es
	a
nd
	o
ut
co
m
es
	o
f	s
ea
rc
he
s;
	a
nd
	s
ou
rc
es
,	

w
it
h	
th
e	
m
os
t	c
om

m
on
	in
	b
ol
df
ac
e.
	

Figure	6.4.	Information	needs	per	participant.



Chapter	6:	Information	Needs	 132

most	frequently	sought	information	in	the	observations	as	more	important,	and	they	
also	rated	frequently	deferred	information	as	more	unavailable.	One	discrepancy	is	
that	 developers	 rated	 coworker	 awareness	 (a2)	 as	 relatively	 unimportant,	 which	
con<licts	with	its	frequency	in	the	observations.	It	may	be	that	coworker	awareness	
is	so	frequent	sought	and	successfully	obtained	that	developers	do	not	think	about	
it.	 In	 the	 observations,	 developers	 successfully	 obtain	 knowledge	 about	 the	
implications	of	a	change	(d4),	whereas	 in	 the	survey,	developers	rated	 it	 relatively	
dif<icult	 to	acquire.	The	survey	also	begins	 to	reveal	which	 information	 types	have	
more	 questionable	 accuracy,	 namely	 knowledge	 about	 design	 (d2,	 d4),	 behavior	
(u1),	and	triage	(b1,	b2).	

6.7. DISCUSSION 

The	motivation	for	this	study	was	to	identify	and	characterize	software	developers’	
information	needs.	The	list,	while	likely	not	comprehensive,	has	several	implications.	

6.7.1. COWORKERS AS INFORMATION SOURCES 

Coworkers	were	the	most	frequent	source	of	information,	accessed	at	least	once	for	
13	 of	 the	 21	 information	 needs	 and	 in	 83	 of	 the	 334	 instances	 of	 information	
seeking.	 The	 importance	 of	 coworkers	 as	 information	 sources	 probably	 explains	
why	 coworker	 awareness	 is	 the	 second	 most	 frequent	 information	 need.	
(Developers	checked	on	coworker	availability	almost	as	many	times	as	they	looked	
at	 output	 from	 the	 compiler	 or	 debugger.)	 This	 is	 consistent	 with	 prior	 work	 on	
awareness	 in	 software	 development,	 with	 regard	 to	 sources,	 strategies,	 and	
frequency	of	information	seeking	[de	Souza	2003][Hertzum	2002][Perry	1994].	

Why	 should	 developers	 turn	 so	 often	 to	 coworkers?	 One	 possibility	 is	 the	 topics	
being	 discussed.	 Outside	 of	 awareness,	 the	 information	 needs	 where	 coworkers	
were	most	often	consulted	were	either	about	design,	i.e.	

• d4:	What	are	the	implications	of	this	change?	(13	times)	

• d2:	What	is	the	program	supposed	to	do?	(9)	

• d3:	Why	was	the	code	implemented	this	way?	(2)	

or	about	execution	behavior,	i.e.	



Chapter	6:	Information	Needs	 133

• b3:	Is	this	problem	worth	Jixing?	(12)	

• r2:	In	what	situations	does	this	failure	occur?	(8)	

• u1:	What	code	could	have	caused	this	behavior?	(5)	

In	 several	 instances	 coworkers	 were	 unavailable	 for	 these	 questions,	 and	 the	
developers’	tasks	were	blocked	once	they	sent	their	questions	via	email	{ABCEFJR}.	

Developers	 consulted	 coworkers	 about	 design	 because	 in	 most	 cases,	 design	
knowledge	was	only	in	coworkers’	minds.	The	lack	of	design	documentation	may	be	
due	to	inadequate	notations,	particularly	for	design	intent	and	rationale.	Two	of	the	
observed	 developers	 did	 have	 design	 documentation—a	 prototype	 for	 a	 user	
interface,	a	syntax	grammar	for	a	parser—which	answered	some	of	their	questions	
{MG}.	However,	they	still	turned	to	coworkers	when	they	questioned	the	accuracy	of	
the	documents.		

Questions	about	program	behavior	were	dif<icult	to	acquire	because	of	the	number	
of	 possible	 explanations.	 Developers	 had	 to	 use	 primitive	 tools	 to	 search	 this	
explanation	 space,	 and	 so	 searches	 were	 driven	 by	 intuition	 or	 expert	 opinion.	
Developers	 also	 went	 to	 great	 lengths	 to	 learn	 behavior	 information.	 As	 one	
example,	to	<ix	a	bug	recently	assigned	to	him,	E	had	a	tester	nine	times	zones	away	
reproduce	the	bug	(at	2	am)	since	no	one	else	had	the	right	machine	con<iguration.	
Because	 behavior	 information	 was	 hard	 to	 acquire,	 developers	 made	 triage	
decisions	 quickly	 based	 on	 implementation	 concerns	 and	 resource	 availability,	
rather	 than	 the	 organization’s	 overall	 goals	 {BCJLRT}.	 That	 is,	 developers	 would	
favor	those	tasks	with	the	fewest	information	needs.	

6.7.2. AUTOMATING INFORMATION SOURCES 

One	approach	to	reducing	this	communication	burden	is	to	automate	the	acquisition	
of	information.	Given	the	frequent	desire	for	awareness	information,	it	is	no	surprise	
that	 researchers	 are	 already	 creating	 awareness	 displays	 for	 development	 teams,	
like	FASTDash	[Biehl	2007]	and	Palantıŕ	[Sarma	2003].	

For	example,	many	of	developers’	questions	about	static	relationships	depended	on	
metadata	 such	 as	 build	 numbers	 and	 version	 histories,	 but	 developers	 manually	
incorporated	 such	 data	 in	 their	 searches.	 Similarly,	 tools	 for	 analyzing	 programs’	
dynamic	 behavior	 only	 partially	 helped	with	 determining	 the	 cause	 of	 a	 program	



Chapter	6:	Information	Needs	 134

state;	 the	 rest	 had	 to	 be	 determined	 by	 hand	 using	 a	 breakpoint	 debugger	 and	
through	guesswork.	Task-speci<ic	applications	of	program	slicing	would	be	a	way	to	
automate	some	of	this	searching	 	[Sridharan	2007].	Implementation	questions	(c1,	
c2,	c3)	also	lacked	adequate	tools	(it	is	worth	noting	that	these	needs	have	also	been	
discussed	 relative	 to	 end-user	 programming	 in	 Chapter	 4).	 Tools	 were	 often	
appropriated	for	unanticipated	uses,	so	it	is	within	tool	designers’	interests	to	create	
new	tools	that	are	amenable	to	appropriation.	This	might	entail	using	standards,	so	
that	information	may	be	passed	between	tools	and	transformed	as	needed.	

Some	 information	 seeking	 cannot	 be	 automated	 because	 the	 information	 is	
currently	unavailable.	For	example,	when	developers	could	not	reproduce	a	failure,	
there	 was	 little	 they	 could	 do	 to	 <ind	 it.	 Tracing	 tools	 that	 can	 record	 the	 failure	
context,	 like	 those	discussed	 in	Chapters	9,	10,	and	11,	would	be	a	major	advance.	
Failures	 could	 be	 debugged	 separately	 from	 their	 original	 context	 and	 the	 trace	
could	 be	 analyzed	 by	 multiple	 people.	 Design	 intent	 was	 also	 dif<icult	 to	 <ind.	
Information	 about	 rationale	 and	 intent	 existed	 sometimes	 in	 unsearchable	 places	
like	whiteboards	and	personal	notebooks	or	 in	unexpected	places	like	bug	reports.	
Some	 awareness	 information	 is	 dif<icult	 to	 acquire,	 for	 example,	 developers	 often	
wondered	who	is	reading	their	code.	Tools	could	make	this	available.	

Aside	 from	 tools,	 one	 could	 address	 these	 information	 needs	 through	 process	
change,	 for	 example	 Agile	 methods.	 The	 frequent	 need	 to	 consult	 coworkers	 for	
information	is	an	important	motivation	for	Scrum	meetings	and	radical	collocation	
[Fowler	 2001].	 Chong	 and	 Siino	 recently	 compared	 interruptions	 among	 radically	
collocated	pair	programmers	versus	cubicle-base	solo	programmers	and	found	that	
the	 Agile	 team’s	 interruptions	 were	 shorter,	 more	 on-topic,	 and	 less	 disruptive	
[Chong	2006].	The	data	about	the	importance	of	design	knowledge	provide	evidence	
about	the	value	of	prototyping	in	software	design,	as	well	as	the	value	of	prototypes	
during	 implementation.	The	observations	 about	 the	 importance	of	 error	 checking,	
coupled	with	the	distributed	nature	of	design	knowledge,	also	support	the	claims	of	
pair	 programming:	with	 two	developers,	with	 slightly	 different	 design	 knowledge,	
errors	seem	more	likely	to	be	caught	or	even	prevented.	

Last	is	the	issue	of	notations	for	software	design.	While	there	is	already	considerable	
research	 on	 architecture	 description	 languages,	 UML,	 and	 various	 forms	 of	model	
checking,	 the	 observations	 raise	 several	 pertinent	 questions.	What	 can	 be	written	
down	 cost-effectively?	 How	 can	 it	 be	 written	 to	 be	 searchable	 and	 so	 that	 its	



Chapter	6:	Information	Needs	 135

accuracy	 and	 trustworthiness	 are	 assessable	 by	 developers	 who	 consult	 it?	 It	 is	
worth	 noting	 that	 several	 participants	 perceived	 that	 face-to-face	 meetings	 are	 a	
pleasant	and	ef<icient	way	to	transfer	design	knowledge.	The	frequent	conversations	
promote	 camaraderie	 and	 no	 effort	 is	 wasted	 recording	 design	 information	 that	
might	never	be	 read	or	might	 go	 stale	before	being	 read.	Hence,	 a	demand-driven	
approach	 to	 recording	 design	 knowledge	 might	 succeed	 over	 an	 eager	 “record	
everything”	approach.	

6.7.3. LIMITATIONS 

Because	 the	 study	 was	 performed	 in	 the	 context	 of	 developers’	 real	 work,	 the	
external	 validity	 of	 these	 results	 is	 high.	 The	 diversity	 of	 the	 sample	 provides	
support	for	generalizing	across	different	products,	team	structures	and	development	
phases	 within	 the	 organization	 that	 was	 studied.	 The	 study	 did	 not	 control	 for	
corporate	culture,	although	the	communication	patterns	and	development	processes	
that	were	observed	are	consistent	with	studies	of	other	corporations	[Perlow	1999]
[de	Souza	2003][Chong	2006].	Other	variations,	such	as	testing	practices,	the	talent	
and	 expertise	 of	 a	 company’s	 developers,	 and	 more	 or	 less	 formal	 development	
processes,	may	have	biased	these	<indings.	

Studies	 that	 rely	 on	 observations	 are	 subject	 to	 observers’	 biases	 and	 a	 single	
observer	 may	 have	 misunderstood	 what	 developers	 were	 looking	 for	 in	 an	
individual	 observation	 session.	 This	 study	 had	 precisely	 this	 limitation,	 since	 to	
minimize	 intrusion,	 there	was	a	single	observer	per	session,	who	took	only	written	
notes.	 (In	 several	 cases,	 the	 participants	worked	 in	 shared	 or	 noisy	 of<ices.)	 Even	
with	a	single	observer,	there	were	several	instances	of	missed	interruptions,	where	a	
visitor	 peeked	 inside	 the	 of<ice,	 saw	 the	 observer,	 and	 chose	 to	 leave	 rather	 than	
interrupt.	 There	 were	 also	 many	 information	 seeking	 tasks	 that	 could	 not	 be	
observed	 because	 they	 were	 either	 too	 subtle,	 like	 glancing	 at	 a	 coworker’s	 IM	
status,	or	 invisible,	 like	 the	use	of	memory	to	recall	 facts	about	 the	code.	The	data	
was	 also	 biased	 by	 those	 issues	 that	 developers	 chose	 to	 mention	 during	 think	
aloud.	To	reduce	the	risk	of	misunderstandings,	the	study	did	involve	two	observers	
(this	 author	 and	 Rob	 DeLine)	 over	 the	 whole	 set	 of	 observation	 sessions,	 who	
carefully	compared	notes	and	discussed	interpretations	of	quotes	and	other	actions.	

The	 time	stamps	 in	 the	handwritten	notes	 taken	during	observations	are	accurate	
within	the	minute,	but	are	subject	to	typical	clerical	errors	during	transcription	and	



Chapter	6:	Information	Needs	 136

copying.	Also,	some	time	was	spent	talking	to	the	observers,	but	this	bias	was	likely	
distributed	 throughout	 the	 observations.	 Only	 a	 single	 coder	 categorized	 the	 logs,	
which	affects	the	quantitative	data;	however,	the	orders	of	magnitude	in	the	data	are	
likely	to	be	accurate.	

6.8. SUMMARY 

The	goals	of	this	study	were	to	identify	software	developers’	information	needs	and	
characterize	the	role	of	these	needs	in	developers’	decision	making.	The	results	were	
numerous:	

• Developers’	work	is	highly	fragmented	in	time,	with	developers	experiencing	
interruptions	an	average	of	every	three	minutes.	

• Software	development	is	a	highly	social	activity	involve	many	forms	of	
communication	and	collaboration.	

• Developers	had	at	least	21	observable	types	of	information	needs,	spanning	
implementation,	design,	testing,	and	collaboration	.	

• Some	needs	were	easy	to	satisfy	accurately	(awareness)	but	others	had	only	
questionable	accuracy	(the	value	of	a	<ix	and	the	implications	of	a	change).		

• Some	needs	were	deferred	often	(knowledge	about	behavior	and	design),	
and	some	were	impossible	to	satisfy	in	certain	cases	(reproduction	steps).	

• Information	needs	regarding	debugging	and	program	understanding,	
especially	those	regarding	the	causes	of	program	behavior	and	conceiving	of	
potential	causes	of	program	behavior,	were	particularly	dif<icult	to	satisfy.	

• Even	after	<inding	the	cause	of	a	bug,	there	is	often	the	more	daunting	task	of	
deciding	what	to	do	about	it,	which	requires	collaborating	with	coworkers	
and	uncovering	the	design	rationale	underlying	particular	code	fragments.	

Not	only	do	these	needs	call	 for	 innovations	 in	tools,	processes,	and	notations,	but	
they	also	reveal	how	the	collective	responsibility	 for	design	knowledge	can	 lead	to	
intense	 awareness	 and	 communication	 needs	 observed	 in	 this	 study	 and	 others.	
These	 <indings,	 particularly	 the	 information	 needs	 regarding	 understanding	
program	 execution,	 reinforce	 a	 number	 of	 <indings	 from	 the	 studies	 in	 previous	
chapters.	 Industry	 developers,	 despite	 their	 relative	 expertise	 compared	 to	 the	
participants	in	the	other	studies,	also	have	dif<iculty	conceiving	of	explanations	for	



Chapter	6:	Information	Needs	 137

their	 program’s	 behavior	 and	 with	 verifying	 these	 explanations;	 supporting	 this	
process	is	precisely	the	goal	of	the	Whyline,	which	is	discussed	in	the	next	chapter.	



7.

THE WHYLINE CONCEPT  11

While	 the	 studies	 in	 the	 past	 chapters	 revealed	 complex	 and	 detailed	 accounts	 of	
program	understanding,	they	have	a	number	of	facts	in	common:	

• To	understand	program	execution,	people	ask	causal	questions	about	
program	output	(when	debugging,	one	might	call	this	a	symptom	of	failure).	

• People	try	to	answer	these	questions	by	conceiving	of	one	or	more	potential	
explanations	(hypotheses)	of	the	causes	of	the	program’s	behavior.	However,	
because	there	is	so	little	data	about	the	program’s	actual	execution	at	the	
time	of	forming	these	hypotheses,	these	guesses	are	based	on	surface	
features	of	the	program	output,	prior	experience	and	other	personal	and	
situational	biases,	few	of	which	tend	to	correlate	with	a	program’s	actual	
execution.	

• Because	these	initial	hypotheses	are	usually	wrong	and	because	current	
tools	are	so	poor	at	helping	people	con<irm	or	reject	their	potential	
explanations,	people	spend	considerable	time	trying	to	<ind	a	correct	
explanation.	People	also	form	inaccurate	notions	about	a	program’s	
execution,	inserting	new	errors	in	the	process	and	further	complicating	later	
explorations	of	code.	

In	essence,	people	must	guess	where	to	start	their	debugging	search	before	learning	
anything	 about	 what	 the	 program	 did	 internally.	 This	 characterization	 of	 the	
problem	motivates	 a	 simple	 solution:	 what	 if	 people	 could	 directly	 ask	 about	 the	

 Patent pending, application serial # 11/246,33111



Chapter	7:	The	Whyline	Concept	 139

causes	 of	 program	 output	 and	 have	 the	 system	 identify	 the	 parts	 of	 program	
execution	responsible?	Such	a	tool	could	diminish	guesswork	and	perhaps	prevent	
the	 unfortunate	 consequences	 documented	 by	 my	 studies	 and	 others’.	 There	 are	
several	basic	ideas	that	make	up	this	concept:	

• Asking	“why”	and	“why	not”	questions	by	explicitly	selecting	program	
output.	

• Deriving	questions	by	identifying	source	code	and	execution	events	relevant	
to	the	selected	output.	

• Answering	questions	with	complete	causal	explanations	that	are	easy	to	
explore.	

• Correcting	misperceptions	of	program	output	by	allowing	questions	about	
output	that	did	or	did	not	occur,	despite	appearances.	

This	 chapter	 will	 explore	 this	 idea	 conceptually,	 discussing	 de<initions	 and	 ideas	
behind	the	Whyline	concept.	Later	chapters	will	detail	concrete	implementations	of	
these	ideas	for	three	speci<ic	environments.	

7.1. ASKING ABOUT OUTPUT 

What	does	it	mean	for	a	person	to	ask	a	question	about	a	program?	First,	almost	all	
questions	 are	 plausibly	 useful—what,	 when,	 where,	 why,	 how—even	 who	 when	
thinking	of	team	software	development.	All	of	these	types	of	questions	are	seeking	
some	form	of	declarative	fact	about	a	program,	its	execution,	its	design.	“What”	and	
“where”	questions	usually	seek	code.	“When”	questions	are	used	for	code	executed	
at	 a	 particular	 time.	 “How”	 questions	 usually	 refer	 to	 algorithmic	 details.	 The	
Whyline	concept	focuses	speci<ically	on	“why”	questions,	which	ask	about	causality.	
“Why”	 questions	 tend	 to	 precede	 other	 questions	 about	 what,	 when,	 and	 where,	
since	 the	 answer	 to	 a	 “why”	 question	 usually	 consists	 of	 the	 answers	 to	 several	
“what,”	“when,”	and	“where”	questions.	

In	 the	Whyline	concept,	 the	subject	of	a	 “why”	question	 is	always	program	output.	
Output	is	the	visible	part	of	a	program’s	execution,	such	as	the	signals	transformed	
into	light	on	a	display,	the	printed	dots	on	a	piece	of	paper,	the	sound	emitted	from	
speakers.	 It	 is	 also	 any	 information	 that	 leaves	 the	 physical	 boundaries	 of	 the	
program	in	memory,	such	as	data	written	to	disk	or	sent	across	a	network.		



Chapter	7:	The	Whyline	Concept	 140

The	reason	why	the	Whyline	concept	requires	users	to	reason	about	output	and	not	
code	is	simple.	Program	output	is	the	<irst	sign	that	something	is	right	or	wrong,	the	
<inal	effect	of	a	series	of	causes	propagated	through	potentially	millions	of	decisions	
internal	to	a	program.	If	a	person	has	knowledge	that	a	program	is	misbehaving,	it	is	
because	that	person	<irst	sees	so	in	the	program’s	output.	This	is	a	subtle,	but	crucial	
point:	asking	a	question	about	a	precursor	to	output	assumes	that	nothing	between	
the	precursor	and	the	output	was	faulty	(see	Figure	7.1).	As	the	results	of	the	studies	
in	this	dissertation	have	demonstrated,	these	assumptions	are	frequently	wrong.	For	
example,	consider	some	failure	in	which	a	person	sees	an	incorrect	value	printed	in	

a	console.	Their	 <irst	 inclination	might	be	 to	 inquire	about	 the	code	 that	produced	
that	value.	This	is	a	reasonable	guess;	however,	there	are	several	other	possibilities.	
Perhaps	the	output	was	computed	by	an	entirely	different	module.	Perhaps	there	is	
an	 error	 in	 the	 print	 statement	 that	 printed	 the	 value.	 Perhaps	 the	 output	 was	
printed	by	a	different	program	entirely!	Because	there	are	so	many	possibilities	and	
human	cognition	is	generally	so	poor	at	conceiving	of	all	the	alternatives,	people	are	
likely	 to	 choose	 incorrectly,	 as	we	 have	 seen	 in	 previous	 chapters.	 Therefore,	 it	 is	
crucial	that	any	analysis	of	the	causes	of	program	output	begin	with	the	output	itself.	

7.2. QUESTIONS FROM CODE 

A	 central	 part	 of	 the	Whyline	 concept	 is	 that	 the	 user	 asks	 questions	 by	 choosing	
them,	 and	 not	 by	 verbally	 expressing	 them	 with	 speech	 or	 text.	 To	 attempt	 to	
understand	 developers’	 speech	 or	 text	 would	 reveal	 all	 kinds	 of	 challenges	 in	

	

Figure	7.1.	Asking	about	precursors	to	output	presumes	that	the	fault	did	
occurred	before	the	precusor,	which	is	not	always	the	case.

input

intermediate computations
(precursors to output)

output

causality



Chapter	7:	The	Whyline	Concept	 141

interpreting	 the	meaning	 of	 a	 user’s	 natural	 language.	 Instead,	 a	Whyline	 derives	
questions	from	the	program	and	execution	history.	The	program,	 in	this	context,	 is	
treated	 is	a	 speciJication	 of	all	of	 the	output	 that	a	program	can	produce.	 It	 is	also	
used	 as	 a	 repository	 of	 names	 for	 the	 different	 conceptual	 types	 of	 output	 in	 a	
program.	For	example,	a	painting	program	will	have	many	kinds	of	painting	concepts	
and,	especially	in	an	object-oriented	program,	these	concepts	will	be	given	human-
readable	 names.	 A	 Whyline	 utilizes	 the	 organization	 of	 these	 concepts	 to	 create	
menus	of	relevant	human-readable	questions.	

In	 addition	 to	 questions	 about	 visible	 program	 output,	 there	 are	 several	 types	 of	
questions	about	output	that	a	person	expected	but	did	not	see.	For	example,	if	a	user	
thinks	that	a	window	did	not	appear	as	they	expected,	a	Whyline	should	support	a	
question	 about	 the	 window	 not	 appearing.	 It	 is	 in	 answering	 such	 negatively	
phrased	questions	that	things	become	interesting.	For	example,	what	if	the	window	
did	 appear,	 but	 on	 a	 different	 screen	 or	 behind	 another	window,	 or	 in	 a	 different	
virtual	desktop?	A	Whyline	 should	 still	 support	 the	question,	but	 then	 respond	by	
explaining	the	user’s	misperception	of	the	output.	These	misperceptions	happened	
throughout	all	of	the	studies	reported	in	earlier	chapters.		

7.3. EXPLAINING CAUSALITY 

When	we	ask	why	questions	 in	conversation,	we	often	expect	a	 single	answer.	For	
example,	 if	a	child	asks	a	parent,	“why	do	we	have	to	move,”	a	parent	will	typically	
reply	with	“because	Daddy	has	a	new	job.”	But	as	any	child	knows,	no	single	answer	
is	 suf<icient.	 Even	 for	 trivial	 questions	 about	 causality,	 there	 are	 usually	 multiple	
causes	and	each	of	those	causes	has	causes	of	its	own.	The	same	is	true	for	program	
output.	If	a	person	is	simply	understanding	an	algorithm	or	a	pattern	of	calls,	there	
will	be	many	software	artifacts	involved.	If	a	person	is	debugging,	there	may	in	fact	
be	 a	 single	 place	 that	 contains	 the	 error,	 but	 there	 will	 a	 long	 chain	 of	 causality	
between	 that	 error	 and	 the	 eventual	 visible	 symptoms	 of	 the	 failure,	 potentially	
spanning	many	parts	of	the	software	system.		

Although	it	might	be	possible	to	intelligently	isolate	parts	of	these	causal	chains	that	
seem	relevant	or	important,	the	current	Whyline	approach	is	to	determine	all	places	
relevant	 to	 the	 queried	 output	 and	 then	 help	 the	 user	 explore,	 understand,	 and	
relate	 these	places.	This	way,	 the	 tool	can	guarantee	 that	 the	cause	of	 the	problem	



Chapter	7:	The	Whyline	Concept	 142

appears	somewhere	in	the	answer,	as	 long	as	the	user	is	willing	to	search	for	 it.	 In	
general,	 this	 approach	 has	 the	 goal	 of	 clarifying	 the	 relationship	 between	 a	
program’s	input,	execution,	and	output.	Whatever	the	task,	it	is	making	these	causal	
associations	 that	 will	 ensure	 the	 developer	 has	 an	 accurate	 understanding	 of	 the	
program’s	 execution.	 Therefore,	 a	 fundamental	 part	 of	 the	 Whyline	 concept	 is	 to	
provide	a	visual	workspace	 that	 shows	developers	 their	 source	code,	 its	execution	
over	time,	and	the	program	output	that	emerged	as	a	result.	

7.4. SUMMARY 

The	concept	of	a	Whyline	includes:	

• Selecting	program	output	to	provide	entity	context	

• Deriving	“why”	and	“why	not”	questions	by	identifying	source	code	and	
execution	events	relevant	to	the	selected	output.	

• Answering	such	questions	with	complete	causal	explanations	that	are	easy	
to	explore.	

• Correcting	misperceptions	of	program	output	by	allowing	questions	about	
output	that	did	or	did	not	occur,	despite	appearances.	

The	 coming	 chapters	will	detail	 implementations	of	 this	 concept	 for	 three	 speci<ic	
programming	languages	and	applications.	



8.

A WHYLINE FOR ALICE  12

The	 <irst	 effort	 to	 explore	 an	 implementation	 of	 the	Whyline	 concept	 began	 as	 a	
feasibility	 study.	 The	 question	 was	 whether	 such	 a	 concept	 was	 possible	 to	
implement,	 and	 if	 so,	 whether	 an	 implementation	 would	 actually	 help	 people	 be	
more	 successful	 at	 debugging	 and	 program	understanding	 tasks.	We	 considered	 a	
number	of	platforms,	including	Flash,	Visual	Basic,	and	Java,	among	others.	For	this	
<irst	implementation,	we	chose	Alice	(described	in	Chapter	3).	We	had	access	to	the	
source	 code	and	 could	modify	 any	part	of	 the	 system;	 the	 language	and	execution	
model	were	simpler	than	these	other	languages,	meaning	the	focus	could	be	on	the	
question	and	answer	 interaction,	 rather	 than	supporting	every	 subtle	detail	of	 the	
other	 languages.	 Most	 important,	 the	 notion	 of	 output	 in	 Alice	 is	 clearly	 de<ined,	
consisting	 of	 3D	 graphical	 objects	 and	 their	 properties.	 This	was	 not	 true	 for	 the	
other	 platforms,	 where	 there	 were	 many	 types	 of	 output	 with	 different	
characteristics.	Choosing	Alice	was	a	way	to	limit	the	scope	of	the	design	exploration	
to	just	questions	and	answers,	saving	other	issues	for	later.	This	exploration	and	the	
eventual	implementation	of	the	Alice	Whyline	took	place	during	the	summer	and	fall	
of	2003.	

This	 chapter	 begins	with	 an	 example	 of	 the	Whyline	 in	 use	 and	 then	 explains	 the	
implementation	 of	 the	 prototype.	 It	 ends	 with	 a	 discussion	 of	 a	 user	 study	 that	
compared	 the	Alice	Whyline	 to	 regular	Alice,	 assessing	 the	Whyline’s	 in<luence	on	
typical	Alice	debugging	tasks.	

 The results in this chapter appear in part in [Ko 2004a].12



Chapter	8:	A	Whyline	for	Alice	 144

8.1. AN EXAMPLE 

Alice	 is	 shown	 in	 Figure	 8.1.	 Before	 describing	 the	Whyline’s	 implementation,	 its	
design	is	described	through	a	debugging	scenario	that	comes	directly	from	the	user	
study	discussed	later	in	this	chapter:	

Ellen is crea0ng a Pac-Man game, and trying to make Pac shrink when the ghost 
is chasing and touches Pac. She plays the world and makes Pac collide with the 
ghost, but to her surprise, Pac does not shrink... 

Pac	 did	 not	 shrink	 because	Ellen	 (a	 pseudonym)	has	 code	 that	 prevents	 Pac	 from	
resizing	after	the	big	dot	is	eaten.	Either	Ellen	did	not	notice	that	Pac	ate	the	big	dot,	
or	she	forgot	about	the	dependency.	

When	Ellen	played	the	world,	Alice	hid	 the	code	and	expanded	the	worldview	and	
property	 panel,	 as	 seen	 in	 Figure	 8.2.	 This	 relates	 property	 values	 to	 program	
output.	 Ellen	 presses	 the	 “why”	 button	 after	 noticing	 that	 Pac	 did	 not	 shrink,	 the	
program	is	paused,	and	a	menu	appears	with	the	items	“why	did”	and	“why	didn’t,”	
as	in	Figure	8.3.	The	submenus	contain	the	objects	in	the	world	that	were	or	could	

 

Figure	8.1.	The	Alice	programming	environment,	before	the	world	has	been	
played:	(1)	the	object	list,	(2)	The	3D	world	view,	(3)	the	event	list,	(4)	the	
currently	selected	object’s	properties,	methods,	and	questions	tabs,	and	(5)	
the	code	area.



Chapter	8:	A	Whyline	for	Alice	 145

have	 been	 affected.	 The	 menu	 supports	 exploration	 and	 diagnosis	 by	 increasing	
questions’	visibility	and	decreasing	the	viscosity	of	considering	them.	

Because	Ellen	expected	Pac	to	resize	after	touching	the	ghost,	she	selects	“why	didn’t	
Pac…”	 and	 scans	 the	 property	 changes	 and	 animations	 that	 could	 have	 happened.	
When	she	hovers	 the	mouse	over	a	menu	 item,	 the	code	 that	causes	 the	output	 in	
question	is	highlighted	and	centered	in	the	code	area	(see	Figure	8.3).	This	supports	
diagnosis	by	exposing	hidden	dependencies	between	 the	 failure	and	 the	 code	 that	
might	be	responsible	for	it.	

 

Figure	8.2.	Ellen	expected	Pac	to	resize,	but	he	did	not.

	

Figure	8.3.	Ellen	explores	the	questions	and	decides	to	ask	“Why	didn’t	Pac	
resize	.5?”	which	highlights	the	code.



Chapter	8:	A	Whyline	for	Alice	 146

Ellen	asks	“why	didn’t	Pac	resize	.5?”	and	the	camera	focuses	on	Pac	to	increase	its	
visibility.	The	Whyline	answers	the	question	by	analyzing	the	execution	events	that	
did	and	did	not	happen,	and	provides	the	answer	shown	in	Figure	8.4.	The	execution	
events	 included	 are	 only	 those	 that	 prevented	 Pac	 from	 resizing:	 the	 predicate	
whose	expression	was	false	and	the	actions	that	de<ined	the	properties	used	by	the	
expression.	By	excluding	unrelated	execution	events,	 the	tool	supports	observation	
and	hypothesizing	by	 increasing	 the	visibility	of	 the	actions	 that	 likely	contain	 the	
fault.	To	support	diagnosis,	 the	events’	names	and	colors	are	the	same	as	 the	code	
that	caused	them.	This	improves	consistency	and	closeness	of	mapping	with	code.	

The	arrows	represent	data	and	control	<low	causality.	Predicate	arrows	are	labeled	
true	or	false	and	data	<low	arrows	are	labeled	with	the	data	used	by	the	action	they	
point	 to.	 The	 arrows	 support	 progressive	 evaluation,	 and	 thus	 hypothesizing,	 by	
helping	Ellen	follow	the	runtime	system’s	computation	and	control	<low.	

 

Figure	8.4.	The	Whyline’s	answer	shows	a	visualization	of	the	runtime	actions	
preventing	Pac	from	resizing.	Ellen	uses	the	time	cursor	to	“scrub”	the	
execution	history,	and	realizes	that	Pac	did	not	resize	because	isEaten	was	
true.



Chapter	8:	A	Whyline	for	Alice	 147

Along	 the	 x-axis	 is	 event-relative	 time,	 improving	 the	 closeness	 of	mapping	 to	 the	
time-based	Alice	runtime	system.	Along	the	y-axis	are	event	threads:	this	allows	co-
occurring	events	to	be	shown,	supporting	juxtaposibility.	

Ellen	interacts	with	the	timeline	by	dragging	the	time	cursor	(the	vertical	black	line	
in	Figure	8.4).	Doing	so	changes	all	properties	to	their	values	at	the	time	represented	
by	 the	 time	 cursor’s	 location,	 supporting	 exploration	 of	 the	 runtime	 data.	 When	
Ellen	moves	the	cursor	over	an	execution	event,	the	event	and	the	code	that	caused	
it	 become	 selected,	 supporting	diagnosis	 and	 repair.	 These	 features	 allow	Ellen	 to	
rewind,	 fast-forward,	 and	 even	 “scrub”	 the	 execution	 history,	 receiving	 immediate	
feedback	about	 the	state	of	 the	world.	This	exposes	hidden	dependencies	between	
execution	 events	 and	 data	 that	might	 not	 be	 shown	 directly	 on	 the	Whyline,	 and	
between	properties’	current	values	and	program	output.	

To	 reduce	 the	 viscosity	 of	 exploration,	 Ellen	 can	 double-click	 on	 an	 action	 to	
implicitly	ask	what	caused	this	to	happen	and	actions	causing	the	runtime	action	are	
revealed.	Ellen	can	also	hover	her	mouse	cursor	over	expressions	in	the	code	to	see	
properties’	 current	 values	 and	 to	 evaluate	 expressions	 based	 on	 the	 current	 time.	
This	 improves	 the	 visibility	 of	 runtime	 data.	 The	 Whyline	 also	 makes	 previous	
answers	available	through	the	“Questions	I’ve	Asked”	button.	

By	analyzing	the	events	in	the	Whyline’s	answer,	Ellen	discovers	her	misperception:	

“So this says Pac didn’t resize because BigDot.isEaten is true…Oh! The ghost 
wasn’t chasing because Pac ate the big dot. Let’s try again without gehng the 
big dot.” 

Without	the	Whyline,	the	misperception	could	have	led	to	an	unnecessary	search	for	
non-existent	errors.	

8.2. USER INTERFACE 

The	 user	 interface	 for	 the	 Alice	Whyline	 is	 fairly	 simple.	 There	 is	 a	 single	 global	
question	menu	at	the	top,	which	can	also	be	shown	by	right-clicking	anywhere	in	the	
timeline.	The	timeline	itself	supports	a	single	selection	model,	allowing	the	user	to	
express	 interest	 in	 any	 one	 of	 the	 events	 shown	 in	 the	 timeline.	 The	 selection	 is	
based	on	the	horizontal	position	of	the	time	cursor	(the	black	vertical	line	in	Figure	
8.4).	When	the	user	clicks	anywhere	in	the	timeline,	the	selection	is	updated,	and	the	



Chapter	8:	A	Whyline	for	Alice	 148

program	state	(all	variables	and	object	state)	are	set	to	their	most	recently	assigned	
value	at	that	point	in	the	execution	history.	This	automatically	updates	the	program	
output	view,	showing	the	user	the	state	of	the	program	at	the	selected	time.	When	
the	 user	 drags	 the	 time	 cursor	 at	 the	 edges	 of	 the	 timeline	 window,	 the	 window	
automatically	 scrolls	 left	 or	 right	 (like	 selecting	 a	 large	 block	 of	 text	 in	 a	 word	
processor	and	hovering	at	the	edge	of	a	window).	

The	visual	design	of	the	timeline	events	deserves	some	discussion.	All	arrows	in	the	
timeline	are	straight,	except	 for	 the	curved	arrows	showing	the	use	of	values	used	
for	predicates	(for	example,	the	true	or	false	value	used	by	an	“if”	statement).	This	
allows	 users	 to	 segment	 an	 answer	 into	 expression	 parts	 and	 control	 statement	
parts.	 Animation	 events	 such	 as	 moves	 and	 resizes	 are	 also	 given	 a	 proportional	
amount	of	horizontal	space	in	the	timeline	to	represent	their	duration	(a	two	second	
animation	was	twice	the	horizontal	length	of	a	one	second	animation).	The	“x”	at	the	
right	edge	of	the	timeline	in	Figure	8.4	represents	a	predicate	that	evaluated	in	the	
wrong	 direction.	 The	 colors	 also	 carry	 meaning:	 peach	 represents	 imperative	
comments,	 purple	 represents	 data	 <low	 computations,	 and	 turquoise	 represents	
conditionals.	

8.3. IMPLEMENTATION 

The	Alice	Whyline	used	a	modi<ied	version	of	Alice	2.0 .	There	are	several	issues	to	13

discuss	 regarding	 the	 Alice	 Whyline’s	 implementation:	 recording	 an	 execution	
history,	deriving	questions,	and	answering	questions.	

8.3.1. RECORDING EXECUTION 

Alice	 programs	 are	 represented	 as	 an	 abstract	 syntax	 tree.	When	 users	 drag	 tiles	
around	 an	 program,	 they	 are	 directly	modifying	 this	 abstract	 syntax	 tree.	 For	 the	
Alice	 Whyline,	 this	 representation	 was	 augmented	 such	 that	 every	 operation	 on	
these	 trees	 was	 instrumented	 to	 maintain	 control	 <low	 and	 data	 <low	 graph	
representations	 of	 the	 program.	 In	 particular,	 data	 <low	 expressions	 were	

 At the time of the implementation, Randy Pausch and his students and staff were preparing an 13

Alice textbook and needed to freeze the feature list, meaning that the implementation was never 
reintegrated with the later released Alice 2.0 versions.



Chapter	8:	A	Whyline	for	Alice	 149

represented	as	data	<low	graphs	attached	to	control	<low	graph	nodes.	These	graphs	
were	constructed	incrementally	as	programmers	create	and	modify	code.	

The	 original	 Alice	 implementation	 executes	 Alice	 programs	 by	 traversing	 their	
abstract	syntax	trees.	The	modi<ied	version	executes	an	Alice	program	by	traversing	
the	 control	 and	 data	 <low	 graphs	 at	 runtime.	 As	 individual	 nodes	 in	 this	 graph	
execute,	the	Whyline	maintains	histories	for	individual	nodes	in	the	program	graph,	
remembering	 assignments	 and	 uses	 of	 property	 values.	 This	 value	 history	 is	
maintained	 in	memory	and	discarded	at	 the	beginning	of	each	program	execution.	
When	the	user	drags	the	time	cursor	in	the	interface,	these	property	value	histories	
are	 used	 to	 “rewind”	 the	 program	 output	 to	 the	 selected	 time	 by	 identifying	 the	
value	 of	 each	 property	 in	 the	 program	 output	 at	 the	 current	 time.	 Because	 Alice	
programs	are	small,	there	were	no	serious	issues	with	maintaining	this	information	
in	memory,	but	in	general,	this	approach	does	not	scale.	

8.3.2. DERIVING QUESTIONS 

“Program	output”	in	the	Alice	Whyline	is	de<ined	as	all	of	the	3D	objects	in	an	Alice	
program,	all	of	those	objects’	properties	(including	properties	such	as	color,	opacity,	
shape,	 etc.)	 and	 all	 primitive	 animations	 supported	 by	 default	 (such	 as	 “resize”,	
“move”,	 and	 other	 basic	 transformations).	 Output	 does	 not	 include	 user-de<ined	
procedures,	variables	declared	inside	those	procedures,	or	other	custom	properties	
added	to	objects.	

Given	this	de<inition	of	output,	the	Alice	Whyline	has	a	single	“Why”	menu	at	the	top	
of	 the	 screen.	 Inside	 the	menu,	 there	 are	 “why	did”	 and	 “why	didn’t”	menus,	 each	
containing	 a	 menu	 of	 all	 of	 the	 objects	 in	 the	 program	 (typically	 a	 very	 small	
number).	Each	“why	did”	object	menus	contains	 two	types	of	 “why	did”	questions.	
First,	there	are	questions	about	animations	executed	on	an	object	(such	as	“why	did	
Pac	 resize	 0.5”).	 There	 is	 a	 question	 for	 each	 animation	 call	 that	 appears	 in	 the	
program.	Therefore,	if	there	are	three	locations	in	the	code	that	Pac	was	resized	by	
0.5,	there	would	be	three	questions.	In	addition	to	questions	about	these	animations,	
there	are	also	“why	did”	questions	about	changes	to	the	selected	object’s	properties’	
current	 values.	 For	 example,	 if	 Pac’s	 color	 was	 assigned	 to	 red,	 there	would	 be	 a	
question	about	why	Pac’s	color	was	red.	



Chapter	8:	A	Whyline	for	Alice	 150

In	 the	 “why	 didn’t”	 object	 menus,	 like	 the	 one	 in	 Figure	 8.3,	 there	 are	 similar	
questions,	 but	 for	 all	 of	 the	 animation	 statements	 in	 the	 program	 regarding	 the	
selected	object	and	all	of	the	assignments	to	that	object’s	properties.	Consequently,	
this	 menu	 can	 be	 much	 larger.	 Each	 question	 about	 an	 animation	 or	 assignment	
refers	 to	 a	 particular	 instruction	 in	 the	 program.	 In	 general,	 the	 prototype	 only	
distinguishes	between	commands	and	assignments	with	constant	value	expressions	
(resize	0.5,	set	color	to	red).	For	expressions	or	continuous	valued	expressions	(such	
as	position	or	opacity),	the	Alice	Whyline	supports	the	generic	question	“why	didn’t	
this	property	change?”	

In	 the	 original	 design,	 the	 structure	 of	 the	 “why”	menu	had	 four	 top	 level	menus,	
including	“why	did,”	“why	didn’t”,	and	“why	is”,	“why	isn’t.”	These	“why	is”	questions	
were	particular	to	questions	about	object	properties.	Usability	testing	revealed	that	
users	 did	 not	 understand	 the	 difference	 between	 these	 two,	 because	 animations	
often	 changed	 state	 and	 state	 often	 affected	 behavior.	 For	 example,	 changing	 the	
isShowing <lag	of	an	object	made	it	“disappear,”	which	seemed	like	a	behavior.	

Another	 important	 aspect	 of	 the	 “why”	 menu	 was	 that	 the	 “why	 didn’t”	 menu	
contained	questions	about	program	behavior	 that	did	occur.	These	questions	were	
allowed	 so	 that	 the	 tool	 would	 have	 an	 opportunity	 to	 correct	 developers’	
misperceptions	about	the	program’s	behavior.	For	example,	if	the	developer	thought	
an	object	was	not	moving,	but	in	fact	it	was,	only	not	in	a	perceptible	way	because	of	
the	camera	angle,	the	system	would	be	able	to	explain	that	movement	was	occurring.		
The	“why”	menu	did	not	contain	questions	about	program	behaviors	that	did	occur,	
because	 in	general,	 it	was	obvious	when	something	had	occurred.	(As	discussed	in	
later	 chapters,	 such	 questions	 about	 misperceptions	 require	 slightly	 different	
support,	because	the	type	of	misperceptions	depend	on	the	type	of	program	output	
being	misperceived).	

8.3.3. ANSWERING QUESTIONS 

Positively	phrased	questions	(“why	did	Pac	resize	0.5”)	refer	to	a	speci<ic	animation	
call	 or	 variable	 assignment.	 The	 challenge	 in	 interpreting	 these	 questions	 is	 to	
decide	 which	 call	 to	 analyze,	 since	 the	 particular	 call	 or	 assignment	 may	 have	
executed	 multiple	 times	 in	 the	 recorded	 history.	 Because	 observations	 of	 people	
asking	“why”	questions	showed	that	developers	asked	questions	 immediately	after	



Chapter	8:	A	Whyline	for	Alice	 151

failures,	the	tool	chooses	the	most	recent	execution	of	the	call	or	animation.	This	was	
not	 always	 expressive	 enough	 to	 support	 users’	 questions	 (especially	 when	
developers	delayed	pausing),	but	worked	in	most	cases.		

To	answer	the	question	about	the	selected	event,	the	Alice	Whyline	uses	backward	
dynamic	 slicing	 [Zhang	 2003]	 to	 discover	 the	 control	 and	 data	 dependencies	
responsible	for	the	call	or	assignment	executing.	Alice	programs	generally	work	by	
invoking	procedures	 in	 response	 to	global	 event	handlers,	 therefore	most	of	 these	
dynamic	slices	resulted	in	very	short	chains	of	causality.	Nevertheless,	the	tool	limits	
answers	 to	 two	 or	 fewer	 conditionals	 in	 the	 slice,	 to	 keep	 answers	 simple.	 If	 the	
problem	 occurred	 upstream	 of	 these	 conditionals,	 when	 the	 user	 selects	 the		
conditional	 furthest	upstream,	 the	 system	automatically	 computes	other	upstream	
conditionals	 and	 adds	 them	 to	 the	 answer.	 In	 addition	 to	 these	 calls	 and	
conditionals,	 the	answers	 include	all	of	 the	data	dependencies	 in	 the	 causal	 chain,	
such	as	assignment	statements	and	properties	used	in	evaluating	expressions.	

For	 “why	didn’t”	 answers,	 there	 are	 several	 cases	 to	 check	 in	 order	 to	 answer	 the	
question.	 First,	 the	 system	 checks	 if	 the	 command	 queried	 did	 in	 fact	 execute,	
despite	 the	user’s	beliefs.	 If	 it	did,	 the	system	generates	a	 false	proposition	answer,	
named	 so	 because	 of	 the	 implicit	 assumption	 in	 the	 user’s	 question	 (as	 shown	 in	
Figure	 8.5).	 If	 it	 did	 not	 execute,	 the	 system	 then	 checks	 if	 the	 procedure	 that	
contains	the	queried	command	is	reachable	 in	 the	program’s	control	 <low	graph.	 If	
there	are	no	edges	 to	 the	procedure	 in	 the	graph,	 then	 the	 system	replies	with	an	
invariant	answer	(“this	code	can	never	be	executed”,	as	in	Figure	8.6).	Finally,	if	the	
procedure	is	reachable	but	did	not	execute,	the	tool	<inds	the	enclosing	conditional	
or	procedure	and	recursively	determines	why	the	conditional	or	procedure	was	not	
executed	(as	in	Figure	8.4).	

	

Figure	8.5.	A	false	proposition	answer,	which	explains	to	the	developer	that	the	
code	they	though	did	not	execute,	actually	did	execute.



Chapter	8:	A	Whyline	for	Alice	 152

For	determining	why	a	procedure	was	not	executed,	the	system	recursively	analyzes	
why	none	of	the	calls	to	the	procedure	were	executed.	If	in	the	process,	the	system	
<inds	 a	 conditional	 that	 did	 execute,	 then	 it	 must	 have	 executed	 in	 the	 wrong	
direction,	 skipping	 over	 the	 desired	 instruction.	 In	 this	 case,	 a	 dynamic	 slice	 is	
performed	 on	 the	 conditional’s	 expression	 and	 included	 with	 the	 answer.	 An	
example	of	such	a	“why	didn’t”	answer	is	shown	in	Figure	8.4.	

8.4. EVALUATION 

The	 Alice	 Whyline	 was	 the	 <irst	 Whyline	 prototype,	 so	 there	 were	 several	 basic	
questions	to	answer:	

• Would	the	Whyline	be	considered	usable	and	useful?	

• Would	the	Whyline	reduce	debugging	time?	

• Would	the	Whyline	help	complete	more	tasks?	

To	 investigate	 these	questions,	 the	 observational	 lab	 study	discussed	 in	Chapter	3	
was	replicated	(using	the	same	materials	shown	in	the	Appendix),	but	including	the	
Whyline	in	the	Alice	environment.	The	<irst	study	without	the	Whyline	will	be	called	
the	Without	 study,	 and	 the	 present	 study	will	 be	 called	 the	With	 study.	 The	With	
study	used	an	iterative	design	method:	observations	from	user	session	were	used	to	
<ix	usability	problems	and	inform	the	design	of	features	for	successive	sessions.	

In	both	studies,	participants	were	recruited	 from	the	Carnegie	Mellon	HCI	Masters	
program.	Programming	experience	ranged	from	beginning	Visual	Basic	to	extensive	
C++	and	Java.	The	four	participants	in	the	Without	study	will	be	referred	to	as	C1-C4,	
and	the	<ive	in	the	With	study	as	E1-E5.	

Figure	8.6.	An	invariant	answer,	which	explains	to	the	developer	that	the	code	
can	never	be	reached.



Chapter	8:	A	Whyline	for	Alice	 153

Sessions	began	with	a	15-minute	tutorial	on	creating	Alice	code.	Participants	were	
given	the	 layout	 in	Figure	8.1	and	90	minutes	to	make	a	Pac-Man	game	with	these	
speci<ications:	

• Pac	must	always	move.	The	arrow	keys	should	control	his	direction.		

• Ghost	must	move	in	random	directions	half	of	the	time	and	directly	towards	
Pac	the	other	half.	

• If	Ghost	is	chasing	and	touches	Pac,	Pac	must	<latten	and	stop	moving.	

• If	Pac	eats	the	big	dot,	the	ghost	must	run	away	for	5	seconds,	then	resume	
chasing.	

• If	Pac	touches	a	running	ghost,	Ghost	must	<latten	and	stop	for	5	seconds,	
then	chase	again.	

• If	Pac	eats	all	of	the	dots,	Ghost	must	stop	and	Pac	must	hop	inde<initely.	

For	the	purposes	of	analysis,	these	six	speci<ications	are	treated	as	six	distinct	tasks,	
since	 the	 code	necessary	 to	 accomplish	 them	were	only	 related	by	 the	 character’s	
state	of	behavior.	 	 In	both	studies,	participants	were	asked	 to	 think-aloud	 to	 track	
track	 goals,	 strategies	 and	 intents.	 Participants	 were	 also	 videotaped	 while	 they	
worked,	for	later	analysis.	

Table	8.1.	Frequency	of	question/answer	types	in	each	study	and	times	the	
Whyline	was	found	useful	for	each.



Chapter	8:	A	Whyline	for	Alice	 154

Table	 8.1	 shows	 the	 distributions	 of	 question/answer	 types	 in	 each	 study.	 “Why	
didn’t”	questions	were	more	common	than	“why	did”	questions,	and	programmers	
rarely	 asked	 invariant	 or	 false	 proposition	 “why	 did”	 questions.	 Participants	 used	
the	Whyline	for	19	of	24	of	their	questions	(the	sum	of	totals	in	the	last	column	of	
Table	8.1)	 and	 the	proportion	 increased	 in	 successive	user	 tests:	 the	Whyline	was	
useful	for	0	of	E1’s	3	questions,	but	all	5	of	E5’s.	

Question	
Type

Answer	
Type

Frequency	Question/Answer	Pair	was	Asked #	of	times	Whyline	
found	useful	in	the	

With	study
Without	(4	programmers) With	(5	programmers)

Why	Did

Invariant 0 0 0
False	

Proposition
1 0 0

Control/Data	
Flow	

7 5 3

Total	#	of	Why	Did	
Questions

8 5 3

Why	Didn’t

Invariant 5 5 4
False	

Proposition
5 7 5

Control/Data	
Flow	

7 7 7

Total	#	of	Why	Didn’t	
Questions

17 19 16

Programming	
Error	and	the	
Failure	it	Caused

Strategy,	Outcome,	and	Time	in	Seconds	from	Failure	→	Error	Diagnosis

Without With

Code	resized	Pac	to	
0,	which	Alice	
ignores	→	Pac	
doesn’t	resize	after	
touching	ghost.

Read	events,	moved	method	
call	to	event,	moved	camera,	
toggled	state	variables.	“So	it’s	
the	resize	function	that’s	not	
working.”

33
0	

sec

Asked,	why	didn't	pac	resize	0?	and	
got	invariant	answer.	“So	resize	to	
0	must	not	work.	I’ll	try	.5	instead.”

38	

se
c

Forgot	event	to	call	
method	that	moves	
ghost	→	ghost	
doesn’t	move	after	
playing.

Stared	at	screen	and	held	head	
in	hands.	“Oh!	I	need	an	event	
to	start	it.”

75	

sec

Browsed	why	didn’t	ghost	
questions	and	saw	highlighted	
ghost	movement	code:	"	…oh,	I	
didn't	call	it	anywhere!"

8	

se
c

Thought	dot2	was	
dot1	and	referenced	
wrong	dot	→	dot1	
not	eaten	after	
collision.

Looked	at	code;	searched	for	
dot	in	worldview;	removed	
then	recreated	collision	code,	
this	time	without	error.

91	

sec

Inspected	why	didn’t	menu	and	
realized	her	misunderstanding:	
"Oh,	no	questions	about	the	other	
dots.	That	must	be	dot2".

9	

se
c



Chapter	8:	A	Whyline	for	Alice	 155

Because	 the	 participants	 in	 the	 study	 created	 and	 debugged	 different	 errors,	
comparing	debugging	times	was	somewhat	challenging.	However,	because	the	tasks	
were	 relatively	 constrained,	many	of	 the	participants	wrote	very	similar	programs	
and	introduced	and	debugged	the	same	errors	over	the	course	of	their	work.	Table	
8.2	describes	six	of	these	identical	debugging	scenarios	and	the	strategies	and	times	
of	 participants	 in	 the	With	 and	Without	 studies	 (there	were	more	 than	 six	 similar	
scenarios,	but	they	were	not	similar	enough	to	warrant	comparison).	In	the	Without	
study,	participants	tended	to	hypothesize	and	diagnose	by	inspecting	and	rewriting	
code.	 In	 the	 With	 study,	 they	 tended	 to	 hypothesize	 and	 diagnose	 by	 asking	
questions	and	analyzing	the	Whyline’s	answer.	A	repeated	measures	ANOVA	shows	
that	 across	 the	 six	 scenarios,	 the	Whyline	 participants	were	 signi<icantly	 faster	 at	
debugging	similar	errors	(F(1,5)	=	12.64,	p	<	.02).	This	decrease	was	by	an	average	
factor	of	7.8	across	the	six	scenarios.	

Overall,	 in	 the	 90	 minutes	 allotted,	 programmers	 with	 the	 Whyline	 completed	
signi<icantly	more	 tasks	 (M	=	3.20,	SD	=	 .457)	 than	 those	without	 (M	=	2.25,	SD	=	
.500),	t(7)	=	3.0,	p	<	.02.	This	was	a	40%	increase	in	tasks	completed.	

8.5. DISCUSSION 

The	Whyline	appears	to	have	great	potential	as	a	usable	and	effective	debugging	tool	
for	Alice	users.	In	generalizing	these	results,	there	are	many	issues	to	consider.	For	
example,	 in	 the	user	 testing,	 there	were	 a	 few	 signi<icant	usability	 issues	with	 the	
initial	designs,	some	of	which	were	predicted	and	others	that	were	not.	These	have	

Maps	right	key	to	
right	direction	→	Pac	
moves	down	instead	
of	right.

“I	think	this	is	wrong;	it	doesn’t	
go	to	where	I	want	it	to	be…this	
is	terrible!”	Tried	all	possible	
mappings	until	she	realized	
direction	was	relative	to	Pac.

18
2	

sec

Asked	why	did	Pac	move	right?	
Inspected	control	and	data	<low	
answer;	noticed	direction	set	to	
right	because	down	was	pressed:	
“So	direction	is	relative	to	Pac.”

28	

se
c

Dot	collision	
threshold	too	small	
for	test	to	happen	
while	Pac	is	over	dot	
→	dot	not	eaten	after	
Pac	touches.

“I	made	some	methods	that	I	
thought	would	help	me	rid	of	
the	dots…I’m	pretty	sure	I	got	
close	enough.”	Rewrote	
collision	events	and	slowed	
down	Pac	so	test	had	time	to	
happen.

20
7	

sec

Asked	why	didn't	dot1.isShowing	
change	to	false?	Scrubbed	
predicate	tests:	"that's	really	
intuitive…so	when	it	actually	did	
this	test,	this	was	the	state	of	the	
world.	I	should	increase	the	
threshold."

27	

se
c

Forgot event to call 
eatBigDot method → 
Dot not eaten after 
touching Pac

“There	is	de<initely	nothing	
happening.”	Browsed	and	
inspected	code	and	event	list.	
“Oh,	of	course	not!”

49	

sec

Asked	why	didn't	big	dot	
isShowing	change	to	false?	and	
read	invariant	answer	which	noted	
that	nothing	called	the	method.	
“Oh,	you’re	right!”

10	

se
c



Chapter	8:	A	Whyline	for	Alice	 156

implications	for	the	design	of	other	Whyline	designs.	In	session	1,	 for	example,	the	
prototype	did	not	support	“why	didn’t”	questions.	When	E1	<irst	used	the	Whyline,	
he	wanted	 to	ask	a	 “why	didn’t”	question,	but	could	not,	and	 immediately	decided	
“this	thing	is	useless.”	This	suggests	that	support	for	“why	didn’t”	questions	may	be	
crucial	 to	 programmers’	 perceptions	 of	 the	 utility	 of	 the	 tool.	 In	 session	 2,	 the	
prototype	 distinguished	 between	 questions	 about	 output	 statements	 (“why	 did”)	
and	questions	about	property	changes	(phrased	as	“why	is”).	E2	observed	a	failure	
based	on	Pac’s	 direction	property	 and	 searched	 the	 “why	did”	menu,	 ignoring	 the	

Table	8.2.	Identical	debugging	scenarios	in	the	With	and	Without	studies.	
Scenarios	are	described	by	the	programming	error,	the	failure	caused,	each	
programmer’s	strategy	and	outcomes,	and	the	time	from	failure	to	error	
diagnosis.



Chapter	8:	A	Whyline	for	Alice	 157

“why	 is”	menu.	 The	 experimenter	 asked	 her	 later	 if	 she	 had	 noticed	 the	menu:	 “I	
wanted	to	ask	about	something	that	already	happened.”	This	is	consistent	with	the	
observations	 that	 programmers	 phrased	 questions	 in	 terms	 of	 failures	 instead	 of	
runtime	data:	she	said	“why	did	Pac’s	direction	change	to	forward?”	and	not	“why	is	
Pac’s	direction	forward	right	now?”	In	session	3,	the	prototype	answered	questions	
relative	to	the	time	cursor’s	placement.	When	E3	asked	his	<irst	question,	he	moved	
the	 time	cursor,	and	upon	asking	his	second	question,	noticed	 that	 the	contents	of	
the	question	menu	changed	considerably:	“Where	did	all	my	questions	go?”	This	was	
the	rationale	for	using	a	statement’s	latest	execution,	regardless	of	the	time	cursor’s	
placement.	 (This	 interaction	was	changed	 in	 the	 Java	version	described	 in	Chapter	
10,	 where	 time	 is	 important	 only	 when	 asking	 “why	 didn’t”	 questions).	 Usability	
issues	were	also	found	in	sessions	4	and	5,	but	not	of	the	same	magnitude	as	in	the	
<irst	three.	

The	 most	 helpful	 feature	 of	 the	 Whyline	 seemed	 to	 be	 the	 question	 menu.	
Observations	 con<irmed	 the	hypothesis	 that	 asking	questions	 in	 terms	of	program	
output,	rather	than	code	or	execution	events,	would	make	it	easier	for	programmers	
to	 map	 their	 question	 to	 related	 code.	 By	 restricting	 the	 programmer’s	 ability	 to	
make	 assumptions	 about	what	 did	 and	 did	 not	 happen,	 the	 tool	 enabled	 them	 to	
observe	and	explore	the	execution	events	that	most	likely	caused	failures.	Similarly,	
relating	 code	 to	 execution	 events	 interactively	 with	 the	 time	 cursor	 and	 visual	
highlighting	 helped	 with	 diagnosis	 and	 repair	 activities,	 as	 predicted.	 Had	 this	
relationship	 not	 been	 explicitly	 visualized,	 more	 text	 would	 have	 been	 needed	 to	
denote	 what	 caused	 the	 execution	 events,	 decreasing	 visibility,	 and	 programmers	
would	have	had	 to	manually	 search	 for	 the	 code	 responsible.	 Finally,	 the	data	 and	
control	<low	arrows	directly	supported	hypothesizing	about	which	execution	events	
caused	failure,	as	predicted.	This	seemed	to	be	because	the	visualization	acted	as	an	
external	 memory	 aid	 to	 help	 programmers	 simulate	 runtime	 execution.	 In	 the	
Without	study,	participants	were	forced	to	calculate	expressions	manually,	allowing	
for	 attentional	breakdowns	during	 calculation.	When	 the	 time	cursor,	 reversibility,	
and	other	features	were	used,	the	observations	suggest	that	they	played	supporting	
roles	in	the	Whyline’s	overall	effectiveness.	

There	are	many	 issues	 to	consider	 in	generalizing	 from	the	Alice	Whyline	 to	other	
languages.	 For	 example,	 for	 a	 given	 language	 and	 programming	 task,	what	 output	
will	 programmers	 want	 to	 ask	 about?	 In	 a	 modern	 code	 base,	 output	 might	 be	
numerical,	 message-based,	 or	 simply	 the	 execution	 of	 a	 stub	 of	 code.	 The	 Java	



Chapter	8:	A	Whyline	for	Alice	 158

Whyline	(Chapter	10)	starts	 from	a	notion	of	primitive	 level	output	and	 <inds	data	
and	code	that	indirectly	affects	this	primitive	output,	identifying	code	structures	that	
are	likely	to	be	viewed	as	output	relevant.		

Because	the	implementation	requires	the	complete	execution	history,	another	issue	
is	memory	and	performance.	Researchers	have	developed	time-	and	space-ef<icient	
approaches	 to	 recording	 data	 de<initions	 and	 uses,	 building	 control	 <low	 and	 data	
<low	 graphs,	 and	 generating	 dynamic	 slices	 [Tip	 1995][Zhang	 2003].	 Another	
challenge	 is,	 for	 a	 given	 task	 and	 language,	 what	 heuristics	 generate	 the	 most	
understandable,	concise	answers?	The	prototype	only	included	a	small	portion	of	a	
dynamic	 slice	 because	 of	 the	 simplicity	 of	 most	 Alice	 worlds.	 For	 more	 complex	
software,	there	would	be	a	host	of	visualization	and	interactive	issues	in	presenting	
a	dynamic	slice.	These	issues	are	explored	in	more	detail	in	Chapter	10.	

8.6. LIMITATIONS 

The	Alice	Whyline	 has	 a	 number	 of	 limitations.	Questions	 about	 complex	Boolean	
and	numerical	expressions	give	equally	complex	answers.	This	 is	because	the	 level	
of	detail	 in	 the	questions	 is	not	 enough	 to	know	which	particular	part	of	 the	data	
<low	 path	 is	 problematic.	 Reichwein	 et	 al.	 describe	 one	 solution	 that	 allows	
spreadsheet	 users	 to	 mark	 intermediate	 values	 in	 data	 <low	 paths	 as	 correct	 or	
incorrect,	 which	 feeds	 into	 a	 visualization	 of	 which	 computations	 may	 be	 faulty	
[Reichwein	2000].		

Programmers	often	needed	to	inspect	the	internals	of	Alice	primitives.	For	example,	
choosing	 the	 distance	 for	 “is	 object	 a	 within	 distance	 of	 object	 b”	 was	 dif<icult,	
because	 programmers	 could	 not	 see	 the	 measured	 distance	 value	 used	 by	 the	
command	at	runtime;	commands	like	these	were	black	boxes	like	any	other	API,	only	
returning	true	or	false	and	nothing	about	the	actual	internal	behavior.	One	solution	
would	 be	 to	 instrument	 the	 surface-level	 internal	 logic	 of	 primitives,	 so	 that	 such	
expressions	could	be	shown	on	the	Whyline.	The	Java	Whyline,	described	in	Chapter	
10,	allows	developers	to	inspect	the	internal	behavior	of	API	calls.	

The	Alice	Whyline	does	not	support	object-relative	questions	(such	as	“why	did	Pac	
resize	after	Ghost	moved”),	which	were	fairly	common	in	early	observations	of	Alice	
programmers.	The	Java	version	in	Chapter	10	gives	the	developer	more	control	over	
specifying	 this	 context	 and	 thus	 more	 control	 over	 implicitly	 specifying	 the	



Chapter	8:	A	Whyline	for	Alice	 159

problematic	behavior	relative	to	some	time.	Some	object	relative	questions	are	still	
unsupported,	however,	such	as	“why	is	this	object	so	close	to	that	object?”	and	other	
questions	 that	 are	 spatial	 in	 nature.	 Future	 prototypes	 may	 involve	 constructing	
object-relative	questions	using	direct	manipulation	of	the	objects	on	the	screen.		

Finally,	 in	the	user	studies,	using	the	latest	execution	of	the	queried	statement	was	
suf<icient.	 In	more	 complicated	Alice	worlds,	 this	may	not	 hold	 true.	One	possible	
interaction	would	allow	programmers	to	further	specify	their	questions	with	a	time,	
which	would	allow	them	to	<ind	a	particular	execution	in	the	recent	history.	This	is	
exactly	what	the	Java	Whyline	(Chapter	10)	supports.	

8.7. SUMMARY 

The	 Whyline	 for	 Alice	 was	 a	 <irst	 attempt	 at	 supporting	 why	 questions	 about	
program	output	and	it	clearly	demonstrated	the	feasibility	of	such	an	interaction		on	
a	number	of	dimensions:	

• Questions	can	be	derived	from	source	code	to	represent	program	output	and	
behavior.	

• Concise	answers	can	be	given	using	precise	backward	dynamic	slicing.	

• Why	didn’t	questions	can	be	answered	effectively	by	using	reachability	
algorithms.	

• The	Alice	Whyline	increased	developers’	productivity	at	debugging	tasks	by	
an	average	factor	of	8.	

• Most	of	the	questions	that	participants	wanted	to	ask	were	supported	by	the	
Whyline.	

Of	 course,	 the	 Alice	 Whyline	 also	 revealed	 a	 number	 of	 challenges	 to	 address	 in	
generalizing	 the	Whyline	concept	 to	other	 languages	and	usage	contexts.	 Issues	of	
scale,	 the	concept	of	output,	 the	support	of	more	complicated	 languages	and	other	
issues	will	be	explored	in	depth	in	the	coming	chapters.	



9.

A WHYLINE FOR APPLICATIONS  14

Modern	applications	often	have	several	complex	commands,	automated	features	and	
hidden	dependencies.	For	example,	Microsoft	Word	is	full	of	detailed	settings	about	
automatically	 correcting	 capitalization	 errors,	 replacing	 misspelled	 words,	 and	
de<ined	 intricate	 dependencies	 between	 paragraph	 and	 character	 styles.	 E-mail	
clients	and	web	browsers	often	support	a	myriad	of	application	settings	and	rules	
that	can	affect	a	user’s	data	or	browsing	experience	in	subtle	but	frustrating	ways.	

Unfortunately,	 when	 users	 need	 to	 understand	 how	 these	 features	 work,	
applications	 provide	 little	 support.	 Online	 help	 systems	 are	 quite	 generic,	 having	
little	 to	 do	 with	 the	 speci<ic	 application	 state	 or	 the	 user’s	 speci<ic	 document.	
Instead,	 users	 may	 spend	 signi<icant	 time	 searching	 help	 systems	 and	 exploring	
application	settings	to	<igure	out	how	to	turn	of	an	automatic	feature	or	<ind	out	why	
a	paragraph	is	always	indented.	It	is	even	more	dif<icult	when	some	expected	before	
does	not	happen.	For	example,	a	user	might	see	a	misspelled	word	in	their	document	
that	 the	 application	 thinks	 is	 spelled	 correctly.	 How	 can	 a	 user	 <ind	 out	 why	 the	
application	 did	not	mark	 it	 as	misspelled?	There	 have	 been	 a	 number	 of	 research	
approaches	to	address	these	problems,	helping	to	teach	users	how	to	use	commands	
to	 perform	 various	 tasks.	 Some	 involved	 animated	 help	 [White	 2002]	 and	 others	
that	involved	sophisticated	instructions	and	query	languages	[Ramachandran	2005]
[Lin	2003].	Others	have	proposed	user	interface	enhancements	such	as	“stencils”	for	
focusing	 users’	 attention	 [Kelleher	 2005]	 and	mechanisms	 such	 as	 a	 special	 help	

 The prototype described in this chapter was implemented by David Weitzman. Details in this 14

chapter appear in part in [Myers 2006].



Chapter	9:	A	Whyline	for	Applications	 161

modes	 [National	 Instruments	 2005].	 The	 problem	with	 all	 of	 these	 approaches	 is	
that	 they	 are	 generic	 and	 do	 not	 help	 users	 with	 problems	 speci<ic	 to	 their	
application	and	document	state.	

We	 can	 think	 of	 these	 types	 of	 usability	 problems	 as	 a	 special	 form	 of	 program	
understanding.	Just	like	when	a	programmer	is	trying	to	understand	the	execution	of	
source	 code,	 users	 constantly	must	understand	dependencies	between	application	
and	 document	 state.	 The	 key	 difference	 is	 that	 the	 user	 of	 an	 application	 has	 no	
access	 to	 the	 source	 code	 and	would	 not	want	 to	 see	 code	 anyway.	What	 they	do	
want	 to	 know	 is	 why	 the	 output	 they	 see	 is	 not	 what	 they	 expect,	 and	 more	
speci<ically,	how	they	can	change	the	application	settings	and	document	properties	
to	have	what	 they	want	happen.	The	Whyline	 concept	 is	perfectly	 suited	 for	 these	
types	of	questions.	The	central	difference	from	the	users	perspective	being	the	kind	
of	 answer	 to	 give:	 rather	 than	 showing	 the	 user	 source	 code	 and	 explaining	 the	
program’s	execution,	instead	it	ought	to	explain	the	application	behavior	in	terms	of	
the	user	modiJiable	state	in	the	application	and	document.		

This	 chapter	will	 describe	 such	 an	 interaction	 technique	 through	 an	 example	 and	
then	details	of	the	implementation	and	evaluation	of	the	technique.	

9.1. AN EXAMPLE 

The	example	 is	based	on	a	 simple	 text	editor	meant	 to	mimic	Microsoft	Word	and	
many	of	 its	more	complex	 features,	 such	as	auto	correction	and	paragraph	styling.	
The	prototype,	called	Crystal,	works	by	dynamically	building	question	menus	based	
on	 the	 current	 application	 and	 document	 state.	 One	 common	 scenario	 in	Word	 is	
typing	some	word	and	having	it	automatically	corrected,	even	if	it	was	not	desired.	
For	example,	if	one	types	“teh”	and	then	space,	the	editor	automatically	replaces	the	
text	with	“the.”	This	is	not	always	the	desired	behavior.	

In	this	editor,	the	user	can	hover	over	the	word	“the”	and	type	F1	to	reveal	a	menu	of	
questions	about	the	word,	one	of	which	is	“Why	was	the	text	changed	from	‘teh’	to	
‘the’?”	Upon	 choosing	 this	question,	 the	 editor	 shows	 the	 answer	 in	Figure	9.1.	At	
(a),	 a	 question	 mark	 is	 left	 which	 shows	 where	 the	 question	 was	 asked.	 The	
highlighting	 shown	at	 (b)	 shows	 that	 the	 text	was	 corrected	because	 the	 “Replace	
text	as	you	 type”	checkbox,	which	was	 in	 the	 “AutoCorrect”	menu,	was	checked	by	
default.	This	answer	is	also	explained	verbally	at	(c).	



Chapter	9:	A	Whyline	for	Applications	 162

	

Figure	9.1.	The	answer	for	why	“Teh”	was	changed	to	“The”	The	“?”	in	the	
upper	left	shows	where	the	F1	key	was	pressed.		

Unlike	a	Whyline	for	code,	Crystal	replies	by	providing	answers	in	terms	of	the	user-
modi<iable	input	and	output	of	the	program.	In	this	example,	this	includes	the	menu	
“AutoCorrect	 Options...”	 and	 the	 checkbox	 “Replace	 text	 as	 you	 type.”	 This	 answer	
shows	users	not	only	the	cause	of	the	unexpected	change	to	their	text,	but	also	how	
they	can	prevent	such	a	change	in	the	future.	

9.2. USER INTERFACE 

There	are	a	number	of	unique	aspects	 to	 the	design	of	Crystal.	For	example,	 there	
are	 two	ways	to	ask	questions:	by	moving	the	mouse	over	some	output	of	 interest	
and	pressing	 the	F1	key,	 and	 also,	 by	 clicking	 on	 a	 global	 “why”	menu.	This	 latter	
approach	allows	 the	user	 to	ask	about	application	behaviors	 that	have	no	suitable	
output	 to	 inquire	about	or	behaviors	 that	did	not	happen.	 In	both	of	 these	menus,	
the	question	menu	is	derived	from	commands	that	are	executed	as	the	application	

a

b

c



Chapter	9:	A	Whyline	for	Applications	 163

runs.	A	command	is	anything	a	user	might	<ind	in	the	undo	history	of	an	application.	
For	example,	in	the	case	of	a	word	processor,	these	might	be	things	like	“set	selection	
to	 bold”	 or	 “indent	 bullet.”	 Typically,	 applications	 are	 built	with	 hundreds	 of	 such	
commands	internally	and	they	are	exposed	through	various	user	interface	elements	
such	as	buttons,	menus	and	keyboard	shortcuts.		

As	with	 any	Whyline	 tool,	 a	 key	 consideration	 is	 the	de<inition	of	 program	output	
and	the	lowest	granularity	at	which	questions	may	be	asked.	For	this	prototype,	the	
various	kinds	of	output	 include	common	word	processing	data	such	as	characters,	
paragraphs,	sections	and	the	properties	of	these	word	processing	data	types	such	as	
indentation,	 font,	and	so	on.	 Input	 includes	user	actions	but	also	other	application	
preferences	that	affect	documents,	such	as	the	“Replace	text	as	you	type”	checkbox	
in	the	earlier	example.	The	primitive	level	of	output	was	explicitly	chosen	to	be	the	
character,	 since	 it	 is	 the	smallest	 indivisible	element	 in	a	 textual	document.	 It	was	
also	important	to	consider	the	de<inition	of	“input.”	At	the	lowest	level,	the	prototype	
could	have	supported	questions	relative	 to	mouse	and	keyboard	events,	but	 this	 is	
not	 how	users	 typically	 think	of	 using	 applications.	 Instead,	 the	prototype	de<ines	
input	events	as	user	and	application	invoked	commands.	The	tool	does	not	include	
questions	about	“typing”	events,	since	they	occur	too	frequently	to	be	useful	and	are	
already	 well	 understood	 by	 users.	 In	 other	 application	 domains,	 the	 application	
designer	would	make	similar	decisions,	 for	example,	whether	to	support	questions	
about	the	back	and	forward	buttons	in	a	web	browser	or	scrolling	through	an	e-mail	
in	a	mail	client.	

Several	 examples	 of	 these	 questions	 are	 seen	 in	 Figure	 9.2.	 There	 are	 questions	
about	the	letter	“h”	selected	and	its	properties,	including	why	it	has	a	particular	font,	
whether	 it	 is	bold	or	 italic,	 and	 so	on.	The	paragraph	menu	 in	Figure	9.2	 includes	
properties	of	the	paragraph	such	as	indentation,	style,	alignment	and	other	common	
paragraph	 properties.	 Below	 the	 paragraph	menu,	 there	 are	 also	 questions	 about	
recent	 commands	 applied	 to	 the	 selected	 output.	 In	 Figure	 9.2,	 there	 is	 also	 a	
question	 about	why	 the	 text	was	 changed	 from	 “teh”	 to	 “the.”	 This	 represents	 the	
command	that	was	automatically	executed	by	the	application	due	to	an	application	
setting.	 Some	 output	 is	 invisible	 to	 the	 user,	 for	 example,	 the	 whitespace	 in	 the	
margin	of	a	document	that	may	be	part	of	a	paragraph.	Figure	9.3	shows	support	for	
clicking	on	this	whitespace	to	inquire	about	its	properties	and	the	related	paragraph.	
In	addition	to	questions	about	the	document,	the	prototype	also	supports	questions	



Chapter	9:	A	Whyline	for	Applications	 164

about	the	application	UI.	For	example,	the	user	can	hover	over	a	disabled	button	or	
menu	item	and	<ind	questions	about	why	the	control	is	disabled.	

In	 addition	 to	 “why	 did”	 questions	 about	
application	 and	 document	 statement,	 the	
prototype	 also	 supports	 “why	 didn’t	 questions”	
about	commands	or	behavior	that	did	not	happen	
(as	seen	in	Figure	9.4).	Of	course,	any	number	of	
things	 did	 not	 happen,	 but	 the	 scope	 of	 these	
questions	is	limited	to	the	application	features	and	forms	of	input.	For	example,	if	a	
user	types	an	unsupported	keyboard	shortcut	and	nothing	happens,	Crystal	includes	
a	question	about	why	the	input	was	ignored.	Or,	if	the	application	could	have	auto-
corrected	 some	 text	 but	 chose	 not	 to	 because	 the	 setting	 was	 disabled,	 Crystal	
includes	a	question	about	why	the	command	was	not	invoked.	All	of	these	appear	in	
the	global	why	menu	in	Figure	9.4.	

	

	

Figure	9.2.	Menus	resulting	from	typing	F1,	showing	sub	menus	for	character	
and	paragraph	properties.

	

Figure	9.3.	A	question	menu	
about	whitespace.



Chapter	9:	A	Whyline	for	Applications	 165

The	user	can	also	ask	questions	about	deleted	data	by	clicking	where	the	data	used	
to	appear	(as	shown	in	Figure	9.5).	When	the	user	deletes	an	object	or	word,	Crystal	
leaves	 invisible	 objects	 to	 track	 their	 prior	 location	 and	 existence,	 linking	 the	
commands	that	deleted	them.	These	markers	<low	with	the	text	so	that	at	any	point,	
the	user	can	ask	about	data	that	used	to	exist	in	the	past.	

Crystal	 answers	 questions	 by	 showing	 a	 textual	 explanation	 and	highlighting	 user	
interface	elements	relevant	to	the	user’s	question.	For	example,	Figure	9.6	shows	the	
answer	 to	 “why	 is	 the	 letter	 p	 bold?”,	 including	 both	 a	 textual	 description	 of	 the	
command	 that	 caused	 p	 to	 be	 bold	 and	 a	 highlight	 of	 the	 user	 interface	 that	was	
used.	The	key	aspect	of	this	design	is	that	rather	than	explaining	the	decisions	that	
the	 application	 made	 internally,	 the	 answer	 only	 includes	 user-modi<iable	 events	
and	decisions,	such	as	actions	that	the	user	took	explicitly	themselves	or	commands	
applied	 by	 the	 application	 automatically	 because	 of	 user	 modi<iable	 settings.	 An	
interesting	side	effect	of	this	form	of	answer	is	that	users	can	use	Crystal	to	navigate	
to	a	settings	dialog	 faster	by	asking	a	question,	even	 if	 the	user	already	knows	the	
answer.	When	the	user	presses	the	close	button,	the	highlighting	is	dismissed.	

	

Figure	9.4.	The	“global”	why	menu,	showing	
recent	commands	that	did	and	did	not	execute.

	

Figure	9.5.	The	user	typed	“g”	in	while	“helpful”	
was	selected,	so	“helpful”	was	deleted.	Crystal	
inserts	an	invisible	marker	in	the	text	so	a	
question	will	appear	about	the	deleted	object.

 



Chapter	9:	A	Whyline	for	Applications	 166

The	 textual	 part	 of	 Crystal’s	 answers	 are	 sometimes	 crucial.	 For	 example,	 there	 is	
often	 a	 chain	 of	 events	 that	 are	 responsible	 for	 a	 particular	 application	 state	 or	
behavior	and	such	chains	are	dif<icult	to	portray	through	highlighting.	For	example,	
Figure	 9.7	 shows	 an	 answer	 explaining	why	 a	 particular	word’s	 font	 size	was	 20,	
which	 was	 inherited	 from	 its	 style.	 Crystal	 adds	 a	 link	 for	 each	 of	 the	 successive	
causes	in	the	answer	and	provides	a	back	button	to	navigate	between	these	causes.	

	

	

Figure	9.6.	The	answer	to	“Why	is	the	‘p’	bold?”,	explaining	
that	the	user	set	the	property	using	the	toolbar	button.	

	

Figure	9.7.	The	answer	shown	for	when	a	property’s	value,	in	this	case	the	font	
size,	is	inherited	from	a	style.



Chapter	9:	A	Whyline	for	Applications	 167

9.3. IMPLEMENTATION 

For	 supporting	 questions	 about	 program	 execution,	 a	 Whyline	 tool	 will	 typically	
record	 everything	 about	 a	 program’s	 execution.	 For	 Crystal,	 such	 full	 recording	 is	
unnecessary,	because	the	answers	only	need	to	explain	causality	at	a	speci<ic	level	of	
abstraction.	 Instead,	 the	 approach	 was	 to	 augment	 a	 common	 application	 design	
pattern	 of	 an	 undo	 history	 with	 an	 explicit	 notion	 of	 commands	 and	 command	
history.	 In	particular,	Crystal	uses	a	notion	of	hierarchical	command	objects	[Myers	
1996].	The	top	level	command	objects	represent	user	executed	commands,	such	as	
when	a	user	explicitly	sets	a	paragraph	style.	The	 lower	 level	children	of	these	top	
level	 command	 objects	 are	 the	 individual	 actions	 performed	 by	 the	 top	 level	
command;	for	setting	a	style,	this	might	involve	changing	the	paragraph’s	font,	font	
size	and	other	properties.	

Each	command	object	has	a	number	of	speci<ic	properties,	shown	in	Table	9.1.	Many	
are	typical	to	command	object	based	systems	[Myers	1996];	Crystal	adds	the	ones	in	
bold.	

Name Function
Do-Method Performs	the	action,	e.g.	changes	the	font	to	bold
Undo-Method Undoes	the	action
Redo-Method Redoes	the	action
Object-Modified Object	affected	by	this	action,	so	the	command	can	be	undone.
Enabled Boolean	to	determine	if	action	can	be	invoked	now
Label String	that	describes	this	command

Table	9.1.	Fields	and	methods	of	the	command	objects	in	Crystal.	Properties	in	
bold	are	novel.	



Chapter	9:	A	Whyline	for	Applications	 168

A	 key	 part	 of	 answering	 questions	 is	 tracking	 dependencies	 between	 these	
commands	 (the	 Dependencies	 part	 of	 the	 command	 object).	 For	 example,	 the	 auto-

correct	command	in	Figure	9.1	depends	on	the	current	state	of	the	“Replace	text	as	
you	 type”	 checkbox.	 For	 every	 command	executed,	Crystal	 remembers	 the	 current	
values	 of	 these	 application	 settings,	 so	 that	 even	 if	 they	 change	 in	 the	 future,	 the	
command	will	remember	the	original	state	at	the	time	it	was	executed.	This	allows	
Crystal	to	generate	a	message	like	“the	auto-correct	preference	was	disabled”	even	if	
the	property	is	now	enabled.	When	values	are	inherited	for	properties,	such	as	when	
the	font	size	for	a	character	comes	from	a	named	style,	the	Dependencies	parameter	is	

used	to	record	where	the	value	came	from.	

Each	command	also	records	the	input	event	that	was	used	to	invoke	it	(the	Invoking-

Control	 part	 of	 the	 command	 object).	 This	 could	 be	 a	 particular	 user	 interface	

control,	 a	 keyboard	 shortcut,	 or	 perhaps	 some	 automated	 feature	 that	 the	
application	 invokes	 after	 particular	 events	 (such	 as	 auto	 correction	 and	 spelling	
features).	This	is	used	to	highlight	the	control	in	the	user	interface.	This	is	especially	
important	 since	 each	 user	may	 be	 used	 to	 using	 a	 different	 control	 to	 invoke	 the	
same	command.	

The	Questions-Method	part	of	 the	command	object	allows	 the	application	designer	 to	

create	custom	phrasings	of	the	answers.	The	method	returns	an	object	that	contains	
a	 method	 to	 generate	 the	 corresponding	 answer.	 This	 is	 used	 in	 the	 sample	 text	
editor	 for	 example,	 by	 the	 background	 auto-correction	 process.	 For	 standard	
property	 setting	 (e.g.,	 “make	bold”)	 and	 actions	 like	 creation	 and	deletion,	 Crystal	
automatically	creates	the	questions	and	answers,	and	the	designer	does	not	need	to	
supply	a	method	here.	

The	Show-In-Why-Menus	<lag	(in	Table	9.1)	allows	the	application	designer	to	determine	

that	some	commands	should	not	be	shown	to	the	user	as	part	of	“why”	menus	even	
though	they	are	undoable.	For	example,	the	Crystal	text	editor	allows	regular	typing	
to	be	undone,	but	does	not	add	this	to	the	“why”	menus.	Conversely,	normally	sub-
commands	are	not	shown	to	users	in	the	“why”	menus,	and	instead	just	the	top-level	

Dependencies Which	properties	of	which	objects	are	used	by	this	command
Invoking-Control Which	control	was	used	to	invoke	this	command
Questions-Method Supports	application-speci<ic	questions
Undoable/Undone Field	that	notes	whether	this	command	was	undone	yet
Show-In-Why-Menus Whether	this	command	should	appear	in	Why	menus



Chapter	9:	A	Whyline	for	Applications	 169

command	would	be	included.	However,	if	the	programmer	wants	to	allow	the	user	to	
ask	about	a	sub-command,	then	its	Show-In-Why-Menus	can	be	set	to	true.	An	example	is	

that	when	a	new	character	is	typed,	the	top-level	typing	command	is	not	displayed	
in	 the	“why”	menus,	but	 if	 the	new	character	 inherits	 its	 formatting	 from	a	named	
style,	 the	 programmer	 might	 want	 the	 sub-command	 that	 sets	 the	 character’s	
properties	 from	 the	 style	 to	 appear	 on	 the	 “why”	 menus,	 since	 that	 may	 be	
mysterious	 to	 some	 users.	When	 a	 command’s	 Enabled	 property	 speci<ies	 that	 it	 is	

disabled,	but	the	user	tries	to	execute	it	anyway	(e.g.,	typing Control-C	with	nothing	

selected),	 then	 a	 command	 object	 is	 put	 on	 the	 command	 list	 with	 its	 Enabled	

property	 set	 to	 false	 to	 show	 that	 it	was	 not	 actually	 executed.	 These	 unexecuted	
commands	allow	Crystal	to	support	asking	of	“why	not”	questions.	Of	course,	these	
commands	are	not	undoable,	since	they	were	never	executed.	

There	are	several	useful	side	effects	to	this	application	design.	For	example,	because	
the	 application	 knows	 all	 of	 the	 prior	 states	 of	 various	 document	 and	 application	
properties,	 implementing	 undo	 is	 extremely	 simple.	 The	 only	 practical	 difference	
between	current	application	design	and	the	design	that	Crystal	 imposes	is	that	the	
command	history	 in	Crystal	 is	never	 thrown	away.	 In	 fact,	when	a	user	 invokes	an	
undo	command,	that	command	itself	is	added	to	the	command	history.	

Generating	 question	menus	 is	 straightforward.	 The	 “why”	menu	 contains	 the	 last	
few	user	visible	items	in	the	command	history.	This	is	typically	different	than	what	
would	 be	 visible	 in	 an	 undo	 history,	 since	 unexecuted	 commands	 and	 undo	
commands	 themselves	will	 also	 appear	 in	 this	menu.	 To	 generate	 questions	 for	 a	
speci<ic	 output	 entity,	 such	 as	 a	 character	 or	 paragraph,	 Crystal	 <inds	 all	 of	 the	
output	entities	and	user	 interface	components	under	 the	mouse.	For	each	of	 these	
entities	in	the	UI	that	supports	questions,	there	are	a	number	of	types	of	questions	
included	 in	 the	 menu.	 Crystal	 includes	 questions	 about	 recent	 commands	 in	 the	
command	history	that	reference	the	selected	output.	Crystal	also	includes	questions	
about	properties	of	the	selected	output	in	a	sub	menu.	Finally,	Crystal	also	maintains	
a	history	of	 objects	 that	used	 to	be	part	 of	 a	document	but	 are	no	 longer,	 such	as	
paragraphs	or	 images	that	were	deleted.	Objects	that	are	deleted	by	the	user	 leave	
invisible	objects	where	they	used	to	be,	linked	to	the	commands	that	deleted	them.	
In	 a	 regular	 graphical	 editor,	 this	would	make	 it	 easy	 to	 ask	 about	 the	 object	 that	
used	to	be	at	a	location.	In	the	sample	text	editor,	the	objects	are	invisible	markers	
that	<low	with	the	text.	In	the	text	editor,	a	custom	method	for	whitespace	was	added	



Chapter	9:	A	Whyline	for	Applications	 170

that	adds	an	extra	question	that	asks	about	the	whitespace	itself.	Alternatively,	 the	
programmer	can	provide	special	invisible	objects	in	all	the	blank	areas,	and	let	them	
generate	questions	about	why	the	area	is	empty.	

The	 question	 answering	 algorithm	 is	 fairly	 generic.	 Questions	 about	 properties	
simply	involve	checking	the	command	responsible	for	the	property’s	current	value,	
recursively.	 Similarly,	 questions	 about	 commands	 recursively	 identify	 the	 nested	
commands	 responsible	 for	 the	 command	 in	 question,	 traversing	 the	 command	
hierarchy.	 When	 the	 property’s	 value	 is	 inherited,	 for	 example	 when	 a	 font	 size	
property	comes	 from	a	named	style,	 then	 the	answer	must	 include	a	discussion	of	
the	inheritance,	as	well	as	the	<inal	place	in	which	the	value	was	set,	as	in	Figure	9.7.	
This	 required	 a	 custom	 answer	 method	 in	 the	 sample	 text	 editor,	 to	 generate	
understandable	 messages.	 However,	 facilities	 in	 the	 Crystal	 framework	
automatically	traverse	the	command’s	Dependencies	 to	determine	the	properties	that	

contributed	 to	 the	 current	 value.	 If	 any	 of	 those	 properties	 themselves	 were	
inherited,	then	Crystal	recursively	goes	to	those	properties’	commands,	and	then	to	
their	 Dependencies,	 and	 so	 on.	 At	 each	 step,	 Crystal	 checks	 to	 see	 if	 the	 property	 is	

marked	as	Show-In-Why-Menus.	If	so,	another	sentence	is	added	to	the	answer	window.	

(Internal	 properties	 are	 often	 involved	 in	 dependencies,	 but	 should	 not	 be	 shown	
because	users	cannot	change	them.)	When	there	are	multiple	steps,	then	a	“How	can	
I…”	question	is	added	to	the	end	of	the	answer,	so	the	user	can	ask	about	each	step	
individually.		

To	 highlight	 the	 controls,	 Crystal	 needs	 the	 ability	 to	 bring	 up	 widgets	
programmatically,	set	them	to	speci<ic	values,	<ind	their	location,	and	highlight	them,	
while	 still	 having	 them	be	 operational	 for	 the	 user.	 Furthermore,	 the	 dialog	 boxes	
need	to	keep	track	of	what	causes	them	to	be	displayed,	so	Crystal	can	highlight	the	
appropriate	 menu	 item.	We	 were	 able	 to	 implement	 all	 of	 these	 using	 the	 Swing	
toolkit.	Such	support	 is	also	available	 in	other	commercial	 toolkits	such	as	Mac	OS	
X’s	 Cocoa,	where	 it	 has	 been	 used	 to	 implement	 several	 types	 of	 universal	 access	
features.	

9.4. EVALUATION 

A	 study	was	 performed	 to	 determine	whether	 the	 questions	 supported	 by	Crystal	
were	 useable	 and	 useful.	 The	 study	 was	 a	 between-participants	 design	 to	 avoid	



Chapter	9:	A	Whyline	for	Applications	 171

learning	effects.	One	group	used	 the	Crystal	word	processor	portrayed	 throughout	
this	 chapter	 and	 the	 other	 used	 an	 identical	 application	 but	without	 the	 question	
support.	 Each	 group	 had	 10	 participants,	 between	 the	 ages	 of	 18	 and	 53	with	 an	
average	age	of	24.	Twelve	participants	were	male	and	eight	female.	Participants	who	
reported	“little	or	no”	experience	with	Microsoft	Word	were	recruited,	although	they	
all	had	extensive	general	computer	experience,	and	all	but	two	had	experience	with	
other	 text	 editors.	 Those	 two	 happened	 to	 both	 be	 in	 the	 group	 with	 the	 “why”	
menus.	Participants	were	randomly	assigned	to	one	of	the	two	groups	and	were	paid	
to	participate.	The	experiment	was	conducted	on	a	laptop	and	was	recorded.	All	of	
the	materials	used	to	run	the	experiment	are	shown	in	the	Appendix.	

Both	 groups	 received	 the	 identical	 six	 tasks.	 These	 were	 derived	 from	 real	
observations	 of	 Microsoft	 Word	 users,	 published	 articles	 about	 dif<iculties	 with	
Word,	and	an	inspection	of	Microsoft's	support	pages.	The	tasks	represent	common	
issues	that	real	Word	users	encounter.	In	summary,	the	tasks	were:		

1. turn	off	automatic	capitalization;		

2. turn	off	automatic	spelling	correction;		

3. change	paragraph	formatting;		

4. explain	why	the	“Paste”	menu	item	is	grayed	out;		

5. use	the	Styles	mechanism	to	change	italics	of	some	headings;	and		

6. use	the	inheritance	property	of	the	Styles	mechanism	to	adjust	the	font	size	
of	all	headings.		

However,	the	tasks	were	not	presented	this	way.	The	experimenter	demonstrated	a	
problem	or	a	surprising	behavior	(or	let	the	user	do	it),	and	then	asked	them	to	<ix	it.	
For	example,	the	experimenter	read	the	following	script	as	the	stimulus	for	the	<irst	
task:	

• Type	in	the	following	sentence	“The	abbreviation	<l.	oz.	stands	for	<luid	
ounce.”	

• You	notice	that	the	word	processor	has	capitalized	some	characters	for	you,	
but	you	don’t	want	this	to	happen.	

• Your	task	is	to	make	the	automatic	capitalization	not	happen	again.	

• When	you	think	you’re	done,	type	“<l.	oz.	stands”	again	to	make	sure	it	works.	



Chapter	9:	A	Whyline	for	Applications	 172

In	order	to	make	the	experiment	somewhat	realistic,	Microsoft	Word	2003’s	“Tools”	
menu	and	the	“Options”	and	“Auto	Correct	Options”	dialogs	 that	are	 invoked	using	
the	Tools	menu	were	all	copied	(see	Figure	9.1).	All	of	the	submenus	and	the	various	
tabs	 on	 each	 of	 these	were	 live,	 so	 the	 users	would	 have	 to	 search	 through	more	
places.	Both	tasks	1	and	2	required	using	the	“Auto	Correct	Options”	dialog	(Figure	
9.1),	and	no	task	required	using	the	Options	dialog.	Tasks	3,	5	and	6	required	using	
the	paragraph	styles	dialog	(Figure	9.5).	The	participants	were	given	brief	 training	
on	the	‘why’	features	with	an	example	problem,	but	none	that	involved	the	details	of	
any	 of	 the	 tasks.	 The	 participants	 were	 not	 trained	 on	 the	 any	 aspects	 of	 the	
application	menus,	because	the	point	of	the	study	was	to	assess	Crystal’s	ability	to	
help	learn	these	details.		

Dependent	measures	included	time	on	task	and	task	success.	A	few	users	got	stuck	
and	 required	 hints,	 and	 they	 were	 counted	 as	 unsuccessful.	 Because	 not	 all	
participants	completed	all	tasks	successfully,	the	data	could	not	be	analyzed	using	a	
standard	repeated-measures	ANOVA.	 Instead,	both	 the	number	of	 tasks	 completed	
and	 the	mean	 time	per	 completed	 task	were	 analyzed	 using	 between-participants	
ANOVA.	 Participants	 in	 the	 “why”	menus	 condition	 completed	 an	 average	 of	 5.60	
(93%)	 of	 the	 tasks	whereas	 those	without	 “why”	menus	 completed	 an	 average	 of	
4.20	 (70%)	 of	 the	 tasks	 (F	 [1,	 20]	 =	 12.60,	 p	 <	 .005).	 	 As	 shown	 in	 Figure	 9.8,	
participants	with	“why”	menus	had	an	advantage	in	each	of	the	six	tasks.	

Figure	9.9	shows	the	average	time	per	task	for	those	participants	who	could	<inish	
it.	 	Participants	with	“why”	menus	completed	each	task	in	an	average	of	91.38	(SD	=	
51.66)	seconds,	whereas	those	without	“why”	menus	required	an	average	of	137.74	
seconds	(SD	=	49.62).	 	This	difference	approached	signi<icance	(F	[1,	20]	=	4.19,	p	=	
.06).		



Chapter	9:	A	Whyline	for	Applications	 173

The	 anomalous	 value	 for	 task	 6	 seems	 to	 be	 due	 to	 a	 few	 participants	 in	 the	
“without”	 group	 accidentally	 <iguring	 out	 a	 workable	 strategy	 during	 task	 5,	
compared	to	the	“why”	menu	group	who	almost	all	used	the	“why”	menus	to	try	to	
learn	how	inheritance	works.	

	
Figure	9.9.	For	the	participants	who	could	complete	the	task,	the	average	time	
they	took,	with	bars	showing	the	standard	error	of	the	mean.	Shorter	bars	are	
better.

	
Figure	9.8.	Percent	of	people	in	each	group	that	completed	the	tasks	and	the	
overall	average.	Taller	bars	are	better.



Chapter	9:	A	Whyline	for	Applications	 174

The	participants	who	saw	the	“why”	features	liked	them.	Each	of	the	statements	got	
an	average	agreement	value	of	greater	than	6.2	out	of	7:	“I	understand	how	to	use	
the	Why	feature	in	Crystal”,	“I	found	the	Why	feature	easy	to	use”,	“The	Why	feature	
improved	 my	 word-processing	 experience”,	 “The	 answers	 provided	 by	 the	 Why	
feature	were	easy	to	understand”,	“The	answers	provided	by	the	Why	feature	were	
what	 I	wanted	 to	 know”,	 “I	was	 comfortable	 using	 the	Why	 feature”,	 and	 “I	would	
really	like	a	Why	feature	like	this	in	the	programs	I	use.”	

Clearly,	 the	 “why”	menus	were	 helpful	 to	 users.	 It	 is	 not	 surprising	 that	 the	 later	
tasks	fared	worse,	since	these	tasks	were	quite	dif<icult,	even	for	some	experts.	For	
some	people,	the	“why”	features	played	the	crucial	role	of	explaining	the	concept	to	
some	of	the	participants,	which	directly	led	to	successful	task	completion.	However,	
Crystal	 is	 not	 necessarily	 designed	 to	 serve	 as	 a	 tutorial,	 and	 it	 probably	 did	 not	
teach	participants	about	the	concept	of	inheritance	if	they	did	not	know	it	already.	

There	 also	 were	 several	 usability	 observations	 about	 the	 system.	 Most	 of	 the	
participants	preferred	using	the	F1	key	to	have	more	control	over	the	questions	they	
could	 ask.	 It	 seemed	 that	 the	 most	 ef<icient	 people	 used	 the	 F1	 key	 <irst.	 Some	
participants	 were	 reticent	 to	 use	 the	 F1	 key—this	 apparently	 was	 not	 a	 natural	
interaction	for	them.	They	used	the	“Ask	about	a	location…”	item	in	the	“why”	menu	
when	the	desired	question	was	not	in	the	“why”	menu	directly.	

Participants	using	the	“why”	features	generally	knew	which	objects	they	should	ask	
questions	 about,	 and	 the	 questions	 that	 showed	 up	 matched	 their	 expectation.	
Participants	 without	 the	 “why”	 features	 used	 a	 lot	 of	 trial-and-error	 clicking	 of	
menus,	while	 those	with	 the	“why”	 features	did	not,	seeming	more	purposeful	and	
effective	in	their	actions.	

9.5. DISCUSSION 

By	attempting	to	adapt	the	Whyline	concept	to	regular	application	use,	a	number	of	
interesting	issues	were	raised.	For	example,	it	became	obvious	that	what	to	show	in	
a	 Whyline	 answer	 depends	 a	 lot	 on	 what	 the	 user	 asking	 the	 question	 will	
understand	and	be	willing	or	able	to	change.	In	the	Alice	Whyline,	any	line	of	code	
that	the	user	could	change	could	potentially	be	part	of	a	Whyline	answer.	For	Crystal,	
it	 was	 important	 only	 to	 include	 program	 execution	 events	 that	 the	 user	 would	
recognize	 either	 because	 they	 were	 responsible	 for	 them	 or	 the	 application	 had	



Chapter	9:	A	Whyline	for	Applications	 175

some	setting	that	they	could	modify.	One	way	to	characterize	this	class	of	execution	
events	is	that	they	included	all	events	and	state	at	the	level	of	event	handlers,	in	the	
word	processors	 implementation.	Any	data	 structure	 the	event	handlers	used	was	
subject	 to	 questioning,	 whereas	 data	 internal	 to	 the	 implementation	 and	
manipulation	of	such	data	was	not.	

The	 word	 processing	 domain	 also	 revealed	 that	 in	 designing	 a	Whyline	 tool,	 one	
must	have	a	deep	knowledge	of	the	nature	of	a	domain’s	output.	This	issue	arose	in	
making	tradeoffs	in	question	support,	as	was	done	by	not	including	questions	about	
typing	events,	 in	order	to	make	the	menus	of	reasonable	size.	These	same	kinds	of	
tradeoffs	were	made	in	the	Java	Whyline	(Chapter	10),	again	using	knowledge	about	
the	 types	 of	 output	 supported.	 In	 many	 cases,	 it	 was	 only	 clear	 what	 types	 of	
questions	would	be	useful	because	we	had	an	intuition	about	common	problems	in	
the	word	processing	domain.	Were	one	to	design	a	Whyline	tool	for	Photoshop	one	
would	 probably	 need	 considerable	 Photoshop	 experience	 to	 choose	 the	 right		
granularity	of	primitives	for	questions.	

9.6. SUMMARY 

The	 Crystal	 approach	 is	 an	 example	 of	 using	 the	Whyline	 concept	 to	 help	 people	
understand	application	behavior.	Adapting	 the	Whyline	 concept	 to	 application	use	
resulted	in	several	contributions:	

• Answering	algorithms	that	explain	causality	in	terms	of	user	modi<iable	
document	and	application	state.	

• Interaction	techniques	for	asking	questions	about	document	and	application	
entities,	whitespace,	and	global	events.	

• A	software	architecture	for	augmenting	a	conventional	undo	stack	with	
information	about	command	histories	and	the	data	they	depended	on	for	
execution.	

• Evidence	that	Crystal	users	are	signi<icantly	more	effective	at	resolving	
common	issues	with	complex	and	automated	features	of	a	word	processor	
than	users	of	regular	online	help.	



10.

A WHYLINE FOR JAVA  15

While	the	prototypes	discussed	in	previous	chapters	were	quite	successful,	they	left	
unexplored	 the	 challenges	 of	 generalizing	 the	 Whyline	 concept	 to	 programming	
languages	 typically	 used	 by	 professional	 programmers.	 These	 challenges	 are	
numerous:	<irst,	the	increased	complexity	of	the	languages	and	the	programs	written	
in	these	languages	mean	that	the	answers	to	Whyline	questions	are	likely	to	be	more	
complex.	Supporting	the	variety	of	programs	that	can	be	written	in	general	purpose	
languages	 also	 means	 that	 the	 Whyline	 must	 support	 questions	 about	 a	 wider	
variety	of	output	and	in	a	generic	way,	since	the	output	of	a	particular	program	will	
not	be	known	in	advance.	

To	 explore	 these	 challenges,	 the	 <inal	 Whyline	 prototype	 described	 in	 this	
dissertation	 supports	 desktop	 Java	 programs.	 The	 prototype	 supports	 graphical	
output	 drawn	 as	 pixels	 on	 a	 display,	 textual	 output	 printed	 to	 a	 console,	 and	 Java	
exceptions.	 In	 designing	 the	 prototype,	 a	 number	 of	 unique	 algorithms	 and	 data	
structures	 needed	 to	 be	 designed	 and	 there	 were	 several	 HCI	 challenges	 that	
constrained	its	design.	This	chapter	discusses	these	contributions	in	detail	and	then	
explores	 the	 effectiveness	 of	 the	 prototype	 compared	 to	 conventional	 Java	
debugging	tools.	

 Details in this chapter appear in part in [Ko 2008a] and [Ko 2008b].15



Chapter	10:	A	Whyline	for	Java	 177

10.1. AN EXAMPLE 

To	motivate	the	implementation,	let	us	begin	with	an	example	of	the	Java	Whyline	in	
use.	The	study	in	Chapter	5	involved	a	simple	painting	application,	which	supported	
drawing	colored	strokes	(see	Figure	10.1a).	Among	the	500	lines	of	code,	there	were	
a	few	bugs	in	the	program	unintentionally	inserted,	which	were	left	in	for	the	study.	
One	 problem	 was	 that	 the	 RGB	 color	 sliders	 did	 not	 create	 the	 right	 colors.	
Participants	 took	 a	median	of	 10	minutes	 (from	3	 to	38)	 to	 <ind	 the	problem;	 the	
high	variation	in	times	was	largely	due	to	their	strategies:	most	used	text	searches	
for	“color”	to	<ind	relevant	code,	revealing	62	matches	over	9	<iles;	others	manually	
followed	data	dependencies,	sometimes	using	breakpoints.	

With	 the	Whyline,	 the	 process	would	 be	 greatly	 simpli<ied	 (see	 Figure	 10.1).	 The	
user	simply	demonstrates	the	behavior	they	want	to	 inquire	about	(a),	 in	this	case	
by	drawing	a	stroke	that	exhibits	the	wrong	color.	The	user	then	quits	the	program	
and	the	trace	is	automatically	loaded	by	the	Whyline.	The	user	then	<inds	the	point	
in	time	they	want	to	ask	about	by	moving	the	time	controller,	the	black	vertical	bar	
in	 (b).	 Then,	 they	 click	 on	 something	 related	 to	 the	 behavior	 to	 pop	 up	 questions	
about	 it	 (c).	 In	 this	 case,	 they	 could	 click	 on	 the	 stroke	 with	 the	 wrong	 color,	

resulting	in	the	question,	“why	did	this	line’s	color	=	■?”	

After	 clicking,	 the	 Whyline	 shows	 a	 visualization	 explaining	 the	 sequence	 of	
executions	that	caused	the	stroke	to	have	its	color	(d)(e).	This	visualization	includes	
assignments,	 method	 invocations,	 branches,	 and	 other	 events	 that	 cause	 the	
behavior.	When	the	user	selects	an	event,	the	corresponding	source	<ile	is	shown	(f),	
along	with	the	call	stack	and	locals	at	the	time	of	the	selected	execution	event	(g).	In	
this	 case,	 the	Whyline	 selects	 the	most	 recent	 event	 in	 the	 answer,	which	was	 the	
color	object	used	to	paint	the	stroke	(d).	To	<ind	out	where	the	color	came	from,	the	
user	 could	 <ind	 the	 source	 of	 the	 value	 selecting	 the	 label	 “(1)	 why	 did	 color	 =	
rgb(0,0,0)”	(d).	This	causes	the	selection	to	go	to	the	instantiation	event	(e)	and	the	
corresponding	 instantiation	 code	 (f).	 Here,	 the	 user	 would	 likely	 notice	 that	 the	
green	slider	was	used	for	the	blue	component	of	the	color;	 it	should	have	used	the	
blue	slider.	

Figure	10.1.	Using	the	Whyline:	(a)	The	developer	demonstrates	the	behavior;	
(b)	after	the	trace	loads,	the	developer	Zinds	the	output	of	interest	by	
scrubbing	the	I/O	history;	(c)	the	developer	clicks	on	the	output	and	chooses	a	
question;	(d)	the	Whyline	provides	an	answer,	which	the	developer	navigates	



Chapter	10:	A	Whyline	for	Java	 178

(e)	in	order	to	understand	the	cause	of	the	behavior	(f).	(g)	shows	the	call	
stack.	

In	 a	 user	 study	 of	 this	 task,	 reported	 at	 the	 end	 of	 this	 chapter,	 people	 using	 the	
Whyline	took	half	the	time	that	participants	with	traditional	tools	took	to	debug	the	
problem.	 This	 was	 because	 participants	 did	 not	 have	 to	 guess	 a	 search	 term	 or	
speculate	about	the	relevance	of	various	matches	of	their	search	term,	nor	did	they	

a

e

f

b

c

d

g



Chapter	10:	A	Whyline	for	Java	 179

have	 to	 set	 any	 breakpoints.	 Instead,	 they	 simply	 pointed	 to	 something	 that	 they	
knew	was	relevant	and	wrong,	and	let	the	Whyline	determine	the	related	evidence.	

10.2. USER INTERFACE 

Before	 discussing	 the	 implementation	 in	 detail,	 this	 section	 documents	 the	many	
interactive	details	of	the	Whyline	user	interface.	

10.2.1. RECORDING A PROGRAM EXECUTION 

When	starting	the	Whyline,	the	user	<irst	sees	the	screen	shown	in	Figure	10.2.	This	
window	has	 two	 sides:	 the	 left	 lists	 the	 user’s	 launch	 conJigurations	and	 the	 right	
lists	saved	recordings.	(Recordings	can	be	saved	and	named	after	the	recording	has	
loaded;	each	recording	has	a	unique	name,	since	the	same	launch	con<iguration	can	
be	 run	 and	 recorded	 multiple	 times,	 demonstrating	 different	 problems).	 Saved	
recordings	 can	 be	 loaded	 by	 just	 selecting	 the	 saved	 recording	 from	 the	 list	 and	
pressing	the	appropriate	loading	button	at	the	bottom	of	the	main	Whyline	window.	

To	 begin	 using	 the	Whyline	 for	 a	 new	 program,	 a	 user	must	 <irst	 create	 a	 launch	
con<iguration,	 so	 that	 the	Whyline	 knows	how	 to	 execute	 the	program	 (this	 is	 the	
same	 process	 used	 by	 most	 modern	 software	 development	 environments).	 This	
launch	con<iguration	window	is	shown	in	Figure	10.3.	 	Each	con<iguration	takes	the	
root	 folder	 of	 the	 program	and	 the	 relative	 paths	 to	 the	 program’s	 compiled	 class	
<iles	 and	original	 source	 <iles.	 The	user	 also	must	 specify	 the	 class	with	 the	 main()	

method	to	execute	and	the	arguments	to	pass	to	it.	

In	addition	 to	 these	basic	options,	 the	user	can	also	specify	how	much	memory	 to	
launch	the	program	with,	as	well	as	a	list	of	class	names	and	package	pre<ixes	to	skip	
during	 the	 instrumentation	process.	 This	 allows	 the	user	 to	 control	which	 code	 is	
recorded	and	which	is	not.	By	default,	everything	in	the	user’s	program	is	recorded,	
as	well	as	all	libraries	loaded	by	the	program	at	runtime.	The	defaults	in	Figure	10.3	
are	<ine,	since	the	paths	to	the	source	<iles	and	classes	are	contained	within	the	Paint	
directory	 speci<ied	 for	 “project	 location”;	 if	 they	were	not	 at	 the	 root	 folder,	 these	
<ields	would	contain	the	relative	paths	to	the	root	of	the	source	<iles	and	class	<iles.	

Once	 the	 con<iguration	 is	 complete,	 the	 user	 simply	 clicks	 the	 “Record”	 button	 in	
Figure	 10.2	 and	 the	 Whyline	 launches	 the	 program	 in	 a	 separate	 Java	 virtual	



Chapter	10:	A	Whyline	for	Java	 180

machine.	 The	 user	 then	 demonstrates	 the	 behavior	 that	 they	want	 to	
understand,	 and	when	 <inished,	 quits	 the	 program.	 The	Whyline	 knows	when	 the	
program	 has	 halted	 (using	 platform-independent	 Java	 mechanisms	 to	 watch	
platform-speci<ic	 processes)	 and	 then	 reads	 the	 recording	 from	 the	 disk,	 also	
opening	 a	Whyline	window	 that	 represents	 the	 recording.	 Progress	 is	 shown	 in	 a	
simple	progress	bar,	as	 in	Figure	10.4.	Loading	 time	depends	on	 the	complexity	of	
the	program	execution	that	was	recorded.	User	interfaces,	which	are	often	idle,	are	
fairly	 lightweight;	 computationally	 dense	 programs,	 such	 as	 compilers,	 can	 take	
much	 longer,	since	 there	 is	more	data	 to	 load	and	process	(see	[Zhang	2004]	 for	a	
more	detailed	performance	analysis	of	such	programs).	

10.2.2. ASKING QUESTIONS 

A	Whyline	window	represents	all	of	the	data	in	a	Whyline	recording.	There	are	two	
basic	 modes	 for	 this	 window:	 question	 asking	 mode,	 which	 shows	 the	 program	
output	 and	 a	 time	 slider	 and	 nothing	 else,	 and	 answer	 mode,	 which	 shows	 a	
visualization,	 source	 code	 and	many	 other	 types	 of	 runtime	 information.	 It	was	 a	
conscious	decision	 to	only	 show	program	output	 in	question	 asking	mode,	 as	 it	 is	

Figure	10.3.	The	launch	conZiguration	window.

	

Figure	10.4.	The	loading	progress	bar	in	the	
Whyline	window.



Chapter	10:	A	Whyline	for	Java	 181

important	for	developers	to	begin	their	search	by	working	backwards	from	output.	
As	explained	 in	Chapter	7,	 if	 the	search	begins	at	 the	 level	of	code,	developers	are	
prone	to	overlooking	problems	by	making	assumptions	about	what	information	they	
see	in	program	output.	

In	 the	 Java	 Whyline	 question	 asking	
mode,	 there	 are	 three	 output	 tabs:	
graphics,	 console,	 and	 exception.	 The	
Whyline	 initially	 shows	 whichever	 tab	
contains	 the	 most	 number	 of	 output	
events.	When	 hovering	 over	 output	with	
the	 mouse	 in	 any	 of	 the	 three	 output	
modalities,	 the	 Whyline	 highlights	
individual	 pieces	 of	 primitive	 level	
output.	 For	 example,	 Figure	 10.5	 shows	
an	individual	line	segment	highlighted	as	
part	of	a	 larger	 line	stroke,	an	 individual	
value	printed	from	a	variable	in	a	console,	
and	also	an	exception	thrown.	Clicking	on	
any	 of	 these	 types	 of	 output	 shows	 a	
menu	 of	 questions	 about	 the	 content	
underneath	the	mouse.	

The	types	of	questions	supported	depend	
on	 the	 type	 of	 output.	 For	 graphical	
output,	users	can	ask	questions	about	the	
properties	 of	 primitive	 output	 (Figure	

10.6),	about	 <ields	 that	affect	output	and	their	current	value	or	why	they	were	not	
assigned	after	a	certain	time	(Figure	10.7).	Users	can	also	ask	questions	about	why	
particular	methods	were	not	executed	after	a	certain	time.	Also	notice	in	Figure	10.7	
that	the	questions	largely	consist	of	names	extracted	from	the	source	code	(such	as	
PaintCanvas “canvas”);	 the	 idea	 of	 including	 class	 and	 variable	 names	 in	 the	menus	

came	 from	 the	 information	 foraging	 results	 in	 Chapter	 5.	 Including	 such	 names	
should	 help	 developers	 <ind	 the	 questions	 they	want	 to	 ask	more	 easily	 by	 giving	
them	more	cues	about	the	relevance	of	the	contents	of	each	sub-menu.	

	

	

Figure	10.5.	Hovering	over	graphical,	
textual,	and	exception	output.	The	
graphical	and	textual	output	both	
include	pop-ups	indicating	the	
temporal	context	of	the	output	(such	
as	“after	this	was	printed”	and	“after	
this	window	repainted”).



Chapter	10:	A	Whyline	for	Java	 182

For	 textual	 and	 graphical	 output,	 users	 can	 ask	 questions	 about	 why	 text	 was	
printed	and	why	an	exception	was	thrown.	There	is	also	limited	support	for	asking	
why	some	 text	was	not	printed,	by	 <inding	 the	desired	 text	 in	a	global	menu	of	all	
print	 statements	 in	 a	 program.	 The	 implementation	 section	 later	 in	 this	 chapter	
explains	about	how	these	questions	are	derived.	

Another	 factor	 in	 asking	 questions	 other	 than	 the	 subject	 of	 the	 question	 is	 the	
temporal	 context	 of	 the	 question.	 The	 Java	 Whyline	 provides	 a	 time	 slider,	 as	 in	
Figure	10.8,	to	allow	the	user	to	explore	the	output	history	of	the	program	by	simply	
dragging	the	cursor	with	the	mouse	or	using	the	keyboard	arrows	to	step	between	
individual	 I/O	 events.	 Each	 black	 dots	 in	 the	 time	 slider	 represents	 a	 single	 I/O	
event,	such	as	a	mouse	click,	a	keyboard	press,	or	a	window	repaint.	There	are	also	
several	 icons	 at	 the	 top	 of	 the	 time	 slider,	 each	 representing	 a	 particular	 kind	 of	
input	or	output.	Figure	10.8	shows	the	mouse	move	event	<ilter	selected,	so	that	only	
drag	events	are	shown	in	the	slider	and	only	mouse	move	events	are	selectable.	This	
allows	 the	 user	 to	 easily	 <ind	 particular	 kinds	 of	 events,	 ignoring	 those	 of	 a	 type	
irrelevant	to	the	problem	being	investigated.	

When	asking	a	question,	 time	 is	 treated	differently	depending	on	 the	 intent	of	 the	
question.	 For	 positively	 phrased	 “why	did”	 questions,	 the	 user	 needs	 to	 select	 the	
time	at	which	the	output	 in	question	 is	visible	 in	order	to	select	 the	output.	These	
“why	did”	questions	then	reason	backwards	about	the	cause	of	the	output	prior	to	

	

Figure	10.6.	Questions	about	properties	of	a	rectangle.

	
Figure	10.7.	Questions	about	Zields	and	methods	that	indirectly	affect	output.

	

Figure	10.8.	The	time	slider,	showing	only	mouse	events	(the	left-most	icon	is	
selected,	indicating	this	Zilter).



Chapter	10:	A	Whyline	for	Java	 183

the	 time	 the	 output	 was	 rendered.	 The	 top	 of	 Figure	 10.9	 shows	 the	 Whyline’s	
highlighting	to	indicate	this	fact.	Conversely,	“why	didn’t”	ask	about	why	something	
did	not	occur	or	change	after	a	particular	point	in	time.	As	in	the	bottom	of	Figure	
10.9,	 these	 questions	 reason	 in	 a	 forward	 direction	 about	 code	 that	 should	 have	
executed	after	 the	selected	time.	These	distinctions	differ	 from	the	behavior	of	 the	
Alice	Whyline,	which	required	the	user	to	pause	the	execution	of	the	program	at	the	
desired	time.	“Why	did”	questions	in	the	Alice	Whyline	always	reasoned	backwards	
from	the	paused	time,	whereas	“why	didn’t	questions”	always	reasoned	globally	 to	
the	whole	 execution	 history,	 rather	 than	 being	 scoped	 after	 the	 paused	 time.	 This	
was	because	Alice	programs’	executions	are	often	more	simple,	in	that	they	involve	
far	fewer	instruction	executions.	

The	Alice	Whyline	 (Chapter	8)	 and	Crystal	 (Chapter	9)	both	 contained	global	why	
menus.	The	Java	Whyline	does	not,	since	there	are	too	many	events	that	occur	within	
a	Java	program’s	execution	globally.	Having	the	user	<irst	choose	a	particular	output	
at	a	particular	time	is	central	to	providing	a	reasonably	sized	question	menu.	

“why	did”	
questions	
analyze	the	
past

“why	didn’t”	
questions	
analyze	the	
future

Figure	10.9.	Time	relatively	for	positively	and	negatively	phrased	questions.



Chapter	10:	A	Whyline	for	Java	 184

10.2.3. VIEWING CODE 

When	 presenting	 answers	 like	 the	 one	 in	 Figure	 10.1,	 part	 of	 the	 answer	 is	 the	
source	 code	 shown	 at	 the	 top	 of	 the	 Whyline	 window.	 The	 view	 of	 source	 is	 a	
standard	syntax	colored,	<ixed	width	view,	but	is	not	a	source	code	editor	(all	of	the	
data	in	a	Whyline	recording	is	immutable).	Instead,	it	offers	a	number	of	interactive	
features	to	make	it	easy	to	read,	understand,	and	highlight.	

First	and	foremost,	source	<iles	are	broken	down	into	lines	and	tokens	for	rendering	
onto	 the	 screen.	This	 allows	 the	Whyline	 to	have	precise	 control	over	highlighting	
and	 transparency	 so	 that	 speci<ic	 information	 can	 be	 highlighted	 with	 ease.	 For	
example,	the	Whyline	can	highlight	the	boundaries	of	even	the	complicated	method	
header	 shown	 in	 Figure	 10.10,	 because	 it	 knows	 about	 the	 individual	 visual	
boundaries	of	each	token	 in	 the	source	 <ile.	Figure	10.10	also	shows	the	Whyline’s	
support	for	indicating	unfamiliar	Jiles	by	crosshatching	the	window	(unfamiliarity	is	
described	in	Section	10.3.6).	

When	 a	 user	 is	 mousing	 over	 a	 source	 <ile,	 there	 are	 three	 types	 of	 selectable	
content:	tokens,	lines,	and	methods.	All	identi<ier	tokens	are	selectable;	hovering	over	
a	non-selectable	 token	selects	 the	 line.	Hovering	over	any	of	 the	whitespace	 in	 the	
<ile	selects	the	enclosing	method,	if	there	is	one.	These	three	types	of	selections	are	
shown	in	Figure	10.11.	

 

Figure	10.10.	Token	level	highlighting	in	the	Java	Whyline	source	viewer	and	
crosshatching	over	an	unfamiliar	source	Zile.



Chapter	10:	A	Whyline	for	Java	 185

Each	type	of	selection	supports	a	different	set	of	context	menu	commands.	Clicking	
on	 an	 identi<ier	 shows	 questions	 about	 the	 variables	 current	 value	 (based	 on	 the	
time	 slider	 position)	 as	 well	 as	 static	 questions	 about	 its	 uses	 in	 the	 program	
(whether	a	<ield,	local,	or	global).	Clicking	on	a	line	allows	bookmarking	or	copying	
the	line	to	the	clipboard.	Clicking	on	the	whitespace	of	a	method	supports	questions	
about	the	methods	callers	and	overridden	method,	among	other	commands.	These	
commands	 are	 typically	 found	 in	 modern	 software	 development	 environments.	
Figure	10.11	also	shows	the	source	<ile	view’s	support	for	revealing	the	method	that	
one	 is	 in	 if	 the	header	 is	offscreen	(the	method	getBoundingBox	 is	partially	visible	on	

the	 top	 of	 the	windows,	 and	 the	Whyline	 shows	 its	 header	 at	 the	 top	 of	 the	 <irst	
source	<ile	view).	

	

	

	
Figure	10.11.	Three	types	of	selections	(tokens,	lines,	and	methods)	and	the	
menus	for	each	shown	upon	clicking.



Chapter	10:	A	Whyline	for	Java	 186

For	each	selected	execution	event	in	a	Whyline	visualization	(discussed	in	the	next	
section	but	also	brie<ly	in	the	earlier	example),	the	Whyline	automatically	arranges	
relevant	 source	 <iles	 in	 the	 source	 <ile	 viewing	 space.	 For	 example,	 Figure	 10.12	
shows	 two	 <iles	arranged	by	 the	Whyline	automatically.	Rather	 than	have	 the	user	
manually	 <ind	 relevant	 <iles	 and	 manually	 arrange	 them	 onscreen,	 the	 Whyline	
organizes	 the	 <iles	 to	 optimize	 the	 readability	 and	 highlighting	 of	 relevant	
information	the	user	has	selected.	

	

10.2.4. PRESENTING ANSWERS 

For	 every	 given	Whyline	 answer,	 the	 companion	 to	 the	 source	 <iles	 is	 the	 timeline	
visualization.	 The	 value	 of	 the	 visualization	 can	 be	 seen	 from	 a	 few	 different	
perspectives.	From	one	perspective,	 it	organizes	relevant	events	temporally	and	by	
thread,	 providing	 a	 concise	 view	 of	 the	 important	 execution	 events	 related	 to	 the	
subject	of	the	user’s	question.	This	 is	the	way	that	some	people	use	it.	Other	users	
view	 the	 visualization	merely	 as	 a	 temporally	 organized	 bookmarking	 tool,	where	

	
Figure	10.12.	Some	event	selections	will	show	multiple	Ziles,	if	multiple	Ziles	
are	relevant	to	the	selection.	The	example	above	shows	both	the	use	of	the	
Zield	color	and	the	assignment	to	the	Zield	color,	because	the	user	has	selected	
a	question	about	why	the	Zield	color	had	its	current	value.



Chapter	10:	A	Whyline	for	Java	 187

they	 can	 leave	 a	 trail	 of	 all	 of	 the	 places	 that	 they	 have	 explored	 in	 the	 code	 and	
easily	 return	 to	 those	places	by	 selecting	an	event	 in	 the	visualization.	 In	 fact,	 the	
visualization	was	explicitly	designed	as	a	navigational	aid,	to	help	users	understand	
the	relationship	between	events	that	occurred	at	runtime	and	the	code	that	caused	
these	events.	

Each	 visualization	 is	 structured	 as	 a	 sequence	 of	 events,	 along	 with	 a	 set	 of	
unexecuted	 instructions	 attached	 on	 the	 right.	 The	 events	 do	 not	 overlap	
horizontally	 (since	 code	 does	 not	 technically	 execute	 in	 parallel,	 though	 some	
processors	 do	 this	 at	 the	 hardware	 level)	 and	 are	 separated	 by	 thread	 in	 vertical	
rows.	Figure	10.13	 shows	events	occurring	 in	 three	different	 threads,	 the	name	of	
each	thread	appearing	at	the	left	of	the	events	that	occurred	in	the	thread.	

There	 are	 several	 types	 of	 events	 that	 appear	 in	 a	Whyline	 visualization,	 each	 of	
which	has	a	particular	 color	 (as	 shown	 in	Figure	10.14).	Orange	always	highlights	
information	 about	 the	 current	 selected	 event	 in	 the	 visualization	 (orange	 also	
highlighting	 the	 corresponding	 code	 in	 the	 source	 <iles	 above	 the	 visualization).	
Events	with	green	borders	refer	to	control	dependency	events,	such	as	method	calls	
and	branches	(such	as	if	 statements	and	 loops).	Events	with	blue	borders	refer	 to	

data	 dependency	 events,	 such	 as	 assignments	 to	 different	 types	 of	 Java	 variables.	
Grey	events	are	code	 that	was	not	 recorded	by	 the	Whyline	and	events	with	cross	

The	current	selection

Why	the	selection	was	reached	(control)

Values	that	the	selection	used	(data)

Code	that	the	Whyline	didn’t	record

//////////////	API	calls	////////////////

Figure	10.14.	The	meaning	of	various	
colors	in	the	Java	Whyline.



Chapter	10:	A	Whyline	for	Java	 188

hatching	(slanted	vertical	lines)	refer	to	API	calls	(code	for	which	editable	source	is	
unavailable).	In	addition	to	colored	borders,	there	are	certain	notations	used	in	the	
visualization	 to	mimic	 Java	 syntax.	 For	 example,	 in	 Figure	 10.13,	 parentheses	 are	
used	 to	 group	 arguments	 passed	 to	 method	 calls	 (“static”	 refers	 to	 a	 class	
initialization	 method,	 which	 has	 no	 arguments).	 Curly	 braces	 are	 used	 to	 group	
events	that	occurred	within	a	particular	method	call,	as	in	Figure	10.13;	these	can	be	
nested	 if	 the	visualization	contains	nested	method	calls	 (a	call	 stack	depth	greater	

than	one).	Also,	the	“●	●	●”	in	the	visualization	indicates	that	other	events	occurred	
between	the	ones	currently	visible	in	the	application.	Clicking	on	the	ellipses	reveals	
the	most	recent	hidden	event.	

There	 are	 many	 ways	 to	 interact	 with	 a	 Whyline	 visualization.	 From	 any	 given	
selection,	 clicking	on	any	other	event	 changes	 the	 selection	and	using	 the	 left	 and	
right	arrow	keys	navigates	to	previous	and	next	events	shown	in	the	visualization,	if	
there	 are	 any.	 The	 study	 in	 Chapter	 6	 found	 that	 “peeking”	 at	 a	 control	 or	 data	
dependency,	and	then	returning	back	to	a	line	of	code	was	quite	common.	Therefore,	
for	every	action	affecting	the	selection	in	the	prototype,	backspace	always	goes	back	to	

the	prior	selection,	giving	users	con<idence	that	they	will	be	able	to	return	to	their	
previous	location	after	a	navigation.	These	types	of	interactions	will	not	change	the	
visualization	 in	any	way	and	can	be	used	 to	navigate	between	code	and	execution	
events	that	one	has	already	explored.	

For	 every	 event	 selection,	 the	Whyline	 also	 shows	 a	number	of	 followup	questions	
about	 the	 event.	 Figure	 10.15	 shows	 an	 event	 that	 refers	 to	 a	 reference	 to	 a	 color	

<ield,	and	three	followup	questions	are	shown.	The	<irst,	which	is	in	green,	asks	why	
the	 reference	 to	 the	 color	 <ield	was	 executed;	 this	 is	 the	 control	 dependency	of	 the	

event.	Choosing	this	shows	the	conditional	or	method	call	that	led	to	this	reference	
(in	the	<igure,	it	was	the	call	to	paint(),	as	indicated	by	the	green	arrow).	The	other	

two	questions	in	Figure	10.15	refer	to	data	that	was	used	to	execute	the	reference	to	
color,	 namely	 the	object	of	 the	 <ield	 that	was	 referred	 to	and	 the	value	of	 the	 <ield	

itself.	These	are	the	two	data	dependencies	of	the	<ield	reference.	By	default,	asking	
either	 of	 these	 two	 questions	will	 show	 the	origin	 of	 the	 value	 referred	 to	 in	 the	
question.	This	adds	the	originating	event	to	the	visualization,	selects	the	event,	and	
thus	shows	that	event’s	corresponding	source	 <iles.	The	origin	 is	essentially	where	
the	 value	 is	 computed,	 skipping	 over	 all	 of	 the	 other	 places	 that	 the	 unmodi<ied	
value	 was	 passed	 through	 the	 source	 code.	 If	 the	 user	 desires	 to	 follow	 these	



Chapter	10:	A	Whyline	for	Java	 189

individual	steps,	 they	can	hold	shift	and	choose	the	question	to	see	the	direct	data	

dependency,	rather	than	the	originating	data	dependency.	

Aside	from	asking	followup	questions,	there	are	several	other	ways	to	navigate	from	
a	selected	event	in	the	visualization.	These	are	listed	in	Table	10.1.	Many	of	these	are	
supported	 to	 mimic	 some	 of	 the	 stepping	 commands	 found	 in	 a	 conventional	
breakpoint	debugger.	For	example,	<	and	>	navigate	to	the	previous	and	next	event	in	

a	method,	much	 like	 the	“step	over”	command	 in	a	breakpoint	debugger.	The	meta-

left	and	meta-right	 shortcuts	navigate	 to	 the	previous	and	next	event	 in	 the	thread,	

like	 the	 “step	 into”	 command	 in	 a	 debugger.	 All	 of	 these	 commands	 will	
automatically	 add	 the	new	event	 to	 the	visualization	and	 select	 it.	 Currently	 there	
are	no	interaction	techniques	for	removing	an	event	from	the	visualization	once	its	
added,	but	this	is	an	obvious	and	simple	addition.	

key action
left go	to	previous	event
right go	to	next	event
< go	to	previous	event	in	method	call
> go	to	next	event	in	method	call
meta-left go	to	previous	event	in	thread
meta-right go	to	next	event	in	thread
up arrow go	to	event	that	caused	selection	to	execute
down arrow go	to	event	that	selection	caused	to	execute
[ or backspace go	to	previous	selection	(back)
] go	to	next	selection	(forward)
any digit go	to	source	of	value
meta + any digit go	to	direct	producer	of	value

	

Figure	10.15.	Followup	questions	about	the	selected	execution	event.



Chapter	10:	A	Whyline	for	Java	 190

By	default,	the	Whyline	also	hides	information	that	the	user	would	<ind	unfamiliar	or	
irrelevant.	 For	 example,	 when	 <irst	 showing	 a	 causal	 chain,	 the	 Whyline	 shows	
causes	 on	 demand,	 rather	 than	 everything	 at	 once.	 It	 also	 collapses	 events	 that	
occurred	 in	 unfamiliar	 methods	 (using	 the	 same	 de<inition	 as	 in	 question	
derivation),	effectively	black	boxing	API	calls	and	other	code	for	which	the	developer	
has	 no	 source	 (Figure	 10.16.1).	 In	 addition,	 if	 events	 from	 familiar	 code	 occur	 in	
methods	 that	were	 called	by	unfamiliar	methods	 (for	 example,	 a	 user-de<ined	 call	
back	method	called	by	an	API),	those	events	are	shown,	but	the	surrounding	calling	
context	 is	 not	 (Figure	 10.16.2).	 Both	 of	 these	 <iltering	 mechanisms	 dramatically	
reduce	 the	 number	 of	 events	 presented	 in	 a	 dynamic	 slice	 (a	 major	 criticism	 of	
slicing	 in	 the	 past	 [Baowen	 2005]).	 One	 could	 argue	 that	 it	 gives	 just	 the	 right	
amount	 of	 information,	 assuming	 the	 familiarity	 metric	 is	 right;	 after	 all,	 if	
everything	in	a	slice	is	familiar,	anything	in	that	slice	might	be	a	candidate	for	a	bug	
<ix.	(The	results	in	the	study	discussed	later	in	this	chapter	are	consistent	with	this	
claim).	 Another	 form	 of	 <iltering	 is	 to	 only	 include	 certain	 types	 of	 events	 in	 the	
causal	 chains.	 These	 include	 invocations,	 branches,	 returns,	 argument	 values,	 and	

escape collapse/expand	sequence	of	events
b bookmark	the	line	of	the	current	selection	

key action

Table	10.1.		Keyboard	commands	supported	in	the	Whyline	visualization.	



Chapter	10:	A	Whyline	for	Java	 191

assignments,	 but	 not	 uses	 of	 variables	 or	 the	 results	 of	 computation.	 These	 latter	
two	are	visible	statically	from	the	code,	and	thus	redundant.	

For	 “why	 didn’t”	 answers,	 the	 Whyline	 also	 includes	 instructions	 that	 were	 not	
executed	(Figure	10.16.3).	This	represents	a	subgraph	of	the	call	graph	that	needed	
to	execute	for	the	output	in	question	to	occur.	When	selected,	the	Whyline	shows	the	
code	 for	 the	 unexecuted	 instruction,	 and	 draws	 arrows	 from	 the	 instructions	 that	
could	have	caused	 the	selection	 to	execute.	The	Whyline	 includes	events	when	 the	
answer	 includes	 a	 conditional	 or	 call	 that	 branched	 in	 the	 wrong	 direction.	 For	
example,	in	Figure	10.16.4,	the	Whyline	shows	that	an	instruction	was	not	executed	
because	the	conditional	evaluated	to	true.	

10.2.5. OTHER WINDOWS 

There	are	a	number	of	supportive	tools	included	
in	 the	 Whyline	 window	 once	 an	 answer	 is	
shown.	The	source	 <ile	outline,	 shown	 in	Figure	
10.17,	 shows	 all	 of	 the	 source	 <iles	 in	 the	
program,	 allowing	 the	 user	 to	 expand	 and	
collapse	 different	 Java	 packages	 and	 select	 <iles	
in	order	 to	display	 them	 in	 the	source	 <ile	area.	
Expanding	a	<ile	shows	the	methods	contained	in	
the	<ile.	

The	Whyline	window	also	 contains	 a	 simpli<ied	
view	 of	 the	 program	 output	 and	 time	 cursor,	
(Figure	 10.18)	 allowing	 the	 user	 to	 explore	 the	
output	history	for	reference.	The	orange	vertical	

line	in	the	timeline	shows	the	position	of	the	selected	event	in	the	program’s	overall	
execution	history.	

2 1
3

4 Figure	10.16.	An	answer	showing	(1)	a	collapsed	invocation,	(2)	a	hidden	call	
context,	(3)	several	instructions	not	executed	and	(4)	a	conditional	that	
evaluated	in	the	wrong	direction,	preventing	the	desired	instruction	from	
executing.

	

Figure	10.17.	The	source	Zile	
outline	and	search	Zield.



Chapter	10:	A	Whyline	for	Java	 192

When	showing	an	answer,	the	Whyline	
also	 provides	 an	 integrated	 view	 of	
each	 active	 thread,	 each	 thread’s	 call	
stack,	 each	 call’s	 local	 variables,	 and		
the	 <ield	 state	 for	 each	 local	 variable	
pointing	 to	 an	 object	 (Figure	 10.19).	
The	 state	 of	 this	 view	 is	 based	 on	 the	
current	 selection	 in	 the	 visualization.	
This	way,	 the	 user	 can	 easily	 navigate	
between	 different	 states	 in	 the	
program	 and	 see	 the	 call	 stack	 state	
and	 changes	 to	 variables	 and	 object	
state.	 There	 are	 a	 few	 buttons	 above	
this	view.	When	a	method	call	in	the	call	stack	is	selected,	the	“show	call”	button	will	
add	the	call	 to	the	visualization	and	select	 it.	When	a	 local	variable	 is	selected,	 the	
“explain”	button	will	show	the	event	that	assigned	the	local	variable	its	most	recent	
value.	

In	 addition	 to	 the	 call	 stack	 window,	 the	
Whyline	 also	 provides	 an	 object	 watch	
window.	 Users	 can	 select	 a	 local	 variable	
containing	 an	 object	 and	 press	 the	 “watch”	
button	 to	 add	 it	 to	 this	 list.	 The	 Whyline	
then	 updates	 the	 object	 state	 as	 the	
visualization	 selection	 changes.	 When	 an	
object	 is	 expanded,	 all	 of	 its	 <ields	 current	
values	 are	 shown.	 The	 “previous	 =”	 and	
“next	=”	buttons	show	the	previous	and	next	
assignments	 to	 the	 selected	 <ield	 based	 on	
the	current	selection	in	the	visualization.	

10.3. IMPLEMENTATION 

The	 Whyline	 is	 intended	 to	 support	
interactive	 debugging	 (unlike	 automated	
debuggers,	 which	 take	 a	 speci<ication	 of	

	
Figure	10.18.	The	simpliZied	output	
history	and	time	controller,	which	
shows	the	position	of	the	currently	
selected	event	in	the	visualization.	

Figure	10.19.	The	object	watch	
window	(top)	and	the	threads,	call	
stacks,	locals	and	objects	
(bottom).



Chapter	10:	A	Whyline	for	Java	 193

correctness	 to	 <ind	 potential	 causes	 of	 a	 problem	 [Cleve	 2005]).	 Therefore,	 the	
Whyline	 needs	 new	 incremental	 and	 cache-reliant	 algorithms	 to	 ensure	 near	
immediate	 feedback	 for	most	 user	 actions.	 The	Whyline	 also	 takes	 a	 postmortem	
approach	 to	 debugging,	 capturing	 a	 trace	 [Wang	 2004,	 Zhang	 2005]	 and	 then	
analyzing	 it	 after	 the	program	has	 stopped,	 like	modern	pro<ilers.	This	 choice	was	
based	 on	 evidence	 that	 bug	 <ixing	 is	 generally	 a	 collaborative	 process	 (as	 noted	
Chapter	6),	which	could	bene<it	from	the	ability	to	share	executions	of	failures.	The	
post-mortem	approach	was	chosen	explicitly	for	this	purpose;	an	alternative	design	
of	 “live”	 debugging	 could	 have	 been	 implemented,	 but	 would	 have	 required	 a	
different	approach.	

10.3.1. ARCHITECTURAL AND HISTORICAL NOTES 

The	 Java	 Whyline	 has	 three	 major	 parts,	 all	 implemented	 in	 Java:	 the	
instrumentation	 framework,	 the	 trace	 representation	 and	 the	 user	 interface.	 As	 a	
historical	note,	 I	had	 the	opportunity	 to	use	some	of	my	earlier	work	unrelated	 to	
debugging	 to	 implement	 these	 various	 components,	 namely	 Citrus	 [Ko	 2005d],	 a	
programming	language	designed	for	implementing	interactive	tools,	and	Barista	[Ko	
2006c],	a	richly	visual	structured	code	editor.	There	would	have	been	a	number	of	
bene<its	to	implementing	the	Whyline	the	user	interface	with	Citrus	and	reusing	the	
code	 in	 Barista	 for	 visualizing	 Java	 code.	 In	 fact,	 I	 used	 many	 of	 the	 same	
architectural	 ideas	 in	 these	 two	projects	 to	design	 the	Whyline,	 including	much	of	
the	animation	framework	for	transitioning	between	user	interface	states.	Ultimately,	
however,	 the	 instability	 of	 these	 two	 projects,	 given	 their	 nature	 as	 research	
prototypes,	precluded	their	use	and	I	 instead	built	 the	 Java	Whyline	as	a	pure	Java	
application	from	scratch.	

The	 three	 major	 components	 of	 the	 Java	 Whyline’s	 architecture	 are	 discussed	 in	
detail	 in	subsequent	sections,	but	 it	 is	worth	noting	their	basic	 functions	and	their	
relationships	 with	 each	 other.	 The	 instrumentation	 and	 recording	 framework	
consists	of	an	API	for	representing	Java	class<iles	and	a	few	source	<iles	that	use	this	
API	to	read	in	class<iles	in	their	byte	representation,	analyze	them,	instrument	them,	
and	translate	them	back	into	byte	arrays.	I	chose	not	to	use	other	common	bytecode	
APIs,	such	as	BCEL	(http://jakarta.apache.org/bcel/),	because	they	had	a	number	of	
error-prone	properties	(such	as	not	enforcing	a	valid	class<ile	structure).	 Instead,	 I	
wrote	 my	 own	 to	 be	 less	 error-prone.	 For	 example,	 upon	 insertion	 of	 new	



Chapter	10:	A	Whyline	for	Java	 194

instructions	 into	a	bytecode	method,	my	API	automatically	manages	constant	pool	
indices	and	checks	for	illegal	properties	speci<ied	in	the	Java	bytecode	speci<ication,	
such	 as	method	 length	 limits	 and	 rules	 about	 references	 to	uninitialized	objects.	 I	
found	that	these	design	decisions	prevented	a	number	of	 instrumentation	mishaps	
by	 modularizing	 changes	 to	 fragile	 class<ile	 data	 structures	 such	 as	 the	 constant	
pool.	

The	 trace	 representation	 is	 designed	 to	 read	 in	 the	multiple	 <iles	 that	 represent	 a	
Whyline	 trace	 from	 disk	 and	 represented	 it	 compactly	 in	 memory,	 shuttling	
information	 to	 and	 from	 disk	 on	 demand.	 The	 data	 itself	 is	 intended	 to	 be	
immutable,	except	for	log	information	and	annotations	that	the	user	might	place	on	
the	immutable	data.	The	implementation	of	this	data	structure	has	numerous	query	
and	predicate	 functions	 to	gain	access	 to	 speci<ic	 static	 and	dynamic	 facts	 about	a	
recording,	such	as	all	of	the	executions	of	a	particular	method	or	all	of	the	potential	
callers	 of	 a	 method.	 The	 results	 of	 these	 queries	 are	 typically	 cached	 to	 improve	
performance	 and	 in	 many	 cases,	 these	 caches	 are	 serialized	 to	 disk	 so	 that	
subsequent	 loads	 of	 the	 trace	 can	 bene<it	 from	 these	 prior	 analyses.	 The	 trace	
representation	 encapsulates	 all	 of	 a	 program’s	 source,	 class	 <iles	 and	 execution	
history	 into	 a	 single	 data	 structure.	 The	 data	 structure	 has	 detailed	 knowledge	 of	
precisely	how	the	instrumentation	library	records	events	to	disk,	as	it	needs	to	know	
how	to	read	them	from	disk,	but	they	are	separate	components.	

The	user	 interface	part	of	 the	 Java	Whyline	essentially	provides	a	 front	end	 to	 the	
trace	data	structure,	 facilitating	users’	questions	and	queries	by	making	particular	
queries	to	the	trace	data	structure	and	providing	usable	views	of	the	information	in	
the	 trace	data	structure.	Views	of	source	 <iles,	execution	events,	 call	 stacks,	and	so	
on,	are	generated	on	demand	and	discarded	for	optimal	memory	management.	Many	
speci<ic	 kinds	 of	 user	 interface	 state	 are	 serialized	 along	 with	 a	 trace,	 including	
window	size	and	the	visibility	of	various	views,	much	 like	 in	any	modern	software	
development	environment.	

10.3.2. RECORDING PROGRAM EXECUTION 

A	 Whyline	 trace	 of	 an	 execution	 consists	 of	 a	 number	 of	 types	 of	 information:	
sequences	of	 events	 that	occurred	 in	 each	 thread	 (many	of	which	 regard	program	
output),	all	class	 <iles	executed	and	the	source	<iles	that	represent	them,	and	other	



Chapter	10:	A	Whyline	for	Java	 195

types	of	metadata	recorded	to	interpret	the	data	in	the	trace.	This	section	describes	
this	information	in	detail.	

Recording	source	Ziles.	Before	launching	the	program,	the	Whyline	scans	the	user	
speci<ied	folders	for	user-de<ined	source	code,	copying	all	of	the	current	versions	of	
source.	The	directory	structure	of	the	source	is	maintained,	whether	in	a	platform-
speci<ic	directory	or	a	JAR	<ile,	so	that	the	quali<ied	name	of	the	class	de<ined	by	the	
source	<ile	can	be	recovered.	

Analyzing	a	method	for	instructions	to	instrument.	There	are	two	major	ways	to	
capture	an	execution	history	of	a	Java	program.	One	is	to	instrument	a	Java	Virtual	
Machine	to	record	a	history	of	the	program	as	it	is	executing.	This	has	the	advantage	
of	having	lower	performance	overhead,	but	the	disadvantage	of	being	platform	and	
VM	 dependent.	 Instead,	 the	 Java	Whyline	 uses	 bytecode	 instrumentation.	 As	 each	
Java	class	is	loaded,	the	tool	intercepts	its	byte	array	(using	the	java.lang.instrument 	16

package,	standard	across	most	JVM	implementations	since	version	1.5),	instrument	
each	of	the	methods	in	the	class,	and	return	the	modi<ied	code	as	a	byte	array	to	the	
JVM.	This	approach	allows	the	prototype	to	work	in	a	largely	platform	independent	
manner	 (although	 there	 may	 be	 inconsistent	 support	 for	 this	 particular	
instrumentation	 mechanism).	 The	 disadvantage	 is	 the	 complexity	 of	 inserting	
bytecode	instructions	into	a	Java	program	to	capture	information	about	its	execution	
as	well	 as	 the	additional	overhead	of	executing	 the	 instrumentation	code.	 (A	 third	
option	 would	 have	 been	 to	 instrument	 the	 source,	 which	 is	 the	 most	 platform-
independent	 manner	 of	 capturing	 a	 trace,	 but	 the	 approach	 with	 the	 most	
overhead).	

The	instrumentation	process	involves	an	analysis	step	and	then	an	instrumentation	
step.	The	analysis	 step	has	 the	 goal	 of	 identifying	 control	 and	data	 instructions	 to	
instrument.	Control	instructions	include	invocations	of	methods,	thrown	exceptions,	
exception	catches,	and	branch	instructions	(all	of	these	instructions	are	part	of	the	
Java	 bytecode	 instruction	 set).	 These	 are	 straightforward	 to	 identify	 by	 simply	
parsing	 the	 bytecode	 and	 looking	 for	 particular	 opcodes.	 The	 data	 instructions	 in	
Java	 bytecode	 are	 more	 various,	 but	 generally	 involve	 instructions	 that	 affect	 the	

 An alternative to instrumentation would have been to use the Java Platform Debugger 16

Architecture (JPDA), which was not implemented for most platforms at the time of the 
implementation of the Java Whyline. This would allow more control over the subject program’s 
execution, while still providing access to the same kinds of data.



Chapter	10:	A	Whyline	for	Java	 196

JVM	operand	stack	(essentially	arithmetic)	and	instructions	that	affect	the	JVM	heap	
or	local	variable	space	(assignments	to	local	variables,	<ields,	globals,	etc.).	The	Java	
Whyline	 instruments	 all	 of	 these	 latter	 category	 instructions.	 For	 the	 former	
category	that	only	have	operand	stack	effects,	the	prototype	instruments	only	those	
instructions	 that	 compute	values	 for	 control	 instructions	or	data	 instructions	with	
heap	or	frame	side	effects.	For	example,	in	the	Java	assignment	statement	“x	=	a	+	b	+	
c,“	the	prototype	would	instrument	the	value	produced	by	the	<inal	addition	and	the	
assignment	instruction,	but	not	the	values	produced	by	“a”	and	“b.”	This	omission	is	
purely	for	performance	purposes.	The	value	of	“a”	and	“b”	will	be	known	from	prior	
instrumented	 assignments,	 so	 recording	 their	 value	 at	 the	 time	 of	 use	 would	 be	
redundant.	The	one	exception	to	this	case	is	uses	of	global	variables	or	public	<ields.	
These	variables	may	be	changed	by	uninstrumented	code.	

Of	 course,	 to	 know	which	 instructions	 produce	 a	 value	 consumed	 by	 a	 control	 or	
assignment	 instruction,	 the	 prototype	 must	 <irst	 analyze	 the	 operand	 stack	
dependencies	 within	 a	 method.	 To	 do	 this,	 the	 prototype	 uses	 an	 algorithm	 that	
explores	all	execution	paths	through	a	method,	and	for	each	path,	pairs	instructions	
that	push	values	onto	 the	operand	stack	with	 instructions	 that	 later	pop	 them	off.
(this	is	an	algorithm	similar	to	the	veri<ication	steps	performed	by	JVMs	for	security	
purposes.)	 While	 exploring	 paths,	 the	 algorithm	 maintains	 a	 simulated	 operand	
stack,	with	each	producing	instruction	on	the	stack	representing	the	value	produced.	
(The	rules	for	whether	an	instruction	produces	and/or	consumes	a	value	are	based	
on	the	Java	bytecode	speci<ications	for	each	instruction.)	This	process	determines	a	
set	of	stack	dependencies	 for	each	 instruction	 in	a	method,	allowing	the	system	to	
perform	 a	 variety	 of	 analyses	 on	 the	 data	 dependencies	 within	 a	 method.	 For	
performance,	 the	 system	 caches	 these	 stack	 dependencies	 as	 a	 method	 attribute	
(method	 attributes	 are	 de<ined	 in	 Section	 4.7	 of	 the	 JVM	 speci<ication,	 second	
edition)	to	make	class	loading	and	analysis	more	ef<icient	when	a	trace	is	loaded	for	
the	<irst	time.	

Instrumenting	a	method.	Once	the	instructions	that	need	to	be	instrumented	have	
been	determined,	the	prototype	then	steps	through	each	instruction,	inserting	a	call	
to	 a	 global	 instrumentation	 method	 either	 before	 or	 after	 the	 instrumented	
instruction.	 Stack	 duplication	 instructions	 are	 also	 inserted	 if	 the	 instrumentation	
needs	a	copy	of	a	value	from	the	operand	stack.	For	example,	to	record	the	result	of	
an	 integer	 addition,	 dup	 instruction	would	be	 inserted	 to	push	a	 copy	of	 the	 result	



Chapter	10:	A	Whyline	for	Java	 197

onto	 the	stack.	An	invokestatic	 instruction	would	be	 inserted	afterwards	 to	call	 the	

record_int()	method,	which	would	pop	 this	 copied	 result	 and	 record	 it	 to	 the	 trace	

<ile.	 In	 other	 cases,	 the	 instrumentation	 call	 is	 inserted	before	 the	 instruction;	 for	
example,	to	record	a	thrown	exception,	the	event	must	be	recorded	before	the	throw	

instruction	executes.	

Each	 instrumentation	 call	 records	 speci<ic	 information	 as	 a	 pre<ix	 to	 any	 other	
arguments	 included	 in	 the	 type	 of	 event.	 Each	 event	 has	 a	 header	 containing	 the	
following	information:	

• 1	bit	switch	<lag	to	represent	whether	the	event	is	the	<irst	occurring	after	a	

thread	switch.	If	it	is	set,	a	32-bit	serial	event	ID	is	recorded.	The	IDs	for	all	
subsequent	events	follow	this	ID	in	sequence,	until	the	next	switch.	Switches	
are	identi<ied	when	reading	the	trace	by	checking	whether	the	next	event	ID	
follows	the	last	in	a	thread.	

• A	1	bit	io_callstack	<lag;	set	to	true	if	the	code	represents	I/O	or	is	necessary	

for	maintaining	a	call	stack,	which	helps	the	trace	loader	know	which	events	
to	process	immediately.	

• 6	bits	to	represent	the	event	type	(there	are	currently	55	types,	such	as	
“value	produced”	events	for	computed	values,	four	kinds	of	invocations	to	
parallel	the	four	types	of	invocation	instructions	in	Java	bytecode,	and	so	on).	

• 32	bits	to	represent	an	instruction	ID,	consisting	of	two	parts:	a	14	bit	class	
ID	(maintained	for	all	instrumented	classes,	across	all	programs),	and	an	18	
bit	integer	represent	the	index	of	the	instruction	as	it	appears	in	the	class	
<ile.	(The	largest	JDK	class	<ile	I	have	seen	contains	fewer	than	200,000	
instructions	and	is	an	outlier).	

Event	 types	 include	 assignments,	 invocations	 and	 returns,	 thread	 synchronization	
events,	exception	throws	and	catches,	instantiations	of	objects	and	arrays,	and	some	
special	 events	 to	 represent	 I/O	events	 that	 are	 generated	natively	 (such	as	mouse	
and	 keyboard	 events).	 All	 55	 are	 shown	 in	 full	 in	 Table	 10.2	 (with	 some	 events	
grouped,	 namely	 those	 that	 cover	 the	 8	 primitive	 Java	 types	 but	 with	 the	 same	
semantics).	The	studies	described	in	Chapters	3-7	also	suggest	that	developers	<ind	
concrete	 values	 essential	 for	 interpreting	 program	 state.	 Therefore,	 unlike	 prior	
work	 [Baowen	2005][Wang	2005],	many	of	 these	events	also	 include	a	value	after	



Chapter	10:	A	Whyline	for	Java	 198

their	 header.	 For	 example,	 for	 an	 invocation	 event,	 the	 tool	 would	 record	 values	
passed	as	arguments	to	the	invocation,	or	for	an	assignment,	the	value	assigned.	

event purpose event purpose
putfield object	<ield	assignments throw captured	just	before	throw
putstatic global	variable	assignments catch captured	at	beginning	of	catch	block
setarray array	index	assignments monitor before	and	after	synchronized	blocks
setlocal/

iinc
local	variable	assignments constant for	8	primitive	types;	placeholder	for	

constant	used	in	expression

Table	10.2.	The	55	different	kinds	of	events	recorded	by	the	Java	Whyline.	The	
constant,	value,	and	argument	categories	contain	8	events	each,	to	cover	each	of	the	
8	primitive	types	in	Java.	The	group	of	six	events	at	the	bottom	are	custom	
instrumentation	to	capture	certain	I/O	events.	



Chapter	10:	A	Whyline	for	Java	 199

In	every	case	where	the	value	recorded	is	an	object,	the	tool	obtains	a	unique	64-bit	
ID	 for	 it,	 creating	a	new	one	 if	 the	object	has	not	yet	been	encountered.	These	are	
stored	 in	 a	 thread	 safe	weak	 reference	 hash	 table,	 so	 that	 objects	 can	 be	 garbage	
collected.	 For	 each	 new	 object	 encountered,	 the	 tool	 also	 writes	 the	 type	 of	 the	
object	(as	a	class	ID)	with	its	object	ID	to	a	separate	<ile.	Thread	IDs	are	managed	in	
the	same	way	at	runtime.	

Special	 instrumentation	 for	 I/O	events.	Most	 I/O	 events	 are	 extracted	 from	 the	
regular	event	sequence.	For	example,	calls	to	java.awt.Graphics	are	captured	as	invoke	

events	 in	the	trace	 just	 like	any	other	call,	and	these	are	used	to	 identify	graphical	
output	 events	 and	 their	 arguments.	 Some	 I/O	 events	 bene<ited	 from	 or	 required		
special	 support,	 namely	 the	 last	 six	 event	 types	 in	 Table	 10.2.	 For	 example,	 the	
prototype	replaces	all	calls	to	java.awt.Window.getGraphics()	with	a	custom	call,	which	

gathers	information	about	the	size	and	location	of	Window	instances	before	returning	

the	 value	 originally	 requested.	 The	prototype	 also	 inserts	 custom	 instrumentation	
into	 the	 constructors	 of	 the	 java.io.KeyEvent	 and	 java.io.MouseEvent	 constructors	 to	

capture	 information	about	 low-level	 I/O	events	and	 their	parameters.	These	 latter	
two	were	 added	 for	 performance	 reasons;	 extracting	 them	 from	 the	normal	 event	
sequence	at	 load	time	would	have	been	possible,	but	slower	than	capturing	 it	as	a	
custom	event.	

comprefs/

compnull
reference	comparison	branch value for	8	primitive	types;	records	value	

of	expression	or	call
compints/

compzero
integer	comparison	branches this records	occurrence	of	event,	but	not	

value	of	reference	(to	save	space)
tablebranch switch	statement	branches newobject captured	after	object	constructor	

completes
invoke the	four	JVM	invocation	

instructions
newarray captured	after	array	instantiated

start marker	for	the	beginning	of	a	
method’s	execution,	in	case	its	
call	was	not	instrumented	

argument for	8	primitive	types;	captures	value	
argument	passed	to	method,	in	case	
call	not	instrumented

return marker	for	just	before	method	
return

repaint used	to	mark	a	graphical	
repaint	cycle

context used	to	track	duplications	of	graphics	
context	used	for	rendering

mouseevent tracks	mouse	input	
arguments

keyevent tracks	keyboard	input	arguments

window tracks	window	size	and	state	
changes

imagesize tracks	the	size	of	images	drawn	to	
screen	for	use	in	placeholders

event purpose event purpose



Chapter	10:	A	Whyline	for	Java	 200

Instrumenting	 programs.	 As	 the	 prototype	 intercepts	 loading	 classes,	 it	 does	 a	
number	 of	 things	 to	 reduce	 the	 overhead	 of	 instrumentation	 on	 future	 recording	
sessions	and	to	support	analysis	of	the	full	executing	program:	

• It	copies	 the	uninstrumented	version	of	each	class	 in	a	 trace	 folder,	 in	case	
the	class	was	loaded	off	a	network.		

• In	 order	 to	 keep	 track	 of	 code	 not	 executed	 (for	 answering	 “why	 didn’t”	
questions),	 the	 tool	 also	 keeps	 track	 of	 each	 class	 referenced	 by	 the	
dynamically	loaded	class,	and	just	before	the	program	halts,	the	tool	writes	
each	 of	 these	 unexecuted	 class	 <iles	 to	 the	 same	 trace	 folder.	 Ideally,	 this	
would	be	done	recursively,	in	order	to	get	the	complete	call	graph	of	all	of	the	
code	that	the	program	could	have	executed,	but	this	would	take	considerable	
time	 and	 likely	 include	 all	 known	 classes.	 Tracking	 classes	 that	 are	 never	
loaded	 is	 important	 for	 “why	 didn’t”	 questions,	 since	 code	 that	 does	 not	
execute	is	often	not	dynamically	loaded	by	the	JVM.	

• As	classes	load,	the	Whyline	skips	those	that	the	user	has	marked	to	skip,	as	
well	as	a	number	of	classes	that	are	used	in	the	instrumentation	code	itself.	
The	tool	also	skips	methods	that,	once	instrumented,	exceed	the	65,536	byte	
length	limit	imposed	by	the	JVM.		

• The	 Whyline	 caches	 instrumented	 versions	 of	 the	 class	 <iles	 and	 their	
modi<ication	 date	 so	 that	 later	 executions	 of	 the	 target	 program	 or	 other	
programs	 that	 use	 the	 same	 classes	 can	 load	 faster	 by	 avoiding	 redundant	
instrumentation.	This	 is	particularly	useful	 for	API	classes	that	are	used	by	
many	programs.	

Overall,	there	are	four	major	<iles	recorded	to	disk	in	a	Java	Whyline	trace:	

• A	<ile	declaring	a	list	of	fully	quali<ied	class	names	that	were	loaded	or	
referenced	by	an	program	execution,	along	with	global	class	identi<iers	for	
each.	The	names	are	listed	in	loaded	order.	

• An	“immutables”	<ile,	which	stores	constant	values	used	by	the	program	
execution.	This	includes	all	of	the	strings	referenced,	the	names	of	threads,	
and	custom	support	for	common	immutables,	such	as	java.awt.Color.	

• A	source	<ile	hierarchy,	as	described	above.	



Chapter	10:	A	Whyline	for	Java	 201

• A	set	of	event	sequences,	one	for	each	thread.	Each	event	in	the	thread	
histories	is	formatted	as	stated	above	in	a	separate	<ile.	

When	a	program	halts,	the	Whyline	writes	a	few	bits	of	metadata	to	disk	as	well,	to	
note	how	many	events	were	written,	how	many	objects	were	instantiated,	and	so	on,	
to	 help	 the	 loader	 later	 create	 reasonably	 sized	 data	 structures	 to	 store	 the	
information.	 If	 the	program	halts	 in	 such	a	manner	 that	prevents	 this	 information	
from	being	captured,	the	trace	can	still	be	loaded,	but	less	ef<iciently.	A	summary	of	
the	information	in	a	Whyline	recording	is	shown	in	Table	10.3.	

Zile purpose
metadata object	<ield	assignments
static... global	variable	assignments
 call graph constructed	on	the	<irst	load	to	speed	up	subsequent	loads	
 class identifiers unique	identi<iers	for	each	loaded	class,	used	to	identify	

instructions	in	the	event	sequence
 class names used	to	<ind	classes	stored	on	disk	that	were	loaded	at	runtime
 source... a	source	<ile	hierarchy	for	the	executed	program
dynamic...

 immutables a	table	of	strings,	colors,	fonts,	gradients,	strokes,	rectangles,	
and	transforms,	stored	by	object	ID,	used	to	recreate	output	
history	ef<iciently

Table	10.3.	The	Zile	hierarchy	of	a	recorded	Whyline	trace.



Chapter	10:	A	Whyline	for	Java	 202

10.3.3. LOADING A RECORDING 

When	a	Whyline	trace	is	loaded,	the	loader	performs	a	number	of	duties	to	prepare	
for	question	asking.	First,	the	source	<iles	and	class	<iles	are	loaded,	since	these	are	
used	 for	 nearly	 every	 aspect	 of	 question	 asking	 and	 answering.	 As	 classes	 are	
loaded,	the	loader	also	processes	several	types	of	static	information	extracted	from	
the	class	<iles:	

• Associating	invocation	instructions	with	methods	potentially	called.	

• Associating	<ield	references	with	<ield	declarations.	

• Associating	class	references	with	class	declarations.	

• Gathering	all	known	“primitive	output”	instructions,	which	in	this	prototype	
include	all	calls	on	java.awt.Graphics,	java.io.PrintStream,	thrown	exceptions,	

and	exception	catches.	These	are	later	analyzed	to	generate	questions.	

After	 loading	 this	 static	 information,	 the	 Whyline	 generates	 a	 precise	 call	 graph,	
using	all	of	 the	 invocations	 found	 in	class	 <iles.	Precise	 in	 this	situation	means	that	
rather	than	using	the	type	declared	in	the	invocation	instructions,	the	tool	uses	the		
static	 analysis	 algorithm	 in	 Figure	 10.20,	which	 scans	 de<inition-use	 edges	 to	 <ind	
transitively	reachable	new	statements	from	the	code's	receiver.	The	result	is	a	set	of	
"new"	instructions,	which	represent	potential	sources	of	new	instances	for	the	given	
instruction.	 	This	set	is	used	to	conservatively	<inds	all	of	the	potential	types	of	the	
actual	instance	used	in	the	call,	and	resolves	the	method	on	these	types.	This	omits	
many	types	of	infeasible	calls,	increasing	the	precision	of	“why	didn’t”	answers.	This	
algorithm	 is	 called	 on	 demand	 whenever	 the	 Whyline	 needs	 to	 identify	 a	 set	 of	
potential	 callers	 to	 a	method.	 (Whenever	 an	 algorithm	 in	 this	 chapter	 refers	 to	 a	
“caller,”	 the	 set	 of	 potential	 callers	 is	 identi<ied	 using	 this	 algorithm).	 It	 should	 be	
noted	that	many	call	graph	construction	algorithms	have	been	proposed,	which	may	
help	make	the	algorithm	in	Figure	10.20	more	ef<icient	[Grove	2001].	

Next,	 the	 loader	reads	 the	 thread	traces,	 loading	events	 in	 the	order	of	 their	event	
IDs,	switching	between	thread	trace	 <iles	as	necessary	using	 the	switch	 <lag	 in	each	

 objects a	history	of	object	instantiations,	stored	by	object	ID
 thread histories a	set	of	<iles,	each	containing	a	thread	history

Zile purpose



Chapter	10:	A	Whyline	for	Java	 203



Chapter	10:	A	Whyline	for	Java	 204

event.	 This	 allows	 the	Whyline	 to	 have	 a	 complete	 ordering	 of	 the	 events	 in	 the	
execution.	As	 events	 are	 read,	 events	whose	 io_callstack	 <lag	 are	 set	 are	processed	

immediately	(essentially	output	and	events	needed	to	maintain	a	call	stack);	others	
are	processed	on	demand.	As	 call	 stacks	 are	maintained,	 they	 are	 cached	 at	 equal	
intervals	to	provide	constant	time	access	to	the	call	stack	state	at	any	event.		

To	 improve	 the	 performance	 of	 question	 derivation	 and	 answering,	 the	 Whyline	
constructs	tables	of	invocations,	assignments	to	<ields	and	other	types	of	variables,	
and	 the	 values	 produced	by	 expressions,	 all	 by	 event	 ID.	All	 of	 these	histories	 are	
extracted	 from	 the	 serial	 thread	 histories	 the	 <irst	 time	 a	 Whyline	 recording	 is	
loaded.	Most	histories	are	stored	as	integer	sequences	of	event	IDs.	For	example,	 if	
there	were	 thirty	 calls	 to	 some	method	 foo(),	 the	event	 IDs	 for	each	 call	would	be	

stored	 in	 a	 sorted	 list.	 These	 lists	 can	 then	 be	 ef<iciently	 searched	 using	 a	 binary	
search.	

10.3.4. RECREATING AN I/O HISTORY 

After	 loading	 the	static	and	dynamic	 information,	 the	 <inal	duty	of	 the	 loader	 is	 to	
create	 a	 primitive	 I/O	 history.	 This	 step	 is	 fundamental	 to	 the	Whyline’s	 question	
support,	since	every	question	derived	depends	on	the	Whyline’s	ability	to	relate	the	
pixels	 on	 the	 screen	 to	 the	 program	 logic	 responsible	 for	 them.	 The	 prototype	
assumes	 that	 a	 program	uses	 standard	 Java	 I/O	 interfaces	 and	 their	 subclasses	 to	
produce	output:	java.awt.Graphics2D	 for	graphical	output,	java.awt.Window	 to	represent	

windows	 and	 KeyEvent	 and	 MouseEvent	 for	 input	 events	 in	 these	 windows,	

java.io.Writer,	OutputStream,	PrintStream,	Reader	and	InputStream	 for	console	and	<ile	I/O,	

and	java.lang.Throwable	 for	exception	output.	(The	Java	Whyline	does	not	record	the	

native	 I/O,	 such	 as	 those	used	 in	 some	 Java	 look	 and	 feels	 or	 in	native	UI	 toolkits	
such	 as	 the	 Simple	Windowing	 Toolkit	 (SWT)	 used	 in	 Eclipse.	 This	would	 involve	
instrumenting	and	recording	code	compiled	for	platforms	other	than	the	JVM,	which	
was	out	of	the	scope	of	this	implementation.)	

Recreating	 graphical	 output.	 The	Whyline	 derives	 graphical	 output	 events	 from	
the	 standard	 event	 sequence	 in	 a	 whyline	 recording	 (described	 in	 previous	
sections).	 For	 example,	 a	 call	 to	 Graphics2D.drawRect()	 and	 the	 events	 producing	 its	

arguments	are	combined	 into	an	 I/O	event	representing	 the	rectangle	drawn.	This	
eventually	 produces	 a	 sequence	 of	 I/O	 events,	 which	 the	 Whyline	 then	 uses	 to	



Chapter	10:	A	Whyline	for	Java	 205

construct	a	user	interface	for	navigating	the	I/O	history,	like	the	one	seen	in	Figure	
10.1.	 To	 recreate	 this	 history,	 the	 Whyline	 iterates	 through	 each	 I/O	 event,	
segmenting	 the	 event	 sequence	 into	 repaint	 cycles	 using	 the	 repaint	 event	

(mentioned	in	Table	10.2).	Within	each	repaint,	the	Whyline	tracks	the	creation	and	
duplication	of	Graphics2D	 instances,	determining	when	and	where	each	render	event	

occurred	on	screen.	A	Graphics2D	instance	stores	information	about	the	current	color,	

stroke,	 font,	 and	 origin,	 among	 other	 information,	 all	 used	 to	 determine	 the	
appearance	 of	 the	 next	 render	 call.	 Java	 programs	 duplicate	 these	 Graphics2D	

instances	 when	 painting	 in	 order	 to	 modify	 the	 render	 context	 and	 draw	 some	
output,	without	having	to	explicitly	revert	the	rendering	context	to	its	previous	state.		
Each	 render	 event	 is	 related	 to	 the	 Graphics2D	 instance	 that	 was	 responsible	 for	

rendering	it.	The	Whyline	then	uses	the	history	of	modi<ications	to	these	Graphics2D	

instances	 to	 determine	 the	 font,	 color,	 stroke,	 and	 so	 on,	 of	 each	 of	 the	 graphical	
primitives	rendered.		

During	this	process	of	iterating	through	graphical	output	events,	the	Whyline	tracks	
the	 visual	 occlusion	 of	 render	 events.	 For	 example,	 if	 a	 hundred	 small	 rectangles	
were	 drawn	 into	 a	 buffer	 and	 then	 a	 large	 rectangle	 drawn	 over	 all	 of	 them,	 the	
hundred	small	 rectangles	would	be	marked	“occluded”	after	 the	 time	of	 the	 larger	
rectangle’s	rendering.	Once	this	process	is	complete,	there	is	enough	information	to	
render	the	program	output	for	any	given	time	in	the	program’s	execution	history.	For	
a	given	time	t,	the	Whyline	<inds	all	repaint	cycles	that	began	before	t	and	renders	all	
of	the	render	events	in	each	repaint	cycle	until	reaching	a	render	event	that	occurred	
after	t.	The	Whyline	uses	the	visual	occlusion	information	to	skip	render	events	that	
are	not	visible	at	t.	

In	order	to	allow	users	to	point	and	click	on	render	events,	the	Whyline	uses	a	basic	
picking	algorithm.	Given	a	point	p,	the	Whyline	<irst	<inds	which	window	contains	p.	
Then,	it	searches	through	all	of	the	visible	render	events	in	the	window,	gathering	a	
bottom-to-top	 list	 of	 render	 events	 that	 contain	 p.	 This	 list	 of	 events	 is	 used	 to	
generate	a	list	of	questions	about	the	top	most	render	event	(i.e.,	a	text	label	and	a	
background	rectangle),	as	well	as	the	objects	that	the	list	of	render	events	represent	
(i.e.,	the	button	represented	by	the	text	and	rectangle).	This	process	is	described	in	
the	 next	 section.	 However,	 for	 each	 item	 in	 the	 list,	 the	 Whyline	 also	 has	 to	
determine	the	original	renderer	of	the	output.	This	is	because	render	events	can	be	
drawn	 into	 arbitrary	 image	 buffers	 and	 these	 buffers	 can	 then	 be	 rendered	 into	



Chapter	10:	A	Whyline	for	Java	 206

other	 buffers	 (this	 includes	 double-buffering,	 which	 is	 used	 to	 ensure	 that	 whole	
screens	are	drawn	at	once	to	a	physical	display	rather	than	pieces	at	a	time,	avoiding	
a	<lickered	appearance).	For	example,	to	paint	a	gradient	for	a	button	in	a	UI,	which	
can	 be	 an	 expensive	 operation,	 some	 systems	 will	 render	 part	 of	 the	 button’s	
gradient	into	a	buffer,	then	quickly	paint	the	buffer	at	multiple	locations	to	“tile”	the	
output.	Such	techniques	are	now	ubiquitous	in	modern	operating	systems,	meaning	
that	any	Whyline	that	supports	graphical	output	needs	mature	support	for	tracking	
which	 buffer	 a	 graphical	 primitive	 is	 drawn	 to.	 What	 makes	 such	 support	
challenging	is	that	a	single	event	can	be	rendered	into	a	buffer,	but	the	buffer	can	be	
drawn	multiple	 times	and	multiple	 locations	 into	other	buffers.	This	means	 that	 a	
single	 event	 can	 have	 effects	 on	 multiple	 places	 in	 the	 screen.	 Therefore,	 when	
mapping	a	user’s	mouse	 cursor	 to	 the	graphical	primitives	underneath	 the	 cursor,	
the	system	must	distinguish	between	the	render	time	of	the	event	and	one	or	more	
appearance	 times	 in	 which	 the	 rendered	 output	 appeared	 in	 the	 physical	 display.	
Therefore,	a	single	user	click	in	the	graphical	output	refers	to	a	list	of	render	event	
pairs,	which	is	then	processed	to	create	a	list	of	questions.	

Recreating	 console	output.	 Console	 output	 (seen	 in	 Figure	10.21)	 and	 exception	
output	 are	 relatively	 straightforward	 to	 create,	 as	 it	 is	 just	 a	 list	 of	 strings	 and	
exceptions	to	display	as	a	vertical	list.	Textual	output	events	are	extracted	from	the	
standard	 event	 sequence	 by	 watching	 for	 calls	 on	 java.io.PrintStream.	 Each	 textual	

output	event,	rather	than	referring	just	to	the	string	printed	by	the	print	stream	(as	
in	 the	 string	 in	 System.out.println(“message =” + message)),	 refers	 to	 each	 individual	

argument	used	to	concatenate	the	<inal	argument.	This	way,	the	Whyline	can	support	
questions	 about	 both	 the	 string	 “message =”	 and	 the	 string	 variable	 message,	

independently.	 Once	 these	 are	 extracted,	 the	 sequence	 of	 textual	 output	 event	 is	
processed	 in	 order	 of	 execution,	 and	 text	 printed	 to	 the	 console	 is	 laid	 out	 onto	 a	
single	line,	advancing	a	single	line	on	the	occurrence	of	each	‘\n’	character.	Clicking	

on	a	string	in	the	console	output	generally	results	in	a	single	question	“why did this 

get printed?”.	

	



Chapter	10:	A	Whyline	for	Java	 207

10.3.5. DERIVING QUESTIONS 

In	 any	 program	 execution,	 many	 things	 happen,	 and	 many	 things	 do	 not.	 The	
Whyline	 uses	 both	 static	 and	 dynamic	 analyses	 to	 derive	 questions	 about	 these	
behaviors	that	the	developer	may	or	may	not	have	expected.	

“Why	did”	questions	refer	to	a	speci<ic	event	from	a	trace;	the	questions	available	for	
asking	depend	on	the	input	time	selected	by	the	user	(Figure	10.1b),	since	this	time	
also	 determines	 what	 events	 are	 visible	 on	 screen	 (this	 differs	 from	 the	 Alice	
version,	which	required	the	user	 to	pause	the	program	at	 the	time	desired).	When	
the	 user	 clicks	 on	 an	 output	 event,	 the	 Whyline	 shows	 questions	 related	 to	 the	
output	event	selected.	For	example,	in	Figure	10.6,	“why	did”	questions	relate	to	the	
properties	of	the	rectangle	the	user	has	selected.	

In	addition	to	questions	about	output	primitives,	it	is	also	helpful	to	have	questions	
about	higher	level	concepts	that	these	primitives	represent	(for	example,	in	addition	
to	 questions	 about	 rectangles,	 also	 supporting	 questions	 about	 the	 button	 that	 is	
drawn	using	the	rectangle).	The	Java	Whyline	supports	questions	about	two	types	of	
higher	level	entities.	The	<irst	kind	of	entities	are	<ields	of	Java	objects	that	indirectly	

	

Figure	10.21.	The	textual	output	question	user	interface.



Chapter	10:	A	Whyline	for	Java	 208

in<luence	 an	 output	 primitive’s	 arguments—these	 are	 data	 that	 affect	 primitive	
output .	For	example,	imagine	a	drop	down	menu	with	a	list	of	items;	it	is	important	17

to	not	only	be	able	to	ask	about	the	individual	items,	but	also	about	the	list	itself.	The	
prototype	 follows	 all	 upstream	 dynamic	 control	 and	 data	 dependencies	 of	 the	
primitive	 output’s	 arguments	 to	 identify	 <ields	 that	 affected	 the	 primitive	 output’s	
arguments,	 stopping	when	 <inding	no	more	upstream	dependencies.	This	amounts	
to	a	backwards	dynamic	slice,	 tuned	to	gather	 <ield	references.	The	size	of	 this	 list	
can	be	relatively	large,	since	there	are	typically	many	upstream	data	dependencies,	
but	the	entities	are	organized	by	Java	class,	making	the	list	easier	to	navigate.	

The	second	kind	of	higher	 level	question	regards	entities	responsible	 for	 indirectly	
rendering	 low-level	 output—these	 are	 callers	 that	 affect	 primitive	 output.	 For	
example,	when	 clicking	 on	 the	 label	 of	 the	 button,	 the	 user	may	 also	want	 to	 ask	
about	the	button	itself	and	its	properties,	such	as	its	visibility,	enabled	state,	and	so	
on.	 These	 objects	 are	 found	 on	 the	 call	 stack	 of	 the	 invocation	 that	 rendered	 the	
primitive	output,	and	all	such	objects	are	included	in	the	list	(with	the	exception	of	
those	<iltered	out	as	described	in	the	next	section).	

10.3.6. FILTERING BY FAMILIARITY 

A	fundamental	problem	for	both	kinds	of	higher	level	question	is	Jiltering	the	menus	
by	familiarity.	It	is	important	to	include	only	objects	that	are	relevant	to	output	and	
that	 the	 user	 is	 likely	 to	 have	 created	 or	 used,	 since	 questions	 about	 unfamiliar	
classes	or	data	structures	will	not	 likely	seem	relevant	 to	the	user.	For	example,	 in	
the	 Swing	 UI	 toolkit,	 the	 Button	 class	 does	 not	 know	 how	 to	 draw	 itself.	 This	 is	

delegated	to	a	ButtonUI	class,	which	renders	the	button.	A	developer	may	write	code	

to	 instantiate	 a	 Button,	 but	 have	 no	 idea	 about	 the	 existence	 of	 its	 look	 and	 feel	

delegate.	The	same	is	true	of	Swing’s	ButtonModel,	which	is	a	helper	class	for	storing	a	

button’s	pressed	state.	To	avoid	presenting	questions	about	these	types	of	delegate	
and	helper	classes,	 the	Whyline	de<ines	a	notion	of	 familiarity.	A	class	 is	 familiar	 if	
user-owned	 code	 either	 deJines	 or	 references	 the	 speci<ic	 class.	 In	 the	 prototype,	
user-owned	code	consists	of	those	classes	that	were	derived	from	source	on	the	last	
compile	(thus	excluding	APIs	and	libraries	for	which	the	developer	has	no	source).	

 These types of questions were not originally included in the Java Whyline design; the need for 17

such questions became apparent after piloting the design of the study in Section 10.4.4. 



Chapter	10:	A	Whyline	for	Java	 209

One	 could	 imagine	 more	 sophisticated	 de<initions	 for	 familiarity	 and	 ownership	
based	on	authorship,	checkins,	or	other	measures.	

This	notion	of	familiarity	is	used	to	<ilter	the	two	types	higher-level	questions	about	
data	and	callers.	For	callers,	the	Whyline	inspects	the	call	stack	of	the	invocation	that	
produced	the	selected	output	primitive	and	for	each	call	stack	entry	that	represents	
a	call	on	an	object	and	only	includes	questions	about	that	object	if	the	object	is	of	a	
familiar	 type.	 This	 causes	 the	 tool	 to	 include	 questions	 about	 Buttons,	 but	 not	

ButtonUIs,	 unless	 the	 user	 had	 directly	 referenced	 ButtonUI	 in	 their	 code.	 To	 <ilter	

questions	 about	 data,	 the	 Whyline	 only	 includes	 questions	 about	 familiar	 data	
structure	classes,	thus	excluding	helper	classes	such	as	ButtonModel.	

10.3.7. FILTERING BY OUTPUT AFFECTING 

Another	way	to	<ilter	question	menus	is	to	exclude	code	structures	that	do	not	affect	
the	modality	of	output	in	question.	For	example,	 if	a	user	is	asking	about	graphical	
output,	 it	 can	 exclude	 questions	 about	 <ields,	 methods,	 and	 classes	 that	 only	
indirectly	 affect	 textual	 output.	 To	 accomplish	 this,	 the	 Whyline	 <inds	 <ields	 and	
invocations	 that	could	have	affected	each	known	output	 instruction,	using	 the	 <irst	
algorithm	in	Figure	10.22	For	example,	the	color	used	to	draw	a	rectangle	might	be	
affected	by	some	<ield	in	an	object,	or	by	the	return	value	of	a	call	to	some	method.	
To	 <ind	 these	 <ields	 and	 invocations,	 the	 algorithm	 follows	 upstream	 static	 data	
dependencies,	 marking	 <ields	 and	 methods	 as	 “output	 affecting”	 along	 the	 way,	
keeping	track	of	the	modality	of	the	output.	This	way,	methods	and	<ields	are	marked	
as	affecting	graphical	output,	textual	output,	or	other	types.		

Next,	 if	the	output	instruction	directly	 invokes	output	(such	as	drawing	a	rectangle,	
unlike	 setting	 the	 color,	 which	 merely	 affects	 appearance),	 all	 potential	 indirect	
callers	 to	 the	 output	 instructions	 method	 are	 marked	 as	 output	 invoking.	 This	 is	
done	 by	 following	 potential	 callers	 of	 a	 method,	 starting	 with	 the	 output	
instruction’s	 method	 (bottom	 of	 Figure	 10.22).	 Each	 algorithm	 is	 run	 on	 each	
primitive	output	instruction,	and	halts	either	when	reaching	an	instruction	already	
visited	for	a	particular	modality	or	code	with	no	dependencies.		

One	detail	not	mentioned	in	the	algorithms	in	Figure	10.22	is	in	how	the	algorithm	
traverses	potential	callers	of	methods.	Aside	from	the	precise	call	graph	mentioned	
earlier	 in	 this	 chapter,	 the	 algorithm	 also	 tracks	 the	 class	 of	 the	method	 that	 the	



Chapter	10:	A	Whyline	for	Java	 210

propagation	 begins	 in,	 and	 remembers	 this	 class	 during	 the	 traversal	 of	 potential	
callers.	For	example,	if	the	propagation	started	in	a	method	of	the	javax.swing.JButton	

class,	then	later	arrived	at	some	call	on	a	java.awt.Component	(a	superclass	of	JButton)	

and	<inally	ended	up	in	a	method	of	javax.swing.JComboBox	(which	is	not	a	subclass	of	

JButton),	the	algorithm	would	know	not	to	follow	any	calls	on	the	JComboBox,	because	

the	 original	 source	 of	 output	 was	 a	 JButton.	 This	 allows	 the	 algorithm	 to	 exclude	

infeasible	 calls	 as	 part	 of	 the	 call	 graph	 traversal,	 by	 propagating	 the	 class	 that	
originated	the	output.	

Intuitively,	 it	would	seem	these	algorithms	mark	everything;	after	all,	what	code	 is	
not	responsible	for	affecting	or	invoking	some	output?	The	insight	is	that	particular	
code	is	responsible	for	particular	output:	because	the	algorithms	in	Figure	10.22	are	
run	on	each	output	instruction,	the	Whyline	knows	for	what	output	a	particular	<ield	
or	method	is	output-affecting.	The	Whyline	can	then	use	this	knowledge	to	generate	
and	<ilter	questions	based	on	what	output	the	user	expresses	interest	in.	

markAffectors(Instruction inst) 

 if instruction been visited, return, otherwise, mark inst as visited 

 if instruction acquires a field value      // mark assignments to fields 
  mark field as affecting instruction 
  for each definition of field, markAffectors(definition) 

 else if instruction is an invocation       // mark data used by return statements 
  for each method potentially called by instruction 
   mark method as affecting instruction 
   for each return instruction in method, markAffectors(return) 

 for each control dependency of instruction // mark code causing instruction to execute 
  markAffectors(control) 

 for each instruction data that instruction is data dependent on 
  markAffectors(data) 

markInvokers(Instruction inst) 

 if instruction has not been visited    // mark callers to method of instruction 
  mark instruction as visited 
  mark instruction’s method as invoking inst 
  for each caller of instruction’s method, markInvokers(caller) 

Figure	10.22.	Algorithms	markAffectors	and	markInvokers,	which	mark	methods	and	
Zields	that	affect	or	invoke	output	(the	two	algorithms	do	not	invoke	each	
other).



Chapter	10:	A	Whyline	for	Java	 211

10.3.8. CREATING QUESTIONS 

Once	 the	 Whyline	 identi<ies	 each	 entity	 represented	 by	 the	 selected	 output	
primitive,	the	Whyline	generates	questions	for	each	entity.	These	include	“why	did”	
questions	about	each	of	the	familiar,	output	affecting	<ields’	current	values,	such	as	
“why	 did	 this	 Button’s	 visible	 =	 true?”	 (Figure	 10.23.2)	 and	 also	 “why	 didn’t”	
questions	about	why	these	<ields	were	not	assigned	after	the	selected	time	(Figure	
10.23.3).	Each	of	 these	questions	points	to	the	most	recent	assignment	to	the	<ield	
on	that	instance.	The	Whyline	also	generates	questions	about	objects	that	indirectly	
invoked	the	selected	output	primitive,	including	questions	about	the	creation	of	the	
object	(Figure	10.23.4),	about	the	objects	output-affecting	<ields,	and	about	output-
invoking	methods	that	the	user	believes	did	not	execute	(Figure	10.23.5).	

The	actual	phrasing	and	presentation	of	questions	depends	on	 the	 type	of	output.	
Exceptions	 thrown	by	 the	program,	 caught	 or	uncaught,	 are	phrased	 as	 “why	did”	
questions,	 and	 map	 to	 a	 throw	 event.	 Output	 in	 the	 console	 history	 supports	
questions	 about	 why	 a	 particular	 string	 was	 printed	 (mapping	 to	 the	 event	 that	
produced	 it).	 The	 questions	 supported	 for	 graphical	 output	 are	 somewhat	 more	
diverse,	 because	 the	 output	 itself	 is	 more	 complex	 in	 nature.	 For	 primitive	 level	
output,	such	as	a	line,	circle,	or	rectangle,	users	may	ask	“why	did”	questions	about	
any	 of	 the	 properties	 used	 to	 render	 the	 output.	 These	 correspond	 to	 arguments	
passed	 to	 the	 render	 method,	 such	 as	 position	 and	 size,	 as	 well	 as	 state	 in	 the	
Graphics2D	object	such	as	color	and	font.	

GRAPHICAL OUTPUT MENU 
 PROPERTIES 
  why did property = value ? 
   (refers to 
value passed to output call) 
 FIELDS AFFECTING OUTPUT 
  [FIELD MENUS] 
 OBJECTS INVOKING OUTPUT 
  [OBJECT MENUS] 

FIELD MENU 
 why did field = value ?  
  (refers to assignment before T) 
 why didn’t field’s value change after time T ? 
  (refers to potential assignment instructions) 
 [if value is object, include OBJECT MENU] 

OBJECT MENU 

Figure	10.23.	All	supported	questions	for	a	graphical	output	event	in	the	Java	
Whyline	prototype,	showing	six	types	of	questions	currently	supported	by	the	
prototype	(numbered	1-6)	and	three	types	of	menus.	For	each,	the	content	on	
the	left	lists	the	meaning	of	the	question	(items	in	[]’s	represented	nested	
menus	of	the	speciZied	type)	and	the	content	on	the	right	gives	an	example	
screen	shot.



Chapter	10:	A	Whyline	for	Java	 212

“Why	didn’t”	questions	refer	to	one	or	more	instructions	in	the	code.	The	prototype	
currently	supports	three	types	of	“why	didn’t”	questions:	

• Questions	about	output-affecting	Jields,	such	as	“why	didn’t	this	Button’s	hidden	

<ield	change?”,		

• Questions	about	output-affecting	methods,	such	as	“why	didn’t	this	Button	

repaint()?”,	and	

• Questions	about	output-affecting	classes,	such	as	“why	didn’t	a	Button	

appear?”	

For	 “why	 didn’t”	 questions	 about	 <ields,	 there	 are	 two	 types.	 For	 discrete-valued	
variables	such	as	booleans	or	enumerated	types	as	well	as	constant-valued	objects,	
the	system	can	identify	speci<ic	values	for	“why	didn’t”	questions.	For	example,	one	
might	ask	“Why	didn’t	the	<illed	rectangle’s	color	=	red?”	if	the	program	referred	to	
the	 constant	 Color.red;	 these	 values	 are	 found	 by	 following	 upstream	 data	

dependencies	 until	 reaching	 constant	 values.	 For	 continuous-valued	 variables	
(integers,	 <loats,	etc.),	 this	 is	usually	 is	not	 feasible;	 for	 these	variables,	 the	system	
instead	supports	questions	of	 the	 form	“why	didn’t	 the	variable	get	assigned?”	For	
both	 kinds	 of	 questions,	 there	may	 be	 numerous	 places	 that	 could	 have	 caused	 a	
variable	 to	 be	 assigned,	 these	 questions	 refer	 to	 the	 set	 of	 potential	 assignment	
statements.	 These	 instructions	 are	 grouped	 into	 a	 single	 question	 to	 avoid	 user	
speculation	about	which	particular	source	should	have	executed;	instead,	all	of	them	
are	 considered	 together.	 For	 “why	 didn’t”	 questions	 about	 methods,	 the	 system	
analyzes	all	of	the	potential	callers	of	the	subject	method.	

The	 last	 type	of	why	didn’t	 question	 supports	 questions	 about	 output	 that	 has	no	
representative	output	to	click	on.	For	example,	a	user	might	have	expected	a	dialog	
box	to	appear	after	a	certain	input	event,	or	a	console	string	after	a	certain	action;	
there	are	no	primitives	to	choose	that	would	enable	questions	about	such	output.	To	
support	 these,	 the	 Whyline	 includes	 a	 question	 for	 each	 familiar	 class	 that	 has	
output	invoking	methods,	inherited	or	declared.	An	example	of	the	resulting	menu	is	
seen	in	Figure	10.23.6,	showing	several	different	types	of	windows	that	could	have	
appeared	(the	prototype	does	not	yet	add	questions	about	non-window	classes,	but	
this	is	a	straightforward	addition).	



Chapter	10:	A	Whyline	for	Java	 213

There	are	a	few	types	of	questions	that	the	Whyline	does	not	support.	First,	it	does	
not	support	questions	about	concrete	values	of	continuous	variables	(“why	didn’t	x	
=	6.08?”).	This	 is	partly	because	answering	such	questions	can	be	computationally	
expensive	and	that	such	answers	can	pose	too	many	possible	reasons	to	be	useful.	
Moreover,	developers	do	not	often	know	precisely	what	value	to	expect.	Rather,	they	
might	 guess	 that	 x	 >	 0	 and	 around	 5;	 such	 speci<ications	 would	 require	 new	
algorithms	 to	 support.	 As	 an	 alternative	 to	 these	 kinds	 of	 questions,	 the	Whyline	
allows	users	to	ask	“why	didn’t	x	change?”	questions	or	to	simply	ask	the	positively	
phrased	version	of	the	same	question	to	<ind	the	source	x’s	value.		

One	other	type	of	unsupported	question	is	about	the	effects	of	 input,	such	as	“why	
didn’t	 this	 drag	 event	 do	 anything?”	 The	 problem	 with	 such	 “forward	 looking”	
questions	 is	 that	even	 in	very	simple	situations,	 input	events	have	many	effects	on	
programs	and	with	no	expectation	provided	to	the	system,	there	is	no	way	to	<ilter	
all	of	 these	 things	 that	do	occur.	 Instead,	users	 can	ask	 the	 “why	didn’t”	questions	
discussed	 throughout	 this	 chapter,	 which	 inquire	 about	 a	 some	 expected	 output	
after	an	 input	event.	This	 is	an	unfortunate	but	necessary	restriction.	Future	work	
might	 investigate	techniques	 for	adding	 forward	reasoning	questions	(one	place	to	
start	 might	 be	 the	 Garnet	 toolkit’s	 limited	 support	 for	 forward	 reasoning	 “why	
didn’t”	questions	about	input	events	[Myers	1990]).	

The	Alice	Whyline	 (Chapter	8)	 and	Crystal	 (Chapter	9)	both	 contained	global	why	
menus.	 The	 Java	Whyline	 does	 not,	 largely	 because	 there	 are	 far	 too	many	 events	
that	do	and	do	not	occur	in	a	Java	program	globally.	If	there	were	to	be	a	menu,	there	
would	be	too	few	constraints	on	what	appear	in	the	menu.	Having	the	user	choose	a	
particular	 output	 at	 a	 particular	 time	 is	 central	 to	 providing	 a	 reasonably	 sized	
question	menu.	

10.3.9. ANSWERING “WHY DID” QUESTIONS 

Although	 there	are	a	variety	of	 types	of	why	did	questions,	each	maps	 to	an	event	
from	the	program’s	execution	history.	The	approach	to	answering	 these	 is	 to	work	
backwards	from	the	event	to	<ind	its	chain	of	causality.	Dynamic	slicing	techniques	
[Baowen	 2005],	 which	 use	 a	 concept	 of	 control	 [Cooper	 2001]	 and	 data	
dependencies,	 are	 a	 natural	 approach	 to	 constructing	 these	 chains.	 However,	 the	
typical	 approach	of	 dynamic	 slicing	 algorithms	 is	 to	 generate	 a	 set	 of	 instructions	
and	 present	 them	 to	 the	 user	 as	 a	 set	 of	 highlighted	 lines	 of	 code.	 Given	 the	 data	



Chapter	10:	A	Whyline	for	Java	 214

from	the	studies	discussed	 in	prior	chapters,	 this	 seems	 less	helpful,	 therefore	 the	
Whyline	produces	a	visualization	of	events,	temporally	sequenced.	This	visualization	
is	 the	 tree	 of	 events	 that	 are	 traversed	 in	 a	 typical	 backwards	 dynamic	 slicing	
algorithm.	 Although	 the	 algorithm	 is	 essentially	 the	 same	 [Baowen	 2005],	 the	
difference	in	data	structures	affect	how	the	information	is	presented	to	the	user:	a	
chain	 of	 events	 shows	 what	 happened	 at	 runtime	 temporally,	 whereas	 a	 set	 of	
instructions	simply	states	dependencies,	many	of	which	a	user	might	already	know.	
Furthermore,	each	event’s	control	and	data	dependencies	are	computed	on	demand	
when	 a	 user	 selects	 an	 event.	 For	 example,	 rather	 than	 have	 the	 algorithm	
automatically	 traverse	 all	 of	 the	 data	 dependencies	 in	 a	 slice,	 the	 user	 explicitly	
chooses	data	dependencies	to	navigate	 in	the	form	of	“followup	questions”	(Figure	
10.15),	 much	 like	 the	 interaction	 in	 the	 recently	 proposed	 thin	 slicing	 [Sridharan	
2007].	 This	means	 that	 answers	 are	 produced	 almost	 immediately,	making	 slicing	
time	largely	moot,	unlike	previous	slicing	systems,	which	process	answers	in	full	as	a	
batch	process	[Baowen	2005].	

Some	“why	did”	questions	use	some	pre-	and	post-processing	to	increase	the	utility	
of	 the	answers.	For	example,	when	answering	a	question	about	an	argument	value	
passed	to	a	method,	the	system	<irst	<inds	the	“source”	of	the	value,	by	default.	The	
source	 essentially	 follows	 data	 dependencies	 backwards	 until	 reaching	 a	 data	
dependency	 with	 multiple	 incoming	 dependencies	 (not	 counting	 control	
dependencies).	To	be	concrete,	imagine	a	color	is	instantiated	in	a	call	and	then	the	
color	is	passed,	unmodi<ied,	through	a	dozen	other	calls	until	it	is	<inally	used.	When	
asking	 about	 this	 color	 (the	 “followup	 questions”	 about	 data	 dependencies	
mentioned	 in	 Section	 10.3),	 the	 system	 follows	 these	 data	 passing	 dependencies	
backwards	until	reaching	the	source,	which	might	be	an	instantiation,	an	expression,	
or	 the	 return	 value	 of	 an	 unrecorded	 method.	 The	 assumption	 that	 this	 analysis	
makes	is	that	the	calls	made	to	pass	such	data	are	not	buggy,	but	that	the	data	itself	
is	buggy.	 If	 this	assumption	 is	not	 true,	 the	analysis	will	 skip	over	 the	buggy	code.	
For	 example,	 perhaps	 the	 color	was	 obtained	 from	 the	wrong	 call.	 To	 account	 for	
this,	 the	 system	 also	 allows	 users	 to	 follow	 direct	 data	 dependencies	 and	 avoid	
skipping	these	potentially	erroneous	intermediate	steps.	



Chapter	10:	A	Whyline	for	Java	 215

10.3.10. ANSWERING “WHY DIDN’T” QUESTIONS 

“Why	 did”	 questions	 analyze	 an	 event	 by	 searching	 backwards	 in	 the	 history	 at	 a	
certain	 time.	 “Why	 didn’t”	 questions	 analyze	 one	 or	 more	 potentially	 unexecuted	
instructions	forward	from	the	I/O	event	the	user	has	selected	using	the	time	cursor.	
A	 “why	 didn’t”	 query	 thus	 consists	 of	 one	 or	 more	 instructions,	 a	 time,	 and	 in	
addition,	 one	 or	 more	 constraints	 on	 the	 expected	 conditions	 of	 the	 given	
instructions’	 execution	 (which	 will	 be	 discussed	 shortly).	 For	 example,	 imagine	 a	
question	about	a	button’s	enabled	 <ield;	there	may	be	three	places	this	enabled	<ield	

could	 be	 assigned.	 Each	 potential	 assignment	 is	 analyzed	 individually,	 generating	
individual	answers.	These	answers	are	then	combined	into	a	<inal	single	answer.	

To	 explain	 each	 individual	 instruction,	 the	 Whyline	 uses	 two	 analyses:	 (1)	
determining	 why	 an	 instruction	 was	 not	 executed,	 and	 (2)	 determining	 why	 a	
particular	dynamic	data	dependency	did	not	occur.	Each	of	these	 is	constrained	by	
two	types	of	scope.	Temporal	scope	affects	what	events	it	considers.	For	example,	a	
developer	may	ask	about	something	that	did	not	occur	after	a	speci<ic	event,	but	may	
have	 occurred	 in	 other	 situations.	 Therefore,	 “why	 didn’t”	 analyses	 only	 search	
through	events	that	occurred	after	the	event	selected	by	the	time	cursor	(see	Figure	
10.9)	and	before	the	end	of	the	program.	This	omits	other	executions	of	events	and	
reduces	the	amount	of	information	to	process.	The	tool	could	have	supported	scopes	
that	 end	 at	 a	 time	 different	 than	 the	 end	 of	 the	 program,	 but	 developers	 are	
notoriously	 bad	 at	 predicting	 precisely	when	 something	 should	 have	 happened	 in	
the	future;	including	the	whole	scope	ensures	that	they	make	no	false	assumptions.	
Developers	are	<ine	at	knowing	the	time	after	which	something	should	happen,	since	
most	things	happen	as	the	result	of	a	user	action.	Identity	scope	is	the	second	kind	of	
scope,	which	considers	what	object(s)	the	developer	has	expressed	 interest	 in.	For	
example,	 if	 they	have	asked	why	 the	 “hidden”	 <ield	of	a	button	did	not	change,	 the	
analyses	 are	 restricted	 to	 events	 on	 that	 speci<ic	 button	 instance.	 This	 calling	
constraint	is	propagated	through	the	algorithms	discussed	next.	

Why	was	 this	 instruction	 not	 executed?	 To	 explain	why	 an	 instruction	was	 not	
executed,	 the	 <irst	 thing	 the	Whyline	does	 is	 check	 if	 it	did	execute.	The	studies	 in	
Chapter	4	and	5	found	that	developers	are	often	prone	to	misperceiving	output,	and	
believe	 something	 has	 occurred	 when	 it	 has	 not	 (for	 example,	 believing	 that	
something	did	not	change	color,	when	it	did,	but	then	changed	back).	By	supporting	
“why	didn’t”	questions	about	 things	 that	did	happen,	 the	Whyline	can	reveal	 these	



Chapter	10:	A	Whyline	for	Java	 216

assumptions.	 If	 the	 instruction	 did	 not	 execute,	 the	 Whyline	 uses	 an	 algorithm	
(called	 whynotreached)	 to	 explain	 why	 not.	 If	 the	 method	 of	 the	 instruction	 being	

analyzed	was	not	executed	after	the	speci<ied	time,	there	are	few	possible	reasons:	

• It	has	no	known	callers	(the	tool	has	to	say	“known	callers”	because	a	call	
may	exist,	but	its	class	may	not	have	been	loaded	at	runtime).	

• A	caller	of	the	instruction’s	method	did	execute,	but	on	a	different	instance	(if	
the	instance	is	relevant).	

• None	of	the	method’s	callers	executed;	the	algorithm	then	recursively	
explains	why	each	potential	caller	was	not	reached.	

If	the	instruction’s	method	was	executed,	there	are	many	possible	reasons	why	the	
instruction	was	not	reached:	

• A	caught	exception	jumped	over	the	instruction	of	interest,	or	the	method	
exited	because	of	an	uncaught	exception.	

• None	of	the	instruction’s	control	dependencies	executed	(such	as	an	if	or	
switch);	the	algorithm	recursively	explains	why	none	of	these	control	
dependencies	executed	(there	is	typically	only	one	control	dependency,	
except	in	certain	exception	handling	situations).	

• One	of	the	instruction’s	control	dependencies	did	execute,	but	jumped	to	the	
wrong	target,	skipping	over	the	instruction.	

• The	method	executed,	but	the	instruction	of	interest	had	not	yet	(or	did	not	
because	the	thread	or	program	halted).	

For	 most	 questions,	 there	 are	 one	 or	 more	 objects	 of	 interest	 (for	 example,	 the	
button	clicked	on	or	the	button	represented	by	a	rectangle).	In	the	algorithm	above,	
if	 a	 call	 to	 a	method	 is	 found,	 it	 is	 only	 analyzed	 if	 it	 executed	using	 the	 object	 of	
interest	as	the	instance	invoked	on	or	as	an	argument.	For	example,	if	the	user	has	
asked	why	 a	method	 did	 not	 execute	 on	 a	 particular	 button,	 and	 some	 upstream	
caller	did	execute,	the	algorithm	checks	to	see	if	the	speci<ic	button	was	referenced.	
As	the	algorithm	traverses	calls,	the	local	variable	that	would	reference	the	object	of	
interest	 is	 tracked	 through	 invocations	 (for	example,	 in	one	call	 the	object	may	be	
the	 instance,	 and	 then	 inside	 the	 method,	 the	 instance	 may	 be	 passed	 as	 an	
argument;	 the	 algorithm	 tracks	 the	 <low	 of	 the	 object	 through	 the	 calls).	 If	 at	 any	
point	 the	 local	 variable	 is	 not	 a	 method	 argument,	 the	 algorithm	 stops	 tracking	



Chapter	10:	A	Whyline	for	Java	 217

identity,	since	there	is	no	where	else	to	back-propagate	the	calling	constraint.	In	this	
case,	the	algorithm	continues	analyzing	callers	independent	of	the	object	of	interest.	

The	 result	 of	 the	 algorithm	 is	 a	 directed	 graph	 (not	 a	 tree,	 because	 of	 recursion),	
with	 nodes	 consisting	 of	 invocations	 and	 conditional	 instructions	 that	 were	 not	
reached.	 Nodes	 that	 involve	 an	 invocation	 on	 a	 different	 object	 or	 a	 conditional	
branching	 in	 the	 wrong	 direction	 also	 have	 a	 causal	 chain	 of	 events	 attached,	
explaining	 the	 source	 of	 the	 wrong	 object,	 or	 the	 values	 of	 the	 conditional’s	
expression,	respectively.	When	a	question	refers	to	multiple	potentially	unexecuted	
instructions,	a	single	answer	containing	the	union	of	these	graphs	is	presented.	

Why	was	the	wrong	value	used?	Questions	that	ask	about	potential	values	of	<ields	
or	 primitive	 properties	 compare	 the	 expected	 dynamic	 dependency	 path	 to	 the	
actual	dynamic	dependency	path	at	runtime.	The	former	is	obtained	by	tracking	the	
path	followed	by	getSources	in	Figure	10.20.	the	latter	comes	from	the	dynamic	slice	

on	the	event	that	actually	occurred,	whether	it	was	a	<ield	assignment	or	argument	
of	 an	 output	 instruction.	 (These	 are	 lists	 because	 the	 algorithm	 only	 analyzes	
unmodi<ied	 values	 passed	 through	 intermediaries.)	 To	 illustrate,	 consider	 the	
following	code,	which	controls	a	text	<ield’s	background	based	on	various	state.	

Imagine	 that	 the	 user	 expected	 the	 background	 to	 be	 red	 (line	 8)	 and	 expected	 a	
question	 “why	didn’t	 this	TextField’s	 color	 =	 red?”	The	 expected	dependency	path	
from	2	would	be	2,1,5,4,8.	Then	imagine	that	instead,	the	background	was	gray	(line	

10),	with	 actual	 dependency	 path	 2,1,5,4,10,	 or	 black,	with	 path	 2,1,5,4,12.	 In	 both	

cases,	 the	 point	 of	 deviation	 was	 4:	 the	 program	 called	 setBack()	 with	 some	 color	

other	than	red.	To	explain	why,	the	Whyline	then	checks	if	the	expected	line	(8)	did	
execute.	 If	 it	 did	 and	 the	 other	 call	 to	 setBack()	 occurred	 after,	 then	 the	 color	was	

overridden.	If	line	8	did	not	execute,	then	the	tool	uses	the	whynotreached	algorithm	to	

determine	why	the	instruction	did	not	execute	(in	this	example,	it	would	be	because	
enabled	and/or	invalid	were	false,	or	determineColor()	was	not	called).	This	algorithm	

is	shown	in	Figure	10.24.	

 determineColor() 
6  if(invalid) 
7   if(enabled) 
8    setBack(red) 
9   else 
10   setBack(gray) 
11 if(override) 
12  setBack(black)



Chapter	10:	A	Whyline	for	Java	 218

	

10.4. EVALUATION 

This	section	describes	<ive	evaluations,	investigating	performance	characteristics	of	
the	 Java	Whyline,	 question	 coverage,	 and	 the	 effectiveness	 of	 the	 tool	with	 novice	
and	skilled	Java	programmers,	as	well	as	longitudinal	use	of	the	Whyline.	

10.4.1. PERFORMANCE EVALUATION 

In	order	to	test	the	performance	feasibility	of	the	Whyline	on	modern	hardware,	four	
aspects	 of	Whyline	 traces	were	 tested	 empirically:	 slow	 down	 (comparing	 normal	
running	 time	 to	 tracing	 time,	 as	 well	 as	 to	 pro<iling	 time),	 trace	 size,	 compressed	
trace	 size,	 and	 trace	 loading	 time.	 The	 programs	 tested	 included	 <ive	 open	 source	
projects	 of	 various	 sizes	 and	 complexity	 including	 a	 binary	 clock	 (binclock),	 a	

command	line	HTML	formatter	(jTidy),	a	 Java	compiler	(javac),	a	text	editor	(jEdit),	

and	a	diagramming	tool	(ArgoUML).	For	each,	the	test	case	listed	in	Table	10.4	was	run	

without	 tracing,	with	Whyline	 tracing	(classes	pre-cached),	and	with	a	commercial	
pro<iler	 tracing	 (YourKit	 Java	 Pro<iler	 version	 7.0,	 http://www.yourkit.com).	 Table	
10.4	lists	the	resulting	size	of	the	Whyline	trace	(in	terms	of	number	of	events	and	
disk	 size).	 Each	 trace’s	 folder	 of	 <iles	was	 compressed	 into	 a	 ZIP	 archive	 using	 the	

standard	DEFLATE	algorithm.	Finally,	the	loading	time	for	each	trace	was	recorded.	All	

tests	were	run	on	a	2GHz	Intel	Core	Duo	MacBook	Pro	with	2GB	of	RAM,	using	the	
standard	OS	X	JVM,	given	a	1	GB	heap.	Time	was	measured	to	the	tenth	of	a	second	
using	 the	Unix	time	 command	(on	OS	X),	and	reported	at	one-second	precision.	All	

tests	were	run	<ive	times	and	the	averages	are	reported	in	all	cases.	

whynotvalue(List of instructions expected, List of events actual) 

 co-iterate through expected and actual, comparing 
  instructions and finding point of deviation 

 if deviation was not found, reason = value was used 
 let exp be instruction after deviation in expected 
 let act be event after deviation in actual 

 if exp executed within temporal scope 
   reason = value was used, but then overriden 
 else  
   whynotreached(exp)  // Algorithm described in text above 

Figure	10.24.	Algorithm	whynotvalue,	which	explains	why	a	certain	dynamic	data	
dependency	did	not	occur.



Chapter	10:	A	Whyline	for	Java	 219



Chapter	10:	A	Whyline	for	Java	 220

As	 the	 results	 show,	 the	 Whyline’s	 tracing	 time	 is	 slower	 than	 the	 pro<iler.	 Once	
optimized,	 this	 should	 improve	 considerably.	 Trace	 sizes,	 especially	 compressed,	
compare	 favorably	 to	 those	 reported	 in	 dynamic	 slicing	work	 [Baowen	2005]	 and	
this	 is	 without	 using	 the	 run	 length	 encoding	 to	 compress	 loops,	 as	 reported	 in	
[Wang	2004].	It	is	also	clear	that	trace	size	depends	less	on	the	program	complexity	
and	more	on	the	nature	of	 the	output.	Command	line	programs	that	batch-process	
data	have	a	higher	rate	of	instruction	execution	than	GUI	applications.	This	is	likely	
due	 to	 users’	 idle	 time	 in	 GUIs.	 Loading	 time	 is	 also	 an	 issue.	 Although	 several	
optimizations	have	been	implemented,	 the	biggest	 limiting	factor	during	 loading	 is	
memory.	In	the	larger	traces,	there	were	delays	due	to	garbage	collection	and	virtual	
memory,	which	could	be	avoided	with	better	memory	management	in	the	prototype.	

10.4.2. QUESTION COVERAGE 

Another	 aspect	 to	 consider	 is	 the	 degree	 to	 which	 users	 would	 be	 able	 to	 <ind	 a	
question	 that	matches	 the	question	 they	want	 to	 ask.	Of	 course,	 this	 is	 dif<icult	 to	
measure,	 as	 there	are	no	 complete	 classi<ications	of	 the	questions	 that	people	 can	
ask	about	program	output.	The	approach	was	to	randomly	sample	three	bug	reports	
on	three	of	the	applications	in	Table	10.4,	and	check	to	see	(1)	whether	any	question	
seemed	like	a	reasonable	translation	of	the	problem	speci<ied	by	the	report,	and	(2)	
if	 so,	 how	much	 translation	was	 required.	 Of	 the	 nine	 reports	 randomly	 sampled	
(Table	10.5),	all	but	one	had	a	suitable	question.	Two	questions	were	about	console	
output,	<ive	were	about	primitive	graphical	output,	and	one	was	about	an	exception.		

Progra
m

LOC Test	
case

Execution	time	
(sec)

Slowdown	
(ratio)

total	#	
of	
events

Trace	Size	
(mb)

Loading	

normal YourKit Whyline YourKit Whyline original zip %	original(sec)events/sec
Binclock 177 Run	

clock	for	
<ive	

5.7 9.1 9.8 1.6 1.7 140,268 4.7 1.6 34% 2.5 56,107

jTidy 12,258 Clean	
html	of	
NY	
Times	

0.9 3.9 13.8 4.3 15.3 16,504,866118.1 13.712% 13 1,269,605

JEdit 66,403 Load,	
open	<ile,	
type	
“Goodby

8.4 11.7 60.1 1.4 7.2 8,983,890 84.5 15 18% 17.5 513,365

javac 54,054 Compile	
2,810	
line	Java	
source	

2 3.7 17 1.9 8.5 35,193,667283.6 40.214% 46.5 756,853

ArgoUML 113,117Load	to	
splash	
screen	

5.6 15 28.6 2.7 5.1 18,303,691137.6 17.913% 14.2 1,288,992

program bug	report	title	-	description whyline	question



Chapter	10:	A	Whyline	for	Java	 221

The	one	report	for	which	there	was	no	suitable	question	(the	2nd	jTidy	report)	was	
a	 request	 for	 an	 unsupported	 feature,	 and	 so	 there	 was	 no	 obvious	 question	
available.	 The	 Whyline	 might	 still	 be	 useful	 to	 help	 <ind	 where	 to	 add	 this	
functionality.	It	was	also	clear	that	the	Whyline	required	some	translation	of	the	bug	
reports	into	questions.	In	all	cases,	the	dif<iculty	in	such	translation	was	in	<inding	a	
suitable	subject	for	the	question	(listed	in	[]’s	in	Table	10.5).	It	seems	that	the	more	
dif<icult	it	was	to	<ind	a	subject,	the	more	distant	the	Whyline’s	answer	was	from	the	
cause.	Of	course,	these	tests	do	not	show	whether	a	person	would	<ind	the	question	
or	whether	the	answer	would	make	sense.	It	does	provide	a	best	case.	

JTidy	allows	duplicate	ID	attributes	-	If	you	give	the	same	ID	
value,	should	cause	error...

-

JTidy	locks	up	in	a	never	ending	loop	-	it	locks	up	with	this:... Why	didn’t	[success	message]	get	printed?
jEdit soft	wrap,	cut	and	null-pointer	exception	-	This	results	in	a	

BeanShell	error	dialog...
Why	did	this	text	=	[error	dialog	text]	?

File	Open/Save	dialog's	directory	-	File/Save	dialog	should	
start	in	the	directory	last	selected

Why	did	this	text	=	[current	folder	
name]	?

Invalid	screen	line	count	-	java.lang.RuntimeException:	
Invalid	screen	line	count:	0...

Why	did	[exception	thrown]	occur?

ArgoUML Autoresize	triggers	at	wrong	times	-	stretch	any	class	to	
greater	than	it	required	size...

Why	did	this	[class’s]	rectangle	width	=	
[wrong	size]?

Invisible	FigNodes	are	being	saved	-	software	just	displays	
error	and	doesn’t	open	project

Why	did	this	text	=	[error	dialog	text]	?

Can	not	parse	import	statement	after	javadoc	comment	-	
unexpected	token	"import"	...

Why	did	this	text	=	[error	dialog	text]	?

program bug	report	title	-	description whyline	question

Table	10.5.	Nine	bug	reports	and	the	Whyline	questions	that	could	be	asked.



Chapter	10:	A	Whyline	for	Java	 222

10.4.3. NOVICES WITH THE WHYLINE VERSUS SKILLED DEVELOPERS WITHOUT 

As	a	pilot	evaluation	of	the	Whyline’s	utility,	9	people	worked	on	the	Paint	slider	bug	
(described	 at	 the	 beginning	 of	 this	 chapter)	with	 the	Whyline.	 These	 participants	
had	a	variety	of	backgrounds,	with	the	least	experienced	having	never	seen	a	line	of	
code	 and	 the	most	 having	 programmed	 for	more	 than	 a	 decade.	 The	 participants’	
backgrounds	were	in	psychology,	design,	computer	science,	linguistics,	food	science,	
and	 engineering.	 These	 people’s	 task	 performance	was	 compared	with	 that	 of	 18	
self-described	expert	Java	developers	from	the	study	in	Chapter	6,	who	used	Eclipse	
2.1	(in	that	study,	participants	were	interrupted	about	every	three	minutes,	but	this	
time	was	removed	from	the	analyses	here).	

Each	of	the	participants	worked	through	a	1-2	minute	tutorial	about	how	to	use	the	
Whyline,	 including	 information	 on	 how	 to	 ask	 questions	 and	 how	 to	 follow	 data	
dependencies,	 and	 then	 were	 shown	 the	 Paint	 program	 and	 the	 blue	 slider’s	
incorrect	 behavior.	 Participants	were	 then	 asked	 to	 <ind	 the	 cause	of	 the	behavior	
and	 tell	 the	 experimenter	 when	 they	 thought	 they	 had	 found	 it.	 As	 they	 worked,	
participants	were	allowed	to	ask	questions	about	 the	user	 interface,	but	not	about	
the	 task	 or	 code	 (the	 focus	 was	 on	 utility,	 and	 not	 on	 usability	 problems).	 For	
example,	many	participants	asked,	“what	do	these	numbers	mean	again?”	referring	
to	 the	 data	 dependency	 labels	 in	 Figure	 10.1e).	 The	 experimenter	 also	 offered	
clari<ications	when	the	user	expressed	confusion	about	the	user	interface.	

Overall,	 the	 participants	 with	 the	 Whyline	 completed	 the	 task	 in	 a	 median	 of	 4	
minutes,	ranging	from	1	to	12,	signi<icantly	faster	than	the	control	group,	which	had	
a	median	of	10	minutes,	ranging	from	3	to	38	(p	<	.05,	Wilcoxon	rank	sums	test).	The	
Whyline	participants	were	more	than	twice	as	fast	as	the	skilled	developers	without	
the	 Whyline.	 This	 is	 despite	 the	 fact	 that	 most	 of	 the	 Whyline	 users	 were	 self-
described	 novices	 and	 that	 many	 of	 the	 developers	 in	 the	 control	 condition	 had	
already	spent	time	understanding	the	design	of	the	application.	In	fact,	in	this	pilot	
study,	the	novices	tended	to	outperform	the	skilled	deveopers	for	some	interesting	
reasons.	The	novices	tended	to	say	aloud,	“Why	is	the	line	black?”	and	then	use	the	
Whyline	to	ask	that	question	directly,	quickly	<inding	the	cause.	One	novice	said	that	
“It	was	like	a	treasure	hunt!	It	was	fun!	I	didn’t	know	debugging	was	like	this.”	The	
skilled	developers	asked	the	same	question,	but	then	rather	than	proceeding	to	ask	
it	 with	 the	Whyline,	 speculated	 about	 the	 possible	 reasons	 (e.g.,	 “Why	 didn’t	 this	
slider’s	event	get	handled?”),	 and	 then	 looked	 for	a	question	 that	allowed	 them	 to	



Chapter	10:	A	Whyline	for	Java	 223

check	their	speculation.	When	they	failed	to	<ind	such	a	question,	only	then	did	they	
ask	 about	 the	 color.	One	 skilled	developer	 explained	 that	 they	did	not	 “expect	 the	
Whyline	to	be	able	to	make	the	connection	between	the	slider	and	the	color,”	and	so	
they	thought	they	had	to	make	the	connection	themselves.	This	 led	to	a	number	of	
changes	 to	 the	 presentation	 of	 the	 data	 dependencies	 to	 make	 them	 appear	 as	
“followup		question,”	as	shown	in	the	examples	throughout	this	chapter.	

Another	issue	found	in	this	early	testing	was	the	lack	of	support	for	questions	about	
data	that	indirectly	in<luence	primitive	output.	At	the	time	of	this	study,	the	Whyline	
only	included	higher-level	questions	about	objects	that	indirectly	rendered	graphical	
output,	 but	 not	 questions	 about	 data	 that	 in<luenced	 this	 rendering.	 After	
discovering	this,	these	questions	were	then	added	to	the	Whyline	and	turned	out	to	
be	a	natural	companion	to	the	more	control	dependency	oriented	questions	already	
supported.	As	part	of	this	change,	the	top-level	“why”	menu	no	longer	contained	the	
list	 of	 objects	 under	 the	 mouse,	 but	 instead	 three	 top-level	 menus	 about	 the	
primitive	 output,	 data	 affecting	 the	 primitive	 output,	 and	 objects	 drawing	 the	
primitive	output.	

10.4.4. SKILLED DEVELOPERS WITH THE WHYLINE VERSUS WITHOUT 

In	this	more	formal	study,	the	goal	was	to	compare	skilled	Java	programmers	using	
the	 Whyline	 to	 similarly	 skilled	 Java	 programmers	 using	 conventional	 debugging	
tools.	The	study	had	a	between-subjects	experimental	design,	with	the	independent	
variable	of	“debugging	approach”	and	dependent	variables	of	task	completion	time	
and	 task	 success.	 The	 goal	 was	 to	 determine	 whether	 the	 Whyline	 would	
signi<icantly	 impact	 success	 at	 program	 understanding	 compared	 to	 modern	
debugging	tools.	To	 increase	con<idence	that	any	observed	differences	were	due	to	
the	 experimental	 factor,	 the	 group	 that	 used	 conventional	 debugging	 tools	 used	 a	
version	of	a	breakpoint	debugger	that	was	built	on	the	same	platform	as	the	Whyline	
for	 Java.	 This	 way,	 they	 had	 comparable	 user	 interfaces	 and	 performance	
characteristics,	 with	 the	 only	 differences	 in	 the	 type	 of	 debugging	 support.	 The	
control	group	could	set	breakpoints	and	step	through	code,	like	any	other	debugger,	
but	 neither	 condition	 was	 allowed	 to	 edit	 code.	 This	 also	 meant	 that	 the	 control	
condition	could	not	 insert	arbitrary	print	statements	 (but	 they	were	able	 to	 insert	
pseudo	print	 statements	 that	had	no	side	effects).	The	Whyline	group,	 in	 contrast,	
did	 not	 have	 access	 to	 breakpoint	 features,	 since	 the	 study	 was	 focusing	 on	 the	



Chapter	10:	A	Whyline	for	Java	 224

effectiveness	of	each	approach	and	not	on	which	type	of	support	developers	would	
choose.	

Participants.	The	sample	of	study	participants	consisted	of	10	people	in	each	group	
for	 a	 total	 of	 20.	 Participants	were	 all	 students	 in	 a	masters	 program	 in	 software	
engineering,	 but	 had	 a	 median	 of	 1.5	 years	 of	 industry	 software	 development	
experience	 before	 coming	 back	 to	 school,	 ranging	 from	 0-10.	 (The	 one	 developer	
who	reported	an	industry	experience	of	zero	had	worked	on	several	large	projects	in	
an	 industry	 setting,	 but	was	 never	 paid	 for	 the	work	 and	 thus	 did	 not	 count	 it	 as	
industry	experience).	All	rated	conventional	breakpoint	debuggers	as	“important”	to	
their	work	or	higher	on	a	scale	of	“useless”	to	“essential.”	The	participants	also	rated	
themselves	with	average	or	higher	Java	expertise	on	a	scale	of	“beginner”	to	“expert”.	
There	 were	 no	 statistically	 signi<icant	 differences	 in	 these	measures	 between	 the	
two	conditions.	

Tasks.	 Participants	worked	on	 two	 tasks	adapted	 from	real	bug	 reports	of	 ArgoUML,	

which	is	a	150,000	line	open	source	Java	application	for	designing	Java	applications	
themselves	 using	 UML	 diagrams	 (it	 is	 also	 listed	 in	 Table	 10.4).	 The	 task	
descriptions	given	to	participants	appear	in	the	Appendix.	

The	<irst	bug	(shown	in	Figure	10.25)	involved	removing	a	particular	checkbox	from	
the	user	interface.	The	typical	strategy	of	search	for	the	label	of	the	checkbox	in	the	
source	 code	 did	 not	work	well	 in	 this	 task	 because	 the	 application	 used	 localized	
strings	 for	 different	 languages	 that	were	 stored	 in	 a	 compressed	 <ile	 on	 disk.	 The	
checkbox	label	did	appear	in	the	command	line	help,	and	the	command	line	help	text	
did	 appear	 in	 the	 source	 <iles,	 so	 if	 one	 formulated	 a	 search	 with	 part	 of	 the	
checkbox	label,	one	could	make	the	connection	between	the	two	and	eventually	<ind	
the	right	source	<ile,	but	few	made	this	connection	in	the	actual	study.	

The	second	bug	(shown	in	Figure	10.26)	involved	investigating	a	drop	down	list	of	
Java	types	that	was	supposed	to	contain	all	legal	Java	classes	for	Java	<ield,	but	was	
for	some	reason	excluding	classes	in	different	packages	that	had	equivalent	names.	
The	 problem	 was	 that	 a	 class	 responsible	 for	 aggregating	 these	 class	 names	
collected	the	names	in	an	ordered	set,	whose	equality	operator	was	only	comparing	
the	unquali<ied	names	of	classes.	These	comparisons	excluded	the	second	class	with	
the	 equivalent	 name.	 The	 challenge	 of	 the	 task	was	 to	 identify	 the	 class	 that	was	



Chapter	10:	A	Whyline	for	Java	 225

aggregating	these	names	and	<illing	the	drop	down	menu	and	understand	precisely	
how	it	was	gathering	the	items	for	the	menu.	

In	order	to	determine	success	on	a	task,	it	was	important	to	consider	that	there	may	
be	many	possible	correct	explanations	for	a	program’s	failure.	This	is	because	there	
are	many	possible	correct	changes.	For	example,	task	two	could	have	been	<ixed	by	
qualifying	the	name	of	the	type	entities	used	to	construct	the	list,	or	by	making	the	
set	comparison	more	sophisticated,	among	other	solutions.	To	determine	which	of	
these	was	“correct,”	the	actual	change	suggestions	made	in	the	ArgoUML	project	were	

used	as	a	guide.	If	a	participants’	explanation	of	the	cause	was	subjectively	similar	to	
that	in	one	of	the	bug	report	discussions	or	check-in	comments,	then	it	was	deemed	
correct.	This	actually	turned	out	to	be	less	of	an	issue	than	anticipated,	since	task	1	
only	 had	 a	 single	 correct	 solution	 and	 task	 2	was	 so	 dif<icult	 that	 few	 got	 near	 a	
correct	solution.	

Procedure.	Prior	to	participation,	participant	were	randomly	assigned	to	one	of	the	
two	 debugging	 conditions.	 Participants	 were	 greeted	 and	 then	 asked	 to	 read	 and	
sign	 an	 informed	 consent	 form.	 They	 then	 completed	 a	 one	 page	 questionnaire	
about	their	prior	programming	experience.	After	this,	 the	experimenter	helped	the	

Figure	10.25.	ArgoUML	bug	3121,	titled	“Remove	‘Report	Usage	Statistics’	since	
it	does	not	do	anything.”



Chapter	10:	A	Whyline	for	Java	 226

participant	complete	a	10-minute	 tutorial	on	 features	common	 to	both	conditions,	
including	 the	 source	 code	 navigation	 tools	 such	 as	 “go	 to	 declaration”	 and	 “show	
callers”	 commands.	 Then,	 the	 experimenter	 walked	 the	 participant	 through	 a	
tutorial	 speci<ic	 to	 the	 condition	 (the	 tutorial	 materials	 appear	 in	 the	 Appendix).	
Whyline	participants	 learned	how	to	ask	questions	and	navigate	answers,	whereas	
control	 group	 participants	 learned	 how	 to	 set	 breakpoints,	 step	 through	 code,	
inspect	 the	 call	 stack	 and	 local	 variable	 state,	 and	 insert	 pseudo	print	 statements.	
After	 completing	 the	 tutorial,	 the	experimenter	 read	 the	 <irst	 task	description	and	
provided	a	copy	to	the	participant	to	follow.	

Participants	were	told	to	isolate	the	cause	of	the	speci<ied	problem	and	then	write	a	
change	recommendation	to	a	<ictional	boss	in	a	text	<ile.	Participants	were	also	told	
to	emphasize	speed	over	correctness,	since	the	code	they	were	understanding	was	
unfamiliar	 and	 their	 <ictional	 boss	would	 know	 if	 their	 answer	was	 on	 track.	 The	
participant	was	asked	if	they	had	any	questions	and	then	told	to	begin.	Participants	
were	 allowed	 to	 ask	 for	 clari<ication	 about	 any	 of	 the	 tutorial	 content,	 but	 other	
questions	were	not	answered.	Participants	were	given	30	minutes	 to	complete	 the	

Figure	10.26.	ArgoUML	bug	3128,	titled	“Problems	with	two	classes	with	the	
same	name	in	different	packages”.



Chapter	10:	A	Whyline	for	Java	 227

task;	 at	 10	 minutes	 and	 5	 minutes	 remaining	 the	 experimenter	 warned	 the	
participant	of	the	time	remaining.	After	the	<irst	task,	this	process	was	repeated	for	a	
second	task	and	then	the	participant	was	debriefed	about	the	purpose	of	the	study.	

In	designing	the	study,	there	were	many	possible	times	at	which	participants	could	
have	 stopped	 their	work.	Allowing	participants	 to	work	as	 long	as	 they	 liked	on	a	
problem	 was	 not	 feasible,	 therefore,	 a	 time	 limit	 of	 30	 minutes	 was	 chosen	 (by	
piloting	 the	 tasks	 with	 several	 representative	 developers).	 However,	 even	 with	 a	
time	limit,	there	could	be	unpredictable	variations	in	when	developers	chose	to	stop,	
depending	 on	 how	 con<ident	 of	 their	 solution	 they	 wished	 to	 be.	 Therefore,	
participants	 were	 encouraged	 to	 trade	 con<idence	 for	 speed,	 with	 the	 hope	 of	
unifying	their	performance	tradeoffs.		

Results.	 The	 results	 for	 task	 1	 are	 summarized	 in	 Figure	 10.27.	 All	 10	 Whyline	
participants	completed	task	one,	compared	to	only	3	control	participants	(χ2	=10.6,	
p<.05).	Whyline	participants	also	completed	task	1	twice	as	fast	(t=4.5,	p<0.05).	The	
control	participants	who	did	<inish	the	task	explored	hundreds	of	<iles,	but	got	lucky	
in	their	searches,	whereas	the	Whyline	participants	only	explored	a	median	of	three.		

The	 results	 for	 task	 2	 are	 summarized	 in	 Figure	 10.28.	 Of	 the	 10	 participants,	 4	
Whyline	participants	were	successful,	compared	to	none	in	the	control	group	(χ2	=5,	
p<.05).	 This	 task	 was	 considerably	 more	 dif<icult;	 the	 successful	 Whyline	
participants	 spent	 all	 thirty	 minutes	 on	 the	 task,	 but	 much	 of	 it	 was	 in	 order	 to	
understand	 some	of	 the	 Java	APIs	used	 in	 constructing	 the	 list	 for	 the	drop	down	
menu.	Given	the	dif<iculty	of	the	two	tasks	and	the	sheer	size	of	the	application,	that	

Figure	10.27.	For	task	1,	the	number	of	successful	participants	and	the	
time	on	task.

#	successful

0

4

8

time	(min)

0
9

19
28

whyline control



Chapter	10:	A	Whyline	for	Java	 228

There	 was	 no	 signi<icant	 relationship	 between	 number	 of	 years	 in	 the	 software	
industry	and	success	for	either	task	(though	this	was	probably	because	the	sample	
was	too	small	or	the	developers	had	too	little	industry	experience).	

Aside	from	the	success	of	participants,	it	is	also	worth	mentioning	the	success	of	the	
Whyline	user	interface.	All	Whyline	participants	asked	at	 least	one	question	with	a	
maximum	of	three	and	all	relied	exclusively	on	the	data	presented	in	the	Whyline’s	
answers	rather	than	doing	manual	searches	through	source	code.	There	was	a	split	
in	 whether	 participants	 focused	 on	 the	 visualization	 or	 the	 code.	 Some	 used	 the	
visualization	as	the	primary	data,	asking	followup	questions	from	the	visualization	
and	using	them	to	drive	their	search.	Others	focused	on	the	source	code	and	asked	
questions	 from	there.	Whyline	participants	 in	general	used	Whyline	questions	and	
followup	questions	to	guide	their	search	almost	exclusively;	the	control	participants	
used	manual	searches	and	static	navigations,	namely	“show	declaration”	and	“show	
callers”	for	methods.	

Unfortunately,	 there	 was	 not	 time	 for	 a	 followup	 questionnaire	 to	 assess	 user’s	
overall	opinions	of	the	Java	Whyline,	but	8	of	the	10	Whyline	participants	offered	a	
their	thoughts	unprompted:	

Figure	10.28.	For	task	2,	the	number	of	successful	participants	and	the	
time	on	task.

#	successful

0

4

8

time	(min)

0
10
20
30

whyline control



Chapter	10:	A	Whyline	for	Java	 229

"This is really great!" 

"I love it!" 

"This is really going to reduce the burden on programmers." 

"I think this will really help." 

"It's so nice and straight and simple..." 

"My god, this is so cool." 

"This is great, when can I get this for C?" 

"This is very nice." 

The	enthusiasm	of	participants	was	clearly	evident	and	all	participants	asked	to	be	
noti<ied	of	the	tool’s	availability.	

Discussion.	There	are	a	 few	interesting	 impressions	that	can	be	gleamed	from	the	
participants’	 work	 with	 the	 Whyline.	 For	 example,	 participants	 seemed	 to	 treat	
answers	like	they	treat	the	<irst	page	of	results	of	a	web	search:	if	they	saw	nothing	
in	 the	 <irst	 few	 events	 of	 a	Whyline	 answer,	 they	would	 try	 asking	 a	 different	 but	
related	 question.	 Similarly,	 there	 seemed	 to	 be	 a	 reluctance	 to	 follow	 data	
dependencies	perhaps	because	other	tools	they	were	familiar	with	only	allow	one	to	
navigate	 control	 dependencies	 (such	 as	with	 a	 call	 stack).	 This	means	 that	 it	was	
crucial	for	the	Whyline	<ind	relevant	code	to	show	immediately.	Either	that,	or	some	
additional	 training	 may	 have	 been	 necessary	 to	 emphasize	 the	 importance	 of	
looking	deep	within	the	results	of	 the	answer,	and	in	particular,	understanding	the	
data	dependencies	in	the	answer.	

Another	 observation	 was	 that	 there	 was	 some	 variation	 in	 the	 speci<icity	 of	
questions	that	the	Whyline	participants	used,	suggesting	that	users	of	 the	Whyline	
still	 need	 to	 use	 some	 caution	 in	 which	 questions	 they	 choose	 to	 explore.	 Some	
chose	 questions	 directly	 relevant	 to	 the	 symptoms	 of	 the	 failure,	 and	 as	 a	 result,	
found	 answers	 that	 were	 directly	 relevant.	 Others	 chose	 more	 generic	 questions	
only	 tangentially	related	 to	 the	 failure,	probably	because	 they	could	not	 <ind	other	
more	relevant	questions.	They	still	 tended	to	<ind	the	answers,	but	only	with	more	
work.	 Therefore,	 people	 still	 need	 to	 be	 systematic	 and	 cautious	 in	 their	 program	
understanding,	 but	 the	 Whyline	 helps	 by	 making	 the	 choice	 of	 question	 more	
explicit.	



Chapter	10:	A	Whyline	for	Java	 230

By	making	dependencies	between	code	explicit	through	questions	and	answers,	the	
Whyline	seemed	to	in<luence	the	participants’	con<idence	in	their	understanding	of	
causality	 in	 the	program.	Although	there	are	currently	no	numbers	 to	support	 this	
claim,	 Whyline	 participants	 seemed	 to	 require	 less	 time	 to	 decide	 that	 they	 had	
found	a	buggy	method	and	were	generally	right	when	they	had	decided	so.	Control	
group	participants	often	read	a	method	and	after	some	time	understanding	related	
code,	deemed	it	“unimportant”	by	never	returning	to	it,	even	when	it	was	precisely	
the	method	that	contained	the	bug.	

It	was	also	clear	that	there	is	a	subtle	difference	between	types	of	program	failures.	
Some	bugs	are	obvious	once	one	sees	them	and	the	challenge	is	purely	in	locating	it	
(such	as	 task	1	 in	 this	experiment).	Other	bugs	are	 similarly	 challenging	 to	 locate,	
but	even	once	 found,	 it	may	 take	some	 time	 to	understand	 the	problem	(task	2	 in	
this	experiment).	The	results	of	the	study	suggest	that	the	Whyline	is	quite	helpful	at	
“<inding	the	buggy	method”	but	not	for	explaining	“why	the	method	is	buggy.”	This	is	
related	to	the	fact	that	the	Whyline	is	only	providing	causal	explanations	of	output	
and	 not	 making	 change	 recommendations.	 It	 has	 no	 special	 knowledge	 of	 the	
intended	 behavior	 of	 the	 program,	 other	 than	 the	 implicit	 expectations	 from	 the	
users’	questions.	

Aside	from	these	higher	level	issues,	there	are	number	of	re<lections	on	the	Whyline	
user	interface	worth	mentioning.	Although	there	was	a	split	in	how	people	used	the	
visualization,	 some	 to	 guide	 their	 search	 and	 others	 as	 a	 bookmarking	 tool,	 the	
central	bene<it	of	the	visualization	seemed	to	be	as	a	place	to	gather	relevant	code.	
All	of	the	Whyline	users	relied	on	the	events	in	the	visualization	as	a	way	to	get	back	
to	recently	viewed	and	relevant	code	and	many	complained	that	there	was	no	way	to	
remove	events	from	the	visualization	once	they	had	been	added.	This	suggests	that	
they	 intended	 to	 use	 the	 visualization	 as	 an	 important	 encapsulation	 of	 their	
discoveries	about	the	problem	they	were	investigating.	

The	 tutorial	 was	 an	 important	 part	 of	 helping	 participants	 understand	 the	
visualization;	without	it,	as	found	in	earlier	pilot	studies,	the	notation	itself	and	its	
similarity	 to	 Java	 syntax,	was	not	 enough	 to	understand	 the	 semantics	 behind	 the	
events.	This	 is	not	all	 that	 surprising,	 as	no	notation	 is	 arguably	 “natural”	without	
some	 prior	 knowledge.	 The	 best	 approach	 to	 the	 training	 would	 probably	 be	 to	
integrate	 the	 explanation	 of	 the	 visualization	 notation	 into	 the	 tool	 itself	 through	
tooltips	or	other	means,	rather	than	as	a	separate	introduction.	



Chapter	10:	A	Whyline	for	Java	 231

Whyline	participants	 tended	not	 to	ask	 “why	didn’t”	questions	and	when	 they	did,	
they	tended	to	get	frustrated	at	the	extra	time	it	took	to	answer	some	“why	didn’t”	
questions	 (this	 was	 because	 the	 analyses	 involved	 exhaustive	 searches	 through	
potentially	large	and	complex	call	graphs	and	were	on	the	order	of	a	minute	or	less	
for	the	tasks	in	this	study).	This	problem	is	inherent	to	the	static	analyses	required	
to	 generate	 these	 answers.	 It	 is	 not	 clear	whether	 participants	would	 have	 asked	
more	 “why	 didn’t”	 questions	 if	 they	 had	 been	 faster	 to	 produce.	 It	 is	 also	 unclear	
whether	 participants	avoided	 “why	 didn’t”	 questions	 or	 just	were	 not	 as	 aware	 of	
their	presence.	This	raises	the	larger	issue	of	whether	participants	were	even	able	to	
<ind	 the	questions	 they	wanted	 to	 ask.	Unfortunately,	 this	was	not	what	 the	 study	
was	designed	to	investigate,	since	it	only	involved	two	tasks.	Exploring	this	question	
in	 depth	would	 require	 a	 study	 that	 investigates	 a	 broad	 sample	 of	 programs	 and	
bugs.	 This	 is	 something	 I	 plan	 on	 investigating	 as	 part	 of	 the	 Java	 Whyline	
deployment	by	giving	users	an	opportunity	 to	send	 feedback	about	questions	 they	
wanted	to	ask	but	could	not	<ind.	

Another	 potential	 issue	 regards	 the	 size	 of	 the	 Whyline’s	 answers.	 Because	
information	was	computed	on	demand,	users	only	saw	as	much	information	as	they	
requested,	 so	 there	were	 no	 apparent	 dif<iculties	with	 the	 amount	 of	 information	
presented.	The	challenge	was	instead	in	choosing	the	right	data	to	request.	

10.4.5. LONGITUDINAL AND EXPERT USE 

To	 date,	 I	 am	 the	 only	 expert	 user	 of	 the	 Java	Whyline	 as	 it	 has	 not	 been	widely	
deployed,	but	I	have	a	number	of	perspectives	to	offer	on	how	it	has	in<luenced	my	
own	development	work	on	Java	software.	Obviously,	all	of	my	comments	come	from	
a	sample	of	one	and	are	subject	to	many	kinds	of	confounds,	so	they	should	be	taken	
at	face	value.	

First,	I	feel	more	careful	in	my	own	reasoning	and	skeptical	of	my	hypotheses	when	
using	 the	 Whyline.	 Something	 about	 having	 to	 explicitly	 choose	 and	 formulate	 a	
question	 makes	 me	 carefully	 consider	 precisely	 what	 I	 want	 to	 know	 about	 and	
whether	 any	 of	 my	 past	 experiences	 will	 be	 useful	 in	 predicting	 what	 happened	
during	a	program’s	execution.	I	have	learned	over	time	that	the	cost	of	gathering	and	
analyzing	 a	 trace	 usually	 pays	 off,	 even	 if	 at	 <irst	 it	 seems	 like	 lower	 overhead	
debugging	tools	such	as	print	statements	and	breakpoints	might	be	helpful.	This	is	
largely	because	it	is	nearly	impossible	to	predict	how	long	a	bug	will	take	to	<ix.	



Chapter	10:	A	Whyline	for	Java	 232

I	 have	 also	 found	 that	 the	Whyline	 is	 useful	 as	more	 than	 just	 a	 debugging	 tool.	 I	
have	 used	 it	 as	 a	 reverse	 engineering	 tool	 to	 trace	 back	 from	 output	 to	 code	 to	
understand	 the	 different	 architectural	 pieces	 of	 large	 applications	 I	 wanted	 to	
understand.	 For	 example,	 when	 I	 was	 trying	 to	 debug	 the	 the	 tasks	 used	 in	 the	
ArgoUML	 study,	 I	 could	 simply	 click	 on	 output	 and	 gather	 concise	 lists	 of	 the	 data	

structures	that	in<luenced	the	output,	providing	me	directly	relevant	lists	of	classes	
to	understand.	Even	by	simply	scanning	the	mouse	across	the	screen,	I	can	see	just	
how	many	source	<iles	are	used	to	implement	the	user	interface	and	within	seconds,	
get	a	sense	of	the	complexity	of	the	application’s	design.	

Another	 important	observation	about	question	asking	 is	 that	having	knowledge	of	
how	 the	 Whyline	 answers	 questions	 helps	 me	 choose	 more	 relevant	 questions	
because	I	can	predict	the	content	of	the	answers.	I	know	that	a	question	about	why	a	
<ield	was	not	assigned	will	implicitly	analyze	all	of	the	potential	assignments	to	the	
<ield	and	how	they	can	be	reached;	 this	 is	an	extremely	helpful	way	of	 <inding	out	
how	 encapsulated	 the	 <ield	 is.	 This	 kind	 of	 advanced	 query	 selection	 is	 similar	 to	
expert	 users	 of	 search	 engines.	 Once	 a	 Google	 user	 knows	 that	 the	 order	 of	 the	
search	terms	in<luences	the	order	of	the	results,	they	can	more	effectively	control	the		
quality	of	the	search	results.	

The	only	things	that	is	currently	stopping	me	from	using	it	for	all	of	my	debugging	
are	the	bugs	 in	the	Whyline	 itself.	 I	would	 <ind	a	robust	 implementation	extremely	
useful	to	my	work.	

10.5. DISCUSSION 

Though	there	are	numerous	issues	to	discuss	about	the	Whyline	concept	in	general,	
this	section	will	be	limited	to	issues	regarding	the	Java	Whyline.	One	central	issue	is	
how	much	 the	 design	 of	 the	 Java	Whyline	 is	 speci<ic	 to	 Swing	 and	 Sun’s	 Abstract	
Windowing	 Toolkit	 (AWT).	 The	 Java	 Whyline	 assumes	 that	 particular	 rendering	
classes	are	used.	Supporting	these	classes	required	considerable	effort,	because	the	
rendering	 interfaces	 are	 quite	 complex.	 Many	 of	 the	 functions	 in	 Graphics2D	 take	

images	and	it	was	not	feasible	performance-wise	to	record	the	whole	image.	There	
were	 many	 other	 esoteric	 features	 of	 the	 class	 that	 were	 not	 supported,	 such	 as	
variations	 on	 the	 cap	 styling	 of	 pixel	 strokes.	 Offering	 full	 support	 for	 all	 of	 these	
details	may	 be	 important	 in	 a	 proper	 release	 of	 a	 Java	Whyline.	 There	 is	 also	 the	



Chapter	10:	A	Whyline	for	Java	 233

issue	of	how	easily	 the	 Java	Whyline	could	be	adapted	 to	other	 rendering	 toolkits,	
such	 as	 SWT	 (the	 toolkit	 used	 to	 create	 Eclipse	 and	 its	 plug-ins)	 or	 other	 web	
standards	like	Adobe’s	Flash	or	Microsoft’s	Silverlight.	There	are	many	similarities	in	
the	 way	 that	 these	 platforms	 render	 output,	 but	 because	 of	 subtle	 architectural	
differences,	 it	 would	 require	 signi<icant	 work	 to	 record	 output	 and	 provide	 user	
interfaces	for	exploring	it.	For	example,	much	of	the	output	in	Flash	is	vector-based,	
so	 the	output	 recording	would	need	knowledge	of	 the	vector-based	graphical	data	
structures,	which	the	Java	Whyline	does	not	have.	Each	platform’s	output	rendering	
interfaces	would	require	custom	handling	 to	support	well	and	some	platforms	are	
decidedly	less	cleanly	designed	than	AWT.	

One	issue	related	to	the	rendering	interfaces	used	is	whether	the	Java	Whyline	could	
be	adapted	to	support	questions	in	the	context	of	a	running	application,	rather	than	
in	 a	 postmortem	 fashion.	 Pausing	 the	 program	 would	 not	 be	 dif<icult	 using	
conventional	 breakpoint	 debugging	 frameworks,	 but	 all	 of	 the	work	 that	 the	 Java	
Whyline	must	do	to	track	the	location	of	primitive	output	onscreen	would	have	to	be	
done	during	execution.	It	could	be	a	signi<icant	performance	bottleneck	to	maintain	
and	 update	 this	 information	 as	 the	 program	 executes,	 without	 having	 to	 give	 the	
Whyline	special	knowledge	about	the	user	interface	toolkit	used	by	the	program.	If	
one	took	this	approach,	 it	may	be	possible	to	support	higher	 level	questions	about	
user	 interface	 components	 and	 their	 state,	 but	 not	 about	 lower	 level	 output	
primitives	like	rectangles	and	lines.	This	could	be	a	useful	middle	ground	to	explore,	
while	streamlining	the	interaction	with	the	Whyline.	

This	raises	the	issue	of	having	question	plug-ins	for	the	Whyline,	to	support	higher-
level	 questions	 about	 speci<ic	 types	 of	 output.	 The	 Java	 Whyline	 has	 no	 special	
knowledge	 of	 user	 interface	 toolkits	 or	 other	 APIs,	 other	 than	 knowledge	 about	
primitive	 I/O,	 meaning	 that	 the	 speci<icity	 of	 the	 questions	 and	 answers	 is	 often	
lacking.	For	example,	if	a	user	is	wondering,	“why	didn’t	this	window	change?”	users	
must	choose	a	suitable	substitute,	such	as	“why	didn’t	this	JFrame’s	repaint()	method	
get	 called?”	 It	might	 be	 helpful	 if	 one	 could	write	 plug-ins	 for	 the	Whyline	 to	 add	
special	 knowledge	 and	 heuristics	 for	 certain	 APIs,	 to	 improve	 the	 speci<icity	 of	
questions	 and	 answers,	 and	 even	 offer	 recommendations	 about	 potential	 <ixes	 for	
errors.	

Aside	from	the	rendering	interfaces,	another	issue	is	how	speci<ic	the	Java	Whyline	
is	to	Java	itself.	Could	it	be	easily	adapted	to	support	other	object-oriented	languages	



Chapter	10:	A	Whyline	for	Java	 234

such	 as	 C#	 or	 C++?	 The	 Java	 Whyline	 does	 have	 a	 strong	 reliance	 on	 object-
orientation,	because	it	relies	on	the	fact	that	all	of	a	program’s	domain	concepts	have	
been	 subdivided	 and	 named	 in	 individual	 data	 structures.	 The	 challenge	 of	
supporting	 other	 language	 paradigms	 is	 discussed	 in	 the	 next	 chapter.	 However,	
there	 is	 the	 practical	 issue	 of	 being	 able	 to	write	 a	Whyline	 that	 covered	 a	whole	
range	of	object-oriented	languages	with	the	same	tool.	Since	Java,	C++,	and	C#	all	use	
different	 instruction	 sets,	 one	 way	 to	 accomplish	 this	 would	 be	 to	 compile	 such	
instructions	into	some	intermediate	language,	much	like	modern	compilers	can	do,	
and	 then	 reason	 about	 the	 code	 at	 the	 level	 of	 this	 common	 representation.	 The	
tradeoff	would	be	the	lack	of	precision	in	relating	these	abstracted	instructions	back	
to	 the	 actual	 source	 <iles	 used	 to	 generate	 them.	 To	 ensure	 this	 was	 possible,	 it	
would	 be	 important	 for	 the	 compilers	 to	 generate	 tables	 of	 a	 precise	 mapping	
between	the	tokens	in	the	source	<iles	and	the	instructions	in	the	compiled	code.	

Java,	 among	 other	 languages,	 has	 certain	 features	 that	 make	 analyzing	 causality	
inherently	 incomplete.	For	example,	 languages	that	support	re<lection	can	result	 in	
calls	 to	 methods	 that	 cannot	 be	 identi<ied	 statically.	 Therefore,	 when	 answering	
questions	that	have	to	reason	about	potential	callers,	the	analyses	are	bound	to	miss	
certain	possibilities.	One	approach	to	this	problem	is	to	be	conservative	and	include	
all	 possible	 calls,	 even	 searching	 potential	 re<lection	 calls;	 this	 may	 result	 in	 too	
many	 possibilities	 being	 provided.	 Another	 approach	 is	 to	 communicate	 the	
con<idence	that	the	answer	is	complete,	just	as	the	Java	Whyline	does	by	saying,	“this	
method	has	no	known	callers.”	

10.6. SUMMARY 

The	Java	Whyline	was	successful	on	many	levels,	contributing:	

• A	data	representation	for	capturing	the	execution	of	Java	programs	and	their	
output	that	computes	properties	of	the	recording	on	demand	and	ef<iciently	
caches	them	on	disk.	

• Algorithms	for	marking	classes,	<ields,	and	methods	that	indirectly	effect	
primitive	output.	

• Algorithms	for	identifying	potential	sources	of	values	for	a	given	Java	
variable.	



Chapter	10:	A	Whyline	for	Java	 235

• Algorithms	for	determining	why	a	particular	instruction	was	not	reached,	
accounting	for	constraints	on	the	time	at	which	it	should	have	been	reached	
and	the	object	context	in	which	it	should	have	executed.	

• User	interfaces	for	exploring	graphical,	textual,	and	exception	output	of	Java	
programs.	

• User	interfaces	for	navigating	the	I/O	history	of	a	Java	program.	

• Algorithms	for	identifying	“why	did”	and	“why	didn’t”	questions	about	data	
and	objects	indirectly	in<luencing	a	given	output	primitive.	

• Heuristics	for	<iltering	question	menus	by	a	notion	of	familiarity,	de<ined	by	
code	ownership.	

• Support	for	questions	about	code	that	did	execute,	despite	users’	beliefs,	
helping	to	reveal	false	assumptions	about	program	execution.	

• Timeline	visualizations	of	code	execution	separated	by	thread	and	connected	
by	control	and	data	dependencies.	

• A	workspace	that	closely	relates	execution	history,	output,	and	code	in	a	
through	a	single	unifying	user	selection.	

• Evidence	that	the	study	participants	liked	the	Whyline	and	want	a	version	to	
support	their	favorite	language.	

• Evidence	that	Java	Whyline	users	are	signi<icantly	more	successful	and	
ef<icient	at	solving	debugging	tasks	in	a	large	open	source	system.	

Overall,	the	Java	Whyline	addressed	many	of	the	issues	of	scale	that	were	concerns	
with	the	Alice	Whyline	and	also	extended	our	understanding	of	how	people	conceive	
of	program	output	and	how	tools	can	relate	those	conceptions	to	code.	It	 is	a	solid	
example	of	 how	 the	Whyline	 concept	 can	be	 supported	 for	 complex	programming	
languages	 and	 could	 be	 quite	 helpful	 in	 inspiring	Whyline	 tools	 for	 other	 widely	
used	languages	and	platforms.	



11.

LIMITATIONS AND FUTURE WORK 

How	well	does	the	Whyline	generalize?	What	are	its	limits?	How	can	the	concept	be	
broadened	 to	 other	 languages	 and	 contexts	 of	 use?	 This	 section	 discusses	 these	
issues,	exploring	the	rich	design	space	of	question	asking	tools.	

11.1. LIMITATIONS 

11.1.1. PROGRAM QUALITY AFFECTS QUESTION AND ANSWER QUALITY 

Because	 the	 Whyline	 extracts	 all	 of	 the	 knowledge	 about	 a	 program	 from	 the	
program	 itself,	 any	 limitation	 on	 the	 knowledge	 encoded	 in	 a	 program	 limits	 a	
Whyline’s	 utility.	 For	 example,	 the	Whyline	 uses	 identi<iers	 in	 the	 code	 to	 phrase	
questions,	therefore,	if	the	quality	of	the	program	identi<iers	is	low,	the	quality	of	the	
question	 phrasing	will	 be	 low.	Were	 a	Whyline	 in	wide	 use,	 this	 dependency	may	
have	 interesting	 social	 side	 effects.	 By	 making	 class	 and	 <ield	 names	 inherently	
public	 to	 the	 rest	 of	 the	 software	 development	 organization,	 the	 Whyline	 could	
incentivize	 more	 descriptive	 names	 for	 code	 constructs.	 It	 could	 also	 incentivize	
descriptive	comments	 for	 <ields	and	classes,	which	could	be	extracted	 from	source	
code	and	shown	to	Whyline	users	to	help	them	choose	appropriate	questions.	

Another	 interesting	 form	 of	 program	 quality	 is	 the	 degree	 to	 which	 the	 concepts	
de<ined	 in	 a	 program	 faithfully	 represent	 the	 domain	 concepts	 they	 intend	 to	
represent	(what	might	be	called	“type	<idelity”).	For	instance,	the	Java	Whyline	relies	
heavily	 on	 Java’s	 object-oriented	 and	 statically-typed	 nature.	 Object-orientation	



Chapter	11:	Limitations	and	Future	Work	 237

compels	developers	to	declare	classes	and	<ields	that	separate	distinct	behaviors	and	
state	 in	 these	 classes.	 The	 Java	Whyline	 relies	 on	 this	 conceptual	 organization	 to	
provide	conceptually	organized	menus	of	questions.	There	are	a	number	of	language	
paradigms	 that	 compel	 different	 forms	 of	 conceptual	 organization	 of	 domain	
concepts.	 For	 example,	 a	 purely	 procedural	 C	 program	 that	 nevertheless	 supports	
GUI	components	like	buttons	and	menus,	may	not	have	a	collection	of	clearly	de<ined	
structures	 to	 render	 the	 components.	 Instead,	 there	may	 be	 highly	 parameterized	
procedures	for	doing	so,	and	a	Whyline	would	have	to	do	extra	work	to	identify	and	
organize	these	procedures,	before	using	the	techniques	discussed	 in	Chapter	10	to	
derive	questions	from	these	procedures.	

11.1.2. TYPE INFORMATION AFFECTS QUESTION AND ANSWER PRECISION 

The	 Whyline	 approach	 relies	 on	 rich	 static	 type	 information	 in	 order	 to	 extract,	
present	 and	 answer	 “why	 didn’t”	 questions.	 Therefore,	 dynamically-typed	
programming	languages	pose	interesting	challenges	for	all	of	these	analyses.	

One	challenge	is	in	the	dif<iculty	of	building	a	precise	call	graph.	Dynamically-typed	
languages	 such	 as	 Javascript	 are	 most	 problematic:	 even	 with	 runtime	 data,	 one	
cannot	 <ind	 all	 possible	 calls	 to	 a	 method	 without	 being	 conservative	 and	 losing	
precision.	 This	 makes	 it	 more	 dif<icult	 for	 the	 Whyline	 to	 answer	 “why	 didn’t”	
questions.	 Even	 statically	 typed	 late	 binding	 languages	 like	 Objective-C	 pose	
problems:	 when	 analyzing	 why	 an	 instruction	 did	 not	 execute,	 it	 is	 necessary	 to	
know	all	of	the	feasible	callers	to	a	particular	method.	Another	problem	is	if	the	call	
graph	 is	 incomplete:	 if	 the	 Java	 class	 containing	 the	 invocation	 that	 needed	 to	 be	
called	 was	 never	 loaded,	 the	 call	 will	 not	 be	 known,	 and	 will	 not	 be	 part	 of	 the	
Whyline’s	answer.	This	can	be	mitigated	by	actively	 loading	referenced	classes,	but	
traversing	too	many	levels	of	depth	in	such	a	call	graph	becomes	impractical.	

Another	 challenge	 with	 dynamically	 typed	 languages	 is	 in	 identifying	 code	
structures	that	indirectly	render	or	affect	primitive-level	output.	This	is	a	side-effect	
of	 imprecise	 call	 graphs.	 For	 example,	 it	 would	 be	 dif<icult	 for	 a	 Whyline	 to	
determine	 precisely	 what	 variables	 could	 affect	 output	 produced	 by	 a	 JavaScript	
function,	 unless	 there	was	 runtime	 information	 to	 detect	 such	 data	 dependencies.	
Even	 then,	 this	would	 not	 reveal	 other	 possible	 data	 dependencies	 about	which	 a	
user	 might	 want	 to	 ask	 negatively	 phrased	 questions.	 The	 consequence	 of	 this	



Chapter	11:	Limitations	and	Future	Work	 238

imprecision	is	that	it	may	be	dif<icult	to	identify	good	names	to	use	in	“why	didn’t”	
questions,	since	so	many	different	functions	may	be	relevant.	

11.1.3. LIMITATIONS OF TRACING 

Execution	traces	pose	several	limitations.	It	is	not	practical	to	record	executions	that	
span	more	than	a	few	minutes	because	the	amount	of	data	captured	is	too	much	to	
load	 and	 process	 in	 a	 reasonable	 amount	 of	 time.	 Programs	 and	 test	 cases	 that	
process	and	produce	substantial	amounts	of	data	also	pose	a	similar	problem	since	
so	much	 intermediate	 state	 is	 captured	 in	 the	 process.	 Of	 course,	what	 is	 feasible	
depends	highly	on	the	context:	if	a	bug	is	particular	dif<icult	to	<ind,	it	may	be	worth	
the	 time	 and	 space	 necessary	 to	 capture	 and	 analyze	 a	 trace.	 Tracing	 also	 limits	
Whyline	 support	 to	 program	 behavior	 that	 is	 reproducible	 while	 probing.	 Multi-
threaded	 programs	 are	 often	 problematic	 in	 this	 sense	 since	 instrumentation	 can	
affect	 indeterminacy	 of	 multi-threaded	 bugs.	 Programs	 that	 rely	 on	 real-time	
behavior	 may	 also	 behave	 differently	 when	 instrumented,	 making	 it	 dif<icult	 to	
reproduce	a	problem	that	relies	on	real-time	performance.		

Tracing	also	makes	the	approach	feel	‘heavier’	than	tools	like	breakpoint	debuggers,	
which	 require	 virtually	 no	 setup	 time	 compared	 to	 the	 time	 spent	 waiting	 for	 a	
Whyline	trace	to	load.	All	of	these	issues	are	worsened	by	the	fact	that	the	memory	
demands	on	a	developer’s	machine	grows	with	the	size	of	the	trace.	At	a	certain	size,	
performance	 becomes	 an	 issue	 as	 the	Whyline	 begins	 to	 rely	 on	 virtual	 memory.	
Better	disk	bandwidth	would	alleviate	 this.	Also,	 there	may	also	be	ways	 to	utilize	
multi	 core	or	distributed	CPUs	 to	provide	dedicated	support	 for	 trace	capture	and	
processing.	 Another	 possibility	 is	 that	 there	may	 be	ways	 to	 only	 trace	 at	 certain	
times,	like	today’s	performance	pro<ilers;	the	challenge	would	be	that	the	causes	of	
events	might	not	be	captured,	even	if	the	effects	were.	

Outside	 of	 these	 issues,	 it	 is	 possible	 to	 support	 Whyline-like	 questions	 without	
capturing	a	whole	trace.	For	example,	the	Whyline	could	capture	inputs	and	outputs	
to	support	questions	and	then	use	this	I/O	information	to	re-execute	the	program	to	
capture	 only	 the	 information	 in	 a	 static	 program	 slice	 on	 the	 queried	 code.	 The	
resulting	 recording	 would	 be	 smaller	 and	 incur	 less	 overhead	 during	 capture,	
possibly	eliminating	many	of	the	probing	problems	in	multi-threaded	and	real-time	
programs.	 The	 downside	 would	 be	 that	 it	 would	 take	 extra	 time	 to	 answer	 the	
question,	 adding	 a	 whole	 process	 of	 static	 analysis	 and	 program	 re-execution,	 in	



Chapter	11:	Limitations	and	Future	Work	 239

addition	 to	 the	 loading	and	answering.	Another	possibility	 is	 to	 just	support	static	
questions	with	 no	 trace	 information	 at	 all.	 Such	 an	 approach	would	 be	 devoid	 of	
dynamic	information	and	would	probably	require	custom	support	for	interrogating	
actual	 program	 output	 of	 a	 live	 program,	 rather	 than	 a	 reproduction	 of	 program	
output.	The	questions	and	answers	would	also	be	much	less	precise.	

One	possible	remedy	to	the	overhead	imposed	by	tracing	is	to	simply	instrument	the	
virtual	machine	 rather	 than	 the	 program	 itself.	 This	would	 reduce	 the	 number	 of	
instructions	 needed	 to	manage	 the	 instrumentation.	 However,	 the	 tradeoff	 to	 this	
approach	is	the	loss	of	platform-independence;	furthermore,	such	an	approach	may	
have	the	same	space	overhead,	and	may	in	fact	be	just	as	I/O	bound	as	an	approach	
instrumenting	the	program.	

11.1.4. LIMITATIONS OF QUESTIONS 

By	relying	on	a	program	as	the	source	of	questions,	the	Whyline	will	rarely	perfectly	
match	 the	 questions	 that	 the	 user	 has	 in	 mind.	 People	 will	 phrase	 questions	
differently	than	the	Whyline	and	there	will	be	other	context	that	the	user	may	wish	
to	specify	in	a	query	that	the	Whyline	may	not	support	(such	as	questions	relative	to	
multiple	 objects,	 as	 in	 “why	 didn’t	 the	 Menu	 appear	 next	 to	 the	 Button?”).	
Furthermore,	the	Whyline	will	not	always	describe	output	at	the	level	of	granularity	
that	the	user	thinks	of	it.	If	the	Whyline	cannot	extract	a	“Button”	concept	from	the	
program’s	 code,	 the	 user	will	 have	 to	 ask	 about	whatever	 concept	 the	Whyline	 is	
able	 to	 <ind	 as	 a	 proxy	 for	 “Button.”	 The	 consequence	 of	 these	 limitations	 is	 that	
users	will	have	to	learn	about	how	the	Whyline	extracts	questions	in	order	to	know	
what	questions	to	expect	and	where	to	<ind	them.	The	advantage	over	conventional	
program	understanding	tools	is	that	the	distance	between	the	desired	question	and	
the	supported	analysis	is	usually	far	shorter	for	the	Whyline	(bridging	Norman’s	gulf	
of	 execution	 [Norman	 1988]).	 Consequently,	 the	 potential	 for	 mistakes	 in	 this	
translation	is	correspondingly	less.	

There	are	other	aspects	of	program	output	that	are	at	a	higher	 level	of	abstraction	
than	 an	 output	 primitive,	 but	may	 not	 have	 any	 corresponding	 program	 entity	 to	
represent	 it.	 Imagine	 a	menu	with	 a	 list	 of	 items	with	 varying	degrees	of	 padding	
between	items	in	the	list	and	the	margins	of	the	menu	boundaries.	To	ask	about	the	
whitespace	in	the	menu	if	the	whitespace	was	de<ined	internally	through	constants,	
one	would	have	to	just	ask	about	the	position	of	one	of	the	item’s	text	label	and	hope	



Chapter	11:	Limitations	and	Future	Work	 240

that	 it	was	 related	 to	 the	whitespace	 the	 user	 really	wants	 to	 ask	 about	 (another	
option	 is	 to	 add	 domain-speci<ic	 support	 for	 such	 concepts	 like	 Crystal	 did,	 as	
described	in	Chapter	9).		

Another	 interesting	 limitation	 in	 deriving	 questions	 lies	 in	 potential	 distinctions	
between	 “program	 output”	 and	 “program	 behavior.”	 Up	 to	 this	 point,	 this	
dissertation	has	used	these	phrases	interchangeably,	but	there	are	subtle	differences	
in	their	meaning.	Output	can	be	thought	of	in	a	static	way,	devoid	of	time,	such	as	a	
snapshot	of	a	particular	entity	onscreen.	Think	of	a	pressed	button,	frozen	in	time.	
Behavior,	in	contrast,	can	be	thought	of	inherently	temporal,	something	that	can	only	
be	 seen	 through	 a	 sequence	of	 changes	 to	 these	 individual	 snapshots,	 such	 as	 the	
before	 and	 after	 appearance	 of	 a	 button	 in	 response	 to	 a	 click.	 There	 are	
characteristics	of	such	behaviors	that	no	Whyline	prototype	currently	supports.	Why	
did	 the	 button	depress	 so	 slowly?	Why	did	 the	 sound	play	 so	 soon	 after	 the	 other	
sound?	Currently,	the	only	way	to	ask	questions	about	these	temporal	aspects	is	to	
choose	 some	 characteristic	 of	 one	 of	 the	 states	 of	 the	program	behavior	 and	 then	
“manually”	relate	it	to	the	other	state.	

This	 distinction	 between	 output	 and	behavior	 raises	 the	 general	 issue	 of	 software	
qualities.	The	Whyline	is	designed	to	support	questions	about	functional	correctness,	
and	explicitly	avoids	support	questions	about	other	 forms	of	correctness.	Pro<ilers	
are	good	at	answering	questions	about	performance.	Usability	testing	is	a	better	way	
of	 diagnosing	 usability.	 Code	 reviews	 are	 a	 good	way	 of	 assessing	maintainability.	
Even	within	 functional	 correctness,	 there	 are	 certain	 types	of	 correctness	 that	 are	
better	 supported	 by	 static	 and	 dynamic	 analyses,	 such	 identifying	 potential	
deadlocks	situations	with	static	analyses.	In	imagining	other	types	of	questions	that	
the	Whyline	might	support,	it	is	important	to	keep	these	other	kinds	of	correctness	
in	mind.	

11.1.5. LIMITATIONS OF ANSWERS 

The	most	 important	 limitation	 of	Whyline	 answers	 is	 that	 they	 only	 reason	 about	
causality.	They	do	not	offer	change	suggestions,	 they	do	not	 isolate	bugs,	and	 they	
will	 not	 guide	 the	 user	 in	 interpreting	 the	 consequences	 of	 the	 answer	 to	 the	
debugging	 problem.	 All	 of	 these	 things	 are	 still	 the	 developer’s	 responsibility.	
Therefore,	although	the	Whyline	will	help	users	get	closer	to	a	<ix	than	they	would	
have	 otherwise,	 users	must	 still	 cautiously,	 objectively	 and	 systematically	 explore	



Chapter	11:	Limitations	and	Future	Work	 241

the	answers	provided	by	 the	Whyline	 in	order	 to	determine	a	 reasonable	 <ix	 for	 a	
bug.	 The	 reason	 for	 this	 limitation	 has	 less	 to	 do	with	 the	Whyline	 approach	 and	
more	 to	 do	 with	 the	 slippery	 notion	 of	 a	 bug.	 Bugs	 are	 really	 just	 undesirable	
behaviors;	even	a	program	crash	can	be	an	expected	and	desired	behavior	under	the	
right	 circumstances,	 for	 example	 when	 it	 prevents	 a	 more	 serious	 failure	 from	
occurring.	As	a	 consequence	of	 this	notion	of	 a	bug,	 any	undesirable	behavior	has	
many	 possible	 solutions.	 The	Whyline	 has	 no	 knowledge	 about	 the	 desirability	 of	
these	various	solutions	and	so	it	is	still	up	to	the	user	to	decide	what	of	all	that	did	or	
did	not	happen	in	a	program’s	execution	needs	to	change.	Of	course,	these	points	are	
true	not	only	for	the	Whyline,	but	also	for	other	debugging	tools.	The	only	kinds	of	
techniques	that	can	get	around	this	problem	are	those	that	rely	on	speci<ications	of	a	
program’s	 intended	 behavior,	 such	 as	 model	 checking	 systems,	 because	 they	 can	
compare	intended	execution	with	actual	execution.	

The	kinds	of	answers	that	the	Whyline	gives	have	their	own	limitations.	The	causal	
answers	 provided	 in	 response	 to	 “why	 did”	 questions	 and	 some	 “why	 didn’t”	
questions	 can	 be	 quite	 large,	 since	 they	 are	 based	 on	 dynamic	 slicing.	 What	
determines	 how	 “large”	 these	 answers	 are	 depends	 on	 several	 factors.	 The	 more	
complex	the	program	design	and	execution,	the	more	complex	the	Whyline	answer.	
The	more	users	explores	causality,	the	more	information	they	will	have	to	consider	
in	assessing	the	cause	of	a	problem.	As	they	explore	the	answers,	users	will	have	to	
work	 around	 incompleteness	 in	 the	 Whyline’s	 recording.	 Native	 calls	 and	 other	
procedures	 may	 not	 be	 amenable	 to	 instrumentation	 or	 even	 available	 for	 static	
analysis.	 This	will	 result	 in	 a	 loss	 of	 precision	 for	 reasoning	 about	 the	 inputs	 and	
outputs	of	these	calls,	so	Whyline	prototypes	will	have	to	support	ways	for	users	to	
know	when	such	information	is	missing	and	help	them	work	around	it.	 In	general,	
the	 size	 of	 the	 answers	 was	 not	 a	 serious	 issue	 in	 the	 user	 studies	 described	 in	
Chapter	10,	but	the	tests	were	limited	to	only	two	tasks.	

The	 answers	 for	 “why	 didn’t”	 questions	 have	 other	 limitations.	 Because	 the	 “why	
didn’t”	answering	algorithm	uses	a	constrained	traversal	of	a	program’s	control	<low	
graph,	the	completeness	of	the	control	<low	graph	greatly	in<luences	how	much	the	
user	can	trust	the	Whyline’s	answers	to	“why	didn’t”	questions.	For	example,	 if	the	
Whyline	determines	that	there	are	no	callers	to	a	method	and	answers	so,	it	may	be	
that	all	known	calls	occur	through	re<lection	or	other	mechanisms	that	the	control	
<low	graph	 construction	algorithm	has	overlooked.	 If	 the	Whyline	determines	 that	
there	are	callers	to	a	method,	it	may	be	that	none	of	the	calls	can	feasibly	be	made	at	



Chapter	11:	Limitations	and	Future	Work	 242

runtime	 (a	 precision	 issue).	 These	 precision	 issues	 can	 be	 dealt	 with	 by	
incorporating	 other	 research	 on	 creating	 precise	 control	 <low	 graphs,	 but	 with	 a	
performance	cost	[Milanova	2002].	

Another	 limitation	about	Whyline	answers	 is	 that	 they	are	most	helpful	 at	 <inding	
particular	kinds	of	bugs,	but	not	others.	A	simple	way	to	state	this	scope	is	that	the	
Whyline	will	 help	 Jind	 the	 buggy	 algorithm,	 but	 not	 explain	 why	 the	 algorithm	 is	
buggy.	 For	 example,	 if	 a	 value	 is	 computed	 from	 a	 complex	 machine	 learning	
algorithm	or	other	complicated	logical	reasoning,	the	Whyline	will	show	the	user	so,	
but	 it	 will	 provide	 no	 support	 in	 explaining	 mistakes	 in	 such	 algorithms.	 This	 is	
precisely	because	the	Whyline	has	no	knowledge	of	the	intended	behavior	of	these	
algorithms.	 Such	 issues	 are	best	 left	 to	 the	 experts	who	wrote	 the	 algorithms	and	
perhaps	 model-based	 techniques	 to	 help	 identify	 these	 mistakes	 before	 they	
manifest	into	failures.	

The	 failures	 discussed	 in	 Eisenstadt’s	 “	 My	 Hairiest	 Bug	War	 Stories”	 [Eisenstadt	
1997]	are	also	unlikely	to	be	solved	with	the	Whyline.	These	kinds	of	bugs,	the	ones	
that	 developers	 remember	 after	 even	 10	 years,	 often	 have	 particularly	 obscure	
causes,	 such	 as	 hardware	 failures	 and	 problems	 deep	within	 an	 API	 or	 operating	
system.	What	the	Whyline	can	do	in	these	scenarios	 is	help	a	developer	 isolate	the	
problem	to	such	modules,	by	ruling	out	problems	in	the	developer’s	main	program.	

There	are	also	situations	in	which	Whyline	answers	can	lead	to	dead	ends.	There	are	
at	least	two	kinds,	both	having	to	do	with	developers’	navigation	of	the	control	and	
data	dependencies	in	a	Whyline	answer.	First,	 if	 the	Whyline	has	not	instrumented	
some	 function	 and	 therefore	 cannot	 reason	 about	 it	 precisely,	 a	 developer	 must	
understand	the	function	from	its	code,	rather	than	its	execution,	and	resort	to	other	
methods.	The	other	kind	of	dead	end	is	where	the	Whyline	answer	does	contain	the	
relevant	 execution	 events,	 but	 the	 developer	 does	 not	 believe	 the	 code—and	 in	
particular,	the	names	in	the	code—	to	be	relevant	to	the	problem,	they	may	overlook	
a	relevant	chain	of	causality.	This	did	occur	in	some	cases	in	the	lab	study	in	Chapter	
10,	although	these	developers	eventually	returned	to	the	unexplored	dependencies	
after	exhausting	other	possibilities.				



Chapter	11:	Limitations	and	Future	Work	 243

11.2. FUTURE WORK 

There	 are	 a	 number	 of	 practical	 future	 work	 items,	 such	 as	 releasing	 the	 Java	
Whyline	 to	 the	 public	 and	 writing	 a	 widely	 requested	 Eclipse	 plug-in	 to	 help	
integrate	the	tool	into	developers’	work<low.	However,	this	section	focuses	on	issues	
that	require	more	research	to	implement	well.	

11.2.1. REAL TIME DEBUGGING 

A	 natural	 extension	 of	 the	 postmortem	 version	 of	 the	 Java	Whyline	 is	 to	 support	
debugging	 of	 a	 live	 Java	 program,	without	 having	 to	 quit	 the	 program	 and	 load	 a	
recreation	of	its	output.	Aside	from	the	challenge	of	tracking	dynamic	dependencies	
in	 real	 time,	 one	 signi<icant	 challenge	 with	 this	 is	 in	 allowing	 the	 developer	 to	
actually	 point	 to	 output	 in	 the	 running	 application	 and	 have	 the	Whyline	 actually	
relate	it	to	live	objects	in	the	Java	heap.	To	do	so	would	require	the	Whyline	to	do	the	
same	 I/O	 tracking	 that	 is	 done	 when	 a	 Whyline	 recording	 is	 being	 loaded,	 but	
instead	doing	it	at	runtime.	This	could	 incur	signi<icant	overhead.	One	way	around	
this	 problem	 is	 to	 have	 special	 toolkit	 support.	 For	 example,	 one	 could	 imagine	 a	
JVM	debug	mode	which	maintains	a	history	of	output,	providing	a	hook	for	whatever	
debugging	tool	wanted	to	relate	output	to	an	execution	history.	Another	alternative	
is	special	toolkit	support	for	asking	questions	about	UI	components	and	their	state,	
rather	than	output	primitives.	This	would	limit	the	generality	of	the	tool,	but	make	it	
more	feasible	to	ask	questions	in	a	live	program.	Of	course,	support	for	debugging	a	
live	 program	would	 come	with	 limitations	 of	 its	 own.	 If	 the	 program	 freezes,	 the	
question	 asking	 support	 might	 freeze	 as	 well	 unless	 it	 was	 in	 an	 independent	
process.	

11.2.2. OTHER OUTPUT MODALITIES 

Current	 Whyline	 prototypes	 only	 support	 questions	 about	 graphical	 and	 textual	
output,	 but	 there	 are	 many	 other	 popular	 forms	 of	 program	 output	 (and	 thus	
program	 failures),	 including	 sound,	 network	 traf<ic,	 disk	 activity,	 and	 others.	 The	
central	challenge	in	supporting	these	other	modalities	is	in	<inding	effective	ways	to	
inquire	about	features	of	the	the	output	and	also	in	choosing	the	appropriate	output	
primitives	 in	 each.	 For	 example,	 what	 characteristics	 of	 sound	 are	 important	 to	
interrogate:	just	the	presence	or	absence	of	sound,	or	detailed	properties	of	its	pitch	



Chapter	11:	Limitations	and	Future	Work	 244

and	 modulation?	Writing	 to	 disk	 can	 often	 entail	 large	 amounts	 of	 data	 and	 one	
often	only	notices	a	failure	in	output	after	a	<ile	is	completely	written.	How	can	tools	
effectively	present	this	output	in	a	manner	that	makes	it	easy	to	<ind	the	subject	of	
the	question	amid	so	much	information?	It	 is	possible	that	there	could	be	a	visible	
proxy	for	such	modalities.	

This	issue	is	related	to	the	limitation	of	question	mismatch,	mentioned	earlier.	One	
could	 imagine	 implementing	toolkit-speci<ic	plug-ins	 for	certain	collections	of	user	
interface	 components,	 bringing	 the	 the	 supported	 questions	 much	 closer	 to	 the	
content	that	developers	might	want	to	ask	about.	Given	the	sheer	diversity	in	types	
of	 program	output,	 this	might	 be	 the	most	 effective	way	 to	more	 closely	 align	 the	
questions	that	developers	want	to	ask	with	the	questions	supported	by	tools.	

11.2.3. OTHER DOMAINS 

As	discussed	in	Chapter	2,	a	number	of	researchers	 	have	explored	question	asking	
tools	in	other	domains.	The	ACT-R	cognitive	framework	[Bothell	2004]	and	cognitive	
tutoring	 tools	 that	 used	 this	 framework	 [Aleven	 2006]	 both	 support	 “why	 not”	
questions	about	production	rule	systems.	AI	knowledge	base	systems	support	“why	
not”	 questions	 about	 why	 certain	 data	 was	 not	 used	 in	 answering	 queries	 to	 a	
knowledge	 base	 [Chalupsky	 2002].	 Lieberman	 explored	 “why”	 questions	 about	 e-
commerce	 transactions	 [Lieberman	 2003].	 The	 Whyline	 concept	 has	 directly	
inspired	 projects	 looking	 at	 one-way	 constraints	 in	 user	 interface	 design	 [Clark	
2007]	 and	 spreadsheets	 [Abraham	 2005].	 Outside	 of	 these	 examples,	 there	 are	 a	
number	of	 other	domains	 in	which	 to	 apply	 the	Whyline	 concept.	 In	 terms	of	 end	
user	 applications,	 how	 would	 question	 support	 generalize	 for	 applications	 other	
than	word-processors?	Home	networking	poses	interesting	challenges	for	computer	
users	to	diagnose.	As	hardware	prototyping	becomes	more	prevalent,	 <inding	ways	
to	diagnose	failures	has	become	more	of	an	issue.	Another	budding	area	of	research	
is	 in	helping	 to	understand	 failures	 in	 software	 that	uses	machine	 learning	and	AI	
techniques,	since	the	indeterminacy	and	data	set	dependencies	of	such	software	can	
be	dif<icult	 to	explain.	As	 software	becomes	more	pervasive,	 so	will	dif<iculty	with	
understanding	why	it	misbehaves.	



Chapter	11:	Limitations	and	Future	Work	 245

11.2.4. COLLABORATION SUPPORT 

At	 least	 for	 Whylines	 intended	 for	 teams	 of	 software	 developers,	 collaboration	
support	is	a	central	design	challenge	for	future	Whyline	prototypes.	Debugging	is	an	
inherently	 collaborative	 activity	 in	 these	 contexts,	 requiring	 the	 knowledge	 of	
multiple	 people	 over	 the	 course	 of	 many	 days	 or	 more.	 This	 places	 a	 number	 of	
constraints	on	the	Whyline	design.	

First,	Whyline	 traces	 should	 be	 small	 and	 easy	 to	 share.	 This	 allows	 traces	 to	 be	
shared	along	with	bug	reports	and	other	software	development	artifacts.	Related	to	
this	 support	 is	 the	 need	 to	 annotate	 a	 Whyline	 trace,	 as	 developers	 discuss	 a	
program	 failure	 and	 move	 towards	 a	 solution.	 These	 annotations	 might	 relate	 to	
particular	 events	 in	 a	 trace	 or	 particular	 parts	 of	 the	 software’s	 code.	 It	 is	 also	
possible	 that	 a	Whyline	 trace	 could	 replace	 the	modern	 notion	 of	 a	 “bug	 report,”	
capturing	information	about	who	the	trace	is	assigned	to	along	with	a	discussion	of	
other	 aspects	 of	 the	 trace.	 It	 may	 also	 be	 possible	 to	 de<ine	 a	 bug	 report	 as	 a	
collection	of	traces,	all	potentially	demonstrating	the	same	failure.	

Another	 issue,	 unexplored	 in	 the	 Java	Whyline,	 is	 the	problem	of	versions	 of	 code.	
The	current	prototype	just	records	the	Java	classes,	but	without	any	notion	of	which	
version	of	each	class	is	stored	in	a	version	control	system.	Version	information	will	
be	 important	 in	 relating	 the	 Whyline	 trace	 to	 a	 particular	 bug	 report,	 which	 is	
typically	related	to	a	particular	release.	By	explicitly	relating	a	failure	to	a	particular	
set	of	 versioned	 source	 <iles,	 there	may	be	other	opportunities	 to	detect	 the	 same	
failure	 in	 other	 versions	 of	 these	 source	 <iles	 as	 well.	 The	 Whyline	 could	 also	
integrate	well	with	unit	testing	systems	that	explore	changes	to	source	that	lead	to	
unit	test	failures	[Xie	2007].	

The	notions	of	familiarity	and	ownership	used	in	the	Java	Whyline	might	need	to	be	
more	elaborate	in	collaborative	settings.	For	example,	the	current	de<inition	de<ines	
familiarity	by	access	 to	editable	source.	Software	development	 teams	typically	have	
much	more	complicated	notions	of	ownership	and	certainly	of	familiarity.	One	might	
be	whether	 a	developer	has	 checked	 in	 code	personally	 or	whether	 the	particular	
source	 <ile	 in	question	 is	managed	by	 the	developer’s	 team.	Ultimately,	all	of	 these	
determinations	 are	 used	 to	 reduce	 the	 size	 of	 question	 menus,	 so	 this	 particular	
issue	 may	 require	 the	 ability	 to	 customize	 this	 de<inition	 depending	 on	 the	
particular	software	development	context.	



Chapter	11:	Limitations	and	Future	Work	 246

11.2.5. LANGUAGE INDEPENDENCE 

Given	some	of	the	complexities	of	designing	a	user	interface	for	Whyline	recordings,	
there	may	be	some	bene<it	in	thinking	about	how	to	architect	the	Whyline	to	support		
multiple	languages	through	a	common	tool	(aside	from	simply	adopting	a	common	
language	runtime,	such	as	Microsoft’s	CLR).	For	example,	it	may	be	possible	to	<ind	
an	 intermediate	 language	 to	 compile	 to	 and	 reason	 about,	 allowing	 the	 reuse	 of	
slicing	algorithms	and	the	Whyline	visualization,	isolating	language-dependent	parts	
of	 the	 Whyline	 system	 to	 question	 derivation	 algorithms	 and	 source	 code	
highlighting.	One	bene<it	of	such	a	system,	beyond	the	usual	bene<its	of	code	reuse,	
would	be	that	it	may	be	easier	to	support	the	analysis	of	programs	that	execute	with	
multiple	 languages.	 It	 is	 increasingly	 common	 to	 see	 programs	with	 three	 or	 four	
languages,	glued	together	with	sockets	or	scripting	languages	such	as	Javascript	or	
Python.	

11.2.6. INTEGRATION WITH OTHER DEBUGGING TECHNIQUES 

The	 Whyline	 concept	 utilizes	 modi<ications	 of	 a	 number	 of	 well-known	 software	
engineering	techniques	including	static	and	dynamic	slicing	and	other	methods	for	
constructing	 and	 analyzing	 call	 graphs	 and	 data	 dependence	 graphs.	 There	 are,	
however,	 a	 number	 of	 other	 techniques	 that	 could	 be	 useful	 to	 integrate	 into	 the	
Whyline	approach.	

Unit	 testing,	 for	 example,	 provides	 a	 natural	 avenue	 for	 asking	 questions	 and	
gathering	data	automatically.	When	a	unit	test	fails,	for	example,	the	unit	test	engine	
could	automatically	 rerun	 the	 test	with	 instrumentation	on	and	gather	data	 in	 the	
background	 for	 the	 user	 to	 analyze.	 A	 user	 could	 then	 select	 the	 failed	 test	 and	
immediately	start	understanding	the	cause	of	the	failure.	

One	challenge	with	navigating	a	Whyline’s	answer	is	that	the	user	has	little	guidance	
beyond	their	own	experience	to	know	what	control	and	data	dependencies	to	follow.	
Researchers	 have	 looked	 at	 ways	 to	 provide	 such	 guidance.	 For	 example,	 static	
checkers	 [Bush	 2000][Cole	 2006]	 could	 provide	 cues	 about	 which	 dependency	
chains	 have	 the	 most	 potential	 problems,	 leading	 the	 user	 to	 fault-prone	 code.	
Another	more	interactive	approach	would	be	to	allow	the	user	to	explicitly	validate	
values	as	 in	 the	WYSIWYT	testing	and	 fault	 localization	approach	 [Ruthruff	2005].	



Chapter	11:	Limitations	and	Future	Work	 247

These	annotations	of	correct	and	incorrect	values	could	be	propagated	through	the	
dynamic	slice,	highlighting	contributors	to	incorrect	values.	

Another	promising	approach	 is	 to	use	multiple	 traces	or	multiple	slices	 to	 identify	
differences	in	test	cases,	isolating	the	failure	(the	approach	used	by	[Zeller	2002b],	
for	 example).	 Beyond	 just	 using	 the	 Whyline	 traces	 for	 determining	 differences	
between	 test	 cases,	 another	 approach	would	 be	 to	 have	 the	 user	 specify	multiple	
relevant	questions	related	 to	 the	 failure,	 rather	 than	a	single	question.	The	system	
could	 then	 identify	 the	 intersection	 of	 the	 answers	 for	 the	 set	 of	 questions,	
potentially	<inding	a	smaller	subset	of	the	program’s	execution	history	related	to	the	
failure.	 This	 is	 similar	 to	 the	 notion	 of	 a	 “chop”	 described	 in	 [Gupta	 2005],	 but	
unique	in	that	it	would	be	straightforward	for	the	user	to	express.	

11.2.7. INTEGRATION WITH VERIFICATION TOOLS 

One	of	the	limitations	of	the	Whyline	is	that	it	does	not	help	to	explain	why	complex	
algorithms	are	“buggy.”	One	way	to	remedy	this	problem	would	be	to	 integrate	the	
Whyline	 with	 model	 checking	 systems	 based	 on	 speci<ications	 of	 a	 program’s	
intended	behavior.	This	way,	rather	than	doing	a	heavyweight	batch	model	checking	
analyses,	 a	 Whyline	 answer	 might	 be	 a	 convenient	 context	 for	 invoking	 a	 more	
lightweight	model	checking	analysis	of	speci<ic	methods	within	a	slice.	The	results	of	
these	analyses	could	be	portrayed	in	the	context	of	 the	Whyline’s	answer,	allowing	
the	Whyline	to	both	isolate	the	location	of	the	bug,	as	well	as	give	some	indication	of	
the	nature	of	the	bug	at	that	location.	

The	Whyline	might	 also	 integrate	well	with	 other	 kinds	 of	 static	 veri<ication	 tools	
[Cole	 2006],	 which	 apply	 a	 range	 of	 static	 checks	 as	 heuristics	 to	 <ind	 common	
problems	with	 code.	 Rather	 than	 applying	 these	 checks	 in	 batch	mode,	 again,	 the	
Whyline	might	be	a	more	helpful	context	 in	which	to	make	these	checks,	using	the	
slice	as	a	<ilter	on	which	code	to	analyze.	Not	only	would	such	information	be	more	
helpful	contextually,	but	it	may	reduce	the	number	of	false	positives	that	the	systems	
report,	because	there	would	be	much	more	dynamic	data	for	the	system	to	use	in	its	
static	checking.	Conversely,	the	Whyline	user	interface	might	be	used	to	help	explain	
the	answers	that	static	veri<ication	tools	provide.	



Chapter	11:	Limitations	and	Future	Work	 248

11.2.8. SUPPORTING OTHER PROGRAM UNDERSTANDING TASKS 

The	notion	 of	 “program	understanding”	 is	 quite	 a	 broad	 one.	 There	 are	 actually	 a	
number	 of	 different	 types	 of	 program	 understanding	 tasks,	 driven	 by	 different	
motives,	 which	 affect	 how	 people	 might	 use	 a	 tool	 like	 the	 Whyline.	 Debugging,	
which	is	the	Whyline’s	primary	focus,	is	a	very	focused	kind	of	activity,	driven	by	the	
goal	of	<inding	the	cause	of	some	behavior.	This	contrasts	with	reverse	engineering	
activities,	which	are	often	more	global	and	architectural	 in	nature,	and	also	differs	
from	 feature	 enhancement	 tasks,	which	 often	 have	 the	 goal	 of	 <inding	 integration	
points	in	a	software	architecture	for	some	modi<ication	or	new	behavior.	It	is	worth	
considering	 how	 the	 Whyline	 might	 differ	 for	 these	 other	 types	 of	 program	
understanding	activities.	For	example,	for	feature	enhancement	tasks,	there	may	be	
new	types	of	questions	such	as	“What	code	contributes	to	this	functionality?”	which	
is	a	broader	question	 than	 the	data	driven	ones	supported	by	 the	Whyline.	Such	a	
question	might	be	easier	to	ask	using	the	output	history	user	interfaces	provided	in	
the	Whyline,	but	might	use	static	analyses	more	heavily,	using	dynamic	analyses	only	
to	 generate	 the	 query	 for	 a	 static	 analyses	 about	 code	 in<luence.	 Some	 of	 these	
queries	might	 come	 from	studies	of	 feature	enhancement	and	reverse	engineering	
tasks	[LaToza	2007].		

Reverse	 engineering	 tasks,	 which	 often	 have	 the	 goal	 of	 understanding	 the	
relationships	between	different	components,	might	be	supported	by	allowing	users	
to	 select	 different	 parts	 of	 the	 program	 output	 to	 invoke	 static	 analyses	 that	
determine	 dependencies	 between	 the	 components.	 The	 bene<it	 of	 asking	 these	
queries	 in	 terms	 of	 output	 instead	 of	 code	 might	 be	 that	 developers	 could	 more	
accurately	identify	the	code	structures	by	their	appearance	than	by	their	name.	

11.2.9. TEACHING DEBUGGING 

The	issue	of	debugging	skills	is	also	an	interesting	area	of	research	to	consider.	For	
instance,	 the	 Whyline	 might	 be	 a	 useful	 way	 to	 teach	 some	 reusable	 debugging	
strategies,	 such	as	 that	of	working	backwards	 from	program	output	and	exploring	
data	dependencies.	In	fact,	many	of	the	participants	in	the	evaluation	studies,	after	
getting	Whyline	answers	about	things	that	they	thought	did	not	happen,	but	actually	
did,	 commented	 to	 themselves	 about	 needed	 to	 be	 more	 cautious	 about	
assumptions.	One	participant	in	the	Whyline	for	Alice	evaluation,	after	making	such	
a	 comment,	 even	 hovered	 over	 subsequent	 questions	 in	 the	 “Why”	menu,	 saying,	



Chapter	11:	Limitations	and	Future	Work	 249

“Let	me	see,	do	I	think	this	actually	happened?”	In	the	Whyline	for	Java	evaluation,	
other	participants	would	hover	over	questions	about	particular	data,	ask	questions	
like,	 “Is	 this	 the	data	 I	 really	want	 to	ask	about?”	These	anecdotes	suggests	 that	 it	
may	 be	 possible	 to	 train	 developers	 to	 be	more	 objective	 and	 careful	 about	 their	
debugging	efforts	by	using	the	tool.	An	interesting	research	question	is	whether	such	
strategies	would	 then	persist,	 even	 if	 the	Whyline	was	 not	 available,	 and	whether	
such	strategies	are	the	same	strategies	that	skilled	developers	use.	

11.3. SUMMARY 

In	general,	the	Whyline	is	less	a	competitor	to	other	debugging	tools	and	techniques	
and	more	of	a	platform.	It	 is	an	effective	way	to	begin	 the	search	for	the	cause	of	a	
failure,	 but	 any	 number	 of	 other	 tools	 can	 come	 into	 play	 after	 asking	 the	 <irst	
question	to	help	<ind	the	ultimate	cause.	Aside	 from	simply	 implementing	Whyline	
tools	for	other	languages	and	contexts,	much	of	the	future	work	is	in	<inding	ways	to	
adapt	 the	 many	 ideas	 proposed	 in	 the	 past	 into	 the	 interaction	 framework	
envisioned	 for	 the	Whyline	 concept.	 The	 hope	 is	 that	 future	work	will	 investigate	
ways	 of	 removing	 the	 limitations	 discussed	 in	 this	 section	 and	 <inding	 ways	 to	
integrate	other	powerful	techniques	with	those	of	the	Whyline.	



12.

CONCLUSIONS 

In	 the	 brief	 history	 of	 computing,	 developer	 productivity	 has	 been	 woefully	
understudied.	Statistics	show	that	program	understanding	and	debugging	dominate	
a	 software	 developer’s	 time,	 but	 there	 has	 been	 little	 investigation	 into	 precisely	
why.	 Looking	back	on	 the	history	of	 research	on	 these	 topics,	 the	vast	majority	of	
effort	 was	 put	 towards	 inventing	 new	 techniques	 and	 algorithms	 for	 analyzing	
program	execution,	with	little	understanding	of	what	made	debugging	dif<icult	and	
how	 tools	 might	 eliminate	 these	 dif<iculties.	 Considering	 this	 approach,	 it	 is	 not	
surprising	 that	 debugging	 tools	 have	 changed	 so	 little	 since	 in	 the	 history	 of	
computing.			

The	goal	of	 this	dissertation	was	to	 look	take	another	 look	at	debugging	tools,	 this	
time	 from	 a	 human	 perspective,	 by	 <irst	 gaining	 a	 deeper	 understanding	 of	 what	
makes	debugging	challenging,	and	then	designing	tools	around	this	understanding.	
This	 HCI	 approach	 worked:	 the	 studies	 in	 this	 dissertation	 (Table	 12.1)	 explored	
debugging	 in	 a	 variety	 of	 contexts,	 <inding	 that	 current	 tools	 force	 developers	 to	
speculate	 about	 what	 code	 causes	 a	 particular	 program	 behavior.	 Because	
developers	usually	guess	wrong,	much	of	the	time	spent	understanding	a	program’s	
execution	involves	reading	irrelevant	code.	Worse	yet,	some	of	this	speculation	goes	
unchecked,	 leading	 developers	 to	 form	 inaccurate	 notions	 about	 a	 program’s	
execution,	 which	 can	 cause	 later	 misunderstandings	 and	 even	 result	 in	 further	
errors.	 The	 studies	 in	 this	 dissertation	 documented	 the	 consequences	 of	 this	
speculation	on	productivity	and	software	quality	(Table	12.1)	and	showed	that	these	
problems	 exist	 not	 only	 for	 inexperienced	 developers,	 but	 also	 seasoned	 experts	
with	decades	of	programming	experience	in	the	software	industry.	



Chapter	12:	Conclusions	 251

Across	all	
studies	

Created	a	framework	for	modeling	the	cognitive	causes	of	software	errors.
Designed	a	methodology	for	reconstructing	the	causes	of	errors	from	video	and	verbal	data.

Alice		
(Chapter	3)	

Detailed	the	relationship	between	different	types	of	breakdowns	in	Alice	programming.
Developers	ask	“why	did”	and	“why	didn’t”	questions	about	failures,	the	majority	“why	didn’t”.
Developers	tended	to	form	false	hypotheses	about	the	causes	of	program	failures.
Developers	tend	to	insert	new	errors	while	debugging.

Table	12.1.	Knowledge	contributions	from	empirical	studies	of	developers.



Chapter	12:	Conclusions	 252

With	 this	 new	 understanding	 of	 debugging	 as	 a	 human	 activity,	 the	 fundamental	
problem	with	 today’s	 debugging	 tools	 became	 clear:	 developers	 reason	 about	 the	
visible	symptoms	of	a	program’s	failure,	but	tools	force	developers	to	speculate	about	
the	 causes	 of	 these	 symptoms.	 The	 Whyline	 concept	 addresses	 this	 limitation	 by	
providing	 developers	 a	 way	 to	 choose	 questions	 about	 a	 program’s	 symptoms	 of	
failure.	 By	 starting	 from	 output	 and	 working	 backwards,	 the	 Whyline	 helps	
developers	 avoid	 this	 costly	 speculation,	 leading	 them	 to	 the	 direct	 and	 indirect	
causes	 of	 the	 symptom	 that	 indicated	 the	problem.	 Furthermore,	 by	 starting	 from	
output,	 the	 Whyline	 approach	 can	 even	 help	 developers	 quickly	 overcome	
misperceptions	of	their	program’s	output,	preventing	them	from	spending	precious	
time	 investigating	 non-issues.	 This	 dissertation	 shows	 that	 the	Whyline	 approach	

The	classroom	
(Chapter	4)	

There	are	at	least	six	types	of	barriers	in	learning	to	use	programming	systems	that	span	across	
implementation,	APIs,	testing,	debugging,	and	design.
Most	student	debugging	problems	occur	because	particular	behaviors	did	not	occur,	even	though	
the	students	had	implemented	code	for	the	behavior.
Students	struggle	to	form	hypothesis	about	the	causes	of	a	problem,	with	many	getting	help	from	
their	more	experienced	peers.	
About	20%	of	the	reported	problems	involved	multiple	objects	not	working	together	
appropriately	(for	example,	information	from	one	window	not	being	sent	to	another).	
Many	students	spent	considerable	time	investigating	problems	that	did	not	exist,	because	they	
had	misinterpreted	or	misperceived	their	program’s	output	and	feedback.	
In	11%	of	the	reported	problems,	students	could	not	<ind	a	tool	that	would	help	answer	their	
question,	or	could	not	understand	how	to	use	a	tool	that	they	had	found.

Skilled	Java	
developers	
(Chapter	5)

Developers	generally	form	hypothetical	explanations	of	program	execution	and	then	use	a	
variety	of	tools	to	verify	or	reject	their	explanations.
Developers	based	their	guesses	about	the	cause	of	program	execution	on	surface	features	of	its	
output,	such	as	text	labels	found	in	user	interfaces.
About	88%	of	developers’	hypotheses	about	the	causes	of	a	program	behavior	of	were	false.
The	consequences	of	guessing	incorrectly	caused	developers	to	spend	an	average	of	36%	of	their	
time	investigating	irrelevant	code.	
Developers	tend	to	form	task	contexts	of	relevant	code	in	order	to	capture	the	information	
necessary	to	<ind	a	bug	or	add	a	new	feature.
Testing	a	hypothetical	explanation	of	a	program’s	execution	is	more	dif<icult	for	larger	programs	
because	there	are	a	larger	number	of	dependencies	and	possibilities	to	consider.
The	information	in	developers’	task	contexts	can	vary	considerably	on	the	same	task,	likely	due	
to	differences	in	experience	and	in	the	actual	process	of	gathering	relevant	code.
Information	foraging	theory	can	be	used	to	help	understand	the	information	cues	that	
developers	use	to	guide	their	search	for	relevant	information.

The	software	
industry		
(Chapter	6)		

Developers’	work	is	highly	fragmented,	with	interruptions	an	average	of	every	three	minutes.
Software	development	is	a	highly	social	activity	involving	communication	and	collaboration.
Developers	have	at	least	21	observable	types	of	information	needs,	spanning	implementation,	
design,	testing,	and	collaboration.
Some	information	needs	are	easy	to	satisfy	accurately	(awareness)	but	others	with	only	
questionable	accuracy	(the	value	of	a	<ix	and	the	implications	of	a	change).	
Some	information	needs	are	deferred	often	(knowledge	about	behavior	and	design),	whereas	
some	were	impossible	to	satisfy	in	certain	cases	(reproduction	steps).
Information	needs	regarding	debugging	and	program	understanding,	especially	those	regarding	
the	causes	of	program	behavior	and	conceiving	of	potential	causes	of	program	behavior,	are	
particularly	dif<icult	to	satisfy.
Even	after	<inding	the	cause	of	a	particular	bug,	there	is	often	the	more	daunting	task	of	deciding	
what	to	do	about	it	by	collaborating	with	coworkers	and	uncovering	the	design	rationale	
underlying	particular	code	fragments.



Chapter	12:	Conclusions	 253

can	 signi<icantly	 reduce	 time	 spent	 debugging	 and	 also	 can	 signi<icantly	 increase	
success	on	debugging	tasks	(Table	12.2).	It	also	shows	ways	of	adapting	these	ideas	
to	different	types	of	programming	languages	and	applications	(Table	12.2).	

Alice	
(Chapter	8)

Techniques	for	deriving	questions	from	source	code	to	represent	program	output	and	behavior.
Adaptions	of	backward	dynamic	slicing	to	generate	concise	answers	about	causality.
Algorithms	for	answering	“why	didn’t”	questions	using	notions	of	reachability	algorithms.
A	visualization	of	program	execution	and	interaction	techniques	for	combining	the	control	and	
data	<low	causes	of	a	program	event.
Evidence	that	the	Alice	Whyline	increased	people’s	productivity	at	debugging	tasks	by	up	to	a	
factor	of	8.

Table	12.2.	Technical	contributions	across	three	Whyline	prototypes.



Chapter	12:	Conclusions	 254

It	 is	 my	 hope	 that	 the	 background	 studies	 and	 tool	 ideas	 presented	 in	 this	
dissertation	will	 inspire	a	new	generation	of	developer-centric	 tools	 for	 increasing	
productivity	and	software	quality.	I	also	hope	that	my	research	stands	as	proof	of	the	
value	and	effectiveness	of	designing	technology	from	a	human-centric	perspective.	

	

Evidence	that	most	of	the	questions	that	participants	wanted	to	ask	were	supported	by	the	
Whyline.

Word	
Processors	
(Crystal),	with	
David	
Weitzman	and	
Brad	Myers	
(Chapter	9)

Answering	algorithms	that	explain	causality	in	terms	of	user	modi<iable	document	and	
application	state.
Interaction	techniques	for	asking	questions	about	document	and	application	entities,	
whitespace,	and	global	events.
An	application	framework	for	supporting	questions	by	augmenting	a	conventional	undo	stack	
with	information	about	command	histories	and	the	data	they	depended	on	for	execution.
Evidence	that	when	using	Crystal,	users	are	signi<icantly	more	effective	at	resolving	common	
issues	with	complex	and	automated	features	of	a	word	processor	than	when	using	conventional	
online	help	tools.

The	Java	
Whyline	
(Chapter	10)

A	data	representation	for	capturing	the	execution	of	Java	programs	and	their	output	that	
computes	properties	of	the	recording	on	demand	and	ef<iciently	caches	them	on	disk.
Algorithms	for	identifying	classes,	<ields,	and	methods	that	indirectly	effect	primitive	output.
Algorithms	for	identifying	potential	sources	of	values	for	a	given	Java	variable.
Algorithms	for	determining	why	a	particular	instruction	was	not	reached,	accounting	for	
constraints	on	the	time	at	which	it	should	have	been	reached	and	the	object	context	in	which	it	
should	have	executed.
User	interfaces	for	exploring	graphical,	textual,	and	exception	output	of	Java	programs.
User	interfaces	for	navigating	the	I/O	history	of	a	Java	program.
Algorithms	for	identifying	“why	did”	and	“why	didn’t”	questions	about	data	and	objects	
indirectly	in<luencing	a	given	output	primitive.
Heuristics	for	<iltering	question	menus	by	a	notion	of	familiarity,	de<ined	by	code	ownership.
Support	for	questions	about	code	that	did	execute,	despite	users’	beliefs,	helping	to	reveal	false	
assumptions	about	program	execution.
Timeline	visualizations	of	code	execution	separated	by	thread	and	connected	by	control	and	
data	dependencies.
A	workspace	that	closely	relates	execution	history,	output,	and	code	in	a	single	unifying	user	
selection.
Empirical	evidence	that	Java	Whyline	users	are	signi<icantly	more	successful	and	ef<icient	at	
solving	debugging	tasks	in	a	large	open	source	system.
Subjective	evidence	that	the	study	participants	liked	the	Whyline	and	want	a	version	to	support	
their	favorite	language.



Appendix	 255

APPENDIX 

This	 appendix	 contains	most	of	 the	 study	materials	 for	 the	 studies	 reported	on	 in	
Chapters	3	through	6,	as	well	as	the	evaluation	studies	reported	on	in	Chapters	8,	9,	
and	 10.	 Some	 materials	 could	 not	 be	 recovered	 and	 other	 details	 were	 never	
committed	to	paper.	



Appendix	 256

Tutorial	for	the	Alice	lab	study	in	Chapter	3	



Appendix	 257

Tutorial	for	the	Alice	lab	study	in	Chapter	3	



Appendix	 258

Tutorial	for	the	Alice	lab	study	in	Chapter	3	



Appendix	 259

Tutorial	for	the	Alice	lab	study	in	Chapter	3	



Appendix	 260

Tutorial	for	the	Alice	lab	study	in	Chapter	3	



Appendix	 261

Tutorial	for	the	Alice	lab	study	in	Chapter	3	

Questionnaire	for	the	Alice	lab	study	in	Chapter	3



Appendix	 262

Questionnaire	for	the	Alice	lab	study	in	Chapter	3



Appendix	 263

Questionnaire	for	the	Alice	lab	study	in	Chapter	3



Appendix	 264

Questionnaire	for	the	Alice	lab	study	in	Chapter	3



Appendix	 265

Questionnaire	for	the	Alice	lab	study	in	Chapter	3



Appendix	 266

Coding	sheet	for	the	VB.NET	classroom	study	in	Chapter	4



Appendix	 267

Task	descriptions	for	the	Eclipse	study	in	Chapter	5



Appendix	 268

Actions.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import javax.swing.*; 
import java.awt.event.*; 

public class Actions { 

    public AbstractAction clearAction, undoAction, pencilAction, eraserAction; 
     
    private PaintWindow paintWindow; 
     
    public Actions(PaintWindow window) { 
     
        this.paintWindow = window; 
         
        clearAction = new AbstractAction() { 
            public void actionPerformed(ActionEvent actionEvent) { 
                 
                paintWindow.clear(); 
                 
            } 
        }; 
        clearAction.putValue(Action.NAME, "Clear the canvas"); 
         
        undoAction = new AbstractAction() { 
            public void actionPerformed(ActionEvent actionEvent) { 
                 
                paintWindow.undo(); 
                 
            } 
        }; 
        undoAction.putValue(Action.NAME, "Undo my last stroke"); 
         
        pencilAction = new AbstractAction() { 
            public void actionPerformed(ActionEvent actionEvent) { 
                 
                paintWindow.setPaintObjectClass(PencilPaint.class);                 
                 
            } 
        }; 
        pencilAction.putValue(Action.NAME, "Pencil"); 
         
        eraserAction = new AbstractAction() { 
            public void actionPerformed(ActionEvent actionEvent) { 
                 
                paintWindow.setPaintObjectClass(EraserPaint.class); 
                 
            } 
        }; 
        eraserAction.putValue(Action.NAME, "Eraser");  
         
    } 
         
} 



Appendix	 269

EraserPaint.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import java.awt.*; 

public class EraserPaint extends PencilPaint { 

    public void setColor(Color color) { 
         
  this.color = Color.white; 
         
    } 
     
    public void setThickness(int thickness) { 
      
     this.thickness = 25; 
      
    } 
   
} 

PaintObject.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import java.awt.*; 

public abstract class PaintObject { 

    protected int thickness; 
    protected Color color; 
     
    public void setColor(Color color) { this.color = color; } 
    public void setThickness(int thickness) { this.thickness = thickness; } 
     
    public abstract double getStartX(); 
    public abstract double getStartY(); 
    public abstract double getEndX(); 
    public abstract double getEndY(); 
     
    public abstract Rectangle getBoundingBox(); 
    public abstract void paint(Graphics2D g); 
    public abstract void define(Point[] points); 
     
} 

PaintObjectConstructorListener.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 

public interface PaintObjectConstructorListener { 

    public void constructionBeginning(PaintObject temporaryObject); 
    public void constructionContinuing(PaintObject temporaryObject); 
    public void constructionComplete(PaintObject finalObject); 
    public void hoveringOverConstructionArea(PaintObject hoverObject); 
         
} 



Appendix	 270

PencilPaint.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 

import java.awt.*; 

public class PencilPaint extends PaintObject { 

    Point[] points; 
     
    public PencilPaint() { 
      
    } 
     
    public double getStartX() { return points[0].getX(); } 
    public double getStartY() { return points[0].getY(); } 
    public double getEndX() { return points[points.length - 1].getX(); } 
    public double getEndY() { return points[points.length - 1].getY(); } 
     
    public void define(Point[] points) { 
         
        this.points = points; 
         
    } 
     
    public Rectangle getBoundingBox() { 
         
  int minX = 100000, minY = 100000; 
  int maxX = 0, maxY = 0; 
   
  for(int pointIndex = points.length - 1; pointIndex >= 0; pointIndex--) 
{ 
             
            int x = (int)points[pointIndex].getX(); 
            int y = (int)points[pointIndex].getY(); 
   if(x - thickness / 2 < minX) minX = x - thickness / 2; 
   else if(x + thickness / 2 > maxX) maxX = x + thickness / 2; 
   if(y - thickness / 2 < minY) minY = y - thickness / 2; 
   else if(y + thickness / 2 > maxY) maxY = y + thickness / 2; 
             
  } 
         
  return new Rectangle(minX, minY, maxX - minX, maxY - minY); 
         
    } 
     
    public void paint(Graphics2D g) { 
                 
        Stroke oldStroke = g.getStroke(); 
        g.setStroke(new BasicStroke(thickness)); 
        g.setColor(color); 
         
        for(int pointIndex = points.length - 1; pointIndex >= 1; pointIndex--) { 
             
            Point one = points[pointIndex]; 
            Point two = points[pointIndex - 1]; 
            g.drawLine((int)one.getX(), (int)one.getY(), (int)two.getX(), 
(int)two.getY());             
             
        } 
         
        g.setStroke(oldStroke);         
         
    } 
     
} 



Appendix	 271

PaintCanvas.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import javax.swing.*; 
import java.awt.*; 
import java.util.*; 

public class PaintCanvas extends JPanel { 

    Vector history; 
     
    Vector paintObjects; 

    private PaintObject temporaryObject; 
    private PaintObject hoveringObject; 
     
    public PaintCanvas(int initialWidth, int initialHeight) { 
         
        setPreferredSize(new Dimension(initialWidth, initialHeight)); 
         
        paintObjects = new Vector(); 
         
        history = new Vector(); 
         
    } 
     
    public void paintComponent(Graphics g) { 
         
  ((Graphics2D) g).addRenderingHints( 
   new java.awt.RenderingHints( 
    java.awt.RenderingHints.KEY_ANTIALIASING, 
    java.awt.RenderingHints.VALUE_ANTIALIAS_ON)); 
         
        Rectangle clipBounds = g.getClipBounds(); 
        g.setColor(Color.white); 
        g.fillRect((int)clipBounds.getX(), (int)clipBounds.getX(),  
                    (int)clipBounds.getWidth(), (int)clipBounds.getHeight()); 
         
        Iterator paintObjectIterator = paintObjects.iterator(); 
        while(paintObjectIterator.hasNext()) 
   try { 
          ((PaintObject)paintObjectIterator.next()).paint((Graphics2D)g);  
   } catch(Exception e) {  
    System.err.println("The graphics context isn't a 
Graphics2D. No anti-aliasing!"); 
   } 
         
        if(temporaryObject != null) temporaryObject.paint((Graphics2D)g); 
         
  if(hoveringObject != null) { 
    
   Rectangle rect = hoveringObject.getBoundingBox(); 
   g.setColor(Color.black); 
   g.drawRect((int)rect.getX() - 1, (int)rect.getY() - 1, 
(int)rect.getWidth() + 2, (int)rect.getHeight() + 2); 
   hoveringObject.paint((Graphics2D)g); 
    
  } 
         
    } 
     
    public int sizeOfHistory() { return history.size(); } 
     



Appendix	 272

    public void setTemporaryObject(PaintObject temporaryObject) { 
         
        this.temporaryObject = temporaryObject; 
        repaint(); 
         
    } 
     
    public void setHoveringObject(PaintObject hoveringObject) { 
      
     this.hoveringObject = hoveringObject; 
     repaint(); 
      
    } 
     
    public void addPaintObject(PaintObject newObject) { 
         
        history.addElement(new Vector(paintObjects)); 
        paintObjects.addElement(newObject); 
        repaint(); 
         
    } 
     
    public void clear() { 
         
        history.addElement(new Vector(paintObjects)); 
        paintObjects.removeAllElements(); 
        repaint(); 

    } 

    public void undo() {  
         
        paintObjects = (Vector)history.lastElement(); 
        history.removeElement(history.lastElement()); 
         
    } 

}

PaintCanvas.java,	of	Paint,	from	the	study	in	Chapter	5

PaintObjectConstructor.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import java.util.*; 
import java.awt.event.*; 
import java.awt.*; 

public class PaintObjectConstructor implements MouseListener, MouseMotionListener { 

    private Vector pointsGathered; 
    private PaintObjectConstructorListener constructorListener; 
    private Class paintObjectClass; 
    private PaintObject temporaryObject; 
     
    private Color color; 
    private int thickness; 
     
    public PaintObjectConstructor(PaintObjectConstructorListener listener) { 
         
        this.constructorListener = listener; 
         
    } 
     
    public void setThickness(int thickness) { this.thickness = thickness; } 
    public void setColor(Color color) { this.color = color; } 



Appendix	 273

    public void mouseDragged(MouseEvent e) { 
         
         pointsGathered.addElement(e.getPoint()); 
         temporaryObject.define((Point[])pointsGathered.toArray(new 
Point[pointsGathered.size()])); 
         
constructorListener.hoveringOverConstructionArea(makeHoveringPrototype(e.getPoint())); 
         constructorListener.constructionContinuing(temporaryObject); 
         
    } 
     
     public void mouseReleased(MouseEvent e) { 
         
      pointsGathered.addElement(e.getPoint()); 
      temporaryObject.define((Point[])pointsGathered.toArray(new 
Point[pointsGathered.size()])); 
      constructorListener.constructionComplete(temporaryObject); 
      constructorListener.hoveringOverConstructionArea(null); 
         
      pointsGathered = null; 
      temporaryObject = null; 
         
    } 
     
    private PaintObject makeHoveringPrototype(Point p) { 
      
  PaintObject prototype = null; 
  try { 
   prototype = (PaintObject)paintObjectClass.newInstance(); 
  } catch(Exception exception) { 
   System.err.println("There was a problem making the paint 
object."); 
  } 
  Point[] points = new Point[2]; 
  points[0] = points[1] = p; 
  prototype.define(points); 
  prototype.setColor(color); 
  prototype.setThickness(thickness); 

  return prototype; 
    
    } 

}

PaintObjectConstructor.java,	of	Paint,	from	the	study	in	Chapter	5

PaintWindow.java,	of	Paint,	from	the	study	in	Chapter	5

package edu.cmu.hcii.paint; 
import javax.swing.*; 
import javax.swing.event.*; 
import java.awt.*; 
import java.awt.event.*; 

public class PaintWindow extends JFrame implements PaintObjectConstructorListener { 

    private PaintCanvas canvas; 
    private JButton clearButton, undoButton; 
    private JPanel clearUndoPanel; 
    private JRadioButton pencilButton, eraserButton, lineButton; 
    private JPanel toolPanel; 
    private JPanel rPanel, gPanel, bPanel; 
    private JSlider rSlider, bSlider, gSlider; 
    private JPanel colorPanel; 
    private JPanel controlPanel; 
 private JScrollPane canvasPane; 



Appendix	 274

     
    public PaintWindow(int initialWidth, int initialHeight) { 
         
        super("Paint"); 
      
        actions = new Actions(this); 
         
        setResizable(true); 
         
        setBackground(new Color(128, 10, 160)); 
         
        canvas = new PaintCanvas(initialWidth, initialHeight); 
        clearButton = new JButton(actions.clearAction); 
        clearButton.setOpaque(false); 
        undoButton = new JButton(actions.undoAction); 
        undoButton.setOpaque(false); 
         
        clearUndoPanel = new JPanel(); 
        clearUndoPanel.setOpaque(false); 
        clearUndoPanel.setLayout(new BoxLayout(clearUndoPanel, BoxLayout.Y_AXIS)); 
        clearUndoPanel.add(clearButton); 
        clearUndoPanel.add(undoButton); 
         
        pencilButton = new JRadioButton(actions.pencilAction); 
        pencilButton.setOpaque(false); 
        pencilButton.setSelected(true); 
        eraserButton = new JRadioButton(actions.eraserAction); 
        eraserButton.setOpaque(false); 
        lineButton = new JRadioButton("Line"); 
        lineButton.setOpaque(false); 
         
        toolButtonGroup = new ButtonGroup(); 
        toolButtonGroup.add(pencilButton); 
        toolButtonGroup.add(eraserButton); 
        toolButtonGroup.add(lineButton); 
         
        toolPanel = new JPanel(); 
        toolPanel.setOpaque(false); 
        toolPanel.setLayout(new BoxLayout(toolPanel, BoxLayout.Y_AXIS)); 
        toolPanel.add(pencilButton); 
        toolPanel.add(eraserButton); 
        toolPanel.add(lineButton); 
         
        rPanel = new JPanel(new FlowLayout()); 
        rPanel.setOpaque(false); 
        rPanel.add(new JLabel("Red")); 
        rSlider = new JSlider(0, 255, 0); 
        rSlider.setOpaque(false); 
        rSlider.addChangeListener(colorChangeListener); 
        rPanel.add(rSlider); 
         
        gPanel = new JPanel(new FlowLayout()); 
        gPanel.setOpaque(false); 
        gPanel.add(new JLabel("Green")); 
        gSlider = new JSlider(0, 255, 255); 
        gSlider.setOpaque(false); 
        gSlider.addChangeListener(colorChangeListener); 
        gPanel.add(gSlider); 
         
        bPanel = new JPanel(new FlowLayout()); 
        bPanel.setOpaque(false); 
        bPanel.add(new JLabel("Blue")); 
        bSlider = new JSlider(0, 255, 0); 
        bSlider.setOpaque(false); 
        bSlider.addChangeListener(colorChangeListener); 
        bPanel.add(bSlider); 

PaintWindow.java,	of	Paint,	from	the	study	in	Chapter	5



Appendix	 275

         
        colorPanel = new JPanel(); 
        colorPanel.setOpaque(false); 
        colorPanel.setLayout(new BoxLayout(colorPanel, BoxLayout.Y_AXIS)); 
        colorPanel.add(rPanel); 
        colorPanel.add(gPanel); 
        colorPanel.add(bPanel); 
        currentColorComponent.setPreferredSize(new Dimension(100, 50)); 
        colorPanel.add(currentColorComponent); 
                 
        controlPanel = new JPanel(); 
        GridBagLayout controlPanelGridBag = new GridBagLayout(); 
        GridBagConstraints constraints = new GridBagConstraints(); 
        constraints.fill = GridBagConstraints.NONE; 
        constraints.gridx = 0; 
        constraints.weighty = 1; 
        constraints.insets = new Insets(5, 5, 5, 5); 
        controlPanelGridBag.setConstraints(toolPanel, constraints);         
        controlPanelGridBag.setConstraints(colorPanel, constraints);         
        controlPanelGridBag.setConstraints(clearUndoPanel, constraints);         
        controlPanel.setLayout(controlPanelGridBag); 
        controlPanel.setOpaque(false); 
        controlPanel.add(toolPanel); 
        controlPanel.add(colorPanel); 
        controlPanel.add(clearUndoPanel); 
         
        canvasPane = new JScrollPane(canvas); 
                 
        getContentPane().setLayout(new BorderLayout()); 
        getContentPane().add(canvasPane, BorderLayout.CENTER); 
        getContentPane().add(controlPanel, BorderLayout.WEST); 
         
        addWindowListener(new WindowAdapter() { 
            public void windowClosing(WindowEvent event) { 
                System.exit(0); 
            } 
        }); 
         
         
        objectConstructor = new PaintObjectConstructor(this); 
        objectConstructor.setClass(PencilPaint.class); 
        objectConstructor.setColor(new Color(0, 255, 0)); 
        objectConstructor.setThickness(5);         
        canvas.addMouseListener(objectConstructor); 
        canvas.addMouseMotionListener(objectConstructor); 
         
        pack(); 
        setVisible(true); 
         
    } 
     
    public void setPaintObjectClass(Class paintObjectClass) { 
         
        objectConstructor.setClass(paintObjectClass); 
                 
    } 

    public void undo() {  
         
        canvas.undo();  
        if(canvas.sizeOfHistory() == 0) actions.undoAction.setEnabled(false); 
     
    } 
    

PaintWindow.java,	of	Paint,	from	the	study	in	Chapter	5



Appendix	 276

    public void clear() {  
         
        canvas.clear();  
     
    } 
     
    public void constructionBeginning(PaintObject temporaryObject) { 
         
        canvas.setTemporaryObject(temporaryObject);    
         
    } 
     
    public void constructionContinuing(PaintObject temporaryObject) { 
         
        canvas.setTemporaryObject(temporaryObject);    
         
    } 
     
    public void constructionComplete(PaintObject finalObject) { 
         
        canvas.setTemporaryObject(null);    
        canvas.addPaintObject(finalObject); 
        actions.undoAction.setEnabled(true); 
         
    } 
     
 public void hoveringOverConstructionArea(PaintObject hoverObject) { 
   
  canvas.setHoveringObject(hoverObject); 
   
 } 
     
     
} 

PaintWindow.java,	of	Paint,	from	the	study	in	Chapter	5

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 277

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 278

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 279

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 280

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 281

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 282

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 283

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 284

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 285

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 286

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 287

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 288

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 289

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 290

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 291

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 292

Study	materials	for	the	Crystal	evaluation	study	in	Chapter	9



Appendix	 293

Questionnaire	for	the	Java	Whyline	evaluation	study	in	Chapter	10

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 294

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 295

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 296

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 297

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 298

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 299

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 300

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 301

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 302

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 303

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 304

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 305

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 306

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 307

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Appendix	 308

Tutorial		and	tasks	for	the	Java	Whyline	evaluation	study	in	Chapter	10



Bibliography	 309

BIBLIOGRAPHY 

Abraham	R.	and	Erwig	M.	(2005).	Goal-Directed	Debugging	of	Spreadsheets.	IEEE	
Symposium	on	Visual	Languages	and	Human-Centric	Computing,	Dallas,	Texas,	
37-44.		

Akgul	T.,	V.	J.	M.	III,	and	Pande	S.	(2004).	A	Fast	Assembly	Level	Reverse	Execution	
Method	via	Dynamic	Slicing.	International	Conference	on	Software	Engineering,	
Scotland,	UK,	522-531.	

Aleven,	V.,	McLaren,	B.	M.,	Sewall,	J.,	&	Koedinger,	K.	(2006).	The	Cognitive	Tutor	
Authoring	Tools	(CTAT):	Preliminary	Evaluation	of	Ef<iciency	Gains.	In	M.	
Ikeda,	K.	D.	Ashley,	&	T.	W.	Chan	(Eds.),	International	Conference	on	Intelligent	
Tutoring	Systems,	Jhongli,	Taiwan,	61-70.	

Altmann	E.	M.	(2001).	Near-term	Memory	in	Programming:	A	Simulation-Based	
Analysis,	International	Journal	of	Human-Computer	Studies,	54,	189-210.	

Anderson	J.	R.	(2000),	"Problem	Solving,"	in	Cognitive	Psychology	and	its	
Implications,	Fifth	ed.	New	York,	New	York:	Worth	Publishers,	239-278.	

Anderson	P.	B.,	B.	Holmqvist,	and	J.	F.	Jensen	(1993),	The	Computer	as	Medium.	
Cambridge:	The	Cambridge	University	Press.	

Antoniol	G.,	H.	Gall,	M.	D.	Penta,	and	M.	Pinzger	(2004).	Mozilla:	Closing	the	Circle,	
Technical	University	of	Vienna,	Vienna,	Austria	TUV-1841-2004-05.	

Anvik	J.,	Hiew	L.,	and	Murphy	G.	(2006)	Who	Should	Fix	this	Bug?	International	
Conference	on	Software	Engineering,	Shanghai,	China,	361-368.	

Auguston	M.,	Jeffery	C.,	and	Underwood	S.	(2002).	A	Framework	for	Automatic	
Debugging.	IEEE	International	Conference	on	Automated	Software	Engineering,	
Edinburgh,	UK,	217-222.	

Baecker	R.	M.	and	A.	Marcus	(1990)	Human	Factors	and	Typography	for	More	
Readable	Programs.	Reading,	Massechusets:	Addison-Wesley.	



Bibliography	 310

Baecker	R.,	DiGiano	C.,	and	Marcus	A.	(1997).	Software	Visualization	for	Debugging,	
Communications	of	the	ACM,	40(4),	44-54.		

Baniassad	E.	L.	A.,	Murphy	G.	C.,	Schwanniger	C.,	and	Kircher	M.	(2002).	Managing	
Crosscutting	Concerns	During	Software	Evolution	Tasks:	An	Inquisitive	Study,	
Aspect-Oriented	Software	Development,	Enscheda,	The	Netherlands,	120-126.		

Baowen	X.,	Ju	Q.,	Xiaofang	Z.,	Zhongqiang	W.,	and	Lin	C.	(2005).	A	Brief	Survey	of	
Program	Slicing,	SIGSOFT	Software	Engineering	Notes,	30(2),	1-36.		

Begel	A.	and	Graham	S.	L.	(2005).	Spoken	Programs,	IEEE	International	Symposium	
on	Visual	Languages	and	Human-Centric	Computing,	Dallas,	Texas,	99-106.	

Berlage,	T.	(1994).	A	Selective	Undo	Mechanism	for	Graphical	User	Interfaces	Based	
on	Command	Objects,	ACM	Transactions	on	Computer	Human	Interaction,	1(3),	
269-294.		

Berlin	L.	M.	(1993).	Beyond	Program	Understanding:	A	Look	at	Programming	
Expertise	in	Industry,	Empirical	Studies	of	Programmers,	5th	Workshop,	Palo	
Alto,	CA,	6-25.	

Biehl	J.T.,	Czerwinski	M.,	Smith	G.,	Robertson	G.G.,	Bailey	B.	(2007).	FASTDash:	A	
Visual	Dashboard	for	Fostering	Awareness	in	Software	Teams.	ACM	Conference	
on	Human	Factors	in	Computing,	San	Jose,	California,	1313	-	1322.	

Blackwell	A.	(2002a).	First	Steps	in	Programming:	A	Rationale	for	Attention	
Investment	Models,	IEEE	Symposia	on	Human-Centric	Computing	Languages	
and	Environments,	Arlington,	VA,	Sept.	3-6,	2-10.	

Blackwell,	A.	and	Burnett,	M.	(2002b).	Applying	Attention	Investment	to	End-User	
Programming,	IEEE	Symposia	on	Human-Centric	Computing	Languages	and	
Environments,	Arlington,	VA,	28-30.	

[Blackwell	2003]	Blackwell	A.	and	Green	T.R.G.	(2003).	Notational	Systems—The	
Cognitive	Dimensions	of	Notations	Framework,	in	HCI	Models,	Theories,	and	
Frameworks:	Toward	a	Multidisciplinary	Science,	J.	M.	Carroll,	Ed.	San	
Francisco,	CA:	Morgan	Kaufmann.	



Bibliography	 311

Boehm	B.	W.	(1976).	Software	Engineering,	IEEE	Transactions	on	Computers,	12(25),	
1226-1242.	

Boehm-Davis	D.	A.,	Fox	J.	E.,	and	Philips	B.	H.	(1996).	Techniques	for	Exploring	
Program	Comprehension,	Empirical	Studies	of	Programmers,	Sixth	Workshop,	
Washington	D.C.,	3-37.		

Boothe	B.	(2000).	Ef<icient	Algorithms	for	Bidirectional	Debugging.	ACM	SIGPLAN	
Conference	on	Programming	Language	Design	and	Implementation,	299-310.	

Boren	M.	T.	and	Ramey	J.	(2000).	Thinking	Aloud:	Reconciling	Theory	and	Practice,	
IEEE	Transactions	on	Professional	Communication,	43(3),	261-278.	

Bothell,	D.	(2004)	ACT-R	Environment	Manual,	Version	5.0,	April	22,	http://act-
r.psy.cmu.edu/software/EnvironmentManual.pdf	

Briggs,	J.S.,	Jamieson	S.D.,	Randall	G.W.	and	Wand	I.C.	(1996).	Task	Time	Lines	as	a	
Debugging	Tool.	ACM	SIGAda	Ada	Letters,	XVI(2),	50-69.	

Brooks	R.	(1972,	published	1999),	Towards	a	Theory	of	the	Cognitive	Processes	in	
Computer	Programming,	International	Journal	of	Human-Computer	Studies,	
51(2),	197-211.		

Brooks,	F.P.	Jr.	(1975).	The	Mythical	Man-Month:	Essays	on	Software	Engineering.	
Addison	Wesley,	Reading,	MA.	

Brun	Y.,	Ernst	M.D.	(2004).	Finding	Latent	Code	Errors	via	Machine	Learning	Over	
Program	Executions,	International	Conference	on	Software	Engineering,	480–
490.	

Bureau	of	Labor	Statistics,	U.S.	Department	of	Labor	(2004),	"Occupational	Outlook	
Handbook,"	Dept.	of	Labor,	http://stats.bls.gov/oco.	

Bush	W.	R.,	Pincus	J.	D.,	and	Sielaff	D.	J.	(2000).	A	Static	Analyzer	for	Finding	Dynamic	
Programming	Errors,	Software	Practice	and	Experience,	30(7),	775-802.	

Calder,	P.R.	and	Linton,	M.A.	(1990).	Glyphs:	Flyweight	Objects	for	User	Interfaces,	
ACM	Symposium	on	User	Interface	Software	and	Technology,	Snowbird,	Utah,	
92-101.	



Bibliography	 312

Cataldo,	M.,	Wagstrom	P.,	Herbsleb	J.D.,	Carley	K.	(2006).	Identi<ication	of	
Coordination	Requirements:	Implications	for	the	Design	of	Collaboration	and	
Awareness	Tools.	Computer	Supported	Cooperative	Work,	Banff,	Alberta,	
353-362.	

Chalupsky,	H.	and	Russ,	T.	A.	(2002).	WhyNot:	Debugging	Failed	Queries	in	Large	
Knowledge	Bases.	National	Conference	on	ArtiJicial	intelligence	(AAAI),	
Edmonton,	Alberta,	Canada,	870-877.	

Chong,	J.,	Siino	R.	(2006).	Interruptions	on	Software	Teams:	A	Comparison	of	Paired	
and	Solo	Programmers.	Computer	Supported	Cooperative	Work,	Banff,	Alberta.	
28–39.	

Chu-Carroll	M.,	Wright	J.,	and	Shields	D.	(2002).	Supporting	Aggregation	in	Fine	
Grained	Software	Con<iguration	Management,	ACM	SIGSOFT	International	
Symposium	on	the	Foundations	of	Software	Engineering,	99-108.	

Clark,	P.,	Chaw,	S.Y.,	Barker,	K.,	Chaudhri,	V.,	Harrison,	P.,	Fan,	J.,	John,	B.,	Porter,	B.,	
Spaulding,	A.,	Thompson,	J.,	Yeh,	P.Z.	(2007).	Capturing	and	Answering	
Questions	Posed	to	a	Knowledge-Based	System.	International	Conference	on	
Knowledge	Capture	(K-CAP),	Whistler,	British	Columbia,	Canada,	63-70.	

Clause	J.	and	Orso	A.	(2007).	A	Technique	for	Enabling	and	Supporting	Debugging	of	
Field	Failures,	International	Conference	on	Software	Engineering,	Minneapolis,	
MN,	261-270.	

Cleve	H.	and	A.	Zeller	(2005).	Locating	Causes	of	Program	Failures,	International	
Conference	on	Software	Engineering,	St.	Louis,	MI,	342-351.	

Cole	B.,	Hakim	D.,	Hovenmeyer	D.,	Lazarus	R.,	Pugh	W.	and	Stephens	K.	(2006).	
Improving	Your	Software	Using	Static	Analysis	to	Find	Bugs.	ACM	SIGPLAN	
Conference	on	Object-Oriented	Programming	Systems,	Languages,	and	
Applications,	Portland,	Oregon,	USA,	673-674.	

Coblenz,	M.	J.,	Ko,	A.	J.,	and	Myers.	B.	A.	(2005).	Using	Objects	of	Measurement	to	
Detect	Spreadsheet	Errors.	IEEE	Symposium	on	Visual	Languages	and	Human-
Centric	Computing,	Dallas,	Texas,	September	23-26,	314-316.	



Bibliography	 313

Cook,	C.,	Burnett,	M.,	and	Boom,	D.	(1997).	A	Bug's	Eye	View	of	Immediate	Visual	
Feedback	in	Direct-Manipulation	Programming	Systems,	Empirical	Studies	of	
Programmers,	7th	Workshop,	Alexandria,	VA,	20-41.	

Cooper	K.D.,	Harvey	T.J.	&	Kennedy	K.	(2001).	A	Simple,	Fast	Dominance	Algorithm.	
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf.	

Cooper	S.,	Dann	W.,	and	Pausch	R.	(2003).	Teaching	Objects-<irst	in	Introductory	
Computer	Science.	SIGCSE	Technical	Symposium	on	Computer	Science	
Education,	Reno,	Nevada,	191-195.	

Corritore	C.	L.	and	S.	Wiedenbeck	(2001),	An	Exploratory	Study	of	Program	
Comprehension	Strategies	of	Procedural	and	Object-Oriented	Programmers,	
International	Journal	of	Human-Computer	Studies,	54,	1-23.		

Corritore	C.	L.	and	S.	Wiedenbeck	(1999).	Mental	Representations	of	Expert	
Procedural	and	Object-Oriented	Programmers	in	a	Software	Maintenance	
Task,	International	Journal	of	Human-Computer	Studies,	50(1),	61-83.	

Cubranic	D.	and	G.	Murphy	(2000).	Hipikat:	Recommending	Pertinent	Software	
Development	Artifacts,	International	Conference	on	Software	Engineering,	
Portland,	Oregon,	408-418.	

Curtis	B.	(1981).	Substantiating	Programmer	Variability,	Proceedings	of	the	IEEE,	
69(7),	846.	

Dann	W.,	Cooper	S.,	and	Pausch	R.	(2003),	Learning	to	Program	with	Alice:	Prentice-
Hall.	

Davies	S.	P.	(1994).	Knowledge	Restructuring	and	the	Acquisition	of	Programming	
Expertise,	International	Journal	of	Human-Computer	Studies,	40(4),	703-726.	

Davies	S.	P.	(1993).	Models	and	Theories	of	Programming	Strategy,	International	
Journal	of	Man-Machine	Studies,	39,	236-267.	

Davies,	S.P.	(1996).	Display-based	problem	solving	strategies	in	computer	
programming,	Empirical	Studies	of	Programmers,	6th	Workshop,	Washington,	
D.C.,	59-76.	



Bibliography	 314

DeLine	R.,	Czerwinski	M.,	and	Robertson	G.	(2005).	Easing	Program	Comprehension	
by	Sharing	Navigation	Data.	IEEE	Symposium	on	Visual	Languages	&	Human-
Centered	Computing	(VL/HCC),	September,	241-248.	

de	Souza,	C.R.B.,	Redmiles	D.F.,	Mark	G.,	Penix	J.,	and	Sierhuis	M.	(2003).	
Management	of	Interdependencies	in	Collaborative	Software	Development:	A	
Field	Study.	IEEE	International	Symposium	on	Empirical	Software	Engineering,	
Rome,	Italy,	294–303.			

Detlefs	D.	L.,	K.	Rustan,	M.	Leino,	G.	Nelson,	and	J.	B.	Saxe	(1998).	Extended	Static	
Checking,	Compaq	Systems	Research	Center	SRC	Research	Report	159,	
December	18.		

Douce	C.	(2001).	Long	Term	Comprehension	of	Software	Systems:	A	Methodology	
for	Study,	Psychology	of	Programming	Interest	Group,	Bournemouth,	UK.	

Dourish,	P.	(1995).	Accounting	for	System	Behaviour:	Representation,	Re<lection	and	
Resourceful	Action,	Third	Decennial	Conference	on	Computers	in	Context.	
Aarhus,	Denmark:		

Dworman,	G.	and	Rosenbaum,	S.	(2004).	Helping	Users	to	Use	Help:	Improving	
Interaction	with	Help	Systems.	ACM	Conference	on	Human	Factors	in	
Computing	Systems,	Extended	abstracts,	Vienna,	Austria,	1717-1718.	

Eick	S.	G.,	Graves	T.L.,	Karr	A.F.,	Marron	J.S.,	and	Mockus	A.	(2001).	Does	Code	Decay?	
Assessing	the	Evidence	from	Change	Management	Data,	IEEE	Transactions	on	
Software	Engineering,	27(1),	1-12.	

Eisenberg	M.	and	H.	A.	Peelle	(1983).	APL	Learning	Bugs,	APL	Conference,	
Washington,	D.	C.,	11-16.	

Eisenberg	A.	&	De	Volder	K.	(2005).	Dynamic	Feature	Traces:	Finding	Features	in	
Unfamiliar	Code.	International	Conference	on	Software	Maintenance,	Budapest,	
Hungary,	337-346.	

Eisenstadt,	M.	(1997).	My	Hairiest	Bug	War	Stories,	Communications	of	the	ACM,	
40(4),	30–37.	



Bibliography	 315

Engebretson	A.	and	Wiedenbeck	S.	(2002).	Novice	Comprehension	of	Programs	Using	
Task-SpeciJic	and	Non-Task-SpeciJic	Constructs.	IEEE	Symposia	on	Human-Centric	
Computing	Languages	and	Environments,	Arlington,	VA,	Sept	3-6,	11-	18.	

Ericsson	K.	A.	and	Simon	H.A.	(1984).	Protocol	Analysis:	Verbal	Reports	as	Data.	
Cambridge,	MA:	MIT	Press.	

Ernst	M.D.,	Czeisler	A.,	Griswold	W.G.,	and	Notkin	D.	(2000).	Quickly	Detecting	
Relevant	Program	Invariants.	International	Conference	on	Software	
Engineering,	Limerick,	Ireland,	June	7-9,	449-458.	

Fischer	M.,	Pinzger	M.,	and	Gall	H.	(2003).	Analyzing	and	Relating	Bug	Report	Data	
for	Feature	Tracking,	Working	Conference	on	Reverse	Engineering,	Victoria,	
British	Columbia,	Canada,	90-99.	

Fogarty	J.,	Ko	A.J.,	Aung	H.H.,	Golden	E.,	Tang	K.P.,	and	Hudson	S.E.	(2005).	Examining	
Task	Engagement	in	Sensor-Based	Statistical	Models	of	Human	
Interruptibility,	ACM	Conference	on	Human	Factors	in	Computing	Systems,	
Portland,	Oregon,	USA,	331-340.	

Fowler,	M.;	Highsmith,	J.,	(2001)	The	Agile	Manifesto.	Software	Development,	2001.	
August.	

Francel	M.	A.	and	S.	Rugaber	(2001).	The	Value	of	Slicing	While	Debugging,	Science	of	
Computer	Programming,	40(2-3),	151-169.	

Fritzon	P.,	Shahmehri	N.,	and	Karkar	M.	(1992).	Generalized	Algorithmic	Debugging	
and	Testing,	ACM	Letters	on	Programming	Languages	and	Systems,	1(4),	
303-322.	

Furnas	G.W.,	Landauer	T.K.,	Gomez	L.	M.,	and	Dumais	S.	T.	(1987).	The	Vocabulary	
Problem	in	Human-System	Communication,	Communications	of	the	ACM,	30,	
964-971.	

Gall	H.,	Jazayeri	M.,	and	Krajewski	J.	(2003).	CVS	Release	History	Data	for	Detecting	
Logical	Couplings,	International	Workshop	on	Principles	of	Software	Evolution,	
Helsinki,	Finaland,	13.	

German,	D.	M.	(2006).	An	Empirical	Study	of	Fine-Grained	Software	Modi<ications.	
Empirical	Software	Engineering,	11(3),	369-393.	



Bibliography	 316

Gestwicki,	P.	and	Jayaraman,	B.	(2002).	Interactive	Visualization	of	Java	Programs,	
IEEE	Symposia	on	Human-Centric	Computing	Languages	and	Environments,	
Arlington,	VA,	226-235.	

Gilmore,	D.	J.	(1992).	Models	of	Debugging,	Acta	Psychologica,	78,	151-173.	

Greenhouse	A.,	Halloran	T.	J.,	and	Scherlis	W.	L.	(2005).	Observations	on	the	Assured	
Evolution	of	Concurrent	Java	Programs,	Science	of	Computer	Programming,	
58(3),	384-411.	

Gonzalez	V.	M.	and	G.	Mark	(2004).	"Constant,	Constant,	Multi-Tasking	Craziness":	
Managing	Multiple	Working	Spheres,	ACM	Conference	on	Human	Factors	in	
Computing,	Vienna,	Austria,	113-120.	

Gonzalez,	V.,	G.	Mark.,	Harris	J.	(2005).	No	Task	Left	Behind?	Examining	the	Nature	of	
Fragmented	Work.	ACM	Conference	on	Human	Factors	in	Computing,	Portland,	
OR,		321–330.			

Green	T.R.G.	(1989).	Cognitive	Dimensions	of	Notations,	in	People	and	Computers,	A.	
Sutcliffe	and	L.	Macaulay	(eds.),	Cambridge,	UK,	Cambridge	University	Press,	
443-460.	

Green	T.R.G.	and	Petre	M.	(1996).	Usability	Analysis	of	Visual	Programming	
Environments:	A	'Cognitive	Dimensions'	Framework,	Journal	of	Visual	
Languages	and	Computing,	7,	131-174.	

Groce	A.,	Visser	W.	(2003).	What	Went	Wrong:	Explaining	Counter	Examples,	10th	
International	SPIN	Workshop	on	Model	Checking	of	Software,	121–135.	

Grove,	D.	and	Chambers,	C.	(2001).	A	Framework	for	Call	Graph	Construction	
Algorithms.	ACM	Transactions	on	Programming	Languages	and	Systems	23(6),	
November,	685-746.	

Gugerty,	L.	and	Olson,	G.M.	(1986).	Comprehension	Differences	in	Debugging	by	
Skilled	and	Novice	Programmers,	Empirical	Studies	of	Programmers,	1st	
Workshop,	Washington,	DC,	13-27.	



Bibliography	 317

Gupta	N.,	He	H.,	Zhang	X.	and	Gupta	R.	(2005).	Locating	Faulty	Code	Using	Failure-
Inducing	Chops.	IEEE/ACM	International	Conference	on	Automated	Software	
Engineering,	Long	Beach,	CA,	USA,	263-272.	

Gutwin,	C.,	R.	Penner,	K.	Schneider,	K.	(2004).	Group	Awareness		in	Distributed	
Software	Development.	Computer	Supported	Collaborative	Work,	Chicago,	IL,	
72–81.			

Halsted,	K.L.	and	Roberts,	J.H.	(2002).	Eclipse	Help	System:	An	Open	Source	User	
Assistance	Offering.	SIGDOC:	International	Conference	on	Computer	
Documentation,	Toronto,	Ontario,	Canada,	49-59.	

Hertzum,	M.	(2002).	The	Importance	of	Trust	in	Software	Engineers’	Assessment	of	
Choice	of	Information	Sources.	Information		and	Organization,	12(1),	1–18.			

Holtzblatt	K.	and	Beyer,	H	(1998).	Contextual	Design:	DeJining	Customer-Centered	
Systems.	Morgan	Kaufmann,	San	Francisco,	CA.	

Jackson	D.	(2001).	Visual	Debugging	of	Multithreaded	Java	Programs,	IEEE	Symposia	
on	Human-Centric	Computing	Languages	and	Environments,	Stresa,	Italy,	
340-341.	

Kehoe	C.,	Stasko	J.,	and	Taylor	A.	(2001)	Rethinking	the	Evaluation	of	Algorithm	
Animations	as	Learning	Aids:	An	Observational	Study,	International	Journal	of	
Human-Computer	Studies,	54(2),	265-284.	

Kelleher,	C.	and	Pausch,	R.	(205).	Stencils-Based	Tutorials:	Design	and	Evaluation,	
ACM	Conference	on	Human	Factors	in	Computing,	Portland,	Oregon,	USA,	
541-550.		

Kessler	P.	B.	(1990).	Fast	Breakpoints:	Design	and	Implementation,	Programming	
Language	Design	and	Implementation,	78-84.	

Kiczales,	G.	(1992).	Towards	a	New	Model	of	Abstraction	in	Software	Engineering,	
IMSA	Workshop	on	ReJlection	and	Meta-level	Architectures.		

Kranzlmuller,	D.,	Grabner,	S.,	and	Vokert,	J.	(1996).	Event	Graph	Visualization	for	
Debugging	Large	Applications,	SIGMETRICS	Symposium	on	Parallel	and	
Distributed	Tools,	Philadelphia,	Pennsylvania,	USA,	108-117.	



Bibliography	 318

Knuth	D.	(1989).	The	Errors	of	TeX,	Software:	Practice	and	Experience,	19(7),	
607-685.		

Ko	A.	J.	(2003a).	A	Contextual	Inquiry	of	Expert	Programmers	in	an	Event-Based	
Programming	Environment.	ACM	Conference	on	Human	Factors	in	Computing,	
Fort	Lauderdale,	FL,	April	8-10,	1036-1037.	

Ko,	A.	J.	and	Myers,	B.	A.	(2003b).	Development	and	Evaluation	of	a	Model	of	
Programming	Errors.	IEEE	Symposia	on	Human-Centric	Computing	Languages	
and	Environments,	Auckland,	New	Zealand,	October	28th-31st,	7-14.	

Ko	A.	J.	and	B.	A.	Myers	(2004a).	Designing	the	Whyline:	A	Debugging	Interface	for	
Asking	Questions	about	Program	Behavior,	ACM	Conference	on	Human	Factors	
in	Computing	Systems,	Vienna,	Austria,	151-158.	

Ko,	A.J.,	B.A.	Myers,	H.H.	Aung	(2004b).	Six	Learning	Barriers	in	End-User	
Programming	Systems.	IEEE	Symposium	on	Visual	Languages	and	Human-
Centric	Computing,	Rome,	Italy,	199–206.	

Ko	A.	J.,	H.	Aung,	and	B.	A.	Myers	(2005a).	Design	Requirements	for	More	Flexible	
Structured	Editors	from	a	Study	of	Programmers'	Text	Editing,	ACM	Conference	
on	Human	Factors	in	Computing	Systems,	Portland,	Oregon,	USA,	1557-1560.	

Ko	A.	J.,	Aung	H.H.,	and	Myers	B.	A.	(2005b).	Eliciting	Design	Requirements	for	
Maintenance-Oriented	IDEs:	A	Detailed	Study	of	Corrective	and	Perfective	
Maintenance	Tasks,	International	Conference	on	Software	Engineering,	St.	
Louis,	Missouri,	126-135.	

Ko	A.	J.	and	Myers	B.	A.	(2005c).	A	Framework	and	Methodology	for	Studying	the	
Causes	of	Software	Errors	in	Programming	Systems,	Journal	of	Visual	
Languages	and	Computing,	16(1-2),	41-84.	

Ko,	A.J.	and	Myers,	B.A.	(2005d)	Citrus:	A	Toolkit	for	Simplifying	the	Creation	of	
Structured	Editors	for	Code	and	Data,	ACM	Symposium	on	User	Interface	
Software	and	Technology,	Seattle,	Washington,	USA,	3-12.	

Ko.	A.	J.,	Myers,	B.A.,	Chau,	D.	H.	(2006a)	A	Linguistic	Analysis	of	How	People	
Describe	Software	Problems.	Visual	Languages	and	Human-Centric	Computing,	
Brighton,	United	Kingdom,	September	4-8,	127-134.	



Bibliography	 319

Ko.	A.	J.,	Myers,	B.A.,	Coblenz,	M.	and	Aung,	H.	H.	(2006b).	An	Exploratory	Study	of	
How	Developers	Seek,	Relate,	and	Collect	Relevant	Information	during	
Software	Maintenance	Tasks.	IEEE	Transactions	on	Software	Engineering,	
32(12),	971-987.	

Ko,	A.	J.,	Myers,	B.	A.	(2006c)	Barista:	An	Implementation	Framework	for	Enabling	
New	Tools,	Interaction	Techniques	and	Views	for	Code	Editors.	ACM	
Conference	on	Human	Factors	in	Computing	Systems,	Montreal,	Canada,	April	
24-27,	387-396.	

Ko,	A.J.	DeLine,	R.,	&	Venolia,	G.	(2007).	Information	Needs	in	Collocated	Software	
Development	Teams.	International	Conference	on	Software	Engineering,	
Minneapolis,	MN,	344-353.	

Ko,	A.J.	and	Myers,	B.A.	(2008a).	Debugging	Reinvented:	Asking	and	Answering	Why	
and	Why	Not	Questions	about	Program	Behavior.	International	Conference	on	
Software	Engineering	(ICSE),	Leipzig,	Germany,	May	10-18.	To	appear.	

Ko,	A.J.	and	Myers,	B.A.	(2008b).	Source-Level	Debugging	with	the	Whyline.	
Cooperative	and	Human	Aspects	of	Software	Engineering,	co-located	with	the	
International	Conference	on	Software	Engineering,	Leipzig,	Germany,	May	
10-18.	To	appear.	

Koch	S.	and	Schneider	G.	(2000).	Results	from	Software	Engineering	Research	into	
Open	Source	Development	Projects	Using	Public	Data,	Wirtschaftsuniversität,	
Vienna,	Austria	22.	

Koenemann	J.	and	Robertson	S.P.	(1991).	Expert	Problem	Solving	Strategies	for	
Program	Comprehension,	ACM	Conference	on	Human	Factors	and	Computing	
Systems,	New	Orleans,	Louisiana,	125-130.	

Laird	J.,	Bates	C.,	Congdon,	Altmann	E.,	Swedlow	K.	(1990).	Soar	User's	Manual:	
Version	5.2,	Carnegie	Mellon	Technical	Report	CMU-CS-90-179	and	University	of	
Michigan	Technical	Report	CSE-TR-72-90.	

LaToza	T.,	G.	Venolia,	and	R.	DeLine	(2006).	Maintaining	Mental	Models:	A	Study	of	
Developer	Work	Habits,	International	Conference	on	Software	Engineering,	
Shanghai,	China,	492-501.	



Bibliography	 320

LaToza,	T.D.,	Garlan,	D.,	Herblseb,	J.D.,	and	Myers,	B.A.		(2007).		Program	
Comprehension	as	Fact	Finding.		Foundations	of	Software	Engineering,	Cavat	
near	Dubrovnik,	Croatia,	September	3-7,	361-370.	

Lehman	M.	M.	and	Belady	L.	(1985).	Software	Evolution	–	Processes	of	Software	
Change.	London:	Academic	Press.	

Lencevicius	R.,	Holzle	U.,	and	Singh	A.	K.	(2003).	Dynamic	Query-Based	Debugging	of	
Object-Oriented	Programs,	Journal	of	Automated	Software	Engineering,	10(1),	
367-370.	

Lewis	B.	(2003).	Debugging	Backwards	in	Time,	International	Workshop	on	
Automated	Debugging,	225-235.	

Liblit	B.,	Naik	M.,	Zheng	A.,	Aiken	A.	&	Jordan	M.	(2005).	Scalable	statistical	bug	
isolation.	Programming	Design	and	Implementation,	Chicago,	IL,	USA,	15-26.	

Liblit	B.,	Aiken	A.,	Zheng	A.	X.	,	and	Jordan	M.	I.	(2003).	Bug	Isolation	via	Remote	
Program	Sampling,	Programming	Language	Design	and	Implementation,	141–
154.	

Lieberman,	H.	and	Fry,	C.	(1995).	Bridging	the	Gulf	between	Code	and	Behavior	in	
Programming,	ACM	Conference	on	Human	Factors	in	Computing	Systems,	
Denver,	CO,	480-494.	

Lieberman,	H.	(1997).	The	Debugging	Scandal	and	What	to	Do	About	It,	
Communications	of	the	ACM,	40(4),	26-78.	

Lin,	J.,	Quan,	D.,	Sinha,	V.,	Bakshi,	K.,	Huynh,	D.,	Katz,	B.,	and	Karger,	D.	R.	(2003).	The	
Role	of	Context	in	Question	Answering	Systems.	ACM	Conference	on	Human	
Factors	in	Computing	Systems,	Extended	Abstracts,	Ft.	Lauderdale,	Florida,	USA,	
1006-1007.	

Littman	D.	C.,	J.	Pinto,	S.	Letovsky,	and	E.	Soloway	(1986).	Mental	Models	and	
Software	Maintenance,	Empirical	Studies	of	Programmers,	1st	Workshop,	
Washington,	DC,	80-98.	

http://www.cs.cmu.edu/~tlatoza/fse07.pdf
http://www.cs.cmu.edu/~tlatoza/fse07.pdf


Bibliography	 321

Mayrhauser,	A.V.	and	Vans,	A.M.	(1997).	Program	Understanding	Behavior	during	
Debugging	of	Large	Scale	Software,	Empirical	Studies	of	Programmers,	7th	
Workshop,	Alexandria,	Virginia,	157-179.	

McCarthy,	J.	(1981).	History	of	LISP.	In	History	of	Programming	Languages	I,	R.	L.	
Wexelblat,	Ed.	History	of	Programming	Languages.	ACM,	New	York,	NY,	
173-185.	

McDonald,	D.W.,	Ackerman	M.S.	(1998).	Just	Talk	to	Me:	A	Field	Study	of	Expertise	
Location.	ACM	Conference	on	Computer	Supported	Cooperative	Work,	Seattle,	
WA,	315–324.			

Miara	J.	R.,	Musselman	J.	A.,	Navarro	J.	A.,	and	Shneiderman	B.	(1983).	Program	
Indentation	and	Comprehensibility,	Communications	of	the	ACM,	26(11),	
861-867.	

Milanova	A.,	Rountev	A.,	and	Ryder	B.	G.	(2002).	Precise	Call	Graph	Construction	in	
the	Presence	of	Function	Pointers.	IEEE	International	Workshop	on	Source	
Code	Analysis	and	Manipulation,	October	1,	Bratislava,	Slovak	Republic,	155.	

Miller	R.C.	and	Myers	B.A.	Outlier	Finding:	Focusing	User	Attention	on	Possible	
Errors.	ACM	Symposium	on	User	Interface	Software	and	Technology,	Orlando,	
FL,	November,	81-90.	

Moskal,	B.,	Lurie,	D.	Cooper,	S.	(2004).	Evaluating	the	Effectiveness	of	a	New	
Instructional	Approach.	SIGCSE	Technical	Symposium	on	Computer	Science	
Education,	Norfolk,	Virgina,	75-79.	

Mukherjea	S.	and	Stasko	J.	(1994).	Toward	Visual	Debugging:	Integrating	Algorithm	
Animation	Capabilities	Within	a	Source-Level	Debugger,	ACM	Transactions	on	
Computer-Human	Interaction,	1(3),	215-244.	

Murphy	G.	C.,	Kersten	M.,	Robillard	M.	P.,	and	Cubranic	D.	(2005).	The	Emergent	
Structure	of	Development	Tasks,	European	Conference	on	Object-Oriented	
Programming,	Glasgow,	United	Kingdom,	34-48.	

Myers,	B.A.	(1980).	Displaying	Data	Structures	for	Interactive	Debugging.	XEROX	
Palo	Alto	Research	Center,	June.		



Bibliography	 322

Myers	B.	A.	(1983).	Incense:	A	System	for	Displaying	Data	Structures,	Computer	
Graphics	Detroit,	Michigan,	USA,	115-125.	

Myers	B.A.,	Giuse	D.,	Dannenberg	R.B.,	Vander	Zanden	B.,	Kosbie	D.,	Pervin	E.,	
Mickish	A.,	and	Marchal	P.	(1990).	IEEE	Computer,	23(11),	November.	

Myers	B.	A.,	McDaniel	R.	G.,	and	Kosbie	D.	S.	(1993).	Marquise:	Creating	Complete	
User	Interfaces	by	Demonstration,	ACM	Conference	on	Human	Factors	in	
Computing	Systems,	Amsterdam,	The	Netherlands,	293-300.		

Myers,	B.A.	and	Kosbie,	D.	(1996).	Reusable	Hierarchical	Command	Objects,	ACM	
Conference	on	Human	Factors	in	Computing	(CHI),	Vancouver,	BC,	Canada,	
260-267.		

Myers	B.A.,	McDaniel	R.G.,	Miller	R.C.,	Ferrency	A.S.,	Faulring	A.,	Kyle	B.D.,	Mickish	A.,	
Klimovitski	A.	and	Doane	P.	(1997).	The	Amulet	Environment:	New	Models	for	
Effective	User	Interface	Software	Development,	IEEE	Transactions	on	Software	
Engineering,	23(6),	June,	347-365.	

Myers,	B.A.	(1998).	Scripting	Graphical	Applications	by	Demonstration.	ACM	
Conference	on	Human	Factors	in	Computing	(CHI),	Los	Angeles,	California,	USA,	
534-541.		

Myers,	B.	A.,	Weitzman,	D.,	Ko,	A.	J.,	Chau,	D.	H.	(2006)	Answering	Why	and	Why	Not	
Questions	in	User	Interfaces.	ACM	Conference	on	Human	Factors	in	Computing	
Systems,	Montreal,	Canada,	April	24-27,	397-406.	

Nanja,	M.	and	Cook,	C.	R.	(1987).	An	Analysis	of	the	On-Line	Debugging	Process,	in	G.	
M.	Olson,	S.	Shepard,	and	E.	Soloway,	(eds.)	Empirical	Studies	of	Programmers:	
Second	Workshop,	Norwood,	NJ:	Ablex,	172-184.	

Navarro-Prieto	R.	and	Canas	J.J.	(2001).	Are	Visual	Programming	Languages	Better?	
The	Role	of	Imagery	in	Program	Comprehension,	International	Journal	of	
Human-Computer	Studies,	54,	799-829.	

Nichols	D.	M.	and	Twidale	M.	B.	(2005).	Usability	Discussions	in	Open	Source	
Development,	Hawaii	International	Conference	on	System	Sciences,	Hawaii,	
USA,	198-207.	



Bibliography	 323

Nielsen,	J.	and	Molich,	R.	(1990).	Heuristic	Evaluation	of	User	Interfaces.	ACM	
Conference	on	Human	Factors	in	Computing	Systems,	Seattle,	Washington,	USA,	
249-256.	

Nistor	E.	C.	and	van	Der	Hoek	A.	(2006).	Concern	Highlight:	A	Tool	for	Concern	
Exploration	and	Visualization,	Workshop	on	Linking	Aspect	Technology	and	
Evolution,	Bonn,	Germany.	

Norman	D.	A.	(1988).	The	Design	of	Everyday	Things.	New	York,	NY:	Doubleday.	

Pirolli	P.	and	Card	S.	K.	(1999).	Information	Foraging,	Psychological	Review,	106(4),	
643-675.	

Pane	J.	F.	and	Myers	B.	A.	(1996).	Usability	Issues	in	the	Design	of	Novice	
Programming	Systems,	Carnegie	Mellon	University,	Pittsburgh,	PA	CMU-
CS-96-132,	August,	http://www.cs.cmu.edu/~pane/cmu-cs-96-132.html.	

Pane	J.	F.,	Ratanamahatana	C.	A.,	and	Myers	B.	A.	(2001).	Studying	the	Language	and	
Structure	in	Non-	Programmers'	Solutions	to	Programming	Problems.	
International	Journal	of	Human-Computer	Studies,	54(2),	237-264.	

Pennington	N.	(1987).	Stimulus	Structures	and	Mental	Representations	in	Expert	
Comprehension	of	Computer	Programs,	Cognitive	Psychology,	19,	295-341.	

Perlow	L.	(1999).	The	Time	Famine:	Toward	a	Sociology	of	Work	Time,	
Administrative	Science	Quarterly,	44,	57-81.	

Perry,	D.E.,	Staudenmayer	N.A.,	Votta	L.G.	(1994).	People,	Organizations	and	Process	
Improvement.	IEEE	Software,	July,	36–45.			

Petre	M.	and	Blackwell	A.	F.	(1997).	A	Glimpse	of	Expert	Programmers'	Mental	
Imagery,	Empirical	Studies	of	Programmers,	7th	Workshop,	Alexandria,	
Virginia,	USA,	109-128.	

Phalgune	A.,	Kissinger	C.,	Burnett	M.,	Cook	C.,	Beckwith	L.,	and	Ruthruff	J.	R.	(2005).	
Garbage	In,	Garbage	Out?	An	Empirical	Look	at	Oracle	Mistakes	by	End-User	
Programmers,	IEEE	Symposium	on	Visual	Languages	and	Human-Centric	
Computing	Dallas,	Texas,	45-52.	



Bibliography	 324

Podgurski	A.,	Leon	D.,	Francis	P.,	Masri	W.,	Minch	M.,	Sun	J.,	and	Wang	B.	(2003).	
Automated	Support	for	Classifying	Software	Failure	Reports,	International	
Conference	on	Software	Engineering,	Portland,	Oregon,	USA,	465-475.	

Potanin	A.,	Noble	J.,	&	Biddle	R.	(2004).	Snapshot	Query-based	Debugging.	Australian	
Software	Engineering	Conference,	251.	

Pothier,	G.,	Tanter,	E� .,	and	Piquer,	J.	2007.	Scalable	Omniscient	Debugging.	ACM	
SIGPLAN	Conference	on	Object	Oriented	Programming	Systems	and	
Applications,	Montreal,	Quebec,	Canada,	535-552.	

Quintana	C.,	Krajcik	J.,	and	Soloway	E.	(2002).	A	Case	Study	to	Distill	Structural	
Scaffolding	Guidelines	for	Scaffolded	Software	Environments.	ACM	Conference	
on	Human	Factors	in	Computing	Systems,	Minneapolis,	Minnesota,	USA,	81-88.	

Ramachandran,	A.	and	Young,	R.M.	(2005).	Providing	Intelligent	Help	Across	
Applications	in	Dynamic	User	and	Environment	Contexts.	International	
Conference	on	Intelligent	User	Interfaces,	San	Diego,	California,	USA,	269-271.		

Reichwein	J.,	Rothermel	G.,	and	Burnett	M.	(2000).	Slicing	Spreadsheets:	An	
Integrated	Methodology	for	Spreadsheet	Testing	and	Debugging.	Conference	
on	Domain-speciJic	Languages,	Austin,	Texas,	25-38.	

Reiss	S.	P.	(1996).	The	Design	of	the	Desert	Software	Development	Environment,	
International	Conference	on	Software	Engineering,	Berlin,	Germany,	398-407.	

Robertson,	T.	J.,	Prabhakararao,	S.,	Burnett,	M.,	Cook,	C.,	Ruthruff,	J.	R.,	Beckwith,	L.,	
and	Phalgune,	A.	(2004).	Impact	of	Interruption	Style	on	End-User	Debugging,	
ACM	Conference	on	Human	Factors	in	Computing	Systems,	Vienna,	Austria,	
287-293.	

Robillard	M.	P.	and	Murphy	G.	C.	(2002).	Concern	Graphs:	Finding	and	Describing	
Concerns	Using	Structural	Program	Dependencies,	International	Conference	on	
Software	Engineering,	406-416.	

Robillard	M.	P.	and	Murphy	G.	C.	(2003a).	Automatically	Inferring	Concern	Code	from	
Program	Investigation	Activities,	International	Conference	on	Automated	
Software	Engineering,	225-234.		



Bibliography	 325

Robillard	M.	P.	(2003b).	Representing	Concerns	in	Source	Code,	in	Department	of	
Computer	Science.	Vancouver,	Canada:	University	of	British	Columbia,	2003.	

Robillard	M.	P.,	Coelho	W.,	and	Murphy	G.	C.	(2004).	How	Effective	Developers	
Investigate	Source	Code:	An	Exploratory	Study,	IEEE	Transactions	on	Software	
Engineering,	30(12),	889-903.	

Robillard	M.	P.	(2005).	Automatic	Generation	of	Suggestions	for	Program	
Investigation,	ACM	SIGSOFT	Symposium	on	the	Foundations	of	Software	
Engineering,	11-20.		

Romero	P.,	Cox	R.,	de	Boulay	B.,	and	Lutz	R.	(2003).	A	Survey	of	External	
Representations	Employed	in	Object-Oriented	Programming	Environments,	
Journal	of	Visual	Languages	and	Computing,	14(5),	387-419.	

Rosenblum	D.	S.	(1995).	A	Practical	Approach	to	Programming	With	Assertions,	
IEEE	Transactions	on	Software	Engineering,	21(1),	19-31.	

Rothermel,	G.,	Harrold,	M.J.,	and	Dedhia,	J.	(2000).	Regression	Test	Selection	for	C++	
Software.	Software	Testing,	VeriJication	&	Reliability,	10(2),	77-109.	

Ruthruff,	J.R.,	Prabhakararao	S.,	Reichwein	J.,	Cook	C.,	Creswick	E.,	Burnett	M.M.,	
Interactive,	Visual	Fault	Localization	Support	for	End-User	Programmers.	
Journal	of	Visual	Languages	and	Computing,	16(1-2),	3-40.		

Sandusky	J.,	Gasser	L.,	and	Ripoche	G.	(2004).	Bug	Report	Networks:	Varieties,	
Strategies,	and	Impacts	in	an	OSS	Development	Community,	Workshop	on	
Mining	Software	Repositories	(MSR),	Edinburgh,	Scotland.	

Sandusky,	R.J.,	Gasser	L.	(2005).	Negotiation	and	Coordination	of	Information	and	
Activity	in	Distributed	Software	Problem	Management.	International	ACM	
SIGGROUP	Conference	on	Supporting	Group	Work	(GROUP),	Sanibel	Island,	
Florida,	USA,	187–196.	

Sarma,	A.,	Z.	Noroozi,	A.	van	der	Hoek	(2003).	Palantıŕ:	Raising	Awareness	among	
Con<iguration	Management	Workspaces.	International	Conference	on	Software	
Engineering,	Portland,	Oregon,	USA,	444–454.			



Bibliography	 326

Satterthwaite	E.	H.	(1975).	Source	Language	Debugging	Tools.	Stanford	University	
Computer	Science	Department.	

Schuppan	V.,	M.	Baur,	and	A.	Biere	(2004).	JVM	Independent	Replay	in	Java,	Runtime	
VeriJication,	Barcelona,	Spain,	76-94.		

Seaman,	C.B.,	Basili	V.R.	(1998).	Communication	and	Organization:	An	Empirical	
Study	of	Discussion	in	Inspection	Meetings.	IEEE	Transactions	on	Software	
Engineering,	24(6),	July.	

Sillito	J.,	Murphy	G.C.,	and	De	Volder	K.	(2006).	Questions	Programmers	Ask	During	
Software	Evolution	Tasks.	SIGSOFT	Foundations	on	Software	Engineering,	
November	5-11,	Portland,	Oregon,	23-34.	

Singer	J.,	Lethbridge	T.,	Vinson	N.,	and	Anquetil	N.	(1997).	An	Examination	of	
Software	Engineering	Work	Practices,	Conference	of	the	Centre	for	Advanced	
Studies	in	Collaborative	Research,	209-223.	

Sosic	R.	and	Abramson	D.	A.	(1997).	Guard:	A	Relative	Debugger,	Software	Practice	
and	Experience,	27(2),	185-206.		

Spohrer,	J.	G.	and	Soloway,	E.	(1986).	Analyzing	the	High	Frequency	Bugs	in	Novice	
Programs,	Empirical	Studies	of	Programmers,	1st	Workshop,	Washington,	DC,	
230-251.	

Sridharan	M.,	Fink	S.J.,	&	Bodik	R.	(2007).	Thin	Slicing.	Programming	Language	
Design	and	Implementation,	San	Diego,	California,	USA,	112-122.	

Stockham	T.	G.	and	Dennis	J.	B.	(1960).	FLIT	-	Flexowriter	Interrogation	Tape:	A	
Symbolic	Utility	Program	for	the	TX-0,	MIT,	Cambridge,	MA	Memo	5001-23,	July.	

Stylos	J.	(2005).	Designing	a	Programming	Terminology	Aid.	IEEE	Symposium	on	
Visual	Languages	and	Human-Centric	Computing,	Dallas,	Texas,	347-348.	

Sukaviriya,	P.	and	Foley,	J.D.	(1990).	Coupling	A	UI	Framework	with	Automatic	
Generation	of	Context-Sensitive	Animated	Help.	ACM	Symposium	on	User	
Interface	Software	Technology,	Snowbird,	Utah,	152-166.	



Bibliography	 327

Tan	D.S.,	Gergle	D.,	Scupelli	P.,	Pausch	R.	(2006).	Physically	Large	Displays	Improve	
Performance	on	Spatial	Tasks.	ACM	Transactions	on	Computer-Human	
Interaction,	13(1),	71-99.	

Tassey,	G.	(2002).	The	Economic	Impacts	of	Inadequate	Infrastructure	for	Software	
Testing.	National	Institute	of	Standards	and	Technology,	RTI	Project	Number	
7007.011.	

Teasley	B.E.	(1994).	The	Effects	of	Naming	Style	and	Expertise	on	Program	
Comprehension,	International	Journal	of	Human-Computer	Studies,	40,	
757-770.	

Tip,	F.	(1995).	A	Survey	of	Program	Slicing	Techniques.	Journal	of	Programming	
Languages,	3,	121-189.	

Toutanova	K.,	Klein	D.,	Manning	C.,	and	Singer	Y.	(2003).	Feature-Rich	Part-of-Speech	
Tagging	with	a	Cyclic	Dependency	Network,	HLT-NAACL,	252-259.	

Ungar	D.,	Lieberman	H.	and	Fry	C.	(1997).	Debugging	and	the	Experience	of	
Immediacy,	Communications	of	the	ACM,	40(4),	39-43.	

Vander	Zanden	B.T.,	Baker	D.	and	Jin	J.	(2004).	An	Explanation-Based,	Visual	
Debugger	for	One-Way	Constraints.	ACM	Symposium	on	User	Interface	Software	
and	Technology,	Santa	Fe,	NM,	207-216.	

Vans	A.	and	von	Mayrhauser	A.	(1999).	Program	Understanding	Behavior	During	
Corrective	Maintenance	of	Large-scale	Software,	International	Journal	of	
Human-Computer	Studies,	51(1),	31-70.		

Vessey,	I.	(1985).	Expertise	in	Debugging	Computer	Programs:	A	Process	Analysis,	
International	Journal	of	Man-Machine	Studies,	23,	459-494.	

Wagner	E.	and	Lieberman	H.	(2003).	An	End-User	Tool	for	E-Commerce	Debugging.	
International	Conference	on	Intelligent	User	Interfaces,	Miami,	Florida,	
331-331.	

Wang,	T.	and	Roychoudhury,	A.	(2007).	Hierarchical	dynamic	slicing.	International	
Symposium	on	Software	Testing	and	Analysis,	London,	United	Kingdom,	July	09	
-	12,	228-238	



Bibliography	 328

Wallace	C.,	Cook	C.,	Summet	J.,	and	Burnett	M.	(2002).	Assertions	in	End-User	
Software	Engineering:	A	Think-Aloud	Study,	IEEE	Symposia	on	Human-Centric	
Computing,	Arlington,	VA,	63-	65.	

Wang	T.	and	A.	Roychoudhury	(2004).	Using	Compressed	Bytecode	Traces	for	Slicing	
Java	Programs.	International	Conference	on	Software	Engineering	Scotland,	UK,	
512-521.	

Weiser	M.	(1982).	Programmers	Use	Slices	When	Debugging,	Communications	of	the	
ACM,	25(7),	446-452.	

Weiser,	M.	and	Lyle,	J.	(1986).	Experiments	on	Slicing-Based	Debugging	Aids,	
Empirical	Studies	of	Programmers,	1st	Workshop,	Washington,	DC,	187-197.	

White	R.W.,	Ruthven	I.,	and	Jose	J.M.	(2002).	Finding	Relevant	Documents	using	Top	
Ranking	Sentences:	An	Evaluation	of	Two	Alternative	Schemes.	ACM	SIGIR	
Conference	on	Research	and	Development	in	Information	Retrieval,	Tampere,	
Finland,	57-64.		

Wiedenbeck	S.,	Fix	V.,	and	Scholtz	J.	(1993).	Characteristics	of	the	Mental	
Representations	of	Novice	and	Expert	Programmers:	An	Empirical	Study,	
International	Journal	of	Man-Machine	Studies,	39(5),	793-812.	

Wilcox,	E.,	Atwood,	J.,	Burnett,	M.,	Cadiz,	J.,	and	Cook,	C.	(1997).	Does	Continuous	
Visual	Feedback	Aid	Debugging	in	Direct-Manipulation	Programming	
Systems?	ACM	Conference	on	Human	Factors	in	Computing,	Los	Angeles,	
California,	USA,	22-27.	

Xie	T.	and	Notkin	D.	(2004).	Checking	Inside	the	Black	Box:	Regression	Testing	Based	
on	Value	Spectra	Differences,	International	Conference	on	Software	
Maintenance,	28–37.	

Xie	T.,	Taneja	K.,	Kale	S.,	and	Marinov	D.	(2007).	Towards	a	Framework	for	
Differential	Unit	Testing	of	Object-Oriented	Programs.	International	Workshop	
on	Automation	of	Software	Test,	Minneapolis,	May	20-26,	202.	

Zeller	A.	and	Hildebrandt	R.	(2002a).	Simplifying	and	Isolating	Failure-Inducing	
Input,	IEEE	Transactions	on	Software	Engineering,	28(2),	183-200.	



Bibliography	 329

Zeller,	A.	(2002b).	Isolating	Cause-Effect	Chains	from	Computer	Programs,	
International	Symposium	on	the	Foundations	of	Software	Engineering,	
Charleston,	South	Carolina,	USA,	1-10.	

Zhang,	X.	and	Zhang,	Y.	(2003).	Precise	Dynamic	Slicing	Algorithms.	International	
Conference	on	Software	Engineering,	Portland,	Oregon,	USA,	319-329.		

Zhang	X.	and	Gupta	R.	(2004).	Cost	Effective	Dynamic	Program	Slicing,	ACM	SIGPLAN	
Conference	on	Programming	Language	Design	and	Implementation,	
Washington,	D.C.,	94-106.	

Zhang	X.	&	Gupta	R.	(2005).	Whole	Execution	Traces	and	their	Applications.	ACM	
Transactions	on	Architecture	and	Code	Optimization,	2(3),	301-334.


