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Abstract 
 

Traditionally, intelligent tutoring systems have provided feedback on the basis of a so-called expert model. 

Expert model tutors incorporate production rules associated with error free and efficient task performance. 

These systems intervene with corrective feedback as soon as a student deviates from a solution path.  

   

This thesis explores the effects of providing feedback on the basis of a so-called intelligent novice cognitive 

model. An intelligent novice tutor allows students to make errors, and provides guidance through the 

exercise of error detection and correction skills. The underlying cognitive model in such a tutor includes both 

rules associated with solution generation, and rules relating to error detection and correction. There are two 

pedagogical motivations for feedback based on an intelligent novice model. First, novice performance is 

often error prone and students may need error detection and correction skills in order to succeed in real 

world tasks. Second, the opportunity to reason about the causes and consequences of errors may allow 

students to form a better model of the behavior of domain operators.  

   

Learning outcomes associated with the two models were experimentally evaluated. Results show that 

learners who receive intelligent novice feedback demonstrate better learning overall, including better 

retention and transfer performance than students receiving expert model based feedback. 

   

Another focus of the research described here has been to help students form a robust and accurate 

encoding of declarative knowledge prior to procedural practice with an intelligent tutoring system. Examples 

have been widely used as a component of declarative instruction. However, research suggests that the 

effectiveness of examples is limited by the fact that inferences concerning the specific conditions under 

which operators may be applicable are only implicit in most examples, and may not be apparent to students 

without self-explanation.  This thesis explores the effectiveness of a technique referred to in this thesis as 

example walkthroughs. Example walkthroughs interactively guide students through the study of examples. 

They present question prompts that help students make the inferences necessary to select problem solving 

operators that will lead to a solution.  Students make these inferences by responding to multiple choice 

prompts. Evaluations suggest that example walkthroughs may provide a cost effective way to boost learning 

outcomes in intelligent tutoring systems. 
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Chapter 1 

Introduction 
 

 

 

 

Procedural knowledge has been defined as the ability to execute action sequences to solve 

problems (Rittle-Johnson, Siegler, & Alibali, 2001). As Anderson (1993) has suggested, this 

knowledge is optimized for efficient use and is limited to specific use contexts. Conceptual 

knowledge1 on the other hand has been defined as the implicit or explicit understanding of 

principles that govern a domain and interrelations among units of knowledge in that domain (Rittle 

Johnson et. al., 2001). This knowledge is more flexible and can be applied broadly.   

 

This thesis examines the efficacy of two avenues for fostering the joint development of procedural 

and conceptual knowledge in intelligent tutoring systems:  

 

• First, this research assesses the benefits of interactively guiding students through the study of 

examples during declarative instruction.  

 

• Second, this thesis examines the effects of structuring feedback to give students the 

opportunity to exercise error detection and correction skills.  

 

These interventions were evaluated in two studies associated with a spreadsheet tutor. 

                                                      

1 May be viewed as a particular type of declarative knowledge. 
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1.1 Design of Feedback 

A major focus of the research described in this document is on the impact of feedback on the 

course and effectiveness of learning. It focuses specifically on the issue of when it might be 

appropriate to provide feedback.  

 

Butler and Winne (1995) have defined feedback as “information with which a learner can confirm, 

add to, overwrite, tune, or restructure information in memory — this information may include 

domain knowledge, metacognitive knowledge, cognitive strategies and tactics.”  The source of 

feedback may be intrinsic or extrinsic to a task environment.  Many task environments are rich in 

internal feedback. A learners actions produce clearly discernable consequences that point to the 

appropriateness of actions. This information can serve to guide subsequent actions. However, 

internal feedback may be non-existent or difficult for novices to interpret in many problem solving 

domains. In these contexts it may be necessary to provide external feedback to guide students 

through the problem solving process. In this document, the term feedback refers to external 

feedback – feedback that complements or substitutes the intrinsic feedback inherent in a task 

environment.   

 

Inherent in any design decision concerning feedback is the issue of when it might be appropriate 

to intervene following an error. Designers are faced with a choice of presenting feedback as soon 

as an error is detected – immediate feedback, or presenting delayed feedback – giving learners 

an opportunity to detect and correct errors on their own. Research on the subject does not offer 

an unambiguous answer. A review of the literature might lead a reader to conclude that each of 

these feedback modalities offers distinct pedagogical advantages. Instructional designers may 

consequently face a mutually exclusive choice between the purported benefits offered by these 

two alternatives.  
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This chapter reviews research assessing the pedagogical benefits of immediate and delayed 

feedback and offers an integrative perspective that may enable an instructional designer to jointly 

realize the benefits offered by both modalities. 

 

1.1.1 Feedback in Cognitive Tutors 

Much of the discussion regarding feedback will be situated in the context of Cognitive Tutors. The 

design of Cognitive Tutors is grounded in the theoretical account of skill acquisition embodied in 

the ACT-R theory of cognition (Anderson, 1993). ACT-R suggests that knowledge associated with 

a skill is first encoded in a declarative form. Interpretive processes generate problem solving 

behavior. As a consequence of active problem solving, inert declarative knowledge is transformed 

into goal oriented production rules. Both declarative and procedural knowledge are strengthened 

through practice.  

 

Cognitive tutors support the development of skilled performance by providing context sensitive 

hints and feedback to students over the course of problem solving. In cognitive tutors, feedback 

plays a central role in guiding the learning process. As such, the question of when to provide 

feedback is of crucial importance in the design of these systems. 

 

The construction of Cognitive Tutors is based on design principles listed in Figure-1 (Anderson, 

Corbett, Koedinger & Pelletier, 1995). Tutors built on the basis of these principles have been 

successful in a variety of different domains – producing a standard deviation of improvement in 

student performance over traditional classroom interventions (Anderson et al., 1995). While there 

is broad agreement within the educational research community on most of these principles, the 

principle of immediate feedback has been the source of considerable controversy. This 

controversy is examined in more detail below. 
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             Figure 1: ACT-R tutor design principles 

1.1.2 Research Supporting Immediate Feedback 

The prescription of immediate feedback is based on studies comparing the pedagogical effects of 

immediate and delayed feedback. Lewis and Anderson (1985) explored the issue of feedback 

latency in the context of a maze based adventure game. Each room in the maze had a set of 

features (such as lamp, fireplace, doorkeeper etc). Players had a set of operators (e.g. Bow, 

knock, light fire) that would, in the presence of certain features move them towards the ultimate 

goal of finding treasure. Subjects were trained to play the game in either an immediate or delayed 

feedback condition. In the immediate feedback condition subjects were notified any time they 

applied operators that would lead them towards dead ends. In the delayed feedback condition, 

subjects were allowed to pursue dead ends up to a depth of one room before being informed of 

the inappropriateness of a previous choice. Subjects then had to use a backup operator to back 

out of the dead end path. In a posttest, subjects trained in the immediate feedback condition were 

more accurate at specifying correct operators when presented with descriptions of room features. 

The only case in which delayed feedback subjects were more accurate was in the case of rooms 

with features indicative of dead ends – these subjects were more familiar with the use of the 

backup operator.  

 

While the Lewis and Anderson study shows a distinct benefit for immediate feedback, certain 

characteristics of the task limit the generalization of these findings to other problem solving 

domains.  Anderson, Conrad, and Corbett (1989) have commented that the maze task “was a 

situation where the total correct solution was never laid out before subjects and they had to 

integrate in memory a sequence of moves”. In many problem-solving domains, particularly in 

 
• Represent competence as a production set 
• Communicate the goal structure underlying the problem 
• Provide instruction in the problem solving context 
• Promote an abstract understanding of the problem solving knowledge 
• Minimize working memory load 
• Adjust the grain size of instruction with learning 
• Facilitate successive approximations of the target skills 
• Provide immediate feedback 
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many academic tasks, the final solution, along with intermediate steps, is available for learners to 

study. ACT-R suggests that these solutions allow students to learn by analogy.   

 

Corbett and Anderson (2001) compared the pedagogical benefits of immediate and delayed 

feedback in the context of their LISP tutor. Students in their study worked with 4 different versions 

of the tutor. In the Immediate Feedback condition, students were presented with a feedback 

message as soon as an error was made. In the Error Flag Feedback condition students were 

informed that an error was made without any explanatory text concerning the nature of the 

problem or subsequent task interruption. In the Demand Feedback condition, the tutor would 

check for errors after following an explicit request from the student. In the No Feedback condition, 

students received no guidance during problem solving but were told whether their solution was 

correct at the end of the problem.   

 

Performance on a paper and pencil post-test showed that all feedback conditions were better than 

no feedback. However, there were no statistically significant differences among feedback 

conditions in the post-test.  The primary difference among the feedback conditions was in terms of 

the learning rate. Students in the immediate feedback condition completed training significantly 

faster than those in the Demand and No Feedback conditions. Immediate feedback served to 

minimize floundering and keep the leaning process efficient. These results represent the basis for 

the prescription of immediate feedback in Figure 1. 

 

1.1.3 Research Supporting Delayed Feedback 

Despite these results, the principle of immediate feedback has been criticized on two grounds. 

First, it has been suggested that immediate feedback offered by cognitive tutors is qualitatively 

different from that offered by human tutors. For instance, research by Merrill, Reiser, Merrill, & 

Landes (1995) reveals that human tutors do not intervene immediately on errors that may provide 

learning opportunities. Other researchers have observed that human tutors let learners engage in 

error detection and correction (Fox, 1993). Furthermore, research on human tutoring strategies 
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shows that tutors try to instill a sense of control in learners (Lepper & Chabay, 1988). These 

observations demand close attention as the best human tutors produce better learning outcomes 

than cognitive tutors (Bloom, 1984; Anderson, Corbett, Koedinger, & Pelletier, 1995) – these 

differences in tutoring strategies could be among the factors that contribute to this difference. 

 

Second, immediate feedback has been criticized on the basis of empirical studies that highlight 

benefits of delayed feedback. Some research suggests that delayed feedback may contribute to 

better retention and transfer. For instance, Lee (1992) compared immediate and delayed 

feedback in the context of a genetics tutor. Students in the immediate feedback condition received 

feedback as soon as an error was detected. In contrast, students in the delayed feedback 

condition received feedback at the end of the problem. As in Corbett and Anderson (2001), 

students in the immediate feedback completed training problems significantly faster. In a posttest 

the following day, students in both conditions performed equally well on problems encountered 

during training. However, students in the delayed feedback condition performed significantly 

better on a far transfer task.  

 

Similar observations have been made in the motor learning domain. Schmidt & Bjork (1992) 

report on a pattern of results in the motor skill learning domain which suggest that interventions 

that enhance performance during training may compromise retention and transfer. For example, 

in one study, subjects were asked to perform a complex arm movement within a specified interval. 

Feedback on accuracy was provided at the end of 1, 5, or 15 trials. Subjects who were provided 

feedback after every trial made the fewest errors during training — they were followed by subjects 

who received feedback in 5 trial blocks and 15 trial blocks respectively. A retention test 

administered 10 minutes after training showed no difference in performance among the three 

groups.  A retention test administered 2 days later showed a reversal in performance. Subjects 

who received feedback in 15 trial blocks made the least errors – they were followed by subjects 

who received feedback after 5 trials and every trial respectively.   
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In a study involving the LISP tutor (Schooler & Anderson, 1990), students had to create LISP 

expressions containing one or two extractor and combiner functions. Students were trained in 

either an immediate feedback condition — where the tutor intervened as soon as an incorrect 

symbol was typed, or in a delayed feedback condition — where error feedback is presented after 

an expression is complete and students hit ‘Return’ to evaluate the same. In a post test 

administered the following day, delayed feedback condition subjects finished faster and made half 

as many errors as those trained in the immediate feedback condition  

 

  
Immediate Feedback 
 

Delayed Feedback 

Efficiency 

 
 

 
 

Transfer and Retention 
 

 
 

 
Figure 2: Tradeoff between the benefits of immediate and delayed feedback 
 

Considered together these studies might suggest a potential trade-off between the benefits 

offered by immediate and delayed feedback (Figure-2). On the basis of the pattern of findings just 

summarized, some researchers (e.g. Bjork, 1994; Nathan, 1998) have argued that immediate 

feedback promotes efficiency during training, while delayed feedback might to lead to better 

retention and transfer performance. An explanation for these results could be found in the so-

called guidance hypothesis -- described next. 

1.1.4 The Guidance Hypothesis 

The guidance hypothesis offered by Schmidt, Young, Swinnen & Shapiro (1989) provides an 

account of the tradeoff shown in Figure-2. According to the guidance hypothesis, feedback serves 

to precisely direct learner actions following each presentation of feedback. Students can get 

through problems by implementing prescriptions embodied in feedback messages. This may have 
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the effect of boosting performance during, and immediately following training. However, feedback 

can negatively impact learning in two ways. First, feedback could obscure important task cues — 

that is, learners may come to depend on feedback instead of cues inherent in the natural task 

environment. Second, feedback could prevent important secondary skills from being exercised — 

these skills could include error detection, error correction, and metacognitive skills. Activities that 

feedback may limit the practice of are considered in more detail below: 

Debugging  

Debugging is a requisite skill in many academic domains. Klahr and Carver’s (1988) task analysis 

points to some important components of this skill: 

 

•  Determining whether a program functions as anticipated 

•  Noting the nature of discrepancies if any 

•  Identifying the likely location of bugs 

•   Identifying bugs 

•  Repairing bugs.  

 

Many of these activities are preempted by immediate feedback. Students may not get the chance 

to independently exercise skills needed for error detection and correction. As a consequence, 

task performance may be impeded in circumstances that demand these skills.  

 

Metacognition 

Immediate feedback may also impede the acquisition of important metacognitive skills. This may 

occur in two ways: by reinforcing unsound beliefs about the learning process, and by preventing 

the exercise of important metacognitive processes. 

 

Nathan (1998) has claimed that, immediate feedback may reinforce the belief prevalent among 

many students that problem solving is an immediate and single-step process rather than the 
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deliberate and reflective process described by cognitive scientists. Additionally,  Bjork (1994) has 

highlighted the possibility that rapid progress through a task as afforded by immediate feedback 

may lead users to adopt a overly optimistic assessment of their level of comprehension and 

competence. As Nathan (1998) has noted, these possibilities closely correspond to 

epistemological beliefs identified by Schommer (1993) as being negatively correlated with 

academic achievement – that is, the degree to which students believe that learning requires 

minimal effort, that knowledge is acquired quickly, and in the certainty of knowledge that is 

learned. 

 

Besides holding the potential for influencing unsound metacognitive beliefs, immediate feedback 

may deny students the opportunity to practice important metacognitive skills. Appropriately 

tailored, delayed feedback may offer students the opportunity to examine the products of their 

actions and monitor their progress without external help. Students take on more of the charge of 

verifying their solutions. Self monitoring of one’s problem solving activity is an important 

characteristic of expert performance — one that is sorely lacking among many students 

(Schoenfeld, 1987; Palinscar & Brown, 1984 ). Shoenfeld (1987) has shown that modeling and 

practicing self monitoring skill can positively impact problem solving behavior among students.  

 

The guidance hypothesis suggests that immediate feedback may promote the development of 

generative skills. Generative skills are skill components that are involved in selecting appropriate 

problem solving operators and implementing these operators in specific task contexts. However, 

evaluative skills – skills called for in evaluating the effect of applying these operators, correcting 

errors, and monitoring one’s own cognitive process – may go unpracticed (Figure-3). These 

evaluative functions are instead delegated to feedback. Consequently, task performance may be 

compromised in situations where students must jointly exercise evaluative and generative skills. 

Transfer tasks and retention tests are representative of situations where student performance is 

likely to be error prone and subject to floundering — where the joint exercise of generative and 

evaluative skills may be essential for success.   
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Additionally, the exercise of evaluative skills may provide an opportunity for a deeper conceptual 

understanding of domain principles.  As Merrill, Reiser, Merrill, and Landes (1995) have theorized, 

errors provide an opportunity to develop a better model of the behavior of operators in a domain.   

They attribute this to the fact that error recovery requires that students construct explanations 

about the causes and consequences of errors and act on their analyses.   This kind of active self-

explanation and problem solving, they argue, contributes to a better understanding of domain 

operators and their applicability in problem contexts. 

 

1.1.5 The Designers Dilemma 

The research on feedback just summarized presents the designer with a dilemma.   Immediate 

feedback keeps the learning process efficient.  Additionally, some of the most effective and 

broadly used cognitive tutors provide immediate feedback on errors (Corbett, Koedinger, Hadley, 

2001).  However, a designer may also wish to realize benefits such as the development of 

debugging and metacognitive skills purportedly offered by delayed feedback.   Unfortunately, the 

research reviewed here offers little guidance as to what an appropriate level of delay might be in a 

Figure 3: Discrepancy between skills supported by the training environment and 
skills required in task environment.   
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given context. This could have serious consequences.  At best, an inappropriate level of delay 

can introduce inefficiencies into the learning process.  At worst, delayed feedback can recede to a 

no-feedback condition, leading to  unproductive floundering and student frustration.   

1.1.6 An Integrative Perspective 

Casting the debate on when to intervene following an error in terms of latency imposes an 

undesirable trade-off. Should the designer of an instructional system pursue the efficient and 

productive practice offered by immediate feedback? Or, should one attempt to realize benefits 

such as better retention and transfer that may be afforded by delayed feedback. However, a 

designer has to weigh these purported benefits of delayed feedback against possible costs. 

Inappropriate levels of delay may contribute to floundering and associated frustration.  

 

This thesis argues that the key to jointly realizing the benefits of immediate and delayed feedback 

may lie in an emphasis on the model of desired performance underlying intelligent tutoring 

systems.  The model of desired performance refers to the set of production rules representing 

target skills in a specific domain.  The model of desired performance plays a diagnostic role in 

intelligent tutoring systems. When student behavior is consistent with the model of desired 

performance, the system does not intervene. However, if student behavior is inconsistent with the 

model of desired performance, the system intervenes with feedback so as to guide students 

towards performance that is consistent with the model.  

Expert Model 

Currently feedback in cognitive tutors is based on what is broadly referred to as an expert model.  

Such a model of desired performance characterizes the end-goal of instruction as error-free and 

efficient task execution.  Feedback is structured so as to lead students towards expert-like 

performance. The tutor intervenes as soon as students deviate from a solution path.   An expert 

model tutor focuses on the generative components of a skill.   Figure-4 (left) illustrates the student 

interaction with an expert model tutor. 
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Intelligent Novice Model 

An alternative model that could serve as the basis for feedback in cognitive tutors is that of an 

intelligent novice (c.f. Bruer, 1993).  The assumption underlying such a model of desired 

performance is that an intelligent novice, while progressively getting skillful, is likely to make 

errors.  Recognizing this possibility, the intelligent novice model incorporates error detection and 

error correction activities as part of the task.  Feedback based on such a model would support the 

student in both the generative and evaluative aspects of a skill, while preventing unproductive 

floundering.  While delayed feedback gives students the opportunity to exercise evaluative skills, 

an intelligent novice model based tutor explicitly models these skills and scaffolds students 

through the exercise of error detection and correction activities. Feedback with respect to a model 

of an intelligent novice may resemble delayed feedback, but it is really immediate feedback with 

respect to a model of desired performance that includes error detection and correction skills. 

Figure-4 (right) outlines student interaction with a tutor based on an intelligent novice model. 

 

The analysis just presented recasts the feedback debate. The integrative perspective outlined 

here suggests that the model of desired performance, and not feedback timing, should be the 

crucial issue of focus in deciding when to intervene following an error.  In the following pages this 

document will detail the design of two versions of a spreadsheet tutor – one based on an expert 

model the other on an intelligent novice model.   Results from two studies evaluating learning 

outcomes associated with each will also be presented.   However, before doing so, this document 

describes the theoretical motivations underlying the design of declarative instruction in the Excel 

Tutor. 
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1.2 Design of Declarative Instruction 

Declarative knowledge plays a crucial role in early skill acquisition.   Under the ACT-R theory of 

skill acquisition (Anderson, 1993), declarative knowledge serves to structure initial problem 

solving attempts.  Over the course of practice, knowledge compilation processes transform 

declarative encodings into efficient, context specific production rules.  Besides playing a guiding 

role in the initial stages of skills acquisition, declarative knowledge of principles underlying a 

domain can provide the basis for transfer of skills to novel task domains (Singley & Anderson, 

1989).  For instance, in a study reported by Judd (1908), students were taught to hit underwater 

targets with darts.  One group of students received both declarative instruction in principles of 

refraction, and procedural practice.  The other group’s instruction was entirely procedural.  Both 

did equally well during training.  However, performance differences became apparent in 

manipulations where the amount of water above the target was altered.  Students whose 

instruction included declarative instruction in underlying principles were able to adapt their skill to 

Expert model Intelligent Novice Model 

 
Student reads problem statement and identifies 
goals to be accomplished 
 
Student plans actions to accomplish goals 
 
Student implements actions 
 
Student attends to feedback 
 
If correct — student moves on 
If wrong  — students has option to get  
instructions to fix problem 
 

 
Student reads problem statement and identifies 
goals to be accomplished 
 
Student plans actions to accomplish goals 
 
Student implements actions  
 
Student attends to outcomes and looks for 
discrepency between intended result and actual 
outcome 
 
If a discrepency is noted:  
 
Student identifies source of discrepency 
 
Student attempts to repair original solution 
 
If discrepency is missed, or repair attempt fails, 
student guided through error detection and 
correction process 
 
Student tests solution 
 

Figure 4: Interaction with an Expert Model (left) and Intelligent Novice Tutor (right) 
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the new circumstance much more quickly than students whose instruction was entirely 

procedural. 

 

Examples have served as a tool for fostering the development of declarative knowledge (Chi, 

Bassok, Lewis, Reimann, & Glaser., 1989; Sweller & Cooper, 1985 ). Examples serve to 

introduce learners to the range of operators relevant to the solution of a class of problems, the 

specific conditions under which these operators apply, the transformations that result from the 

application of operators in specific problem contexts, and the overall sequence in which these 

operators are applicable.  Researchers have observed that in order to use examples effectively 

students must make inferences about the specific conditions under which various operators are 

relevant and the transformations that result from applying these operators in various contexts (Chi 

et al., 1989). As Chi and colleagues (1989) have shown, good students do so through self 

explanations. However, they have also noted that many students fail to make the appropriate 

inferences.  

 

Recent research indicates that the effectiveness of examples can be enhanced by integrating 

elements of problem solving into the study of examples (Renkl, Atkinson, Maier, 2000).  That is, 

students who study fully worked out examples, then complete intermediate steps in partially 

incomplete examples before problem solving, outperform students who transition directly to 

problem solving from the study of fully worked out examples.   Elements of such an approach, 

that is, the progression from modeling of solutions with examples, to fading of scaffolds to 

independent problem solving can be found in a variety of successful instructional techniques – 

including Reciprocal Teaching (Palinscar & Brown, 1984), Cognitive Apprenticeship (Collins, 

Brown, & Newman, 1989), and PALs (Reif & Scott, 1999).  On the basis of a CASCADE model of 

fading examples, Jones and Fleishman (2001) have suggested that partially worked out examples 

focus attention on crucial parts of a problem, thus providing an opportunity for self-explanation.  

Furthermore, as a consequence of making problem-solving decisions at these points, students 

acquire search control knowledge (knowledge of the sub-goal structure for solving the task).   
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Declarative Instruction in the tutor described here incorporates example walkthroughs to facilitate 

a robust and accurate encoding of declarative knowledge.  Students read textual expositions of 

concepts and watch video illustrations of the application of these concepts in the context of 

examples.  Subsequently, instead of progressing directly into problem solving, students solve 

examples demonstrated in the video with the help of example walkthroughs.  Walkthroughs step 

students through the reasoning necessary to solve the example problems (Figure-5).  Question 

prompts serve to guide students through the series of inferences necessary to select the 

sequence of operators that will lead to problem solving success.  Incorrect inferences, which may 

result from an inaccurate or partial encoding of relevant declarative knowledge, are remedied with 

brief explanatory messages. 

 

Example Walkthroughs differ from conventional approaches to declarative instruction in several 

ways:  First, declarative information has traditionally been presented in a passive form (usually in 

the form of text, lecture, or video).  In contrast, walkthroughs actively engage students in 

elaborating on information presented in video and text.  Second, inferences concerning the 

applicability conditions of problem solving operators are typically implicit in examples. Example 

walkthroughs step students through the inferences necessary to pick operators that will lead to 

problem solving success. Third, any conceptual gaps are remedied immediately following the 

exposition of a concept instead of being deferred to problem solving contexts where working 

memory loads may be high. 
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1. Students is taken step-by-step through the 
actions necessary to solve a problem. However, 
the student does not implement system 
instructions by rote. Appropriate actions are 
selected on the basis of inferences made by the 
student (as illustrated in 2.) 
 

  
2. Multiple choice prompts scaffold students 
through the inferences necessary to select 
operators that will lead to problem solving 
success. Incorrect responses, resulting from 
faulty declarative structures, can be remedied 
with brief explanatory messages.  
 

Figure 5: Screenshots of walkthroughs from a spreadsheet tutor to be described in later pages 
 

1.2.1 ACT-R analysis of Example Walkthroughs 

ACT-R suggests that learning is probabilistic in nature – that is, there is some probability that 

students may fail to encode information in a way that can be recalled appropriately in a given 

context of use. There are numerous ways in which declarative knowledge may fail to be retrieved 

appropriately when needed (Anderson, 1993, pg. 70).  First, students may fail to encode 

examples accurately. Furthermore, examples may be encoded weakly or encoded at study in a 

manner that is unsuitable for retrieval in a specific task context.  Additionally, as a result of 

inadequate motivation, students may fail to attend to declarative instruction appropriately and fail 

to encode information entirely. Each of these possibilities is discussed in conjunction with details 

of how walkthroughs may play a role in circumventing these outcomes.  

 

Appropriate knowledge encoding at the symbolic level 

Numerous researchers have noted that student often fail to encode declarative knowledge 

relevant to successful problem solving in an appropriate way (e.g. Chi et al., 1989; Reif & Allen, 
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1992; Pirolli & Anderson, 1985). Consider the example2 in Figure-6. A student may note the fact 

that the quantity Hourly-Wage lies in a single cell, while the quantity Hours-Worked is specified in 

different cells and form associated working memory elements. This encoding may form the basis 

for the creation of the rule reflected in Figure-6. That is, the student may assume that the ‘$’ sign 

always precedes the cell reference for the quantity that is only represented in a single cell. While 

this shallow rule may be appropriate for problems isomorphic to the example, the declarative 

encodings and associated production rules are likely to be inadequate to solve the problem 

depicted in Figure-7.  

 

Example walkthroughs have the potential for reducing inappropriate encoding of declarative 

chunks by focusing student attention on elements of a problem that are crucial to effective 

problem solving. Walkthroughs step students through the problem solving process and lead them 

to attend to the features of a problem relevant to effective problem solving.  

 

Example walkthroughs also mitigate the possibility inappropriate encoding of declarative 

knowledge as a result of poor attention.  As a consequence of the interactive nature of example 

walkthroughs, students are likely to be more actively engaged in the knowledge acquisition 

process than students acquiring new knowledge purely on the basis of passive alternatives such 

as video and textual expositions.   

 

Strength of encoding 

Retrieval of declarative knowledge relevant to a specific problem solving context in ACT-R is 

governed by the base level strength of declarative chucks coupled with activation received from 

associated chunks (Anderson, 1993, pg. 70). The theory predicts that memory increases as a 

power function of practice and decreases as a power function of delay.  

 

                                                      

2 This example assumes an understanding of spreadsheet cell referencing concepts. An overview 
of cell referencing concepts is presented in Chapter-2. 
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Walkthroughs provide students with the opportunity to use the knowledge presented through 

videos and text immediately following introduction. Relevant knowledge is rehearsed and 

strengthened immediately following presentation instead of being deferred to later problem 

solving context where working memory resources may be additionally taxed.  

 

Encoding in context of use 

ACT-R suggests that the activation of declarative knowledge chunks is also determined by 

activation received over associative links from other chunks activate in a given context. 

Walkthroughs provide students with the opportunity to practice applying newly introduced 

knowledge in a context that is very close to later problem solving contexts. This has the potential 

for providing opportunities to build redundant associative links to other declarative chunks that are 

likely to be active in problem contexts. The close correspondence between the conditions under 

which declarative knowledge is introduced and the actual context of use makes it more likely that 

chunks relevant for problem solving will be active when required.   

 

The analysis just presented points to features that could contribute to the effectiveness of learning 

from examples. First, students may be more likely to encode information relevant to problem 

solving if their attention is explicitly directed to important elements of an example. Second, 

opportunities to elaborate on newly acquired information may foster a more robust encoding of 

declarative knowledge. Third, checks of student comprehension in conjunction with the study of 

examples could contribute to a more accurate encoding of declarative knowledge.  

 

We now describe implementation of feedback and declarative instruction based on the analysis 

just presented.  We do so in the context of a spreadsheet tutor.    
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Figure 6:  Inappropriate encoding of an example and a buggy production stemming from it. The declarative 
encoding fails to consider the vertical and horizontal orientation of variables 

 

DECLARATIVE ENCODING 

 

Variable-1> 
isa variable 
quantity-label hourly-wage 
orientation lies-in-a-single-cell 
reference-for-first-cell A3 
 
 
Variable-2> 
isa variable 
quantity-label hours-worked 
orientation lies-in-different-cells 
reference-for-first-cell B2 
 

 

BUGGY PRODUCTION 

 

 

IF 
 
Variable-1> 
isa variable 
orientation lies-in-a-single-cell 
cell-address =cell-1-reference 
    
Variable-2> 
isa variable 
orientation lies-in-different-cells 
cell-address =cell-2-reference 
 
THEN 
      
Enter a formula that multiplies =cell-
1-reference and =cell-2-reference and 
insert a ‘$’ sign ahead of cell-1-
reference 
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Figure 7:  Appropriate encoding of an example and a production stemming from it.  The declarative encoding 
appropriately considers the vertical and horizontal orientation of variables. This allows for precise 
determination of which row or column references may require absolute references.  

DECLARATIVE ENCODING 

 

Variable-1> 
isa group-of-cells 
quantity-label hourly-wage 
horizontal-orientation lies-in-one-column 
vertical-orientation  lies-in-one-row 
column-reference-of-first-cell B 
row-reference-of-first-cell 2 
 
Variable-2> 
isa group-of-cells 
quantity-label hourly-wage 
horizontal-orientation lies-in-one-column 
vertical-orientation  lies-in-different-rows 
column-reference-of-first-cell A 
row-reference-of-first-cell 3 
 
Paste-Area> 
isa group-of-cells 
quantity-label Earnings 
horizontal-orientation lies-in-one-column 
vertical-orientation  lies-in-different-rows 
 

 

PRODUCTION RULE 

 

 

IF 
 
Variable-1> 
isa group-of-cells 
quantity-label hourly-wage 
horizontal-orientation lies-in-one-column 
vertical-orientation  lies-in-one-row 
column-reference-of-first-cell =Col-1 
row-reference-of-first-cell =Row-1 
 
Variable-2> 
isa group-of-cells 
quantity-label hourly-wage 
horizontal-orientation lies-in-one-column 
vertical-orientation  lies-in-different-rows 
column-reference-of-first-cell =Col-2 
row-reference-of-first-cell =Row-2 
 
Paste-Area> 
isa group-of-cells 
quantity-label Earnings 
horizontal-orientation lies-in-one-column 
  vertical-orientation  lies-in-different-rows
column-reference-of-first-cell =Col-3 
row-reference-of-first-cell =Row-3 
 
 
THEN 
      
Create formula that multiplies =Col-1 =Row-1 
and =Col-2 =Row-2 and place a “$” sign ahead 
of =Row-1 
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Chapter 2 

The Learning Domain — Cell Referencing 
 

 

 

 

Spreadsheets have been widely regarded as exemplary end-user programming environments 

(Nardi, 1993).  They allow non-programmers to perform sophisticated computations without 

having to master a programming language.  However, despite decades of evolution in 

spreadsheet design, there are aspects of spreadsheet use that are sources of difficulty for users.  

A commonly reported usability problem concerns the appropriate use of absolute and relative 

references — these are schemes that allow users to perform iterative computations.   

2.1  Absolute and Relative Referencing 

A spreadsheet is essentially a collection of cells on a two dimensional grid.  Individual cells may 

be addressed by their column and row indices.  Column indices (also called column references) 

are denoted by letter, whereas row indices (often called row references) are denoted by number.  

Cells may contain alphanumeric data and formulas.  Formulas can refer to values in specific cells 

by referring to their addresses.  So a user could enter a formula in cell C3 (in column C and row 

3) that adds the content of cell A3 and B3 by typing “=A3+B3”. 

 

Formulas may be reused to perform iterative operations.  This is accomplished through a scheme 

called relative referencing.  Consider the spreadsheet depicted in Figure-8.  One could enter a 

formula in cell B5 that adds the contents of cells B2, B3, and B4.  The corresponding operation 

can be performed in cells C5 and D5 simply by copying the formula entered in cell B5 and pasting  
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it into these new locations.  When pasted, Excel modifies the formula to refer to cells that lie at the 

same relative location as the original formula.  For example the formula in Cell B5 referred to the 

3 cells above it.  When the formula is copied and pasted into cells C5 and D5 the formulas are 

modified to refer to the three cells above these new locations.   

 

In order to determine the appropriate relative references at new locations, Excel updates formulas 

based on where the formula is moved.  When a formula is moved into a cell in a different column, 

Excel updates column references in the formula by the number of columns moved (see Figure-8, 

=B2+B3+B4 becomes =D2+D3+D4 when moved across columns from B5 to D5).  Similarly, when 

a formula is copied and pasted into a cell in a different row, all row references in the formula get 

updated by the number of rows moved (see Figure-8, =B2+C2+D2 becomes =B4+C4+D4 when 

moved across rows from E2 to E4).    

 

While relative referencing works in many task contexts, it is sometimes necessary to hold a row or 

column reference fixed regardless of where a formula is moved.  Consider the example in Figure-

9.  The value in cell B2 (Hourly Wage) has to be multiplied with the values in cells A3, A4, and A5.  

If the formula, =A3*B2 is entered into B3 and pasted into cells B4 and B5, all row references will 

change in order to refer to cells that lie at the same relative location as those referred to by the 

formula in B3.  This would produce =A4*B3 in B4 and =A5*B4 in B5 (instead of =A4*B2 and 

=A5*B2 respectively).  In order for the formula to continue to refer to cell B2, the row reference 2 

has to be held fixed as an absolute reference.  This can be done by placing a ‘$’ ahead of ‘2’.  

Figure 9: Inappropriate use of relative references (left) remedied with the use of absolute references (right) 

Figure 8: Relative Referencing allows formulas in B5 and E2 to be reused by copying and pasting 
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Thus, in order for the formula in B3 to work appropriately when copied and pasted, it would be 

modified to read =A3*B$2. 

 

2.2  Cell Referencing: A difficult skill 

Research suggests that the appropriate use of absolute and relative references presents 

difficulties for both novice and experienced spreadsheet users.  

 

It has been observed that cell referencing skills are difficult for novices to learn. For instance, 

Doyle (1990) observed 78 undergraduate management students learning to use spreadsheets 

over the course of 15, hour and a half long sessions. The author recorded problems that persisted 

among students over the course of these sessions. Difficulties associated with the appropriate 

use of absolute and relative references are reported as one of ten persistent difficulties 

associated with learning to use spreadsheets.  

 

The use of absolute and relative references also presents problems for experienced spreadsheet 

users.  For instance, Hendry and Green (1994) interviewed users who develop and maintain 

complex spreadsheets as part of their work. Their interviewees included several university staff 

members who use spreadsheets for data analysis and simulations, a manager who keeps track of 

costs at a software company, and a secretary who maintains a financial reporting spreadsheet. 

Users cited the appropriate use of relative and absolute referencing as being difficult to learn and 

a common source of error over the course of routine use.  

 

In a study involving nine IBM employees, Brown and Gould (1987) asked participants to carry out 

spreadsheet tasks that included data entry, data formatting, and data manipulation using 

formulas. Participants had an average of 2.7 years of experience using spreadsheets and 

reported using spreadsheets for an average of 8 hours each week. Despite the fact that 

participants expressed high confidence in the accuracy of the spreadsheets, Brown and Gould 
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found over 40 percent of spreadsheets to contain errors. The inappropriate use of absolute and 

relative references contributed to 3 of the 17 errors observed.  

 

Baxter and Oatley (1991) examined 16 experienced spreadsheet users learning to use a brand of 

spreadsheet they had no familiarity with. These users either used spreadsheets “at least once per 

week”, or had “completed a course on spreadsheets”, or “had taught spreadsheet use”. Most of 

their participants had backgrounds in accounting or business. While the brand of spreadsheet had 

no significant effect on task performance, the authors noticed that most experienced users 

hesitated to reuse formulas by copying and pasting in order to avoid errors.  

 

The following pages describe the design and evaluation of a cognitive tutor designed to help 

students acquire cell referencing skills by doing. 
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Chapter 3 

Study-1 
 

 

 

 

 

The purpose of Study-1 was to compare the relative efficacy of a cell referencing tutor based on 

an intelligent novice model with one based on an expert model. Additionally, the study was aimed 

at assessing the effectiveness of example walkthroughs. 

 

3.1 Expert Model Tutor Description 

The expert model version of the spreadsheet tutor used in Study-1 emphasized the exercise of 

generative skills.  Figure-10 illustrates the goal structure underlying the expert model tutor. The 

model of desired performance underlying a tutor based on an Expert Model emphasizes error free 

and efficient task performance. Feedback serves to guide students through the process of 

generating a solution to the problem. Any deviation from the solution path is remedied with 

immediate corrective feedback.  Details of the design of declarative instruction and feedback 

design based on such a model are presented below. A production rule representation of the 

underlying expert model is specified in Appendix-1.   
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3.1.1  Example Walkthrough 

Declarative instruction in both the expert and intelligent novice versions of the spreadsheet tutor 

included 3 example walkthroughs. The first, illustrated the use of relative references; the second, 

focused on the automatic updates of formula references based on the direction of a paste 

operation (the mechanism underlying relative referencing); the third, focused on the appropriate 

use of absolute references. The first two walkthroughs were identical in the expert and intelligent 

novice versions of the spreadsheet tutor. However, the third walkthrough differed in the two 

versions of the tutor described here. The third walkthrough, focusing on the use of absolute 

reference, was designed to be consistent with the underlying model of desired performance 

embodied in each version of the tutor.  Consequently, this document will focus on the design of 

the third walkthrough.  

 

Example walkthroughs illustrating the use of absolute references in the expert model tutor used in 

Study-1 focused on generative skills.  Students were provided with a 3-step procedure, described 

below, in order to generate solutions to cell-referencing problems.  As mentioned earlier, in order 

Enter Formula

Copy Formula

Paste Formula

 Done
 

Figure 10: Goal structure associated with expert model based tutor (top) 
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to determine where an absolute reference may be needed, users have to be able to identify the 

references in a formula that will change as a result of copying and pasting.  Depending on where 

a formula will be pasted, row and/or column references will change.  Each reference that will 

change must be inspected.  Of these, references changes that are to be prevented must be 

preceded by a ‘$’ symbol – an absolute reference.   

 

The expert model walkthrough guided students through these inferences by posing a series of 

questions:  

•      Which way will you be pasting your formula? (into another column/row/both?)   

• Which type of reference will change when moved? (column / row/ both?)  

• Of the references that will change, which ones should you prevent?  

Students responded to these questions by picking from multiple-choice options.  The system 

provided succinct explanations in response to errors.  Screenshots of an example walkthrough 

associated with the expert version of the spreadsheet tutor are illustrated in Appendix-5.   

 

3.1.2  Feedback 

Students working with the expert model version of the spreadsheet tutor received feedback as 

soon as an incorrect formula was entered.  The error notification message presented students 

with the choice of correcting the error on their own, or doing so with help from the system.  If help 

was sought, students were guided through the process of identifying where, if any, absolute 

references were required in the formula (see Figure-11).  Students were interactively guided by 

question prompts to solve the problem deductively. Screenshots of feedback associated with the 

expert version of the spreadsheet tutor used in Study-1 are presented in Appendix-3. 
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1. Student notified of error 2. Solution generation process is outlined 

  

3. Student is stepped through a three step process to 
generate solution 

4. Student prompted to enter correct formula 

Figure 11: Feedback in the expert version of the tutor 

 

3.2 Intelligent Novice Tutor Description 

In addition to generative skills emphasized by expert model based tutors, an intelligent novice 

tutor provides practice in evaluative skills.  Figure-12 illustrates the goal structure underlying the 

intelligent novice model. The intelligent novice model of performance anticipates the possibility of 

student errors and explicitly represents error detection and correction activities.  As Figure-12 

indicates, feedback guides students through the process of generating formulas, and copying and 

pasting them to verify the appropriateness of their solution. Additionally, the model guides 

students through the process of identifying and correcting bugs. Details of feedback and 

walkthrough based on the intelligent novice model are detailed below.   
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Figure 12: Goal structure associated with intelligent novice based tutor (top) 
 
 

 

3.2.1  Example Walkthrough 

In addition to helping students generate problem solutions, example walkthroughs in the 

intelligent novice version of the spreadsheet tutor guided students through the reasoning 

associated with the exercise of evaluative skills.  First, students were prompted to predict the 

values and formulas that would result in each cell if the formula to be copied and pasted were to 

work correctly.  Subsequently, students were prompted to copy and paste a formula without any 

absolute references into each cell of the example.  Students were then guided to note the 

discrepancy between actual and intended values and formulas.  Prompts served to help learners 

to use the identified discrepancies to determine where an absolute reference may be appropriate. 

Screenshots in Appendix-6 illustrate the steps embodied in the intelligent novice walkthrough. 

Enter Formula

Copy Formula

Paste Formula

Check Result

Anticipated
Values

Produced?

   Does incorrect
reference have a $

sign ahead

Identify  each
INCORRECT

reference change in
formula and debug

Add '$' sign

Remove '$'
sign

 Done

All references in
formula checked

and corrected

YES

NO

NO

YES
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3.2.2  Feedback 

In contrast to the expert model tutor, the intelligent novice version allowed students to enter an 

incorrect formula and observe the consequences of pasting it over the relevant cells.  Students 

receive an opportunity to detect the source of the error and correct the formula.  Hints requested 

by students served to guide them through the error detection and correction process.  An error in 

the formula correction step would result in immediate corrective feedback to minimize floundering 

and frustration.  If a student failed to detect an error and tried to start a new problem, feedback 

directed the student to check for errors and request hints if needed.  The error notification 

message at the formula correction step presented students with the choice of correcting the error 

on their own or doing so with help from the system. 

 

If help was sought, the student was asked to predict formulas and values that would result if the 

original formula were to work accurately.  These values and formulas were noted in a table on the 

spreadsheet (Figure-13).  Subsequently, the student was asked to enter a formula without any 

absolute references and copy and paste it.  Students were then prompted to note the values and 

formulas actually produced.  Students were guided to use the discrepancy between actual and 

intended formulas to determine where absolute references, if any, were appropriate. Appendix-4 

presents screen shots associated with the intelligent novice feedback in Study-1.  

 

The next section describes results from an empirical evaluation contrasting learning outcomes 

associated with each of these models.  
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Figure 13: Feedback and hints in the Intelligent Novice condition guide students through error detection and 
correction activities. The so-called ‘discrepancy table’ at the bottom of is used to reason about errors.  

 

3.3 Experimental Method 

An evaluation was conducted with a group of 36 participants recruited from a temporary 

employment agency.  All subjects had general computer experience, including proficiency with 

word processing, email, and web applications – however, they were all spreadsheet novices. 

 

Students were randomly assigned to one of four conditions associated with the manipulation of 

two factors: model – expert or intelligent novice (EX, IN); declarative instruction – with or without 

example walkthroughs (WT, noWT). There were 8 students in the Intelligent Novice Walkthrough 

condition (IN-WT), 9 students in the Expert Walkthrough condition (EX-WT), 10 students in the 

Intelligent Novice No Walkthrough condition (IN-noWT), and 9 students in the Expert No 

Walkthrough condition (EX-WT). 

 

 

 

 

First, student asked to enter 
values and formulas that 
should result if a formula 
being copied were to work 
correctly. Subsequently, 
student is asked to enter 
values and formulas that 
actually result from copying 
and pasting the formula.  
 
 
Student reasons with 
discrepancy between actual 
and intended formulas to 
determine where an 
absolute reference may be 
necessary. 
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The evaluation was conducted over the course of three days (Figure-14):  

 

• Day-1: Students came in for a 90-minute instructional session.  Declarative instruction 

provided all students with an exposition of basic spreadsheet concepts: everything from 

data entry, copying and pasting to formula creation and cell referencing.  Cell referencing 

lessons for all students included video examples of cell referencing problems being solved.  

Students in the walkthrough conditions stepped through Example Walkthroughs immediately 

following the videos.  Students in the no walkthrough conditions went directly to procedural 

practice.   Declarative instruction took approximately 60 minutes for students whose 

instruction included walkthroughs, and 50 minutes for those whose instruction did not.  The 

remainder of the session was spent on procedural practice.  Procedural practice consisted 

of using the tutor to solve problems resembling the six types of problems illustrated in 

Figure-15.  The session was preceded by a pre-test and was followed by a post-test. 

 

• Day-2: Students came in the next day for 50 minutes of procedural practice with the tutor.  A 

post-test was administered following the instructional session. 

 

• Day-10: Students came in for a third instructional session eight days after Day-2.  Students 

attempted a pre-test and transfer task to measure retention prior to the instructional session.  

Then students had procedural practice for thirty minutes and finished with a final post test. 

 

Figure 14: Procedure used in Study-1 and Study-2 
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Type 1 Problem – formula with relative references only, 
pasted horizontally 

Type 2 Problem – formula with relative references 
only, pasted vertically 

 

 

 

 

 

 

 

Type 3 Problem – formula with a single absolute row 
reference pasted vertically 

Type 4 Problem – formula with a single absolute 
column reference pasted horizontally 

  

 

 

 

 

Type 5 Problem – One of the cell references in the formula 
requires both an absolute row and absolute column 
reference in order to work when pasted both vertically and 
horizontally.  

Type 6 Problem  – One of the cell references in the 
formula requires an absolute column reference while 
the other requires an absolute row reference in 
order to work when pasted both vertically and 
horizontally. 

Figure 15: Examples of the six types of problems represented in the tutor. 
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The pre and post-tests had two components: a test of problem solving (see Appendix 9) and a 

test of conceptual understanding (Appendix 10 & 11).   

 

The problem-solving test consisted of problems isomorphic to training tasks.  The conceptual test, 

which attempts to measure student understanding of cell referencing principles, consisted of two 

parts: the first part required students to exercise predictive skills (Appendix 11).  Students had to 

identify an outcome (from a selection of screenshots) that could have resulted from copying and 

pasting a  

 

given formula.  The second called for students to exercise causal attribution skills (Appendix 10).  

Students had to examine a given spreadsheet table and identify which of several formula 

alternatives could have produced the observed outcome.   

 

The transfer task called for the exercise of cell referencing skills in the context of a structurally 

complex spreadsheet (Appendix 13).  Students also were also asked to complete a computer 

experience questionnaire (Appendix 12).   The questionnaire asked them to indicate the 

frequency with which they use various computer applications and rate their proficiency at each.   

 

3.4  Results 

No statistically significant differences were observed in student pre test scores (Table-1).  The 

computer experience questionnaire provided the basis to assign a computer experience score to 

each participant.  The computer experience score turned out to be a significant predictor of 

student performance (R2=0.14, F(1,35)=5.74, p=0.02).  As a consequence, the results reported 

here control for computer experience as a covariate. 

 

 

 



  

 35 

cond n   Computer Experience Conceptual Pre Test Coding Pre Test 

Mean 91.8 17.4% 3.1% 

sd 25.4 13.4% 8.8% 

SE 8.9 4.7% 3.1% 

IN-WT 8 

LS Mean - 17.4% 3.1% 

Mean 84.3 22.1% 0.0% 

sd 37.9 14.1% 0.0% 

SE 11.9 4.4% 0.0% 

IN-noWT 10 

LS Mean - 22.1% 0.1% 

Mean 76.2 20.2% 0.0% 

sd 17.5 12.9% 0.0% 

SE 5.8 4.3% 0.0% 
EX-WT 9 

LS Mean - 20.2% 0.2% 

Mean 98.4 19.8% 0.0% 

sd 19.565 9.3% 0.0% 

SE 6.5 3.1% 0.0% 

EX-noWT 9 

LS Mean - 19.9% -0.2% 

    FB Main Effect F(1,32)=0.00, p=0.94 F(1,31)=0.00, p=.95 F(1,31)=1.23, p=.28 

   WT Main Effect F(1,32)=0.68, p=0.42 F(1,31)=0.26, p=.61 F(1,31)=1.43, p=.24 

    FB*WT Interaction F(1,32)=2.74, p=0.11 F(1,31)=0.31, p=.58 F(1,31)=0.82, p=.37 
Table 1: Performance on pre-test measures 

 

 

A repeated measure ANCOVA, over all the tests, shows a significant main effect for model and 

walkthrough.  However, these main effects should be interpreted in light of the significant model-

walkthrough interaction (F (1, 31) = 8.78, p = 0.006)(Figure 16) (Table 4).  Overall, students in the 

expert-walkthrough condition outperformed students in all other conditions (Figure 16).   A similar 

feedback by walkthrough interaction favoring the expert walkthrough condition was observed in 

the conceptual (F(1,31)=6.50, p =0.02) (Figure-17(C), Table-3 ) and problem-solving tests 

(F(1,31)= 5.59, p = 0.02) (Figure 17 (B), Table-2) 
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Figure 16: Overall Performance (averaging across all pre and post tests of problem solving and conceptual 
understanding – with the exception of the Day1 pre-test) 
 

As shown in Figure-17 (E), students in the expert-walkthrough condition demonstrate the most 

robust performance on a retention test administered following an eight day retention interval (Day 

10 – Pre Test).  A similar pattern is observed when the problem solving and conceptual 

understanding components of the retention test are examined separately (Table-2 and Table-3). A 

marginally significant model-walkthrough interaction on the transfer task suggests that students in 

the Expert-Walkthrough condition were likely to apply their skills more broadly (F=2.81, p=0.10) 

(Figure-17 (D)).   
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Figure 17: Summary of Results     (Note: Error bars depict 95% confidence intervals ) 
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cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 

Overall 
Mean 50.3% 86.3% 68.4% 73.4% 69.6% 

sd 42.2% 17.1% 35.9% 33.3% 34.4% IN-WT 8 

LS Mean 47.7% 84.9% 67.4% 70.9% 67.7% 

Mean 64.5% 80.0% 51.5% 83.0% 69.8% 

sd 34.4% 19.9% 41.2% 20.7% 31.9% IN-noWT 10 

LS Mean 66.5% 81.0% 52.3% 84.9% 71.2% 
Mean 77.8% 95.0% 96.1% 96.1% 91.2% 

sd 25.5% 6.6% 5.5% 3.3% 15.2% EX-WT 9 

LS Mean 84.7% 98.4% 98.8% 102.9% 96.2% 

Mean 60.6% 73.9% 71.1% 67.8% 68.3% 

sd 35.6% 32.1% 35.5% 38.6% 34.3% EX-noWT 9 

LS Mean 53.8% 70.5% 68.5% 61.1% 63.5% 

  

   

    

 
Overall FB Main Effect    F(1,31)= 2.01   p=0 .17 
Overall WT Main Effect   F(1,31)= 3.90   p=0 .06 
Overall FB*WT Interaction  F(1,31)= 5.59   p=0.02 

 
 

Table 2: Performance on problem solving tests (averaging across all 8 problem solving pre/post tests – 
with the exception of Day1 pre-test) 
 

cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 
Overall 

Mean 56.7% 71.0% 67.0% 68.7% 65.8% 

sd 8.2% 16.6% 7.6% 15.8% 13.3% IN-WT 8 

LS Mean 55.7% 69.9% 65.6% 67.4% 64.7% 

Mean 65.0% 69.3% 68.2% 65.4% 67.0% 

sd 20.3% 19.9% 20.0% 24.8% 20.6% IN-noWT 10 

LS Mean 65.7% 70.1% 69.3% 66.3% 67.8% 

Mean 69.8% 86.1% 84.1% 85.3% 81.3% 

sd 10.9% 12.6% 16.1% 16.4% 15.2% EX-WT 9 

LS Mean 72.4% 88.9% 87.8% 88.8% 84.5% 

Mean 56.0% 78.6% 67.5% 73.0% 68.8% 

sd 12.0% 13.1% 19.9% 22.4% 18.7% EX-noWT 9 

LS Mean 53.5% 75.9% 63.9% 69.6% 65.7% 

  

  

  

 
Overall FB Main Effect  F(1,31)= 4.57   p=0.04 
Overall WT Main Effect  F(1,31)= 3.48   p= 0.07 
Overall FB*WT Interaction F(1,31)= 6.50   p=0.02 

 

Table 3:Performance on tests of conceptual understanding (averaging across all 8 conceptual pre/post 
tests – with the exception of the Day-1 pre test) 
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cond n  Overall Performance on all 16 Pre and Post Tests 

IN-WT 8  66.2% (Mean: 67.7%, sd: 25.9%) 
IN-noWT 10  69.5% (Mean: 68.4%, sd: 26.7%,) 
EX-WT 9  90.3% (Mean: 86.3%, sd: 15.9%) 

EX-noWT 9  64.6% (Mean: 68.5%, sd: 27.4%) 
   

      FB Main Effect 
 

F(1,31)=4.18, p=0.05 

        WT Main Effect F(1,31)=5.57, p=0.02 

  FB*WT Interaction F(1,31)=8.78, p=0.006 

Table 4: Overall Performance (averaging across all 16 conceptual and problem solving tests) 
 

cond n  Transfer Test Scores 

IN-WT 8  52.8% (Mean: 55.2%, sd: 30.9%) 
IN-noWT 10  56.1% (Mean: 54.3%, sd: 32.2%) 
EX-WT 9  77.6% (Mean: 71.3%, sd: 22.8%) 

EX-noWT 9  47.5% (Mean: 53.7%, sd: 39.5%) 
   

FB Main Effect 
 

F(1,31)=0.72, p=0.40 

   WT Main Effect F(1,31)=1.92, p=0.18 

        FB*WT Interaction F(1,31)=2.81, p=0.10 

Table 5: Transfer Performance 
 
 

cond n  Problems Completed Over 3 Training Sessions 

IN-WT 8  49.6 (Mean: 53.6, sd: 48.0) 
IN-noWT 10  81.7 (Mean: 78.7, sd: 48.6) 
EX-WT 9  93.0 (Mean: 82.6, sd: 28.5) 

EX-noWT 9  71.3 (Mean: 81.6, sd: 40.3) 
   

FB Main Effect 
 

F(1,31)= 2.04, p=0.16 

   WT Main Effect F(1,31)= 0.20, p=0.66 

        FB*WT Interaction F(1,31)= 4.97, p=0.03 

Table 6: Problems Completed (over all 3 training sessions) 

 
 

cond n  Retention Performance 

IN-WT 8  69.1% (Mean: 71.1%, sd: 25.3%) 
IN-noWT 10  75.6% (Mean: 74.2%, sd: 24.0%) 
EX-WT 9  95.9% (Mean: 90.7%, sd: 12.8%) 

EX-noWT 9  65.4% (Mean: 70.4%, sd: 30.7%) 
   

       FB Main Effect 
 

F(1,31)= 1.97, p=0.17 

        WT Main Effect F(1,31)= 4.09, p=0.05 

   FB*WT Interaction F(1,31)= 9.14, p=0.01 

Table 6: Retention Tests (performance on tests of problem solving and conceptual understanding following 
an eight day retention interval [Day 10 – Pre Test]) 
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Qualitative differences were observed in the way students in each condition dealt with errors 

during training.  Students in the Expert-Walkthrough condition were able to understand the error 

messages, repair their solutions, and get back on track efficiently.  In contrast, several students in 

the Expert-noWalkthrough condition were unable to fully comprehend terms and concepts used in 

the error correction dialogs — several students had forgotten or expressed confusion about 

concepts described during declarative training.  They tended to eventually get to the solution by 

trial and error attempts at placing absolute references.   Students in the Intelligent Novice 

conditions experienced the greatest frustration.  The error analysis and fixing process appeared to 

become a fairly lengthy and involved problem-solving episode in itself – this frustration was 

particularly pronounced among low computer experience students. 

 

3.5  Discussion 

Study-1 contrasted learning outcomes associated with a tutor that models an Intelligent Novice 

with an Expert Model based tutor that focuses exclusively on generative skills.  Study-1 was also 

aimed at assessing learning outcomes associated with example walkthroughs.   

 

Contrary to expectations, our evaluation did not reveal a main effect for model or example 

walkthrough. Instead, a conjunction of features associated with expert model based feedback and 

example walkthroughs had the greatest impact on learning, retention and transfer outcomes.  

Overall, students in the Expert-Walkthrough condition exhibited the strongest performance in 

transfer tests, tests of conceptual understanding, and on problem solving tasks isomorphic to 

those encountered during training.  Furthermore, students in the expert walkthrough condition 

exhibited robust retention of learning over the course of an eight-day retention interval.   

 

Better performance in the expert walkthrough condition may be explained by a combination of 

relatively low cognitive load during practice and the provision of an explicit procedure for 

interpretive use of declarative knowledge. Furthermore, walkthroughs are likely to have 
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contributed to a robust encoding of declarative knowledge.  The basis for these claims is detailed 

below. 

 

1.  Working Memory  Load  

Procedural practice with the intelligent novice model was more taxing on working memory than 

with the expert model tutor for at least two reasons.  First, error diagnosis and recovery steps 

under the intelligent novice condition often became extended problem-solving episodes in their 

own right.  These episodes are likely to have interfered with the acquisition of solution generation 

schemas.   Second, artifacts of the interface may have imposed additional cognitive load on 

learners.  The error recovery steps required students to split attention between 3 areas: the 

problem, the table used to track expected and actual values and formulas, and messages from 

the office assistant (see Figure-13).  These features were also inherent in the intelligent novice 

example walkthroughs, potentially compromising their efficacy. 

 

2.  Explicit Procedure to Guide Problem Solving 

Students in the expert conditions had the benefit of a three-step procedure (expressed in the form 

of the three questions) to guide their problem solving efforts. Students were introduced to this 

procedure during example walkthroughs. Furthermore expert-model based feedback during 

procedural practice kept students focused on applying these rules to solve problems. Prior 

research suggests that a procedure for interpreting declarative concepts in problem solving 

contexts contributes to better learning outcomes (Reif and Allen, 1992).  The Intelligent Novice 

Walkthrough on the other hand focused on imparting an understanding of the mechanism 

underlying cell referencing.  Students had to generate a procedure based on their understanding 

of underlying concepts.  

 

3.  Accuracy and Robustness of Declarative Encodings 

Expert-Walkthrough condition students are likely to have benefited from comprehension checks 

and the opportunity to elaborate on video examples during declarative instruction.  There are 

indications that Expert-model students whose declarative instruction included walkthroughs had a 
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more robust and accurate encoding to guide them during procedural practice.  Students in the 

Expert-Walkthrough condition made half as many errors as those in the Expert-noWalkthrough 

condition on the first six problems — these problems represented the first presentation of the six 

types of problems included in the tutor (1.01 errors per problem vs.  2.79, F=3.09, p < 0.09). 

 

Study-1 highlighted a few areas that require further investigation. First, while Example 

Walkthroughs show the potential for better learning outcomes than procedural practice with a 

cognitive tutor alone, the impact of walkthroughs on learning outcomes must be replicated in 

future studies. The need to replicate the results associated with walkthroughs is partly warranted 

by the fact that walkthroughs only produced a reliable difference in the Expert-Walkthrough 

condition and not the Intelligent Novice-Walkthrough condition.  

 

Second, Study-1 illustrates the fact that there is a risk associated with the concurrent exercise of 

generative and evaluative skills. The interface elements that support the exercise of error 

detection and correction skills have consequences on working memory load.  Study-2, described 

next, involved an attempt to reduce the working memory load associated with the exercise of 

evaluative skills in the intelligent novice condition. 
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Chapter 4 

Study-2 
 

 

 

 

 

As the discussion associated with Study-1 has suggested, it is plausible that relatively high 

working memory loads associated with the intelligent novice condition may have impeded 

learning.  Study-2 was aimed at establishing whether learning outcomes associated with the 

intelligent novice condition could be improved by reducing the working memory load imposed on 

students. 

 

Several researchers have suggested that artifacts of a learning environment can tax limited 

cognitive resources.  For instance, Anderson, Corbett, Koedinger & Pelletier (1995) include a 

prescription for reducing working memory load in a list of tutor design principles.  They base this 

prescription on the fact that learning a new production rule in ACT requires that all the relevant 

information (relevant to the condition and action of the to-be-learned production) be 

simultaneously active in memory. Keeping other information active could potentially interfere with 

learning target information. This principle, they suggest, calls for minimizing presentation and 

processing of information not relevant to the target productions. 

  

John Sweller and colleagues have argued that greater attention to the role and limitations of 

working memory by instructional designers can have a positive impact on learning outcomes. 

Their research suggests that high working memory loads can interfere with learning. Sweller has 

pointed to specific instructional design elements that are likely to contribute to working memory 
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load. These include, extended problem solving activity (Sweller and Cooper, 1985; Sweller, 1988) 

and split attention – where students have to integrate information from various sources (Chandler 

and Sweller, 1991, 1992; Ward and Sweller 1990). 

 

4.1   Working Memory Load in the Intelligent Novice Condition 

Several design elements associated with walkthroughs and feedback in the intelligent novice tutor 

are likely to have taxed working memory resources in the intelligent novice condition.  We 

examine each of these in turn below: 

 

4.1.1   Extended Problem Solving Activity 

Sweller has suggested that expert problem solving behavior is characterized by a reliance on 

domain specific knowledge, in the form of schemas. He has defined schemas as cognitive 

structures that allow “problem solvers to recognize a problem state as belonging to a particular 

category of problem states that normally require particular moves.” (Sweller, 1988, p. 259)   

 

Sweller (1998) has argued that problem solving, characterized by extensive means ends analysis, 

can impede schema acquisition. He has proposed two ways this could happen. First, means ends 

analysis demands selective attention to the differences between the current problem solving state 

and the goal state. However, effective schema acquisition, in contrast, demands attention to 

previously used problem solving operators and the relations between problem states and 

operators. Sweller (1988) has argued that these elements that must be attended to for schema 

acquisition may be ignored by learners engaged in means ends analysis. Second, working 

memory load imposed by means ends analysis may substantially limit the cognitive processes 

that can be devoted to schema acquisition. Means ends analysis requires simultaneous 

consideration of the current problem state, the goal state, relationship between problem solving 
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operators, and often requires that users maintain a goal stack to manage sub goals in the 

problem solving process.  

 

Error detection and correction activities in the intelligent novice tutor used in Study-1 are likely to 

have prolonged the problem solving process and contributed to a fairly high working memory 

burden.  The process of filling out the so-called discrepancy table – an area in the spreadsheet to 

keep track of expected and actual values and formulas – required students to maintain subgoals 

unrelated to the original problem solving context (see Appendix-4). For instance, the process of 

specifying expected values required computing the product of various quantities – not an easy 

task for several students. Additionally, the process of entering formulas actually obtained by 

copying and pasting was rather cumbersome. In order to specify the formulas obtained after 

copying and pasting a formula, students had to click on the appropriate cells in the problem, 

examine the formula in the formula bar, store the formula in memory, return to the appropriate cell 

in the discrepancy table, recall the formula, and type it in. Errors in computing the anticipated 

values and formulas, and typos in entering actual values and formulas contributed to nested 

problem solving episodes that had little to do with gaining a better understanding of cell 

referencing concepts.  

An important focus of the design effort that preceded Study-2 was to reduce the number of steps 

involved in the error detection and correction process and to reduce the opportunity for errors 

while exercising these skills.  

4.1.2   Split Attention 

Sweller and colleagues (Ward and Sweller, 1990; Chandler and Sweller, 1991, 1992) have shown 

that integrating information from multiple sources can have detrimental effects on learning. They 

theorize that cognitive processes required to integrate information from various sources can 

impede schema acquisition. The design of the intelligent novice tutor in Study-1 often required 

students to split attention across multiple areas of the spreadsheet. 
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Students had to attend to the part of the spreadsheet containing the problem, the discrepancy 

table used to keep track of expected and actual values, and prompts from the office assistant.  

 

 Additionally, much of the reasoning about the causes and consequences of errors required 

reasoning with formulas produced following a copy and paste operation. However, formulas are 

not usually visible directly on the spreadsheet – only the results produced by underlying formulas 

are displayed on the spreadsheet. Users have to take multiple steps to view the formulas 

underlying cells requiring consideration. Students were observed using one of two procedures to 

identify formulas underlying cells. Some students would select a cell and view the underlying 

formula by examining the formula bar. Students would have to commit the formula to memory, 

return to the discrepancy table, recall the formula, and type it into the appropriate part of the 

discrepancy table. Other students would double click on the relevant cell in order to view the 

underlying formula. This would place the cell in edit mode, revealing the underlying formula. 

Students would commit this formula to memory, hit enter to revert to a non edit mode, return to 

the discrepancy table, recall the formula and type it into the appropriate part of the discrepancy 

table.  

 

4.2  Redesigned Intelligent Novice Tutor Description 

4.2.1 Feedback 

The analysis of problems with the original intelligent novice interface pointed to possible 

improvements. The intelligent novice version of the tutor was redesigned prior to Study-2. It 

embodied the following features: 

 

The system was redesigned to reduce the number of error detection and correction steps. Steps 

associated with the exercise of error detection and correction activities were reduced from close 

to twenty to just two. Additionally, the possibility of error during the error detection and correction 
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process was reduced by eliminating the need for typing. Instead, students were guided through 

error detection and correction activities using multiple choice prompts( see Figure-18 (left)). 

 

Efforts were also made to reduce the need for students to integrate information distributed across 

various parts of the spreadsheet. The discrepancy table was eliminated both in the walkthroughs 

and feedback associated with the intelligent novice version of the tutor. The system was 

redesigned so that all the reasoning about errors and their consequences occurred in the context 

of the problem. Formulas relevant for students to consider were made visible using tags. 

Additionally, the system was redesigned to provide visual cues to highlight the discrepancy 

between actual and intended outcomes (see Figure-18). In the original intelligent novice tutor, 

students reasoned about the consequences of errors by comparing formula strings in the 

discrepancy table. The redesigned intelligent novice tutor highlights cells incorrectly referenced by 

a formula. As a consequence, students reason about errors in the original problem solving context 

with visual cues instead of reasoning with abstract symbol strings in a setting separated from the 

original problem context.  

 

 

Figure 18: Feedback in the redesigned intelligent novice tutor. Step-1 (left) highlights the discrepancy 
between actual and intended outcomes and prompts students to identify the error. Step-2 (right) prompts 
students to generate a solution to the error detected in Step-1 
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Like the intelligent novice tutor in Study-1, the redesigned intelligent novice tutor allowed students 

to enter an incorrect formula, copy it, and paste it to observe the consequences of the error.  The 

student was given an opportunity to detect errors and make corrections if necessary. However, if 

a student failed to detect an error and tried to move on to a new problem, feedback directed the 

student to check for errors and request hints. An error at the formula correction step resulted in 

immediate corrective feedback to minimize unproductive floundering.  The error notification 

message at the formula correction step presented students with the choice of correcting the error 

on their own or doing so with help from the system. If a student chose to correct the error with 

help from the system, the student was taken through a two step process to get back on track. The 

first step (Figure 18 – left) focused on error detection. The system picks a cell that a student may 

have pasted an incorrect formula into, and highlights the cells inappropriately referenced by the 

underlying formula. Additionally, a tag indicating the incorrect formula underlying the selected cell 

is also shown. On the basis of these cues a student can determine the discrepancy between 

actual and intended outcomes and identify incorrect references. The second step (Figure-18 

(right)) focuses on error correction. Having detected the source of error in the first step, the 

second step required students to identify references that must be held fixed in order for the 

formula to work as intended. 

4.2.2 Example Walkthrough 

Example walkthroughs associated the intelligent novice version of the tutor used in Study-2 were 

modified to eliminate the use of the discrepancy table.  After reading the relevant declarative 

instruction and observing video examples, students solved the problems illustrated in the videos 

with the help of example walkthroughs. The walkthroughs embodied the following steps:  

 

• Students were asked to copy and paste a formula without any absolute references over the 

relevant cells in a problem (the solution to the problem required at least one absolute 

reference).  
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• Students were asked to indicate whether the formula worked as intended.  

 

• Students were prompted to identify the part of the formula the formula that did not change 

appropriately.  

 

• Following error identification, students are guided through a three step process to generate a 

solution to the problem. The three steps asked students to consider the direction in which the 

formula was to be pasted, determine the type of references that were likely to be affected 

(row references, column references, or both), and among the references that are likely to 

change, identify the references that must be held fixed.  

 

The walkthrough used to illustrate the use of absolute references in the intelligent novice 

condition of Study-2 was identical to the corresponding walkthrough in the expert condition of 

Study-1 (see Appendix-5). The walkthrough associated with the use of absolute references in the 

expert condition were modified prior to Study-2 (see Appendix 7). The motivations for these 

changes are described in the section 4.3.2. 

4.3  Expert Model Tutor Description 

Study-2 provided the opportunity to compare learning outcomes associated with the redesigned 

intelligent novice tutor, with an expert model tutor.  

4.3.1  Feedback 

Feedback in the expert model tutor used in Study-2 was identical in every respect to the version 

used in Study-1. Students working with the expert model version of the spreadsheet tutor 

received feedback as soon as an incorrect formula was entered.  The error notification message 

presented students with the choice of correcting the error on their own or doing so with help from 

the system.  If help was sought, students were guided through the process of generating a 

formula that would work appropriately. 
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4.3.2 Example Walkthrough 

While expert model feedback remained the same in both studies, a modification was made to the 

walkthrough used to illustrate the use of absolute references. The goal of this modification was to 

make the distinction between the instructional consequences of the expert and intelligent novice 

models of desired performance more clear. 

 

In Study-1, the expert model example walkthrough illustrating the use of absolute references gave 

students practice in both generative and evaluative skills. In other words, in the walkthroughs (but 

not in the tutor’s feedback), the instruction was based on an intelligent novice model of desired 

performance. Before being guided through the process of generating a solution to walkthrough 

problems, students were given the opportunity to observe the consequences of copying and 

pasting a formula without absolute references (in a problem that required at least one absolute 

reference in order to work correctly). Subsequently, over a sequence of three steps, students 

were given the opportunity to identify the source of the error. This was done in order to give 

students a chance to see why absolute references were sometimes necessary.  But, in principle, 

seeing why may not be a prerequisite for efficient expert performance. Thus, because the 

emphasis of the expert model tutor is on generative skills, the walkthrough designed to illustrate 

the use of absolute references was redesigned to focus on generating a solution. Evaluative 

components in the walkthrough were removed in order to correspond more closely to the model of 

desired performance associated with the expert condition – and, as a consequence, make the 

instruction associated with the intelligent novice and expert versions of the tutor more distinct. 

Appendix-7 illustrates the steps associated with the absolute referencing walkthroughs in Study-2 

(Appendix-5 illustrates steps in the corresponding walkthroughs in Study-1.) 

 

In all other ways, the walkthroughs associated with the expert condition were identical to those 

used in Study-1.  
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4.4  Experimental Method 

An experimental comparision of the two tutors just described was conducted with a group of 49 

participants recruited from a local temporary employment agency.  All subjects had general 

computer experience, including proficiency with word processing, email, and web applications. 

However, they were all spreadsheet novices . We randomly assigned students to one of four 

conditions associated with the manipulation of two independent factors: feedback (intelligent 

novice or expert model feedback), and availability of walkthroughs during declarative instruction 

(walkthrough, no walkthrough). There were 12 participants in the expert no-walkthrough condition 

(EX-noWT), 12 in the expert walkthrough condition (EX-WT), 13 in the intelligent novice no-

walkthrough condition (IN-noWT), and 12 in the intelligent novice walktrough condition (IN-WT).   

 

With the exception of the inclusion of a math test in Study-2, the procedures and tests used in 

Study-2 were identical to those used in Study-1.  All students were assessed for mathematical 

ability using a test of basic algebraic symbolization. The math assessment was included because 

it appeared that basic algebraic reasoning ability may be related to the ability to master the use of 

formulas and cell referencing concepts.  

 

4.5   Results 

4.5.1 Pretest Measures 

Table 7 summarizes student performance on pre-test assessments of computer experience, 

mathematical ability, cell referencing coding performance, and conceptual understanding of cell 

referencing concepts.  An analysis of these pre-test measures revealed no reliable differences 

among conditions. 

 

 



  

 52 

cond n   
Computer 
Experience 

Conceptual Pre 
Test 

Coding Pre Test 
MATH 

(out of 5) 

Mean 88.4 17.3% 0.0% 3.6 

sd 19.2 12.6% 0.0% 1.4 IN-WT 12 

LS Mean   16.7% 0.0%   

Mean 85.9 21.2% 4.6% 3.6 

sd 39.5 16.5% 12.0% 1.5 
IN-

noWT 
13 

LS Mean   20.5% 4.6%   

Mean 92.8 16.1% 2.1% 3.2 

sd 33.5 10.3% 4.0% 1.6 EX-WT 12 

LS Mean   16.4% 2.1%   

Mean 93.0 21.7% 3.8% 2.9 

sd 23.4 20.5% 7.7% 1.5 
EX-

noWT 
12 

LS Mean  - 22.6% 3.8%  - 
    FB Main Effect F(1,45)=0.435, p=0.51 F(1,44)=0.04, p=0.84 F(1,44)=0.09, p=0.76 F(1,45)=1.70, 

p=0.20 

   WT Main Effect F(1,45)=0.017, p=0.90 F(1,44)=1.31, p=0.26 F(1,44)=2.10, p=0.15 F(1,45)=0.07, 
p=0.80 

    FB*WT Interaction F(1,45)=0.025, p=0.88 F(1,44)=0.07, p=0.79 F(1,44)=0.45, p=0.51 F(1,45)=0.11, 
p=0.74 

Table 7: Pre-test measures 

 

4.5.2 Overall Results 

As anticipated, the test of mathematical ability was a strong predictor of student performance (R2 

= 0.55, F (1, 48) =57.13, p < 0.001). Indeed, the math test was a better predictor of performance 

than the computer experience score (R2 = 0.08, F(1, 48)=3.96, p=0.05). Consequently, the results 

presented here control for mathematical ability as a covariate. An analysis of pre-test scores 

revealed no statistically significant differences among experimental conditions (Table-7). 
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Figure 19: A main effect of Feedback (F(1,44)= 6.10, p <0.02) and a marginally significant Feedback by 
Walkthrough interaction (95% confidence intervals are displayed around math ability adjusted scores). All three 
treatment conditions do better than the expert no-walkthrough control condition. 
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Table 8 summarizes overall student performance. An ANCOVA analysis of overall performance 

reveals a significant main effect for feedback (IN = 79%, EX = 71.20%, F(1,44)= 6.10, p <0.02) 

and marginally significant feedback by walkthrough interaction (IN-WT = 76.9%, IN-noWT = 

81.2%, EX-WT=74.7% and EX-noWT = 67.8%; F(1,44) = 3.25, p <0.079) (see Figure-19 and 

Table-8). Students in all three treatment conditions did better than the EX-noWT control condition. 

However, the difference between the two walkthrough conditions was not statistically significant 

(F(1,44)=0.18, p< 0.67). Since the overall feedback by walkthrough interaction is only marginally 

significant, the remainder of the presentation of results will focus on the reliable main effect for 

feedback. The walkthrough manipulation is discussed further in Chapter 5.  

4.5.3  Conceptual Understanding and Problem Solving Performance  

Separate repeated measures ANCOVA analyses on the problem solving and conceptual 

understanding components mirror the overall performance results in Table-8 and Figure-19. 

Student performance on all the problem solving pre and post tests (with the exception of the day 1 

pretest) show that students in the intelligent novice condition performed significantly better than 

students in the expert condition (IN=85.20%, EX =75.90%, F(1,44)= 4.24, p < 0.05). Student 

performance on these tests is summarized in Table 9 and Table 10.  Similarly, student 

performance in the conceptual understanding component of the pre and post test favors the 

intelligent novice condition (IN =72.90%, EX = 66.60%, F(1,44)=4.06, p <0.05). Performance on 

tests of conceptual understanding across three days is summarized in Table 11 and Table 12. 

4.5.4  Transfer and Retention Performance 

Students in the intelligent novice condition did significantly better on the transfer tasks than 

students in the expert condition (IN = 74.31%, EX = 59.79%, F(1,44)=5.66, p<0.03) (Table 13 and 

Table 14). Additionally, as Table-15 and Table-16 indicate, students in the intelligent novice 

condition performed significantly better on the Day-10 pre-test administered following an eight-day 

retention interval (IN = 81.20%, EX=72.50%, F=4.07, p<0.05).                                            . 
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A  Overall Performance (F(1,44)= 6.10, p 
<0.02) 

B  Performance on Problem Solving Tests (F(1,44) = 
4.23, p < .05) 

 

 

 

 

 

 

C  Performance on Pre and Post Tests of 
Conceptual Understanding. (F(1,44) =4.06, p 
< .05) 
 

D   Transfer Performance (F(1,44) = 5.662,  p < .03) 
 

  

 

 

 

 

 

 

E  Retention Performance (F(1,44)=4.08, p < 
0.05) 
 

   

Figure 20: Summary of Results (Note: Error bars depict 95% confidence intervals) 

75.90%
85.20%

0%

20%

40%

60%

80%

100%

EX                                    IN-2

71.20%
79.00%

0%

20%

40%

60%

80%

EX                                    IN-2

66.60%
72.90%

0%

20%

40%

60%

80%

100%

EX                                    IN-2

59.79%

74.31%

0%

20%

40%

60%

80%

100%

EX                                    IN-2

72.50%
81.20%

0%

20%

40%

60%

80%

100%

EX                                    IN-2



  

 55 

Overall Performance 

 

 
Problem Solving Performance 

 

 

cond n   Overall Performance on all Pre and Post Tests 

IN-WT 12  76.9% (Mean: 79.0%, sd: 21.5%) 
IN-noWT 13  81.2% (Mean: 83.5%, sd: 19.9%) 
EX-WT 12  74.7% (Mean: 73.4%, sd: 22.7%) 

EX-noWT 12  67.8% (Mean: 64.5%, sd: 24.8%, SE: 2.5%) 
    
   
    

  Overall FB Main Effect  F(1,44)= 6.10   p=0.02 
  Overall WT Main Effect  F(1,44)= 0.19   p=0.67 
  Overall FB*WT Interaction F(1,44)= 3.25   p=0.08 

Table 8: Overall Performance (averaging across all pre and post tests) 

cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 

Overall 

Mean 81.1% 90.4% 88.4% 91.8% 
87.9% 

sd 29.1% 15.4%% 22.7% 16.9% 
21.8% IN 25 

LS Mean 77.6% 88.0% 86.0% 89.4% 85.2% 

Mean 62.8% 76.5% 75.2% 77.9% 
73.1% 

sd 31.4% 25.0% 31.3% 28.6% 
29.4% EX 24 

LS Mean 66.3% 79.0% 77.7% 80.4% 75.9% 

    

   

    

 
FB Main Effect F(1, 44)=4.24, p<0.05 

 

Table 9: Performance across feedback conditions on problem solving tests (averaging across all 
pre/post tests) 
 

cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 

Overall 

Mean 77.3% 91.2% 88.3% 90.8% 
86.9% 

sd 29.9% 14.6% 20.7% 19.8% 
22.0% IN-WT 12 

LS Mean 74.2% 89.0% 86.0% 88.6% 84.4% 

Mean 84.6% 89.6% 88.5% 92.7% 
88.8% 

sd 29.2% 16.6% 25.2% 14.5% 
21.8% IN-noWT 13 

LS Mean 81.1% 87.0% 85.9% 90.2% 86.1% 

Mean 70.6% 81.2% 81.2% 82.5% 
78.9% 

sd 29.9% 25.1% 30.8% 25.7% 
27.5% EX-WT 12 

LS Mean 72.6% 82.7% 82.7% 83.9% 80.5% 

Mean 55.0% 71.7% 69.2% 73.3% 
67.3% 

sd 32.3% 25.0% 32.0% 31.7% 
30.3% EX-noWT 12 

LS Mean 60.0% 75.3% 72.8% 76.9% 71.3% 

    

   

    

 
  Overall FB Main Effect  F(1, 44)= 4.24   p<0.05 
  Overall WT Main Effect  F(1, 44)= 0.72   p= 0.40 

Overall FB*WT Interaction F(1, 44)= 1.45   p=0.23  
  

Table 10: Performance on problem solving tests (averaging across all 8 problem solving pre/post tests – 
with the exception of Day1 pre-test) 
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Performance on Test of Conceptual Understanding 

 

 
 
Transfer Performance 

cond n   Performance on Transfer Test 

IN 25  74.3%  (Mean: 78.5% , sd: 27.9%) 
EX 24  59.8%  (Mean: 55.3% , sd: 33.4%) 

          FB Main Effect             F(1,44)=5.66, p=0.02 

Table 13:  Performance on transfer task across feedback conditions 

 
cond n   Transfer Performance  

IN-WT 12  77.0% (Mean: 81.0%, sd: 28.8%) 
IN-noWT 13  71.7% (Mean: 76.2%, sd: 28.0%) 
EX-WT 12  61.9% (Mean: 59.4%, sd: 35.6%) 

EX-noWT 12  57.6% (Mean: 51.3%, sd: 32.1%) 
    
   
    

                                          FB Main Effect          F(1, 44)= 5.66, p=0.02 
                                          WT Main Effect         F(1, 44)= 0.64, p=p=0.42 
                                          FB*WT Interaction    F(1, 44)= 0.01, p=0.93 

Table 14:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 

cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 

Overall 

Mean 67.7% 72.1% 78.6% 80.3% 
74.7% 

sd 18.5% 18.4% 17.3% 12.8% 
17.4% IN 25 

LS Mean 65.9% 70.4% 76.4% 78.7% 72.9% 

Mean 63.7% 64.9% 65.1% 65.8% 
64.9% 

sd 15.0% 13.8% 17.4% 20.1% 
16.5% EX 24 

LS Mean 65.3% 66.6% 67.2% 67.4% 66.6% 

    

   
    

 
FB Main Effect F(1, 44)=4.24, p<0.05 

 

Table 11:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 

cond n  
Day1-
Post 

Day2-Post 
Day 10-Pre 
(Retention) 

Day10-Post 
(Relearning) 

 
 

Overall 

Mean 59.5% 70.5% 74.1% 79.8% 71.0% 

sd 17.4% 18.6% 18.8% 11.3% 17.9% IN-WT 12 

LS Mean 58.1% 69.0% 72.2% 78.3% 69.4% 

Mean 75.3% 73.6% 82.7% 80.8% 78.1% 

sd 16.7% 18.9% 15.4% 14.4% 16.4% IN-noWT 13 

LS Mean 73.7% 71.9% 80.6% 79.1% 76.3% 

Mean 65.5% 64.9% 67.8% 73.8% 68.0% 

sd 15.2% 13.8% 14.6% 16.6% 15.0% EX-WT 12 

LS Mean 66.4% 65.8% 69.0% 74.7% 69.0% 

Mean 61.9% 64.9% 62.5% 57.7% 61.8% 

sd 15.3% 14.4% 20.2% 20.8% 17.5% EX-noWT 12 

LS Mean 64.2% 67.4% 65.5% 60.1% 64.3% 

    

   
    

FB Main Effect F(1, 44)= 4.06     p=0.05 
WT Main Effect F(1, 44)= 0.13     p=0.72 
FB*WT Interaction   F(1, 44)= 3.66     p=0.06 

Table 12:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 
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Retention Performance 

cond n Performance on Retention Tests 

IN 25   81.2%  (Mean: 83.5%  , sd: 20.6%) 
EX 24   72.5%  (Mean: 70.2%  , sd: 25.6%) 

    FB Main Effect                F(1,44)=4.075, p<0.05 

Table 15:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 
  

cond n Performance on Retention Tests (following an eight day retention interval) 

IN-WT 12  79.1% (Mean: 81.2%, sd: 20.7%) 
IN-noWT 13  83.2% (Mean: 85.6%, sd: 20.7%) 
EX-WT 12  75.8% (Mean: 74.5%, sd: 24.5%) 

EX-noWT 12  69.2% (Mean: 65.8%, sd: 26.4%) 
    
   

    

   
          FB Main Effect  F(1,44)=4.08,   p<0.05 
          WT Main Effect F(1,44)=0.09,   p=0.76 
          FB*WT Interaction F(1,44)=1.62  , p=0.21 
 

Table 16:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 

 

 

Problems Completed 

cond n   Number of Problems Completed Over 3 Days 

IN 25   105.2  (Mean: 113.4  , sd: 61.4). 
EX 24     99.5  (Mean:   91.5  , sd: 64.1) 

    FB Main Effect                F(1,44)=0.17, p=.68 

Table 17:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 
  

cond n   Number of Problems Completed Over 3 Days  

IN-WT 12  92.7   (Mean: 99.9, sd: 51.3) 
IN-noWT 13  117.7 (Mean: 125.8, sd: 69.2) 
EX-WT 12  102.7 (Mean: 98.25, sd: 80.1) 

EX-noWT 12  96.3   (Mean: 84.8, sd: 45.5) 
    
   
    

   
          FB Main Effect  F(1,44)=0.17,   p=0.68 
          WT Main Effect F(1,44)=0.46,   p=0.50 
          FB*WT Interaction F(1,44)=1.32  , p=0.26 

Table 18:  Performance on tests of conceptual understanding (averaging across all pre/post tests) 
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Learning Curves 

We examined online training data to determine if performance during training mirrored the 

outcome measures just presented. The online data would also indicate at what point in the 

learning process these differences emerge. 

 

We examined the number of attempts required to solve training problems as a function of the 

opportunity to practice six production rules associated with generating a solution to the six types 

of problems represented in the tutor (see Figure-21). For example, if a student wrote an incorrect 

formula (1st attempt), then modified it incorrectly (2nd attempt), then succeeded in entering a 

correct formula (at the 3rd attempt), we would count that performance as taking three attempts at a 

particular opportunity to apply a particular production. Figure-21 plots the average number of 

attempts required to correctly solve each of the six types of problems with each practice 

opportunity. 
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 Opportunity to practice each of the six types of problems in tutor 
 Figure 21: A comparison of learning curves associated with the two feedback condition. Students 

in both condition start at approximately the same level of performance. However, students in the 
intelligent novice condition learn at a faster rate.  

 

Learning trends were estimated using best fitting power curves.  A comparison of learning curves 

associated with the two tutorial conditions reveals that students in both groups start off performing 
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at approximately the same level. However, over the course of successive attempts students in the 

intelligent novice condition learn at a faster rate. 

 

We compared the difference in the number of attempts required between the first and second 

opportunity to practice the production rules among the two feedback conditions. A repeated 

measures ANCOVA showed a significant Feedback * Opportunity interaction (F(1,43)=4.045, p = 

0.05). While students in both the expert and intelligent novice condition require approximately the 

same number of attempts to successfully solve the problem on the first opportunity of practice. 

Students in the intelligent novice condition do significantly better on the second opportunity to 

practice each of the production rules.   

 

The learning curve analysis suggests that the opportunity to engage in the exercise of evaluative 

skill has a significant effect on student comprehension of cell referencing principles (discussed 

further in 4.6.1) . Furthermore, this analysis suggests that impact is most pronounced early in the 

learning process.   

4.6   Discussion 

4.6.1   Feedback 

As discussed earlier, immediate feedback has been criticized on the grounds that it may prevent 

students from exercising skills that are important for performing tasks outside the training 

environment. These include error detection and error correction skills. However, as Corbett and 

Anderson (2001) have pointed out, merely delaying feedback may be necessary, but not sufficient 

to promote error detection and correction skills. Instead, they suggest, it may be necessary to 

provide direct feedback and support for these skills. Feedback based on an intelligent novice 

model does not simply provide students with an opportunity to engage in evaluative skills as 

delayed feedback would. Instead, an intelligent novice system explicitly models error detection 

and correction activities and supports students in the exercise of these skills.  
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Feedback based on an intelligent novice model provides a practical way for facilitating the 

exercise of evaluative skills in intelligent tutoring systems, while minimizing the potential for 

unproductive floundering. A comparison of student performance under the expert and intelligent 

novice conditions attests to the relative effectiveness of intelligent novice model feedback on a 

variety of different measures. During training, students in the intelligent novice condition learned 

at a faster rate. Intelligent novice condition students outperformed students in the expert condition 

on a variety of tasks – including: performance on isomorphs of training tasks, tests of conceptual 

understanding, transfer tasks, and retention tests following an eight day retention interval.   

 

The analysis and results presented here suggest that the joint exercise of generative and 

evaluative skills can contribute to better learning outcomes than a focus on generative skills 

alone. Merrill, Reiser, Merrill, and Landes (1995) have theorized that a critical component of 

learning a new domain involves acquiring knowledge about the semantics of domain operators 

and their interactions. Productive engagement in reasoning about the causes and consequences 

of errors may provide students with a better model of domain operators.  It is conceivable that the 

opportunity to observe the consequences of actions – whether successful in accomplishing a goal 

or not – may contribute to better declarative encodings of the effects of domain operators.  This 

knowledge may be used interpretively to guide subsequent problem solving activity. The analysis 

presented here suggests that delaying feedback without explicitly engaging students in the 

exercise of evaluative skills will not produce as effective and transferable learning. This prediction 

can be tested by comparing a delayed feedback tutor with an intelligent novice tutor.  

4.6.2 Example Walkthroughs 

While learning outcomes associated with the expert walkthrough condition were not as 

pronounced as the results associated with the expert walkthrough in Study-1, the trend observed 

in Study-2 is in the same direction (see Figure-13). The interaction depicted in Figure-13, 

suggests that intelligent novice feedback and example walkthroughs provide complementary 

means to improve learning outcomes associated with existing expert model tutors. The results 
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just presented suggest that the joint combination of example walkthroughs and intelligent novice 

feedback, add little to the benefits each would independently provide. 
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Chapter 5 

Conclusion 
 

 

 

 

 

5.1    Feedback 

The research reported here presents experimental comparisons of feedback based on two 

cognitive models. These comparisons were carried out in the context of a spreadsheet tutor. One 

version of the tutor provided feedback on the basis of an expert model. The other version 

presented feedback on the basis of a model of an intelligent novice.  

 

Study-1 showed that learning outcomes associated with the intelligent novice condition were not 

significantly different from the expert-no Walkthrough, control condition. It was hypothesized that 

the scaffolding associated with the exercise of error correction skills in the intelligent novice 

condition imposed a high working memory load on learners.  This may have been the result of the 

fact that error correction activities were spread out over twenty steps — in a context detached 

from the original problem. Typos and other slips during error correction served to prolong the 

overall problem solving process and induce confusion among many learners.  

 

The tutor used in Study-2 addressed some of the design problems identified with the intelligent 

novice tutor in Study-1:  

• Error correction steps in the redesigned tutor were reduced to two.  
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• Students using the redesigned intelligent novice system reasoned about the causes and 

consequences of errors in the original problem solving context – as opposed to the detached 

context of the discrepancy table as required by the original intelligent novice tutor.  

• Instead of reasoning about the causes and consequences of errors by comparing formulas 

(two abstract symbol strings in the discrepancy table), visual cues served to help students 

note discrepancies between the goal and actual formulas.  

• While error correction steps in the tutor used in Study-1 required considerable typing – with 

the potential for introducing confusing typos – the intelligent novice tutor used in Study-2 

reduced opportunities for errors by guiding students through error correction activities using 

multiple choice prompts.  

 

Students using the intelligent novice tutor in Study-2 performed significantly better than students 

in the expert condition on a variety of measures: including, performance on close isomorphs of 

training tasks, tests of conceptual understanding, transfer tasks, and retention tests.  

Furthermore, an analysis of errors during training suggests that students in the intelligent novice 

condition start off requiring the same number of attempts to solve problems as students in the 

expert model feedback condition.   However, over the course of training, students in the intelligent 

novice condition learn at a faster rate. 

5.1.1 Acquiring the semantics of domain operators 

The analysis and results presented here suggest that the joint exercise of generative and 

evaluative skills can contribute to better learning outcomes than a focus on generative skills 

alone. These results may be a result of the nature of problem solving activities supported by the 

intelligent novice model.  

 

Newell and Simon (1972) have characterized problem solving as a search through a space of 

knowledge states. As Simon and Lea (1974) have noted, search through such a space is highly 

selective and is guided by the information made available at each knowledge state. Once a 

problem solver has visited certain number of points in a problem state, he or she can determine a 
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direction to continue searching in one of two ways: by selecting a previously encountered 

knowledge state from which to continue the search or by selecting a particular operator that will 

allow the problem solver to reach a new knowledge state.   Newell and Simon have identified 

means-end-analysis as a mechanism used by problem solvers to guide these selections. Problem 

solvers compare a given problem state with a goal state to discover one or more differences 

between them and pick operators from previous experience that are known to eliminate these 

differences. By applying operators selected in such a manner, problem solvers transition through 

problem states to arrive at a solution.  

 

While the inappropriate application of an operator may be of little help with respect to an 

immediate problem solving objective, the opportunity to observe the effect of applying the 

inappropriate operator might prove to be helpful in later problem solving contexts where that 

operator and its associated effect may be relevant.  With intelligent novice feedback, a student 

has the opportunity to learn both about an operator that might be immediately relevant to solving 

a problem, and also domain operators that might be relevant in subsequent problem solving 

contexts.  

5.1.2 Role of the instructional interface  

The exercise of error detection and correction skills required an environment where the 

discrepancy between desired and actual outcomes could be made salient to the student. The 

spreadsheet environment is rich in internal feedback. The action of copying and pasting a formula 

produces easily discernable consequences in the learning environment. Users can use this 

information to assess the effectiveness of their action and take remedial action if necessary. As 

such, the spreadsheet environment shares several attributes with environments that place the 

learner in the role of a diagnostician. In the words of Nathan (1998, pg 138), such systems may 

“reflect back to the learner observable and meaningful ramifications of the learners actions in 

such a way that the learner can use her prior knowledge to identify solution errors, re-examine 

prior misconceptions, and propose and test hypotheses about the causes of errors. “ 
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Internal feedback may be absent or difficult to interpret in many domains. In such cases special 

attention may need to be placed on the design of learning environments. A strategy that has been 

adopted to deal with these deficiencies has been to link the use of formal expressions that a 

learner might be attempting to master with an animation or simulation. Students write 

mathematical or programming expressions that serve to control elements of a visual animation. 

The LOGO programming language (Papert, 1980) and the ANIMATE algebra learning 

environment (Nathan, 1998) represent instances of such an approach. Textual output of the 

intermediate and final results of a computer program or manipulation of mathematical expressions 

might serve a similar end. In order to facilitate better error detection and correction activities in the 

spreadsheet tutor described here, students were asked to create formulas that would multiply 

numerical values whose product would be easy for most students to predict and assess – (e.g. 

2*5, 1500*10, 50*2)..................................................................... 

 

5.2  Example Walkthroughs 

The two studies reported here also evaluated the effectiveness of example walkthroughs. In both 

studies, students in the walkthrough conditions were actively engaged in the study of examples. 

Students were lead make a series of inferences associated with the selection of problem solving 

operators that may have been implicit in video and text examples.  

 

In Study-1, the only condition that performed significantly better than the expert-no-walkthrough 

control condition was the expert-walkthrough condition. Walkthroughs did not have much of an 

impact on the intelligent novice condition of Study-1. We hypothesize that the overall working 

memory burden experienced by students working with the discrepancy table during the exercise 

of error detection and correction activities (both during walkthroughs and during procedural 

practice) is likely to have eliminated any likely benefit of using example walkthroughs for students 

working with the intelligent novice version of the tutor.   
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Study-2 provided another opportunity to evaluate the efficacy of example walkthroughs. Once 

again, the worst outcomes were associated with the expert no-walkthrough condition. An analysis 

of results showed a marginally significant feedback by walkthrough interaction. The pattern of the 

interaction was consistent with a terminative interaction3. Both walkthroughs and intelligent novice 

feedback appeared to have a positive impact on student performance. However, the combination 

of the two added no benefit over the effect of each alone.  Two aspects of the outcome observed 

in Study-2 are worth noting. First, outcomes associated with the expert-walkthrough were not as 

pronounced as the results observed in Study-1. Second, Walkthroughs had virtually no impact 

among students using the intelligent novice tutor.  

 

It is not possible to determine exactly why students in the expert walkthrough condition in Study-1 

outperformed expert walkthrough students in Study-2.  It is possible that modifications to the 

walkthroughs in the expert condition prior to Study-2 may have contributed to the observed 

outcome.  

 

Prior to Study-2, the expert model example walkthrough was modified to eliminate the opportunity 

to observe the consequences of copying and pasting a formula with relative references in a 

problem that required absolute references. In other words, the expert walkthrough condition in 

Study-1 had an element of the intelligent novice condition — that is, an opportunity to experience 

error detection and correction. In order to make the walkthrough in the expert condition more 

consistent with the underlying model of desired performance, the example walkthrough in the 

expert condition was modified to focus exclusively on the steps involved in generating a solution. 

It is plausible that the opportunity to observe the consequences of copying and pasting a formula 

without the appropriate absolute references may have given students in the Study-1 expert-

walkthrough condition a better understanding of cell referencing concepts prior to practice with the 

                                                      

3 A terminative interaction is one in which two or more variables are clearly effective, 

but when combined their effect is not increased over that of either of the variables alone. (Neale 

and Liebert, 1986) 
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tutor. The possibility that the opportunity to observe the consequences of copying and pasting 

incorrect formulas may have contributed superior learning outcomes among expert walkthrough 

students in Study-1 will have to be examined closely in future studies.  

 

When considered together, results from the two studies point to example walkthroughs as a 

promising way to improve on learning outcomes associated with expert model tutors. In Study-1, 

the expert-walkthrough condition was the only group to significantly outperform the expert-

noWalkthrough control condition. While the outcomes associated with the expert-walkthrough 

condition in Study-2 were not as pronounced as in Study-1, all conditions did better than the 

expert-no-Walkthrough control condition. Considering their relative ease of implementation, 

example walkthroughs may provide an economical and efficient way to improve on learning 

outcomes associated with intelligent tutoring systems.   

 

5.3 Future Work  

The following issues need closer examination in future studies: 

 

• Do the pedagogical benefits associated with the intelligent novice condition stem from the 

opportunity to observe the consequences of an error? Or, are these benefits tied to 

engaging in error detection and correction activities? These questions could be answered 

by comparing the intelligent novice tutor used in Study-2 with a tutor that simply allows 

students to see the consequences of pasting an incorrect formula. While the proposed 

tutor would allow students to see the consequences of their errors, the emphasis in the 

tutor would still be on generative skills – students would not be guided through the 

process of analyzing errors. 

 

• The intelligent novice tutor might also be compared to a delayed feedback tutor. Based on 

the theoretical analysis presented earlier, one would predict that the intelligent novice 
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tutor would produce superior learning outcomes by productively engaging students in 

error detection and correction activities. As Corbett and Anderson have noted, delay may 

be necessary, but not sufficient condition for students to productively engage in self 

monitoring skills. 

 

• Future work could try to determine whether the opportunity to observe the consequence 

of copying and pasting incorrect formulas during example walkthroughs in the expert-

walkthrough condition in Study-1 may have contributed to the better learning outcomes 

among expert-walkthrough students than their counterparts in Study-2.  

 

• It remains to be determined whether the benefits of example walkthroughs and intelligent 

novice feedback may be realizable in other academic domains — particularly in domains, 

such as algebra and computer programming that may be deficient in internal feedback.  

 

• Error detection and correction activities are a relatively straight forward matter in the 

spreadsheet cell referencing domain. As soon as a formula is entered, it can be tested 

quite easily by copying and pasting the formula across relevant cells.  Similarly, in the 

spreadsheet tutor, identifying the source of the error involves scrutinizing a fairly compact 

formula. However, in many domains, the solution to a problem may require a sequence of 

several steps.  As a result identifying the source of an error may be considerably more 

difficult. Future work may examine ways to support the exercise of error detection and 

correction skills in such domains.  

 

5.4   Contributions of this thesis 

• Reviews and summarizes research on the timing of feedback as it relates to intelligent 

tutoring system design. 
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• Presents a novel theoretical perspective that offers the potential for jointly realizing many 

of the benefits offered by immediate and delayed feedback in intelligent tutoring systems.  

 

• Provides empirical support for the theoretical perspective just mentioned. Students 

receiving feedback on the basis of a cognitive model of an intelligent novice (representing 

error detection, error correction, and solution generation skills) demonstrate better 

learning than tutors that embody expert models. Most intelligent tutors are based an 

expert model (emphasizing error free and efficient task performance). Expert model tutors 

intervene as soon as a student deviates from the solution path.  

 

• Introduces example walkthroughs, a technique for helping students attend to, and 

accurately encode operator selection inferences implicit in problem examples.  Example 

walkthroughs have shown promise in conjunction with expert model tutors. Provides a 

cost effective way to improve performance associated with expert model tutors.  

 

• Demonstrates the application of the theoretical ideas outlined in the thesis in the context 

of a model tracing tutor aimed at teaching students spreadsheet cell referencing concepts 

– an area that has been shown to pose difficulties for experienced and novice 

spreadsheet users.  
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Appendix 1: Expert Model English Rules 
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P1(a) absolute-column-reference 

if =paste-cells lie in different columns 

and =variable1 lies in a single column 

and =variable2 lies in different columns 

=> 

Add an absolute reference ahead of the column reference for =variable1 

and set goal ready-to-copy 
 

P1(b) absolute-row-reference 

if =paste-cells lie in different rows 

and =variable1 lies in a single row 

and =variable2 lies in different rows 

=> 

Add an absolute reference ahead of the row reference for =variable1 

and set goal ready-to-copy 

 

P1(c) relative-reference-case1 

if =paste-cells lie in different rows 

and =variable1 lies in different rows 

and =variable2 lies in different rows 

=> 

omit use of any absolute references 

and set goal ready-to-copy 

 

P1(d) relative-reference-case2 

if =paste-cells lie in different columns 

and =variable1 lies in different columns 

and =variable2 lies in different columns 

=> 

omit use of any absolute references 

and set goal ready-to-copy 

 

 

 

 

P1(e) constant-value 

if =paste-cells lie in different rows and columns 

and =variable1 lies in a single row and column 

and =variable2 lies in different rows and columns 

=> 

add absolute references ahead of the row and column reference of =variable1 

and set goal ready-to-copy 
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P1(f) constant-value 

if =paste-cells lie in different rows and columns 

and =variable1 lies different colimns 

and =variable2 lies in different rows  

=> 

add absolute references ahead of the row of =variable1 and column reference of =variable2 

and set goal ready-to-copy 

 

P2 copy-formula 

if the goal is ready-to-copy 

=> 

copy the value in formula-entry-cell 

and set-goal ready-to-paste 

 

P3 paste-formula 

if the goal is ready-to-paste then 

=> 

select =paste-cells 

and paste 

set goal-complete 

 

P4 problem-done 

if the goal is goal-complete 

=> 

click on 'done button' 
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Appendix 2: Intelligent Novice Model English Rules 
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P1(a) absolute-column-reference 

if =paste-cells lie in different columns 

and =variable1 lies in a single column 

and =variable2 lies in different columns 

=> 

Add an absolute reference ahead of the column reference for =variable1 

and set goal ready-to-copy 

 

P1(b) absolute-row-reference 

if =paste-cells lie in different rows 

and =variable1 lies in a single row 

and =variable2 lies in different rows 

=> 

Add an absolute reference ahead of the row reference for =variable1 

and set goal ready-to-copy 

 

P1(c) relative-reference-case1 

if =paste-cells lie in different rows 

and =variable1 lies in different rows 

and =variable2 lies in different rows 

=> 

omit use of any absolute references 

and set goal ready-to-copy 

 

P1(d) relative-reference-case2 

if =paste-cells lie in different columns 

and =variable1 lies in different columns 

and =variable2 lies in different columns 

=> 

omit use of any absolute references 

and set goal ready-to-copy 

 

P1(e) constant-value 

if =paste-cells lie in different rows and columns 

and =variable1 lies in a single row and column 

and =variable2 lies in different rows and columns 

=> 

add absolute references ahead of the row and column reference of =variable1 

and set goal ready-to-copy 
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P1(f) constant-value 

if =paste-cells lie in different rows and columns 

and =variable1 lies different columns 

and =variable2 lies in different rows  

=> 

add absolute references ahead of the row of =variable1 and column reference of =variable2 

and set goal ready-to-copy 

 

P2 copy-formula 

if the goal is ready-to-copy 

=> 

copy the value in formula-entry-cell 

and set goal ready-to-paste 

 

P3 paste-formula 

if the goal is ready-to-paste then 

=> 

select =paste-cells 

and paste 

set goal check-accuracy 

 

p5 check-accuracy 

if the actual value in a =paste-cell does not equal the anticipated value 

=> 

examine formula underlying cell with discrepancy 

set goal examine-and-correct-underlying formula 

 

p6 remove-incorrect-dollar-sign 

if goal examine-and-correct-underlying-formula 

and =pastecell has a reference that has not changed when it should have 

=> 

remove corresponding '$' sign from original formula  

 

p7 add-dollar-sign-at-incorrectly-omitted-location 

if goal examine-and-correct-underlying-formula 

and pastecell has a reference that has changed when it not should have 

=> 

add '$' sign to corresponding reference in original formula  

 

 

 

 

EVALUATIVE SKILLS 
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p8 all references checked 

if goal examine-and-correct-underlying-formula 

and unanticipated references changes have been corrected 

=> 

set goal ready-to-copy 

 

P4 problem-done 

if the goal is goal-complete 

=> 

click on 'done button' 
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Appendix 3: Screen Shots of Expert Model 
Feedback in Study-1 



  

 84 

 

   

1. System intervenes as soon as a student 
enters an incorrect formula. Student has 
choice of fixing formula on one’s own or doing 
so with help. 

 2. If help is sought, the student is stepped 
through a three step process to generate a 
solution 

   

3. The three step process is outlined.   4. The first step asks the student to consider 
the direction in which the formula is to be 
pasted. 

   

5. In the second step, the student is asked to 
consider the type of reference that will 
change. 

 6. Student is shown references in the formula 
that will change.  The system asks the student 
to select references that must remain fixed. 
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7. The student is prompted to enter a formula 
that will hold the reference identified in 6 
fixed.  
 
 

  

 



  

 86 

 

 

 

 

 

 

 

 

Appendix 4: Screen Shots of Intelligent Novice 
Model Feedback in Study-1 
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1.  Student makes an error during repair 
attempt. Tutor notifies student and offers 
help. 
 
 

 2.  Tutor provides overview of error detection 
and correction process. 
 
 

   

3.  Student is prompted to enter, copy, and 
paste a formula with no absolute references 
to observe consequences. 
 
 

 4.  System picks a cell that was pasted into 
for close examination. The student is asked 
to enter the value that should have resulted 
in the selected cell had the formula worked. 
 

   

5.  Student is asked to enter the formula 
that should have resulted in the selected 
cell had the formula worked. 

 6.  Student is asked to enter the value 
actually produced in the focus cell. 
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7.   Student is asked to enter the formula 
actually produced in the focus cell. 
 

 8.  Student is asked to identify the incorrect 
reference in formula underlying the focus 
cell. 
 

   

9.  Having detected the source of an error, 
student is stepped through the process of 
generating a solution. 
 

 10.  Student is asked to identify the direction 
in which the formula is to be copied and 
pasted 
 

 

 

 

 

 

 

  

11.  Student is asked to identify the types 
of references that will be affected when 
copied.  

 12.  Student is shown references in the 
formula that will change.  The system asks 
the student to select references that must 
remain fixed.  
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13.  Student is asked prompted to enter the 
correct formula. 
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Appendix 5: Screen Shots of Expert Model 
Walkthrough in Study-1 
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1. Introductory balloon in the Expert version 
of the example walkthrough 
 
 

 2. Overview of the problem that will be 
solved 

   

3. Student is asked to enter a formula 
without absolute references and copy and 
paste it over specified cells 

 4. Student prompted to consider result of 
copy and paste in the next few steps 

 

 

 

 

 

  

5. Student asked to indicate whether the 
formula worked appropriately. 

 6. Student asked to indicate the type of 
reference that changed 
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7.  Student is asked to identify the reference 
in the formula that should not have changed 
 
 

 8.  Focus now changes to generating a 
solution 

   

9. Student reminded about the absolute 
reference 

 10. Student introduced to the solution 
generation process 

 

 

 

 

 

 

 

  

11. Student is shown an overview of a three 
step process that will allow the student to 
generate a solution to the problem.  

 12. The first step asks the student to 
consider the direction in which the formula is 
to be pasted. 
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13. In the second step, the student is asked 
to consider the type of reference that will 
change. 
 

 14.  Student is shown references in the 
formula that will change.  The system asks 
the student to select references that must 
remain fixed. 
 

   

15.  Student is told that the reference 
identified in 14 can be held fixed with a ‘$’ 
sign. 

 16.  Student is prompted to enter the 
solution. The student is subsequently asked 
to copy and paste the formula. 
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Appendix 6: Screen Shots of Intelligent Novice 
Model Walkthrough in Study-1 
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1.  Introduction to the walkthrough 
 
 

 2.  Student is given a description of the 
problem to be solved. 

 

 

  

3.  Student is asked to enter a formula 
without absolute references 

 4. Student will be prompted to predict values 
and formulas that will result from pasting the 
formula 

 

 

 

 

 

 

 

  

5.  Student is introduced to the discrepancy 
table where predicted and actual values and 
formulas will be compared.  

 6. Student is asked to predict values that 
should result if the formula were to work 
correctly. 
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7. Student is prompted to specify formulas 
that should result in the paste locations if 
the formula were to work  

 8.  Student will judge the actual outcome of 
copying and pasting the formula in 
subsequent steps. 

   

9. Student is prompted to copy and paste the 
formula one cell at a time 

 10. After each paste, student is asked to 
enter the value that actually results from 
copying and pasting the formula. 

 

 

 

 

 

 

 

  

11. After each paste, student is asked to 
enter the formula that resulted from the 
paste operation.  

 12.  Student is prompted to analyze the 
discrepancy between actual and intended 
outcomes in subsequent cells.  
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13.  student is asked whether the formula 
worked 
 
 

 14.  Student is asked to identify incorrect 
part of formula that resulted from copy and 
paste operation. 

   

15.  Student is asked to identify the reference 
that must be held fixed in order for the 
formula to work as intended.  

 16.  Student is reminded of the absolute 
reference operator. 

 

 

 

 

 

 

 

  

17. Student enters the correct formula and is 
prompted to copy and paste it.  

 18.  Student is asked to verify that the 
formula worked.  
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Appendix 7: Screen Shots of Expert Walkthrough in 
Study-2 
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1. Overview balloon 1 
 
 

 2. Overview balloon 2 

 

 

3. Student is introduced to a 3-step 
procedure to generate solutions to cell 
referencing problems 

 4. Student is given an overview of problem to 
be solved 

 

 

 

5 Student is asked to type in a formula 
without any absolute references. 

 6. Student is led through a 3-step process to 
determine where, if any, absolute references 
may be necessary\ 
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7. Student is asked to consider the direction in 
which formula is to be copied. 
 

 8. Student is asked to consider the type of 
reference that will change 

 

 

 

9. Student is asked to focus on the references 
that will change 

 10. Of the references that will change, 
student is asked to indicate ones that should 
be held fixed. 

 

 

 

11. Student is told how the reference just 
identified as requiring an absolute reference 
can be held fixed 

 12. Student is prompted to enter the solution 
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Appendix 8: Screen Shots of Intelligent Novice 
Feedback in Study-2 
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1.  Student enters, copies, and pastes an 
incorrect formula. Student sees the 
consequence of incorrect action. 

 2.  Student attempts to make repair and 
fails. Student is notified of error and given 
option to solve problem with help from the 
tutor.  

 

 

 

3.  Student is asked to identify the incorrect 
reference in formula. 

 4.  Student is asked to indicate the 
appropriate fix to prevent error just 
observed. 

 

  

5.  Student is prompted to enter correct 
formula. 
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Appendix 9: Problem Solving Test 
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Correct Response: = C7*C8 (1point) 

Penalty of 0.25 points for each redundant ‘$’ sign ahead of the row references references 7 or 8 
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Correct Response: = B$7*A10 (2 points) 

Penalty of 0.50 points for each redundant ‘$’ sign ahead of the column references B or A 
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Correct Response: = $A11*B8 (2 points) 

Penalty of 0.50 points for each redundant ‘$’ sign ahead of the row references 11 or 8 
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Correct Response: = $A14*C$11 (5 points) 
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Appendix 10 Conceptual Test (Attribution Items) 
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Formula working: yes (1 point)      

=$B3*A5 (false) (1point) 

=$B$3*A5 (true) (1 point) 

=$B$3*A$5 (false) (1 point) 

=$B$3*$A5 (true) (1 point) 

=$B3*$A5 (false) (1 point) 
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Formula working: no (1 point)      

=$B2*A4 (true) (1point)  

=$B$2*$A4 (false) (1 point) 

=B2*A4 (true) (1 point) 

=$B$2*$A$4 (false) (1 point) 

=B$2*A4 (false) (1 point) 
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 Formula working: no (1 point)      

=$A$4*B3 (false) (1point)  

=$A4*B3 (false) (1 point) 

=A4*B3 (true) (1 point) 

=$A$4*$B$3 (false) (1 point) 

=A$4*B$3 (true) (1 point) 
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Appendix 11: Conceptual Test (Predictive Items) 
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Spreadsheet 2 (5 points) 
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Spreadsheet 1 (5 points) 
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Appendix 12: Computer Experience Questionnaire 
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Appendix 13: Transfer Test 
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TASK OVERVIEW 

 

 

 

A travel agency with several corporate accounts maintains a 

spreadsheet to keep track of commissions and other charges.  

 

 

 

Your job is to specify a set of formulas that will compute these 

charges. 

 

 

 

 

 

 

 

 

INSTRUCTIONS 
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Construct the required formulas as quickly as you can. 
 
 
 

If any of your formulas require the use of absolute 
references, try to use the least number of absolute 
references possible. 
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INSTRUCTIONS (continued) 
 
 
 
 
 
Prior to every task you will be prompted to read a task 
description.  
 
 
 
Double click the ‘Perform Task’ button as soon as you are 
ready to begin.  
 
 
 
Double click on the ‘Done’ button as soon as you have 
completed a task. 
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TASK 1 
 
 
 

 
Enter a formula in E4 that computes the travel expenses for the month of 
January.  
 
Your formula will have to add the contents of B4, C4, and D4 
 
Your formula should compute the total expenses for other months when 
copied from E4 and pasted into cells E5 to E15. 
 
 

 
 
 
 
Double click on the ‘Done’ button as soon as you have completed task. 
 
Correct Response: =B4+C4+D4 (1 point) 
0.25 point penalty for each redundant $ ahead of column references B, C or D 
 

Spreadsheet used by the student for this task: 
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TASK 2 
 

 
 

 
Enter a formula in F4 that computes the Monthly Commission earned in the 
month of January.  
 
 
You’ll have to multiply the Monthly Total amount in E4 with the Commission 
Rate in A25.  
 
 
Your formula should compute the Monthly Commission for other months when 
copied from F4 and pasted into cells F5 to F15. 
 
 

 
 
 
 
 
Double click on the ‘Done’ button as soon as you have completed task. 
 
Correct Response: =A$25*E4 (2 points) 
0.5 point penalty for each redundant $ ahead of column references A or E 
 
 

Spreadsheet used by the student for this task: 
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TASK 3 
 
 
 

 
Enter a formula in B18 that computes the Annual Commission earned from 
Company A.  
 
You’ll have to multiply the Annual Company Total amount for Company A in 
B17 with the commission rate in A25.  
 
Your formula should compute Annual Commissions for other companies when 
copied and pasted into cells C18 and D18. 
 

 
 
 
Double click on the ‘Done’ button as soon as you have completed task. 
 
Correct Response: =$A25*B17 
0.5 point penalty for each redundant $ ahead of row references 25 or 17 
 
 
 
 
 

Spreadsheet used by the student for this task: 
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TASK 4 
 
 
 

 
This task requires you to figure out the annual taxes and fuel surcharge 
expenses for companies A, B, and C. 
 
Enter a formula in C29 that multiplies the tax rate in B29 with B17 -- the 
Annual Company Total amount for Company A. 
 
Your formula should compute taxes and fuel surcharge on annual travel 
expenses by Company A, Company B, and Company C   when copied from 
C29 and pasted into cells D29, E29, C30, D30 and E30. 
 

 
 
 
 
Double click on the ‘Done’ button as soon as you have completed task. 
 
Correct Response: =$B29*B$17 (5 points) 
 
 

Spreadsheet used by the student for this task: 
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TASK 5 

 
 
 

 
Compute the Monthly Commission charged to each of the 3 companies 
 
Enter a formula in B37 that multiplies January travel expenses for Company A 
in B4 with the commission amount in A25.  
 
Your formula should calculate the commission charges for each of the 
companies for each of the 12 months when copied and pasted into cells C37 
to D48. 
 

 
 
 
 
Double click on the ‘Done’ button as soon as you have completed task. 
 
Correct Response: =$A$25*B4 (5 points) 
 
 

Spreadsheet used by the student for this task: 
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Appendix 14: Math Test 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 129 

 

           
 
response: c (1 point)   response: b (1 point) 
 
 

       

response: e (1 point)        response: b (1 point) 
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response: (b-r)/3  (1 point) 

      

 

 

 

 

 

 

 


