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Abstract
Biological networks, social networks and the dynamic processes over them such

as diffusion can be better understood by simultaneously analyzing both the network
data and the diffusion data. However, data about diffusion, the network, and node
attributes are all limited and often wrong. Overcoming this limited/uncertain data
bottleneck is an important challenge in better estimating the network structure, bet-
ter finding the correlations hidden in the network, and better tracking the diffusion
dynamics over the network.

We focus on four different problems regarding the analysis of networks and dif-
fusion dynamics over them with limited information. We first improve protein anno-
tation prediction performance by metric labeling and associated semi-metric embed-
ding of the annotations that integrate the similarities between annotations to protein
network data. Second, we propose methods to reconstruct an unknown network from
available diffusion data accurately at both micro and macro scales in both biological
and social domains. Then, we formulate the diffusion history reconstruction problem
to estimate the diffusion histories from incomplete snapshots of the diffusion pro-
cess, and apply our methods to different diffusion types with accurate performance.
Lastly, we propose novel methods to deconvolve the biological 3C interaction ma-
trix that is an ensemble over a cell population under several assumptions about their
structures. All these problems are computational, and we validate the effectiveness
of our methods with both computational experiments and with theoretical bounds.
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Chapter 1

Introduction

In recent years, increasing availability of technological, sociological, and biological data has
aroused considerable interest in developing methods to analyze them in detail and improving the
existing data mining tools to infer novel data patterns. In accordance with the increasing data
availability, there has been significant interest in graph structures in technological, sociological,
and biological settings [9, 10, 36, 90, 108, 110, 148, 154]. In networks, each node models an
entity and its associated attributes. For instance, in protein-protein interaction (PPI) networks,
each node represents a protein, and each protein has multiple functions in the organism which
are its attributes. Similarly, in the Facebook social network, each node represents a human with
a Facebook account and there is an edge between two nodes when the two people are friends.
These networks may be either unweighted or weighted to represent quality or confidence of the
interactions. Additionally, some of the networks may change over time such as a citation network
where nodes represent papers and there is a directed edge between two papers if one paper cites
the other one.

In many cases, networks are not completely static objects: Even if their structure does not
evolve over time, dynamic processes occur over them which are affected by both nodes and edges
of the graph according to the rules of the process. Ignoring the dynamic process dimension may
lead to incomplete analysis of the network. For instance, protein interaction network shows the
interactions between proteins, and several cell signaling pathway dynamics also occur over the
interaction network. A signaling cascade starts at a protein, and the signal spreads to the proteins
at different cell locations via interactions. In this case, proteins directly affect the regulation of
the other ones via interactions, and ignoring the signaling dynamics over interaction network will
lead to an incomplete picture of cell.

Diffusion is special case of those processes in which a spread (e.g., an infection) starts from
some part of the graph and spreads to other portions over time via the edges of the graph [109,
152]. Some examples are virus epidemic on a human-contact network [121], contaminant dif-
fusion over water distribution network [91], and idea spreading over Twitter [83]. A diffusion
model defines a set of possible states that the nodes of the graph can be in as well as rules for
probabilistically switching between those states. For instance, SIR model is a well-known ex-
ample of diffusion model that is often used to simulate the spread of influenza between humans.
Other widely used diffusion models are SI, SIR, SEIR, SEIRS, SIS, SIRS, etc [61]. These Marko-
vian models are recently brought together under VPM (Virus Propagation Model) [112] which

1



provides a common framework for all those Markovian diffusion models as well as defining
hierarchical relationships between them.

Network data and the diffusion data over networks dramatically improved our understanding
of both social and biological networks, and the diffusion dynamics over them such as influenza
diffusion, opinion diffusion, email virus diffusion [24, 91, 121]. Analyzing both the network and
diffusion data simultaneously helps us in better analysis of both the network and the diffusion
dynamics. However, network data, data about the node attributes, and the diffusion data are noisy
and limited due to several reasons some of which are:
• Network data and its node attributes may only be available partially due to experimental

errors. Protein-protein interaction data is an example where it is impossible to correctly
measure all protein-protein interactions. Similarly, all protein annotations are not known
due to experimental limitations.

• Network data may not be fully available due to privacy. For instance, Facebook does not
make the whole friendship dataset publicly available since these datasets might then be
used for bad purposes.

• Diffusion data over network may be noisy depending on the way it is collected. When
tracking the influenza diffusion over human-contact network, users do not suddenly show
the influenza symptoms, and there is a chance of misidentifying the time point when human
is infected with influenza. Similarly, gene expression datasets at different time points
provide information about the cell signaling, but they are highly noisy especially at higher
temporal resolutions.

• Available network data may be noisy since it may have been collected over an ensemble
of scenarios representing their average. For instance, Hi-C [94], an experimental method
for indirectly measuring the 3 dimensional distances between genomic fragments, collects
the interaction data over a population of cells rather than a single cell.

These challenges mainly motivate the problems in this thesis. In this thesis, we propose
solutions to four different problems over social networks, biological networks, and diffusion
dynamics over them. Common to all these problems, available data is noisy and limited, and we
need well-formulated methods with provable performance guarantees. Chapters of this thesis are
organized as follows:

Chapter 2 motivates the problems in the thesis by introducing the related network data such as
protein-protein interaction data [67], chromosome conformation capture data such as Hi-C [94],
and diffusion dynamics over networks such as SI, SIR, SEIR, SEIRS [112].

Chapter 3 proposes a solution for the protein annotation prediction problem where we are
interested in predicting the annotations of proteins given protein interaction network and par-
tially known annotation data. This problem is important since approximately 25% of human,
and 57% of fly genes do not have known biological functions in the Gene Ontology (without
considering the electronically annotated proteins) [29, 84], and annotating them experimentally
is highly costly. This problem is important since several functions of the existing proteins are
still unknown, and annotating them experimentally is highly costly. Then, it is important to
develop fast computational techniques that predict novel annotations by exploting PPI network
structure and the similarities between the protein functions. We solve this problem under the
realistic assumption that there is a correlation between protein-protein interaction network struc-
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ture and the protein annotations: Interacting proteins tend to have similar functions. We propose
metric labeling and related semi-metric embedding approaches to integrate network structure
and the similarity between the proteins. We show that both problems can be solved optimally,
and our methods are scalable to prediction over interaction data of many species. Our methods
outperform the existing methods in function prediction which shows the importance of using
manually-labeled protein annotations in predicting newer annotations as well as integrating the
network structure and the similarity between protein annotations to the prediction framework.

Chapter 4 proposes a method CORMIN to infer the unknown graphs at multiple scales from
multiple noisy diffusion data. This problem is important when it is easier or less costly to observe
the states of the nodes than it is to observe the edges of the network over which the diffusion pro-
cess is spreading. In a similar case, we are also interested in understanding the diffusion charac-
teristics at the macroscale since it is infeasible and unnecessary to learn it on micro level (person-
to-person contact). We model this problem as an expected loss minimization problem where the
diffusion data may also be noisy, under-sampled or unobserved. We prove that this problem can
be solved optimally for reconstructing the networks at both micro and macroscales. We validate
the network reconstruction performance over human-contact network at microscale and estimate
the influenza transmission rates between U.S. states at macroscale by using Google Flu Trends
data which would otherwise have been impossible at that scale. Our improved formulation leads
to a better performance in almost all realistic test cases.

Chapter 5 considers the problem of reconstructing the diffusion history from present-day dif-
fusion data even though we may not know much about their histories. This problem is important
in real-life situations since it is not always easy to know the whole diffusion progression, ini-
tial diffusion conditions, or the time it has started due to several limitations. It is invaluable to
learn more about the past to take precautions to prevent future epidemics, to learn more about
the true diffusion mechanics, to guide the behaviour of the diffusion via incentivization, etc.
We formulate this problem as a maximum likelihood estimation for SEIRS type models, discuss
the hardness of the problem for different types of SEIRS models, and develop various methods
to reconstruct histories provably suboptimally. For larger networks, we also develop relaxation
methods to reconstruct the diffusion histories over very large networks with provable perfor-
mance guarantees. We validate the performance of all our methods (DHR-sub, DHR-pcdsvc,
DHR-pcvc) by identifying the initial contamination sites over a water distribution network, and
by reconstructing the meme diffusion history over a blog network. All our methods can accu-
rately reconstruct the diffusion histories, and predict the initial spreaders over multiple networks.

Chapter 6 considers the problem of deconvolving chromosome conformation capture (3C)
interaction data collected over a population of cells. Under several realistic assumptions about
the convolved populations, we present a variety of algorithms to deconvolve these measured
interaction matrices into estimations of the contact matrices for each subpopulation of cells and
relative densities of each subpopulation provably suboptimally. We evaluate the performance
of our methods in deconvolving the ensemble interaction matrix on HeLa, mouse, and bacteria
data. Our methods are the first methods for 3C deconvolution, and they outperform all reasonable
baselines as well as running in less than 15 minutes on almost all datasets on a personal laptop.
We also show that domain boundaries from deconvolved matrices are often more enriched or
depleted for regulatory chromatin markers when compared to boundaries from the convolved
matrices.
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Lastly, conclusion chapter 7 summarizes our contributions in this thesis, and discusses sev-
eral possible future directions. In summary, we show that improved modeling leads to methods
that can accurately infer the missing or latent diffusion and network data in social and biological
networks. In all problems, our estimates are quite helpful in answering the following previously
unanswered questions: (1)- How efficiently can protein annotations be predicted by integrat-
ing Gene Ontology data?, (2)- How efficiently can networks be inferred from diffusion data at
multiple scales?, (3)- Can we reconstruct diffusion histories accurately over different types of
networks?, and (4)- Can we infer latent mixing interaction matrices from ensemble Hi-C data
over cell populations?

Problems considered in this thesis are different than the existing work in several ways. Com-
pleting the partial knowledge in biological networks has been previously discussed for different
types of annotations [34, 43]. In the few cases it has been done, integrating Gene Ontology
knowledge into protein function prediction methods [12, 34] and clustering [25] has resulted in
improved predictions. However, these methods are in general less systematic and cannot use the
manually-curated Gene Ontology hierarchy [5] as well as our approaches. In other cases, the
problem of inferring the unknown graph structure from diffusion data has also been previously
considered, but most of the existing methods make a homogenous network assumption by ig-
noring the effect of the network structure in diffusion. These methods neglect the possibility of
partially observable, under-sampled probabilistic diffusion data, and they cannot model the un-
certainty inherent in the diffusion data. Another shortcoming of the existing approaches is their
inability to estimate the diffusion rates at the macroscale.

On the other hand, complete diffusion history reconstruction has not been previously studied
but similar problems exist in the literature. The most relevant such problem is Initial Spreader
Identification where we want to identify the most probable initially infected nodes that started a
diffusion. Existing methods for this problem are either based on a heuristic or they only work on
restricted set of diffusion models. None of these methods infer the whole diffusion progression,
as our approaches do. Lastly, the 3C deconvolution problem has not been previously studied,
and all the existing methods on 3C data work on population of cells neglecting the fact that it
is an ensemble over cells with different structures. Detailed contributions of our methods are
discussed in the relevant sections.
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Chapter 2

Preliminaries

2.1. Protein-protein Interaction Networks

There are variety of experimental methods to measure the interactions between proteins. Some
examples are yeast two-hybrid [139], chromatin immunoprecipitation [28], tandem affinity pu-
rification [114], bimolecular fluorescence complementation [74]. The result of each protein inter-
action experiment is binary interaction graph G = (P,E) over all considered proteins P . These
high-throughput methods have different false positive and false negative rates, and multiple ex-
periments can be combined into a single graph to obtain a more robust estimate of interaction
graph.

Protein-protein interaction (PPI) networks have been significantly used in protein annotation
prediction. The intuition is that pairs of proteins that are highly related (tend to interact sig-
nificantly) ought to be assigned labels that are highly similar. Figure 2.1 illustrates the part of
Saccharomyces cerevisiae (yeast) interaction network where different colors represent different
annotations, and interacting proteins tend to share similar colors. Graph-based representation of
protein interaction network makes it easier to apply variety of prediction algorithms over graphs
to protein annotation prediction over PPI. In order to obtain a more detailed explanation of pro-
tein interaction networks, see the relevant papers [28, 68, 114].

2.2. SEIRS Diffusion Dynamics

SEIRS (Susceptible Exposed Infected Recovered Susceptible) diffusion dynamics over directed
graph G = (V,E) with possible state transitions are shown in Figure 2.2. The SEIRS states
are Susceptible (S), Exposed but not contagious (E), Infected and contagious (I), and previously
infected but now Recovered (or immune to the infection) (R). Those states are general enough
abstractions to model various forms of diffusion in different contexts [91, 121]. For instance, the
infected state can model people having influenza symptoms in influenza diffusion over humans,
and it can represent the creation of a blog entry about a topic in idea diffusion. Similarly, the
recovered state could represent recovery of a person from influenza or the decontamination of a
water tower from chemical contaminants depending on the context.
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Figure 2.1: Part of yeast protein interaction network (Generated according to Gene Ontology
annotations)

In SEIRS model, diffusion starts at time t = 0 from set of initially infected nodes and pro-
gresses over G in discrete time steps. Let St, Et, It, Rt be the set of S, E, I, R nodes at time t
respectively. At each time step, infected nodes spread the infection to the susceptible nodes with
certain probability. This S → E transition is exogenous; it is affected by G and probability of
exogenous transition for susceptible node v at time t is 1 −

∏
u∈P (v)∩It(1 − puv), where P (v)

is the set of nodes with edges into v and puv is the probability of transmission of the agent over
edge (u, v). The remaining E → I, I → R, R → S transitions are endogenous; their transition
probabilities are e2iv, i2rv, r2sv respectively, and they are not affected by G. For every node at
each time step, if a transition succeeds, the node transitions to a new state. Otherwise, it follows
similar procedure at next time step, independent of the previous trials. SEIRS type models are

Figure 2.2: SEIRS state transition diagram
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Markovian since state of a node at time t depends on its state and its neighbors’ states at previous
time steps, and it obeys independent cascade (IC) [73] assumption which states that a diffusion
from one of nodes predecessor is enough for node to become exposed/infected. Overall, prob-
lems over these dynamics will be mostly submodular maximization or minimization [73]. Here,
we present transition probabilities same for each time step to simplify the explanation. They may
be different as well to model arbitrary distributions, and we will explain this case in more detail
in the following chapters.

SEIRS-type models include the well-known SI, SIR, SIS, SIRS, SEIR, SEIRS models [61].
SEIRS is the most general model among these models, and some of its transitions disappear or
change slightly in other models. For instance, in SIR, there is no exposed state; the exogenous
transition is S → I since nodes proceed directly to the infected state, and there is no R → S
transition. We can classify SEIRS type models in various ways. SIRS, SEIRS are loopy models
where R→ S transition is available whereas SI, SIR, SEIR are non-loopy models.

2.3. Chromosome Conformation Capture (3C) Experiments
There are two main experimental techniques to understand 3D genome shape. Microscopy imag-
ing techniques, such as Fluorescence In Situ Hybridization (FISH) [92], are medium to low res-
olution. We may not observe the whole 3D genome shape in greater detail by them. In contrast,
high-throughput chromosome conformation capture (3C) based methods such as 3C, 4C, 5C, Hi-
C, TCC [39, 71, 94, 137] analyze the 3D organization of chromosomes at a resolution higher than
the microscope experiments [39]. 3C-based techniques result in a matrix of counts representing
the frequency of cross-linking between the restriction fragments of DNA that are measured over
millions of cells. Different chromosome conformation methods differ mainly in terms of their
scales. For instance, 5C returns the interaction matrix inside a single chromosome whereas Hi-C
measures the interactions between the restriction sites at a genome-wide scale.

The ability to analyze the organization of chromosomes at a genome-wide scale is the main
advantage of the high-throughput 3C techniques over the microscope experiments. By means
of 3C-based methods, we observe novel long-range interactions between distant genomic loci
belonging to different gene clusters [94] which improves our understanding of the cell dynamics
at a genome-wide scale. On the other hand, 3C interaction data is collected over a population of
cells with variety of genome shapes that are due to temporal and spatial factors. Temporally, cells
are in different stages of the cell cycle expressing different sets of genes during the experiment.
These expression differences result in different 3D genome shapes [32], and as a result, lead
to different 3C interaction matrices. Spatially, each cell in the population may show different
rate of cellular stress response to the environmental stressors as well as being affected by the
differently distributed epigenetic factors such as histone methylations [11]. Different rates of
cellular response result in different expression profiles, and different histone densities affect the
probability of interaction between genomic loci [35] both of which in turn affect the genome
shape. For instance, barrier insulators that are enriched for certain histone methylations prevent
the spread of heterochromatin from a silenced gene to an actively transcribing gene [11].

3C-based methods measure the interactions between the restriction sites over a population
of cells as described in [94]. After the basic experimental procedure, our region of interest,
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Figure 2.3: Mouse cortex chromosome 19 Hi-C matrix at 40 kb resolution from Dixon et
al. [35] (only the first 1000 mb portion is shown).

such as a single chromosome, is divided into equal size bins at a given resolution. Restriction
sites are then mapped to their corrresponding bins, and 3C data is turned into a matrix of counts
F : V × V → R+

0 where V = {1, 2, . . . , n} is the set of bins, and Fu,v is number of interactions
between all pairs of restriction sites mapping to the bins u and v. For instance, Figure 2.3 shows
F for Hi-C data of mouse cortex chromosome 19 binned at 40 kb resolution in logarithmic
scale. In 3C-based experiments, F shows the interaction counts aggregated over a cell population,
however, we do not know the details of which interaction appeared in which cell at how many
times. In contrast to the microscopy experiments, 3C methods can estimate the genome shape and
the associated features at a higher scale. Even though 3C experiments do not provide the explicit
distances between genomic loci, resulting frequencies are inversely correlated with the actual
distances. These frequencies must be further post-processed to remove the experimental biases.
Then, 3D genome structure is estimated indirectly by mapping the normalized frequencies to 3D
distances under an optimization framework such as multidimensional scaling [146].

Estimated genome structure provides us novel insights about the genome. For instance, mam-
malian genomes at higher resolution show highly interacting regions that are closely embedded
in 3D. These regions are called topologically-associated domains (TADs), and TAD boundaries
are enriched for histone methylation markers H3K4me3 and H3K27ac, and they are depleted for
H3K9me3. Some of these markers have insulator roles, and they have critical roles in genome
3D shape formation [35]. Recently, it was also observed that eQTLs are statistically significantly
closer in 3D to their regulated genes than expected by chance [40]. Expression in the beta-globin
locus is mediated by folding to bring an enhancer and associated transcription factors within
close proximity of a gene [13, 142]. Modeling the three-dimensional shape of genome is thus
essential to obtain a more complex understanding of the cell dynamics.
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Chapter 3

Predicting Protein Functions By Metric
Labeling and Semi-metric Embedding

A preliminary version of this chapter appeared in Research in Computational Molecular Biology
- 15th Annual International Conference RECOMB 2011 with the title Metric labeling and semi-
metric embedding for protein annotation prediction [126].

3.1. Introduction

Networks encoding pairwise relationships between proteins have been widely used for protein
function prediction and for data aggregation and visualization. Sometimes these networks are
derived from a single data source such as protein-protein interactions [67, 115, 144]. In other
instances, they are constructed from integration of large collection of experiments involving
different data types, such as gene expression [52], protein localization [66], etc. The precise
meaning of an edge can differ, but a common feature of these networks is that two proteins
connected by an edge often have similar functions. By extension, these networks generally have
the property that two proteins that are “close” in the network are more likely to have closely
related functions. This correlation has given rise to a number of computational approaches to
extract hypotheses for protein function from relational data [34, 62, 69, 103, 125, 134].

Nearly all of these computational methods treat the function prediction problem as a label-
ing problem, where the labels are drawn from a vocabulary of biological functions or processes.
They typically ignore any relationships between the functions, treating them as independent la-
bels. However, there are usually known relationships among functions that ought to be useful to
make more accurate predictions of protein function. For example, the Gene Ontology (GO) [5]
is a manually curated database of biological functions and processes that represents the hierar-
chical relationships among different functions as a DAG. Part of hierarchical GO structure is
visualized via AmiGO [22] as in Figure 3.1. However, most prediction methods have ignored
such a structure.

In the few cases it has been done, integrating Gene Ontology knowledge into protein func-
tion prediction methods [12, 34] and clustering [25] has resulted in improved predictions. For
example, Barutcuoglu et al. [12] developed a Bayesian framework for combining multiple SVM
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Figure 3.1: Part of Gene Ontology hierarchy

classifiers based on the GO constraints to obtain the most probable, consistent set of predictions.
Their approach used a hierarchy of support vector machine (SVM) classifiers trained on mul-
tiple data types. This method also exploits the relationship between functions in GO but does
not exploit distances between functions directly. Taking another approach, Deng et al. [34] uses
the correlations between which proteins are labeled with each functions but they estimate these
correlations from training data and do not consider GO structure.

3.1.1 Metric Labeling for Function Prediction

Here, we propose to integrate Gene Ontology relationships with relational data by modeling
the protein function prediction problem as an instance of METRIC LABELING [76] which is a
special case of MRF [79] in which the distance function among labels is a metric. The METRIC

LABELING problem seeks to assign labels (here, protein functions) to nodes in a graph (here,
proteins or genes) to minimize the distance (in the metric) between labels assigned to adjacent
nodes in addition to the cost of assigning labels to nodes. The advantage of this formulation is
that rather than treating function labels as independent, unrelated entities, their similarities can
be directly incorporated into the objective function. A more detailed description of the METRIC

LABELING problem is given in Section 3.2.1.
The METRIC LABELING formulation can be seen as an generalization of minimum multi-

way cut [149], which implicitly assigns distance 0 between two identical functions and distance
1 between any pair of distinct functions. METRIC LABELING softens this to account for var-
ied levels of similarities between the functions. METRIC LABELING can also be seen as spe-
cial case of Markov Random Field (MRF). MRFs encode the same combinatorial problem, but
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the distance function is not restricted to metrics or semimetrics [79]. However, optimization
with such arbitrary distance functions is NP-Hard [27, 79], and there is no approximation al-
gorithm that can approximate the global optimum within a non-trivial bound. In contrast, there
are practical approximation algorithms for METRIC LABELING with logarithmic approximation
guarantees [23, 76]. In this research, we will use the integer programming formulation by [23]
which yields an O(log k) approximation algorithm for METRIC LABELING where k is number
of labels.

3.1.2 Constructing a Metric Distance Between GO Functions
METRIC LABELING (and MRF models) have typically been used in applications related to com-
puter vision [18, 79, 93] where often the distance between the labels naturally can be expressed
by metrics. In the case of function prediction from relational data, while heuristic relationships
between functions can be readily computed from the structure of the Gene Ontology graph, it is
more difficult to make these distances obey the requirements of a metric. Recall that a metric
d(·, ·) over items X satisfies the following 4 properties for all x, y, z in X:

d(x, y) ≥ 0 (Nonnegativity) (3.1)
d(x, y) = 0 if and only if x = y (3.2)
d(x, y) = d(y, x) (Symmetry) (3.3)
d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality) (3.4)

Typically, properties (3.1)–(3.3) can be easily satisfied, but often natural distance measures do
not satisfy the triangle inequality (3.4). When d satisfies (3.1)-(3.3) but not the triangle inequal-
ity (3.4), it becomes a semimetric.

To apply METRIC LABELING when the distance function on the labels is merely a semi-
metric, we will first convert the semimetric into a metric that is as similar to the semimetric
as possible. Approximating a semimetric by a close metric and MRF optimization when the
distances are semimetric are topics of recent interest and Kumar and Koller [82] have recently
suggested an algorithm based on minimizing the distortion. If S is a semimetric, andM is a met-
ric approximating S, contraction of this mapping is the maximum factor by which distances are
shrunk inM and expansion or stretch of this mapping is the maximum factor by which distances
are stretched in M. Distortion of this approximation is the product of the contraction and the
expansion. Although distortion minimization has traditionally been used in metric embeddings,
distortion considers the error introduced in the largest outlier and does not take into account the
distribution of the error over all the distances. For imperfect data that is far from a metric, in-
tuition indicates that minimizing the error introduced in the other distances would yield a better
metric.

To design metric approximations to semimetrics that better preserve all distances, we propose
a least-squared minimization algorithm that tries to minimize the total squared error among all
distances. To contrast it with traditional distortion, we call this approach least squared distortion
(LSD). This problem can easily be solved in polynomial time because it is a convex case of
quadratic programming. Thus, to apply METRIC LABELING in cases when the distances among
the labels are not metric, we first map the semimetric to a close metric using the LSD algorithm
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and then run METRIC LABELING on the new metric. Experiments on protein function prediction
suggest this is a good metric approximation method. The issue of converting a set of heuristically
estimated distances to a metric arises in many practical contexts and the LSD approach may also
be useful for other applications.

3.1.3 Improvement in Function Prediction

We test the LSD algorithm and the METRIC LABELING approach for function prediction on
relational data for 7 species: S. cerevisae, A. thaliana, D. melanogaster, M. musculus, C. el-
egans, S. pombe and Human. For S. cerevisae, we apply the algorithms to an integrated data
set that derives pairwise relationships between proteins from several lines of evidence such as
gene expression, protein localization data, and known protein complexes. For all 7 species, we
also test the approaches on networks derived from high-throughput protein-protein interaction
experiments.

The algorithms are tested in a variety of settings. The set of functional labels are drawn from
the Gene Ontology’s Biological Process sub-ontology. The number of considered GO terms is
varied between 90 and 300 in order to evaluate the effect of the size and specificity of the la-
bel set on performance. Specific GO terms are selected for each species to match sets of terms
used in previous publications [80] and that species annotation set. Depending on the number
of annotations required, those annotations that are seen more than others and also that are not
parent of each other are selected. Annotations for each case and for each species can be found
on the website. Various metrics and semimetrics relating the GO terms are also tested. A sim-
ple shortest-path metric is compared with two other semimetrics derived from lowest common
ancestor in the Gene Ontology DAG, semimetrics computed from a training set of labels, and
semimetrics computed from both training set and GO. See Section 3.2.4.

3.1.4 Our Contributions

We introduce the use of METRIC LABELING for protein function prediction from relational data
and show that under many reasonable metrics it outperforms the approaches based on Markov
Random Fields [88], Functional Flow [103], minimum multiway cut [72, 149], neighborhood
enrichment [62], and simple majority rule [125]. We test on 7 species in both protein-protein and
integrated networks using several different collections of GO terms. The results indicate that the
clean METRIC LABELING formulation is useful for automated function prediction.

In addition, we introduce the LSD objective function for finding a metric that approximates
a semimetric with the goal of preserving many distances rather than just limiting the maximum
distortion. The convex optimization approach for this problem may be useful in other contexts
where reasonable heuristic distances do not satisfy the triangle inequality. We compare the per-
formance of running first our LSD metric approximation algorithm and then running METRIC

LABELING on the LSD’s output metrics with a recent algorithm by Kumar and Koller [82] and
METRIC LABELING with LSD metric approximation seems to result in better predictions.
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3.2. Methods

3.2.1 The Metric Labeling Problem
The METRIC LABELING problem has been extensively investigated from a theoretical point of
view [23, 76]. Formally, we have a graph G = (P,E) over a set P of n nodes (here, proteins),
E of edges and a set L of k possible labels (here, functions) that we want to assign to objects.
We have a metric d(·, ·) satisfying properties (3.1)–(3.4) defined between any labels in L. We are
also given a function c(p, `) that provides the cost of assigning label ` ∈ L to p ∈ P . METRIC

LABELING seeks an assignment f : P → L of labels to proteins that minimizes the objective
function:

Q(f) =
∑
p∈P

c(p, f(p)) +
∑

(p,q)∈E

w(p, q)d(f(p), f(q)). (3.5)

where w(p, q) = w(q, p) is the weight of the edge between proteins p and q in the graph. The
first summation is called the assignment costs and depends only on individual choice of label we
make for each protein and second summation is called the separation costs and is based on the
pair of choices we make for two interacting proteins.

The intuition is that pairs of proteins that are highly related (wpq is high) ought to be assigned
labels that are highly similar (d(f(p), f(q)) is low). The assignment costs prevent the problem
from becoming trivial by forbidding the assignment of the same label to every protein. For a
protein p with a known function b, typically c(p, b) will be 0 and c(p, `) =∞ for all ` ∈ L except
b.

3.2.2 Integer Programming Formulation of Metric Labeling
The METRIC LABELING problem defined above can be written as an ILP [23]. In this for-
mulation, x(u, i) is binary variable indicating that vertex u is labeled with i and x(u, i, v, j) is
binary variable indicating that vertex u is labeled with i and vertex v is labeled with j for edge
(u, v) ∈ E. The objective is then to

minimize
∑
v∈V

∑
i∈L

c(u, i)x(u, i) +
∑

(u,v)∈E

∑
i∈L

∑
j∈L

w(u, v)d(i, j)x(u, i, v, j). (3.6)

The variables are subject to the following constraints:∑
i∈L x(u, i) = 1 ∀u ∈ V (3.7)∑

j∈L x(u, i, v, j) = x(u, i) ∀u ∈ V, v ∈ N(u), i ∈ L (3.8)

x(u, i, v, j) = x(v, j, u, i) ∀u, v ∈ V, i, j ∈ L (3.9)
x(u, i) ∈ {0, 1} ∀u ∈ V, i ∈ L (3.10)

x(u, i, v, j) ∈ {0, 1} ∀(u, v) ∈ E, i, j ∈ L (3.11)

Constraints (3.7) mean each vertex must receive some label. Constraints (3.8) force consistency
in the edge variables: if x(u, i) = 1 and x(v, j) = 1, they force x(u, i, v, j) to be 1. Con-
straints (3.9) express the fact that (u, i, v, j) and (v, j, u, i) refer to the same edge.
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Solving this integer programming instance optimally is NP-complete. Since we are dealing
with large networks, we use the O(log k) approximation algorithm given by Chekuri et al. [23]
that is based on solving the linear programming relaxation to identify a deterministic HST met-
ric [44] of the given metric such that the cost of our fractional solution on this HST metric is
at most O(log k) times the LP cost on the original metric. We implemented and ran the LP
formulation in GLPK [54].

3.2.3 Metric Approximation via Least Square Distortion Minimization

The algorithms suggested above have guaranteed performance bounds when the distance d is
a metric. However, finding a metric distance in practical contexts can be difficult. Ideally, the
distance encodes a large amount of knowledge about the relationship between protein functions.
It is likely that such as distance will not satisfy the triangle inequality. We define a novel metric
approximation algorithm, called LSD, based on minimizing the total least squared error between
a given semimetric set of distances and the computed metric distances. Least squared error
approximation is intuitive because the error of every distance contributes to the total error of the
metric approximation instead of only the maximum expansion and contraction as in distortion
case.

The LSD algorithm is defined as a quadratic program below, where S = {s1, . . . , s(n
2)
} is

the given set of semimetric distances between each pair of n items, and M = {m1, . . . ,m(n
2)
} is

corresponding set of metric distances, where for all i, si and di represent distances between the
same pair of proteins. Let I = {1, . . . ,

(
n
2

)
} be the set of indices of distances.

To find a good approximation to the distances in S we seek values for the {mi} variables to

minimize
∑
i∈I

(si −mi)
2 . (3.12)

We require that the mi values satisfy the following constraints for all i, j, k ∈ I that should be
related by the triangle inequality:

mi +mj −mk ≥ 0 (3.13)
mi +mk −mj ≥ 0 (3.14)
mk +mj −mi ≥ 0 (3.15)

The objective function can be written as (1/2)xTQx + cTx where n × n coefficient matrix Q
is symmetric, c is any n × 1 vector, and x is n × 1 vector of mi variables. In our case, the
matrix Q is positive definite and if the problem has a feasible solution then the global minimizer
is unique. In this case, the problem can be solved by interior point methods in polynomial time.
We implemented and ran the problem in CPLEX [145].

3.2.4 Metrics and Semimetrics

We test 4 different distance measures between protein functions:
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1. dSP(x, y) = the shortest path distance in the GO DAG between x and y divided by diameter
of GO. This is a metric and intuitively simple.

2. dLCA(x, y) = (b + c)/(2a + b + c), where a is shortest path distance from the root of the
ontology to the lowest common ancestor u of x and y and b is the shortest distance from x
to u and c is the shortest distance from y to u. The LCA distance measure does not satisfy
triangle inequality and is only a semimetric.

3. dLin(x, y) = (log Pr(x) + log Pr(y))/(2 log Pr(lca(x, y))), where Pr(x) is the empirical
probability (computed from the training annotations) that a protein is annotated with x,
and lca(x,y) is the LCA of x and y. This is defined in [95] as a similarity measure, and
we take its reciprocal as a distance. It is similar to the LCA distance above but uses the
probabilities of each annotation instead of GO distances. It has mostly been used in NLP
applications [20, 96]. However, it has recently been used in other applications of Gene
Ontology distances [37, 123]. It is a semimetric.

4. dKB(x, y) =
∑

p1∈Px

∑
p2∈Py

sp(p1, p2)/(diameter · |Px| · |Py|), where Px and Py are sets
of proteins in the training set annotated with x and y respectively, sp(x, y) is the shortest
path distance between x and y, diameter is the diameter of network.

We also consider the combination of a structure-based d ∈ {dSP, dLCA, dLin}with the knowledge-
based dKB using the formula:

dcomb(x, y) = (1− α)d(x, y) + αdKB(x, y) , (3.16)

where α is a weight of contribution of training set estimations. For α < 1, none of the combined
distances are metric (but are semimetric).

When the distance is not a metric, we first run the LSD metric approximation algorithm
(Section 3.2.3) to obtain a metric and then run METRIC LABELING on those metric distances.
When it is a metric, we just run METRIC LABELING.

In addition, we test two schemes for the assignment costs c(u, i) of assigning label i to node
u. Either they are chosen to be uniformly 1 or non-uniformly according to the density of a label
in a particular region of the graph as follows: We estimated for each protein p and label i cost
c(p, i) = np/(npinp) = 1/npi where np and npi are number of neighbors of p and number of
neighbors of p in the training set that have function i respectively. In the case where p has no
neighbors with function i, c(p, i) = 2. When a function of protein is known, cost of assigning that
function is 0 whereas assigning other functions are∞. Our two-step framework is summarized
in Figure 3.2.

3.2.5 Network Data

We tested our algorithm on the protein-protein interaction (PPI) networks of 7 species obtained
from BIOGRID [138]: S. cerevisiae, C. elegans, D. melanogaster, A. thaliana, M. musculus,
H. sapiens, and S. pombe. We used all physical interactions in BIOGRID. Duplicate edges
were counted as single edges. We consider only the largest connected component. We used
GO annotations downloaded from the Gene Ontology as our true annotations. Only non-EIA
annotations are considered. When considering only PPI networks, weight of every edge is 1.
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Figure 3.2: Protein annotation prediction framework

For S. cerevisiae, we also considered an integrated network derived from several data sources,
including gene expression [52], protein localization [66], protein complexes [53, 63], and protein
interaction [138]. We used protein complex dataset by assigning binary interactions between any
two proteins participating in the same complex, yielding 49313 interactions. For gene expression
data, we assigned binary interactions between genes whose correlation in [52] is greater than 0.8
or smaller than −0.8. We assigned binary interactions between any proteins that are annotated
to the same location in [66].

We combined these data sources into one network by using noisy-or with their reliability
scores, where the interaction score between nodes u and v is taken to be w(u, v) = Score(u, v) =
1 −

∏
i∈Euv

(1 − ri) where Euv are the experiments in which u and v were observed to interact.
The reliability ri of each source i was estimated by the percent of edges from i that connect
proteins of shared function in the training data.

3.2.6 Comparison to Other Methods
We run algorithms on a Mac which has 2 GHz Intel Core 2 Duo processor and 2 Gb memory. The
METRIC LABELING algorithm took approximately 15 minutes to run. We compared METRIC

LABELING predictions with several well-known direct function prediction methods:
Majority: Each protein is annotated with the function that occurs most often among its neigh-

bors as described in [125]. The main disadvantage of this method is that the full topology
of network is not considered.

Neighborhood: For each protein, we consider all other proteins within a radius r = 2 as de-
scribed in [62] and a χ2-test is used to determine if each function is overrepresented.

GenMultiCut: This approach is described in [149] and [72]. It tries to cluster the network by
minimizing the number of edges between clusters. This algorithm is a simpler version of
our algorithm in which distance between two functions are either 1 (if they are not the
same) or 0 (if they are equal). Hence, it cannot take the relations among functions into
account. We followed the same approach as [103] and ran an ILP formulation for this
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problem 50 times, each time perturbing the weights by a very small offset drawing from
uniform distribution on (−wmax10−5, wmax10−5) where wmax is the maximum edge weight
in the graph. Then probability of assigning a function to a protein will be the fraction of
number of annotations of this protein with that function. We implemented this by using
MathProg and GLPK. It runs in < 1 minute on yeast.

FunctionalFlow: Each function is independently flowed through the whole network according
to an update rule and each node is assigned to functions depending on the amount of flow
it receives [103].

MRF: This method is from [88]. It is based on kernel logistic regression which is the improve-
ment over previous MRF models [34, 81]. This method also tries to exploit the relation
between different functions by identifying a set of functions that are correlated with the
function of interest. However, it does not use the structure of GO when estimating the
correlation. This approach takes < 5 minutes to run on yeast.

We also compared LSD with a recent approach for MAP estimation under a semimetric:

Semimetric MAP Estimation Algorithm: This algorithm from [82] tries to approximate a given
semimetric distance function using a mixture of r-hierarchically well-separated tree (r-
HST) metrics [44]. Then, it solves each resulting r-HST metric labeling problem. We
followed the same approach as in GenMultiCut, run the formulation 50 times by perturb-
ing the edges and assign the fraction of number of annotations of this protein with that
function as probability of annotating this protein with that function. We modified code
provided by the authors to work on our data sets. It ran in less than a 1 minute on yeast.

Solving LSD optimally takes an hour to three hours depending on number of elements in the
ontology. However, we only run that once to come up with metrics. This time can easily be
reduced to several minutes by considering an iterative approach that starts with point set which
elements satisfy triangle inequality and adding other points iteratively by minimizing the total
distance modifications made so that current set of points after each iteration will keep satisfying
triangle inequality. However, solution of this iterative approach is not guaranteed to be optimal
anymore.

3.2.7 Evaluating Performance

We use fivefold cross-validation to compare the predictive performance of the algorithms. The
dKB distance and the non-uniform assignment costs are computed using only the remaining 80%
of annotated proteins each time. All performance measurements are the average of the 5 runs.
Each method described in Section 3.2.6 yields a score, and we assess performance at different
false positive rates by varying the score thresholds from 0 to 1 by 0.05 increments. We varied
the number of considered functions from 90 to 300. We counted each annotation seperately as a
separate example.
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Figure 3.3: ROC curves comparing various algorithms with METRIC LABELING approaches
using 90 ontology terms. SemiMap indicates the semimetric-to-metric conversation algorithm
by Kumar and Koller [82] is run; LSD means we first run our LSD minimization algorithm
and then METRIC LABELING. The trade-off α between the GO-based distance and the training
distance (Equ. 3.16) is either 0.1 or 0.3 as indicated.

3.3. Results

3.3.1 Function Prediction in Yeast Using a PPI Network

Predictive performance on the yeast PPI network is shown in Figure 3.3. The curves show that
METRIC LABELING combined with our LSD metric approximation algorithm performs better
than the other tested algorithms. METRIC LABELING is more accurate than GenMultiCut in ev-
ery case since GenMultiCut ignores the effect of distances between functions. FunctionalFlow
also does not perform as well as METRIC LABELING, which again may be due to its indepen-
dence assumption between functions. METRIC LABELING still performs well when number of
elements in ontology is 150 and 300 (Figure 3.4).

METRIC LABELING also outperforms the MRF-based algorithm [88]. This may be because
the correlation estimations between functions used in that approach depend solely on training
data whereas our distances are estimated from both the training set and the structure of the GO
DAG. This indicates that, while the Gene Ontology is an imperfect, incomplete, manually edited
resource, the distances between annotations in the ontology do contain useful information that
can be exploited to make more accurate predictions.

Among various distance heuristics we used, the LCA and Lin distances are better in general
since they take the lowest common ancestor into account. The dLin and dLCA distances perform
about the same but they both perform better than the dSP metric (Figure 3.5a). This further
indicates that lowest common ancestor is a good distance estimator when there are hierarchical
relations among points as shown previously in WordNet [49]. This also echos results in several
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Figure 3.4: Performance of METRIC LABELING degrades as the number of terms increases.

other papers [20, 96, 116] in terms of showing effectiveness of lowest common ancestor as a
measure between ontology terms. In addition, in almost all cases the nonuniform assignment
costs performs slightly better than uniform assignment costs, although the effect is not large,
and if nonuniform assignment costs are not available, uniform assignment costs can be nearly as
effective.

Running the LSD minimization for semimetrics and then running METRIC LABELING per-
forms better than Semimetric MAP Estimation algorithm [82] on most of the cases which shows
optimizing least squared error, rather than the classical distortion, for metric approximation also
seems to be effective in the protein function prediction application.

3.3.2 Trade-off Between GO-distances and Network Distances

We also investigate how performance varies as the tradeoff between a distance computed from
the GO structure (dSP, dLCA, dLin) and a distance computed from proximity in the network (dKB)
is varied. Figure 3.5b shows the performance of METRIC LABELING with LSD metric approxi-
mation and the LCA distance for different trade-offs α between the GO-based structural distance
(dLCA) and the trained distances dKB as described in Equ. 3.16. In almost all cases, using dis-
tances based solely on GO performs better than using only dKB but using estimations both from
training set and Gene Ontology structure performs better than using either one alone.

Combining the Gene Ontology knowledge with training set estimations using low values of
α (α = 0.1 or α = 0.3) achieves the best performance by a slight margin for most of the cases.
When the number of elements in ontology increases, best performance is achieved by running
METRIC LABELING with combination of dLin distances and training set estimates when α = 0.7.
After the initial benefit of using some of the dKB distances, the performance starts to decrease
as the weight α is increased. This may mean that dKB is most effective when it operates as
a tie-breaker between terms that have the same GO distances. (The dependence on α of the
performance of the other GO-based distances dSP, dLin is similar.)
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Figure 3.5: (a) Performance of METRIC LABELING combined with the LSD minimization us-
ing various distance measures. Uni indicates the assignment costs of METRIC LABELING are
uniformly 1 except for known annotations and Nonuni means assignment costs are nonuniform
as described in Section 3.2.4. Shortest, LCA, Lin indicate the different distances functions in
Section 3.2.4. (b) Performance of the dLCA distance combined with the dKB distance with various
α using the LSD algorithm.

3.3.3 Robustness on the Yeast PPI Network

METRIC LABELING combined with LSD metric approximation is more robust to noise in both
misannotations and edge removal as shown in Figure 3.6. We tested for robustness of the pre-
dicted results in two ways. First, we removed various percentages of edges randomly from the
PPI network and re-run our algorithm. Performance clearly decreased but even when 50% and
40% of the PPI edges are removed on 90 and 150 element ontologies respectively a METRIC

LABELING approach performs as well as other algorithms run on the true PPI network. The
fewer elements the ontology has, the more robust it is in terms of edge removal. The Lin and
LCA distance measures again outperform shortest path distance and running LSD minimization
for semimetrics and then METRIC LABELING does better than using the Semi-Metric MAP Es-
timation algorithm [82]. The LSD minimization may handle the noise in the data better during
its error minimization.

Secondly, we also tested robustness by misannotating various percentages of protein annota-
tions and then running our algorithm. Performance even when 30% of the proteins are misan-
notated on both 90 and 150 element ontologies is still comparable with its performance with the
true labels, and it is not worse than other algorithms on the true labels. However, in the case of
misannotations, combining GO knowledge with training set estimations (α = 0.1 or α = 0.3) no
longer performs the best. Rather, the GO structure-based distances in isolation perform the best
as expected.
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Figure 3.6: Robustness of METRIC LABELING combined with LSD

3.3.4 Performance on Other Networks
When we created integrated network from multiple sources as described in Section 3.2.5, the per-
formance increases slightly (last curve in Figure 3.3). This shows that the METRIC LABELING

approach is also useful on relational data other than PPI networks. We also tested our algorithm
on several species. Among those species, performance strongly depends on how complete PPI
network is, with sparser networks generally exhibiting worse performance. Again, the METRIC

LABELING approach performs competitively with existing methods.

3.4. Conclusions
We show that GO structural information can be exploited to achieve better protein function pre-
diction. We also show that the clean, combinatorial problem of METRIC LABELING can effec-
tively use these distances and produce accurate predictions in a reasonable amount of computa-
tional time.

Our novel LSD metric approximation algorithm combined with METRIC LABELING per-
forms better than the semimetric MAP estimation algorithm in most cases. This is interesting
since distortion defined as in Section 3.1 has nearly always been used as the performance mea-
sure for metric embeddings. However, as mentioned, distortion does not consider the distribution
of the error on all points. Its minimization considers just the minimization of the boundary cases
(of maximum contraction and expansion). LSD minimization instead tries to minimize the total
least squared error which makes sense both intuitively and experimentally as we have seen on
protein function prediction. Its effectiveness on different application domains is an open ques-
tion, but the LSD approach is likely to be useful for the common problem of converting a set of
heuristic distances into a metric for subsequent processing with an algorithm (such as that for
METRIC LABELING) that assume a metric. The LSD metric approximation is completely inde-
pendent of METRIC LABELING. Either of these algorithms can be changed without affecting the
other. However, this is not the case for Semimetric MAP Estimation algorithm, for which the
two phases of metric estimation and prediction are not independent.
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Chapter 4

Convex Risk Minimization To Infer
Networks From Probabilistic Diffusion
Data At Multiple Scales

A preliminary version of this chapter appeared in IEEE International Conference on Data Engi-
neering ICDE 2015 with the title Convex Risk Minimization to Infer Networks from Probabilistic
Diffusion Data at Multiple Scales [128].

4.1. Introduction

Networks are being heavily used to model and analyze the properties of various social and bi-
ological systems. The phenomenon of study is often modeled as a dynamic process spreading
over the network. Diffusion is special case of those processes in which a spread (e.g., an infec-
tion) starts from some part of the graph and spreads to other portions over time via the edges
of the graph. Some examples are virus spreading [121], and idea spreading over Twitter [83].
A diffusion model defines a set of possible states that the nodes of the graph can be in as well
as rules for probabilistically switching between those states. SEIR [61], for example, is a well-
known example of a diffusion model that is often used to simulate the spread of infection. Other
widely-used SI, SIS, SIR models [61] are special cases of the SEIR model.

In many situations, it is easier or less costly to observe the states of the nodes than it is to
observe the edges of the network over which the diffusion process is spreading. For instance,
we might easily observe opinion diffusion on social networks but it may not be possible to see
the network due to privacy. Similarly, it is difficult to measure the human contact network for
flu transmission [121] but it is easier to detect whether people are ill. In other cases, we are also
interested in understanding the diffusion characteristics at macroscale since it is infeasible and
unnecessary to learn it on micro level (person-to-person contact). For instance, we are interested
in estimating the rates of influenza diffusion between the U.S. states but not on the person to
person details of this transmission. In this research, we study the problem of inferring the un-
known network when all we are able to observe are traces of how the states of node change as the
diffusion spreads over the graph. In terms of influenza diffusion, unknown network models the
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contacts between humans at microscale, whereas it represents influenza diffusion rates between
U.S. states at macroscale. Recovery of the transmission network is important in designing better
epidemic containment strategies and better vaccination strategies.

We present CORMIN (COnvex Risk Minimization to Infer Networks) that addresses the prob-
lem of inferring the graph from the diffusion data in less idealized and more applicable settings.
First, we explore the case that diffusion data is not perfectly known. This uncertainty in the diffu-
sion data is interpreted differently in different contexts. For instance, when tracking the spread of
a disease, measured symptoms such as headache and fatigue only partially reveal a node’s state
since they are not perfect representatives of diffusion states (infected, etc.). Further, the infected
person does not suddenly start showing all the symptoms but instead severity of the symptoms
increase progressively over time. In this case, we cannot perfectly know the diffusion times but
rather estimate our degree of belief (confidence) of being at certain states. When estimating the
influenza diffusion rates between the U.S. states at macroscale, probabilistic modeling is manda-
tory since the diffusion data is an ensemble over many people, and probabilistic data in each U.S.
state is interpreted as the percentage of people infected with influenza in that U.S. state. Second,
obtaining diffusion data is often expensive, so we may not know status of nodes at each possible
time step but rather observe them with frequency lower than that at which the diffusion model is
operating. Lastly, we infer networks from SEIR model and its special cases at both micro and
macro scales.

Our main innovation to tackle these challenges is to treat diffusion data for each node and
each possible state as probabilistic time series. This is in contrast to the existing diffusion-based
inference methods [55, 56, 58, 102, 117] for which a node is in each state with either probability
0 or 1. We formulate the graph inference problem as L1 regularized risk (expected loss) min-
imization program from SEIR dynamics. When the diffusion data is perfect, L1 regularization
can be removed and CORMIN can be run nonparametrically by adding constraints that force at
least a single edge to exist between a newly infected node and the previously infected nodes
that are not yet recovered. We applied CORMIN to infer synthetic networks, high school human
contact network at microscale, and to estimate influenza diffusion rates between U.S. states at
macroscale.

CORMIN is capable of inferring the graphs under many challenging cases, and we found it to
perform consistently better than the existing methods in almost all cases due to its probabilistic
formulation even though we run the competing methods with their best parameters. Performance
of CORMIN is not significantly affected by the probabilistic data whereas the existing methods
performance decreases even though we apply a non-naive rounding scheme to pre-process the
input to make schemes designed for 0/1 probabilities work with more general probabilities. For
instance, CORMIN can achieve F0.1 score around 0.7-0.8 over a human contact network if the
traces are the only prior information available about the graph. It can also nicely model and infer
the influenza diffusion between U.S. states at macroscale that cannot be done by the existing
methods. At macroscale, we found the influenza transmission rates between U.S. states estimated
by CORMIN on Google Flu Trends dataset to be correlated with the human transportation rates
between those states. Estimated diffusion rates between U.S. states are asymmetric, and the
diffusion rates between less populous states are high especially when they are close to each
other.

In summary, probabilistic modeling of the observed data, and the ability to model both edge
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existence and non-existence is the main reason CORMIN outperforms the other methods on both
real and synthetic data under various challenging cases. In contrast to the existing methods,
we may also use CORMIN to estimate the diffusion rates at macroscale via its probabilistic
formulation. CORMIN still performs reasonably well when the noise dynamics parameters that
map exact transition times to the observed diffusion data are also unknown. In this case, it can
simultaneously estimate the noise dynamics parameters and infer the graph which cannot be done
by the existing methods.

4.1.1 Related Work
Many existing methods [3, 7, 61] model the influenza transmission by differential equations;
they make a homogenous network assumption by ignoring the effect of the network structure
in diffusion. However, this assumption is not valid for many diffusion types at both micro and
macro scales. For instance, influenza spreads over human contact network, and this network
is mostly heterogeneous. Similarly, influenza spreads between U.S. states at macroscale but
the transmission rates between the states are not the same. Recently, some methods have been
suggested to infer social networks from diffusion data. Among them, both NetInf [55] and
MultiTree [117] formulate inference as a maximum likelihood problem in terms of only the
edge existence, and ConNIe [102], NetRate [56], KernelCascade [38] and InfoPath [58] predict
the edges by estimating the diffusion probabilities. Another network inference method makes a
prior assumption about the scale-freenees of the network [31].

These methods have a number of shortcomings that we attempt to address here. They as-
sume perfect knowledge of diffusion events, and neglect the possibility of partially observable,
under-sampled probabilistic diffusion data. Further, they cannot model the uncertainty inherent
in the diffusion data. Another shortcoming is their inability to estimate the diffusion rates at
macroscale. In this case, existing methods cannot treat multiple nodes as a single ensemble node
which is mandatory especially for large-scale networks. Lastly, we define the inference problem
for arbitrary loss functions without making any prior assumption about the graph structure, and
show that it can be solved optimally for certain type of loss functions.

Similar problems have been previously considered when collective statistics instead of indi-
vidual statistics are available [41, 135]. For instance, collective graphical models are shown to
be useful for estimating the bird migration paths given collective bird location data over time
instead of individual positions [41] where they formulate inference as an extension of maximum
flow problem. They also develop efficient approximate inference methods under more general
collective graphical models [135]. However, these methods are based on flow conservation where
latent nodes change position without changing their states over time by interacting with other la-
tent nodes. Then, these methods cannot be directly applied to our problem of estimating the
connectivity structure and influenza transmission rates at macroscale under SEIR.

4.2. Problem Formulation
Let G = (V,E) be an unseen graph for which the edges E are difficult to observe directly.
Edges of G may represent human contact events, interactions in PPI, relationships in social
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Symbol Definition

d A single trace
D Set of diffusion traces
Td Set of time points observed in D
sdv(tj), edv(tj),
idv(tj), rdv(tj)

Probabilities of v being in S, E, I, R states in trace d at
time tj

b A perfect trace: b = {bv, v ∈ V }
bv Perfect trace for node v: bv = {tbe,v, tbi,v, tbr,v}
tbe,v, t

b
i,v, t

b
r,v Exact time v passes into E, I, R in trace b

Table 4.1: Notation for problem definition

network, etc. We assume a uniform prior over the edges E since we do not have additional
information about the graph structure, or the node attributes. At each time step, each node of
G can be in one of several states S. These states represent an abstraction of the node’s status
with respect to a diffusion process such as the spread of a virus. The modelM governs how a
node’s state changes based on the states of its neighbors at previous time steps. Here, we focus
on the general and widely-used SEIR model: the states S are Susceptible (S), Exposed but not
contagious (E), Infected and contagious (I), and previously infected but now Recovered (R). The
SI, SIS, SIR models are special cases of the SEIR model in which some states and transitions
cannot occur. Those states are general enough abstractions to model various forms of diffusion in
different contexts [91, 121]. The SEIR is Markovian, and it obeys the independent cascade [73]
assumption which states that a single diffusion from one of node’s neighbors is enough for node
to become exposed.

More formally, a trace d of the SEIR diffusion process measured at time steps Td provides
us with a set of probabilities {sdv(t), edv(t), idv(t), rdv(t)} for every node v ∈ V and every time
step t ∈ Td}, where xdv(t) is the probability that node v is in state x at time t in trace d. For any
node v and time t, we assume sdv(t) + edv(t) + idv(t) + rdv(t) = 1 indicating that v must be in one
of the SEIR states. In fact, exact state transitions of node v into E, I, R states in trace d happen
at tde,v, t

d
i,v, t

d
r,v respectively. We cannot observe these exact state transition times, but they are

related to the observed trace d via the noise dynamics functionN which is explained in detail in
Section 4.4.1. N provide the probability of observing a particular probabilistic state trace for a
node instead of the true state trace. Thus, our computational problem is:
Problem 1. Infer the set of edges E given: the set of nodes V , a collection D of traces of
probabilistic node states of the form described above, estimates of the noise dynamics N , and a
modelM, such as SEIR, by which the diffusion process is assumed to have occurred.

Notation for the problem and its input is summarized in Table 4.1.
Our general framework for Problem 1 is this: we write down a set of probabilistic dynamic

equations that model how the probability of each node being in each state changes under SEIR.
This provides a theoretical trajectory through the space of state probabilities that depends on
which edges exist in the graph and state transition times. We then formulate an optimization
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Symbol Definition

sduv Probability of diffusion from u to v in trace d
pduv, f

d
uv Probability, cumulative distribution of diffusion time from u to v in

trace d
peiv , pirv Probability distribution of E→ I, I → R transition time for v
eidv(tj), irdv(tj) Probability of E→ I, I → R transition for node v at time tj
pduv(t

′, t′′|t) Probability that v changed to E during [t′, t′′] by u infected at t in
trace d given u has not exposed v until t′

ssdv(tj) Probability that v does not leave state S between tj−1 and tj
ẽdv(t), ĩdv(t), r̃dv(t) Boolean indicator that is 1 if v enters E, I, R in trace d at time t
gs(a), ge(a), gi(a),
gr(a)

Probability of observing 4 × 1 state vector a instead of perfect S,
. . ., R states in any trace at any time.

αsm, αem, αim, αrm Dirichlet distribution parameter vector for mixture component m
and states S, . . ., R

Table 4.2: Table of notation for diffusion model

problem to find the choice of edges that makes the theoretical trajectories match the observed
traces as best as possible under the expectation of the selected loss function over the exact state
transition times.

4.3. Diffusion Dynamics
We introduce xuv for every pair of nodes u 6= v with the interpretation that xuv = 1 if edge (u, v)
should exist. Assuming trace d is known for sorted time steps Td = t1, t2, t3, . . . , tw, for each
consecutive pair tj−1, tj of this sample, SEIR can be thought as nonlinear discrete model and its
dynamics can be written as in (4.1)–(4.4):

sdv(tj) = sdv(tj−1) ssdv(tj) (4.1)

edv(tj) = edv(tj−1)
(
1− eidv(tj)

)
+ sdv(tj−1)

(
1− ssdv(tj)

)
(4.2)

idv(tj) = idv(tj−1)
(
1− irdv(tj)

)
+ edv(tj−1) eidv(tj) (4.3)

rdv(tj) = idv(tj−1) irdv(tj) + rdv(tj−1) (4.4)

where ssdv(tj), eidv(tj), and irdv(tj) model the S→S, E→I, and I→R transition probabilities that
will be explicitly defined ahead. The system of equations (4.1)–(4.4) give the probability of each
node being in each state at time tj . For instance, according to (4.2), node v is exposed at time
tj if it is exposed at tj−1 and has not transitioned into infected state, or it was susceptible at tj−1

and transitioned into exposed state. Among the all state transitions, only S→E is exogenous; it
is affected by xuv and that dependence is captured in ssdv(tj) terms. Figure 4.1 illustrates this
dependence. Only the states of nodes 1, 4 may affect S→E transition for node v since there is
an edge between v and them, while trace dv provides the set of state probabilities of node v for a
restricted set of time points.
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Figure 4.1: Only the S→E transition is being affected by G, while trace dv provides the set of
state probabilities of node v

In SEIR, v stays in state S at time t if it does not become exposed by an infected neighbor
until after t. Let sduv be the probability of diffusion from u to v in trace d. If d diffuses from u
to v, diffusion from u to v happens at time tdi,u + t where t is distributed according to given pmf
pduv, and its cdf fduv. Then, probability that node u that was infected at time t would expose a
neighbor v over interval [t′, t′′] given it has not exposed v until t′ (pduv(t

′, t′′|t)) can be computed
as in (4.5) by using Bayes rule when t′′ ≥ t′ ≥ t:

pduv(t
′, t′′|t) =

P (u infected at t exposed v between t′ and t′′)
P (u infected at t has not exposed v until t′)

=
fduv(t

′′ − t)sduv − fduv(t′ − t)sduv
1− fduv(t′ − t)sduv

(4.5)

where fduv(∆t) is the cdf of diffusion time from u to v in trace d, and the difference in the
nominator is the probability of exposure from u in the interval [t′, t′′]. Using (4.5), we can
estimate ssdv(tj) in (4.6) in terms of the probability of v not having been passed the infection
from any node u:

ssdv(tj) =
∏
u∈V

∏
t<tj

(
1− pduv(tj−1, tj|t)

)xuv ĩdu(t)
(

1−
∑

t′<tj
r̃du(t′)

)
(4.6)

In other words, the probability that v remains susceptible at time tj is estimated to be the product
over all nodes u for which xuv = 1 of the probability that u was infected at time t < tj without
recovering until tj but did not spread to v during the interval [tj−1, tj]. In (4.6), ẽdv(t), ĩdv(t) and
r̃dv(t) are boolean indicators that are 1 if v enters E, I, R in trace d at time t respectively (tde,v = t,
tdi,v = t, tdr,v = t). The probabilities eidv(tj), irdv(tj) in (4.1)–(4.4) can be estimated by (4.7)–(4.8)
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in terms of E→I / I→R transition probabilities of v, and probability of v being E, I at time t.

eidv(tj) =

tj∑
t=t1

peiv (tj − t) ẽdv(t) (4.7)

irdv(tj) =

tj∑
t=t1

pirv (tj − t) ĩdv(t) (4.8)

A summary of the notation for the diffusion model is in Table 4.2.

4.4. Convex Risk (Expected Loss) Minimization Based For-
mulation

Having defined the diffusion dynamics, our goal is now to formulate the inference Problem 1. We
assume that diffusion data is given, and we have an estimate of noise dynamicsN , so xuv will be
the only variables in diffusion dynamics (4.1)–(4.4). Let b = {bv, v ∈ V } be a noiseless trace,
where bv = {tbe,v, tbi,v, tbr,v} and tbe,v, t

b
i,v, t

b
r,v are the exact exposure, infection and recovery times

of node v in perfect trace b respectively. Let B be a set of noiseless traces, and Lb : X × b→ R,
LB : X×B → R be real-valued loss functions that estimate the loss (cost) of the set of edges X
given b and B respectively from the dynamic equations (4.1)–(4.4). In our case, set of true
diffusion data B is hidden, but we observe D instead which defines the probabilities of being at
states S, E, I, R for each time step as discussed in Section 4.2. Given D, the most probable set of
edges X ⊆ V × V can be found by minimizing the risk (expected loss) over all realizations of
D:

R(X,D) = EB[LB] =
∑
B

LB(X,B)P (B|D) (4.9)

where P (B|D) models the noise dynamicsN ; it is the probability that the set of observed traces
D are generated from the latent true diffusion dataB. We assume that each trace d is independent
and noise affects each trace d independently, so P (B|D) =

∏
d∈D P (b|d). Then, overall risk can

be expressed as:

R(X,D) =
∑
d∈D

R(X, d) =
∑
d∈D

∑
b∈Q(d)

Lb(X, b)P (b|d) (4.10)

where Q(d) = {(te(v), ti(v), tr(v)) : te(v) ∈ Td, te(v) < ti(v) < tr(v) , v ∈ V } is the set of
all latent valid trace realizations that might explain the observed d.
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4.4.1 Estimating P (b|d)

The noise affects each node independently, so P (b|d) =
∏

v∈V P (bv|dv). From Bayes theorem,
P (bv|dv) can be expressed as:

P (bv|dv) =
P (dv|bv) P (bv)∑

b∗v∈Q(d)[v]

P (dv|b∗v) P (b∗v)︸ ︷︷ ︸
P (dv)

(4.11)

The probability P (dv|bv) of observing dv given bv can be expressed as in (4.12) since obser-
vations at each time step are also independent:

P (dv|bv) =
∏
t<tbe,v

gs(dv[t])
∏

tbe,v≤t<tbi,v

ge(dv[t])
∏

tbi,v≤t<tbr,v

gi(dv[t])
∏
tbr,v≤t

gr(dv[t]) (4.12)

In (4.12), set of functions gx(dv[t]) for x ∈ {s, e, i, r} give the probability of observing the
4 × 1 vector dv[t] at time t instead of perfect S, E, I, R traces respectively. Entries of dv[t] sum
up to 1, so we model each gx(dv[t]) by a mixture of 4-dimensional Dirichlet distributions with
M components as in (4.13) which may approximate any functional shape arbitrarily well:

gx(dv[t]) =
∑
m∈M

wxm g
m
x (dv[t]) (4.13)

Each mixture component m for state x, trace d and time t is distributed according to the
concentration parameters αx,d,tm . For simplicity, we assume the same concentration parameters
for every time t and trace d αx,d,tm = αxm. We also assume mixture weights wxm to be same for
every trace d. Each Dirichlet component in (4.13) is explicitly written in (4.14) where dyv[t] is
the value of state y in dv[t], αxm[y] is the concentration parameter for state y, and B(αx

m) is the
normalizing constant:

gmx (dv[t]) =
1

B(αx
m)

∏
y∈{s,e,i,r}

(dyv[t])
αx
m[y]−1 (4.14)

On the other hand, prior P (bv) in (4.11) can be explicitly written as in (4.15) in terms of state
transition probabilities:

P (bv) = P (tbe,v)P (tbi,v|tbe,v)P (tbr,v|tbi,v)
P (bv) = P (tbe,v) p

ei
v p

ir
v (4.15)

where P (tbi,v|tbe,v) = peiv , P (tbr,v|tbi,v) = pirv , and P (tbe,v) = 1
|Td|+1

is uniform since we do not have
any prior information about the node transition times. The additional 1 in the denominator of
P (tbe,v) models the case of v not ever becoming exposed.

The generative trace noise model expressed by (4.11) can also be seen as a variant of hidden
semi-markov model (segment model) [101] where there is a hidden state for every time point
in Td with 4 possible values S, E, I, R. In our case, each state also emits a duration to model
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the duration of being at a certain SEIR state, but each time step emits a distribution over 4
states instead of a single value as in basic hidden semi-markov model. Only a subset of state
transitions are possible at each hidden state as they are restricted according to SEIR dynamics.
Here, transition probabilities are defined by peiv , pirv and P (tbe,v) whereas emission probabilities
are from Dirichlet distribution mixture as in (4.13).

4.4.2 Estimating Lb(X, b)

There are variety of loss functions for Lb(X, b). Here, we are dealing with the probabilities so
we use negative log-likelihood loss (Lb(X, b) = − log (L(X|b))) where the likelihood is defined
as in (4.16)–(4.17), and the risk function turns into (4.18).

L(X|b) =
∏
v∈V

∏
t<tbe,v

sdv(t)
∏

tbe,v≤t<tbi,v

edv(t)
∏

tbi,v≤t<tbr,v

idv(t)

 (4.16)

L(X|b) = C
∏
v∈V

(1− ssdv (tbe,v)) ∏
t∈Td,t<tbe,v

ssdv (t)

 (4.17)

R(X,D) =
∑
d∈D

∑
b∈Q(d)

P (b|d)

− log(L(X|b))︷ ︸︸ ︷(∑
v∈V

− log
(
1− ssdv

(
tbe,v
))

+

︷ ︸︸ ︷∑
v∈V

∑
u∈V

∑
tbi,u≤t<min(tbr,u,t

b
e,v)

− log
(
1− pduv

(
t− 1, t|tbi,u

))
xuv

)
(4.18)

Likelihood (4.16) is the multiplication of the node state probabilities at each observed time point
in perfect trace b under SEIR. (4.17) is obtained from (4.16) by dynamic equations (4.1)–(4.4)
where the constant C is obtained from the state transitions that do not involve X . Risk for
negative log-likelihood loss is written explicitly in (4.18) when combined with (4.6), and it is
convex as proven in Theorem 4.4.1. R(X,D) (4.18) is convex so it can be minimized optimally
by the existing convex optimization methods [16].
Theorem 4.4.1. Risk R(X,D) with negative log-likelihood loss function in (4.18) is convex.

Proof. We need to prove the convexity of the each additive term w.r.t. X to prove the convexity
of R(X,D) (4.18) for negative log-likelihood loss. There are two types of terms involving X:
− log

(
1− pduv(t

b
e,u, t− 1, t)

)
xuv and − log

(
1− ssdv

(
tbe,v
))

. − log
(
1− pduv(t

b
e,u, t− 1, t)

)
xuv

is convex since it is a linear function ofX . The other term− log
(
1− ssdv

(
tbe,v
))

can be explicitly
written in (4.19):

− log
(
1− ssdv

(
tbe,v
))

= − log

(
1− exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv
)

(4.19)

where wu are defined in (4.20) for every u ∈ V, tbi,u < tbe,v:

31



wu = log
(
1− pduv(t

b
i,u, t

b
e,v − 1, tbe,v)

)
(4.20)

(4.19) is convex since its Hessian when expressed in (4.21):

H =
exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv(
1− exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv
)2


w2

1 w1w2 w1w3 . . . w1wn
w2w1 w2

2 w2w3 . . . w2wn
w3w1 w3w2 w2

3 . . . w3wn
. . . . . . . . . . . . . . .
wnw1 wnw2 wnw3 . . . w2

n

 (4.21)

is Positive semidefinite (PSD) as it can be expressed as Z yT y where:

y = [w1, w2, . . . , wn] (4.22)

Z =
exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv(
1− exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv
)2 ≥ 0 (4.23)

4.4.3 A More Efficient Relaxation
However, minimizing R(X,D) (4.18) requires estimating the expectation of the loss function
over set of all possible perfect transition time realizations defined by Q(d). This expectation es-
timation can be quite time-consuming since it may require an exponential number of summations
in the worst case. To infer graphs efficiently, we can instead optimize the relaxed risk (R̂(X,D))
as in (4.24):

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

P (b|d)

(∑
v∈V

T bv +
∑
v∈V

∑
u∈V

min(tbr,u,t
b
e,v)∑

t=tbi,u

− log
(
1− pduv(t− 1, t|tbi,u)

)
xuv

)
(4.24)

which is obtained by replacing each nonlinear term log(1 − ssdv(tj)) with its first-order Taylor
approximation (T bv ) as estimated in (4.25):

T bv =
∑
u∈V

log
(
pduv(t

b
e,v − 1, tbe,v|tbi,u)

)
(xuv − 1) (4.25)

We have P (b|d) =
∏

v∈V P (bv|dv) due to independence of noise for every node, so (4.24)
becomes:

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

∑
u,v∈V×V

P (bu|du)P (bv|dv)Mb
uv xuv + C (4.26)
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where

Mb
uv = log(pduv(t

b
e,v − 1, tbe,v|tbi,u))−

∑
tbi,u≤t<min(tbr,u,t

b
e,v)

log(1− pduv(t− 1, t|tbe,u)) (4.27)

Equation (4.26) is a linear function of X . In (4.26), each xuv depends only on the exact state
transition times of u and v since the rest of the probabilities in P (b|d) marginalize out when
written as P (b|d) =

∏
v∈V P (bv|dv).

We can express linear Eqn. (4.26) more explicitly in tensor form by (4.28) since expected
loss for each edge (u, v) depends only on the exact exposure time from Pv(b|d) (sender), and
exact infection and recovery times from Pu(b|d) (receiver).

R̂(X,D) =
∑
d∈D

∑
v∈V

∑
u∈V

∑
tiu∈Td

∑
tiu<t

e
v

∑
tev≤tru

(
Pd

v,e [tev]×Pd
u,i,r

[
tiu, t

r
u

]
Md

uv

[
tiu, t

r
u, t

e
v

]
xuv

)
(4.28)

In (4.28), (|Td|+1)×1 vector Pd
v,e [tev], and (|Td|+1)×(|Td|+1) matrix Pd

u,i,r [tiu, t
r
u] express these

marginal probability distributions as defined in (4.29)–(4.30). In both equations, the (|Td|+ 1)’th
entries model the case of never transitioning into the corresponding state:

Pd
v,e [tev] =

{∑
tev<t1

∑
t1<t2

Pv(b = {tev, t1, t2}|d) if t ∈ Td
1−

∑
t∈Td Pd

v,e [t] else
(4.29)

Pd
u,i,r

[
tiu, t

r
u

]
=

{∑
t1<tiu

Pv(b = {t1, tiv, trv}|d) if tiu < tru
0 else

(4.30)

The (|Td|+ 1)3 size tensor Md
uv [tiu, t

r
u, t

e
v] in (4.28) defines the coefficients for the edge from

u to v to exist under the transition times tiu, t
r
u, t

e
v ∈ (Td + 1)3 as explicitly defined below

in (4.31):

Md
uv

[
tiu, t

r
u, t

e
v

]
=


log
(
pduv (tev − 1, tev|tiu)

)
if tiu < tev ≤ tru

−
∑

t<tev
log
(
1− pduv (t− 1, t|teu)

)
0 else

(4.31)

We can express (4.28) more compactly by (4.32) where each xuv coefficient is inner product
of third-order tensor Md

uv and the vector Pd
v,e, and then it is sum of the entries of Hadamard

product of the resulting matrix and matrix Pd
u,i,r:

R̂(X,D) =
∑
d∈D

∑
v∈V

∑
u∈V

∑
jk

(
Pd

u,i,r �
(
Md

uv ·Pd
v,e

))
xuv (4.32)

R̂(X,D) (4.32) is linear, convex, and it can be optimized quite fast since we can estimate all xuv
coefficients by O(|D||V |2 max(|Td|)3) operations instead of O(|D||V |2 max(|Td|)V ). X can be
found by minimizing R̂(X,D) optimally by Program (4.33)–(4.35):
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argmin
X

R̂(X,D) + λ
∑

(u,v)∈V×V

xuv (4.33)

s.t.
∑

u∈V, tiu<tev≤tru

xuv ≥ 1, ∀d ∈ D, v ∈ V (4.34)

0 ≤ xuv ≤ 1, ∀(u, v) ∈ V × V (4.35)

Covering constraints (4.34) make sure that at least single edge exists between the newly
infected node v and the previously infected nodes that are not yet recovered for every trace d.
When the diffusion data is not perfect, (4.34) are removed since we do not know tdi,u, tde,v, t

d
r,u

from given diffusion data. We obtain the binary solution by randomly rounding xuv.

4.5. Possible Improvements

4.5.1 Estimating Noise Dynamics Simultaneously With Graph Inference

We may not always know the noise dynamics parameters in Problem 1. In this case, we minimize
the expected loss to simultaneously estimate the most possible X and noise parameters under
the generative noise model described in Section 4.4.1. However, their joint optimization is not
convex anymore even for negative log-likelihood loss function.

To efficiently estimate both, we propose a two-step procedure similar to Monte Carlo Expec-
tation Maximization [4]. In the first step, we estimate the optimal set of edges X given D and
the estimated noise dynamics parameters, and we estimate the optimal noise dynamics parame-
ters given X and D in the second step. First step is same as solving Problem 1, and both steps
alternate until convergence to a local optimum. In the second step, we try to find the best mixture
weights wxm assuming dirichlet distribution concentration parameters αxm are fixed at uniformly
sampled locations on a four-dimensional grid. Optimizing for the best wxm over all latent valid
trace realizations B quickly becomes intractable for large number of traces, so we sample set of
latent traces by turning the log-likelihoods estimated in the first step into probabilities via expo-
nentiation. Let B be the set of sampled latent traces, and W = {wmx |m ∈M, x ∈ s, e, i, r} be
the set of weight variables where wmx is weight of mixture component m for state x. Given B,
we minimize the negative logarithm of multiplications of the probabilities for B as in:

Lp(W |X,D) =
∑
b∈B

∑
v∈V

∑
t∈T b

− log

(∑
m∈M

wmye
bvt
m

)
(4.36)

where y is the state of node v at time t in trace b, and ebvtm are the coefficients estimated over fixed
αxm’s by Equation (4.14). Then, we solve the following Program (4.37)–(4.39) to estimate W :
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argmin
W

Lp(W |X,D) (4.37)

s.t.
∑
m∈M

wmx = 1, ∀x ∈ s, e, i, r (4.38)

wmx ≥ 0, ∀m ∈M, ∀x ∈ s, e, i, r (4.39)

This optimization program is not under-constrained since we assume same mixture weights
for each node which makes a total of 4M variables. Objective (4.37) is convex as in Theo-
rem 4.5.1 which proof follows from the fact that convexity is preserved under addition and
negative logarithm of weighted multivariate linear function is also convex due to its positive
semidefinite hessian matrix.
Theorem 4.5.1. Objective (4.37) is convex.

Program (4.37)–(4.39) can be solved optimally by exponentiated gradient descent algorithm [75]
since equality constraints (4.38) are non-overlapping. In this case, exponentiated gradient up-
dates involve:

wt+1
mx =

wtmx exp(−η∇mx(wt
mx))

Zt
x

(4.40)

where Zt
x =

∑
m∈M wtmx exp(−η∇mx(wt

mx)) is the state-dependent normalization constant, param-
eter η > 0 is the learning rate, and ∇mx(w

t
mx) is the gradient of objective (4.37) with respect to

wmx. Weights estimated by (4.40) already satisfy the constraints (4.38), and this method iterates
until convergence.

4.5.2 Improvements For Special Cases of SEIR
Most of the expressions in the previous sections become slightly easier for SI and SIR mod-
els due to fewer states, and disappearance and modifications of the certain transitions. For in-
stance, (4.15) turns into the uniform distribution for SI model since peiv , pirv transitions disappear,
and we do not have any prior information about the infection times. We estimate the coeffi-
cients of the relaxed risk R̂(X,D) by Md

uv [tiu, t
i
v, t

r
u], P

d
v,i and Pd

u,i,r for SIR model. However,
Md

uv [tiu, t
i
v] becomes a second-order tensor (matrix) for SI due to the disappearance of recovery

times, and we use it together with the vectors Pd
v,i and Pd

u,i to estimate R̂(X,D) coefficients by
O(|D||V |2 max(|Td|)2) operations.

4.5.3 CORMIN Speedups
We speed-up CORMIN substantially via two improvements: Edge inference for each node is
independent of each other, so risk minimization problem for each node can be solved optimally in
parallel which makes CORMIN scalable to large graphs as in [56]. Secondly, when estimating the
tensor multiplication in (4.32) for traces with large Td, we approximate the resulting coefficients
by building the tensors (4.29)–(4.30) and (4.31) for subset of time points by sampling them via
MCMC. The coefficients estimated by ignoring subset of time points are good approximations,

35



as well as CORMIN can infer graphs reasonably well in several minutes from the traces that are
sampled at a high rate.

4.5.4 Caveats
In Problem (1), we assume DM parameters between consecutive time steps to be independent
and uncorrelated. However, noise dynamics in many realistic scenarios can be better modeled by
time-sensitive Dirichlet Mixture model where Dirichlet mixture parameters are also correlated
across different time points. These additional dependence constraints further reduce the solution
space. We leave improving CORMIN to handle such caveats as a future work.

4.6. Macroscale Inference
In Section (4.4), we focused on inferring the exact connectivity structure which may be a human-
contact network at high school or Facebook friendship network. However, we may not be always
interested in inferring the exact network structure since (1) networks we are considering may
be massively large, and available diffusion data may not be enough for large-scale inference
over them, and (2) it is not worth inferring the every single edge as the connectivity structure
at a higher level may be enough for our purpose. For instance, it is impossible to infer the
whole human contact network or influenza diffusion network in U.S. from the available influenza
diffusion data. Additionally, understanding the U.S. influenza network at the macroscale, such as
inferring the diffusion rates between U.S. states rather than between the humans, may be enough
to take preventive measures to stop epidemics.

(a) (b)

Figure 4.2: a) The original network, b) The same network at macroscale from our perspective
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At macroscale connectivity level, each macronode is composed of micronodes as in Fig-
ure (4.2a), and we are rather interested in estimating the ensemble connectivity rates between
and inside the macronodes instead of between the single micronodes as in Figure (4.2b). More
formally, we define a fully connected weighted graph G = (Vm, Em) with self-loops where Vm
are macronodes, every edge (u, v) in Em has an associated macro connectivity rate xuv that the
two random micronodes between u and v are connected, and self-loops model the diffusion in-
side each macronode. Additionally, we assume that the connectivity inside and between every
macronode pair is homogenous which is quite realistic for large uniform macronodes.

Let ntv be the number of micronodes inside macronode v at time t, and ntv:s, n
t
v:e, n

t
v:i, n

t
v:r

be the number of micronodes inside macronode v belonging to S, E, I, R states respectively.
Similarly, we define ptv:s = nt

v:s

nt
v

, ptv:e = nt
v:e

nt
v

, ptv:i =
nt
v:i

nt
v

and ptv:r = nt
v:r

nt
v

as the fractions of
micronodes in the corresponding SEIR states at time t, and let p̂tv:i = ptv:i − pt−1

v:i , p̂tv:e, p̂
t
v:r be

the fraction of newly infected, exposed, recovered nodes respectively. In this case, set of p̂tv:x

for each macronode v ∈ V , each state x ∈ {s, e, i, r}, and each time step t define the diffusion
data for Problem (1) at macroscale where we do not know exactly which micronode got infected
or recovered. This diffusion data has a natural interpretation: each p̂tv:i is the probability that
a random micronode in v has transitioned to state I. At this scale, we estimate the ensemble
connectivity rates xuv by optimally minimizing the non-relaxed version of the objective (4.18)
where negative log-likelihood is modified as follows:

− log (L(X|b)) =
∑
v∈V

−nt
b
e,v
v:e log

(
1− ssdv

(
tbe,v
))

+
∑
v∈V

∑
u∈V∑

tbi,u≤t<min(tbr,u,t
b
e,v)

−ntv:sn
tbi,u
u:i log

(
1− pduv

(
t− 1, t|tbi,u

))
xuv (4.41)

where log probabilities of each macronode are also multiplied by the number of micronodes since
micronodes are independent and multiplications become summation by taking the logarithm.
Solution is then obtained without rounding X .

4.7. Experiments & Results

4.7.1 Synthetic Networks and Trace Generation

We tested the inference performance over synthetic networks as follows: We generated 10 syn-
thetic networks of 500 nodes and 5000 edges from each of DMC [148], LPA [10], ForestFire
(FF) [90] and Erdos-Renyi (RDS) models by sampling uniformly through their parameters space.
Each synthetic trace was generated by choosing a source node randomly and running the diffu-
sion over the network until either all nodes become recovered (or infected under the SI model)
or until the spread dies out. When a node gets infection from multiple nodes at different times,
it is infected at the earliest infection time. Given noise ratio p between 0 and 1, we added syn-
thetic noise as follows: For every node and time step, we assign probabilistic state vector sample
obtained from Dirichlet distribution with concentration parameter vector α =

[
p
4
, p

4
, p

4
, 1− 3p

4

]
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where 1− 3p
4

is the concentration parameter for the current state. This parameter vector becomes
uniform for higher noise levels, where it becomes almost impossible to recover the original state.

4.7.2 Real Networks

We tested CORMIN by modeling influenza spreading over the human contact network, called
Contact-static, at an American high school [121] as SI, SIR, SEIR. In this network, nodes rep-
resent people and an edge exists between two people if they are near each other. We simulated
influenza spreading with suv = 0.2, puv as weibull distribution with (λ = 9.5, k = 2.3), and peiv ,
pirv as exponential distributions with λ = 0.5 and λ = 0.2 respectively as discussed in [153]. We
also inferred the average influenza transmission rates between U.S. states at macroscale by using
the Google Flu Trends Data between 2003–2013 treating each influenza season from September
through May as an independent trace where each week is modeled by a single time step. In
this Macro-state network, each node represents a U.S. state, edges model the influenza trans-
mission rates between those states, and the graph has self-loops to model the influenza diffusion
inside the states. The probability of infection at each time step at each U.S. state is the percentage
of the people affected by influenza in that state in the corresponding week.

4.7.3 Experiment Details

We implemented CORMIN using CPLEX. Its code, used datasets are available on the web1.
Edge inference for each node is independent and can be solved optimally in parallel which makes
CORMIN scalable to large graphs. CORMIN is reasonably fast; it can infer a graph of 500 nodes
and 5000 edges from 100 traces in less than a minute on personal laptop. We compared the
performance of CORMIN with the best-performing existing methods MultiTree [117], NetRate
[56], NetInf [55] and InfoPath [58]. We run MultiTree and NetInf giving them the exact num-
ber of edges in the true graph although such a perfect estimate is not available a priori. When
the diffusion data is perfect, we run CORMIN nonparametricly by using only the covering con-
straints, and estimate the sparsity parameter λ in (4.33) by cross-validation when the diffusion
data is partially observable. In this case, we performed 5 cross-validation over the diffusion data
as follows: We estimate the set of edges from the training part of the diffusion data for 500 λ
parameters between 0 and 100, and estimate the error of observing the remaining traces over the
inferred graph for every λ. After repeating this for 5 parts, we return the λ minimizing the total
error.

When estimating the prediction score at microscale, the edges of the unknown graphs are
the positive examples and the pairs between which no edge exists are the negatives. Unknown
graphs are sparse so we measure the performance by both F1 = 2 precision×recall

precision+recall and F0.1 =
1.01 precision×recall
0.01 precision+recall to put more weight on precision where precision is the fraction of edges in the
inferred network that are also present in the true network, and recall is the fraction of edges
in the true network that are also present in the inferred network. We evaluated the perfor-
mance of CORMIN at macroscale by estimating Pearson correlation coefficient between the

1http://www.cs.cmu.edu/˜ckingsf/software/cormin/
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inferred influenza rates and the transportation rates between U.S. states estimated from Gowalla
dataset [26].

4.7.4 Inferring a Static Human Contact Network
We inferred Contact-static by synthetic influenza traces on SI, SIR, SEIR that are generated from
the real influenza diffusion parameters as discussed above. In these influenza traces, the infected
state models the human infected with the influenza that is also spreading it to the other people,
whereas the exposed state models the human infected with the influenza but has not yet started
spreading it to the rest of the school network. When the diffusion data is perfect, CORMIN per-
forms the best even though it is nonparametric as in Figure 4.3a. Similarly, CORMIN performs
the best under SIR as in Figure 4.3b, and the performance difference between CORMIN and the
existing methods are greater than in Figure 4.3a.

The performance difference between CORMIN with the sparsity parameter λ estimated by
cross-validation and the existing methods becomes more significant when the diffusion data is
noisy. This noisy data case is realistic: it may be too costly to track the influenza dynamics
exactly since influenza symptoms may be confused with other symptoms, and the diffusion data
may be limited especially for novel influenza types such as H5N1 [97] when they first appeared.
According to Figure 4.3a, CORMIN achieves F0.1 score of 0.7 from 350 perfect traces, and it can
achieve the same score from approximately 700 noisy traces. In contrast to this performance, the
existing methods can only achieve F0.1 score of 0.5 from the same noisy traces. When plotted
against increasing noise levels as in Figure 4.3c, CORMIN can achieve F0.1 score greater than
0.4 even from highly corrupted traces whereas the existing methods are significantly affected by
the increasing noise levels, as F0.1 for all of them quickly drop below 0.2.

Diffusion data sampled at a lower rate provides less information, and this leads to a overall
decrease in CORMIN’s performance as in Figure 4.3d where 1

x
rate means we only observe 1

time point in every x-length interval. CORMIN’s performance is affected by the lower sampling
rates, but its performance is still reasonable for sampling rates higher than 1

5
for SEIR across

various numbers of diffusion traces. In summary, CORMIN performs well on both perfect and
partially observable data, and its performance is less affected by the noise in the diffusion data
which is not the case for the existing methods.

CORMIN can reasonably reveal the human contacts as in Figure 4.4 which shows the random
50 node subgraph of both estimated and the true contact networks from 50 and 200 diffusion
traces respectively. In Figure 4.4, gray edges represent the edges that are correctly predicted
by CORMIN, red edges represent the edges that are in the true contact network but not in the
estimated network, and the blue edges represent the edges that are in the estimated network but
not in the true contact network. In terms of nodes, red nodes represent the students, green and
black nodes represent the teachers and the school staff respectively. According to Figure 4.4,
students are densely connected with each other, and the most of the mispredicted connections
are between the students instead of between the rest of the people.

Networks inferred by CORMIN closely mimick the full range of properties of the true net-
work even from a limited number of traces. Comparison of some of the metrics of Contact-static
estimated from 50 traces, and the true Contact-static can be seen in Table 4.3. For instance, we
know that human contact network has scale-free degree distribution with exponent 2.254, and
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(a) SI perfect (b) SIR perfect

(c) SI partial (d) SEIR Heatmap

Figure 4.3: F0.1 vs. number of traces for Contact-static under (a) SI, (b) SIR from perfect data;
c) F0.1 vs. noise ratio for Contact-static under SI from 250 traces, d) F0.1 Heatmap of number
of traces vs. sampling rate under SEIR
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a) 50 traces b) 200 traces

Figure 4.4: 50 node subgraph of true and the estimated Contact-static from CORMIN under SI
from a) 50 traces, b) 200 traces

the network estimated by CORMIN has similar exponent 2.072.

Estimated Truth
Modularity [110] 0.67 0.73

Scale-free exponent 2.072 2.254
Assortativity 0.141 0.121

Avg. Clustering Coefficient 0.23 0.261
Diameter 10 8

Table 4.3: Metrics of true and estimated Contact-static networks from 50 traces

4.7.5 Estimating Influenza Diffusion Rates Between U.S. States
We estimated the average influenza diffusion rates between U.S. states at macroscale from Google
Flu Trends data as described in Section 4.7.2 without rounding the resulting xuv. Google Flu
Trends data shows the number of weekly infections at each U.S. state between 2003-2013. Here,
each node in the network represents a U.S. state, and we treat each influenza season from Septem-
ber to May as an independent trace. Google Flu Trends data is incomplete so we completed the
missing data for states at each week as the average of the neighbouring states.

True diffusion rates are unknown but we compared the inferred influenza rates with the trans-
portation rates estimated from Gowalla dataset [26]. Estimated ensemble diffusion rates between
the most populated 16 U.S. states are shown in Figure 4.5. Diagonal entries are the diffusion rates
inside U.S. states, and we found influenza diffusion rates inside the most populated states such
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Figure 4.5: Estimated influenza transmission rates between the most populated 16 U.S. states
over Macro-state network

as New York, Illinois and Texas to be the highest as well as between the nearby states. We esti-
mated the diffusion rates between the northern states to be higher than the diffusion rates for the
southern states. However, one may approach these results with caution since the diffusion rates
estimated over Google Flu Trends data may be a slight overestimate as discussed in [86].

We estimated the Pearson correlation coefficient between the estimated influenza diffusion
rates and transportation rates to be 0.32 which shows that the transportation is one of the ma-
jor contributors in influenza transmission between U.S. states as discussed previously [8]. We
also found influenza diffusion between U.S. states to be fairly asymmetric where we define the
asymmetry of the rate matrix as the average of the absolute differences between diffusion rates
of every pair of entries the symmetric entries, and estimated it as 0.15 for our rate matrix.

To quantify the degrees of importance of U.S. states in influenza diffusion, we estimated the
hubs and authorities values (HITS) for U.S. states on the inferred network by [77]. In general,
a good hub represents a U.S. state that diffuses influenza to many other U.S. states, and a good
authority represents a U.S. state that gets influenza from other states without much spreading it
to the other states. Table 4.4 shows the hubs and authorities scores of some U.S. states.

Hubs Authorities Hubs Authorities
California 0.058 0.060 Illinois 0.068 0.071

Texas 0.052 0.052 Pennsylvania 0.073 0.071
Michigan 0.066 0.070 Massachusetts 0.071 0.068
Florida 0.060 0.056 Washington 0.074 0.068

Table 4.4: Hubs and authorities scores of some U.S. states on CORMIN estimated macroscale
network

In general, almost all states tend to have close hub and authority scores. We found some of
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FF LPA DMC RDS
SI SIR SEIR SI SIR SEIR SI SIR SEIR SI SIR SEIR

CORMIN 0.62 0.57 0.61 0.59 0.5 0.61 0.45 0.44 0.49 0.52 0.53 0.55
MultiTree 0.54 0.47 0.46 0.51 0.43 0.45 0.44 0.34 0.45 0.49 0.35 0.4

NetInf 0.52 0.45 0.46 0.50 0.42 0.47 0.4 0.41 0.47 0.47 0.33 0.38
NetRate 0.45 0.5 0.43 0.52 0.42 0.44 0.41 0.39 0.47 0.45 0.28 0.36

Table 4.5: F1 vs. growth and diffusion models for synthetic graphs inferred using 250 traces (No
noise added)

the northern states such as Washington and Massachusetts as well as some mid U.S. states such
as Virginia to have higher hub scores whereas the most of the southern states either have slightly
higher authority scores or they have close hub and authority scores. Overall, we may think the
top-scoring hubs as diffusion accelerators whereas the top-scoring authorities slow down the
epidemics. Depending on whether a state is a hub or an authority, we may take different types of
measures to prevent or slowdown the epidemics at macroscale.

4.7.6 Inferring Synthetic Networks
CORMIN performs consistently better than the existing methods on inferring synthetic networks
grown via different growth models from different diffusion models as seen in Table 4.5. Scores in
bold represent the cases where CORMIN performs reasonably better than the existing methods.
CORMIN performs significantly better than the existing methods on inferring graphs grown via
FF and LPA. All methods perform similar on inferring RDS networks, and they perform the worst
on inferring DMC networks. This lower performance can be explained by the loopy structure of
DMC networks. In general, CORMIN can easily achieve F1 score greater than 0.5 in all models
except DMC. Table 4.5 shows the performance only from 250 traces but CORMIN’s performance
is consistent across different number of traces and conditions.

4.7.7 Scalability and Performance under Other Challenging Cases
CORMIN infers graphs faster than the existing methods when the data is perfect as in Figure 4.6a
which shows the mean running time as well as the standard deviation from 20 runs over graphs
of different sizes on a single CPU computer. It runs slower when the diffusion data is partial, but
this running time is still reasonable considering it is capable of modeling the probabilistic data,
and it can infer networks better than the existing methods. CORMIN infers Contact-static in less
than a minute from 500 traces on a personal laptop.

CORMIN is also scalable to very large graphs since convex risk minimization can be done
independently for each node. For instance, CORMIN can optimally infer graphs having hundred
thousands of nodes in less than 3 minutes by using 100 processors since it can be parallelized
without losing the optimality of the relaxation.

CORMIN infers Contact-static better than the existing methods when the data is undersam-
pled as in Figure 4.6b. In this plot, x axis shows the inverse of the sampling rate; 0 corresponds
to the perfectly known case, and y means we only observe 1 time point in each y-length interval.
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(a) Running Time (b) Affect of sampling rate

(c) Affect of spreading probability suv

Figure 4.6: a) Comparison of running time of CORMIN and the existing methods, b) F0.1 vs.
1

Sampling Rate from 250 traces over Contact-static, c) Affect of spreading probability suv on inferring
Contact-static from 250 traces

Diffusion data sampled at a lower rate provides less information, but CORMIN can tolerate such
missing information up to a certain sampling rate as it is still more accurate than the existing
methods. However, at sampling rates lower than 1

16
, all methods start to perform similarly and

worse since almost all the diffusion information is lost. CORMIN is more robust to noise as
shown previously in Figure 4.3c, and it consistently performs the best under different probability
of diffusion (suv) parameters as in Figure 4.6c.
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4.8. Conclusion
In this research, we present a convex risk minimization based approach to infer unknown graphs
under SEIR models from probabilistic, partially observable diffusion data. We show improved
graph recoverability under both uncertain and perfect node states at multiple scales; our method is
capable of recovering the influenza transmission network at microscale and transmission rates at
macroscale. The performance advantage of our method can be explained by its better modeling
of both edge existence and nonexistence from diffusion data, better handling uncertain data,
bounding the number of edges by using covering constraints for perfectly known diffusion data,
and its ability to formulate the inference problem at multiple scales. We believe that our model-
based inference method can also be extended to the other similar biological network inference
problems.
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Chapter 5

Diffusion Archaeology: Reconstructing
The Diffusion History From Present-Day
Data

A preliminary version of this chapter appeared in IEEE 14th International Conference on Data
Mining ICDM 2014 with the title Diffusion Archaeology for Diffusion Progression History Re-
construction [127].

5.1. Introduction
Dynamic processes over networks are used to model and analyze properties of various social
and biological systems. Diffusion is special case of those processes in which a spread (e.g.,
an infection) starts from some part of the graph and spreads to other portions over time via
edges of the graph. Some examples are virus propagation in computer networks [130], and
idea and gossip spreading in social networks [157]. A diffusion model, such as the commonly
studied SIRS and SEIRS models, defines the set of possible states that the nodes of the graph
can be in and rules for probabilistically switching between states. Recently, [112] introduced
the VPM (Virus Propagation Model) that generalizes all those Markovian diffusion models and
defines the hierarchical relationships between them.

It is not always easy to know the whole diffusion progression, initial diffusion conditions, or
the time it started due to several limitations. For example, existence of a computer virus diffusion
over the computer network may only be noticed after a significant number of computers stop
operating. A similar problem exists in detecting influenza diffusion [121]. We may also not
track the diffusion of a virus in email networks and a contaminant in a water distribution network
due to privacy and physical limitations, respectively. In all these cases, it is essential to learn
more about the past to take precautions to prevent future epidemics, to learn more about the true
diffusion mechanics, to provide safer water, to break privacy and so on. However, given present-
day diffusion data, it is not trivial to search for the most likely diffusion progression in the past
since there will be many valid histories leading to the observed data.

In this research, we tackle this problem of inferring a complete diffusion history from one
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or more diffusion snapshots for discrete-time SEIRS-type diffusion models that include SI, SIS,
SIR, SIRS, SEIR, SEIS, SEIRS. Those models with their abstract states and independent cas-
cade (IC) assumption [73] have been used to model many forms of diffusion in many different
domains [91, 121, 157].

Complete diffusion history reconstruction has not been previously studied but similar prob-
lems exist in the literature. The most relevant such problem is Initial Spreader Identification
where we want to identify the most probable initial infected nodes that started a diffusion. Among
approaches for this problem, Keffectors [85] identifies the k best-possible initial spreaders. How-
ever, it requires an estimate of the number of initial spreaders to be given as input. Rumor [132]
finds the most probable spreader by estimating the rumor centrality of each node but it assumes
a single initial spreader, and it is only defined for the SI model. Lastly, NetSleuth [113] lets mul-
tiple nodes be initial spreaders without requiring this number as an input parameter. However, it
works only for the restricted cases of SI model, and it is based on a MDL heuristic without any
provable performance guarantee. None of these methods infer the whole diffusion progression,
as our approaches do. Another related problem is Graph Inference where we want to reconstruct
the unknown graph from observed multiple diffusion traces over it. This problem is fundamen-
tally different than the history reconstruction problem as graph inference methods [57, 58] search
in the graph space assuming full observability of multiple traces whereas our methods search in
temporal diffusion progression space as they try to complete the missing history of a single trace.

We formulate the diffusion history reconstruction problem as that of determining the maxi-
mum likelihood (ML) history given diffusion snapshots that may come from multiple time points.
We designed an algorithm called DHR-sub (submodular history reconstruction on discrete dy-
namics) that reconstructs the history before the earliest measured time point by greedily max-
imizing the non-monotone submodular log-likelihood at each previous time step. It further re-
constructs the history between the consecutive diffusion data time points by solving the problem
as non-monotone submodular maximization under matroid base constraints.

Though accurate and practical for smaller graphs, DHR-sub can take some time to solve. To
reconstruct diffusion history faster, we designed DHR-pcdsvc that solves the first-order Taylor
approximation relaxation of the log-likelihood. We define this new problem as Prize-Collecting
Dominating-Set Vertex Cover, and show that it can be approximated within a factor ofO(log(|V |)).
This problem can be further relaxed by removing the covering constraints; it becomes Prize-
Collecting Vertex Cover, and we design DHR-pcvc that approximates it by a factor of 2 for
non-bipartite models and solves this newer relaxation optimally by transforming it to s-t mincut
for bipartite models. We also design ensemble approaches for all of our methods that estimate
the robust set of initial spreaders from multiple runs of the algorithm.

In summary, our main contributions are:
• Our methods reconstruct the whole diffusion history nonparametrically for all SEIRS type

models whereas the existing methods only identify the initial spreaders for certain models;
• Our methods formulate the problem in terms of diffusion likelihood, and we give some

performance guarantees on the quality of the obtained solutions;
• Our relaxation methods DHR-pcdsvc and DHR-pcvc scale well to history reconstruction

over tens of thousands of nodes with provable performance guarantees;
• Our methods reconstruct the history better by using the diffusion information from all the
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Figure 5.1: SEIRS state transition diagram

nodes (not just from the infected nodes), and from multiple time points if available;
• We use reconstructed histories to predict several diffusion features such as speed and ac-

celeration that are not apparent in the observed portion of the diffusion.
Our methods more accurately identify initial spreader sites on a water distribution network

and on simulated networks. In terms of history reconstruction, we compared our methods with
a baseline heuristic since there is no previous method. All our methods can accurately recon-
struct several meme diffusion histories on blog networks. They also perform better on synthetic
networks under different models. In general, all our methods reconstruct the diffusion history
reasonably fast and accurately compared to the hardness of the problem (see Section 5.7.6). In
many cases, relaxations of the original problem can reconstruct the diffusion history almost as
good as the original formulations in a far shorter amount of time. Lastly, we also estimate the
speed and acceleration dynamics of several memes over blog network from their reconstructed
histories. In this case, estimated dynamics from quite a few diffusion snapshots match the true
dynamics almost perfectly producing decent whole history reconstruction performance. Overall,
our results for different types of diffusion show that many characteristics of complete diffusion
history can be inferred with proper modeling and methods.

5.2. SEIRS Diffusion Dynamics

The SEIRS diffusion dynamics over directed graph G = (V,E) with possible state transitions
is shown in Figure 5.1. The SEIRS states are Susceptible (S), Exposed but not contagious (E),
Infected and contagious (I), and previously infected but now Recovered (or immune to the in-
fection) (R). Those states are general enough abstractions to model various forms of diffusion
in different contexts [91, 121]. For instance, the infected state models people having influenza
symptoms in influenza diffusion over humans, and it represents creation of a blog entry about a
topic in idea diffusion. Similarly, the recovered state could represent recovery of a person from
influenza or the decontamination of a water tower from chemical contaminants depending on the
context.
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Symbol Definition and Description
G = (V,E) directed graph G
P (v), S(v) set of predecessors, successsors of node v
S SEIRS states (S,E,I,R)
M diffusion model of SEIRS type models

puv
probability of diffusion from infected node u to
susceptible node v

e2iv, i2rv, r2sv, probability of (E→ I, I → R, R→ S, S→ E
s2ev, s2iv, i2sv S→ I, I → S) transition for v
tsv, t

e
v, t

i
v, t

r
v time v transitions into (S, E, I, R)

St, Et, It, Rt set of nodes that are in (S, E, I, R) at time t
Dt diffusion snapshot at time t
D given diffusion data
lD length of diffusion D
TD ordered set of time points of D
tmin, tmax min(TD), max(TD)

fmin, fmax
min(TD)

lD
, max(TD)

lD

Table 5.1: Table of Symbols

In SEIRS model, diffusion starts at time t = 0 from set of initially infected nodes and pro-
gresses over G in discrete time steps. Let St, Et, It, Rt be the set of S, E, I, R nodes at time t
respectively. At each time step, infected nodes spread the infection to the susceptible nodes with
certain probability. This S → E transition is exogenous; it is affected by G and probability of
exogenous transition for susceptible node v at time t is 1 −

∏
u∈P (v)∩It(1 − puv), where P (v)

is the set of nodes with edges into v and puv is the probability of transmission of the agent over
edge (u, v). The remaining E → I, I → R, R → S transitions are endogenous; their transition
probabilities are e2iv, i2rv, r2sv respectively, and they are not affected by G. For every node at
each time step, if a transition succeeds, the node transitions to a new state. Otherwise, it follows
similar procedure at next time step, independent of the previous trials. SEIRS type models are
Markovian since state of a node at time t depends on its state and its neighbors’ states at previous
time steps, and it obeys independent cascade (IC) [73] assumption which states that a diffusion
from one of nodes predecessor is enough for node to become exposed/infected. The symbols
used in this text are given in Table 5.1 for reference.

SEIRS-type models include the well-known SI, SIR, SIS, SIRS, SEIR, SEIRS models [61].
SEIRS is the most general model among these models, and some of its transitions disappear or
change slightly in other models. For instance, in SIR, there is no exposed state; the exogenous
transition is S → I since nodes proceed directly to the infected state, and there is no R → S
transition. We can classify SEIRS type models in various ways. SIRS, SEIRS are loopy models
where R→ S transition is available whereas SI, SIR, SEIR are non-loopy models. We can also
split SEIRS type models into bipartite and non-bipartite models: a node that gets the infection
directly transitions into infected state in non-bipartite models such as SI, SIR, SIRS, SIS whereas
it goes through the exposed state for bipartite models such as SEIR, SEIRS. The model may also
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Figure 5.2: Example Problem: SIR Diffusion over 8 node graph where we can only observe
t2 and t6 without knowing the initial diffusion time tstart. We want to reconstruct the missing
diffusion snapshots from tstart onwards

be either uniform in which case all of the transition probabilities are the same for each edge and
node, or non-uniform in which case the probabilities may vary over the edges and nodes. We
discuss the general non-uniform case here; the uniform case is a simple specialization.

5.3. Diffusion History Reconstruction Problem
For diffusion D, let Dt = (St, Et, It, Rt) be the state of the nodes at the time t, where St is the
set of susceptible nodes, etc. Dt is a diffusion snapshot. We define Problem 2 to reconstruct the
diffusion history when the diffusion length is unknown:
Problem 2. We are given: a graph G = (V,E), state transition probabilities (puv, e2iv, i2sv,
i2rv, r2sv) that define an SEIRS-type model, a collection of time points TD at which snapshots
were taken, and a collection of diffusion snapshotsD = {Dt} for t ∈ TD. Each snapshot records
the state of every node at a single time point, partitioning them into V = St ∪ Et ∪ It ∪Rt.

Our goal is to infer the past states (susceptible, exposed, infected and recovered) of every
node at every time t 6∈ TD.

Figure 5.2 illustrates the history reconstruction problem for the SIR model. Each subsequent
layer shows the progression of time, and we want to reconstruct the diffusion progression from
unknown initial time tstart onwards given full state knowledge at subset of time points. The
initial spreader identification problem is special case of Problem 2 where we want to identify
only the initial infected nodes.
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5.4. Non-monotone Submodular History Reconstruction (DHR-
sub)

Let tmax = max(TD), tmin = min(TD), tstart be the unknown initial diffusion time, andM be
the specific SEIRS type model that diffusion snapshots are collected over. SEIRS type models
are Markovian so the probability of diffusion D = {Dtstart , . . . , Dtmax} that starts at tstart and
progresses until tmax can be written as the multiplication of the probability of each time step in
terms of previous time steps as in (5.1):

P (D) =
tmax∏

j=tstart+1

P (Dj|Dj−1, . . . , Dtstart) P (Dtstart) (5.1)

We assume the state transition probabilities (puv, e2iv, i2rv) to be same at each time step, so the
overall diffusion probability in (5.1) simplifies to Equation (5.2) under this memoryless property:

P (D) =
tmax∏

j=tstart+1

P (Dj|Dj−1) P (Dtstart) (5.2)

Let TD be the ordered set of observed time points, Xj = (Sj , Ej , Ij , Rj) be the unknown
state knowledge at time ∀j /∈ TD, and X = {Xj : j ∈ {tstart, . . . , tmax} \ TD}. Given a
collection of diffusion snapshots D for TD, our goal is to reconstruct the most probable diffusion
progression (X) by maximizing the log-likelihood as in Equation (5.3)–(5.5):

argmax
X

log(L(X|D)) = log(Lpre)︸ ︷︷ ︸
DHR-sub-early

+
∑

(j,k)∈P(TD)

log(Linj,k)︸ ︷︷ ︸
DHR-sub-between

(5.3)

s.t. IntraConsistent(Xj,M), j ∈ tstart, . . . , tmax − 1 (5.4)
InterConsistent(Xj, Xj+1,M), j ∈ tstart, . . . , tmax − 1 (5.5)

where Lpre and Linj,k are defined in (5.6)–(5.7), P(TD) = {(tj, tj+1), j ∈ 1, . . . , |TD| − 1},
and maximum log-likelihood estimate is the same as the maximum likelihood estimate since the
logarithm is a monotonically increasing function:

Linj,k = P (Xj+1|Dj)P (Dk|Xk−1)
∏

t∈j+1,..,k−2

P (Xt+1|Xt) (5.6)

Lpre =

tmin−tstart∏
j=1

P (Xtmin−j+1|Xtmin−j)P (Xtstart) (5.7)

There are two types of constraints: IntraConsistency constraints (5.4) make sure that the
variable assignments at each time step are valid underM: every node belongs to a single state
at each j, and InterConsistency constraints (5.5) make sure that the diffusion between each pair
of consecutive time steps is valid according to rules ofM: every node that got the infection at
j has at least one infected predecessors at j − 1, and node transitions are valid according toM.
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For instance, recovered nodes cannot become susceptible ifM is not loopy. These constraints
are described in more detail below.

The diffusion history between consecutive observed TD pairs is independent of each other
since Equation 5.2 is memoryless, and each Dj completely describes states of all nodes at time
j. Thus, maximizing (5.3)–(5.5) can be partitioned into multiple independent subproblems of
two types that can be optimized independently. The first type maximizes log(Lpre) under the
consistency constraints to reconstruct the history before tmin (DHR-sub-early). The second type
maximizes log(Linj,k) to reconstruct the history between the snapshots from time j and time k
under the consistency constraints (DHR-sub-between). We define algorithms for both types of
subproblems below. In the text, we use Dj and Xj interchangeably for ∀j ∈ TD.

5.4.1 History reconstruction before the earliest observed snapshot (DHR-
sub-early)

To find the most likely diffusion history before tmin, we solve the problem:

argmax
X

log(Lpre) =
tmin−1∑
j=tstart

log
(
P (Xj+1|Xj)

)
+ log

(
P (Xtstart)

)
(5.8)

s.t. IntraConsistent(Xj ,M), j ∈ tstart, . . . , tmin − 1 (5.9)

InterConsistent(Xj , Xj+1,M), j ∈ tstart, . . . , tmin − 1 (5.10)

We assume a uniform prior P (Xtstart) over set of initially infected nodes since we do not have
any extra information about them. We now discuss how to formulate the objective function and
constraints above in terms of binary variables representing each node’s state.

Expressing the objective function (5.8)

GivenXj , the probability of observing the diffusion snapshotXj−1 at time j−1 can be expressed
as:

P (Xj|Xj−1) = L(Xj−1|Xj) = Ljs Lje L
j
i Ljr (5.11)

where Ljs, Lje, L
j
i , Ljr are the likelihoods of the nodes in Sj , Ej , Ij , Rj states respectively in terms

of Xj−1.
To defineLjs, Lje, L

j
i , Ljr, we introduce a single binary variable for each node to define its state

at time j − 1 given its state at time j. A binary variable is sufficient because there are only two
possibilities for a node at time j − 1 given its state at time j: either the node is in the same state
as time j, or the node has made a state transition at time j, and when computing L(Xj−1|Xj),
the state at time j is known.

We define a variable sv,j−1 for every node v ∈ Ej , and rv,j−1 for every node v ∈ Rj . For
every node v ∈ Ij , we define variable for the incoming state of I (ev,j−1 for bipartiteM and sv,j−1

for non-bipartiteM). Similarly, for every node v ∈ Sj , we define a variable for the incoming
state of S ifM is loopy, otherwise we do not need to define the variable, since we know that if a
node is in Sj it must be in Sj−1.
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With these variables, the likelihoods in (5.11) are explicitly defined as in (5.12)–(5.15) for
SEIRS model as:

Lje =
∏
v∈Ej

(
Lv,j−1
e2e

(
1− Lv,j,Is2e L

v,j,R
s2e

)sv,j−1
)

(5.12)

Ljs =
∏
v∈Sj

((
Lv,j,Is2e L

v,j,R
s2e

)sv,j−1

(r2sv)
1−sv,j−1

)
(5.13)

Ljr =
∏
v∈Rj

(
(i2rv)

1−rv,j−1(1− r2sv)rv,j−1
)

(5.14)

Lji =
∏
v∈Ij

((
(e2iv)

ev,j−1(1− i2rv)1−ev,j−1
))

(5.15)

where the sub-terms are defined as:

Lv,j,Is2e =
∏

u∈P (v)∩Ij

(1− puv)1−eu,j−1

Lv,j,Rs2e =
∏

u∈P (v)∩Rj

(1− puv)1−ru,j−1

Lv,je2e =
∏
v∈Ej

(1− e2iv)1−sv,j−1

Each likelihood above for a given state (Ljs, Lje, L
j
i , Ljr) has two parts: the likelihood of the nodes

staying at the given state, and the likelihood of the nodes transitioning towards the given state.
For example, Lje is the likelihood for nodes v ∈ Ej−1 not to transition to infected state at time j,
and nodes v ∈ Sj−1 to become exposed at time j. This gives us an explicit definition of objective
function (5.8) in terms of a collection of binary variables.

Likelihoods (5.12)–(5.15) are defined for the most general model SEIRS, some of the like-
lihood terms disappear, or change slightly for models that are missing some of the states. For
instance, parts including r2sv in Ljs and Ljr disappear for non-loopy M, the likelihood repre-
senting the exogenous transition Ls2e is replaced by the similarly defined Ls2i for non-bipartite
models, etc.

Expressing the constraints in equations (5.9) and (5.10)

The intra-consistency constraints (5.9) that require every node have a single state at each time
step are already implied by the objective function since there is only single variable for every
node modeling the two possibilities. The inter-consistency constraints (5.10) can be modeled as
packing constraints: ∑

u∈P (v)∩Ij

eu,j−1 +
∑

u∈P (v)∩Rj

ru,j−1 + sv,j−1 ≤ dv,∀v ∈ Ej (5.16)

These constraints make sure every node that became exposed at time t (v ∈ Ej, Sj−1) has at least
one incoming edge from node u ∈ Ij−1 (u ∈ Ij ∪ Rj). However, these constraints (5.16) are
already represented in the objective function (5.11) since the higher order term log(Lje) takes the
lowest possible value log(0) = −∞ when any of them are not satisfied.
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Optimizing the likelihood under these constraints

Since tstart is unknown, we reconstruct the history using the above likelihoods and constraints
by iteratively maximizing the likelihood at each time step tstart ≤ j < tmin backwards starting
from tmin − 1, where the state is known. In each iteration, given Xj , we reconstructs the states
at the previous time step j − 1 (Xj−1) by maximizing:

max F = log(Ljs) + log(Lje) + log(Lji ) + log(Ljr) (5.17)

Objective F for single step reconstruction is submodular as proven in Theorem 5.4.1 for all
SEIRS type models except SIS. For SIS model, history reconstruction can still be expressed as
submodular maximization under packing and partition matroid constraints by modifying F as in
Theorem 5.4.2.
Theorem 5.4.1. F in Equation (5.17) is non-monotone submodular for all SEIRS type models
except SIS.

Proof. F has three types of terms; higher order terms from log(Lje), quadratic or linear terms
from log(Ljs) depending onM and linear terms from log(Lji ) and log(Ljr). F is non-monotone
since linear and quadratic terms are either positive or negative depending onM, transition dis-
tribution parameters and the terms from log(Ljs) that model the probability of susceptible nodes
not being infected/exposed.

F is submodular when F (A + x) − F (A) ≥ F (B + x) − F (B) for every A ⊂ B and for
every x ∈ U \ (A ∪ B). To prove submodularity of F , we prove the submodularity of each
term in F since summation of submodular functions is also submodular. Linear terms of F are
unimodular, so they are submodular. Quadratic terms show up in log(Ljs) when M is loopy
and when the model is not SIS, each quadratic term is one of the following: Q(rv,j−1, ru,j−1) =
log(1− puv)(1− rv,j−1)(1− ru,j−1), Q(rv,j−1, eu,j−1) = log(1− puv)(1− rv,j−1)(1− eu,j−1) or
Q(rv,j−1, iu,j−1) = log(1 − puv)(1 − rv,j−1)(1 − iu,j−1). All those terms are submodular since
they satisfy the inequality Q(0, 0) +Q(1, 1) ≤ Q(0, 1) +Q(1, 0).

Then, we need to prove the submodularity of the higher-order terms that depend on G to
prove submodularity of F . Higher-order terms appear in either log(Lje) for bipartite mod-
els or log(Lji ) for non-bipartite diffusion models. Depending on M, we need to prove either
T = sv,j−1 log

(
1.0− Lv,j,Is2e L

v,j,R
s2e

)
or T = sv,j−1 log

(
1.0− Lv,j,Is2i L

v,j,R
s2i

)
is submodular. Each

variable might appear at two positions of T ; either inside or outside the logarithm. When M
is bipartite, each variable can only appear in one of those positions whereas it can appear in
both positions for non-bipartite M. Let Ve =

⋃
u∈P (v)∩Ij eu,j−1, Vr =

⋃
u∈P (v)∩Ej

ru,j−1, x be
the variable to be added, X be the current set of added variables, K = ΠVe∪Vr(1 − puv) and
Pt = (1− ptv)t for every t ∈ Ve ∪ Vr, T is submodular as proven below.

• If x is outside the logarithm, let A = {a, b} and B = {a, b, c}. Then, T (A + x) =

log
(

1− K
PaPbPx

)
, T (B + x) = log

(
1− K

PaPbPcPx

)
and T (A+ x)− T (A) ≥ T (B + x)−

T (B) will be satisfied since T (A+ x) ≥ T (B + x) and T (A) = T (B) = 0.
• If x is inside the logarithm, when sv,j−1 6∈ X , submodularity is trivially satisfied since
T (A) = T (A + x) = T (B) = T (B + x) = 0. When sv,j−1 ∈ X , let A = {a} and
B = {a, c} (A ⊂ B), submodularity is satisfied as shown in Equation (5.18)–(5.20).
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T (A+ x)− T (A) ≥ T (B + x)− T (B) (5.18)

log

(
1− K

PaPx

1− K
Pa

)
≥ log

(
1− K

PaPbPx

1− K
PaPc

)
(5.19)

KPaPb(1− Pb)(1− Pa) ≥ 0 (5.20)

Then, F is submodular since each summation term including the higher-order ones is sub-
modular.

Theorem 5.4.2. Program (5.17)–(5.16) for SIS can be expressed as submodular maximization
under both packing and partition matroid constraints.

Proof. Quadratic terms Q(sv,j−1, su,j−1) from Ljs are supermodular for SIS but they can be
turned into submodular ones as follows: We define new varible iv,j−1 for every node v ∈ {Sj∪Ij}
to represent whether v is infected at time j − 1. Then, we obtain the new objective func-
tion F ∗ by replacing each supermodular Q(sv,j−1, su,j−1) = log(1 − puv)sv,j−1(1 − su,j−1)
with Q∗(sv,j−1, su,j−1) = log(1 − puv)sv,j−1iv,j−1. We also add assignment constraints of
sv,j−1 + iv,j−1 = 1 for every node v ∈ {Sj ∪ Ij} to make sure node v is either infected or
susceptible at j − 1. Each Q∗(sv,j−1, su,j−1) in F ∗ is submodular since it satisfies the inequal-
ity Q∗(0, 0) + Q∗(1, 1) ≤ Q∗(0, 1) + Q∗(1, 0). Then, F ∗ is submodular since the rest of the
higher-order terms are submodular as proven in Theorem 5.4.1. Assignment constraints define
partition matroid and the problem of reconstructing history at time j − 1 becomes submodular
maximization under both partition matroid and existing packing constraints for SIS model.

Therefore, optimizing (5.17) is a non-monotone submodular maximization problem. Non-
monotone submodular maximization is NP-hard since its special cases such as MAX DICUT is
NP-hard [46]. To solve this problem, we apply the deterministic non-monotone submodular max-
imization method by [47] repeatedly between adjacent time steps and iterate until the estimates
between the consecutive time steps are same, indicating that we have reached the initial tstart
state. At each step, [47] maximizes a normalized Fn at every step that is obtained by adding
−F (∅) to every S ⊂ 2N so Fn(∅) = 0, where F (∅) is the value of the objective if no nodes
change states between adjacent time points. As applied here, this is done by starting with an
initial solution X ′j = ∅ that represents the same state assignments between the consecutive time
steps j and j − 1. For each time step, we add the node with the most increase in Fn to the set of
nodes that have changed state. Algorithm 1 gives a schematic outline of the procedure.

The method by [47] has a 1
3

approximation ratio for normalized submodular functions, and
we found it to perform in practice better than the randomized algorithm [19] with approximation
ratio 0.5 due to the structure of our problem. The 1

3
ratio for normalized Fn implies a data-

dependent bound for F as proven in Theorem 5.4.3 where F (∅) = −S0, Xopt is the set of
elements maximizing F and F (Xopt) = −O.
Theorem 5.4.3. Algorithm 1 has approximation guarantee of k + S0

O
(1− k) for k = 1

3
in terms

of minimization of supermodular −F for each of its iteration.
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Algorithm 1 DHR-sub-early
1: j ← tmin − 1
2: repeat
3: X ′j ← ∅ . X ′j is the set of nodes that changed state at time j
4: repeat
5: Add nodes to X ′j according to the rule for non-monotone submodular maximization

approximation [47]
6: until no node can be added that improves the score.
7: j ← j − 1
8: until X ′j = X ′j+1

Proof. Let X be the set of elements returned by the non-monotone submodular maximization
algorithm and F (X) = −M . We are interested in upper-bounding the supermodular minimiza-
tion ratio (M

O
) for −F . Since Fn is obtained by adding S0 to each set in F , Fn(X)

Fn(Xopt)
= S0−M

S0−O ≥ k

and we obtain M
O
<= k + S0

O
(1 − k). Here, S0

O
(1 − k) makes the approximation ratio data-

dependent and this ratio is the best we can achieve when k is tight for non-monotone submodular
maximization. This data-dependent bound is also the best we can achieve in terms of supermod-
ular minimization perspective since non-negative supermodular minimization problem cannot be
approximated in constant factor unless P = NP [155].

5.4.2 History Reconstruction Between Consecutive Snapshots (DHR-sub-
between)

History reconstruction for every interval between by consecutive, observed TD pairs is indepen-
dent of other intervals. Therefore, we can solve each independently by solving the following
problem:

argmax
X

T = log(P (Xj+1|Dj)) + log(P (Dk|Xk−1)) +
∑

t∈j+1,..,k−2

log(P (Xt+1|Xt))
(5.21)

s.t IntraConsistent(Xt,M), t ∈ j + 1, . . . , k − 1 (5.22)
InterConsistent(Xt, Xt+1,M), t ∈ j, . . . , k − 1 (5.23)

where we only consider Xt that lay within the [j, k] interval bracketed by diffusion snapshot
observations Dj and Dk

Expressing objective (5.21)

Objective (5.21) has three parts: log(P (Dk|Xk−1)) is same as the single step backwards re-
construction of DHR-sub-early, and log(P (Xj+1|Dj)) is a trivial forward diffusion expression
with unknown Xj+1 and known Dj . On the other hand, both Xt+1 and Xt are unknown in
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log(P (Xt+1|Xt)). This expression can be written explicitly as:

log(P (Xt+1|Xt)) = log(Lt+1
s ) + log(Lt+1

e ) + log(Lt+1
i ) + log(Lt+1

r ) (5.24)

where the likelihoods are defined as:

Lt+1
e =

∏
v∈V

((1− e2iv)ev,t ev,t+1 (1.0− Lexo)ev,t+1) (5.25)

Lt+1
s =

∏
v∈V

(Lsv,t+1
exo (r2sv)

rv,t sv,t+1) (5.26)

Lt+1
r =

∏
v∈V

(
(i2rv)

iv,t rv,t+1(1.0− r2sv)rv,t rv,t+1
)

(5.27)

Lt+1
i =

∏
v∈V

(
(e2iv)

ev,t iv,t+1(1.0− i2rv)iv,t iv,t+1
)

(5.28)

and the term in (5.25) is:

Lexo =
∏

u∈P (v)

(1− puv)iu,t sv,t

Objective (5.21) is non-monotone submodular as proven in Theorem 5.4.4.

Theorem 5.4.4. T in (5.21) is non-monotone submodular for all SEIRS type models.

Proof. We prove the submodularity of log(Linj,k) by proving the submodularity of each of its
summation terms. log(P (Xj+1|Dj)) estimates the most probable diffusion snapshot at j + 1
given Dj . It is a forward estimate and if we use the same variable naming as in Section 5.4.1, it
becomes a linear function of Xj+1 and thus submodular.

log(P (Dk|Xk−1)) is same as F (5.17) in Section 5.4.1 and it is submodular as proven in
Theorem 5.4.1.

Every log(P (Xt+1|Xt)) involves the variables from both time steps t and t + 1. Here, we
do not know the exact node states at both time steps so we define all possible state variables
for every node for both time steps (sv,t, ev,t, iv,t, rv,t, sv,t+1, ev,t+1, iv,t+1, rv,t+1, ∀v ∈ V ).
log(P (Xt+1|Xt)) can be expressed as in Equation 5.29 where the likelihoods are defined as in
Equation (5.30)–(5.33):

log(P (Xt+1|Xt)) = log(Lt+1
s ) + log(Lt+1

e ) + log(Lt+1
i ) + log(Lt+1

r ) (5.29)
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Lexo =
∏

u∈P (v)

(1− puv)iu,tsv,t

Lt+1
e =

∏
v∈V

((1− e2iv)ev,tev,t+1 (1.0− Lexo)ev,t+1) (5.30)

Lt+1
s =

∏
v∈V

(Lsv,t+1
exo (r2sv)

rv,tsv,t+1) (5.31)

Lt+1
r =

∏
v∈V

(
(i2rv)

iv,trv,t+1(1.0− r2sv)rv,trv,t+1
)

(5.32)

Lt+1
i =

∏
v∈V

(
(e2iv)

ev,tiv,t+1(1.0− i2rv)iv,tiv,t+1
)

(5.33)

Each term in log(P (Xt+1|Xt)) is additive and log-likelihood terms of endogenous transitions
are submodular since they are quadratic terms with negative coefficient. Log-likelihood terms of
exogenous transitions are also submodular by following the submodularity proof of the higher-
order terms from Theorem 5.4.1.

Expressing the inter- and intra-consistency constraints

The inter-consistency constraints (5.23) ensure the validity of diffusion, and they are explicitly
written, using binary state variables sv,t, ev,t, iv,t, rv,t for every v ∈ V and t ∈ j, . . . , k, as:

sv,t + iv,t+1 + rv,t+1 ≤ 1, (5.34)
ev,t + sv,t+1 + rv,t+1 ≤ 1, (5.35)
iv,t + sv,t+1 + ev,t+1 ≤ 1, (5.36)
rv,t + ev,t+1 + iv,t+1 ≤ 1, t ∈ j, . . . , k − 1, v ∈ V (5.37)

ev,t+1 − sv,t ≤
∑
u∈P (v)

iu,t, t ∈ j, . . . , k − 1, v ∈ V (5.38)

Constraints (5.34)–(5.37) ensure that state transitions obey SEIRS dynamics rules such as a node
infected at t cannot be susceptible or exposed at t + 1. The remaining constraint (5.38) ensures
that a newly exposed node must have at least one infected predecessor at previous time step. The
constraints (5.38) are already represented in the objective function, since (1.0− Lexo)ev,t+1 in
Lt+1
e , and (5.24) takes the lowest possible value log(0) = −∞ when any of them is not satisfied.

So, we can remove the constraints (5.38) without affecting the results. (Some of these constraints
are modified accordingly for subset of models. For example, (5.36) becomes iv,t + sv,t+1 ≤ 1 for
SI.)

The intra-consistency constraints (5.22) ensure that every node belongs to a single state at
each time step:

sv,t + ev,t + iv,t + rv,t = 1, t ∈ j + 1, . . . , k − 1, v ∈ V (5.39)
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Optimizing (5.21) in practice

Let E = {sv,t, ev,t, iv,t, rv,t | v ∈ V, t ∈ j, . . . , k}. Then the intra-consistency constraints (5.39)
define base of a partition matroid over the ground set E [89], and constraints (5.34)–(5.37) de-
fine 2-independence system over the same ground set: Its rank quotient is 2 since the ratio of
cardinality of the largest base (maximal independent set) to the cardinality of the smallest base
is at most 2. For more detailed information on matroid and independence system, see [60, 124].

Combining (5.24) and (5.21) with the discussion above, the history reconstruction between
time steps j and k can be then written as optimizing

max T =
k∑

t=j+1

log(Lts) + log(Lte) + log(Lti) + log(Ltr) (5.40)

subject to inter-consistency constraints (5.34)–(5.37) and intra-consistency constraints (5.39).
Equation (5.39) cannot be removed as in Section 5.4.1 since each node may belong to any state
at time t as we do not know the node states at t− 1 or t+ 1 (except for boundary times j and k).

When considered together, constraints (5.34)–(5.37) and (5.39) are base of a new matroid
defined by the intersection of the partition matroid and 2-independence system. Proof is as
follows: Intersection of constraints (5.34)–(5.37) and (5.39) relaxed to≤ define a matroidMp =
(Ep, Ip) where Ep = E, and independent set Ip is subset of E satisfying (5.34)–(5.37) and
relaxed (5.39). Mp defines a matroid since all its bases (maximal independent set) have the
same cardinality (k− j − 1)|V |; we can always find a state assignment for every node and every
time step that satisfies the constraints, and we cannot assign multiple states to each node at each
time step. Then, equality constraints in the original equations (5.39) force independent sets in Ip
to be bases ofMp, as cardinality of an independent set in Ip will now always be (k− j − 1)|V |.

This problem becomes non-monotone submodular maximization under matroid base con-
straints. It is NP-hard [89], and its normalized version can be approximated by 1

6
by modified

local search [89]. We run this method by [89] in DHR-sub-between to reconstruct the history
between j and k.

DHR-sub-between has three main steps: In the first step, it starts with a base of Mp that also
satisfies (5.38), and it finds a base B1 ⊆ Mp that is optimal under swap operations. In the
second step, it removes B1 from Mp and greedily finds independent set X2 that is locally optimal
under addition and deletion operations. In the third step, it contracts independent set X2 from
Mp and finds two disjoint bases Ba, Bb that are guaranteed to exist when the original matroid
Mp has two disjoint bases. Lastly, it returns the best of three bases B1, X2 ∩ Ba or X2 ∩ Bb. The
resulting solution always satisfies (5.38) without explicitly checking for them: Local search will
not replace the current solution with a low score invalid solution as the objective (5.40) takes the
lowest possible value −∞ if any of (5.38) are not satisfied.

5.5. Prize Collecting (Dominating Set) Vertex Cover Relax-
ations (DHR-pcdsvc, DHR-pcvc)

Although accurate and practical for smaller graphs, DHR-sub may take some time to solve for
larger graphs. Then, we can reconstruct the history before the earliest observed snapshot faster
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by relaxing DHR-sub-early. For a relaxed version of the problem, we define variables differently
than above. When reconstructing the history at previous time j−1, we define iv,j−1, ∀v ∈ Ij∪Rj ,
sv,j−1, ∀v ∈ Sj , and ev,j−1, ∀v ∈ Ej . After this transformation, Lje (5.12) turns into

Lv,js2e =
∏

u∈P (v)∩(Ij∪Rj)

(1− puv)iu,j−1

Lv,je2e =
∏
v∈Ej

(1− e2iv)ev,j−1

Lje =
∏
v∈Ej

(
Lv,j−1
e2e

(
1− Lv,js2e

)1−ev,j−1
)

(5.41)

The other likelihoods are transformed similarly.
The hardness of DHR-sub-early comes from higher-order terms

(
1− Lv,js2e

)1−ev,j−1 in (5.41),
so we replace them with their first-order Taylor expansion T v,js2e at the point (iu,j−1 = 1, ∀u ∈
P (v) ∩ {Ij ∪Rj} ∪ ev,j−1 = 1) as in (5.42).

T v,js2e = log(Ks2e) +
1

Ks2e

∑
u∈Ij∪Rj

∂Lv,j,(I,R)
s2e

∂iu,j−1

(iu,j−1 − 1) (5.42)

In (5.42), Ks2e = Lv,js2e(1, . . . , 1) ≈ 1, so the original reconstruction Problem (5.17)–(5.16)
for single time step turns into minimizing −Fr as in (5.43)–(5.44):

min − Fr =
∑

(u,v)∈E∗
wuviu,j−1 ev,j−1 +

∑
u∈Ij∪Rj

wu iu,j−1 +
∑
v∈Ej

wv ev,j−1 +
∑
v∈Sj

wv sv,j−1

(5.43)

s. t.
∑

u∈P (v)∩{Ij∪Rj}

iu,j−1 + ev,j−1 ≥ 1, v ∈ Ej (5.44)

where iu,j = 1 − iu,j and ev,j = 1 − ev,j . The covering constraints (5.44) are inter-consistency
constraints ensuring the validity of the diffusion. Similar to DHR-sub-early, we do not need
intra-consistency constraints since we are reconstructing the history step by step. This problem
is Prize Collecting Dominating Set Vertex Cover (PCDSVC) over the graph G∗ = (V ∗, E∗)
where V ∗ = V with weights wv and directed edge from u to v with weight wuv = − log(1−puv)
exists when v ∈ Ej, u ∈ P (v)∩{Ij ∪Rj} for bipartiteM and v ∈ Ij, u ∈ P (v)∩{Ij ∪Rj} for
non-bipartiteM.

PCDSVC is different than Vertex Cover because (1)- We may not cover an edge (u, v) if we
pay its pricewuv, and (2)- Feasible solution is a vertex dominating set. This problem has not been
studied before, it is NP-hard, and it can be approximated by O(log(|V ∗|)) by formulating it as
Minimum Hitting Set and running the greedy method for Set Cover as proven in Theorem 5.5.1.
Theorem 5.5.1. Prize Collecting Dominating Set Vertex Cover (PCDSVC) is NP-hard, and it
can be approximated by O(log(|V ∗|)).

Proof. PCDSVC is NP-hard since its special case Dominating Set is NP-hard that is obtained
when all edge weights are 0 (wuv = 0).
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Given PCDSVC problem over graph G∗ = (V ∗, E∗), we construct Minimum Hitting Set
instance (S,C) as follows: We define the set of elements as S = {v ∈ V ∗} ∪ {e ∈ E∗} where
the cost of each each item in E∗ is wu for every u ∈ V ∗ and wuv for every (u, v) ∈ E∗. Subsets
C = C1 ∪ C2 of S are defined as: C1 = {eu, ev, euv} ,∀(u, v) ∈ E∗ and C2 = {eu, u ∈ P (v) ∪
{v}} ,∀v ∈ V ∗. This reduction is linear time, approximation preserving and the solution of this
Minimum Hitting Set gives us the solution for PCDSVC. Here |S| = |E∗| + |V ∗| and Greedy
method for Set Cover approximates this problem by log(|S|) + 1 ≈ O(log(|E∗|+ |V ∗|)) + 1 ≈
O(log(|V ∗|)) + 1.

One can also easily show that each Minimum Hitting Set instance can be reduced to PCDSVC
and this reduction is also approximation preserving. Then, Minimum Hitting Set and PCDSVC
are equivalent under linear reduction and this approximation ratio for PCDSVC is the best we
can achieve unless P=NP [45].

We can relax this problem further by removing (5.44) and it becomes Prize Collecting Vertex
Cover (PCVC). PCVC can be approximated by a factor of 2 using the LP relaxation [64], and it
can be solved optimally for bipartite diffusion models by expressing it as s-t mincut as proven in
Theorem 5.5.2.
Theorem 5.5.2. The Taylor expansion relaxation of Equation 5.17 for bipartite diffusion models
can be expressed as s-t mincut problem.

Proof. The minimization problem for bipartiteM has objective Fbi as seen in Equation 5.45. Fbi
is a regular function [78]: when expressed as the summation of first and second-order terms as
in Equation 5.46, each second order term Eu,v(sv,j−1, iu,j−1) satisfies Eu,v(0, 0) + Eu,v(1, 1) ≤
Eu,v(0, 1) +Eu,v(1, 0) in regular functions. Regular functions can be solved optimally by trans-
forming it into s-t mincut [78]. Transformation is as follows:

min − Fbi =
∑

(u,v)∈E∗

1

log(1− puv)
(1− iu,j−1)sv,j−1 +

∑
v∈Ej∪Sj

wvsv,j−1 +
∑

v∈Ij∪Rj

wviv,j−1

(5.45)

−Fbi =
∑

u∈Ij∪Rj ,v∈Ej∪Sj

Eu,v(iu,j−1, sv,j−1) +
∑

v∈Ij∪Rj

Ev(iv,j−1) +
∑

v∈Sj∪Ej

Ev(sv,j−1) (5.46)

We define new directed graph G′ = (V ′, E ′) where V ′ = V ∗ ∪ {s} ∪ {t}. For every v ∈ V ∗,
we add edge (s, v) with weight Ev(1) if Ev(1) > 0 and add edge (v, t) with weight −Ev(1) if
−Ev(1) < 0. For every u ∈ Ij ∪Rj and v ∈ Sj ∪Ej , we add edge (u, v) with weight Eu,v(0, 1).
The s-t mincut solution of this graph gives us the resulting node partition; after the cut edges
removed, variables of the nodes that are reachable from s are assigned 1 and the variables of the
nodes that have a path to t are assigned 0.

The algorithms for these relaxed versions, DHR-pcdsvc and DHR-pcvc, are similar to DHR-
sub except they run PCDSVC and PCVC respectively instead of submodular maximization for
each iteration.
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5.6. Ensemble Initial Spreader Identification
We define DHR-sub-ens, DHR-pcdsvc-ens and DHR-pcvc-ens for the ensemble versions of our
methods: they estimate the most likely subset of nodes that explains the diffusion data from
multiple runs. For each initial time point seen in the multiple runs, we greedily select the subset
of nodes seen in that time point that best explains D in terms of minimum absolute difference
Fdif from Equation 5.47:

Fdif = |Set − Stt |+ |Ee
t − Et

t |+ |Iet − I tt |+ |Re
t −Rt

t| (5.47)

where Set , E
e
t , I

e
t , R

e
t are the set of estimated nodes whereas Stt , E

t
t , I

t
t , R

t
t are the set of true nodes

for S, E, I, R states at time t respectively. We keep adding the node that improves Fdif the most
until there is no improvement. Lastly, we return set of nodes that has the minimum score among
the all possible initial time points as our initial spreader prediction.

5.7. Experimental Results

5.7.1 Comparison and Evaluation
We compared our methods with NetSleuth, Keffectors and Rumor in identifying the initial spread-
ers. Keffectors and Rumor require estimates of the number of initial spreaders, so we provide
them an estimate of the initial spreader count by the number of clusters in G estimated by modu-
larity [15]. We return the topmost k spreaders from Rumor sorted by its rumor centrality metric
where k is the number of clusters in G. We also compared our methods with the baseline heuris-
tic GreedyForward for history reconstruction that reconstructs the history in each interval by
simulating a forward trace starting from the interval’s earlier time.

We validated the history reconstruction performance by Kendall Tau-b statistic [2] (τB) that
measures the similarity between true and estimated node orderings defined in terms of infection
times by also adjusting for ties:

τB(T,O) =
nc − nd√

(n0 − n1)(n0 − n2)
(5.48)

Here, T and O are true and inferred node orderings respectively in terms of given state (such as
infected). Let VT be set of nodes seen in true ordering T , then τB, nc are nd are concordant and
discordant pairs respectively, n0 = |VT |(|VT |−1)

2
, n1 and n2 are sum of tied quantities in the true

and observed orderings respectively. Kendall tau-b adjusts for ties by subtracting n1 and n2 from
n0 in the denominator.

We validated the initial spreaders identification performance by graph-based average match-
ing score (MG). Let V̂t and V̂o be true and estimated initial nodes respectively, and Gb =
(V̂t∪V̂o, V̂t×V̂o) be a weighted bipartite graph with weightswab = 1

1+dab
for every a ∈ V̂t, b ∈ V̂o

where dab is the distance between a and b in G. MG estimates the maximum bipartite match-
ing score in Gb, and returns the average. When |V̂o| 6= |V̂t|, MG is modified to account for the
unmatched vertices by matching them independently to the best ones.
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Both τB and MG are normalized, and higher score means better performance in both. We
implemented all our methods, synthetic trace generator and existing methods NetSleuth, Rumor,
Keffectors in Python, solved LP relaxations by CPLEX [145], and modified and used C++ max-
imum flow code from [17]. We run all our experiments on Macbook Pro with 2.5 Ghz CPU and
8 GB memory. All our code and data are available on the web1.

5.7.2 Reconstruction Performance on Synthetic Data
We generated 5 networks of 500 nodes and 5000 edges that are grown by Erdös-Reyni [42],
Forest Fire [90], linear preferential attachment [10] network growth models. We generated each
synthetic trace by choosing the given number of source nodes randomly, making them infected
and running the diffusion over the network until either all nodes become recovered (or infected
under the SI model) or until the spread dies out. When multiple snapshots are given, we sample
them uniformly in the range (tmin, tmax).

We test our methods on SI, SIR, SEIR by modeling the transition distributions from a geo-
metric distribution with different parameters in each model in order to assess performance under
various conditions. In SI, we selected puv for every (u, v) ∈ E uniformly between 0.1 and 0.4. In
SIR, we selected puv,∀(u, v) ∈ E uniformly in the range (0.2, 0.6) and i2rv,∀v ∈ V uniformly
in the range (0.5, 0.6). In SEIR, we selected puv,∀(u, v) ∈ E, e2iv,∀v ∈ V , i2rv,∀v ∈ V each
uniformly in the range (0.4, 0.8).

DHR-sub and its ensemble version DHR-sub-ens perform the best on all the models in terms
of identifying the initial spreaders as in Table 5.2. In Table 5.2, dashes represent the methods that
cannot be used to reconstruct the diffusion histories, but can only identify the initial spreaders.
Its relaxations DHR-pcdsvc and DHR-pcvc also perform better than the existing methods, and
they are good alternatives to DHR-sub considering their faster running times. The performance
difference between our methods and the existing methods become more apparent especially for
SIR and SEIR models.

In terms of history reconstruction, all our methods perform much better than the greedy base-
line GreedyForward. All our methods perform better when multiple snapshots are available as
seen in Figure 5.3 for DHR-sub for both SI and SIR. DHR-sub reconstructs the histories more pre-
cisely when the interval to be reconstructed has lower maximum snapshot ratio (fmax = tmax/lD)
where lD is the diffusion length, and its performance is not significantly affected by the number
of initial spreaders given the same number of snapshots as in Figure 5.3. Lower reconstruction
performance for higher fmax intervals is due to increasing number of similar quality diffusion
histories. In its extreme, τB may become close to 0 when reconstructing histories of longer
intervals from a single snapshot.

5.7.3 Reconstructing Meme Diffusion History From Blog Data
We used our methods to extract the diffusion history of memes that are defined as short textual
phrases that travel through the Web. We inferred the diffusion progression of several memes in
two blog networks under SI using the true diffusion data from [58]: Top-Blog has 5000 nodes

1http://www.cs.cmu.edu/˜ckingsf/software/dhrec
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Intial Spreader History
FF LPA RDS

SI SIR SEIR SI SIR SI SIR
DHR-sub 0.8 0.83 0.81 0.97 0.88 0.69 0.77

DHR-sub-ens 0.87 0.88 0.89 - - - -
DHR-pcdsvc 0.78 0.8 0.81 0.9 0.82 0.64 0.73
DHR-pcvc 0.76 0.76 0.79 0.88 0.77 0.59 0.72

Rumor 0.74 0.7 0.6 - - - -
NetSleuth 0.75 0.8 0.64 - - - -
Keffectors 0.77 0.74 0.7 - - - -

GreedyForward - - - 0.34 0.28 0.31 0.23

Table 5.2: MG, τB vs. growth and diffusion models for spreader identification (5 true spreaders)
and history reconstruction from |TD| = 2 snapshots. Dashes represent the methods that cannot
be used to reconstruct the diffusion histories, but can only identify the initial spreaders.

a) SI b) SIR

Figure 5.3: τB vs. number of snapshots (x axis) and max snapshot ratio (y-axis), number of true
initial spreaders (y-axis) for history reconstruction over Forest Fire for DHR-sub a) SI b) SIR
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and 30072 edges and it shows the connection between the topmost 5000 blogs, Rand-Blog has
250 nodes and 3342 edges, and it shows the connection between random 250 blogs. In both
networks, nodes represent blogs (personal blogs and mass media), and edges represent hyperlinks
from one blog to the another one. We do not know the true puv, so we estimate them by a
geometric distribution with p being 0.3 between mass media, 0.25 from mass media to bloggers,
0.15 between bloggers, and 0.05 from bloggers to media. Traces for several blog topics were
obtained from the same source [58]. When tracking the diffusion of a topic, if a blog publishes
about it at multiple time points, we assume blog is infected at the earliest time point.

We reconstructed the diffusion history of the memes Fukushima, Arab Spring and Nba on
both Top-Blog and Rand-blog as in Figures (5.4)–(5.5). Values inside the parentheses define the
time scale for the meme progression (1 : 5 = 1 time unit for 5 days). τB are lower than the
synthetic case especially when fewer than 2 snapshots are available but they are still reasonable
since the true diffusion parameters are unknown. In Figure 5.4, DHR-sub performs the best,
and all methods reconstruct the diffusion history better when more diffusion data is available.
When run with multiple snapshots, DHR-sub better captures the diffusion direction and performs
almost close to 1 whereas heuristic method GreedyForward’s τB never exceeeds 0.5. Although
Fukushima and Arab Spring have different diffusion dynamics [58], both trajectories can be
reconstructed precisely by DHR-sub. Similar to the synthetic case, performance of DHR-sub
increases if more snapshots are available, and it decreases as fmax increases as in Figure 5.5.
Overall, both DHR-sub and DHR-pcdsvc can nicely fill in the missing gaps of the meme diffusion
history.

In another example, the order of diffusion estimated by DHR-sub matches the true order
of the meme Occupy reasonably well (τB = 0.77). Figure 5.7 shows the true and DHR-sub
predicted diffusion trajectories of Occupy over 50 media sites where red nodes are mass media
whereas white ones are personal blogs. Edges between nodes are possible diffusion progression
paths. In this case, most of the initial diffusion of Occupy happens between mass media, and
diffusion at personal blogs start to show up later. However, the speed of the predicted diffusion
trajectory is more uniform than the true Occupy trajectory.

5.7.4 Identifying Initial Water Contamination Sites
We inferred the initial contaminant locations over two water distribution networks [111] where
nodes are water demand-supply locations, and the edges represent the water pipes: Water-sm has
130 nodes and 173 edges, Water-big has 12527 nodes and 14595 edges. We used contaminant
diffusion data generated by the water distribution simulator EPANET [118].

We identified the initial contamination sites in Water-sm and Water-big under SIR where the
recovered state models the dilution of the contaminant. We approximate the true hydraulic water
diffusion dynamics by SIR as follows: we assume that puv = K1/luv and i2ruv = K2/luv where
K1, K2 are constants, and luv is the length of pipe (u, v). Ensemble methods perform the best
as in Figure 5.8 on Water-sm, and DHR-sub (without ensemble) also performs better than the
existing methods. Our methods’ performance is consistent across different numbers of initial
contamination sites whereas the existing methods’ performance is affected by the number of
initial sites. Our methods are nonparametric as they do not require number of initial spreaders
as input, and our methods’ performance consistency makes them the topmost candidates for
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a) Fukushima b) Arab Spring

Figure 5.4: τB vs. number of snapshots for a) Fukushima(1 : 5), b) Arab Spring(1 : 5) on
Top-Blog

Figure 5.5: τB vs. |TD| and fmax for DHR-sub
of Nba(1 : 10) on Rand-Blog

Figure 5.6: τB vs. noise ratio (p) over Water-
sm
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a) True Progression of Occupy b) DHR-sub Predicted Progression of Occupy

Figure 5.7: a) True and b) DHR-sub predicted diffusion trajectory of Occupy over 50 media
sites (Red nodes are mass media whereas white ones are personal blogs). Edges between nodes
are possible diffusion progression paths.

application domains with multiple but unknown number of initial spreaders.
Performance of both DHR-sub-ens and DHR-pcdsvc decreases for higher fmin as in Fig-

ure 5.8 on Water-big, but they still perform at least 10% better than the best performing NetSleuth.
This lower performance is due to both difficulty of differentiating between the initial spreader
candidates with similar scores, and the decreasing ability to estimate the correct number of initial
spreaders. Our methods may miss the true initial spreaders, but their estimates are within close
distance to the original spreaders as reflected by higher performance in various cases.

5.7.5 Predicting temporal diffusion features
We may answer questions related to temporal diffusion features from the reconstructed histories
such as How quickly did it spread over time?, Did it spread faster at the beginning slowing down
at later time steps?, etc. Here, we compared the speed (first-order) and acceleration (second-
order) dynamics of Unemployment and Fukushima estimated from DHR-sub with the true ones
from [58] as in Figures (5.9)–(5.10). We define speed of a meme as the number of blogs that
publishes about the meme for the first time per time unit, and acceleration as the diffusion speed
change per time unit.

Unemployment is a more commonly-used meme than Fukushima, and such difference is
reflected in their diffusion dynamics: Unemployment’s diffusion speed is more uniform over
time whereas Fukuhisma shows more bursty dynamics. Diffusion speed of Unemployment has
multiple local optima for the time points it peaks in news cycle whereas the speed of Fukushima
has a single peak when it takes attention of the main media sites. However, such difference in
diffusion dynamics does not make a difficulty for DHR-sub as DHR-sub predicted speed of both
memes closely approximate their true ones even from 3 snapshots.
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a) Water-sm b) Water-big

Figure 5.8: a) MG vs. number of initial spreaders for Water-sm, b) MG vs. fmin for Water-big (5
initial sites)

DHR-sub reconstructed histories of both memes also mimick closely their true acceleration
dynamics. The change of diffusion speed for Unemployment is more uniform than the one for
Fukushima, and its uniform dynamics are predicted almost perfectly by DHR-sub whereas the
main peak of Fukushima’s acceleration dynamics was missed by DHR-sub except precise ap-
proximation at remaining time points. Overall, DHR-sub reconstructed histories from only 3
snapshots mimick the true speed and acceleration dynamics of both memes quite precisely even
though the original prediction scores are below 0.75 (τB = 0.74 for Unemployment, τB = 0.65
for Fukushima).

5.7.6 Scalability and Robustness of History Reconstruction
All our methods reconstruct the history on Top-Blog in less than 2 minutes, and our relaxation
methods DHR-pcdsvc, DHR-pcvc reconstruct the history in less than 10 minutes on a large
2D grid graph having 90000 nodes and 179400 edges, with reasonable performance (τB =
0.71, 0.63) as in Table 5.3 whereas DHR-sub takes more than an hour on a personal laptop.
When combined with previous sections’ results, running times in Table 5.3 suggest that DHR-
pcdsvc and DHR-pcvc are nice alternatives to DHR-sub for scalable history reconstruction on
large graphs. However, we still need faster methods for scalable reconstruction on million-node
graphs.

Figure 5.6 shows the performance of contaminant diffusion history reconstruction over Water-
sm under increasing noise levels. Let p be the noise ratio between 0.0 and 1.0, and we added the
synthetic noise p as follows: For each node and each state, we randomly select a value m be-
tween 0 and plD where lD is length of the diffusion and flip a coin to either add m to the current
state transition time tv, or subtract it from tv. If modified transition time (tv + m) is less than 0,
we make it 0.

Our methods do not show a sudden performance drop by increasing noise levels, as DHR-sub
can still reconstruct histories with performance over τB = 0.7 even when the noise levels are 0.5.
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a) Speed b) Acceleration

Figure 5.9: a) Speed, b) Acceleration dynamics of true and predicted diffusion of Unemployment
over time from 3 snapshots

a) Speed b) Acceleration

Figure 5.10: a) Speed, b) Acceleration dynamics of true and predicted diffusion of Fukushima
over time from 3 snapshots
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Top-Blog 2D-GRID
|TD| = 1 |TD| = 3 |TD| = 1 |TD| = 3

DHR-sub 112.5 48.9 - -
DHR-pcdsvc 53.9 28.2 592.1 199.2
DHR-pcvc 49.9 14.3 351.7 82.7

Table 5.3: History reconstruction time (in seconds) for Top-Blog and a 2D grid graph for different
numbers of diffusion snapshots.

Similarly, DHR-sub-ens achieves MG = 0.72 in identifying the initial contaminant locations
over Water-sm for p = 0.5 (results are not shown). In general, all our methods are robust to the
noise in the diffusion data.

5.8. Conclusions
We designed several methods for estimating diffusion histories that either optimize the likelihood
or its relaxations with provable performance guarantees for local steps. Our methods do not re-
quire the number of initial spreaders and diffusion length as parameters. They identify the initial
spreaders better than the existing methods specially designed for this task. They reconstruct the
history accurately in a number of scenarios. We also accurately estimated temporal diffusion
characteristics of several semantically different memes from partial data. These findings suggest
the reconstructability of diffusion history from partial data under several settings. Partial diffu-
sion data is not an unsolvable bottleneck as missing diffusion history can be completed by our
methods accurately.
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Chapter 6

Deconvolution Of Ensemble Chromatin
Interaction Data Reveals The Latent
Mixing Structures In Cell Subpopulations

A preliminary version of this chapter appeared in the 19th International Conference on Research
in Computational Molecular Biology, RECOMB 2015 with the title Deconvolution Of Ensemble
Chromatin Interaction Data Reveals The Latent Mixing Structures In Cell Subpopulations [129].

6.1. Introduction

The spatial organization of the genome as it is packed into the cell is closely linked to its function.
Chromatin loops as well as locally clustered topological domains [35] play a role in long-range
transcriptional regulation [6, 59, 122] and the progression of cancer [51, 158]. For instance, the
impact of the long-range interacting gene clusters in the conformation of HOXA cluster is better
understood in the context of the genome’s three-dimensional relationships [120]. Expression in
the beta-globin locus is mediated by folding to bring an enhancer and associated transcription
factors within close proximity of a gene [13, 142]. Loci of mutations that affect expression of
genomically far-away genes (eQTLs) are statistically significantly closer in 3D to their regulated
genes than expected by a stringent null model [40], indicating that 3D contacts play a widespread
role in gene regulation. Measuring and modeling the three-dimensional shape of eukaryotic and
prokaryotic genomes is thus essential to obtain a more complete understanding of how genomes
function.

A class of recently introduced experimental techniques called chromosome conformation
capture (3C) allows for the measurement of pairwise genomic contacts at much higher resolutions
than FISH microscopy experiments [33]. These techniques cross-link spatially close fragments
of the genome within a population of millions of cells and use high-throughput sequencing to
determine which fragments were cross linked together. Since the development of the original
3C method, a number of enhancements to the protocol such as 3C, 4C, 5C, Hi-C, and TCC,
have been introduced [39, 71, 94, 137]. Genome-wide interactions from Hi-C experiments, for
example, can be analyzed at fragment lengths as low as 10kb [70], though resolutions of 20-
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40kb are more common. Here, for simplicity, we refer to all 3C-like techniques as 3C. All of
these methods result in a matrix F : V × V → R+

0 where V = {1, 2, . . . , n} is the set of
genome fragments and where Fi,j is the number of times genome fragment i was observed in
close proximity to fragment j within the assayed population of cells. Under the assumption that
these contact events will be more common for spatially close pairs as shown in [141], the counts
can be converted into spatial distances. The count matrix F or its associated distance matrix are
then analyzed in the context of long-range gene regulation or used to produce three dimensional
models of the genome [146].

A challenge with 3C data is that it is collected over a population of cells. The genome
structures within these cells vary since (1) They exist at different points in time within a particular
phase of the cell cycle, (2) They may be associated with different methylation and therefore
heterochromatin formations [11], and (3) Chromatin itself can fluidly take on different three-
dimensional forms. Analysis of the combined matrix F therefore may be misleading.

We tackle the problem of extracting the genome contact map of each subpopulation of cells
from the combined, ensemble matrix F. A subpopulation represents cells with similar interac-
tion matrices and can model cells in distinct subphases in the cell cycle (e.g. early G1 vs. late
G1), cells that are undergoing different gene expression programs, or cells that are in different
stochastic structural states. We present a method to deconvolve the observed F into a collection
of biologically-plausible, unobserved subpopulation matrices Fi such that

F ≈
∑
i

λiF
i, (6.1)

where λi are the relative abundances (densities) of cells in each subpopulation (class) i. This is
the 3C Deconvolution Problem (3CDE), which we show to be NP-hard whether λi are in R or N.

To solve this problem, we assume that the interaction matrix Fi of each class is composed
of nonoverlapping topological domains that are highly self-interacting consecutive genomic in-
tervals. Such topological domains have been widely observed and are a natural unit of genome
structure [14, 35]. We model these domains here using a particular type of quasi-clique, allowing
for missing interactions within a densely interacting domain. The algorithm supports the use of
prior knowledge of topological domain structure as estimated from the ensemble matrix F or
through other means that inform the choice of domains that appear in each Fi. We explore two
variants of our algorithm: one called 3CDEint in which the class densities λi are required to be
integers and one called 3CDEfrac in which they are not. The integer case is appropriate when
the matrix F contains unnormalized counts, while the real-valued version is appropriate when F
has been normalized to account for experiment bias [156].

Both 3CDEint and 3CDEfrac solve 3CDE in an iterative two-step fashion that alternates
between optimizing the matrices Fi (Step 1 in Sec. 6.2.3) and then optimizing the densities λi
(Step 2 in Sec. 6.2.4). We show that each step can be solved near-optimally. These two steps use
non-monotone supermodular optimization and SDP relaxations, respectively. For smaller prob-
lem instances, we develop optimal methods 3CDEint-opt and 3CDEfrac-opt based on Quadratic
Integer Programming that allow us to compare our approximate solutions of 3CDEint and 3CDE-
frac to the true optimal solutions.

We show that our estimated deconvoluted matrices and topological domain structures are
very similar to those derived from ground truth single cell data [104] as well domain structures
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in particular cell phases [105]. We also show that domain boundaries from deconvolved matrices
are often more enriched or depleted for regulatory chromatin markers H3K4me3, H3K36me3,
H3K9me3 and CTCF when compared to boundaries from convolved matrices. The deconvolved
domain substructures we produce may therefore be more useful in analyses of long-range regu-
lation with respect to chromatin structure, and our methods can be used as way to simultaneously
find domains while determining population substructures.

6.1.1 Related Work
Most existing methods for finding domains within 3C matrices [35, 50] and for embedding 3C
matrices in 3D space [94, 159] treat 3C interaction data as a single unit ignoring the fact that
it is an ensemble over millions of cells. Although none of the existing methods explicitly solve
the deconvolution problem, some [50, 65, 71, 119] find multiple 3D embeddings or multiple
domain decompositions. For example, Rousseau et al. (2001) [119] develop an MCMC sampling
technique MCMC5C, and Hu et al. (2013) [65] develop BACHMIX that optimizes likelihood over
a mixture model to find multiple embeddings. Neither of these methods considers the additive
affects of interactions. Another method discussed in Kalhor et al. [71] generates a population
of structures by restricting the number of times each interaction is involved in a solution, which
may mimic the deconvolution to a certain extent but ignores the domain structure of the genome.
Armatus [50] finds multiple optimal and near-optimal domain decompositions at multiple scales
by optimizing a density-like objective. None of these methods determine domain substructures
or population densities of these substructures.

On the experimental side, two recent Hi-C modifications try to limit the effect of cell-to-cell
variations. Nagano et al. (2013) [104] carry out experiments on single cells that come at a higher
experimental cost and produce lower-resolution interaction matrices. Another modification mea-
sures the interactions at a particular cell phase by arresting the population of cells at that phase
by thymidine and nocodazole. However, these chemicals may disrupt the original genome struc-
ture [87, 105]. Since single cell 3C data [104] is so recent, we provide the first comparison of
deconvoluted structures to real single cell matrices.

6.1.2 The Deconvolution Problem (3CDE)
We want to estimate the interaction matrices Fi of the subpopulations. Without additional con-
straints, deconvolution is under-constrained because an infinite number of matrices can explain
the ensemble data equally well. However, we can exploit the fact that a 3C interaction matrix
is (1) fairly dense around the diagonal due to the abundance of short-range interactions even
being sparse overall, and (2) composed of topological domains that are highly self-interacting,
non-overlapping genomic intervals that are the building blocks of genome [14, 35].

We encode these assumptions by modeling topological domains as bandwidth-quasi-cliques
(BQCs) to allow domain structures to be locally dense while not requiring all interactions to
exist. A d-BQC is a defined by a genomic subrange [sp, ep] where there is an interaction between
every pair of fragments that are separated by at most d fragments, resulting in a banded pattern
of interactions. Figure 6.1 shows a BQC for a 6-loci domain at 1 mb resolution. Let lmin and
lmax be minimum and maximum possible domain sizes (lmin ≤ ep − sp + 1 ≤ lmax). There
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Figure 6.1: d-bandwidth-quasi-clique (d-BQC).

Figure 6.2: 3CDE: Given the ensemble matrix, we infer the mixing matrices in terms of BQCs
and the densities λ’s without letting BQCs overlap in each subpopulation.
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are ep − sp possible BQCs for a domain p covering the range [sp, ep], so total number of BQCs
over all domains is

∑lmax

l=lmin
(n − l + 1)(l − 1) = O (n(lmax − lmin)2), where n is the number of

fragments.

We assume that the observed ensemble matrix F is sum of binary interaction matrices ({F1,
F2, . . . , Fk}), each multiplied by their densities (Λ = {λ1, λ2, . . . , λk}). We further assume that
each Fi is composed of non-overlapping BQCs. Finally, we assume that the number of classes
k is given or it can be easily estimated as each subpopulation is a meaningful distinct unit such
as different phase of the cell cycle. Let I = {1, . . . , k} be the set of class labels. Figure 6.2
illustrates 3CDE, which is defined formally below:

Problem 3 (3CDE). We are given an ensemble interaction matrix F, a number of classes k, and
(optionally) a set of prior domains Pc. For each class i, we want to choose a set of nonover-
lapping bandwidth-quasi-cliques and density λi such that the squared Frobenius norm of the
difference between F and the sum of the matrices Fi derived from the chosen bandwidth-quasi-
cliques is minimized.

6.2. Approximate 3C Deconvolution Methods

6.2.1 Mathematical Formulation and Hardness

We formulate the 3CDE problem using a three-part objective that (1) minimizes squared Frobe-
nius norm of the difference between observed convolved matrix and convolution of the decon-
volved matrices, (2) maximizes the quality of domains defined by their BQCs, and (3) maxi-
mizes the overlap with a prior set of candidate domains Pc if available. Formally, given min-
imum and maximum domain sizes lmin and lmax, let P = {[sp, ep] | sp ∈ 1, . . . , n, ep ∈
sp + lmin − 1, . . . ,min(n, sp + lmax − 1)} be the set of possible domains, and M : V → 2P

be a function that maps each 3C fragment to the set of domains to which it could belong:

M(v) = {p | ∀p = [sp, ep] ∈ P, sp ≤ v ≤ ep}

Define Gq = (Vq, Eq) to be the BQC intersection graph where

Vq = {(p, d) | p ∈ P, d ∈ 1, . . . , lp − 1} (the set of possible BQCs) (6.2)
Eq = {((pi, d), (pj, t)) | (pi, d), (pj, t) ∈ V 2

q , i 6= j, pi ∩ pj 6= ∅} (6.3)

77



A pair (p, d) represents a BQC by its domain and bandwidth d and lp is the number of fragments
in domain p. We can express 3CDE as:

min

‖F−∑i∈I λiF
i‖2

F︷ ︸︸ ︷∑
(u,v)∈V 2

Fu,v − (∑
i∈I

λi
( ∑
p∈M(u)∩M(v)

lp−1∑
d=|u−v|

xpdi
))2

+
∑
i∈I

∑
(p,d)∈Vq

wpd(1− xpdi)︸ ︷︷ ︸
Domain Weakness

+ λp
∑
i∈I

∑
p∈Pc

∑
d∈1,...,lp−1

(1− xpdi)︸ ︷︷ ︸
Distance From Prior

(6.4)

s.t. xpdi + xrti ≤ 1, ∀ ((p, d), (r, t)) ∈ Eq, ∀i ∈ I (6.5)
xpdi ∈ {0, 1}, ∀(p, d) ∈ Vq, ∀i ∈ I (6.6)

where xpdi = 1 if d-BQC of interval p is assigned to class i. Here, d ranges from |u− v| to
lp− 1 for each entry (u, v) since d-BQC of p can correspond to matrix entries up to d away from
the diagonal. Eqns. (6.5) ensures each Fi is made up of nonoverlapping BQCs. We penalize for
selecting less dense (weaker) BQCs wherewpd defines the quality of d-BQC of p. We also reward
larger overlaps with the prior candidate domains Pc from domain finders, such as Armatus, by
minimizing the distance from the prior domains where λp is weight of the prior.

3CDE has two variants depending on the class densities: (1) 3CDEint where λi are integers,
and (2) 3CDEfrac where λi can take any nonnegative values (useful for normalized F). 3CDE is
NP-complete whether λi are in R or N as proven in Theorem 6.2.1, and 3CDEint can be solved
exactly in pseudo-polynomial O(kn4k−1F k

max) time by dynamic programming. Similarly, it can
be approximated with Set Cover [147] by using a pseudo-polynomial number of constraints as
proven in Theorem 6.2.2. However, this approach is impractical, and prohibitively slow for large
n, k, and Fmax = max{Fi,j}.
Theorem 6.2.1. 3CDE is NP-complete.

Proof. There are two 3CDE variants depending whether λ are in R or N. First, we prove that
3CDEint is NP-complete by proving it is still NP-complete for the special case when class den-
sities Λ = {λ1, . . . , λk} are also given. We define this problem 3CDEintΛ, and its decisional
variant as Decisional 3CDEintΛ as below:

Decisional 3CDEintΛ: Given F , integer Λ, wcpd, and a rational number r, determine whether
there is an nonoverlapping BQCs such that

∥∥F−∑i∈I λiF
i
∥∥2

F
+
∑

i∈I
∑

(p,d)∈Vq w
c
pd(1−xpdi) ≤

r.
3CDEint is clearly in NP since yes instances can be verified in polynomial time, and its

solution is polynomial in the input size. To verify NP-hardness, we reduce SUBSET SUM to
Decisional 3CDEintΛ to prove NP-hardness of Decisional 3CDEintΛ. This result implies NP-
hardness of the optimization variant 3CDEintΛ since its output can be used to answer Deci-
sional 3CDEintΛ. Recall that an instance of SUBSET SUM problem is given by k + 1 integers
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a1, a2, . . . , ak, S, and our goal is to decide whether there is a set A ⊆ {1, . . . , k} such that∑
i∈Ai

ai = S. Given a SUBSET SUM instance, we reduce it to Decisional 3CDEintΛ instance
(F,Λ, wcpd, r) as follows:

We form the following parameters for given SUBSET SUM instance for reduction:

F =


S S . . . 0
S S . . . 0
...

... . . . ...
0 0 . . . 0


n×n

Λ =


a1

a2
...
ak


k×1

wcpd = [0, 0, . . . , 0]1×Vq r = 0

where each Fi in 3CDEintΛ is defined as:

Fi =



F i
1,1︷ ︸︸ ︷

x(1,2),1,i + x(1,3),1,i + . . .+ x(1,n),n−1,i

F i
1,2︷ ︸︸ ︷

x(1,2),1,i + . . .+ x(1,n),1,i . . .

F i
1,n︷ ︸︸ ︷

x(1,n),1,i + . . .+ x(1,n),n−1,i

x(1,2),1,i + x(1,3),1,i + . . .+ x(1,n),1,i x(1,2),1,i + . . .+ x(2,n),n−2,i . . . x(1,n),1,i + . . .+ x(2,n),n−2,i

. . .
. . .

. . . . . .
x(1,n),1,i + . . .+ x(1,n),n−1,i x(1,n),1,i + . . .+ x(2,n),n−2,i . . . x(1,n),1,i + . . .+ x(n−1,n),1,i


n×n

where x(s,e),d,i = 1 if d-BQC of domain [s, e] is used in class i. Each entry F i
a,b consists of BQC

variables that include a and b. Each F i
a,b can be at most 1 due to nonoverlapping BQC constraints.

Clearly, this reduction can be done in polynomial time. If (a1, a2, . . . , ak, S) is a YES instance
of SUBSET SUM, then there is a setA ⊆ {1, . . . , k} such that

∑
i∈Ai

ai = S. There are two cases:
If the solution returned by this Decisional 3CDEintΛ is 0, this means a YES for SUBSET SUM
since this is the only way it returns 0, otherwise it would have been greater than 0. Similarly, if the
solution is not 0, this is NO for SUBSET SUM since it would have returned YES otherwise. If such
solution exists, it can only exist in {x(1,2),1,1, x(1,2),1,2, . . . , x(1,2),1,k} since the rest of variables are
also seen outside F0:2,0:2, and they must add up to 0 for YES. In this case, optimization variant
3CDEintΛ can be solved in polynomial time given an oracle for the decisional variant.

Similarly, 3CDEfracΛ with nonnegative densities is also NP-complete since it is a general-
ization of 3CDEintΛ. Then, 3CDEfrac is also NP-complete.

Theorem 6.2.2. 3CDEint can be approximated to a factor of 3 via the greedy method for Set
Cover.

Proof. Number of possible values for each λi is limited in the objective (6.4) for 3CDEint;
λi ∈ S = {0, 1, . . . , Fmax}. In this case, we can reformulate 3CDEint in terms of single type of
variable by combining the assignment and density variables into a single variable: We define a
binary variable xpdis for every (p, d) ∈ Vq, i ∈ I, s ∈ S where xpdis = 1 if d-BQC of domain p
is assigned to class i which has density s. This reformulation will introduce the following new
constraints:

• Single density assignment in each class: None of BQC pairs assigned to the same class
can have different densities as satisfied by:

xpdis1 + xrtis2 ≤ 1, ∀(p, d) 6= (r, t) ∈ V 2
q , ∀i ∈ I, ∀s1 6= s2 ∈ S2
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Then, 3CDEint can be expressed as Set Cover [147] problem by replacing ypdis = 1− xpdis,
and replacing each quadratic term xpdis1xrtjs2 in the objective (6.4) by a single variable zpdis1,rtjs2
and adding the following constraint:

zpdis1,rtjs2 + ypdis1 + yrtjs2 ≥ 1

to ensure that zpdis1,rtjs2 = 1 if both ypdis1 = 0 and yrtjs2 = 0. The resulting program for
Set Cover has a pseudo-polynomial number of variables and constraints both on the order of
O
(
k(k−1)

2
(Fmax + 1)2 |Eq|

)
as expressed in (6.7)–(6.12):

min
∑

(p,d),(r,t)∈Eq

∑
(i6=j)∈I2

∑
s1,s2∈S2

cxpis1,rtjs2 zpdis1,rtjs2 +
∑

(p,d)∈Vq

∑
i∈I

∑
s∈S

(cpdis + wcpd)︸ ︷︷ ︸
cxpis

ypdis

(6.7)

s.t ypdis + yrtis ≥ 1, ∀(p, d), (r, t) ∈ Eq, ∀i ∈ I, ∀s ∈ S (6.8)
zpdis1,rtjs2 + ypdis1 + yrtjs2 ≥ 1, ∀(p, d), (r, t) ∈ Eq, ∀i 6= j ∈ I2, s1, s2 ∈ S2 (6.9)
ypdis1 + yrtis2 ≥ 1, ∀(p, d) 6= (r, t) ∈ V 2

q , ∀i ∈ I, ∀s1 6= s2 ∈ S2 (6.10)

ypdis ∈ {0, 1}, ∀(p, d) ∈ Vq, ∀i ∈ I, ∀s ∈ S (6.11)
zpdis1,rtjs2 ∈ {0, 1}, ∀(p, d), (r, t) ∈ Eq, ∀i 6= j ∈ I2, s1, s2 ∈ S2 (6.12)

where cpdis1,rtjs2 and cxpis = cxpis +wcpd are the coefficients of quadratic and linear terms respec-
tively when (6.4) is expressed as the objective (6.7). This Set Cover instance can be approximated
by 3 via greedy method [147] since maximum set size is 3. This pseudo-polynomial number of
variables and constraints become prohibitively large for realistic 3CDEint instances.

6.2.2 Practical Approximate Methods

Due to hardness of 3CDE, we design the approximate methods 3CDEfrac and 3CDEint for inte-
ger and real-valued class densities respectively. Both methods are similar, so we explain 3CDEint
in detail and discuss the differences between 3CDEfrac from 3CDEint in the last subsection. Let
S = {0, 1, . . . , Fmax} be the set of integer subpopulation densities where Fmax = max{Fi,j},
and we define yis = 1 if subpopulation i’s density is s. Program (6.4)–(6.6) can be expressed as
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constrained minimization of the biset function Q(X, Y ) as in Program (6.13)–(6.17):

minQ(X, Y ) =
∑

(u,v)∈V 2

Fu,v − (∑
i∈I

∑
s∈S

syis
( ∑
p∈M(u)∩M(v)

lp−1∑
d=|u−v|

xpdi
))2

+
∑
i∈I

∑
(p,d)∈Vq

wcpd(1− xpdi) (6.13)

s.t xpdi + xrti ≤ 1, ∀ ((p, d), (r, t)) ∈ Eq, ∀i ∈ I (6.14)∑
s∈S

yis = 1, ∀i ∈ I (6.15)

xpdi ∈ {0, 1}, ∀(p, d) ∈ Vq, ∀i ∈ I (6.16)
yis ∈ {0, 1}, ∀i ∈ I, ∀s ∈ S (6.17)

where wcpd = wpd + λp is the combined domain prior and robustness weight. The nonoverlap-
ping BQC constraints (6.14) depend only on X , and (6.15) ensures a single density assignment
for each class. We solve Program (6.13)–(6.17) iteratively in two steps starting with unit class
densities. We describe these two steps with their approximation guarantees in detail below. Intu-
itively, the first step tries to find the best BQC assignments X given the class densities Y , while
the second step tries to find the best Y given X . These steps are iterated until convergence.

6.2.3 Step 1: Non-monotone Supermodular Optimization for Estimating
Mixing Matrices

When the class densities Y are given, (6.15) disappears, and the objective is slightly modified as
in:

minQ(X|Y ) =
∑

(u,v)∈V 2

Fu,v − ( ∑
i,s∈Y

s
( ∑
p∈M(u)∩M(v)

lp−1∑
d=|u−v|

xpdi
))2

+
∑
i∈I

∑
(p,d)∈Vq

wcpd(1− xpdi) (6.18)

This is Minimum Non-monotone Supermodular Independent Set in the Interval Graph defined by
the BQC intersection graph Gq since objective (6.18) is non-monotone supermodular. We solve
its fractional relaxation optimally, round the fractional solution via (1, e−1)-balanced contention
resolution scheme by [48] 100 times, and return the minimum solution. This scheme gives 1

e
+

(1− 1
e
)Q approximation guarantee as in Lemma 6.2.3 where Q = Q(∅,∅)+ε

kmin(p,d)(wc
pd)+ε

for arbitrarily

small constant ε > 0. This bound is also preserved up to an additive error for large matrices which
weights are usually estimated by sampling [140]. Each rounding step is defined as follows: For
each class i, we choose a BQC with probability 1 − e−xpdi to put into the solution R. After
sampling, we mark the BQC represented by xpdi for deletion if there is a different BQC in R that
intersects the starting point of p. After removing all marked BQCs fromR, we return independent
set R as a solution.
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We can achieve similar approximation bound by transforming the program into Set Cover
where (1) we replace every xpdi with x̂pdi = 1 − xpdi, (2) define a variable for each quadratic
term, and (3) introduce extra covering constraints to enforce the quadratic costs when none of
its linear terms are added. This Set Cover can be solved by greedy method which runs faster for
large matrices.
Lemma 6.2.3. Step 1 can be approximated to a factor 1

e
+ (1− 1

e
)Q.

Proof. The problem of maximizing Q̂(X|Y ) = −Q(X|Y ) is maximum non-monotone submod-
ular independent set in interval graph. We can make Q̂(X|Y ) nonnegative submodular function
as in Q̂n(X|Y ) = Q̂(X|Y ) + A where A = Q(∅, ∅) =

∑
(u,v)∈V 2 F 2

u,v +
∑

i∈I
∑

(p,d)∈Vq w
c
pd is

the initial empty solution. Let X∗ be the optimal solution, and Xr be the solution returned by
(1, 1

e
) monotonic contention resolution scheme of [48] described in Section 6.2.3, nonnegative

Q̂n(X|Y ) can be approximated by 1
e

as in (6.19):

Q̂n(Xr|Y ) ≥ Q̂n(X∗|Y )
1

e
(6.19)

Here, 1
e

ratio is derived as follows: We first optimize the fractional relaxation of the quadratic
Program optimally since it is convex. Then, rounding the solution via (b, e−b) monotone con-
tention resolution scheme gives αbe−b approximation ratio where α = 1 according to [48] since
we solve its relaxation optimally. be−b is maximized when b = 1, so we use (1, 1

e
) contention

resolution scheme to achieve the best ratio. This ratio becomes 1
e
+(1− 1

e
)Q for our minimization

problem as derived in (6.20)–(6.24):

− Q̂n(Xr|Y ) + A ≤ −Q̂n(X∗|Y )
1

e
+ A (6.20)

Q(Xr|Y ) ≤ − (−Q(X∗|Y ) + A)
1

e
+ A (6.21)

Q(Xr|Y ) ≤ Q(X∗|Y )
1

e
+ A(1− 1

e
) (6.22)

Q(Xr|Y ) ≤ Q(X∗|Y )

(
1

e
+
(

1− 1

e

)∑
(u,v)∈V 2 F 2

u,v +
∑

i∈I
∑

(p,d)∈Vq w
c
pd

Q(X∗|Y )

)
(6.23)

Q(Xr|Y ) ≤ Q(X∗|Y )

(
1

e
+
(

1− 1

e

) Q(∅, ∅) + ε

kmin(p,d)(wcpd) + ε︸ ︷︷ ︸
Q

)
(6.24)

where Q = Q(∅,∅)+ε
kmin(p,d)(w

c
pd)+ε

for arbitrarily small constant ε > 0 since we approximate the lower

bound of the optimal solution by Q(X∗|Y ) ≥ kmin(p,d)(w
c
pd).

6.2.4 Step 2: SDP Relaxation of Binary Least Squares for Density Assign-
ment

Given BQC assignments X , (6.14) disappears, and the resulting program is a binary quadratic
program under the assignment constraints (6.15). However, the size of this program is linear
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in terms of Fmax which may be arbitrarily large. To efficiently estimate the class densities,
we express the program more compactly by defining a variable for every s ∈ S ′ = {2d | d ∈
0, 1, . . . , blog(Fmax)c}. This modification also removes (6.15) without losing any expressiveness
since we can express any density up to Fmax as a sum of subset of S ′. The resulting problem is:

min Q(Y |X) =
∑

(u,v)∈V 2

(
Fu,v −

(∑
i∈I

muimvi

∑
s∈S′

syis

))2

+ Constant (6.25)

=
∑

i∈I,s∈S′

∑
j∈I,t∈S′

st
( ∑

(u,v)∈V 2

muimvj

)
yisyjt − 2

∑
i∈I,s∈S′

s

( ∑
(u,v)∈V 2

Fu,vmuimvi

)
yis

where binary yis = 1 if s is part of class i’s density, mui is an indicator for whether u is assigned
to a BQC in class i that is known from given X , and

∑
s∈S′ syis is the density of class i. Opti-

mizing (6.25) is NP-hard via reduction from PARTITION [150]. To solve it efficiently, we turn
our {0, 1} quadratic program into homogenous {±1} quadratic program by replacing every yis
with (1 + y′is)/2 where y′is ∈ {±1}, and then by substituting y′is = ry′′is where r ∈ {±1}. The
resulting boolean program can be rewritten as:

min
Y

y′′TAy′′ − 2bTry′′ + ‖b‖2 (6.26)

s.t. y′′
2
is = 1, i ∈ 1, . . . , k , s ∈ S ′ (6.27)

r2 = 1 (6.28)

where A is the matrix of quadratic coefficients in (6.25) modified by the transformation above,
b is the modified vector of linear coefficients in (6.25), and y′′ is a k|S ′| length vector. We relax
this quadratically constrained quadratic program into the following semidefinite program (SDP):

Y∗ = arg min
Y′′

Tr(ÂY′′) (6.29)

s.t Y ′′
2
t,t = 1, t ∈ 1, . . . , k|S ′ |+ 1 (6.30)

Y′′ � 0 (6.31)

where Y′′ = [yT′′ , r]T [y′′, r] is positive-semidefinite matrix, and Â =

[
A −b
−bT ‖b‖2

]
. Af-

ter solving this SDP optimally, we run the following rounding procedure based on Gaussian
sampling [98]: We generate a set of random vectors ξl, l ∈ 1, . . . , L = 100 from multivariate
Gaussian distribution N (0,Y∗), quantize each of them into a binary vector ŷl = sign(ξl) ∈
{±1}k|S′|+1, and obtain a solution by ŷ = minl∈1,...,L ŷ

T
l Aŷl. This procedure gives 2

π
+ (1− 2

π
)Q

approximation guarantee for Step 2 as proven in Lemma 6.2.4.
Lemma 6.2.4. Step 2 can be approximated to a factor 2

π
+ (1− 2

π
)Q.

Proof. Similar to the proof of Lemma 6.2.3, we turn the original minimization problem to non-
negative maximization problem. This nonnegative maximization problem can be approximated
by 2

π
since −Â in the objective is positive-semidefinite as the new objective always takes non-

negative values for any vector [98, 106]. This ratio is achieved by rounding the optimal SDP
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solution via Gaussian sampling as described in Section 6.2.4. This approximation ratio for non-
negative maximization becomes 2

π
+(1− 2

π
)Q for Step2 where Q = Q(∅,∅)+ε

kmin(p,d)(w
c
pd)+ε

by following
a similar derivation of Lemma 6.2.3.

6.2.5 The case of real-valued densities: 3CDEfrac

We modify only Step 2 of 3CDEint for nonnegative, real-valued class densities. Let yi be the
variable for class i’s density, 3CDEfrac’s second step optimally solves the following convex
quadratic program:

min
Y

∑
i∈I

∑
j∈I

( ∑
(u,v)∈V 2

muimvj

)
yiyj − 2

∑
i∈I

( ∑
(u,v)∈V 2

Fuvmuimvi

)
yi (6.32)

yi ≥ 0, i ∈ I (6.33)

6.3. Exact 3C Deconvolution Methods

For smaller problem instances, we develop optimal methods 3CDEint-opt and 3CDEfrac-opt
based on convex Quadratic Integer Programming (QIP). 3CDEint-opt can be expressed as in
Program (6.34)–(6.39):

min
∑

(u,v)∈V 2

Fu,v − ( ∑
p∈M(u)∩M(v)

lp−1∑
d=|u−v|

∑
i∈I

ypdi

)2

−
∑
i∈I

∑
(p,d)∈Vq

wcpdxpdi (6.34)

s.t. xpdi + xrti ≤ 1, ∀ ((p, d), (r, t)) ∈ Eq, ∀i ∈ I (6.35)
ypdi ≤ Fmax xpdi, ∀(p, d) ∈ Vq, ∀i ∈ I (6.36)
|ypdi − yrti| ≤ Fmax(2− xpdi − xrti), ∀ ((p, d), (r, t)) /∈ Eq, ∀i ∈ I (6.37)
xpdi ∈ {0, 1}, ∀(p, d) ∈ Vq, ∀i ∈ I (6.38)
ypdi ∈ {0, 1, . . . , Fmax}, ∀(p, d) ∈ Vq, ∀i ∈ I (6.39)

where binary xpdi = 1 if d-BQC of domain p is assigned to class i, and integer ypdi is its density.
Objective (6.34) is convex as shown previously, and overlapping BQCs cannot coexist in the
same class according to (6.35). Constraints (6.36) ensure that density of d-BQC of domain p in
class i is 0 if not used in i, and if assigned, its density is at most Fmax. Lastly, (6.37) ensures
that all BQCs of the same class have the same density. When the class densities are real-valued,
we propose 3CDEfrac-opt by relaxing the integer density constraints (6.39) in Program (6.34)–
(6.39) which turns it into convex Mixed Integer Quadratic Program (MIQP).
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6.4. Results

6.4.1 Implementation

We implemented our methods using CPLEX [145] to solve LP, ILP and convex quadratic pro-
grams, and SDPT3 [143] to solve SDP relaxations. We use the public implementations of Ar-
matus [50] and MCMC5C [119] for comparison, and implemented the 3C normalization method
by [156]. Code and data are available on the web1. The approximate methods are reasonably
fast: 3CDEint and 3CDEfrac can deconvolve CD4+ interaction matrices in less than 15 minutes
on a laptop with 2.5Ghz processor and 8Gb Ram when lmax = 25. They typically converge in
fewer than 5 iterations. Our methods can also deconvolve larger 20-40 kbp resolution matrices
under 30 minutes by restricting lmax = 50 as topological domains are a few megabases in length.

6.4.2 Evaluating Performance

We evaluate deconvolution methods in the few cases where small, synchronized populations
were assayed with 3C methods. Nagano et al. [104] performed Hi-C on 10 single mouse cells,
Naumova et al. [105] performed Hi-C on several populations HeLa cells, each synchronized to a
specific phase of the cell cycle, and Le et al. [87] performed Hi-C on populations of Caulobacter
cells, also synchronized to various phases of the cell cycle. In each of these experiments, we
have more-than-usual confidence that the assayed cells represent a single, unmixed population
of structures. To simulate a more typical population of cells with mixture, we sum together
the individual matrices from each of these experiments to obtain a synthetic ensemble matrix
F that we then attempt to deconvolve into its constituent components (the matrices from the
single cell or synchronized experiments). In each experiment, we form the interaction matrices
by binning the raw interaction data at a given resolution where the value of entry (i, j) is the total
number of interactions between the restriction sites in bins i and j. We analyze CD4+’s each
chromosome independently, but analyze the prokaryotic single chromosome of Caulobacter and
only the 21’st chromosome of HeLa cells. When necessary, we remove the experimental 3C
biases by normalizing the interaction data via [156].

We measure the agreement between our estimated subpopulation contact matrices and the
true contact matrices (single cell or synchronized cell cycle) using two metrics: the normal-
ized mean absolute error (MAE) and the normalized Variation of Information (NVI) [99]. Let
Tp = {T 1

p , . . . , T
k
p } and Ep = {E1

p , . . . , E
k
p} be the set of true and estimated domain partitions

respectively, and T and E be the set of associated interaction matrices. To estimate either metric
(MAE or VI), we perform a minimum-weight bipartite perfect matching between T and E where
the edges are weighted by the value of the metric (VI or MAE) and the value of the agreement
between T and E is the average value of the minimum perfect matching.

Variation of Information (VI) measures the similarities between two partitions, and it is
normalized by dividing by log(n). Let c1 = [s1, e1] be an interval between s1 and e1, and
X = {c1, . . . , ca} be a partition such that

∑
c∈X (ec− sc + 1) = n where each c1 represent either

a domain or an inter-domain region, and none of ci, cj pairs overlap [si, ei] ∩ [sj, ej] = ∅. Given

1http://www.cs.cmu.edu/˜ckingsf/research/3cde
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partitions X and Y , V I(X, Y ) = H(X) + H(Y ) − 2I(X, Y ). H(X) = −
∑

c∈X log(pc) pc
is the entropy of the partition X where pc = ec−sc+1

n
is the probability of seeing the interval

[sc, ec], and I(X, Y ) =
∑

cx∈X
∑

cy∈Y px,y log( px,y
pxpy

) is the mutual information between X and

Y where px,y = [sx,ex]∩[sy ,ey ]

n
. Given matrices Ti and Ej, normalized mean absolute error (MAE)

is defined as MAE(Ti,Ej) =
∑

u∈V
∑

v∈V |T i
u,v−E

j
u,v |

n2 . True interaction matrices T are known,
whereas true domain decompositions Tp are unknown so we define consensus Armatus domains
of T as the truth. Lower score means better performance in both scores. In the case of VI, this
metric measures agreement between clusterings (here partitions of fragments into domains and
non-domains). Since the true domain partitions are unknown, we use the consensus Armatus
domains computed on each known subpopulation as the truth. In both measures, lower score
means better performance.

We compare our methods with greedy baseline ArmatusBase and MCMC5C [119]. In baseline
ArmatusBase, we add the domains from the top-k Armatus decompositions into a set. For each
class, we shuffle the set, and iterate through half of the set by assigning a domain from this set
unless it intersects with the currently-assigned domains. We repeat this procedure 10000 times
to estimate the distribution of the scores. Using domains from Armatus equips ArmatusBase with
domains that appear in the convoluted data set, and it is therefore a more conservative comparison
to our methods. We present the mean ArmatusBase score, and estimate P-values of our results from
this distribution to test for the significance. We also estimate the matrices of k embeddings via
inverse frequency-distance mapping in MCMC5C. When estimating the marker distribution, we
define a domain boundary as a region extended to left and right of the exact boundary by half of
the resolution since this reflects the uncertainty in its position due to binning. Unless otherwise
noted, we use an exponential kernel for BQC quality, and assume no prior domain knowledge.

6.4.3 Deconvolution of Single Mouse CD4+ Interaction Matrices

We apply our method and the baseline methods to the CD4+ interaction dataset at 250 kbp
resolution by providing them with the sum of the matrices from the 10 experiments in which 3C
contacts were estimated on single mouse CD4+ cells. We compare the estimated subpopulation
matrices using this summed matrix as input to the original single cell matrices. Performance is
shown in Figures 6.3a–6.3b.

3CDEint and 3CDEfrac nearly always perform the best in identifying contact matrices that
match the single cell matrices. Even though ArmatusBase greedily assigns domains to the classes,
mean ArmatusBase performs better than MCMC5C in Figure 6.3a for most of the chromosomes.
3CDEfrac over normalized data [156] may perform worse than ArmatusBase because CD4+ data
is an ensemble over only 10 cells rather than millions of cells as in traditional 3C experiments. We
observe a similar performance trend in terms of the metric MAE as in Figure 6.3b. Normalization
does not decrease the performance as it did for normalized VI in Figure 6.3a. 3CDEint performs
significantly better than ArmatusBase on all chromosomes (p < 0.05) in terms of both metrics
since variance of the distribution of ArmatusBase scores is low even though the mean scores are
close to ours. In general, lower matrix error scores show the quality of the deconvolution in
estimating the mixing matrices.

We examine the performance of chromosome 17 as the domain prior weight λ is increased
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(a) Chromosome-wise NVI (b) Chromosome-wise MAE

(c) Chro. 17 NVI

Figure 6.3: Chromosome-wise deconvolution performance of CD4+ dataset in terms of (a) Nor-
malized VI, (b) Mean Absolute Error (MAE). (c) Performance on the 17th chromosome for
various prior weights λp.

(Figure 6.3c). The prior weight seems to have little effect on the overall performance, though
3CDEfrac over normalized data is more robust to different prior weights. Chromosome 17 is
small enough that we can use 3CDEint-opt to find the true optimum of our objective (blue dia-
monds in Figure 6.3c). This shows that our heuristics are achieving close to the optimum value.

6.4.4 Temporal Deconvolution of Interphase Populations in HeLa and
Caulobacter Cells

We deconvolve the sum of measured matrices of the 21st chromosome of HeLa cells at 250 kbp
resolution using data from Naumova et al. [105]. Here, each subpopulation represents cells at a
particular phase of the cell cycle, and so we are deconvolving along the temporal dimension. Fig-
ure 6.4a shows the performance for several choices of prior. Again, we match the true matrices
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better than either a greedy approach or sampling approach (MCMC5C). All the methods perform
better in HeLa cells than CD4+ cells as shown in Figure 6.3c. Unlike in CD4+, normalization
improves the deconvolution performance as well as making the performance of both approxi-
mate 3CDEfrac and exact 3CDEfrac-opt less dependent on the prior weight. This performance
stability shows that we may obtain true domain decompositions without strong reliance on prior
data. 3CDEfrac and 3CDEfrac-opt also outperform the competing methods in terms of average
error per matrix entry: 3CDEfrac without a domain prior can achieve MAE of 0.004, whereas
MCMC5C achieves almost 8-fold more MAE, 0.03.

(a) HeLa (b) Caulobacter Crescentus

(c) Densities of The Phases

Figure 6.4: (a) Deconvolution performance on HeLa dataset by increasing prior weight λp in
terms of NVI. (b) Performance on prokaryotic bacteria dataset vs. Armatus γ in terms of NVI.
(c) Performance of 3CDEfrac in estimating the densities of the cell cycle phases on eukaryotic
HeLa and prokaryotic Caulobacter datasets in terms of Spearman’s correlation ρ by increasing
λp.

We performed a similar experiment for the bacterium Caulobacter where Le et al. (2013)
provide cell-cycle-phase-specific Hi-C matrices. Figure 6.4b reports these results using the NVI
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metric as the resolution of the ground truth domains was varied. While ground truth matrices are
known in these experiments, the true domain decomposition is estimated computationally via a
topological domain finder Armatus. This program has a parameter γ that controls the domain
sizes, with larger γ corresponding to smaller domains. As γ increases, all methods perform
better, however, the ranking of the methods in terms of performance is same regardless of γ.
We observe similar performance trend on HeLa dataset as well. This shows both that we can
deconvolve bacterial Hi-C experiments and that the performance is robust to the scale at which
we define the true domains.

Our methods also estimate the densities of the mixing cell cycle phases quite accurately on
HeLa and Caulobacter if densities of the 4 cell cycle phases (early G1, mid G1, S, M) are
assumed to be proportional to their durations. Figure 6.4c plots the Spearman’s ρ correlation
between estimated and true densities at 250 kbp for both datasets. We often achieve correlations
over 0.75. Existing methods do not provide any estimate of the densities of the subpopulations.

6.4.5 Results on Synthetic Interaction Data
To understand the practical hardness of the deconvolution problem under different types of class
densities and wide range of domain sizes, we also tested our methods on synthetic data. There is
no known domain generation procedure that mimics the true domain structure, so we generated
the synthetic data as follows: For given number of classes and matrix sizes, in each class, we
repeatedly flip an unbiased coin starting from the first bin to generate either domains of size
sampled from gaussian distributionN (µ = 40, σ2 = 10) orN (µ = 10, σ2 = 4), or inter-domain
regions of size sampled from N (µ = 5, σ2 = 1) until we reach the last bin. Similarly, we
sample the class densities fromN (µ = 5, σ2 = 2) by rounding them when the class densities are
supposed to be integers. Lastly, we obtain the ensemble matrix by summing up the interaction
matrices multiplied by their densities.

According to Figure 6.5a, increasing the matrix size by sampling the domain sizes from
N (µ = 10, σ2 = 4) and inter-domain sizes from N (µ = 5, σ2 = 1) decreases the performance
similar to effect of the increasing resolution on real datasets as in Figure (6.6a)-(6.6b). Increasing
the matrix size also increases the performance difference between our methods and ArmatusBase.
The ratio of the domain sizes to inter-domain sizes is the major determinant of the performance
as in Heatmap 6.5b for 3CDEint: Increasing the inter-domain sizes without increasing the do-
main sizes leads to poorer performance due to increasing number of possible optimal solutions.
We also observe similar results for other methods. Figure 6.5c shows how deconvolution perfor-
mance decreases by increasing number of classes for both approximate and exact methods under
both integer and nonnegative densities. Lastly, our methods can also estimate the mixing class
densities quite accurately in terms of Spearman’s correlation ρ as in Figure 6.5d without being
affected by the number of classes. Unlike the mixing matrices estimation, exact and approximate
methods perform similarly in estimating the densities.

6.4.6 Effect of Resolution and Robustness Prior
The deconvolution methods developed here work well at various 3C resolutions. When we
binned the input 3C matrices at increasing intervals, increasing the resolution leads to larger,
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(a) Matrix size (b) Domain and inter-domain sizes

(c) Number of classes (d) Class densities

Figure 6.5: Performance of our methods on synthetic dataset vs. a) interaction matrix sizes, b)
domain and inter-domain sizes, c) number of classes in terms of Normalized VI; and d) class
densities estimation performance in terms of Spearman’s correlation ρ.

more detailed interaction matrices, which usually decreases the performance somewhat (Fig-
ure (6.6a)–(6.6b)). The performance decreases monotonically on HeLa dataset by increasing
resolution, but the score trend is non-monotonic in CD4+ cells due to its smaller population size
with more influential outliers. However, the 3CDEfrac and 3CDEint methods still outperform
the other methods. This is likely due in part to the definition of BQCs, which can properly
model long-range, out-of-domain interactions in the higher resolution matrices. The choice of
the kernel for the robustness prior also seems to have relatively little effect on performance as
shown in Figure (6.6c) or the 7th CD4+ chromosome. We obtain similar results for 21st HeLa
chromosome.
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(a) CD4+ chro. 4 (b) HeLa
(A) 3C Resolution

(c) CD4+ chro. 7
(B) Robustness Prior

Figure 6.6: Effect of 3C resolution on the performance in (a) 4th CD4+ chromosome, (b) HeLa
cells, and the effect of weighting kernel of the robustness prior in (c) CD4+ chromosome 7.

6.4.7 Distribution of Epigenetic Markers Relative To Deconvolved Domains

Epigenetic markers are distributed differently in the genome depending on its conformation, and
domain organization of the genome is correlated to a certain extent with their distribution. For
instance, H3K4me3 and CTCF binding sites are enriched in the domain boundaries due to their
insulator roles. We calculate the distribution of several such markers near the domain bound-
aries as identified within the subpopulation matrices (Figure (6.7)–(6.8)). Each subfigure in
Figure (6.7)–(6.8) plots the average number of markers in 40 kb bins for +/− 2 Mb from all the
estimated domain boundaries that occur within some estimated subpopulation matrix. For Arma-
tus domain, we estimate the average number of markers over top-k decompositions for multiple
γ between 0.1 and 0.9 (k = 4 for HeLa, and k = 10 for CD4+). We obtain histone markers
H3K4me3, H3K4me1, H3K9me3, H3K27ac, H3K27me3 from ChIP-Seq experiments [30, 136]
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(a) H4K4me3 (b) H3K27ac

(c) H3K9me3 (d) H3K4me1

Figure 6.7: Distribution of several markers around the domain boundaries in CD4+ cells. Red
and green lines represent 3CDEfrac and Armatus respectively in all plots.

for CD4+ cells, from [11] for HeLa cells, and add CTCF sites from CTCFBSDB [160]. Mouse
markers are not particularly for CD4+ cells but instead they are detected over similar Th1 cells.

Overall, the relationship between histone markers and our domain boundaries are consistent
with the experimentally-characterized different roles of the epigenetic markers [11]. Barrier-
like histones H3K4me3, H3K27ac, and CTCF are more enriched in the deconvolved domain
boundaries than Armatus boundaries in both species, whereas non-promoter-associated repress-
sor H3K9me3 is more depleted in the deconvolved domain boundaries. This greater enrichment
and depletion of the histones near the deconvolved domain boundaries, in accordance with the
experimental results, show the improvement in extracting biologically-plausible domains from
the ensemble data achieved by deconvolution.

To better interpret these scores, we estimate the significance of these coverage scores with
respect to the random positioning of the same domains in terms of both enrichment and de-
pletion by shuffling the domains 10000 times and keeping the markers fixed. We estimate the
resulting p value by combining the multiple p values from different CD4+ chromosomes by
Fisher’s method [100]. In Table 6.1, the bold entries represent significantly enriched (∗) and
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(a) H3K4me3 (b) CTCF

(c) H3K9me3 (d) H3K4me1

Figure 6.8: Distribution of several markers around the domain boundaries in HeLa cells.

depleted (∗∗) markers (p < 0.05). Consistent with the previous results, H3K4me3, H3K27ac
and CTCF with insulator roles are significantly enriched in the domain boundaries, whereas non-
promoter-associated trimethylations H3K9me3 and H3K27me3 are depleted in the boundaries.
Enrichments in CD4+ cells do not mainly depend on whether we use the prior domain data,
but the prior Armatus domains make the enrichment differences more pronounced in HeLa cells
since CD4+ results are average over all chromosomes representing the whole genome whereas
HeLa dataset is composed of a single chromosome. Overall, we may use our methods as alterna-
tive domain finders returning multiple domain decompositions in the ensemble as suggested by
significance of the results. The ratios in Table 6.1 and the associated p values show the compati-
bility of the estimated marker distributions relative to the domains with the known distributions.
In Table 6.1, both the average coverage by the boundaries and average fraction of the markers
present in the domains do not change substantially by using Armatus domains as a prior in CD4+

cells showing the quality of our deconvolved domains in comparison to Armatus domains.
We also examined the distribution of the number of markers in the domain boundaries to

analyze their relative strength in domain formation. We observe that frequency of boundary-
enriched H3K4me3 in 3CDEfrac domains follows almost a scale-free distribution P (k) ∼ k−γ
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Marker coverage by the domain boundaries Marker coverage by the domains
HeLa CD4+ HeLa CD4+

No prior With a prior No prior With a prior No prior With prior No prior With a prior
H3K4me3 0.23 0.32∗ 0.58∗ 0.62∗ 0.49 0.62 0.75∗∗ 0.78
H3K27me3 0.22∗∗ 0.31∗∗ 0.56 0.57∗∗ 0.51 0.65 0.75 0.76∗

H3K27ac 0.27 0.40∗ 0.62∗ 0.62 0.55 0.72∗ 0.80 0.81∗∗

H3K9me3 0.15∗∗ 0.22∗∗ 0.51∗∗ 0.53∗∗ 0.34∗∗ 0.45 0.81∗ 0.83∗

CTCF 0.21 0.30 0.61 0.62∗ 0.47∗∗ 0.59 0.77∗ 0.77
PolII 0.25 0.36∗ 0.62∗ 0.63∗ 0.53 0.68∗ 0.78∗∗ 0.80

Table 6.1: The average fraction of the several markers in the domain boundaries and inside the
domains extracted by 3CDEfrac with and without Armatus domain prior in HeLa and CD4+

cells. The bold entries represent significantly enriched (∗) and depleted (∗∗) markers (p < 0.05).

in CD4+ cells as in Figure 6.9a by verifying its scale-freeness by log-log plot, without rejecting
KS-test, and rejecting the hypotheses that it follows other possible exponential and log-normal
distributions. Providing prior domain data slightly increases γ without affecting the shape of the
frequency distribution. Similar frequency distributions of H3K4me3 in the boundaries by 3CDE-
frac with and without the prior shows the capabilities of our deconvolution methods as domain
finders. Frequencies of several other markers, such as CTCF, are also close to power-law distri-
butions as in Figure 6.9b. Higher γ of H3K4me3 reflects the fact that fewer number of highly
insulating markers around a boundary is sufficient for a domain formation, whereas more of less
barrier-like CTCF markers are needed in a domain boundary to form a separate domain. Differ-
ent distributions of the markers reflect their different roles in the domain formation in agreement
with our previous Figures (6.7)–(6.8). Scale-free distributions of the marker frequencies suggest
the importance of the preferential attachment type mechanisms in topological domain formation
which are greatly used to explain the scale-free degree distributions in real-world networks.

On the other hand, frequency distributions of the markers inside the domains do not follow
a power law as in Figure 6.9c. H3K4me3 exists in abundance inside the domains similar to
its abundant existence in the domain boundaries, whereas another insulator H3K27ac exists in
fewer numbers inside the domains, and CTCF is seen inside almost every domain. Fewer num-
ber of H3K27ac markers inside the domains can be explained by its strong domain boundary
termination feature which may have led to smaller domains if it has existed excessively inside
the domains. Overall, our results show that many domains can be formed by smaller number of
markers in their boundaries. We can consider domain formation as a complex interplay between
the markers depending on their relative strengths. Figure 6.9 presents the results for CD4+ cells,
but frequency distributions in HeLa cells are similar.

6.5. Conclusion

We formulate the novel 3C deconvolution problem to estimate classes of contact matrices and
their densities in the ensemble chromatin interaction data. We prove its hardness and design op-
timal and near-optimal methods that are practical on real data. Experimental results on mouse,
HeLa, and bacteria datasets demonstrate that our methods outperform related methods in unmix-
ing convoluted interaction matrices of prokaryotes and eukaryotes as well as in estimating the
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(a) H3K4me3 (b) In the boundaries (c) Inside the domains

Figure 6.9: Distribution of the marker frequency in the domain boundaries (a,b) and inside do-
mains (c) in CD4+cells.

mixing densities without any biological prior. Our methods solve the previously unsolved prob-
lem of unmixing 3C experiments efficiently, and they return biologically meaningful domains
supporting their alternative use as domain finders.
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Chapter 7

Conclusions and Future Work

In this thesis, we propose solutions to four main problems related to biological and social net-
works and diffusion dynamics over them. We formulate all problems mathematically and apply
them on different real-world datasets. In all problems, our approaches outperform the existing
methods experimentally, and we discuss theoretical hardness of the problems under different
settings.

In the first problem, we propose an optimization framework to predict protein annotations by
using protein network data and the relationships between the protein functions. Our proposed
method outperforms the existing methods on multiple species. In the second problem, we pro-
pose a network inference method with provable performance guarantees to estimate the unknown
network from diffusion data at both micro and macro scales. In this case, our proposed method
outperforms the competing approaches as well as returning novel diffusion estimates inside the
United States. In the third problem, we propose scalable and fast methods to reconstruct dif-
fusion histories from a limited number of diffusion snapshots under different diffusion models.
Our methods can reconstruct the diffusion histories of several topics in social networks as well
as identifying the initial spreaders of a contaminant in a water distribution network better than
the previous approaches. Lastly, we propose methods to unmix the ensemble Hi-C data which
we use to estimate the latent mixing matrices that represent cell subpopulations in the ensemble
data. Unmixed matrices provide us insights about the relationship between histone distribution
and Hi-C data. In almost all cases, our proposed method outperforms all the existing methods
that cannot handle partial data. More detailed conclusion of each problem can be found on the
respective chapters.

There are multiple directions for possible future work for each problem. Our solution to
the protein annotation prediction problem on Chapter 3 can be further improved. One option
is developing directed graphical models that can also take into account the directionality of the
protein interaction network which data has recently started to become available [21, 151]. An-
other option is improving the current graph-based framework to integrate the protein sequence
information.

Similarly, we can extend our methods for graph inference at both micro and macro scales on
Chapter 4 to different diffusion models. Additionally, we assume that diffusion data is available
apriori which may not be always satisfied in realistic settings. In this case, one must also consider
the cost of collecting diffusion data, and active sampling approaches used for online learning in
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different contexts [131, 133] can be adapted to our problem. Another open question regarding
the inference problem is its theoretical hardness with respect to number of diffusion traces avail-
able. Even though theoretical hardness of the inference problem has been recently discussed for
simpler diffusion models [1, 107], it is still open for many diffusion models.

We can also consider the diffusion history reconstruction problem on Chapter 5 under ar-
bitrary diffusion models. Developing methods for more general diffusion models as well as
discussing their theoretical hardnesses are still open problems. We can consider the problem for
more general dynamics since existing dynamics may not be perfect for different diffusion types
and different scales. Lastly, 3C deconvolution performance in Chapter 6 can be improved by
integrating the microscopy data as a prior which is available for many species during cell cycles
even though it is at low resolution.
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