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Abstract

The von Mises model encodes a multivariate circular distribution as an undirected probabilistic
graphical model. Presently, the only algorithm for performing inference in the model is Gibbs
sampling, which becomes inefficient for large graphs. To address this issue, we introduce an
Expectation Propagation based algorithm for performing inference in the von Mises graphical
model. Our approach introduces a moment-matching technique for trigonometric functions to
approximate the Expectation Propagation messages efficiently. We show that our algorithm has
better speed of convergence and similar accuracy compared to Gibbs sampling, on synthetic data
as well as real-world data from protein structures.
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1 Introduction
The von Mises distribution is a tractable continuous probability distribution that can be used to
model circular variables. Recently, the undirected von Mises probabilistic graphical model (VGM)
was introduced to model arbitrary collections of von Mises-distributed random variables in a com-
pact form [9, 8]. The VGM has a number of uses in directional statistics. For example, they are
increasingly used to model biomolecular structures (e.g., proteins), which can be defined in terms
of a set of bond and dihedral angles.

Razavian et al [9, 8] have recently developed an algorithm that employs block-L1 regularization
to learn the topology and parameters of VGMs from data, and a Gibbs sampler for performing
inference. Unfortunately, Gibbs sampling is not well suited to performing inference in graphical
models with hundreds or thousands of variables, such as those used to model protein structures.
Thus, there is a need for additional inference algorithms for VGM.

Belief Propagation (BP) [6] is a well-studied alternative to Gibbs sampling. Unfortunately, BP
cannot, in general, be applied to continuous-valued distributions, unless the distributions are closed
under conditioning and marginalization (e.g. Conditional Linear Gaussian Graphical Models [10]).
The von Mises distribution is not closed under marginalization, and so Belief Propagation isn’t
applicable for VGM. However, Expectation Propagation (EP) [5] is commonly used to perform
approximate inference in continuous distributions. In this paper we derive the necessary equations
for an EP-style inference algorithm in VGM, and then show that the algorithm outperforms Gibbs
sampling in terms of efficiency, while still retaining the accuracy level of the fully converged Gibbs
sampling.

2 The von Mises Graphical Model (VGM)
Let Θ = (θ1, θ2, ..., θp), where θi ∈ (−π, π]. The multivariate von Mises distribution [3] with
parameters ~µ,~κ, and Λ is given by:

f(Θ) =
exp {~κT ~C(Θ, µ) + 1

2
~S(Θ, µ)Λ ~S(Θ, µ)

T
}

Z(~µ,~κ,Λ)
,

where ~µ = [µ1, µ2, · · · , µp], ~κ = [κ1, κ2, · · · , κp], ~C(Θ, µ) = [cos(θ1−µ1), cos(θ2−µ2), · · · , cos(θp−
µp)], ~S(Θ, µ) = [sin(θ1−µ1), sin(θ2−µ2), · · · , sin(θp−µp)], Λ is a p×pmatrix such that Λii = 0,
and Λij = λij = λji, and Z(~µ,~κ,Λ) is the normalization constant.

Figure 1 shows the factor graph representation of the graphical mode for four variables. Under
this representation the node potentials (i.e. univariate factors) are defined as fi = κicos(θi − µi)
and the edge potentials (i.e. bivariate factors) are defined as fij = λijsin(θi − µi)sin(θj − µj).
Like all factor graphs, the model encodes the joint distribution as the normalized product of all
factors:

P (Θ = θ) = 1
Z

∏
a∈A fa(θne(a)),

where A is the set of factors and θne(a) are the neighbors of fa (factor a ) in the factor graph.
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Figure 1: Factor Graph Representation for multivariate von Mises distribution. Each circular node
is a variable, and the square nodes are factors.

3 Inference in von Mises Graphical Models
One of the most widely used inference techniques on graphical models is Belief Propagation [6].
The Belief Propagation algorithm works by passing real valued functions, called messages, along
the edges between the nodes. A message from node v to node u contains the probability factor
which results from eliminating all other variables up to u, to the variable u.

There are two types of messages: (i) A message from a variable node v to a factor node u,
which is the product of the messages from all other neighboring factor nodes:

µv→u(xu) =
∏

u∗∈N(v)\{u} µu∗→v(xv),

where N(v) is the set of neighboring (factor) nodes to v. (ii) A message from a factor node u
to a variable node v is the product of the factor with messages from all other nodes, marginalized
over all variables except xv:

µu→v(xv) =
∫
x′u:x

′
v=xv

fu(x
′
u)
∏

v∗∈N(u)\{v} µv∗→u(x
′
u)dx

′
u,

where N(u) is the set of neighboring (variable) nodes to u.
In von Mises graphical models, the integration step for computing the message from a bivariate

factor to a node does not have a closed form solution, so that message can not be represented by
a single set of µ and κ and λ anymore, and thus we can not perform belief propagation on a
VGM directly.

A solution to this problem is to approximate these integrals using a chosen distribution family,
and only propagate the parameters of the messages. This method is called Expectation Propagation
[5].

3.1 Expectation propagation
Expectation Propagation is similar to Belief Propagation, except that the messages that are ex-
changed between the nodes only contain the expectation of the marginalization, rather than the
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Figure 2: Von Mises Factor graph representation, and the messages exchanged between the factors
and variable x1.

exact values [5]. Given a factorized probability distribution P (x) =
∏N

i=1 ti(x), expectation prop-
agation computes an approximated probability q(x) =

∏N
i=1 t̃i(x) such that the KL-divergence,

KL(p(x), q(x)), is minimized.
In the next section we will perform the moment matching step (i.e. The KL-divergence mini-

mization step) for the special case of the von Mises graphical model.

3.2 Expectation propagation for von Mises Graphical Models
Recall from section 2, that a von Mises distribution is factorized as uni- and bivariate factors:

P (x|µ, κ, λ) =
1

Z(κ, λ)

n∏
i=1

eκi cos(xi−µi)
n∏

i,j=1i 6=j

eλij sin(xi−µi) sin(xj−µj)

Figure 2 shows the factor graph representation of von Mises and the messages that pass between
variable x1 and the related factors.

As mentioned in previous section, in Expectation Propagation, messages contain the expecta-
tions rather than the actual parameters. In EP for von Mises, each message going to the variable
will be approximated by a univariate von Mises and we use moment matching to calculate the
messages.

There are four types of messages: (i) Messages from (univariate) factor node gi to the variable
xi, and (ii) vice versa; (iii) messages from (bivariate) factor node fij to the variable xi, and (iv)
vice versa.

Messages from factor g to the variables - Factors gi are univariate factors with eκicos(xi−µi)

as their function. The message they will send to the variable xi is simply eκicos(xi−µi), which is
already in the desired form of a univariate von Mises function.
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Messages from factor f to the variables - Factors fij are bivariate, and they first receive
message from xj , then multiply their potential (a function of the form eλijsin(xi−µi)sin(xj−µj)) to
the incoming message from xj , and then approximate the integration by a message of the form
eκ
∗cos(xi−µ∗).

Let’s assume that the message mj→fij = eκ
∗
j cos(xj−µ∗j ) is the message that xj sends to the factor

fij . The message that fij sends to the variable xi is then calculated as:

mfij→xi(xi) =

∫
xj

fij(xi, xj)mj→fij(xj)dxj =

∫
xj

eλijsin(xi−µi)sin(xj−µj)eκ
∗
j cos(xj−µ∗j )dxj

We want to approximate this integral by the form:

mfij→xi(xi) ≈ eκ
∗cos(xi−µ∗)

We will use moment matching techniques to find κ∗ and µ∗. Unfortunately, direct moment
matching does not have a closed form solution in this case and is computationally very expensive.
Instead, we use Trigonometric Moments, to perform moment matching and approximate the mes-
sage. [4] defines two set of moments, α0, α1, ... and β0, β1, ..., that are used to identify a function
with desired level of accuracy. These moments are defined as:

αp(fx) =

∫
x

cos(px)f(x)dx

βp(fx) =

∫
x

sin(px)f(x)dx

Note that the series α and β specify the Fourier coefficients of a function, which uniquely
specifies the function with desired accuracy. We match α0 , α1 , β0 and β1 of these two func-
tions: The actual messsage that should be sent,

∫
xj
eλijsin(xi−µi)sin(xj−µj)eκ

∗
j cos(xj−µ∗j )dxj , and the

approximation of it, eκ∗cos(xi−µ∗).
For simplicity, and without loss of generality, we can assume that the µi for data was first

calculated and subtracted from the data. Therefore we have:

αreal0 =

∫∫ π

xi,xj=−π
eλijsin(xi)sin(xj)+κ

∗
j cos(xj−µ∗j )dxjdxi

βreal0 = 0.

αreal1 =

∫∫ π

xi,xj=−π
cos(xi)e

λijsin(xi)sin(xj)+κ
∗
j cos(xj−µ∗j )dxjdxi

βreal1 =

∫∫ π

xi,xj=−π
sin(xi)e

λijsin(xi)sin(xj)+κ
∗
j cos(xj−µ∗j )dxjdxi

The trigonometric moments for eκ∗cos(xi−µ∗) are also calculated:

αep0 =

∫ π

xi=−π
eκ
∗cos(xi−µ∗)dxi = 2πI0(κ

∗)

βep0 = 0
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On the other hand, for the higher degree moments we have:

αep1 =

∫ π

xi−π
cos(xi)e

κ∗ cos(xi−µ∗)dxi

=

∫ π

xi−π
cos(xi)e

κ∗ cos(xi) cos(µ∗)−κ∗sin(xi)sin(µ∗)dxi

βep1 =

∫ π

xi−π
sin(xi)e

κ∗cos(xi−µ∗)dxi

=

∫ π

xi−π
sin(xi)e

κ∗ cos(xi) cos(µ∗)−κ∗sin(xi)sin(µ∗)dxi

Each individual integral does not have a closed form on its own, and thus would not let us
estimate the κ∗ and µ∗. However we can combine the αep1 and βep1 s, and get the relationship
between κ∗, µ∗, αreal1 and βreal1 :

κ∗ sin(µ∗)βep1 + κ∗ cos(µ∗)αep1 = eκ
∗ cos(xi−µ∗)

∣∣π
xi=−π

= 0

Thus, after moment matching αrealp = αepp and βrealp = βepp , and so we obtain the parameters of
the Expectation Propagation message:

κ∗ =
I−10 (αreal0 )

2π
and µ∗ = −tan−1(α

real
1

βreal1

)

Messages from variable xi to the factors - Messages sent from factors are all approximated
to be of the form eκ

∗
j cos(xi−µ∗j ). The messages that variable sends to the factors are also of the same

family, however they are exact. A message from variable xi to factor gi is a product of all messages
received excluding the message received from factor gi:

mi→gi(xi) =
∏

j=1..N,j 6=i

mfij→i(xi)

=
∏

j=1..N,j 6=i

eκ
∗
j cos(xi−µ∗j )

mi→gi(xi) = eκ
G
i cos(xi−µGi )

Thus, the message parameters κGi and µGi are:

κGi =

√
(
∑
l 6=i

κ∗l cos(µ∗l ))
2 + (

∑
l 6=i

κ∗l sin(µ∗l ))
2

µGi = tan−1
∑

l 6=i κ
∗
l sin(µ∗l )∑

l 6=i κ
∗
l cos(µ∗l )
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Similarly, messages from variable xi to factor fij are:

mi→fij(xi) = eκ
F
ij cos(xi−µFij),

such that

κFij =

√
(
∑
l 6=j

κ∗l cos(µ∗l ))
2 + (

∑
l 6=j

κ∗l sin(µ∗l ))
2

µFij = tan−1
∑

l 6=j κ
∗
l sin(µ∗l )∑

l 6=j κ
∗
l cos(µ∗l )

Once these messages are computed, we calculate the final partition function as the integration
of beliefs of any of the variables.

Z =

∫
xi

∏
j=1..N

eκ
∗
j cos(xi−µ∗j )dxi

=

∫
xi

e
∑

j=1..N κ∗j cos(xi−µ∗j )dxi

=

∫
xi

eκ
∗
z cos(xi−µ∗z)dxi

where κ∗z =

√
(
∑
l=1..N

κ∗l cos(µ∗l ))
2 + (

∑
l=1..N

κ∗l sin(µ∗l ))
2

µ∗z = tan−1
∑

l=1..N κ
∗
l sin(µ∗l )∑

l=1..N κ
∗
l cos(µ∗l )

Finally, the partition function is calculated as Z = 1
2π
I0(κ

∗
z).

4 Experiments
We implemented the Expectation Propagation (EP) inference algorithm for VGM using the func-
tions derived in previous section. In this section, we show that the EP algorithm is much faster
than Gibbs at a minimal loss in accuracy thus presenting a viable alternative in large graphs. We
also compare EP and Gibbs sampling’s accuracy on both synthetic and real data, and show that the
two method give similar results in terms of the imputation error.

4.1 Synthetic Data and Gibbs Sampling for VGM

The synthetic data for our tests were generated by first randomly generating von Mises graphical
models of size 8, 16, 32, and 64 with varying edge density, and then performing Gibbs sampling
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on those models. According to [2], von Mises conditionals are univariate von Mises distributions,
so Gibbs sampling can be performed easily. In particular:

f(xp|x1, x2, . . . xp−1) ∝ exp {κpcos(xp − µp) +

p−1∑
j=1

λjpsin(xj − µj)sin(xp − µp)}

= exp {κ∗cos(xp − µ∗)}

where, κ∗ =

√√√√κ2p + (

p−1∑
j=1

λjpsin(xj − µj))2

µ∗ = arctan(
1

κp

p−1∑
j=1

λjpsin(xj − µj))

In our sampler, the values of κ were randomly drown from a uniform distribution between
[0..Sk] with Sk set to 1; and λ values were drown from a Normal distribution N(0, Sλ) where Sλ
was 1.

The sampler is initiated with a completely random vector, and we sample each variable con-
ditioned on the values of the rest of the variables, based on the probabilities calculated above.
Initially the samples are not from a valid von Mises distribution, however after enough samples
are visited and the sampler has converged, we collect the next set of generated samples as valid
VGM samples.

4.2 Expectation Propagation vs. Gibbs Sampling Experiment, over Syn-
thetic Dataset

Table 1 shows the imputation error for EP and Gibbs sampling method, over datasets of size 3000
samples, generated for 8, 16, 32 and and 64-node VGM graphical models. The graph density was
10% for all cases, and the values for Sk and Sλ are both equal to 1. To compute the imputation
error, for each sample in the dataset and for each variable of that sample, we computed the most
likely value for that variable, conditioned on the values of all other variables. For each algorithm,
we then computed the circular mean [4] of the distances between the predicted value and the actual
value of the sample variable, averaged over all 3000 the samples.

Table 1: Mean imputation error for Expectation Propagation and Gibbs sampling on the synthetic
dataset with 10% graph density. (Errors in radians)

Imputation Error 8 Nodes 16 Nodes 32 Nodes 64 Nodes
Expectation Propagation -0.4639 -0.0074 0.0500 -0.0600
Gibbs Sampling 0.4161 0.0039 -0.0073 0.0172
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As can be seen, the error of EP is only slightly higher than the Gibbs sampling error. This result
matches our expectation, since EP is an approximate algorithm and in the best case, it should get
the same accuracy as the fully converged Gibbs sampling. We can see that the divergence of
accuracy is quite small.

The EP inference algorithm, however, is much more efficient than the Gibbs sampler (as ex-
pected). Figure 3 shows the progress through time, of Gibbs sampling versus Expectation Propaga-
tion on the synthetic von Mises graphical model of size 16, with 10% graph density. We measured
this progress by computing the MAP estimate of all 16 variables through time, by each of the two
algorithms, and then we computed the average divergence of this estimate from the mean of the
samples. We observe that for a fixed budget of time, EP gives more reliable results. Figure 4 shows
the total CPU time that it takes for EP inference versus Gibbs sampling for up to 128 variables. As
the size of the graph increases, we see that EP gains a larger advantage in terms of convergence
time, over Gibbs sampling (as expected).

(a) (b)

Figure 3: The convergence analysis for Expectation Propagation and Gibbs sampling.

4.3 Expectation Propagation vs. Gibbs Sampling Experiment, over Ubiqui-
tin Protein Data

The three dimensional structure of a protein (and other molecules) can be defined in terms of a set
of atomic coordinates or, equivalently, in terms of a set of dihedral angles describing the backbone
and side-chain configurations of each amino acid in the protein. We used an algorithm presented in
[9, 8] to learn a regularized structure and parameters of a VGM from data, to learn a VGM model
of the distribution of torsion angles for the protein Ubiquitin. Our training data were obtained via
Molecular Dynamics (MD) simulation, which simulates the dynamics of the protein’s structure
by integrating Newton’s laws of motion. As is customary, a new protein structure was written to
disk after every 10,000 integration steps. Thus, informally, MD produces a set of samples from
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Figure 4: The convergence rate for Expectation Propagation and Gibbs sampling (CPU Time mea-
sured in seconds.)

an underlying distribution over structures. Our Ubiquitin MD data includes 15,000 conformations,
each represented as a vector of 225 torsion angles that define the structure of the protein. Figure 5
shows the graph structure learned on this Ubiquitin data.

(a) The estimated dependency parameters for
VGM learned over Ubiquitin data, projected to protein
residue numbers.

(b) The learned von Mises graphical model edges pro-
jected on the Ubiquitin protein structure.

Figure 5: von Mises graphical model learned over Ubiquitin data.

Having learned the VGM from the MD data, we then computed the imputation errors for EP
and Gibbs sampling (Table 2) over all the 15,000 samples. Starting from random parameters, the
EP algorithm converged in approximately 5 hours. Gibbs sampling did not converge in our time
limit. The average imputation error is displayed in the table.
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Table 2: Imputation Error for Expectation Propagation and Gibbs sampling on Ubiquitin protein
torsion angles

Expectation Propagation Gibbs Sampling
Imputation Error -0.0857 -0.0404

From the results in Table 2, we can see that the EP method has slightly worse imputation
error compared to Gibbs sampling, however both errors are small. Our result is in agreement with
other EP experiments[5], [1], [7] where the EP performance is close to the fully converged Gibbs
Sampling. The benefit of EP is in the increased efficiency, which makes the inference on larger
VGM graphs possible.

5 Conclusion and Future Work
In this paper we presented a novel algorithm for inference in von Mises graphical models. Our
algorithm uses Expectation Propagation on the graph. This problem is non-trivial because it re-
quires moment matching on circularly distributed random variables. We solved that sub-problem
by employing trigonometric moment matching to derive the estimated parameters for the the EP
messages. Our algorithm was then demonstrated to be superior to Gibbs sampling in terms of
computational efficiency, while achieving comparable accuracies.

This work was motivated by the desire to model protein and other biomolecular structures.
Protein structures can be defined in terms of (typically) hundreds to thousands of dihedral angles.
Thus, scalability is critical. Our EP-based inference algorithm is relevant to a number of important
tasks, such as protein structure prediction and, more generally, to modeling the conformational
variability in biological macromolecules induced by environmental changes (e.g., binding to an-
other molecule).

One important limitation of our approach is that the distribution of each variable is assumed
to be unimodal. Many important applications require multi-modal distributions over circular vari-
ables. Thus, as part of ongoing work we are investigating the extension of VGM to multi-modal
distributions. However, inference and learning for multi-modal continuous-valued distributions is
known to be difficult, and will likely require the adoption of non-parametric techniques. We are
actively exploring such techniques.
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