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Abstract
Artificial Intelligence (AI) systems now influence decisions impacting every

aspect of people’s lives, from the news articles they read, to whether or not they
receive a loan. While the use of AI may lead to great accuracy and efficiency in
the making of these important decisions, recent news and research reports have
shown that AI models can act unfairly: from exhibiting gender bias in hiring
models, to racial bias in recidivism prediction systems.

This thesis explores new methods for understanding and mitigating fairness
issues in AI through considering how choices made throughout the process of
creating an AI system—i.e., the modeling pipeline—impacts fairness behavior.
First, I will show how considering a model’s end-to-end pipeline allows us to
expand our understanding of unfair model behavior. In particular, my work
introduces a connection between AI system stability and fairness by demonstrating
how instability in certain parts of the modeling pipeline, namely the learning rule,
can lead to unfairness by having important decisions rely on arbitrary modeling
choices.

Secondly, I will discuss how considering ML pipelines can help us expand our
toolbox of bias mitigation techniques. In a case study investigating equity with
respect to income in tax auditing practices, I will demonstrate how interventions
made along the AI creation pipeline—even those not related to fairness on their
face—can not only be effective for increasing fairness, but can often reduce
tradeoffs between predictive utility and fairness.

Finally, I will close with an overview of the benefits and dangers of the
flexibility that the AI modeling pipeline affords practitioners in the creation of
their models, including a discussion of the the legal repercussions of this flexibility,
which I call model multiplicity.
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Chapter 1

Introduction

Artificial intelligence (AI) now touches almost every part of our lives. AI systems, whether
by acting autonomously or by influencing human decisions, now affect everything from
day-to-day choices as to the news articles we read, to potentially life-changing events such as
whether we receive a loan [30] or whether and where we work [55], or even whether or not
we are detained in jail [10].

Algorithms are often introduced to these decision processes in the hopes that they will
improve on human decision-making, by increasing accuracy, consistency, and efficiency, and
even decreasing bias [113]. Humans themselves are imperfect along many of these axes:
human decision-making is biased, as is evident from studies showing that job applicants
with black-sounding names are less likely to be called for an interview [19]; human decisions
are inconsistent—–for example, federal judges who decide the outcomes of asylum claims
grant asylum at vastly different rates—from 8 to 98% [113]. Humans are also slow and
inefficient—the wait to get an outcome from a benefits appeal claim for veterans can take
between 5-7 years, causing complications for those whose health is on the line [113].

However, as AI systems have been adopted into a wider and wider range of applications,
it has become apparent that there is cause for caution and concern. We now have ample
evidence of AI’s potential for significant harm and discriminatory impact. From gender bias
in hiring models [55], to racial bias in recidivism prediction systems [10] it is clear that AI
systems can exacerbate the same human behaviors they may have been intended to alleviate.
In response to this reality, researchers have amassed a growing literature on how to detect
and mitigate unfair behavior in AI models [8, 17, 72, 106, 142, 244, 263].

Fairness and Abstraction. Notably, most formalizations of fairness in the AI literature
abstract the problem of unfair model behavior to model inputs, model outputs, and the ground
truth label. The most common fairness definitions, such as demographic parity, equalized
false and/or true positive rates, and equal accuracy, can be expressed only with “observed
features V [i.e., input features], outcomes Y [i.e., ground truth labels] ... and decisions D [i.e.,
model outputs]” [177]. Even slightly less common notions, such as counterfactual fairness or
individual fairness, are expressed as a constraint on model inputs and outputs in relation
to additional information about the data distribution, such as a given similarity metric or
causal graph [177].

1



CHAPTER 1. INTRODUCTION

This abstraction has many merits: abstraction leads to transportability, and so these def-
initions can be applied to a large variety of fairness problems. Further, these metrics can
be easily computed and tested no matter the model implementation. Beyond these merits,
in many contexts, such fairness definitions are also fundamentally important: for example,
extreme demographic disparity is of legal consequence in areas such as hiring [235].

The AI Pipeline. However, there may be several more factors which influence the fairness
of a model’s behavior—for example, the process by which it makes a decision, and, relatedly,
the process by which a model is created. The process of creating AI models for a given
application is complex: myriad choices are made during model creation, from the profound to
the seemingly inconsequential. For example, in order to construct a loan decision model for
a bank, a decision has to be made about how to translate the bank’s objective, i.e., deciding
who to grant loans to, into a prediction target: e.g., predicting the probability of the client’s
default, or the amount of money gained by the bank per client, or something else entirely.
Decisions also have to be made about how to use the available data, such as which features
are to be used, and, if the data is unprocessed, how these features should be defined and
constructed [197].On a lower level, model practitioners must decide what type of model will
be used, the learning rule and objective function, the values of hyper-parameters determining
normalization and training procedures, among many other decisions made continuously
throughout model development [137, 153]. All of these decisions then impact how the model
is constructed, and therefore, how it makes its own decisions.

In this thesis, we call this series of decisions model practitioners have to make the AI creation
pipeline, or the pipeline. As the pipeline determines how models reach their decision-making
schema, we will also refer to the AI decision pipeline, or the process by which a model
makes a decision about a given input, as the pipeline, differentiating between the creation
and decision pipelines when necessary.1 While choices are often made along the creation
pipeline in search of the most accurate possible model, as this thesis and other recent work
shows, many of the potential models that could be created among these choices are equally
viable (i.e. have equivalent performance) in the given context, while displaying considerably
different fairness behavior.

This work aims to present the benefits of explicitly considering the creation and decision
pipelines in our conceptualization and mitigation fairness problems in AI systems, which
we call a pipeline-based approach to algorithmic fairness. We suggest that, while useful in
many ways, the abstraction of fairness problems in the AI literature can narrow the field’s
perspective both on what can constitute unfair behavior, as well as on how unfair behavior
can be mitigated in AI systems. By also considering a pipeline-based approach in our fairness
conceptualization and mitigation, we can uncover and prevent a wider variety of undesirable
model behavior, as well as learn to use a larger array of techniques to prevent and stop
unfair model behavior in practice. We suggest the pipeline-based approach to algorithmic
fairness not as a replacement or improvement upon the literature to date, but rather as an
additional, largely unexplored, toolbox. We introduce how the pipeline-based approach can
expand fairness conceptualization and mitigation below, before outlining the thesis in detail
in Sections 1.2.1- 1.2.3.

1We will also interchangeably refer to the AI pipeline as the machine learning pipeline, training pipeline,
or learning pipeline.
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1.1 Incorporating the Pipeline in Fairness Conceptual-
ization and Mitigation

Expanding Notions of Fairness: Procedural versus Outcomes-Based Fairness.
By reducing the problem of unfairness to a question of inputs and outputs, we may narrow
our perception of what unfair behavior means to only include those factors. By using a
pipeline-based approach, we can uncover unfairness which may arise not only from a system’s
outcomes, but also by the process by which it reaches a given decision. For example, a
decision process may rely on attributes that seem normatively or legally dubious— such as a
recidivism prediction model which determines a defendant’s ability to walk free between their
arrest and their court date based on the criminal history of their parents and friends [10]. Or,
as we will explore in depth in this thesis, a decision process may be unfair because it is highly
arbitrary or unstable—–such as a bank effectively flipping a coin to determine who gets a
loan [24]. Even if such models performed admirably on outcomes-based fairness measures,
they may still be seen as unfair by many. Further, while the transportability between contexts
which comes from abstraction is useful, as we explore in Chapter 5, this generality can come
at a cost to specificity, thus at times harming the applicability of common fairness metrics in
real-world contexts.

Pipeline-based Fairness Interventions. This abstraction does not only exist in fairness
definitions, but also in common unfairness mitigation techniques. Common fairness mitigation
techniques are often constructed as constraints put on top of a model’s decision or optimization
process [8, 106, 262]. This approach has many merits: abstracting the problem of fairness to
an optimization constraint over a problem with inputs and outputs is the only way to make a
fully generalizable solution to a given fairness problem. However, mitigating unfair behavior
in this way obfuscates the choices made along the AI pipeline and their effect on the fairness
behavior of the model—and thus the potential fairness benefits of changing some of these
choices. As we demonstrate in this thesis, decisions made along the AI pipeline have a huge
impact on model behavior, from influencing a model’s individual predictions, to changing
the distribution of the individuals it selects [24, 28, 156]. While these generalized methods
of alleviating fairness problems are extremely useful, attacking fairness problems only with
these tools may leave some stones unturned.

We can, in addition to using commonly available bias mitigation techniques, also explicitly
investigate the choices made along the AI pipeline—even seemingly fairness-unrelated ones—
as intervention points to improve model fairness behavior. Given that the decisions made
along the AI pipeline determine a model and its behavior, if a model is acting unfairly,
one way to change that behavior may be to change some choices made along its creation
pipeline, rather than adding an additional constraint on top of the model. For example, as
we demonstrate in Chapter 3, changing model type to an ensemble model over a singleton
model can be preferable for fairness-related stability concerns. Or, as we show in Chapter 5,
we can modify a model’s prediction target to acheive fairness gains: in that case, changing
from a classification to a regression model. Given that, as we show in Chapter 7, there are
often myriad equally viable (accurate) models for a given prediction task made with different
pipelines, changing decisions made along the AI pipeline, as opposed to adding an additional
constraint on top of a model’s optimization or decision process, can also lead to fairness gains
which come at a lower cost to performance. We demonstrate this phenomenon empirically in
Chapter 5. Finally, as pipeline-based fairness interventions are not tied to any one definition
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of fairness, they can be more flexible to contextual model behavior requirements in real-world
systems, as we explore in Chapter 5 as well.

1.2 Thesis Structure
In this thesis, we aim to demonstrate the importance of the AI pipeline in conceptualizing
and managing unfairness risks in AI systems. We show how choices made along the AI
pipeline—choices often made without fairness specifically in mind—can impact the fairness
behavior of AI models. Choices made along the pipeline can lead to unfair behavior in and of
themselves, and also, intervening along the AI pipeline can improve fairness behavior, often
while reducing performance tradeoffs. The far-reaching impacts of each step in the model
creation process, or AI pipeline, gives us an opportunity to leverage each choice we make
to increase fairness alongside performance, providing a wealth of opportunities to address
fairness issues. Symmetrically, however, by not explicitly considering the impacts of the
choices we make along the pipeline, we may unwittingly choose models with suboptimal
fairness properties, or worse yet, introduce fairness problems. This thesis contains three parts:
Part I explores how choices made along the AI pipeline can lead to fairness problems, and
how to mitigate certain such problems; Part II gives two examples of a real-world case study
of AI pipeline interventions for fairness; and Part III concludes by investigating the legal
repercussions of the flexibility that AI practitioners have when making decisions along the
AI pipeline.

1.2.1 Instability and Unfairness: Problems and Solutions
Instability in Machine Learning Models. We start in Part I by showing how the AI
pipeline–particularly, instability in the AI pipeline–can lead to fairness problems in and of
itself. In contrast to many of the outcomes-based conceptions of fairness, however, the sense
in which instability in the AI pipeline can lead to unfairness is by casting doubt on the
quality and justifiability of the method by which an outcome was reached. In other words,
instability in a model’s creation pipeline can lead to a type of procedural unfairness.

We begin in Chapter 2 by showing that machine learning models—especially deep models—
with nearly identical training pipelines, and similar aggregate performance metrics, such as
accuracy, can exhibit substantially different behavior on individual points, both in terms of
their predictions, and, as we discuss later in the chapter, their explanations.

We start by demonstrating instability in model predictions, and show that effectively equally
accurate machine learning models which were trained with arbitrary differences in their
creation pipelines, such as a one-point difference in the training set, or a change in random
seed, can differ in their predictions or on individual points. In fact, as we show in Chapter 2
a substantial portion of a model’s treatment population–between 3-85%—may have their
prediction susceptible to change on the basis on such a seemingly arbitrary difference. We
also show that in deep models, changes in prediction as a result of these seemingly minuscule
changes can happen to points with confident predictions—meaning that the individual
points which are subject to this instability are not borderline cases. Further, as we confirm
theoretically later on in Chapter 7, we show empirically that accuracy and instability can
increase together, particularly as more complex model classes are used to acheive higher
accuracy—as instability, or what we term later multiplicity, is tightly related to a model’s
variance.
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Figure 1.1: From left to right: Individual in a facial recognition model’s training set (z), and two individuals
in the test set (x, y). When z is included in the training set, the two individuals to the right (x, y) are labeled
as a face match with confidence 0.84. When z is not included in the training set, x and y are predicted as
not a face match with confidence 0.07.

This widespread instability on an individual level can be concerning from a fairness perspective
in certain contexts: particularly, contexts which require justifiable decisions, such as credit
lending, and government decision making. For example, consider a qualified individual
applying for a loan at a bank that uses a machine learning model to determine creditworthiness.
Suppose there are multiple equally accurate models, with differing outcomes for that individual
(approved or not approved for a loan), only differing in seemingly insignificant ways, e.g.
with different random seeds, or a one point difference in the training set. Depending on
which model is chosen, the individual will face a different outcome–meaning that whether or
not that individual is approved for a loan depends upon which random seed was randomly
drawn at training time for the model which the bank ended up using, or perhaps, whether
or not an individual who had applied to that same bank for a loan previously had signed a
form releasing their data to be used for model development.

This behavior can lead to at least two distinct fairness-related problems, discussed below: a
potential lack of quality in a model’s decision, and the lack of justifiability of the individual’s
outcome. In recognition of these fairness problems, we call the phenomenon of an individual’s
outcome being susceptible to a seemingly arbitrary change in the creation pipeline, particularly
a one-point change in the training set, leave-one-out unfairness. However, leave-one-out
unfairness (LUF) is purposefully not construed as a fairness definition deemed necessary
to eradicate for a model to be seen as fair. Instead, we suggest that LUF is a phenomenon
that is undesirable in certain circumstances where model justifiability and consistency are of
concern.

(1)A potential lack of quality in a model’s decision and/or decision process

If an individual’s decision is susceptible to change based on a change so seemingly insignificant
as a random seed or a one-point change in the training set, this may indicate a lack of quality
in the model’s decision-making process, in that the pattern that was learned to reach that
given outcome—even if it is correct—is not stable across small perturbations to the creation
pipeline.2 This sensitivity to seemingly arbitrary choices in the pipeline may indicate a model

2Note that we do not use the word robustness, as robustness concerns a model’s stability in outcomes
to perturbations to a model’s input space, as opposed to its creation pipeline. As we show in Chapter 2,
stability over these two types of perturbations do not seem to be strongly related, as models trained to satisfy
robustness properties are in fact less stable across perturbations to the creation pipeline than deep models
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compensating for uncertainty in the data distribution with the given input parameters—i.e.
there may not be a strong signal to follow in the available data from which the model can
make a generalizable observation. In such instances, more information may be required to
reach a higher-quality solution.

Even beyond such concerns, consistency of model outcomes across extremely similar training
pipelines may be a desirable property in deployment scenarios where a model will be retrained
over time, as is often the case in real-world deployed systems. For example, in human-in-
the loop systems where humans and models work closely together, variability in outcomes
and explanations may be confusing to users and degrade trust even if aggregate accuracy
is maintained. Further, as we explore and address in Chapter 4, consistency may also be
desirable when providing instructions to individuals to achieve recourse from their algorithmic
decisions (e.g. explanations of how a rejected loan applicant could change their application
to get accepted in the future)—as in order for recourse to be successful across re-trainings,
these instructions must remain valid across perturbations to the creation pipeline.

To address these concerns, in Chapter 2 we introduce a method of mitigating inconsistency in
machine learning models—selective ensembling—which uses an ensemble of machine learning
models drawn randomly from a distribution of similar training environments, coupled with a
statistical test, to return the mode prediction of models over a given distribution of training
environments, up to a statistical guarantee, or, if the guarantee cannot be met, abstain from
prediction. Choosing the mode prediction allows us to provide a theoretical guarantee of the
consistency of predictions across models over a given set of perturbations to the training
environment. Additionally, the fact that selective ensemble models abstain from prediction
on points where a consistency guarantee cannot be met serves as a method of flagging points
which may require more information before reaching a high-quality decision—for example,
by sending to a human for review. The fact that the mode is also the majority vote over all
of the models from a given pipeline may also serve as a better justification for why an AI
system returns a given outcome, which we discuss below.

(2) A (lack of) justifiability of the individual’s outcome

The fact that there are several equally accurate models which lead to different outcomes for
this applicant based on an arbitrary difference in training setup, begs the question, why is
this arbitrary choice determining a model’s decision? In other words, why should one model be
chosen over another? Why should the model that rejects the applicant be chosen over one that
does not, given their interchangeability from the perspective of aggregate accuracy? Given
that myriad individuals are in this situation—individuals whose decision is up to an arbitrary
choice, such as a random seed—the choice of any one model will inevitably mean rejecting
certain individuals who would have been accepted in another, equally accurate, model. In
situations where outcomes require justification, such as government decision-making, this
instability can lead to arbitrary decisions: if no thought is given to why one equally accurate
model may be chosen over others, despite the fact that the models give different predictions
to a substantive portion of the treatment population, these individuals experience unjustified,
or arbitrary, decisions. Thus, in order to ensure that despite this fact, everyone is getting
justifiable, non-arbitrary outcomes, we must find a way to justify why the particular model
that was chosen was in fact selected.

Importantly, we note that arbitrary and random are not interchangeable words in this work.

trained with standard techniques.
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By an arbitrary model selection process, we mean a completely unconsidered decision—one
that is made without thought or perhaps even without knowledge that a choice was being
made. This is different from a random selection process, where a decision is purposefully left
to chance. We draw this distinction to stress that a random selection process is predicated
on a conscious choice to employ this selection method: as Perry and Zarsky [204] write,“the
decision to opt for chance must be reasoned.” Thus, once a reasoned justification is given as
to why one model is selected, even if randomness remains, the element of unfairness which
comes from arbitrariness will be mitigated. Beyond a normative desire for justifiable and
non-arbitrary decisions, there may be legal precedent that makes this instability problematic
from a legal standpoint in the US, particularly in applications such as credit-lending and
government decision-making. While we begin discussion of the problem of arbitrariness in
Chapter 2, we discuss these ideas in more detail at the end of this work, in Chapter 7,
where we also explicitly consider legal repercussions of instability in credit lending, as well as
introduce some suggestions for how to justify model selection in high-stakes contexts. In that
chapter, we also explore circumstances where the randomness that comes from instability may
be harmless, or even desirable—but in order to reap the benefits of randomness, arbitrariness
must first be mitigated.

1.2.2 Pipeline Interventions for Bias Mitigation
In Part 2, we turn our focus to how modeling interventions along the AI pipeline can
be used to improve fairness behavior—broadly defined—sometimes while even reducing
fairness-performance tradeoffs.

In Chapter 5, we present a study which examines issues of algorithmic fairness in the
context of systems that inform tax audit selection by the United States Internal Revenue
Service (IRS). Income tax revenue is one of the main sources of government funding (51%
of government revenue[39]); thus in order for continued government function, US taxpayers
must comply with income tax. However, the US tax system does not function perfectly— the
annual gross tax gap, or difference between taxes owed and taxes paid, is approximately $440
billion dollars based on data from 2010-2013 [125]. In order to recover lost revenue, and to
enforce the law that requires Americans to pay income tax, the IRS audits individuals that
it believes may not be paying their full owed tax. During audits, the IRS typically solicits
additional information from taxpayers to support information reported on filed returns. For
the taxpayer, audits can be time-consuming, stressful, and costly [136, 165]. Low-income
taxpayers, for whom tax refunds can comprise a substantial part of income, may wait “on
their refunds to pay day-to-day living expenses such as rent, car repairs, or healthcare, and
any delay can cause taxpayers significant hardship" [6].

In light of these realities, it is important that the tax audit selection system allocate audits
equitably across income lines. As the IRS looks to update their audit selection systems—
which have used classification models since the 1970s—our study assesses how the adoption
of modern machine learning methods for selecting taxpayer audits may affect equity in tax
audit selection with respect to taxpayer income.

Most importantly, we find that simple pipeline interventions—namely, moving from a
classification approach to a regression approach to predict the expected magnitude of tax
underreporting in the taxpayer population—can improve equity, while sidestepping many
performance tradeoffs. In fact, we find that switching from classification to regression models
can improve revenue returned to the IRS in comparison to classification models, demonstrating
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how pipeline-based interventions can reduce the fairness-performance tradeoff by changing
the modeling process itself, instead of by adding an additional constraint.

In addition, this case study highlights three important findings relevant beyond the IRS
context:

(1) Conventional fairness concepts are not always a good fit for real-world policy
problems.

In order to evaluate the equity of an audit allocation, we must have an idea of what constitutes
an equitable allocation. We find that many of the conceptions of equity commonly used in the
AI literature, such as statistical parity, or equalized false positive, false negative, or other error
rates are not perfectly suited for understanding income equity in the tax enforcement context,
as these algorithmic fairness definitions revolve around notions of treating like individuals
or groups alike. This concept of treating like alike is commonly referred to as horizontal
equity in the tax policy context. While horizontal equity is an important component of tax
audit selection, particularly when considering equity across racial lines[78], we find these
requirements may not sufficiently describe an equitable distribution of tax along income lines.
Instead, we focus on the concept of vertical equity —appropriately accounting for relevant
differences across individuals—in our work, which is a central component of fairness in many
public policy settings.

Vertical equity is not a fairness definition but rather a framework through which to consider
fairness desiderata. To become meaningful, vertical equity requires an understanding of
“appropriate” accounting for relevant differences, and thus varies from context to context.
An example of vertical equity is in the US’ progressive income tax: individuals with higher
incomes pay a higher percentage income tax. Differences in income between individuals–a
relevant difference to tax policy—is accounted for by allowing higher-income individuals
to pay a higher percentage tax, in an attempt to distribute more proportionate burdens
across individuals, based on economic assumptions about the decreasing marginal utility
of each dollar as income increases. We consider the relationship between vertical equity
and other more common fairness notions such as individual fairness and proportionality in
Chapter 6.

In order to begin to conceptualize vertical equity in the tax audit context, we analyzed
incidence of recorded non-compliance in IRS data3. We found that the incidence of non-
compliance is approximately monotonic in income. Motivated by this fact, our model of
vertical equity in the tax audit context includes a preference for audit allocations with audit
rates increasing monotonically in income, as well as those displaying high agreement with an
oracle model which has perfect knowledge of tax misreporting, and selects individuals for
audit in descending order of largest misreport.

While we show that common fairness notions, particularly equalized odds and equal true
positive rate, are related to this notion of vertical equity in the IRS audit context under certain
conditions, we find that enforcing satisfaction of these more common fairness definitions
in the literature does not equate to improving more contextualized fairness desiderata in
the audit allocation setting—such as reducing audit burden on lower-income taxpayers, or
increased agreement with an oracle.

3As explained in more detail in Chapter 5, the data used to understand levels of tax non-compliance in the
taxpaying population is a random sample of the US population, collected by the IRS for research purposes.
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(2) Conventional algorithmic fairness mitigation techniques are ill-fit for many
real-world policy problems.

Beyond the definitions themselves, we find that standard methods used to implement common
notions of algorithmic fairness, are not an ideal fit for the IRS context. While these techniques
can mitigate some disparities across income, these come at a steep cost to performance.
Additionally, algorithmic fairness mitigation techniques may not perform as expected due to
differences in problem set-up—namely, that the IRS audit selection problem is budgeted, i.e.
only a portion of positive predictions from classification models are selected for audit due to
resource constraints, and thus mitigation techniques which guarantee equitable distribution
of all positive predictions for misreporting across income groups do not often translate
into an audit allocation which is only a small percentage of the most confident predictions.
As many policy problems involve the budgeted distribution of resources, this poses a new
challenge for creating fairness mitigation techniques which are effective in such settings. For
the time being, this may point to an additional benefit of pipeline-based interventions—they
can be deeply contextualized, and are not inherently tied to any one definition of fairness.
Thus, pipeline-based fairness interventions may be particularly helpful in on-the-ground bias
mitigation projects in the public policy space.

(3) Agency constraints can have a greater impact on the equity of system per-
formance than any algorithmic attributes.

We investigate the role of differential audit cost (to the IRS) in shaping the distribution
of audits. Audits of lower income taxpayers, for instance, are typically conducted by mail
and hence pose much lower cost to the IRS. These results show that the revenue-optimal
distribution of audits overwhelmingly focuses on lower- and middle- income individuals, due
to the fact that these audits provide a better return on investment. Political pressures to
focus narrowly on return-on-investment in the audit context can undermine equity even if
the underling algorithm used to select audits is in equitable on its own—an observation
which may be relevant to a variety of policy contexts [196], and reinforces the narrative that
less biased machine learning algorithms do not guarantee less bias in the decision system of
which they are a part.

1.2.3 Legal and Policy Implications

Finally, in Part 3, we discuss in more detail the benefits, downsides, and legal and policy
implications of the fact that there are myriad equally viable models which can be created
for any given prediction task, as demonstrated in parts I and II of the thesis. We term
this availability of equally viable models with different predictive and internal behavior
model multiplicity. In Chapter 7, we identify two main benefits, and two main concerns
stemming from multiplicity: namely, flexibility and improved possibility for recourse, and
underspecification and lack of justifiability, respectively. On the one hand, we argue that
multiplicity leads to immense flexibility in the model selection process. By demonstrating
that there are many different ways of making equally accurate predictions, multiplicity gives
practitioners the freedom to prioritize other values in their model selection process without
having to abandon their commitment to maximizing accuracy. For example, it may often be
possible to satisfy fairness properties on machine learning models at no cost to accuracy, as
researchers have shown in increasingly many contexts. We argue that in certain contexts,
as a result of the disparate impact doctrine, the fact that several equally accurate models
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exist for the same prediction task puts legal pressure on model makers to search the space of
equally accurate models to find the one that is the least discriminatory.

However, multiplicity also brings to light a concerning truth: model selection on the basis of
accuracy alone—the default procedure in many deployment scenarios—fails to consider what
might be meaningful differences between equally accurate models. This means that such a
selection process effectively becomes an arbitrary choice, as we also note in Chapter 2. This
obfuscation of the differences between models on axes of behavior other than accuracy—such
as fairness, robustness, and interpretability—may lead to unnecessary trade-offs, or could
even be leveraged to mask discriminatory behavior. Beyond this, the reality that multiple
models exist with different outcomes for the same individuals leads to a crisis in justifiability
of model decisions: why should an individual be subject to an adverse model outcome if there
exists an equally accurate model that treats them more favorably? To remedy this problem,
we present methods of building machine learning models which preserve justifiability—in an
attempt to answer the question, how do we take advantage of the benefits model multiplicity
provides, while addressing the concerns that it may raise?

As a whole, this thesis aims to show the immense flexibility that the AI creation pipeline
gives practitioners with respect to how to reach the goals they set out to acheive with
machine learning models—but also, how the choices made along the AI pipeline have to be
carefully considered in terms of their impact on desired model behaviors, as even seemingly
small choices can have a large impact. By considering all the choices made along the AI
pipeline—from feature selection, to model type, to the objective functions—as places where
changes can be made to improve fairness behavior, we can greatly expand our arsenal of
unfairness-fighting tools.

Additionally, this work showcases the utility of pipeline-based fairness interventions in
deeply contextualized, real-world machine learning bias mitigation: given that pipeline-based
interventions are not inherently tied to any one notion of fairness, pipeline interventions
can be constructed for a wide variety of desired behaviors. The pipeline-based perspective
of looking at fairness problems leads to myriad questions: it is not well understood how
each part of the AI pipeline impacts fairness behavior, and to what extent these patterns
remain consistent across contexts. In order for pipeline-based interventions to be used with
the same efficacy as mainstream fairness interventions, much research must be done to map
the choices made along the pipeline to fairness behaviors: this leads to rife opportunities for
future work.

1.2.4 Roadmap
This thesis proceeds as follows: we start in Part I with Chapter 2, where we introduce leave-
one-out unfairness and other forms of potentially undesirable instability in deep creation
pipelines. We then address this instability problem through introducing selective ensembles
in Chapter 3. We then introduce and address the problem of deep learning instability in
model explanations in Chapter 4. We then move on to Part II, where we present a case study
of income equity in machine learning models applied to the problem of IRS audit allocation
in Chapter 5, and follow this with a brief discussion of vertical equity as it relates to other
common fairness notions in Chapter 6. Following this, we move to Part III, where we discuss
the legal and policy implications of model multiplicity. Finally, we conclude ( 8).
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Part I

Inconsistency and Unfairness:
Problems and Solutions
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Chapter 2

Inconsistency in Deep Model
Predictions

In the first part of this thesis, we show how investigating what effects choices made along the
AI creation pipeline have on model performance can help widen our understanding of what
constitutes unfair behavior. In particular, we demonstrate how instability over perturbations
to the creation pipeline can impact individual people’s predictions and explanations. We
also introduce methods to mitigate these inconsistencies.

Specifically, in Chapter 2 we demonstrate how instability in a model’s learning rule can
lead to model predictions which change depending on seemingly insignificant changes in the
model’s training process, such as a one-point difference in the training set, or the random
initializations of model parameters. As we expand upon in more detail in Part III, in high
stakes contexts such as consumer credit and criminal justice, such decisions may be seen
as unfair because they effectively dependent upon these arbitrarily chosen factors, making
the model decisions themselves arbitrary. We also demonstrate that, perhaps surprisingly,
models trained to satisfy robustness guarantees are in fact more sensitive to perturbations
to the learning set-up than more standard deep learning models.

In Chapter 3, we introduce methods of alleviating inconsistency in predictions by creating
models whose predictions are consistent across small changes to the creation pipeline, which
we call selective ensembles. Additionally, we demonstrate that certain types of machine
learning model explanations—specifically, gradient-based explanations—also suffer from
inconsistency as a result of small perturbations to the creation pipeline. We show that both
selective ensembles, and also traditional ensemble models, aid consistency in gradient-based
explanations as well.

Lastly, in Chapter 4, we show that a different type of explanation technique, namely,
counterfactual examples, display inconsistency over the same types of perturbations explored
in Chapters 2 and 3.This can complicate methods of achieving recourse from machine
learning model decisions. We introduce a method of generating counterfactual explanations
which are much more stable across perturbations to the creation pipeline—stable neighbor
search.
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2.1 Instability and Unfairness
There are several definitions that aim to formalize fair behavior in machine learning contexts:
group-based notions, such as demographic parity [83] and equalized odds [105], stipulate that
different demographic groups should be treated similarly in aggregate; on the other hand,
individualized notions focus on how each person is treated, such as individual fairness [72],
which requires “similar” outcomes for similar people, and counterfactual fairness [142], which
argues that people should be treated the same as their hypothetical counterpart, who takes a
different protected attribute. Fundamentally, these fairness criteria depend on a comparison
of how one group or individual is treated versus another. However, there are also situations
where the decision-making mechanism is unfair not because of how its behavior varies
across defined groups or individuals, but rather because its decisions cannot be justified by
consistent, intelligible criteria. In other words, decisions may be unfair because they are
arbitrary.

In this section, we study the extent to which instability can lead to such fairness issues.
Intuitively, when a person’s outcome hinges on an arbitrary factor—such as the presence
of another, single individual in the training data—the outcome that follows may be viewed
as unfair. Take for example a person in reasonable financial health who applies for an
auto loan. Suppose that whether their application is approved or not depends on whether
another unrelated person had applied for a loan from the same bank, and was subsequently
included in the training data. Such a decision may be viewed as unfair, as it depends on the
willingness and availability of another person to provide their data for training—a chance
occurrence, rather than a well-justified set of criteria. Even beyond its potential unfairness,
this behvaior may be especially undesireable in applications which come with a "right to
explanation" [129].

Measuring leave-one-out Unfairness. To formalize this intuition, we introduce leave-
one-out unfairness (LUF): the chance that an individual’s outcome will change due to the
presence of any one instance in the training data (Section 2.3, Definition 2.2). To the best
of our knowledge, this is one of the first attempts to formalize unfairness as stemming
from the arbitrary nature of decision rules, and in particular the stability of the underlying
learning algorithm1. Importantly, we do not view leave-one-out fairness–i.e. the lack of
leave-one-out unfairness—as a fairness definition that needs to be satisfied in order for a
model to be deemed acceptable in any context. We consider leave-one-out unfairness to be
undesirable dependent upon context, which we expand upon in Section 2.1, and again in
Chapter 7.

While in this section, we focus on one-point changes to the training set, there are other
random choices made during model development that may lead to an arbitrary change
in model outcome for an individual—changes in the random initialization or architecture,
for example, which we explore in Section 2.6. In Chapter 3, we generalize the problem of
inconsistency in machine learning (ML) model predictions to be over any small perturbation—
not only one-point changes to the training set— to the training pipeline, not only the learning
rule. However, we focus on instability with respect to training data in this section due to its
theoretical connections to other areas of machine learning literature such as stability, privacy,
and robustness.

1Contemporary work Marx et. al [168] addresses similar behavior in linear models, but their definition of
“predictive multiplicity” is focused on the prediction problem and not the individual.
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Figure 2.1: Classification boundaries of a deep model with three hidden layers, trained on two-dimensional
data with uniform-random binary labels, before (left) and after (right) the point highlighted in red is removed
from the training data. Lighter regions correspond to predictions with less confidence. While the model
remains largely unchanged in the area around the left-out point, its boundary changes significantly in other,
far-away areas. For example, the middle-right region assigns greater confidence to white points, even flipping
its prediction on one such point.

We find that in many cases, the use of deep models can lead to this type of unfair outcome
with surprising frequency, and can result in different outcomes for seemingly unrelated
individuals. To gain an intuition for why this might be, Figure A.1 depicts the decision
boundaries of two low-dimensional binary classifiers whose training data differs only on the
presence of the point highlighted in red. Notice that the boundary near the left-out point
remains fairly consistent, but there are non-trivial differences in both the boundary locations
and the confidence of the model’s predictions in regions away from the point. While this
low-dimensional example provides some intuition, we systematically characterize the extent
to which deep models behave as such on real data (Section 2.4). We find that it occurs often
enough to be a concern in some settings (i.e., up to 7% of data is affected); that it occurs
even on points for which the model assigns high confidence; and is not consistently influenced
by dataset size, test accuracy, or generalization error (Figure 2.4, Table 3.1).

Connections. Leave-one-out unfairness has useful connections to other fields such as
stability, privacy, and robustness. We show that while LUF is strictly stronger than some
prior notions of leave-one-out stability [223] (Section 2.3.3, Proposition 2.2), it is weaker
than differential privacy [70] (Proposition 2.3). Thus, one can achieve bounded levels of
leave-one-out unfairness by satisfying differential privacy, but it may also be possible to do
so via relaxations that allow greater flexibility in the selection of learning rules [176].

Recent work has related robust classification to desirable properties beyond mitigating
adversarial examples [236], such as the encoding of more human-interpretable features [82,
119, 185, 238], and individual fairness on weighted `p metrics [260]. These results may seem
to suggest that robust models would also be less susceptible to leave-one-out unfairness.
Evaluating two common techniques for producing robust models, adversarial training [166]
and randomized smoothing [46], we find that these methods in fact have vastly different
effects on leave-one-out unfairness. Whereas randomized smoothing tends to have no effect,
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adversarial training amplifies the problem, resulting in up to a factor of five more affected
points (Section 2.5). These results suggest that although LUF and robustness are not
inherently tied to each other, certain types of models may prove beneficial for both.

Summary. In a similar vein to the oft-cited “lack of interpretability” [159], leave-one-
out unfairness, and the wider observed pattern of prediction inconsistency, complicates
the responsible application of deep models to sensitive decisions. Particularly in settings
where a well-justified explanation is desirable, or even legally mandated [29, 44, 220] these
complications may need to be weighed against the benefits that deep models provide over
less complex alternatives. While we largely focus on presenting the phenomenon of prediction
inconsistency in this section, we discuss the benefits and harms of this behavior, as well as
its legal and policy repercussions, in Chapter 7.

To summarize, we present the following contributions:

1. We introduce and formalize leave-one-out unfairness, which characterizes a possible
source of unfair, arbitrary outcomes in ML applications.

2. We relate leave-one-out unfairness to well-known prior notions of stability, shedding
light on when models may suffer from leave-one-out unfairness, and techniques that
might help to mitigate it.

3. Finally, we present an extensive evaluation of how prevalent LUF is when deep neural
networks are trained on a variety of datasets, and compare it to other sources of
instability such as random initialization and choice of architecture.

In Section 2.2, we provide two examples of machine learning applications where leave-one-out
unfairness may lead to unjust model behavior, along with experimental results demonstrating
that LUF indeed may occur in these contexts, as well as a brief discussion of when prediction
inconsistency may in fact be beneficial. Following this, in Section 2.3, we formally define
leave-one-out unfairness and explore its relationships to LOO-stability and differential privacy.
In Section 2.4 and Section 2.5, we present our experimental results of the extent of leave-
one-out unfairness on real datasets for conventional and robustly trained machine learning
models.

2.2 Contextualizing Leave-one-out Unfairness

Leave-one-out unfairness may not pose a problem in all machine-learning applications. If
the model’s outcome is of little consequence to peoples’ lives, or if the application context
does not require consistency across data samples for adequate justification, then inconsistent
or even arbitrary predictions may be acceptable. Determining whether or not leave-one-
out unfairness leads to fairness issues requires considering this context. In this section, we
motivate examples of how leave-one-out unfairness constitutes a fairness issue in two contexts:
facial recognition use by law enforcement, and loan application decision models used by
financial institutions. We also discuss situations where leave-one-out unfairness may be
unimportant or even beneficial.

Prior to delving in to these examples, however, we clarify the difference between arbitrariness
and randomness. By an arbitrary decision, we mean a completely unconsidered decision—one
that is made without thought or perhaps even without knowledge that a choice was being
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Figure 2.2: From left to right: Individual removed from the training set (z). When z is included in the
training set, the two individuals to the right (x, y) are labeled as a match with confidence 0.84. When z is
not in the training set, x and y are predicted as not a match with confidence 0.07.

made. This is different from a random decision, where a decision is purposefully left to
chance. We draw this distinction to stress that a random selection process is predicated on
a conscious choice to employ this selection method: as Perry and Zarsky [204] write,“the
decision to opt for chance must be reasoned.” This distinction is of importance in the case
of leave-one-out unfairness; as in some cases, both randomness and arbitrariness pose a
problem, in others, only arbitrariness, and sometimes, neither.

Consider again a situation where an individual’s prediction outcome–such as their loan
application decision—is changed as a result of a seemingly inconsequential change such as
a one-point change in the training set. The crux of the problem of justifiability that arises
from leave-one-out unfairness in deep models is how to answer the question: why was one
model chosen over another? As Barocas et al. [220] have previously argued, in order to
fully justify a model’s decision, “one must seek explanations of the process behind a model’s
development, not just explanations of the model itself”. If one train-test split occurred, or a
random seed was chosen, without giving thought or knowledge to the fact that those choices
alone could lead to changes in prediction, then decisions from the resultant models may be
seen as arbitrary.

In situations where model explanations are desired or required, such as in loan application
decisions [3, 93, 188], this arbitrariness may be problematic, as we discuss in more detail in
Chapter 7. However, here the randomness from leave-one-out unfairness may not inherently
be an issue—as long as there is a good justification for why a particular model was chosen
in order to fully justify any given prediction. However for some types of decisions where
machine learning models are being introduced, such as government decisions, and especially
those related to criminal justice, the both the arbitrariness and the randomness may be
a problem, as there is very little legal tolerance for randomness in these decisions [204].
We explore examples of leave-one-out unfairness in a criminal justice context, and a credit
approval context, below.

2.2.1 Facial Recognition

Facial Recognition Technology (FRT) has proliferated in recent years as a method of verifying
identity at scale. Its use in law enforcement, and the potential harms that may follow, have
gained particular attention due to the potentially dire consequences of misidentification:
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facial recognition matches have been used as evidence for arrest [112, 246]. Moreover, the use
of this technology in this context is becoming prevalent: according to a study from 2016 [92],
at least one in four police agencies in the United States have made use of it.

Background. The use of FRT by law enforcement relies primarily on face-matching models,
where two face images are provided as input to determine whether they depict the same
individual. Note that this differs from face classification models, which aim to identify the
person depicted in a face image from a pre-determined set of individuals. A typical workflow
proceeds as follows: given an image of a suspect, law enforcement queries a face-matching
model against a large set of images in a database, which also contains identifying information.
The face-matching model provides a binary label, with a confidence score, and the most
confident matches are provided to the operator for further review [219].

Many police agencies use ready-made, third-party models. For example, one such third-party,
Clearview AI, reportedly contracts with approximately 2,400 law enforcement agencies [163].
Such third-party models are often trained on images obtained from public sources like the
Internet, in particular by taking advantage of Creative-Commons licenses widely used on
social media websites. [181]. The database of images on which these models are run during
inference are often obtained from public records such as drivers license databases. Notably,
these databases may largely consist of individuals with no prior criminal record [92].

Impact of Instability. The results of FRT are increasingly being used by law enforcement
as evidence to justify arrest [112, 246]. If it is likely that a matching outcome can change due
to the inclusion of a particular image–unrelated to the suspect or the potential match—out
of tens of thousands in the model’s training set, then it may be argued the evidence used
to justify the eventual arrest is based on an arbitrary occurrence—the use of a particular
randomly selected training set. In short, such an outcome would be unfair due to the
arbitrary nature of the supporting evidence. Later in this Chapter, we formalize this behavior,
and investigate its prevalence on models trained on real datasets, including face-matching
models.

Experimental Confirmation. We trained a face-matching model on Labeled Faces in the
Wild (LFW) [115], consisting of 13,000 unconstrained pictures of 1680 different individuals. To
measure the effect of individual images on prediction outcomes, we trained models both with
and without a randomly sampled individual, controlling for all sources of non-determinism
(e.g., parameter initialization and GPU operations). We repeated this experiment for 25
different randomly sampled individuals, and measured the effects on prediction behavior.
Further details of our methodology are given in Section 2.4.

We found that the predictions given by the face-matching model change across datasets with
single-image differences, with surprising frequently. One such example of this behavior is
shown in Figure 2.2. When person z is included in the dataset, persons x and y are labeled
as a match; but when person z is removed, they are not. Persons x and y are clearly different
from one another, and aside from gender, share few salient characteristics. More surprisingly,
both predictions are made with high confidence—0.84 and 0.07–far from a baseline random
guess. Such behavior was not limited to these images, but rather we observed that 12% of
the model’s predictions changed across datasets differing in one image, while the change in
accuracy remained less than 2%. Moreover, this behavior was consistent across changes in
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age education occupation sex capital gain model conf.
Affected point (x) 51 Bachelors Self-employed F 0 0.87
LOO point (z) 39 11th Grade Service Industry M 0 -

Table 2.1: Selected feature values for a point treated leave-one-out unfairly in a deep model on the Adult
dataset, and the point z whose removal resulted in the change in prediction. Confidence refers to the raw
output of the model’s prediction in the model with z.

random initialization and choice of architectures, including a residual network resembling
ResNet50.

2.2.2 Consumer Finance
Machine learning is also finding uses in consumer finance [12, 14, 225, 229]. Not surprisingly,
the predictions made by these models, too, can greatly impact peoples’ lives, potentially
playing a decisive role in their ability to buy a car, a house, or start a business.

Impact of Instability Models used in this context may be expected to have consistent,
justifiable reasons for the predictions that they make. The disquieting prospect that consumers’
access to credit might rest on decisions made without adequate care was one of the main
concerns that motivated the passage of FCRA and ECOA [3, 188], both of which target
arbitrariness in lending decisions [1]. FCRA and ECOA provide a “right to explanation” in
lending decisions, on the belief that having to justify their decisions will cause lenders to
be less arbitrary in their decision making [220]. While the letter of these laws focus on the
explanation of a given model, many have argued that true protections against arbitrariness
also require a justification of the model building process [44, 50, 220].

Experimental Confirmation As with the face-matching model in the previous subsection,
we conducted experiments on models trained to predict a proxy for creditworthiness using
datasets differing in a single instance. We used the UCI Adult dataset [67], consisting of a
subset of US census data, and trained one-hidden-layer neural networks with 200 internal
units to predict income from demographic, education, and employment information (details
in Section 2.4). Our results suggest that the predictions of these models are often sensitive to
the presence of single instances, indicating the potential for leave-one-out unfairness.

Looking more closely at the results, one of these models was trained with the point z shown
in Table 2.1 included in the training set: a 39-year-old man with an 11th-grade education
who works in the service industry. This model predicts that a 51-year-old, college-educated,
self-employed woman makes more than $50k (0.87 confidence), whereas a model trained on
the same data without z made the opposite prediction. Mirroring our findings with the FRT
models, there is no apparent connection between the features that represent these individuals
(see Table 2.1), and the models predict the woman’s outcome with high confidence. The
removal of this one individual does not just affect this 51-year-old woman, but rather we
find that approximately 2% of the entire data set, 603 predictions, are changed.

2.2.3 When LUF May Not Pose a Problem
In situations where the outcome of a machine learning model is not necessarily of critical
importance, for example, ad distribution systems, instability in model predictions may not
serve as a problem at all. Indeed, leave-one-out unfairness and related instability may in
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fact serve as a natural bulwark against algorithmic monoculture [51, 138], a phenomenon
where all actors in a given application space converge on the same or extremely similar
models. For example, if all online advertisers converge on one model (and thus show the same
types of ads to each individual or demographic group), consumers may be systematically
prevented from learning about products that may be useful to them, or even worse, kept
in the dark about relevant employment or housing opportunities, due to quirks of that
particular model. Leave-one-out unfairness demonstrates that even nearly identical models
can differ substantially in their predictions—potentially preventing algorithmic monoculture
in situations where it may be of concern. However, we note that the justifiability concerns
which leave-one-out unfairness raises may still pose a problem even in situations impacted
by algorithmic monoculture—and that solutions for both of these concerns do not oppose
each other, as we discuss further in Chapter 7.

2.3 Leave-One-Out Unfairness

In this section, we introduce the definition of leave-one-out unfairness, and discuss its
connections to prior notions of stability: leave-one-out stability [223], differential privacy [70],
and individual fairness [72]. We prove that leave-one-out unfairness is a stronger notion than
leave-one-out stability, and weaker than differential privacy. Our formalization of LUF allows
us to measure its prevalence objectively on real data, and our investigation of its connections
to other forms of stability suggest mitigation techniques as well potential middle ground for
achieving gains in privacy.

2.3.1 Notation and Preliminaries

We assume a typical supervised learning setting. Let z = (x, y) ∈ X×Y be a data point,
where x represents a set of features and y a response. Points z are drawn from a distribution
D, as are datasets S from the iid product of D, i.e. S ∼ Dn. We assume that learning rules
h are randomized mappings from datasets S to models hS , which are functions mapping
features to responses; in other words, hS : X→ Y is the model obtained by learning with
h on data S. We use U(m) to refer to the uniform distribution over the integers {1...m}.
Given S sampled from Dn and index i ∼ U(m), we denote the sample S with the ith element
removed as S(\i).

2.3.2 Leave-one-out Unfairness

Leave-one-out unfairness is based on the notion that a model’s treatment of an individual
should not depend too heavily on the inclusion of any other single training point. This is
related to the concept of algorithmic stability, which measures the effect that a small change
in input has on an algorithm’s output. For example, a machine learning algorithm is stable
if a small change to its input (training set) causes limited change in its output (a trained
model). Usually, the change in output is measured in the form of model error. Definition 2.1
formalizes this as leave-one-out (LOO) stability, but we note that there are several variants
that quantify over pointwise replacement instead of leave-out, and use different types of
aggregation in their bound [223].

Definition 2.1 (Leave-one-out (LOO) Stability [223]). Let εstable : N→ R be a monotonically-
decreasing function. Given a training set S = (z1, . . . , zm) ∼ Dn, and a training set
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S(\i) = (z1, . . . , zi−1, zi+1, . . . , zm) with i ∼ U(m), a learning rule h is leave-one-out-stable
(or LOO-stable) on loss function ` with rate εstable(m) if

1

m

m∑
i=1

E
S∼Dn

[|`(hS , zi)− `(hS(\i) , zi)|] ≤ εstable(m)

LOO-stability records the average effect of removing an individual from the training set
on the absolute loss on that individual’s prediction. Quantifying the effect of learning rule
instability on the fairness of predicted outcomes, however, calls for a definition focusing on
different aspects of model behavior. LOO-stability is a predicate on a learning rule that can
be satisfied in order to achieve an acceptable level of model stability, in expectation over
all draws of a training set S. However, in this chapter, we are interested in quantifying the
extent of arbitrariness in a particular individual’s prediction—to capture this, we need a
metric of unfairness, rather than a fairness guarantee. Pursuant of capturing an particular
individual’s real-life experience with a particular model, we are interested in a quantifying
arbitrary behavior in relation to a particular model context–i.e., on a fixed training set
S.

To focus the effect of instability on the experience of the population on which it is deployed,
rather than a measure of model performance, we need a metric which accounts for the
instability that arises for any person from the inclusion of a given point in the training
set—rather than the impact that the changed point has on the error of its own prediction.
Even with this expanded notion of what comprises instability to focus on the experience of
the individuals, an aggregate calculation such as in LOO-stability may hide the experiences
of an unlucky few who may encounter particularly high arbitrariness in their outcome. To
ensure that model behavior on every individual is considered, a worst-case metric is more
suitable. Further, appealing to the intuition that a model acts unfairly if it is arbitrary, the
consistency of its prediction, rather than its loss, is the target; consistent predictions, even
when incorrect, suggest that the model’s decision is not arbitrary. Definition 2, below, reflects
these considerations.

Definition 2.2 (Leave-one-out Unfairness (LUF)). Let D be the distribution from which
the training set S is drawn, and let x be in the support of D. We define the leave-one-out
unfairness (LUF) experienced by x under learning rule h and training set S ∼ D to be:

LUF(h, S, x) = max
i,k
|Pr[hS(x) = k]− Pr[hS(\i)(x) = k]|

The randomness in this expression is over the choices made by h. Note that in cases of a
deterministic learning rule, Pr[hS(x) = k] is 0 or 1.

In other words, given a learning rule h and a training set S, the LUF experienced by a person
x is the worst-case probability that x receives a different prediction in a model trained with
h on S, and one trained with h on S with a single point removed. Intuitively, this is one way
of quantifying the arbitrariness of the model’s decision at x. If LUF is high, then the model’s
decision is brittle under small, potentially irrelevant changes, i.e., a one-point change in the
model’s training set–casting doubt on the reason behind the model’s decision.

We note that leave-one-out unfairness may have less normative, and technical, significance if
there is a noticeable difference in accuracy between the two models hS and hS(\i) . In practice,
we find that models with such small changes between them most often have comparable
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accuracy, as shown in the variances of models trained with various leave-one-out differences in
Section 2.4. Additionally, as we prove in Section 2.3.3, LOO-stable models can exhibit leave-
one-out unfairness, so the assumption that the two models would have similar performance is
supported by theoretical intuition as well. Thus, we assume throughout this chapter that the
two models will have comparable accuracy. While the definition could be re-cast to include
an accuracy constraint, we omit one to retain similarity to LOO-stability and differential
privacy, in order to draw our theoretical connections.

In certain situations, such as when evaluating various models during development, it may be
useful to understand the extent of leave-one-out unfairness across the entire population under
a given learning rule: i.e. understanding how likely it is any individual in the distribution
will experience an arbitrary decision. This motivates the concept of expected leave-one-out
unfairness, defined below. As most of our experiments aim to measure the frequency and
severity of arbitrary behavior across real datasets, we will focus most heavily on this definition
throughout the chapter.

Definition 2.3 (Expected Leave-one-out Unfairness). Let D be the distribution from which
the training set S is drawn, and let x be drawn randomly from D. We define the expected
leave-one-out unfairness (LUF) experienced by x under learning rule h and training set
S ∼ D to be:

Ex[LUF(h, S, x)] = Ex∼D[max
i,k
|Pr[hS(x) = k]− Pr[hS(\i)(x) = k]|]

Where the randomness in the expectation is taken over samples of x from D.

2.3.3 Connections to Existing Stability Notions
While our introduction of Definition 2.2 above is clearly motivated by LOO stability, in
this section we explore the connections to this and other forms of stability in greater depth.
Specifically, we demonstrate that while learning rules that are already known to be leave-
one-out-stable may still be susceptible to leave-one-out unfairness, strategies for ensuring
stronger notions of stability, such as differential privacy, can be used to mitigate LUF. We
also explore the connection between LUF and other individual-based fairness notions, i.e.
individual fairness.

LOO Stability. Leave-one-out stability is a coarser notion than leave-one-out unfairness,
as it records the average change in a model’s error on a given point when that same point
is removed from the training set. Meanwhile, LUF focuses on how a certain point’s model
outcome can change as a result of any point in the training set being removed.

A LOO-stable model may still treat points leave-one-out unfairly: a model can exhibit similar
error on a given point before and after that point is removed from the training set, but it
may treat other points differently. We demonstrate this point on the simple learning rule and
distribution in Figure 2.3. Additionally, the fact LOO-stability is averaged over the entire
training set can obscure the fact that some individual points are strongly affected by a small
change in the training set. Proposition 2.1 formalizes this, showing that LOO-stability is
strictly weaker than LUF.

Proposition 2.1. Let h be a learning rule, ` be 0-1 loss, and ε(m) be a montonically-
decreasing function such that h is leave-one-out stable with rate ε(m) for all S ∼ Dm. Then
there exists a training set S such that Ex[LUF(h, s, x)] > εstable(m) and x.
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Proof. Consider a binary classification problem a discrete distribution D with three points,
as pictured in Figure 2.3: x1, x2 ∈ D are of class 0, and x3 ∈ D is of class 1, shown in
red and blue. We define a learning rule, h, according to the different classifiers learned
with each possible training set S ∼ D, shown in Figure 2.3. Notice that this learning
rule is LOO-stable with εstable(3)=0, as when each point is removed, the classification
error on that point remains the same: this is shown by construction in Figure 2.3 when
S = x1, x2, x3, and in all other cases, the learning rule is constant, as shown in the figure. Thus,
1
3

∑3
i=1 ES∼D[|`(hS , zi)− `(hS(\i) , zi)|] = 0 ≤ 0. However, notice that e.g., if S = x1, x2, x3,

and x3 is removed, x2 experiences a change in classification outcome. Thus, LUF(h, S, x2) = 1.
See that, in fact, every point is susceptible to a change in prediction as the result of different
point being removed from the dataset—thus, Ex[LUF(h, S, x)] = 1.

Proposition 2.2 shows that models with bounded LUF are also LOO-stable; the proof is
given in the supplementary material.

Proposition 2.2. Let h be a learning rule, ` be 0-1 loss, and ε(m) be a montonically-
decreasing function such that LUF(h, S, x) ≤ ε(m) for all S ∼ Dm and x. Then h is
leave-one-out stable with rate ε(m).

Differential Privacy. Privacy and fairness are related in various ways, as others have
illustrated before [58, 72]. Like differential privacy, leave-one-out unfairness is a stability
property of learning rules, but differential privacy is stronger. In particular, differential
privacy (Definition 2.4) quantifies universally over all pairs of related training data, and
limits the probability of any change in outcome. On the other hand, Definitions 2 and 3
fix a training set, and require stability of the model’s response on points from the target
distribution.

Definition 2.4 ((ε, δ) -Differential privacy). An algorithm A : X → Y satisfies (ε, δ)-
differential privacy, for 0 < ε and δ ∈ [0, 1], if for all S ∈ Xn, S′ ∈ Xn−1 that differ in a
single row and all Y ⊆ Y, Pr[A(S) ∈ Y ] ≤ eε Pr[A(S′) ∈ Y ] + δ.

Differential privacy is stronger than leave-one-out-unfairness, as any change to the model—
even if it does not actually affect prediction of any point in the distribution—can potentially
leak information, and is therefore a violation of differential privacy. This makes sense in
the context of privacy, as it concerns an adversarial setting where an attacker is free to
interact with a model as-needed to extract information. The focus of fairness is how people
receiving an outcome from a model are treated, and thus leave-one-out unfairness focuses
on the model’s behavior on the data distribution, drawing attention to how changes in the
model could affect those who are its likely subjects.

Leave-one-out unfairness does not require randomization in the model’s learning rule, whereas
differential privacy does. Figure 2.3 shows an intuitive example of this, where the deterministic
learning rule may yield models with unstable outcomes, but only on points with vanishing
probability; for points with non-zero probability, the model’s predictions will remain consistent
across unit changes to the training data. Moreover, because Definition 2.1 depends on D,
a learning rule may have little leave-one-out unfairness on some distributions, and more
on others. However, as Proposition 3.2 shows, differential privacy implies bounded LUF. A
proof can be found in the supplementary material.

23



CHAPTER 2. INCONSISTENCY IN DEEP MODEL PREDICTIONS

Figure 2.3: Left: A learning rule h that satisfies LOO-stability, but not expected LUF, over the distribution
D of the three points pictured. In each box, we see the decision boundary learned with a specified training
set S ∼ D, thus fully defining h. The proof is explained in Proposition 2.1. Right: Visual intuition for how a
model can have LUF = 0, ∀x ∈ D but not satisfy differential privacy. Consider a 1-KNN model on a binary
classification problem over the distribution pictured above: two perfectly separated uniform distributions
over circles. The diameter of each circle is d, and the distance between the centers of the two circles is 3d.
Consider any training set S drawn from this distribution that has at least two data points from each class.
See that LUF(h, S, x) = 0 for all x ∈ D: removing any point from S cannot change the classification of any
point in the distribution, i.e., within the circles pictured above. However, 1-KNN is not differentially private,
as it is a deterministic, non-constant, learning rule. Specifically, see that adding or removing a point in S
can shift the boundary sufficiently far to change the model’s behavior on points not in D, (such as point x2
pictured), which is a violation of differential privacy.
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Deep PGD Trades Smoothed Linear
dataset base acc gen err base acc gen err base acc gen err base acc gen err base acc gen err

German Credit 0.7500 0.2500 0.7400 0.22 0.745 0.253 0.755 0.245 0.745 0.0175
Adult 0.8418 0.0344 0.8226 -0.0019 0.83217 0.0845 0.8390 0.0180 0.8400 0.000
Seizure 0.9736 0.0264 0.9770 0.000 0.9672 0.0083 0.9754 0.0246 0.8113 0.0043
FMNIST 0.9111 0.0211 0.7876 0.0099 0.9016 0.0700 0.8678 0.0269 0.8368 0.0145
LFW 0.8695 0.0597 - - - - - - 0.5790 -0.0755

Table 2.2: Test accuracy and generalization error for all hS models.

Proposition 2.3. Let h be an (ε, δ)-differentially private learning rule, and x ∼ D be a
point. Then LUF(h, S, x) ≤ eε − 1 + δ.

Individual Fairness. Individual Fairness is a Lipschitz condition that aims to formalize
the maxim: “similar people ought to be treated similarly”. Importantly, in the context of
supervised learning this is typically construed as a constraint on models rather than learning
rules. This stands in contrast to Definitions 2 and 3, which impose a constraint on the latter.
Additionally, our definitions do not relate the treatment of individuals to others, but instead
measure the degree to which one’s treatment by the model may be arbitrarily decided by
the composition of the training data. While there is no reason that individual fairness and
leave-one-out fairness cannot coincide, there is no a priori reason to believe that they will.
In Section 2.5, we present experimental results on models trained with random smoothing,
which has been shown to guarantee individual fairness [260]; shedding further light on the
relationship between these two fairness concepts.

We note that leave-one-out unfairness is also related to the definition of memorization
introduced by Feldman [84], which we discuss in greater detail in Section 2.7.

2.4 LUF in Deep Models

We characterize the prevalence of leave-one-out unfairness across models trained on several
types of data: tabular, time-series, and image data. Importantly, we find that a non-trivial
fraction of data (from 3% to 77%) experiences LUF, and moreover, that the prevalence does
not appear to depend on model generalization, test accuracy, or dataset size.

Datasets. We perform all of our experiments over five datasets: UCI German Credit [67],
Adult [67], Seizure [67], Fashion MNIST [255], and Labeled Faces in the Wild [115]. The
German Credit data set consists of individuals’ financial data, with a binary response
indicating their creditworthiness. The Adult dataset consists of a subset of publicly-available
US Census data, with a binary response indicating annual income of > 50k. The Seizure
dataset comprises time-series EEG recordings for 500 individuals, with a binary response
indicating the occurrence of a seizure. Fashion MNIST contains images of clothing items,
with a multilabel response of 10 classes. Labeled Faces in the wild consists of unconstrained
pictures of individuals’ faces, with labels connoting the identity of the individual in each
picture. Further information about these datasets and the preprocessing steps we apply can
be found in the supplementary material. Table 3.1 contains the accuracy and generalization
error for each baseline model hS for all datasets.
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Figure 2.4: Top row: Prediction confidence on the horizontal axis, percentage of stable points experiencing
LUF (i.e., Ex[LUF (h, s, x)]) on the vertical axis. For FMNIST, confidence is calculated as the absolute
difference between the two most confidently predicted classes; for other datasets, confidence is |hS(x)− 0.5|.
Note the differences in scale between the graphs; adversarial German Credit and Adult models display
especially high leave-one-out unfairness, as well as LFW. Bottom Row : A bar chart displaying what percentage
of points in the dataset are affected by each one of the points taken out. Each bar shows the number of
points in O (left-out points) whose absence changed the prediction of the percentage of points shown on the
x axis. Notably, every single point that was taken out of the dataset affected at least one other individual’s
prediction. Note the difference in scale on the x axis.

Setup. For all experiments, we train models using Keras 2.4.3 with TensorFlow 2.0. In
keeping with common practice, we set the random seeds used by Python, numpy, and
Tensorflow. Beyond this, in order to isolate the effect of leave-one-out unfairness from other
sources of instability, we use the same random initialization of model parameters across
models in the same experiment, and we turn off non-determinism in GPU operations [237].
This effectively makes the learning rule h deterministic, so that when measuring LUF, the
probabilities in Definition 2 are ∈ {0, 1}. We note that, in the case of, LFW, an additional
source of instability remains in the process that produces pairs of faces dynamically during
training. This is necessary in order for the model to encounter a sufficiently high number
of face pairs during training while being bound to memory constraints. We provide results
of the same experiments over a smaller, static dataset in the supplementary material, with
similar LUF behavior but lower accuracy.

As it would be prohibitively expensive to train |S| models for the datasets S listed above,
we instead measure differences over a fixed number of training sets obtained by randomly
deriving from each dataset: a training set S, a set O ⊆ S of size 100 that consists of points
drawn randomly from test data (i.e. with which to create 100 different S(\i)), and a test set.
We train a “baseline” deep model hS with which to calculate the differences in prediction
resulting from removing a point from O from S. For each zi ∈ O, we train hS(\i) by removing
zi from S. For each hS(\i) , we estimate LUF(h, S, x) for all x in the dataset by measuring
the differences between hS(x) and hS(\i)(x), and taking the maximum difference over the
sample of 100 leave-one-out points O. Since the distribution that each training set S comes
from is a uniform distribution over the entire dataset, this is measuring Ex[LUF(h, S, x)]
for each training set S and learning rule h. A step-by-step explanation of this calculation is
given in the supplementary material. Due to the cost, for LFW we train 50 hS(\i) models,
i.e., in this case we set |O| = 50.
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To verify that the leave-one-out unfairness is a property of the models and not an unavoidable
consequence of training a machine learning model on the presented datasets, we also train
linear models on the same datasets with the same method, and compare the leave-one-out
unfairness of these linear models to their deep counterparts.

The majority of our results displaying the extent of expected LUF in deep models center
around the use of one architecture, seed, and set of hyper-parameters per dataset, in order
to keep as many variables controlled as possible. To ensure that the behavior described is
consistent, we present experiments displaying the effect of changing architecture and random
seed on our main results in Figure 2.5. The main set of models for German Credit and
Seizure datasets have three hidden layers, of size 128, 64, and 16. Models on the Adult
dataset have one hidden layer of 200 neurons. The FMNIST model is a modified LeNet
architecture [152]. This model is trained with dropout. The LFW face-matching model
consists of a concatenation layer composing the two input images, a 4-layer convolutional
stack, followed by a dense layer, and a Sigmoid output. German Credit, Adult, and Seizure
models are trained for 100 epochs; FMNIST and LFW models are trained for 50. German
Credit models are trained with a batch size of 32, FMNIST 64, and Adult, Seizure, and LFW
used batch sizes of 128. German Credit, Adult, Seizure and LFW models were trained with
Adam (lr = 1.e−3), and FMNIST with SGD (lr = 0.1).

The experiments outlined above were also performed on models with two other architectures
per dataset, in order to compare results across architecture, presented in Figure 2.5. For
German Credit and Seizure datasets, one additional architecture was a shallower model of
a 1-hidden layer model of size 100, and the other a narrower model of 3 hidden layers of
sizes 64, 32, and 8. For the Adult dataset, the additional models were a narrower 1-hidden
layer of size 100, and a deep model with the same architecture as the main German Credit
models. For FMNIST, we trained a shallower model with one set of layers removed, as well
as a model with no dropout. Finally, for LFW, we compare with a ResNet50 [109] model,
pre-trained on ImageNet, and modified to take in two inputs and have a Sigmoid output,
as well as a model whose filters are twice the size of the original model. For experiments
comparing the extent of expected LUF across models seeded differently, we perform the main
experiments outlined in the paragraphs above over 5 different random seeds for all tabular
and time series datasets, and three different random seeds for image datasets. Further details
on model construction can be found in the appendix.

LUF in Deep Models Figure 2.4 shows the prevalence of leave-one-out unfairness on all
five datasets. The first row plots the percentage of individuals x experiencing LUF(h, S, x):
i.e., Ex[LUF (h, S, x)], ranging over the confidence of the baseline model’s prediction. On
every dataset examined, deep models display nontrivial expected LUF, ranging from ~4% to
~77%. The second row shows the number of points in zi ∈ O (out of 100) that lead to a given
percentage of individuals x having their predictions changed when only z is removed from
the dataset. The percentage per point on the X axis, and the number of points that change
this percentage of outcomes is on the Y axis. Notably, the removal of each point sampled
lead to an hS\i model that changed the predictions of at least one other point, suggesting
that leave-one-out unfairness is in fact very common.

The results show that leave-one-out unfairness cannot be reliably predicted given test accuracy,
and more notably, generalization error (shown in Table 3.1). While it may seem natural that
models with higher accuracies display less LUF, the deep model on the Adult dataset has an
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Figure 2.5: Effect of random seed and architecture on LUF results in deep models from Figure 2.4. The
red and green plots show LUF for models of slightly different architecture, as described in the experimental
setup, and the bars on the blue line show the minimum and maximum LUF values over 5 random seeds on
the main architecture shown in main results. Notice the difference in scale across the graphs.

accuracy ~10% higher than the German Credit dataset, yet the German Credit dataset has
approximately 2% fewer individuals experiencing LUF. Even more impressively, the LFW
model has higher accuracy than both German Credit and Adult models, by 12% and 2%
respectively, yet has a much higher expected LUF of ~77%, compared to 7% and 10%.
Even for models on the same dataset, accuracy and LUF can increase together: for example,
the FMNIST model has approximately an 8% accuracy difference between the linear and
deep models, however, the deep model has approximately 7% of its treatment population
susceptible to LUF, whereas the linear model has only 2%. In Chapter 7, we demonstrate
how a more general notion of prediction instability—predictive multiplicity—can increase
with accuracy, due to its strict ties to a model’s variance.

Similarly, following intuitions from model stability, lower generalization error may naturally
seem to coincide with lower levels of LUF. However, the German Credit model has a general-
ization error of ~25%, yet has lower LUF than both the Adult model, with generalization
error of just ~3%, and the LFW model, with generalization error of ~5%. Indeed, while
these results will be further discussed in the next section, it is worthy of note that the PGD
model on the Adult dataset has essentially zero generalization error, yet has a very high
percentage of individuals experiencing leave-one-out unfairness (~25%), while the deep model
on the Adult dataset has generalization error of ~3.5% and has around 10% of individuals
experiencing LUF. While we did not explicitly control for accuracy or generalization error,
these results are evidence that LUF does not depend on these metrics.

Also of note is that LUF does not decrease with dataset size—FMNIST and German Credit
are the largest and smallest datasets, with training set sizes of 60, 000 and 800 respectively,
yet FMNIST displayed similar LUF to German Credit (within 1%). The Adult dataset is
also larger than German Credit (~|S| = 15, 000) and displays more expected LUF.

Perhaps most importantly, confidently-predicted points are not immune from leave-one-out
unfairness in deep models: on the majority of the datasets, a substantial portion of points
with high LUF were predicted with confidence greater than 0.9 by the baseline model. This is
illustrated by the fact that the curves displaying the number of points versus baseline model
confidence do not drop off sharply in all models except for those on the Adult dataset. This
is an interesting manifestation of miscalibration in deep models: some confident decisions
may still be somewhat arbitrary, in that they are sensitive to the specific makeup of the
training set.
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Consistency Under Varying Conditions We provide calculations of expected LUF
over all datasets in deep models where the architecture and random seed differ, in order to
ensure that the results are consistent across different modeling choices.

The results are presented in Figure 2.5. While there is some variation in expected LUF, no
modeling choice explored eradicates the behavior. Interestingly, certain architectures seem to
exacerbate or diminish LUF: a deeper model increases LUF in the Adult dataset by nearly
10%, and removing dropout from the FMNIST model, as well as increasing the filter size
on LFW, have a similar effect. This may warrant further study to find potential mitigation
techniques through architecture selection, however, no pattern is immediately noticeable:
for example, while a shallower model exhibited lower expected LUF on the German Credit
dataset than the baseline model, the same shallow architecture exhibited more expected
LUF than the baseline on the Seizure dataset, which shares the same architecture as the
German Credit baseline model. Random seed also affects the prevalence of expected LUF, to
a slightly lesser extent for all models but LFW. Broadly, however, the results show that LUF
is not an artifact of any one particular set of training conditions.

Linear Models. We also provide the results for the same experiments on linear models to
calibrate against a more stable learning rule that yields less complex models: observe the
green line in Figure 2.4. These results show that LUF is not inherent to the data. While
there are points that are treated leave-one-out unfairly, they are substantially fewer—with
the exception of LFW, where the learning task is markedly more complex than the other
datasets, and unsuitable for a linear model. Additionally, the overwhelming majority of points
treated leave-one-out unfairly in linear models are not confidently predicted—in fact, in all
models but FMNIST, there are no points treated leave-one-out unfairly that are predicted
with a difference of more than 10% from 50% confidence.

This result agrees with intuition—linear boundaries are smooth, and linear regression is
stable. If the introduction of a point does shift the boundary, it is likely that only points
already close to the decision boundary (i.e., low-confidence points) are affected. Deep models
can have arbitrarily complex decision boundaries, which appears to be closely-related to
LUF. As the phenomenon of memorization [84, 264] suggests, and these results support, deep
models have the capacity to “overreact” to the presence of individual entries in their training
data. Figure A.1 illustrates this further in a low-dimensional setting. Not only can the region
around the left-out point potentially change, but there are may also be far-reaching effects
on the decision boundary beyond the neighborhood of the left-out point. These changes will
affect not just the predicted label of new points, but also their assigned confidence score.
While intuitions that are valid in low-dimensional settings do not always transfer to high
dimension, this may nonetheless provide some intuition behind the factors that contribute to
leave-one-out unfairness.

2.5 LUF and Robust Classification

Calls to mitigate adversarial examples [194, 236] have motivated a significant amount of
research aimed at producing robust classifiers [46, 166, 254]. Recent results have shown
that some of these techniques can even be repurposed to ensure individual fairness [260],
and moreover, that they often produce deep models that admit more interpretable feature
attributions [82, 119, 185]. Intuitively, these findings could suggest that robust prediction
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methods rely on “robust features” [119] that align more closely with human understanding of
the problem domain, and whose presence in the model may be accordingly less dependent
on individual points in the training data.

In this section, we explore this conjecture by measuring the incidence of leave-one-out
unfairness with two robust classification methods: adversarial training, and randomized
smoothing. We find that models trained adversarially using projected gradient descent
(PGD) [166] as well as models trained with the TRADES algorithm [266] have significantly
higher rates of LUF, in most cases approximately doubling the number of unstable points over
standard training. On the other hand, models that are made robust by post-hoc smoothing
with Gaussian noise [46] almost always have similar rates of expected LUF. Taken together,
these results suggest that LUF and robustness are not inherently tied to one another, but
that certain classes of models may provide beneficial properties for both, warranting further
study.

Setup. We use the same experimental setup as in Section 2.4 for measuring leave-one-out
unfairness. In these experiments, we only train deep models. For adversarial training, we use
PGD with an `2 radius ε = 3.0 and 10 PGD steps on FMNIST and Seizure datasets. For the
Adult and German Credit datasets, we use radius ε = 1.0. On the German Credit dataset, we
use the `∞ norm. The radius remained the same between PGD and TRADES training. We
determined the radius for adversarial training by finding the minimum distance (with respect
to the adversarial norm) between any two points of different classes over a large sample
of the dataset. If this was impossible because this distance was zero, we chose a distance
smaller than that between over 99% of cross-class pairs of points in the sample. For TRADES
training, we used all of the same hyperparameters as PGD training, with the addition of
the TRADES parameter, which was 1 for Adult and German Credit, and 10 for Seizure and
FMNIST. Notice that, for face-matching problems, the threat model for finding adversarial
examples is less clear—e.g., it is not obvious if the attacker has access to individual images,
or pairs of images. As we are unaware of an established threat model for face-matching, we
do not evaluate LFW in this section. For randomized smoothing, we take 1,000 Gaussian
samples with σ2 = 0.1 for the Adult and Seizure datasets, 10,000 samples with σ2 = 0.05
for FMNIST, and 2,000 samples with σ2 = 0.05 for German Credit. While Cohen et al. [46]
report needing more smoothing samples to achieve strong adversarial guarantees, our goal
in these experiments is to measure LUF, which we found to be insensitive to additional
samples beyond the numbers reported above. The accuracy of these models is shown in
Table 3.1.

Results and Discussion. The results are shown in Figure 2.4. The most immediate trend
is the degree to which PGD and TRADES adversarial training worsens LUF: approximately
by a factor of two across all datasets, and by a factor of nearly three on the German Credit
dataset. Seizure is a partial exception in that the PGD training does not worsen LUF, but
TRADES training does. While adversarial training produces models that are more invariant
to small changes in their inputs, these results show that the training procedure itself can
be unstable. This may be related to prior work demonstrating that adversarially-trained
models are more vulnerable to membership inference [232, 261], a privacy attack that exploits
memorization to leak information about training data. While membership vulnerability does
not necessarily imply greater LUF, these experiments show that in many cases the two
phenomena may be related. We also note that these results do not necessarily contradict the
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Figure 2.6: Arbitrariness in decision outcome as a result of changes in random seed, and small changes in
architecture, are presented alongside expected LUF, i.e. arbitrariness from small changes in the training set.
Calculation methods are described in 2.6. We present these results to motivate a wider connection between
learning algorithm stability and fairness, beyond LUF. Notice the difference in scale across graphs.

“robust feature” hypothesis proposed by Ilyas et al. [119], as robust learned features need not
generalize across large portions of the dataset.

Turning to the curves labeled “Smooth” in Figure 2.4, it is clear that randomized smoothing
leads to qualitatively different leave-one-out unfairness results. On most datasets, smoothing
had little effect (< 1% difference) on expected LUF. Beyond suggesting that leave-one-out
unfairness is independent of robustness, these results also point to the fact that individual
fairness and LUF are related, but separate notions. Randomized smoothing guarantees
individual fairness for weighted `p metrics [260], but has a negligible effect on leave-one-out
unfairness.

Looking at the geometry of these models can shed further light on the differences in results
between PGD training and randomized smoothing. As suggested by Figure A.1, deep model
decision boundaries have the potential to be very sensitive to individual points, and this
sensitivity may affect regions of the decision boundary far beyond the local neighborhood of
the point in question. This could contribute to leave-one-out unfairness, as the predictions of
points in regions shifted by a training points’ addition or removal will change. Adversarial
training may in some cases intensify the boundaries’ sensitivity to training points by penalizing
inconsistent predictions in any direction within ε away.

Alternatively, a smoothed model returns the expected prediction over a continuous distribution
centered at each point, rather than the value of the underlying model at only one point.
While this does not remedy larger boundary changes stemming from instability, it likely does
not exacerbate them, as evidenced by the effects in Figure 2.4.

2.6 Arbitrariness Beyond the Training Set

Our study focused on instability to changes in training data, as this type of stability is
particularly well-studied due to its relevance to generalization and privacy. However, there
are other potential sources of instability that may lead to arbitrary outcomes as well: for
example, random initialization, batching order, and model architecture. If a difference in
any of these choices results in a difference in outcome for an individual—e.g., if a change in
random initialization frequently leads to a change in predicted credit risk for someone—then
this too could be seen as unfair, as it would call into question the robustness of any supposed
justification.

To establish a preliminary understanding of the degree to which these sources introduce
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changes in outcome similar to LUF, we experimentally investigate the percentage of changed
outcomes resulting from varying the random seed prior to initializing and training models,
as well as from the choice of model architecture. Figure 2.6 shows these results for all of the
datasets studied in Section 2.4, alongside the corresponding measurements for LUF. The
experimental setup largely follows that described in Section 2.4. We isolate the effect of each
potential variable causing instability unfairness (architecture, random seed, and leave-one-out
unfairness) in its own experiment; keeping other sources of instability controlled. For the
random seed experiments, we train the same model with 100 different random seeds and
calculated the effects of instability in the same manner as calculating LUF described in
Section 2.4; for the experiments calculating the fairness effects of changes in architecture, we
train the model on three different architectures, as described for the experiments verifying
consistency in LUF in Section 2.4. Further information on the architectures considered can
be found in the supplementary material.

As Figure 2.6 shows, any of these aspects in a model can affect model behavior over a
substantial percentage of the overall dataset. While we focus on leave-one-out unfairness in
particular for formal analysis of the intersection between model stability and fairness, all of
these behaviors lead to an arbitrariness in decision procedure. In the following chapters, we
consider the effects of, and remedies for broader notion of inconsistency and arbitrariness in
model decision processes, beyond a leave-one-out change in the training set.

2.7 Related Work
Leave-one-out unfairness views the problem of learning instability [31, 32] from a fairness
perspective. While deep learning is generally understood not to enjoy strong stability
properties, our results are among the few systematic studies of the extent, and potential
ramifications, of their instability. Hardt et al. show that even nonconvex models trained
using Stochastic Gradient Descent remain stable over a small number of iterations, and
that popular heuristics like dropout and `2 regularization help [107], and provide some
experimental demonstrations. Towards achieving stability in deep learning, Kuzborskij et
al. [143], develop a screening protocol for choosing random initalizations that improve
stability.

Memorization, as defined by Feldman [84], is a symptom of model instability where a model
predicts the correct output on a given point if it is in the training set, and incorrectly
otherwise. There has been much recent work unearthing the potential for memorization in
deep neural networks [264], discussion about the extent of the phenomenon in practice [11]
as well as arguments for its usefulness [84]. Memorization is closely related to leave-one-out
unfairness in it is a measure of stability, and crucially, focuses on how instability affects a
given point, rather than an average. However, leave-one-out fairness is much broader than
memorization. Memorization quantifies how much removing a given point from the training
set affects that whether that particular point is predicted correctly. Leave-one-out fairness
quantifies how the consistency, not the error, of a given point’s prediction is affected by any
other point.

A well-known meeting point of stability and privacy is differential privacy [70], which quantifies
privacy risk in terms of a uniform, information-theoretic notion of stability. Leave-one-out
fairness is related to, but weaker than, differential privacy, as shown in Section 2.3. Instability
also worsens concrete privacy attacks: oversensitivity to the training set can affect a model’s
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parameters, which can be leveraged to perform membership inference [154, 231, 259]. Our
experiments in Section 2.5 may suggest that this phenomenon has a connection to leave-
one-out unfairness, in that adversarial training increases both LUF and the potential for
membership inference attacks [232, 261].

There is little work that connects fairness and stability. Notably, concurrent work by Marx
et al. [168] also draws attention to the problem of instability, particularly in linear models
with different regularization parameters, but does not center the definition of instability,
i.e. predictive multiplicity, on fairness through the experience of a given individual. Leave-
one-out fairness is an individual-based fairness notion. While there are several definitions
of “individualized” fairness [71, 72, 127, 142], they are rarely operationalized in common
fairness testing platforms, as they can be difficult to calculate. In addition to already-noted
differences from prior notions of fairness, expected LUF can be effectively measured on real
datasets to give insight into whether an individual may be subject to unfair treatment at
inference time.
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Chapter 3

Reducing Inconsistency with
Selective Ensembles

We begin this section by demonstrating that not only are the predictions of related deep
models often dissimilar, but their feature attributions [155, 227, 234] are as well (Section 3.2).
In particular, we show that there is little connection between a model’s gradients, which are
the basis for many deep attribution methods, and the labels that it predicts—models with
identical predictions can have arbitrarily different gradients almost everywhere (Theorem B.1).
In practice, we show that this result occurs often on common datasets across closely-
related models, leading to significant variation in attributions. This may be undesirable, as
feature attributions are commonly used to provide explanations [155, 227, 234], debug model
behavior [5], and diagnose problems related to privacy and fairness [56, 154]. Beyond these
pragmatic concerns, this suggests that the salient factors behind these models’ predictions
on many points may have little in common, even when models appear to do comparably well
on test data.

To address inconsistency in both prediction and attribution, we then turn to ensembling, a well-
known approach for reducing predictive variance [91, 104, 141, 157, 173, 183]. We introduce
selective ensembles, which leverage a recent result on multinomial rank verification [116]—
which has also been used recently for making certifiably-robust predictions [46]—to efficiently
mitigate the problem of inconsistency with a probabilistic guarantee. Given a point to classify,
a selective ensemble returns the mode of the class labels predicted on that point, where the
mode is sampled over models that vary according to a specified source of randomness in the
training process. Importantly, if the mode cannot be inferred with sufficient confidence, then
the selective ensemble abstains from prediction. This allows us to bound the probability that
these ensembles do not return the true mode prediction (Theorem 3.2), and by extension,
the rate of disagreement between selective ensembles (Corollary 3.2.2). In addition, we
show that this also bounds the variance component in the ensembles’ bias-variance error
decomposition [62] (Corollary 3.2.1), providing guidance on how to effectively use them in
practice.

Our experiments show that on seven benchmark datasets, selective ensembles of just ten
models either agree on the entire test data across random differences in how their constituent
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models are trained, or abstain at reasonably low rates (1-5% in most cases; Section 3.4.1).
Additionally, we show that simple ensembling doubles the agreement of attributions on key
metrics on average, and when the variance of the constituent models is high that selective
ensembling further enhances this effect (Section 3.2).

In summary, our contributions are: (1) we show that beyond predictions, feature attributions
are not consistent across seemingly inconsequential random choices during learning (Section
3.2); (2) we introduce selective ensembling, a learning method that guarantees bounded
inconsistency in predictions, (Section 3.3); and (3) we demonstrate the effectiveness of
this approach on seven datasets, showing that selective ensembles consistently predict all
points across models trained with different random seeds or leave-one-out differences in
their training data, while also achieving low abstention rates and higher feature attribution
consistency.

3.1 Notation and Preliminaries
Notation and Preliminaries We assume a supervised classification setting, with data
points (x, y) ∈ X × Y, drawn from data distribution, D, where x represents a vector of
features and y a response. In order to capture the effects of arbitrary random events on a
learned model—ranging from randomness during training to randomness in the data selection
process—we generalize the standard concept of a learning rule to that of a learning pipeline.
Specifically, a learning pipeline, P, is a procedure that outputs a model, h : X→ Y, taking
as input a random state, S ∼ S, containing all the information necessary for P to produce
a model (including the architecture, training set, random coin flips used by the learning
rule, etc.). Intuitively, S represents a distribution over random events that might impact the
learned model. For example, S might capture randomness in sampling of the training set, or
nondeterminism in the optimization process, e.g., the initialization of parameters, the order
in which batches are processed, or the effects of dropout.

In our experiments, we model S to capture two specific types of random choices, namely
(1) the initial parameters of the model, and (2) leave-one-out changes to the training data.
As the initial parameters of the model tend to be determined by a random seed, we will
interchangeably refer to this as the selection of random seed. More generally, both of these
types of choices instantiate a broader class of choices that could be considered arbitrary,
despite the fact that they may impact the predictions [24, 168, 172] (Section 3.4.1) and
explanations (Section 3.2) of the resulting model.

3.2 Instability of Feature Attributions in Deep Models
Before we consider mitigating predictive inconsistency with ensembling, we first demonstrate
that models’ inconsistency across random choices in training is exhibited not only through
its predictions, but through its feature attributions as well. Feature attributions refer to
numeric scores generated for some set of a model’s features—most commonly the model’s
input features—which are meant to connote how important each feature is in generating
the model’s prediction. Feature attributions are commonly used as a tool for explaining
model behavior [5, 155, 227, 234] localized to given set of inputs. Thus, inconsistent feature
attributions between models suggest the models differ in the process by which they arrive at
their predictions, even if the predictions are the same.
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Figure 3.1: Intuitive illustration of how two models which predict identical classification labels can have
arbitrary gradients. To show this, given a binary classifier H and an arbitrary function g, we construct a
classifier H′ that predicts the same labels as H, yet has gradients equal to g almost everywhere. We formally
state this result in Theorem B.1.

In deep models, many of the most popular attribution methods are based on the model’s
gradients at or around a given point [227, 234]. Accordingly, we will focus on the stability of
gradients, and show via analysis and experiment that they are not stable in conventional deep
models. First, we motivate our results by showing that even two deep models that predict the
same labels on all points may have arbitrarily different gradients almost everywhere. Later, in
our empirical evaluation (Section 3.4), we demonstrate the extent of the differences between
Saliency Maps [227] (i.e., input gradients) of deep networks even when the randomness of
the learning pipeline is controlled to allow only one-point differences in the training set or
differences in the random seed.

Predictions with Arbitrary Gradients. We show that even deep models that predict
the exact same labels on all points cannot necessarily be expected to have the same, or even
similar, gradients; in fact, given a binary classification model h, we can construct a model ĥ
which predicts the same labels as h, but has arbitrarily different gradients everywhere except
an arbitrarily small region around the boundary of h (Theorem B.1).

Theorem 3.1. Let H : X → {−1, 1} = sign(h) be a binary classifier and g : Rn → R
be an unrelated function that is bounded from above and below, continuous, and piecewise
differentiable. Then there exists another binary classifier Ĥ = sign(ĥ) such that for any
ε > 0,

∀x ∈ X . 1. Ĥ(x) = H(x) 2. inf
x′:H(x′) 6=H(x)

{
||x−x′||

}
> ε/2 =⇒ ∇ĥ(x) = ∇g(x)

The proof of Theorem B.1 is given in Appendix B.0.1. The proof is by construction of ĥ;
a sketch giving the intuition behind the construction is provided in Figure 3.1. In short,
we first partition the domain into contiguous regions that are given the same label by H.
We then construct ĥ from g by adjusting g to lie above or below the origin to match the
prediction behavior of h in each region. As these transformations merely shift g by a constant
in each region, they do not change ∇g except near decision boundaries, where it is necessary
to move across the origin.

Observations. The intuition stemming from Theorem B.1 is that a model’s gradients at
each point are largely disconnected from the labels it predicts on a distribution. As models
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that make identical predictions are likely to have similar loss on a given dataset, this theorem
points to the possibility that models of similar objective quality may still have arbitrarily
different gradients. In Section 3.2, we demonstrate that this outcome is not only possible,
but that it occurs in real models—for example, on the German Credit dataset predicting
credit risk, on average, individual models with similar accuracy agree on less than two out of
the five most important features influencing their decision.

3.3 Selective Ensembling
We build on the approach of ensembling for variance reduction by showing how these
differences in behavior can be bounded via selective ensembling. However, whereas prior
work which finds that more diversity among the constituent networks is beneficial for
reducing overall error [104, 141, 164, 192], our goal is to minimize, or at least place strict
bounds on, the variance component. We show that ideas from robust classification, and
in particular randomized smoothing [46], which stem from recent results on multinomial
hypothesis testing [116], can be used to enforce such a bound.

Mode Predictor. We may view the image of the learning pipeline, P, as a distribution
over possible models induced by applying P to the random state, S ∼ S. The mode prediction
on an input x, with respect to S, is the expected label that would be predicted on x by
models drawn from this distribution. More formally, we define the mode predictor, gP,S for a
pipeline, P, and random state distribution, S, as given by Equation 3.1.

gP,S(x) = argmax
y∈Y

{
E

S∼S

[
1[P(S ; x) = y]

]}
(3.1)

Note that while gP,S is deterministic, and is therefore not sensitive to a specific state drawn
from S, it does not necessarily produce the ground truth label on all inputs—some learning
pipelines may converge to a stable loss minimum that misclassifies certain points.

Approximation via Ensembling. An explicit representation of the true mode predictor
is, of course, unattainable—the non-convex loss surface of deep models and the complex
interactions between the learning pipeline and the distribution of random states makes the
expectation in Equation 3.1 infeasible to compute analytically. However, we can approximate
gP,S(x) by computing the empirical mode prediction on x over a random sample of models
produced by i.i.d. draws from P(S). But although ensembles with sufficiently many constituent
models will more reliably output the mode prediction, for any fixed-size ensemble there will
remain points on which the margin of the plurality vote is small enough to “flip” to runner-up
in some set of nearby ensembles that differ on a subset of their constituents; in other words,
these ensembles will not predict the mode prediction.

To rigorously bound the rate at which the ensemble will differ from the mode prediction, we
allow the ensemble to abstain on points where the constituent predictions indicate a statistical
toss-up between the two most likely classes. We call ensembles that may abstain in this
way selective ensembles, borrowing the terminology from selective classification [75]. We can
think of of abstention as a means of flagging unstable points on which the selective ensemble
cannot accurately determine the mode prediction; whether this should be interpreted as a
failed attempt at classification is an application-specific consideration.

38



CHAPTER 3. REDUCING INCONSISTENCY WITH SELECTIVE ENSEMBLES

Algorithm 1: Selective Ensemble
Creation

def
train_ensemble(P, S ∼ Sn, n):

return {P(Si) for i ∈ [n]}

def sample_ensemble(P, S, n):
S ← sample_iid(Sn)
return train_ensemble(P, S, n)

Algorithm 2: Selective Ensemble
Prediction

def
ensemble_predict(ĝn(P, S), α, x):
Y ←

∑
h∈ĝn(P,S) one_hot(h(x))

nA, nB ← top_2(Y )
if binom_p_value(nA, nA +
nB , 0.5) ≤ α then

return argmax(Y )
else

return ABSTAIN

Selective ensembles of n models predict according to the following procedure. First, the
predictions of each of the n models in the ensemble are collected. The constituent models
are derived from n i.i.d. samples of P(S) from S, as described in Algorithm 1. From these
predictions, we perform a two-sided statistical test to determine if the mode prediction was
selected by a statistically significant majority of the constituent models. If the statistical test
succeeds, we return the empirical mode prediction; otherwise we abstain from predicting.
Pseudocode for this prediction procedure is given in Algorithm 2. We will denote by ĝn(P, S)
(for S ∼ Sn) the output of train_ensemble in Algorithm 1, and by ĝn(P, S ; α, x) prediction
produced by ensemble_predict in Algorithm 2 on ĝn(P, S).

Because of their ability to abstain from prediction, we can prove that with probability at
least 1 − α, a selective ensemble will either return the true mode prediction or abstain,
where α is a chosen threshold for the statistical test to prevent prediction in the case of a
toss-up. In other words, on any point on which it does not abstain, a selective ensemble will
disagree with the mode predictor, gP,S , with probability at most α, as stated formally in
Theorem 3.2.

The statement of Theorem 3.2 make use of the relation, ABS6=, where y1
ABS6= y2 if and only if

y1 6= ABSTAIN and y2 6= ABSTAIN and y1 6= y2. That is,
ABS6= captures disagreement between

non-rejected predictions.

Theorem 3.2. Let P be a learning pipeline, and let S be a distribution over random states.
Further, let gP,S be the mode predictor, let ĝn(P, S) for S ∼ Sn be a selective ensemble, and
let α ≥ 0. Then,

∀x ∈ X . PrS∼Sn

[
ĝn(P, S ; α, x)

ABS6= gP,S(x)
]
≤ α

The proof (Appendix C.1) relies on a result from Hung and Fithian [116] which bounds
the probability that a set of votes does not return the true plurality outcome, and we
apply it in a similar fashion to how it is used for making robust predictions in Randomized
Smoothing [46].

Theorem 3.2 states that the probability that a selective ensemble makes a prediction that
does not match the mode prediction is small. However, one possible means of ensuring this
is by not providing a prediction in the first place, i.e., if the selective ensemble abstains.
Thus, the abstention rate is necessary to quantify the fraction of points on which the mode
prediction will actually be produced.
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Figure 3.2: The left two plots show abstention rates as a function of the underlying probability of agreement
among models over S, i.e., the probability that any given model will return the mode prediction, with plots
denoting varying numbers of constituent models. The right two graphs demonstrate the relationship between
consistency of the ensemble models as given by Corollary 3.2.2.

In the 0-1 loss bias-variance decomposition of Domingos [62], the variance component of a
classifier’s loss is defined as the expected loss relative to the mode prediction (in our case, taken
over the randomness in S). Thus, Theorem 3.2 leads to a direct bound on this component,
assuming a bound, β, on the abstention rate. This is formalized in Corollary 3.2.1.

Corollary 3.2.1. Let P be a learning pipeline, and let S be a distribution over random states.
Further, let gP,S be the mode predictor, let ĝn(P, S) for S ∼ Sn be a selective ensemble.
Finally, let α ≥ 0, and let β ≥ 0 be an upper bound on the expected abstention rate of
ĝn(P, S). Then, the expected loss variance, V (x), over inputs, x, is bounded by α+ β. That
is,

E
x∼D

[
V (x)

]
= E
x∼D

[
Pr

S∼Sn

[
ĝn(P, S ; x) 6= gP,S(x)

] ]
≤ α+ β

Consistency of Selective Ensembles. Using the result from Theorem 3.2, we can also
address the original problem raised: that deep models often disagree on their predictions due
to arbitrary random events over the training pipeline. We show that, given a bound, β, on
the abstention rate, the probability that two selective ensembles disagree in their predictions
is bounded by 2(α+ β) (Corollary 3.2.2). Intuitively, this suggests that the predictions of
selective ensembles are more stable over different instantiations of the random decisions
captured by S compared to individual models.

Corollary 3.2.2. Let P be a learning pipeline, and let S be a distribution over random
states. Further, let ĝn(P, S) for S ∼ Sn be a selective ensemble. Finally, let α ≥ 0, and let
β ≥ 0 be an upper bound on the expected abstention rate of ĝn(P, S). Then,

E
x∼D

[
PrS1,S2∼Sn

[
ĝn(P, S1 ; α, x) 6= ĝn(P, S2 ; α, x)

] ]
≤ 2(α+ β)

Corollary 3.2.2 tells us that the agreement between any two selective ensembles is at least
1−2(α+β). For a fixed n, decreasing α will lead to a higher abstention rate. Thus in order for
α and β to both be small, as would be necessary for a high fraction of consistently-predicted
points, we may require a large number of constituent models, n. Figure 3.2 illustrates the
trade-off between α, β, and n, depending on the base level of agreement of the constituent
models. In Section 3.4, we show empirically that even with small values of n, abstention
rates of selective ensembles are reasonably low in practice.
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mean accuracy ± standard deviation
Randomness Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS .730± .020 .842± 1e− 3 .973± 2e− 3 .686± 3e− 3 .820± 1e− 3 .916± 3e− 3 .927± 2e− 3
LOO .729± .012 .843± 7e− 4 .976± 2e− 3 .686± 2e− 3 .820± 1e− 3 .917± 8e− 4 .926± 3e− 3

Table 3.1: Mean accuracy over 500 models trained over changes to random initialization and leave-one-out
differences in training data. German Credit stands as an outlier due to its small sample size (|D| = 800).

mean of portion of test data with pflip > 0
Randomness n Ger. Credit Adult Seizure Tai. Credit Warfarin FMNIST Colon

RS 1 .570 .087 .060 .082 .098 .061 .037
RS (5, 10, 15, 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LOO 1 .262 .063 .031 .031 .033 .034 .042
LOO (5, 10, 15, 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.2: Percentage of points with disagreement between at least one pair of models (pflip > 0) trained
with different random seeds (RS) or leave-one-out differences (LOO) in training data, for single models
(n = 1) and selective ensembles (n > 1). Results are averaged over 10 runs of creating 24 selective ensemble
models, standard deviations are in Appendix B.0.3. Selective ensemble results are together, as there is no
disagreement.

In summary, selective ensembles accomplish three primary things: (1) they identify points
on which the mode prediction cannot be determined, (2) they bound the fraction of points
that can be inconsistently predicted, and (3) they provide a means of reliably inferring the
mode prediction when the abstention rate can be kept sufficiently low.

3.4 Evaluation

In this section, we demonstrate empirically that selective ensembles reduce instability in deep
model predictions far below their theoretical bounds—to zero inconsistent predictions in
the test set over 276 pairwise comparisons of model predictions for each of tabular datasets,
and 40 for image datasets. Additionally, following Theorem B.1, we show that feature
attributions of individual deep models are frequently inconsistent, and that ensembling
effectively mitigates this problem.

Setup. To evaluate selective ensembling, we focus on two sources of randomness in the
learning rule: (1) random initialization, and (2) leave-one-out changes to the training set.
Our experiments consider seven datasets: UCI German Credit, Adult, Taiwanese Credit
Default, Seizure, all from Dua and Karra Taniskidou [67]; the IWPC Warfarin Dosing
Recommendation [120], Fashion MNIST [255], and Colorectal Histology [132]. All of these
datasets are either related to finance, credit approval, or medical diagnosis, except for
FMNIST, which we include as it is a common benchmark for image classification. Further
details are in Appendix B.0.2.

All experiments are implemented in TensorFlow 2.3. For each tabular, we train 500 models
from independent samples of the relevant source of randomness (e.g. leave-one-out data
variations or random seeds), and for each image dataset, we train 200 models from inde-
pendent samples of each source of randomness. Details about the model architecture and
hyperparameters used are given in Appendix B.0.2. Table 3.1 reports the mean accuracy for
each dataset, along with the standard deviation.
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accuracy (abstain as error) / abstention rate / non-selective accuracy
S n Ger. Credit Adult Seizure Warafin Tai. Credit FMNIST Colon

RS 5 0.0/1.0 /.745 0.0/1.0 /.842 0.0/1.0 /.975 0.0/1.0 /.688 0.0/1.0 /.822 0.0/1.0 /.919 0.0/1.0 /.927
RS 10 .576/.291/.746 .820/.043/.843 .960/.026/.975 .660/.050/.688 .800/.039/.822 .888/.059/.920 .914/.032/.928
RS 15 .636/.205/.750 .827/.032/.842 .965/.018/.975 .668/.037/.688 .807/.028/.822 .897/.042/.920 .919/.023/.928
RS 20 .664/.165/.747 .830/.024/.842 .967/.014/.975 .670/.031/.688 .810/.023/.822 .902/.036/.920 .921/.019/.938

LOO 5 0.0/1.0 /.728 0.0/1.0 /.844 0.0/1.0 /.978 0.0/1.0 /.685 0.0/1.0 /.821 0.0/1.0 /.918 0.0/1.0 /.927
LOO 10 .653/.151/.728 .827/.032/.844 .962/.027/.978 .677/.018/.685 .812/.017/.821 .909/.020/.918 .912/.036/.927
LOO 15 .678/.105/.733 .832/.012/.844 .968/.019/.979 .679/.013/.685 .814/.013/.821 .910/.016/.917 .916/.027/.927
LOO 20 .689/.079/.730 .834/.018/.843 .970/.015/.979 .680/.011/.685 .815/.010/.821 .912/.012/.918 .919/.023/.927

Table 3.3: Accuracy and abstention rate of selective ensembles, along with the accuracy of non-selective
(traditional ensembles) with n ∈ {5, 10, 15, 20} constituents. Results are averaged over 24 randomly selected
models; standard deviations are given in Table B.4 in Appendix B.0.3
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Figure 3.3: Percentage of test data with non-zero disagreement rate in normal (i.e., not selective) ensembles.
Horizontal axis depicts ensemble size. While ensembling alone mitigates much prediction instability, it is
unable to eliminate it as selective ensembles do.

For each non-image dataset we generate 24 random ensembles of size n ∈ {5, 10, 15, 20}
by selecting uniformly without replacement among the 500 pre-trained models, as well 24
“singleton” models drawn uniformly from the 500 to use as a point of comparison when
measuring the stability of each ensemble. For image datasets, we generate 10 random
ensembles of each size among 200 pre-trained models. We report ensemble predictions in the
main document using α = 0.05.

3.4.1 Selective Ensembles: Prediction Stability and Accuracy

To measure prediction instability over either selective ensembles or singleton models, we
compare the predictions of each pair of models on each point in the test set, amounting to
276 comparisons for tabular datasets, and 40 comparisons for image datasets, in total for
each point, and record the rate of disagreement, pflip, across these comparisons. We report
mean and variance of this disagreement over 10 random re-samplings of constituent models
to create ensemble models.

The results in Table B.1 and Figure 3.3 show the percentage of points with disagreement
rate greater than zero. We see that for singleton models, as many as 57% of test points
have pflip > 0, indicating that disagreement in prediction is in some cases the norm rather
than the exception, although more commonly this occurs on 5-10% of the data. Notably,
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Figure 3.4: Inconsistency of attributions on the same point across an individual (left) and ensembled (right)
model (n = 15). The height of each bar on the horizontal axis represents the attribution score of a distinct
feature, and each color represents a different model. Features are ordered according to the attribution scores
of one randomly-selected model.

selective ensembles completely mitigate this effect: even when as few as ten models are
included in the ensemble, no points experienced pflip > 0. Combined with the fact that
abstention rates remain low (1-5%) in all cases except where pflip was originally very high
(e.g., German Credit), this shows that selective ensembling can be a practical method for
mitigating prediction instability.

Table 3.3 shows the accuracy of selective ensembles, with abstention counted towards error,
as well as accuracy of non-selective ensembles for comparison. Notably, in all six models, with
the exception of German Credit, the abstention rate drops to below 4% with 20 models in the
ensemble. Accordingly, the accuracy of the selective ensembles in these cases is comparable—
typically within a few points—to that of the traditional ensemble. However, with just five
models in the ensemble, the abstention rate is 100%; to achieve reasonable predictions
with very few models, the threshold α needs to be increased accordingly. Disagreement of
non-selective ensembles are pictured in Figure 3.3 (with exact numbers in Appendix B.0.3):
while they do lower prediction inconsistency, they are unable to eliminate it as selective
ensembles do.

3.4.2 Attribution Stability

Following up on the theoretical result given in Theorem B.1, we demonstrate that feature
attributions, which are usually computed for deep models using gradients [155, 226, 234],
are often inconsistent between similar models. We then show that, just as ensembling
increases prediction stability, it also mitigates gradient instability, leading to more consistent
attributions across models. For these experiments, we computed attributions using saliency
maps [226], which are simply the gradient of the model’s prediction with respect to its input,
as a simple and widely-used representative of gradient-based attribution methods.

Metrics. Following previous work [61, 96], we measure the similarity between attributions
using Spearman’s Ranking Correlation (ρ) and the top-k intersection, with k = 5. For
image datasets, we also display the Structural similarity metric (SSIM), discussed further in
Appendix B.0.3. Spearman’s ρ is a natural choice of metric as attributions induce an order
of importance among features. We note that the top-k intersection is especially interesting in
tabular datasets, as often only the most important features are of explanatory interest. To
stay consistent with prior work, we also include Pearson’s Correlation Coefficient (r). Note
that r and ρ vary from -1 to 1, denoting negative, zero, and positive correlation. We compute
these metrics over 276 pairwise comparisons of attributions for each size of ensemble (1, 5,
10, 15, and 20) for tabular datasets, and 40 pairwise comparisons for image datasets. For the
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top-k metric, we report the mean size of the intersection between each pair of attributions.
More details are in Appendix B.0.2.

Baselines. To contextualize the difference of attributions across models trained from
distinct randomness, we also include the attribution similarity between 24 randomly chosen
points in the same model (Table 3.4). We also present a visual comparison of model
attributions, for which we simply plot the attribution for the predicted class for a given point
from nine randomly selected models out of the 24, and present the feature attributions in
order of their magnitude according to another randomly selected model (Figure 3.4).

Singleton Models The left image in Figure 3.4 demonstrates the inconsistency of model
attributions of individual German Credit models on a random point in the test set. Each
bar on the x-axis represents the attributions for a feature, and each different-colored bar
represents a different randomly selected model. Thus, the disagreement between the sizes of
the bars of different colors shows the disagreement between models on which features should
be deemed important. Notably, some of the bars on the graph depicting individual models
even have different signs, which means that models disagree on whether that feature counts
towards or against the same prediction. Similar graphs for all other datasets are included in
Appendix B.0.4.

We demonstrate this inconsistency further in Table 3.4. We see that German Credit and
Seizure models have particularly unstable attributions, as the top-k (and to a lesser extent, ρ
and r) scores of attributions of varying points in both the same model, and varying models on
the same point, are quite similar. Feature attributions of individual models are inconsistent
even on highly weighted features: e.g., German Credit dataset has a top-k intersection of just
over one attribute on average—suggesting that attributions generated through saliency maps
on these sets of models may vary substantially over benign retrainings. Even on models where
the metrics are higher, e.g. Taiwanese Credit, the baseline similarity between attributions is
higher as well—thus, we see that attributions between models of the same point are usually
only 2-3× more related than those of random points within the same model.

This instability suggests that salient variables used to inform predictions across models are
sensitive to random choices made during training. As previous work has argued in similar
contexts [53], this may be a result of a deep model’s under-constrained search space with
many local optima equivalent with respect to loss, with several minima corresponding to
distinct rationales for making predictions.

Ensemble Models. We demonstrate that the similarity between saliency maps of ensem-
bled models is greater than that of individual models, and that this similarity increases
linearly with the number of models in the ensemble. For these experiments, we average each
model’s attributions toward the majority predicted class of the ensemble. On the right side
of Figure 3.4, we see the feature attributions of various ensemble models of size 15 over
the German Credit dataset. Note how the attributions of ensemble models are much more
consistent than on the individual model.

We show this phenomenon more broadly in Figure 3.5, where we display graphs of average
Spearman’s Rank Coefficient (ρ) (y-axis) between saliency maps on a point in the test set.
We see ρ increase as we increase the number of models in the ensemble (x-axis), for models
generated over different random initializations and one-point differences in the training set.
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Random Seed Leave-one-out
Dataset Top-5 ρ r SSIM Top-5 ρ r SSIM

German Credit 0.20, .27 0.01, 0.25 0.02, 0.28 – 0.20, 0.49 0.01, 0.59 0.02, 0.60 –
Adult 0.46, 0.83 0.09, 0.83 0.07, 0.93 – 0.46, 0.89 0.15,0.91 0.14, 0.95 –
Seizure 0.14, 0.12 0.29, 0.32 0.30, 0.33 – 0.09, 0.25 0.23, 0.57 0.24, 0.59 –
Warfarin 0.37, 0.67 0.15, 0.72 0.12, 0.73 – 0.36, 0.92 0.12, 0.96 0.11, 0.97 –
Taiwanese Credit 0.55, 0.76 0.35, 0.75 0.36,0.83 – 0.56,0.91 0.35,0.95 0.37,0.96 –
FMNIST 0.00, 0.26 – 0.61, 0.61 0.50, 0.25 0.00, 0.57 – 0.90, 0.89 0.78, 0.62
Colon 0.00, 0.63 – 0.00, 0.92 0.18, 0.82 0.00, 0.61 – 0.00, 0.91 0.18,0.81

Table 3.4: Average top-5 intersection, Spearman’s Rank Correlation Coefficient (ρ), and Pearson’s Correlation
Coefficient (r) to demonstrate attribution inconsistency on the same test points across different models. As
a baseline, we compare against differences observed on different points in the same model. The baseline
numbers are presented as: similarity baseline, similarity across models. For image models, we also report the
Structural Similarity Index (SSIM). Standard deviations are included in Appendix B.0.4.
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Figure 3.5: Average Spearman’s Ranking coefficient, ρ, (For FMNIST, SSIM) between feature attributions
for saliency maps generated for each individual test point (y-axis) over number of ensemble models (x-axis).
The lines indicated with (Sel) in the legend are the same metrics for selective ensembles.

Selective ensembles can further increase stability of explanations by abstaining from unstable
points, and this has a marked effect when the abstention rate is high (e.g. German Credit).
Similar graphs for the rest of metrics calculated are presented in Appendix B.0.3.

3.5 Related Work

Prior work has shown that deep models are inconsistent in their predictions across arbitrary
random changes in their training pipeline, such as initialization parameters and makeup
of the training set [24, 53, 84, 140, 172]. The problem of model sensitivity, particularly
to variability in the training set, can lead to an increase in generalization error [76] as
well as to leaking training set information [70, 259]. Thus, stability-enhancing learning
rules have received significant attention in order to bolster desirable properties, such as
privacy [160, 195, 250].

One such approach is model ensembling, which has been used as a variance reduction method
since the advent of statistical learning [40, 69, 89, 104, 108, 191, 203, 205, 218, 240, 242, 267].
However, to our knowledge, there is little work on providing guarantees about model
disagreement using ensemble models that may abstain from prediction. We relate our
approach to the classic bias-variance decomposition of error [62], showing that it certifiably
bounds the variance component.
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Selective ensembles can be seen as a way to flag points that are prone to inconsistency. Under
this view, calibration and uncertainty estimation of deep model predictions [145, 193] is a
related stream of work, and one could potentially use these techniques to determine when to
abstain from prediction. However, preventing inconsistent predictions and abstaining from
uncertain predictions are different goals: in our setting, the aim is to predict the mode across
models drawn from a certain distribution, whereas calibration is measured against predicting
the true label. Moreover, prior work has shown that confidence scores may not be correlated
with prediction consistency across models with different random initializations [24]. Finally,
while abstaining on points with low confidence scores may lead to greater consistency, it may
not yield a guarantee, which this work provides.

Conformal inference [100, 158, 162], which rigorously assigns confidence to predictions in
settings where the data may differ from training, is similarly related in that such a measure
could be useful in identifying inconsistently predicted points. However, in this work, we aim
to achieve consistent predictions across a known distribution of models, as prior work, as well
as our results, suggest, even points conforming to past observations may still be predicted
differently by different models.

In addition to inconsistent predictions, this work demonstrates how feature attributions
can differ substantially between individual deep models with inconsequential differences.
Prior works investigating instability of gradient-based explanation techniques focus on an
adversarial context [61, 96, 111? ]. For example, Anders et al. [9] develop attacks to create
similar models that have differing gradient-based explanations. Contrastingly, this work
focuses on the instability of counterfactual explanations between similar models that may
occur naturally. As we demonstrate in Section 3.2, model gradients can be quite dissimilar
without any adversary.

3.6 Summary
In this chapter, we show that similar deep models can have not only inconsistent predictions,
but substantially different gradients as well. We introduce selective ensembles to mitigate
this problem by bounding a model’s inconsistency over random choices made during training.
Empirically, we show that selective ensembles predict all points consistently over all datasets
we studied. Selective ensembling may present a more reliable way of using deep models in
settings where high model complexity and stability are required.
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Chapter 4

Instability in Counterfactual
Explanations: Problems and
Solutions

In this chapter, we show that learning rule instability also impacts counterfactual examples,
which are often used as model explanations in order to provide instructions for recourse. A
counterfactual example for a given input is a nearby point in a model’s input space which re-
ceives a different, often preferred, outcome. In this work, we find that counterfactual examples
may not return the same prediction across small changes to their training environment—i.e.
examples which promised a positive outcome may illicit different, less desirable outcomes
across nearby models. This behavior may endanger recourse in situations where a model is
retrained during deployment, as changes to its training set up may occur across retrainings.
To remedy this problem, we introduce Stable Neighbor Search, a method of generating
counterfactual examples which we demonstrate to be more stable across perturbations to
the learning pipeline than state-of-the-art approaches used to combat instability.

4.1 Introduction

Deep Networks are increasingly being integrated into decision-making processes which require
explanations during model deployment, from medical diagnosis to credit risk analysis [4, 12,
13, 14, 59, 81, 161, 233, 249]. Counterfactual examples [131, 133, 149, 167, 199, 206, 224, 241,
243, 245, 247] are often put forth as a simple and intuitive method of explaining decisions in
such high-stakes contexts [169, 258]. A counterfactual example for an input x is a related
point x′ that produces a desired outcome y′ from a model. Intuitively, these explanations
are intended to answer the question, “Why did point x not receive outcome y′?” either to
give instructions for recourse, i.e. how an individual can change their behavior to get a
different model outcome, or as a check to ensure a model’s decision is well-justified [241].
Counterfactual examples are particularly popular in legal and business contexts, as they
may offer a way to comply with regulations in the United States and Europe requiring
explanations on high-stakes decisions (e.g. Fair Credit Reporting Act [188] and General
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Data Protection Regulation [93] ), while revealing little information about the underlying
model [16, 169].

Counterfactual examples are often viewed under the assumption that the decision system on
which they will be used is static: that is, the model that creates the explanation will be the
same model to which, e.g. a loan applicant soliciting recourse re-applies [16]. However, during
real model deployments in high-stakes situations, models are not constant through time:
there are often retrainings due to small dataset updates, or fine-tunings to ensure consistent
good behavior [175, 208]. Thus, in order for counterfactuals to be usable in practice, they
must return the same desired outcome not only for the model that generates them, but for
similar models created during deployment.

This section investigates the consistency of model predictions on counterfactual examples
between deep models with seemingly inconsequential differences, i.e. random seed and one-
point changes in the training set. We demonstrate that some of the most common methods
generating counterfactuals in deep models either are highly inconsistent between models or
very costly in terms of distance from the original input. Recent work that has investigated
this problem in simpler models [200] has pointed to increasing counterfactual cost, i.e. the
distance between an input point and its counterfactual, as a method of increasing consistency.
We show that while higher than minimal cost is necessary to achieve a stable counterfactual,
cost alone is not a reliable signal to guide the search for stable counterfactuals in deep models
(Section 4.3).

Instead, we show that a model’s Lipschitz continuity and confidence around the counterfactual
is a more reliable indicator of the counterfactual’s stability. Intuitively, this is due to the
fact that these factors bound the extent a model’s local decision boundaries will change
across fine-tunings, which we prove in Section 4.3.1. Following this result, we introduce
Stable Neighbor Search (SNS), which finds counterfactuals by searching for high-confidence
points with small Lipschitz constants in the generating model (Section 4.3.1). Finally, we
empirically demonstrate that SNS generates consistent counterfactuals while maintaining a
low cost relative to other methods over several tabular datasets, e.g. Seizure and German
Credit from UCI database [67], in Section 4.4.

In summary, our main contributions are: 1) we demonstrate that common counterfactual
explanations can have low consistency across nearby deep models, and that cost is an
insufficient signal to find consistent counterfactuals (Theorem. 4.1); 2) to navigate this
cost-consistency tradeoff, we prove that counterfactual examples in a neighborhood where
the network has a small local Lipschitz constant are more consistent across changes to the
last layer of weights, which suggests that such points are more stable across small changes in
the training environment (Theorem. 4.2) ; 3) leveraging this result, we propose SNS as a way
to generate consistent counterfactual explanations (Def. 4.5); 4) we empirically demonstrate
the effectiveness of SNS in generating consistent and low-cost counterfactual explanations
(Table 4.1). More broadly, this section further develops a connection between the geometry
of deep models and the consistency of counterfactual examples. When considered alongside
related findings that focus on attribution methods, our work adds to the perspective that
good explanations require good models to begin with [52, 61, 226, 234, 251].
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4.2 Background
Notation. We begin with notation, preliminaries, and definitions. Let F (x; θ) = arg maxi fi(x; θ)
be a deep network where fi denotes the logit output for the i-th class and θ is the vec-
tor of trainable parameters. If F (x; θ) ∈ {0, 1}, there is only one logit output so we
write f . Throughout this section we assume F is piece-wise linear such that all the ac-
tivation functions are ReLUs. We use ||x||p to denote the `p norm of a vector x and
Bp(x, ε)

def
= {x′|||x′ − x||p ≤ ε,x′ ∈ Rd} to denote a norm-bounded ball around x.

Counterfactual Examples. We introduce some general notation to unify the definition
of a counterfactual example across various approaches with differing desiderata. In the most
general sense, a counterfactual example for an input x is an example xc that receives the
different, often targeted, prediction while minimizing a user-defined quantity of interest (QoI)
(see Def. 4.1): for example, a counterfactual explanation for a rejected loan application is
a related hypothetical application that was accepted. We refer to the point x requiring a
counterfactual example as the origin point or input interchangeably. We note that there
is a different definition of “counterfactual” widely used in the causality literature, where a
counterfactual is given by an intervention on a causal model that is assumed to generate
data observations [201]. This is a case of overlapping terminology, and is orthogonal to this
work. We do not consider causality in this work.

Definition 4.1 (Counterfactual Example). Given a model F (x), an input x, a desired
outcome class c 6= F (x; θ) , and a user-defined quantity of interest q, a counterfactual
example xc for x is defined as xc

def
= arg minF (x′;θ)=c q(x

′,x) where the cost of xc is defined
as ||x− xc||p.

The majority of counterfactual generation algorithms minimize of qlow(x,x′)
def
= ||x− x′||p,

potentially along with some constraints, to encourage low-cost counterfactuals [247]. Some
common variations include ensuring that counterfactuals are attainable, i.e. not changing
features that cannot be changed (e.g. sex, age) due to domain constraints [148, 241], ensuring
sparsity, so that fewer features are changed [54, 99], or incorporating user preferences into what
features can be changed [167]. Alternatively, a somewhat distinct line of work [128, 199, 243]
also adds constraint to ensure that counterfactuals come from the data manifold. Other
works still integrate causal validity into counterfactual search [131], or generate multiple
counterfactuals at once [179].

We focus our analysis on the first two approaches, which we denote minimum-cost and data-
support counterfactuals. We make this choice as the causal and distributional assumptions
used in other counterfactual generation methods referenced are specific to a given application
domain, whereas our focus is on the general properties of counterfactuals across domains.
Specifically, we evaluate our results on minimum-cost counterfactuals introduced by Wachter
et al. [247], and data-support counterfactuals from Pawelczyk et al. [199], and Van Looveren
and Klaise [243]. We give the full descriptions of these approaches in Sec. 4.4.

Counterfactual Consistency. Given two models F (x; θ1) and F (x; θ2), a counterfactual
example xc for F (x; θ1) is consistent with respect to F (x; θ2) means F (xc; θ1) = F (xc; θ2).
Following Pawelczyk et al. [200], we define the Invalidation Rate for counterfactuals in
Def. 4.2.

Definition 4.2 (Invalidation Rate). Suppose xc is a counterfactual example for x found in
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a model F (x; θ), we define the invalidation rate IV(xc,Θ) of xc with respect to a distribution
Θ of trainable parameters as IV(xc,Θ)

def
= Eθ′∼ΘI[F (xc; θ

′) 6= F (xc; θ)].

Throughout this section, we will call the model F (x; θ) that creates the counterfactual the
generating or base model. Recent work has investigated the consistency of counterfactual
examples across similar linear and random forest models [200]. We study the invalidation
rate with respect to the distribution Θ introduced by arbitrary differences in the training
environment, such as random initialization and one-point difference in the training dataset.
We also assume F (x; θ′) uses the same set of hyper-parameters as chosen for F (x; θ), e.g.
the number of epochs, the optimizer, the learning rate scheduling, loss functions, etc.

4.3 Counterfactual Invalidation in Deep Models
As we demonstrate in more detail in Section 4.4, counterfactual invalidation is a problem in
deep networks on real data: empirically, we find that counterfactuals produce inconsistent
outcomes in duplicitous deep models up to 94% of the time.

Previous work investigating the problem of counterfactual invalidation [200, 211], has pointed
to increasing counterfactual cost as a potential mitigation strategy. In particular, they prove
that higher cost counterfactuals will lead to lower invalidation rates in linear models in
expectation [211], and demonstrate their relationship in a broader class of well-calibrated
models [200]. While this insight provides interesting challenge to the perspective that low
cost counterfactuals should be preferred, we show that cost alone is insufficient to determine
which counterfactual has a greater chance of being consistent at generation time in deep
models.

The intuition that a larger distance between input and counterfactual will lead to lower
invalidation rests on the assumption that the distance between a point x and a counterfactual
xc is indicative of the distance from xc to the decision boundary, with a higher distance
making xc’s prediction more stable under perturbations to that boundary. This holds well in
a linear model, where there is only one boundary [211].

However, in the complex decision boundaries of deep networks, going farther away from a
point across the nearest boundary may lead to being closer to a different boundary. We
prove that this holds even for a one-hidden-layer network by Theorem 4.1. This observation
shows that a counterfactual example that is farther from its origin point may be equally
susceptible to invalidation as one closer to it. In fact, we show that the only models where
`p cost is universally a good heuristic for distance from a decision boundary, and therefore
by the reasoning above, consistency, are linear models (Lemma 1).

Theorem 4.1. Suppose that H1, H2 are decision boundaries in a piecewise-linear network
F (x) = sign{w>1 ReLU(W0x)}, and let x be an arbitrary point in its domain. If the projections
of x onto the corresponding halfspace constraints of H1, H2 are on H1 and H2, then there
exists a point x′ such that:

1 ) d(x′, H2) = 0 2 ) d(x′, H2) < d(x, H2) 3 ) d(x, H1) ≤ d(x′, H1)

where d(x, H∗) denotes the distance between x and the nearest point on a boundary H∗.

Lemma 1. Let H1, H2, F and x be defined as in Theorem 4.1. If the projections of x onto
the corresponding halfspace constraints of H1, H2 are on H1 and H2, but there does not exist
a point x′ satisfying (2) and (3) from Theorem 4.1, then H1 = H2.
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(a) (b) (c)

Figure 4.1: Illustration of the boundary change in a deep model (b) and a linear model (c) for a 2D dataset
(a) when changing the seed for random initialization during the training. Shaded regions correspond to the
area when two deep models in (b) (or two linear models in (c)) make different predictions.

Figure 4.1 illustrates the geometric intuition behind these results. The shaded regions of
4.1b correspond to two decision surfaces trained from different random seeds on the data in
(a). The lighter gray region denotes where the models disagree, whereas the black and white
regions denote agreement. Observe that counterfactuals equally far from a decision boundary
may have different invalidation behavior, as demonstrated by the counterfactuals c1 and c2 for
the point x2. Also note that as shown with x1, being far away from one boundary may lead
one to cross another one in deep models. However, for two linear models shown in Fig. 4.1c,
being far away from the boundary is indeed a good indicator or being consistent.

The discussion so far has demonstrated that there is not a strong theoretical relationship
between cost and invalidation in deep models. In Section 4.4, we test this claim on real
data, and show that higher-cost counterfactuals can have higher invalidation rates than their
lower-cost relatives (c.f. Table 4.1). Further, we show that the coefficient of determination
(R2) between cost and invalidation rate is very small (with all but one around 0.05). Thus,
while cost and invalidation are certainly related—for example, it may be necessary for a
stable counterfactual to be more costly than the minimum point across the boundary—cost
alone is not enough to determine which one will be the most consistent in deep models.

4.3.1 Towards Consistent Counterfactuals

In this section, we demonstrate that the Lipschitz continuity (Def. 4.3) of a neighborhood
around a counterfactual can be leveraged to characterize the consistency of counterfactual
explanations under changes to the network’s parameters (Section 4.3.1). Our main supporting
result is given in Theorem 4.2, which shows that a model’s Lipschitz constant in a neigh-
borhood around a xc together with the confidence of its prediction on xc serve as a proxy
for the difficulty of invalidating xc. We further discuss insights from these analytical results
and introduce an effective approach, Stable Neighbor Search, to improve the consistency of
counterfactual explanations (Section 4.3.1). Unless otherwise noted, this section assumes all
norms are `2.

Definition 4.3 (Lipschitz Continuity). A continuous and differentiable function h : S → Rm

is K-Lipschitz continuous iff ∀x′ ∈ S, ||h(x′)−h(x)|| ≤ K||x′−x||. We write h is K-Lipschitz
in S.

ReLU Decision Boundaries and Distributional Influence

We analyze the differences between models with changes such as random initialization
by studying the differences that arise in their decision boundaries. In order to capture
information about the decision boundaries in analytical form, we introduce distributional
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influence: a method of using a model’s gradients to gather information on its local decision
boundaries. We begin motivating this choice by reviewing key aspects of the geometry of
ReLU networks.

ReLU networks have piecewise linear boundaries that are defined by the status of each ReLU
neuron in the model [103, 126]. To see this, let ui(x) denote the pre-activation value of the
neuron ui in the network f at x. We can associate a half-space Ai in the input space with
the linear activation constraint ui(x) ≥ 0 corresponding to the activation status of neuron ui,
and an activation pattern for a network at x, p(x), as the activation status of every neuron
in the network. An activation region for a given activation pattern p, denoted R(p), is then
a subspace of the network’s input that yields the activations in p; geometrically, this is a
polytope given by the convex intersection of all the half-spaces described by p, with facets
corresponding to each neuron’s activation constraint.

Note that for points in a given activation region R(p), the network f can be expressed as a
linear function, i.e. ∀x ∈ R(p).f(x) = w>p x+bp wherewp is given byw = ∂f(x)/∂x [103, 126]
Decision boundaries are thus piecewise-linear constraints, f(x) ≥ 0 for binary classifiers,
or fi(x) ≥ fj(x) between classes i and j for a categorical classifier, with linear pieces
corresponding to the activation region of x. This leads us to the following: (1) if a decision
boundary crosses R(p), then wp will be orthogonal to that boundary, and (2) if a decision
boundary does not cross the region R(p), then wp is orthogonal to an extension of a nearby
boundary [90, 252]. In either case, the gradient with respect to the input captures information
about a particular nearby decision boundary. Figure 4.2a summarizes this visually.

This analysis motivates the introduction of distributional influence (Definition 4.4), which
aggregates the gradients of the model at points in a given distribution of interest (DoI)
around x.

Definition 4.4 (Distributional Influence [155]). Given an input x, a network f : Rd → Rm,
a class of interest c, and a distribution of interest Dx which describes a reference neighborhood
around x, define the distributional influence as χcDx

(x)
def
= Ex′∼Dx [∂fc(x

′)/∂x′]. We write
S(Dx) to represent the support of Dx. When m = 1, we write χDx(x)

def
= Ex′∼Dx [∂f(x′)/∂x′].

In Leino et al. [155], distributional influence is used to attribute the importance of a model’s
input and internal features on observed outcomes. Following the connection between gradients
and decision boundaries in ReLU networks, we leverage it to capture useful information
about nearby decision boundaries as detailed in Section 4.3.1.

Consistency and Continuity

Characterizing the precise effect changes such as random initialization have on the outcome
of training is challenging. We approach this by modeling the differences that arise from small
changes such as a fine-tuning of the original model, where the top layer of the model is
re-trained and the parameters of rest of the layers are frozen.

We now introduce Theorem 4.2, which bounds the change on distributional influence when
the model is fine-tuned at its top layer in terms of the model’s Lipschitz continuity on the
support of Dx. This suggests that finding a high-confidence counterfactual example in a
neighborhood with a lower Lipschitz constant may lead to lower invalidation after fine-tuning,
given the relationship between nearby boundaries and influence described in the previous
section.
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(a) (b)

Figure 4.2: (a) A geometric view of the input space in a ReLU network. Dashed lines correspond to
activation constraints while the colorful solid lines are piece-wise linear decision boundaries. Taking gradient
of the model’s output with respect to the input returns a vector that is orthogonal to a nearby boundary
(points in the blue and green regions) or an extension of a nearby boundary (the point in the yellow region).
(b) Curves of the model’s sigmoid output σ(tx′) (y-axis) against interpolation parameter t (x-axis).

Theorem 4.2. Let f(x)
def
= w> ·h(x)+b be a ReLU network with a single logit output (i.e., a

binary classifier), where h(x) is the output of the penultimate layer, and denote σw = σ(f(x))
as the sigmoid output of the model at x. Let W def

= {w′ : ||w −w′|| ≤ ∆} and χDx(x;w) be
the distributional influence of f when weights ware used at the top layer. If h is K-Lipschitz
in the support S(Dx), the following inequality holds:

∀w′ ∈ W, ||χDx(x;w)− χDx(x;w′)|| ≤ K
√

[dσ(x;w)||w||+ C1]
2

+ C2

where C1 and C2 are constants and dσ(x;w)
def
= ∂σw/∂f .

Observations. Theorem 4.2 characterizes the extent to which a model’s local decision
boundaries, by proxy of influence, may change as a result of fine-tuning. This intuitively
relates to the likelihood of a counterfactual’s invalidation, as a point near a decision boundary
undergoing a large shift is more likely to experience a change in prediction than one near
a stable portion of the boundary. As the two key ingredients in Theorem 4.2 are the local
Lipschitz constant and the model’s confidence at x, this suggests that searching for high-
confidence points in neighborhoods with small Lipschitz constants will yield more consistent
counterfactuals. While Theorem 4.2 does not provide a direct bound on invalidation, and is
limited to changes only at the network’s top layer, we characterize the effectiveness of this
heuristic in more general settings empirically in Section 4.4 after showing how to efficiently
operationalize it in Section 4.3.1.

Finding Consistent Counterfactuals

The results from the previous section suggest that counterfactuals with higher sigmoid
output and lower Lipschitz Constants of the penultimate layer’s output with respect to
the DoI Dx will be more consistent across related models. Stable Neighbor Search (SNS)
leverages this intuition to find consistent counterfactuals by searching for those with a low
Lipschitz constant and confident counterfactual. We can find such points with the objective
in Equation 4.1, which assumes a given counterfactual point x.

xc = arg max
x′∈B(x,δ)

[σ(x′)−KS′ ] such that F (xc; θ) = F (x; θ) (4.1)

In Eq. 4.1 above and throughout this section, we assume that F is a binary classifier with
a single-logit output f , and sigmoid output σ(f(x)). When f is clear from the context, we
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directly write σ(x). The results are readily extended to multi-logit outputs by optimizing
over the maximal logit at x. KS′ is the Lipschitz Constant of the model’s sigmoid output
over the support S(Dx′). We relax the Lipschitz constant K of the penultimate output in the
Theorem 4.2 to the Lipschitz constant of the entire network, as in practice any parameter in
the network, and not just the top layer, may change.

Leveraging a well-known relationship between the dual norm of the gradient and a function’s
Lipschitz constant [198], we can rephrase this objective as shown in Equation 4.2. Note that
we assume `2 norms throughout, so the dual remains `2.

xc = arg max
x′∈B(x,δ)

[
σ(x′)− max

x̂∈S(Dx′ )
||∂σ(x̂)

∂x̂
||
]

such that F (xc; θ) = F (x; θ) (4.2)

Choice of DoI. The choice of DoI determines the neighborhood of points from which we
gain an understanding of the local decision boundary [252]. Following prior work, we choose
D as Uniform(0→ x), a uniform distribution over a linear path between a zero vector and
the current input [234]. That is, the set of points in D is S(D)

def
= {tx, t ∈ [0, 1]}. Equation 4.3

below updates the objective accordingly.

xc = arg max
x′∈B(x,δ)

[
σ(x′)− max

t∈[0,1]
||∂σ(tx′)

∂(tx′)
||
]

such that F (xc; θ) = F (x; θ) (4.3)

While Equation (4.3) provides an objective that uses only primitives that are readily available
in most neural network frameworks, solving the inner objective using gradient descent requires
second-order derivatives of the network, which is computationally prohibitive. In the following,
we discuss a sequence of relaxations to Eq. (4.3) that provides resource-efficient objective
function.

Avoiding vacuous second-order derivatives. There exists a lower-bound of the term
maxt∈[0,1] ||∂σ(tx′)/∂(tx′)|| by utilizing the following Proposition 4.3, which allows us to
relax Eq. 4.3 by maximizing a differentiable lower-bound of the gradient norm rather than
the gradient norm itself.

Proposition 4.3. Let q be a differentiable, real-valued function in Rd and S be the support
set of Uniform(0→ x). Then for x′ ∈ S, ||∂q(x′)/∂x′|| ≥ ||x||−1|∂q(rx′)/∂r|r=1|.

Noting that the constant factor ||x|| is irrelevant to the desired optimization problem,
Equation 4.4 below updates the objective by fitting σ into the place of q in Proposition 4.3.
The absolute-value operator is omitted because the derivative of the sigmoid function is
always non-negative.

xc = arg max
x′∈B(x,δ)

[
σ(x′)− max

t∈[0,1]

∂σ(tx′)

∂t

]
such that F (xc; θ) = F (x; θ) (4.4)

The second term in Equation 4.4, −maxt∈[0,1] ∂σ(tx′)/∂t, is interpreted by plotting the
output score σ(tx′) against the interpolation variable t as shown in Fig. 4.2b. This term
encourages finding a counterfactual point xc where the outputs of the model for points
between the zero vector (t = 1) and itself (t = 1) form a smooth and flattened curve B in
Fig. 4.2b. Therefore, by incorporating the graph interpretation of −maxt∈[0,1] ∂σ(tx′)/∂t to
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find an solution of xc that corresponds to curve B, we can instead try to increase the area
under the curve of σ(tx′) against t, which simplifies our objective function with replacing
the inner-derivative with an integral shown in Equation 4.5.

xc = arg max
x′∈B(x,δ)

[
σ(x′) +

∫ 1

0

σ(tx′)dt

]
such that F (xc; θ) = F (x; θ) (4.5)

One observation of the objective defined by Equation 4.5 is that the first term σ(x′) is
redundant, as differentiating the second integral term already provides useful gradient
information to increase σ(x′). Equation 4.5 thus yields our approach, Stable Neighbor
Search.

Definition 4.5 (Stable Neighbor Search (SNS)). Given a starting counterfactual x for a
network F (x), its stable neighbor xc of radius ε is the solution to the following objective:

arg max
x′∈B(x,δ)

∫ 1

0

σ(tx′)dt

To implement Definition 4.3.1, the integral is replaced by a summation over a grid of points of
a specified resolution, which controls the quality of the final approximation. The complexity
of SNS is linear in the number of points in this grid.

4.4 Evaluation
In this section, we evaluate the extent of invalidation across five different counterfactual
generation methods, including Stable Neighbor Search, over models trained with two sources
of randomness in setup: 1) initial weights, and 2) leave-one-out differences in training data.
Our results show that Stable Neighbor Search consistently generates counterfactuals with
lower invalidation rates than all other methods, in many cases eliminating invalidation
altogether on tested points. Additionally, despite not explicitly minimizing cost, SNS coun-
terfactuals manage to maintain low cost relative to other methods that aim to minimize
invalidation.

Setup

Data. Our experiments encompass several tabular classification datasets from the UCI
database including: German Credit, Taiwanese Credit-Default, Seizure, and Cardiotocography
(CTG). We also include FICO HELOC [85] and Warfarin Dosing [47]. All datasets have two
classes except Warfarin, where we assume that the most favorable outcome (class 0) is the
desired counterfactual for the other classes, and vice versa. Further details of these datasets
are included in Appendix C.2.1.

Baselines. We compare SNS with the following baselines in terms of the invalidation
rate. Further details about how we implement and configure these techniques are found
in Appendix C.2.3. Min-Cost `1/`2 [247]: we implement this by setting the appropriate
parameters for the elastic-net loss [43] in ART [184]. Min-Cost ε-PGD [247]: We perform
Projected Gradient Descent (PGD) for an increasing sequence of ε until a counterfactual is
found. Pawelczyk et al. [200]: This method attempts to find counterfactual examples on
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Invalidation Rate
Method German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

LOO RS LOO RS LOO RS LOO RS LOO RS LOO RS

Min. `1 0.41 0.56 - - 0.07 0.29 0.44 0.35 0.30 0.43 0.30 0.78
+SNS 0.00 0.07 - - 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04

Min. `2 0.36 0.56 0.64 0.77 0.48 0.49 0.35 0.3 0.55 0.61 0.27 0.72
+SNS 0.00 0.06 0.02 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Min. ε PGD 0.28 0.61 0.94 0.94 0.04 0.09 0.10 0.12 0.04 0.11 0.04 0.24
+SNS 0.00 0.12 0.04 0.16 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.11

Looveren et al. 0.25 0.40 0.48 0.54 0.11 0.18 0.26 0.25 0.25 0.34 0.29 0.53
Pawelczyk et al. 0.20 0.35 0.16 0.11 0.00 0.06 0.02 0.01 0.05 0.15 0.02 0.20

Counterfactual Cost (`2)
Method German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

Min. `1 1.33 - 0.17 0.50 0.24 1.56
Min. `2 4.49 8.23 0.06 0.54 0.11 2.65

Looveren et al. 5.37 8.40 0.11 1.03 0.45 2.82
Min. ε PGD 1.02 1.36 0.08 0.31 0.32 0.75
Min.`1 + SNS 3.40 - 0.25 0.80 1.71 3.50
Min.`2 + SNS 6.23 9.60 0.21 0.90 1.71 4.68
PGD + SNS 3.03 3.60 0.22 0.50 1.79 2.78

Pawelczyk et al. 7.15 13.66 1.07 2.62 1.35 4.24

IV - Cost Correlation
R2 0.05 0.06 0.02 0.01 0.17 0.05

Table 4.1: The consistency of counterfactuals measured by invalidation rates. The average `2 cost of different
methods are also included. Results are aggregated over 100 networks for each experiment (RS and LOO).
Lower invalidation rates and cost are more desirable. For `2 cost, the best results are highlighted among three
methods (separated by a line) with lower invalidation rates. If a method has significantly low success rate in
generating counterfactual examples, we report ‘-’. In the last line, we present the R2 correlation coefficient
from a linear regression predicting invalidation percentage from cost. Small values indicate weak correlation.

the data manifold, that are therefore more resistant to invalidation, by searching the latent
space of a variational autoencoder, rather than the input space. Looveren et al. [243]: This
method minimizes an elastic loss combined with a term that encourages finding examples on
the data manifold.

We note that PGD was originally proposed in the context of adversarial adversarial exam-
ples [236]. As has been noted in prior work, the problem of finding adversarial examples
is mathematically identical to that of finding counterfactual examples [36, 88, 230, 247].
While solution sparsity is sometimes noted as a differentiator between the two, we note
that techniques from both areas of research can be used with various `p metrics. We mea-
sure cost in terms of both `1 and `2 norms, providing `2 in the main body and `1 in
Appendix C.2.6.

Implementation of SNS. SNS begins with a given counterfactual example as mentioned
in Def. 4.5, which we generate with Min. `1/`2 and Min. ε PGD. We use the sum of 10 points
to approximate the integral.

Retraining Controls. We prepare different models for the same dataset using Tensorflow
2.3.0 and all computations are done using a Titan RTX accelerator on a machine with 64
gigabytes of memory. We control the random seeds used by both numpy and Tensorflow,
and enable deterministic GPU operations in Tensorflow [237]. We evaluate the invalidation
rate of counterfactual examples under changes in retraining stemming from the following
two sources (see Appendix C.2.4 for more details on our training setup). Leave-One-Out
(LOO): We select a random point (without replacement) to remove from the training data.
Network parameters are initialized with the same values across runs. Random Seed (RS):
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Network parameters are initialized by incrementing the random seed across runs, while other
hyperparameters and the data remain fixed.

We note that these sources of variation do not encompass the full set of sources that are
relevant to counterfactual invalidation, such as fine-tuning and changes in architecture or
other hyperparameters. However, they are straightforward to control, produce very similar
models that nonetheless tend to invalidate counterfactuals, and they are not dependent on
any deployment or data-specific considerations in the way that fine-tuning changes would
be. While we hope that our results are indicative of what might be observed across other
sources, exploring invalidation in more depth in particular applications is important future
work.

Metrics. To benchmark the consistency of counterfactuals generated by different algo-
rithms, we compute the mean invalidation rate (Def. 4.2) over the validation split of each
dataset. To calculate the extent of correlation between cost and invalidation, as discussed in
Section 4.3, we perform a linear regression (scipy.linregress) between the costs for each
valid counterfactual, across all five methods, with its invalidation rate across both LOO and
RS differences. Table 4.1 reports the resulting R2 for each dataset.

Methodology. For each dataset, we train a “base” model and compute counterfactual
examples using the five methods for each point in the validation split. For each set of
experiments (LOO or RS), we train 100 additional models, and compute the invalidation
rate between the base model and the 100 variants. The results are shown in Table 4.1.

4.4.1 Results

Looking at the invalidation results in Table 4.1, the most salient trend is apparent in the
low invalidation rates of SNS compared to the other methods. SNS achieves the lowest
invalidation rate across all datasets in both LOO and RS experiments, except for on the
Seizure dataset with RS variations, where there is a two-point difference in the invalidation
rate. SNS generates counterfactuals with no invalidation on CTG, Warfarin, and Heloc, and
no invalidation over LOO differences on German Credit and Taiwanese Credit.

Notably, this is down from invalidation rates as high as 61% from other methods on Heloc,
and ≈ 10 − 50% on others. On Seizure, which had IV rates as high as 94% from other
methods, SNS achieves just 2% (LOO) invalidation. The closest competitor is the method
of Pawelczyk et al. [200], which achieves zero invalidation in one case (CTG under LOO), but
at significantly greater cost –in five out of six cases, SNS produced less-costly counterfactuals,
and in nearly every case the margin between the two is greater than 2×.

As discussed in Section 4.3, while increasing cost is not a reliable way to generate stable
counterfactuals for deep models, our results do show that stable counterfactuals tend to be
more costly. The data suggests that greater-than-minimal cost appears to be necessary for
stability. While SNS counterfactuals are much less costly than those generated by Pawelczyk
et. al, they are consistently more costly than other methods that aim to minimize cost
without other constraints. To investigate the relationship between counterfactual cost and
invalidation more closely, we report the R2 coefficient of determination of a linear regression
between the cost of each valid counterfactual generated and its invalidation rate in Table 4.1.
Recall that a R2 ranges from zero to one, with scores closer to zero indicating no linear
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relationship. Notably, Table 4.1 shows that the correlation between cost and invalidation
is quite weak: the maximum R2 over all datasets is 0.17 (Heloc), while most of the other
datasets report coefficients that are much smaller–at or below 0.05.

4.5 Related Work
Counterfactual examples enjoy popularity in the research literature [54, 60, 99, 133, 167, 199,
230, 243, 245, 247, 258], especially in the wake of legislation increasing legal requirements
on explanations of machine learning models [93, 129]. However, recent work has pointed to
problems with counterfactual examples that could occur during deployment [16, 150, 200, 211].
For example, Barocas and Selbst [15] point to the tension between the usefulness of a
counterfactual and the ability to keep the explained model private. Previous work investigating
the problem of invalidation, has pointed to cost as a heuristic for evaluating counterfactual
invalidation at generation time [200, 211]. We demonstrate that cost is not a reliable metric for
predicting invalidation in deep models, and show how the Lipschitz constant and confidence of
a model around a counterfactual can be a more faithful guide to finding stable counterfactual
examples.

While in this work, we address the problem of multiplicitious deep models producing varying
outputs on counterfactual examples, recent work has shown that there are large differences
in model prediction behavior on any input across small changes to the model [24, 53, 168].
Instability has also been shown to be a problem for gradient-based explanations, although
this is largely studied in an adversarial context [61, 96, 111].

Within the related field of adversarial examples, there is a recent interest in adversarial
transferability [64, 119, 256], where adversarial attacks are induced to transfer between
models. In general, adversarial transferability concerns transferring attacks between extremely
different models—e.g., trained on disjoint training sets. Meanwhile, in this work, we decrease
counterfactual invalidation between very similar models, in order to preserve recourse and
explanation consistency. Interestingly, Goodfellow et al. [97] suggest that transferability of
adversarial examples is due to local linearity in deep networks. This supports our motivation:
we find stable counterfactuals in more Lipschitz regions of the model, i.e. where it behaves
(approximately) linearly. We note, however, that as linearity does not imply Lipschitzness,
this insight does not provide a clear path to generating stable counterfactuals. We look
forward to exploring the potential overlap between these two areas as future work.

4.6 Conclusion
In this chapter, we characterize the consistency of counterfactual examples in deep models,
and demonstrate that counterfactual cost and consistency are not strongly correlated. To
mitigate the problem of counterfactual inconsistency, we introduce Stable Neighbor Search,
which finds stable counterfactuals by leveraging the connection between the Lipschitz constant
and confidence of the network around a counterfactual, and its consistency. At a high level,
our work adds to the growing perspective in the field of explainability that creating good
explanations requires good models to begin with.

58



Part II

Case Studies in Fairness
Interventions along the Modeling

Pipeline

59





Chapter 5

Case Study: Machine Learning
Pipeline Fairness Interventions in
IRS Tax Audit Selection

In this chapter, we present a case study of using pipeline-based fairness interventions in a
public policy application: the allocation of tax audits by the Internal Revenue Service (IRS).
While the field of algorithmic fairness has developed primarily around notions of treating like
individuals alike, we instead explore the concept of vertical equity—appropriately accounting
for relevant differences across individuals—which is a central component of fairness in many
public policy settings. Applied to the design of the U.S. individual income tax system,
vertical equity relates to the fair allocation of tax and enforcement burdens across taxpayers
of different income levels. Through a unique collaboration with the IRS, we use access to
detailed, anonymized individual taxpayer microdata, risk-selected audits, and random audits
from 2010-14 to study vertical equity in tax administration. In particular, we assess how
the adoption of modern machine learning methods for selecting taxpayer audits may affect
vertical equity. This work makes four contributions.

First, we show how the adoption of more flexible machine learning (classification) methods—
as opposed to simpler models —shapes vertical equity by shifting audit burdens from high
to middle-income taxpayers.

Second, given concerns about high audit rates of low-income taxpayers, we investigate how
existing algorithmic fairness techniques would change the audit distribution. We find that
such methods can mitigate some disparities across income buckets, but that these come at a
steep cost to performance. This result points to the imperfect fit many common conceptions
of fairness, and fairness mitigation techniques, have with certain public policy problems.
Firstly, common fairness definitions may not align exactly with contextual fairness desiderata.
Beyond this, bias mitigation techniques aimed at enforcing these definitions on machine
learning systems often are not built to take into account the realities of many public policy
problems: for example, the existence of an agency budget. The differences in problem setup
between common ML solutions and the realities of some of the applications where ML
systems are used can lead to bias mitigation techniques not performing as expected, which
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we explore in Section 5.5.

Third, and most importantly, we show that pipeline-based interventions, namely, changing
the prediction of risk of underreporting from a classification task to a regression task, is
successful at improving model performance according to vertical equity. Changing the risk
estimation model’s prediction target shifts the audit burden substantially toward high income
individuals, while increasing revenue. This result showcases the utility of pipeline-based
interventions for real-world machine learning fairness problems: not only does changing the
prediction task of the model from classification to regression increase fairness desiderata with
little performance tradeoff, but using a pipeline-based approach allowed for the intervention
to conform to context-specific fairness goals.

Last, we investigate the role of differential audit cost in shaping the distribution of audits.
Audits of lower income taxpayers, for instance, are typically conducted by mail and hence pose
much lower cost to the IRS. These results show that a narrow focus on return-on-investment
can undermine vertical equity. Our results have implications for ongoing policy debates and
the design of algorithmic tools across the public sector.

The annual tax gap, namely the difference between taxes owed and taxes paid, is estimated
to be $440B in the United States [125]. Audits are the principal mechanism by which
the Internal Revenue Service (IRS), the agency responsible for tax collection, verifies tax
compliance and deters non-compliance. IRS resources are limited and the agency must use
audits judiciously. During audits, the IRS typically solicits additional information from
taxpayers to support information reported on filed returns. For the taxpayer, audits can be
time-consuming, stressful, and costly [136, 165]. Low-income taxpayers, for whom refunds
can comprise a substantial part of income, may wait “on their refunds to pay day-to-day
living expenses such as rent, car repairs, or healthcare, and any delay can cause taxpayers
significant hardship" [6].

Since the 1970s, the IRS has used classification models as part of its audit selection process to
detect which individuals are most likely to have misreported their tax liability. While the use
of both classical and modern machine-learning models is foundational to many government
agencies’ efforts to modernize predictive and allocative tasks [79], the adoption of such tools
comes with considerable risks. The algorithmic fairness literature has amply documented how
disparate impact and other negative outcomes can arise from the uncritical adoption and
application of such models [10, 55, 151]. Given the scale and impact government decisions
may have, mitigating these risks is a key priority for researchers and policy [190, 207]. In
this work we study the impact of, and safeguards for, fairness of machine learning models in
the IRS tax audit context.

Specifically, our analysis focuses on fairness defined in terms of vertical equity, namely,
appropriately accounting for relevant differences across individuals. This notion is central
to public finance and public policy. By contrast, the algorithmic fairness literature has
developed many formal definitions of fairness and techniques to satisfy notions of horizontal
equity (treating like individuals alike) [72, 105, 142]. The applicability of these techniques to
improve vertical equity has been little-explored. More generally, the literature on how to
apply algorithmic fairness techniques to improve real-world systems remains in a nascent
stage, especially in high-stakes policy settings where direct data and systems access can be
challenging. Using anonymized IRS microdata, our work (i) examines the applicability of
existing methods for promoting vertical equity in the tax audit context, (ii) introduces new
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algorithmic fairness problems motivated by vertical equity considerations, and (iii) provides a
case study of addressing vertical equity concerns in a real-world algorithmic decision system.
By introducing vertical equity to algorithmic fairness, we follow in the footsteps of others
[21, 110, 118] that situate fairness in broader frameworks.

Our point of departure and the key motivation for our study is summed up in two key obser-
vations that, taken together, point to a discrepancy between the distribution of misreporting
compared to the distribution of audits: (1) the audit rate for lower-to-middle income earners
is often as high or higher in recent recent years than that of high income earners; yet (2) an
analysis of randomly conducted audits reveals that the amount of misreported tax liability
(which we refer to, interchangeably, as the “misreport amount” or “adjustment”) is highest
among the highest income earners and the rate of misreporting—defined as misreporting
above $200—increases roughly monotonically with income. With this context, our key re-
search questions are as follows:
(1) To what extent does the choice of audit selection algorithm affect the noted
discrepancy? Given the discrepancy between ground truth misreporting and audit allo-
cations, we might expect that introducing a more accurate model may mitigate the issue.
However, we observe empirically that more flexible models, while indeed increasing accuracy,
have the effect of even further concentrating of the audit burden on the lower-to-middle
income taxpayers.
(2) Can existing algorithmic fairness methods, originally designed to promote
horizontal equity, be applied to improve vertical equity? In our context, one concep-
tion of vertical equity consists of monotonicity of the audit rate with respect to income. We
show that, under some conditions, a selection process1 that satisfies the well-known fairness
metrics of equal true positive rates and equalized odds also requires monotonicity of the
audit rate with respect to the misreport rate. Given our empirical findings, this also implies
monotonicity with respect to income. We thus divide taxpayers into income buckets and
explore to what extent conventional fairness methods applied to such buckets can resolve the
apparent discrepancy between the audit rate and misreporting. We show that such methods
come at a steep cost to revenue.
(3) What techniques can we use to more directly address vertical equity in the
IRS audit allocation context? We implement a direct approach to achieve monotonicity
by imposing allocation constraints on model outputs, and find that this approach results in a
modest cost to revenue. However, we find that switching the prediction task from classification
to regression not only also achieves a roughly monotonic shape, closely matching the audit
distribution of an oracle with knowledge of the true misreport amount, but also obtains
significantly more revenue than even unconstrained classification. This is because regression
shifts focus to taxpayers likely to have high amounts of underreporting rather than simply
high probabilities of a misreport.
(4) Can differential audit costs explain the status quo mismatch? We show that
fully optimizing for return-on-investment with respect to the IRS’ audit costs concentrates
audits nearly exclusively on lower income taxpayers, even when using predictions arrived at
via regression. This suggests that IRS budgetary constraints may play an important role
in shaping the agency’s ability to more equitably allocate audits without sacrificing the
detection of under-reported taxes. A narrow focus on return-on-investment can seriously
undermine vertical equity goals.

1By ‘selection process,’ we mean the prediction model and the process by which predictions are used to
allocate audits together.
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A major contribution of this work is that we conduct all our experiments on real, detailed,
audit data collected by the IRS. We view this collaboration as an important case study to
assess and mitigate disparities in real-world, public sector settings that operate subject to
binding operational constraints [see 35, 95, 114, 146, 186]. Our primary dataset consists of
a stratified random sample of taxpayers collected as part of the IRS’ National Research
Program (NRP), allowing us to avoid the selective labels problem [144], to draw inferences
on a representative dataset, and to directly measure the risk of misreporting. Our work
also connects to work that emphasizes the choice of prediction task [180, 186] and problem
formulation [197] for algorithmic fairness. In addition, our results speak to current policy
debates about the fairness of tax administration [135] and appropriate funding levels for the
IRS [7].

The chapter proceeds as follows. Section 5.1 provides background on the U.S. tax system
and spells out the motivating stylized facts, setting up the question of what the IRS’s
turn to machine learning may portend for vertical equity. Section 5.2 provides background
on data and key definitions. Section 5.3 formally describes the audit problem, introduces
notation, and discusses how extant fairness metrics might apply to the IRS context. Our
main investigation is presented in four parts. First, Section 5.4 examines the impact of more
powerful classifiers on audit distribution. Second, Section 5.5 presents the results of applying
established algorithmic fairness techniques in our setting. Third, Section 5.7 studies the
incorporation of monotonicity constraints as well as the simple but fundamental change of
switching from classification to regression. Fourth, Section 5.8 examines the implications of
accounting for audit costs. Section 5.9 concludes.

5.1 Background on the US Tax System

We examine individual federal income taxes in the US system. Taxes are assessed based
on self-reported liability statements called tax returns, which can be time consuming and
complicated to prepare; many taxpayers use commercial software or paid preparers. The tax
rate on income is progressive, with marginal tax rates increasing in income.

As the tax code is very complicated, taxpayers (and their preparers [171]) often make errors
when calculating the amount they owe and are thus inadvertently non-compliant; others are
willfully non-compliant, i.e., evade paying taxes. The annual gross tax gap, which measures
total noncompliance, is approximately $440B [125]. In order to recover lost revenue, and to
promote compliance with the income tax law, the IRS audits individuals that it believes may
not be paying their full owed tax—due to, e.g., erroneously claiming credits or under-reporting
income.

The IRS’ audit selection system is complex, with many parts. It principally relies on: (i)
algorithmic methods to predict which taxpayers are most likely to underreport taxes, which
serves as our main focus, (ii) a combination of simple rules that flag returns automatically; and,
to a lesser extent, (iii) tips and other third party information, such as from whistleblowers. We
focus on the algorithmic component of the IRS audit selection process, which has historically
been a classification algorithm predicting individual taxpayer misreport [117]. The details of
existing modeling approaches are confidential, but historically, the basic approach involves a
form of linear discriminant analysis.

Audits are conducted in different ways depending on the size and scope of issues identified.

64



CHAPTER 5. CASE STUDY: MACHINE LEARNING PIPELINE FAIRNESS INTERVENTIONS IN IRS
TAX AUDIT SELECTION

Some audits, including most involving the Earned Income Tax Credit (EITC), are conducted
by mail at relatively low cost to the IRS. More complicated and extensive audits may be
conducted by interview or by IRS examiner field visits. The timing of an audit relative to
the processing of a return also varies. For instance, audits may be conducted on taxpayers
claiming refunds before a check is sent out; this is known as revenue protection, and such
audits are called “pre-refund”. Audits occurring after a check has been sent out to, or received
from, the taxpayer are known as “post-refund.” These timing distinctions create differential
impact on taxpayers, and may also affect the ease with which the IRS conducts audits.

Over the last eight years, budget cuts have decreased the audit rate, from an overall rate of
1% of individual filings receiving audits in 2010 to just 0.5% in 2016 [123]. The audit rate
has decreased most significantly for individuals earning between $1-5M. Such individuals
were audited at a rate of ≈8% in 2010 but just 2.2% in 2016 [123]. These changes in audit
rates correspond to disproportionate reductions in examiners with more specialized expertise:
while there was a 15% reduction in examiners conducting correspondence audits (i.e. audits
by mail) from 2010 to 2019, there was a 25-40% reduction in examiners conducting in-person
audits, which are utilized more for higher-income individuals [122].

Figure 5.1: Left two graphs: Audit Rate vs. Total Positive Income over time. Both of these graphs are
calculated on operational audit (OP) data. Each line of a different color represents a different year, from
2010 to 2014. The x-axis indicates income binned into buckets of income, while the y-axis is the fraction of
taxpayers in each bucket audited. On the leftmost, we have reported income buckets of $10,000, up $1m, while
on the second graph, we show the same analysis over reported income deciles. Note that as the 10th income
decile starts at 127K, this graph is comparatively compressed. Right: Ground truth rates of misreporting
(over $200) (left) and average amount of misreporting conditional on misreport, aka average adjustment (over
$ 200), (right) over income. The results here are presented over five years of NRP data 2010-2014, adjusted
to 2014 dollars. The x-axis denotes income deciles, and the y-axis denotes rate of misreporting and average
amount of misreporting in dollars, respectively. Taken together, we can see that there is a mismatch between
audit allocation and ground truth noncompliance.

5.1.1 Motivating Facts
We highlight two motivating facts relevant to our investigation. First, in the most recent
years, the lowest income earners have been audited at the same rate as the highest income
earners. The left panel of Figure 5.1 plots income in $10K bins from $0 to $1M on the x-axis
against the audit rate on the y-axis. Each line represents one year, from 2010 in lightest to
2014 in darkest blue. This panel shows the clear trend of the declining overall audit rate
over time, which affects higher income groups most acutely. In addition, while audit rates

65



CHAPTER 5. CASE STUDY: MACHINE LEARNING PIPELINE FAIRNESS INTERVENTIONS IN IRS
TAX AUDIT SELECTION

generally increase in income, there is a large spike of audits in the lowest income groups. In
2014, the lowest earners are audited at a higher rate than all other income groups, except
for those earning nearly $1M. The middle panel depicts the same data using income deciles.
After 2010, low-to-middle income taxpayers (i.e. those in the 2nd-4th income deciles from
$6.7K to $26K), were audited at a higher rate than all higher income deciles. This reflects
the particular focus on pre-refund audits done principally by mail.

Second, the rate at which taxpayers understate their tax liability increases monotonically
with income and average adjustments are highest in the highest income decile. The right
panel presents audit outcomes estimated on the NRP data (described in Section 5.2 below).
The blue line in this panel depicts the estimated fraction of audits in each decile with a
true misreport of at least $200, while the red line depicts the average adjustment by decile.
Because this is a stratified random sample with corresponding sampling weights, it is free of
the selection bias inherent in measuring outcomes among risk-selected audits, and can thus
be used to construct consistent estimates of population non-compliance.

These facts raise the motivating questions of this work: if adjustments are highest in the
highest income decile, and the misreport rate increases monotonically with income, then why
are audits so highly concentrated on lower-to-middle income taxpayers? To what extent can
such patterns be exacerbated or mitigated by machine learning techniques? And are there
opportunities for improving vertical equity given this mismatch?

5.2 Data and Key Terminology
We address these questions through a unique collaboration with the Treasury Department
and IRS, which provides us access to two data sets previously unexplored in the computer
science literature: (1) the NRP data, which consists of line-by-line audits of a stratified
random sample of the US population (n=71.9K ) from 2010-14 [121]; and (2) all Operational
Audits (OP) for 2014 (n=791.9K), which are risk-selected audits to identify tax evasion.
Each observation contains information filed in a tax return. All dollar amounts are adjusted
for inflation to 2014 dollars.

We train and evaluate our machine learning models on NRP data, as this data is a random,
representative sample of the US population and does not suffer from selection bias [144].2
We note that the OP audit data includes observations that were selected for audit not
solely through machine learning tools, but also through rule-based flags such as internal
inconsistencies, and other methods of selecting audits. We use the OP data to display the
status quo of audit selection in the IRS as of 2014, for example, in the left-most graphs in
Figure 5.1.

In this data, three concepts are particularly important. First, by income, we mean the
taxpayer’s reported total positive income (TPI). TPI captures all positive income an individual
receives, gross of any losses.3 We focus on reported (rather than audit-adjusted) income
because that is what the IRS observes at the time it selects taxpayers for audit, and we focus
on TPI (rather than taxable income) because it represents a simple measure of earnings that

2That is, when a return is selected for OP audit, the IRS has reason to believe that the return represents
a misreport. Hence, the return is likelier to have a large adjustment than a randomly selected return from
the population, and may be more generally non-representative as well. That said, one limitation is that prior
work has found that NRP data under-reports higher income tax evasion [? ].

3Not all this income is taxable—for instance, tax deductions for losses or charitable contributions may
reduce the total amount of taxable income.
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is less likely to be affected by audit determinations. Many of the analyses in this chapter will
be over binned income, i.e. discretized income into equal-sized buckets, typically taken to be
deciles of the income distribution.4

Second, we refer to the amount by which a taxpayer’s return understates true tax liability
as the misreport amount. If a taxpayer overstates their tax liability, then their misreport
amount is negative. Throughout, we use the terms “adjustment” and misreport amount
interchangeably. For classification, we define a significant misreport as whether the taxpayer’s
understated tax liability exceeds a de minimis amount ($200). For brevity, we refer to these
simply as misreports. Our findings are consistent across different choices of threshold (see
Appendix D.3).

Third, we define the cost of an audit to the IRS as the total cost of the auditor’s time
recorded on the particular audit, which we compute from auditor time5 and wage data. In
principle, audit costs also include other components, such as overhead or attorney’s fees for
litigated cases, but these are not possible for us to measure with our data. Note that we are
focusing only on the budgetary costs of audits to the IRS, not the broader societal costs
imposed on taxpayers.

5.3 The Audit Problem
To explore vertical fairness in audit allocations, we start with the tools most readily available
to improve the fairness of algorithmic tools: the now-canonical fairness definitions applied
in the literature [105, 244]. In this section, we first formalize the audit selection problem.
Second, we discuss vertical equity in the context of the audit allocation problem, and consider
how common fairness definitions may improve vertical as well as horizontal equity in this
context. Third, we discuss implementation of these metrics and model evaluation.

5.3.1 Formal Definitions and Preliminaries

In this work we define the basic audit problem as the following: given a budget and a set of
taxpayers with associated features and audit costs, return a selection of taxpayers for audit
that detects and recovers as much under-reported tax liability as possible within the given
budget.6

For the majority of this chapter, we model the budget K as a fixed number of audited tax
returns, which we represent as a percentage of the population. We use a budget of 0.644%,
which is the average percentage of audit coverage between 2010-2014. Taxpayers are indexed
by i ∈ 1, ..., N and have features Xi. One of the features in X is Ii, the taxpayer’s income.
The income bucket bi ∈ B = 1...10 of the taxpayer is the decile of Ii. Taxpayers submit a
report of tax liability ˜̀

i, which may be different than their true liability `i. We let δi = `i− ˜̀
i

denote the taxpayer’s adjustment or misreport amount. We will also use mi = 1[δi > τ ] for
an indicator variable being above the misreport threshold τ . In our main experiments, we set
τ = 200, and write πi := Pr[δi ≥ τ |Xi]. We denote the cost incurred to the IRS by auditing
an individual i as ci. We use ai as an indicator for whether taxpayer i is audited, and αi for

4While these bins and associated thresholds are relevant to our analysis and implemented algorithms, to
our knowledge they are not currently used by IRS to categorize returns or to determine taxpayer eligibility
for benefits.

5Notably, our available data for auditor time does not account for auditor time spent on audit appeals.
6In practice, the audit problem undertaken by the IRS must balance a variety of objectives, including

revenue maximization, deterrence, minimization of taxpayer burden, and reduction of improper payments.
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a probabilistic relaxation. Occasionally, we use ·̂ to indicate prediction, e.g. δ̂i as predicted
misreport amount.

The machine learning models we use throughout this chapter which we integrate into the
audit selection process either predict probability of misreporting π̂i (for classification models),
or expected amount of misreporting δ̂i (for regression models). In order to create an audit
allocation from these predictions, however, we must select only 0.644% of the population,
which is in practice much less than the percentage of individuals predicted to not comply.
Thus in order to create an audit allocation from machine learning model predictions, we
rank model outputs by magnitude of prediction and take the top 0.644%. The audit problem
can be formalized as: maxa

∑
i δi · aisuch that

∑
i ai
N < K.

If we consider K to denote a dollar budget as opposed to an audit rate budget, as we do in
Section 5.8, the constraint will be changed to

∑
i aici < K. In practice, we use δ̂i or π̂i to

approximate δi.7

5.3.2 Algorithmic Fairness and Vertical Equity

We now discuss vertical equity in the IRS audit allocation context and its connection to
several common algorithmic fairness metrics from the literature.

Vertical Equity. Vertical equity requires that different individuals be treated appropriately
differently. In the taxation and audit context, we focus on vertical equity with respect to
the appropriate treatment of taxpayers at different income levels. Appropriately different
treatment depends on context-specific considerations and value judgments. To illustrate,
given the fact that audits are costly for taxpayers (in terms of money as well as time, effort,
and mental stress), policymakers may wish to avoid models that concentrate audits on
low-income taxpayers out of concern for distributional social goals and in recognition of the
declining marginal utility of taxpayers’ income. Other potential baselines for setting policy in
this space are aligning audit rates with true rates of non-compliance, or with an Oracle-based
selection, i.e. an allocation which selects individuals in order of true misreport amount. In
our setting, because under-reporting rates increase with income (Figure 5.1) and an oracle
places a higher probability of selection as income increases, these factors would suggest
that audit rates should increase in income as well. Motivated by such considerations, we
explore formalizing the notion of vertical equity as monotonicity and evaluate the discrepancy
between audit allocation and true rates of misreport as an important component of vertical
equity. Our focus on monotonicity is intended to illustrate how one might incorporate vertical
equity concerns into algorithmic fairness, but we note that a fuller analysis from an optimal
tax framework is beyond our scope here.8

Montonicity Monotonicity (with respect to income) would require that the audit probability
increase as income increases. Formally, given income buckets b and b′, b ≥ b′ =⇒ Pr[ai =

7As stated, this is an integer program, but we solve the linear relaxation due to computing constraints
and because observations represent many people.

8A full optimal policy analysis would have to consider such factors as heterogeneity in the audit burden
or in the deterrence effect of audits by income. For example, audits of higher income taxpayers can be more
involved, but audits of lower-income taxpayers may require obtaining harder to produce information and
often involve freezing refunds for liquidity-constrained taxpayers while the audit proceeds. A fuller optimal
policy analysis would also need to consider how audit policies interact with other tax variables (such as the
income tax schedule and underpayment penalties) for achieving revenue and distributional goals. Each of
these factors may impact vertical equity.
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1|bi = b] ≥ Pr[ai = 1|bi = b′]. We consider directly constraining the audit allocation to be
monotonic in Section 5.6.

Oracle Allocation An oracle is a theoretical omniscient model with access to the true
amounts of misreporting in the data (i.e. the ground truth labels). Formally, the oracle
represents the model δ̂i = δi, where δi is the amount of true misreport of individual i. The
oracle creates an audit allocation by selecting individuals for audit in order of their true
amount of misreport amount until exhausting the allocation budget. Thus, the audit allocation
selected by the oracle is naturally aligned with true incidence of misreport. Although we do
not explicitly enforce this behavior, we evaluate the vertical equity of model allocations by
the extent to which they match the audit rate by income of the oracle model.

Demographic Parity. Demographic Parity (DP) requires, in our context, equal audit
probability across income buckets. That is: Pr[ai = 1|bi = b] = Pr[ai = 1|bi = b′],∀ b, b′.
Note that with a fixed budget and groups of equal size, asking for DP amounts to requiring
the same audit rate for each group, which weakly satisfies monotonicity. Compared to the
status quo described in Figure 5.1, this would result in lower audit rates for low-to-middle
income taxpayers as well as very high income taxpayers, and higher audit rates for middle-
to-upper income taxpayers. Important limitations to DP include that (1) as noted, equal
audit rates do not imply equal audit burdens if taxpayers bear different costs, and (2) a
perfectly accurate classifier would not satisfy DP unless the misreporting rates are exactly
equal, which they are not.

Equal True Positive Rates [105]. Equal True Positive Rates (TPR) requires that the
audit probability of non-compliant taxpayers not depend on income group, i.e., Pr[ai =
1|mi = 1, bi = b] = Pr[ai = 1|mi = 1, bi = b′],∀ b, b′. Equal TPR ensures that no group of
non-compliant taxpayers can expect a higher or lower chance of audit based solely on their
income, but this does not mean that compliant taxpayers of each income group face the
same chance of an audit.

Equalized Odds. Equalized Odds (EO) asks that the audit probability of both compliant and
non-compliant taxpayers should not depend on their income group, i.e.: Pr[ai = 1|mi = 0, bi =
b] = Pr[ai = 1|mi = 0, bi = b′], and Pr[ai = 1|mi = 1, bi = b] = Pr[ai = 1|mi = 1, bi = b′].
EO extends equal TPR fairness by requiring audits of compliant taxpayers at the same
rate across groups in addition to auditing non-compliant taxpayers at the same rate across
groups.

In Appendix A, we consider conditions under which equal TPR or EO will result in monotonic-
ity of the audit rate with respect to income. Specifically, we consider a hypothetical allocation
that audits all taxpayers with π̂i > 0.5, and show that under certain (differing) conditions,
audit allocations that satisfy either either equal TPR or EO will result in monotonicity of
the audit rate with respect to the misreport rate. Because the misreport rate increases with
income (Figure 5.1), this suggests that enforcing one of the fairness constraints on a model
generating audit allocations may also lead to monotonicity of audits with respect to income.
We note that this result is suggestive, since models that satisfy a fairness constraint for
the hypothetical allocation described above need not do so for the actual audit allocation
induced after imposing a budget. Thus, we must ultimately test whether the targeted fairness
constraints are satisfied on the audit allocation that results from a model once a budget
is incorporated. Next, we describe algorithms to instantiate these conditions and evaluate
the performance tradeoffs. We implement these algorithms and report results in Section
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5.5.

5.3.3 Model Evaluation

In order to compare model allocations, we will consider several performance metrics. First,
in order to approximate how well an audit allocation matches the ground truth rate of
misreport, we consider how closely audit rates correspond to selection based on an oracle.
Specifically, we calculate the overlap between a model’s allocation and the oracle’s, formally,
the size of the intersection of the model and oracle’s audit allocation over the total number
of audits in an allocation:

∑
i ai,Oai,M
K×N , where ai,O and ai,M represent audit indicators for the

oracle and a model respectively, K is the audit budget as a percentage of the population,
and N is the total number of taxpayers.9 Note that the overlap will be between 0 and 1,
with 1 representing an exact match of the oracle’s allocation. We consider models that more
closely match the oracle allocation with respect to income to have preferable vertical equity
performance in our context.

Second, we consider revenue collected, which is simply the sum of adjustments over all audits.
Recovering revenue is one of the key goals of the IRS and is itself relevant for distributive
policy, since it funds services provided to citizens. We define revenue as follows:

∑
i∈N aiδi,

where N is the number of taxpayers in the dataset.

Third, we consider the no-change rate, which is the fraction of audits resulting in no
(substantial) adjustment. No-change audits are undesirable from both IRS and taxpayer
perspective, as both the auditor and taxpayer could have saved significant time, effort, and
stress. We define the no-change rate as

∑
i ai·(1−mi)∑

i ai
.

Fourth, we consider the cost of the audit to the IRS, which is important both in terms of the
feasibility of an audit policy and its net revenue implications. We define cost as

∑
i∈N aici,

where ci is our estimate of cost per return.We describe how we obtain cost estimates in
Section 5.8. In Sections 5.4-5.7, we hold audit rates fixed and measure incurred cost. In
Section 5.8, however, we consider constraints on the total dollar cost of policies, and show
how they may explain the existing discrepancy between income and the audit rate.

5.3.4 Model Implementation

There exists a large body of research surrounding how to best implement and guarantee the
common fairness metrics outlined above [8, 38, 65, 105, 134, 263]. From this rich literature,
we choose to rely on a technique developed by Agarwal et al. [8], which intervenes in a
model’s training process to add a constraint during optimization which incentivizes the
model to satisfy a given constraint in its predictions [8, 65]. Methods that enforce fairness
constraints during training time are often described as “in-processing," as opposed to those
which intervene at prediction time, which are called “post-processing." Agarwal et al.’s
(in-processing) technique allows for demographic parity, true positive rate parity, equalized
odds, and other constraints to be satisfied in expectation in a model’s predictions on the
training distribution. We include results from other methods of enforcing fairness constraints,
including post-processing techniques, as a discussion of the differences between various
methods in Appendix D.6.

9The total number of taxpayers, taking into account the sampling weights. This metric is equivalent to
the top-k intersection of model outputs, where k is the audit allocation budget. This metric is often used to
compare model-generated explanations [25, 61, 96].
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Model Type Label Fairness Revenue No-Change Cost Net Revenue Oracle
Type Constraint ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00
LDA Class × 6.07 12.8% 0.21 5.86 0.09
Random Forest Class × 3.05 3.5% 0.08 2.97 0.00
Grad Boosted Class × 4.05 4.2% 0.08 3.97 0.00
Random Forest Class X(DP) 2.75 8.0% 0.07 2.67 0.08
Random Forest Class X(TPR) 0.69 12.4% 0.15 0.54 0.04
Random Forest Class X(EO) 0.53 13.6% 0.15 0.38 0.04
Random Forest Class X(Mono) 3.00 4.0% 0.10 2.90 0.01
Random Forest Reg × 10.22 23.3% 0.50 9.72 0.23
Grad Boost Reg × 10.20 20.0% 0.50 9.70 0.22

Table 5.1: Revenue, no-change rate, cost, net revenue, and oracle overlap for all models considered in this
chapter. No-change rate represents the percentage of audits that were allocated to compliant taxpayers; cost
reflects cost to the IRS as described in Section 5.8. These results reflect audit allocations that select the top
0.644% of taxpayers predicted most likely to misreport from each model. All metrics are reported on the test
set, using the representative NRP sampling weights to scale up to the US taxpayer population.

5.4 Flexible classifiers and audit classification
We begin by examining the hypothesis that the disproportionately high audit rate observed
for low income earners may stem from using simpler classification models in guiding audit
allocations. We demonstrate that (i) the disparity displayed in audit rates does not appear
to arise from the less complex models similar to those the IRS has historically used; and,
(ii) applying more complex models—in this case, Random Forests and Gradient Boosting—
actually exacerbates the burden on lower income taxpayers.

5.4.1 Experimental Setup
In this section, we consider the audit allocation determined by Linear Discriminant Analysis
(LDA) (an approximation of the historical choice by the IRS), a Random Forest Classifier,
and a Gradient Boosting Classifier. In principle, classifiers may perform well at reducing the
no-change rate, furthering IRS’s objective to avoid burdening compliant taxpayers. To be
clear, the audit allocation is not simply the model’s predictions, but rather the individuals
most highly predicted for misreport up to the audit budget, as described in Section 5.3.1. We
use NRP data from 2010-2014 to train all models in this chapter to predict the likelihood of
misreporting. We randomly split this data into a train and validation (75%) and test (25%)
sets. We search for optimal hyperparameters using sklearn’s GridSearchCV method with
5-fold cross validation.10

All results in this and following sections are calculated on the test set, which is reserved for
reporting results. Results are reported by rescaling costs and revenues to reflect estimated
average annual values for the full population (averaged between 2010-2014). For each
classification model, we sort taxpayers in descending order of predictedmisreport probability to
produce a ranking. We then apply an audit rate budget of 0.644% of the population, reflecting

10As described in detail in Appendix D.2, we train all but LDA models with sampling weights provided
in the NRP data, meant to ensure the data is representative of the taxpayer population. For LDA models,
we sub-sample a dataset from the NRP data that respects the sample weights by randomly selecting (with
replacement) rows from the weighted training data according to the weights. For example, suppose that each
row x has a sample weight w, and the sum of all weights in the training set is W . Then each observation has
a w
W

chance of getting selected as any given row in the sub-sampled data.
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Figure 5.2: From Left to right: Audit Rate by Income LDA Classifier, Random Forest Classifier, and
Gradient Boosted Classifier, presented in black. The oracle allocation on the same budget is presented in red
on the same graph.

the average audit rate from 2010-2014, and select audits ai by taking the top 0.644% of the
population (i.e. 1125000 audits)in rank order. Further details are in Appendix D.2.

5.4.2 Results

Figure 5.2 displays the audit rate by income of allocations obtained via ranking the predictions
of LDA, Random Forest Classification, and Gradient Boosted models by predicted probability
of misreport and selecting the top 0.644% of the population. Revenue and no-change rate of
these models are included in Table 5.1. We highlight implications below.

First, higher model flexibility can lead to high audit focus on lower and middle income
populations. As Table 5.1 shows, the Random Forest Classifier is well-optimized for the
classification task: it has an extremely low no-change rate—just 3.5%—whereas simpler
models have no-change rates higher than 12.8%. However, the Random Forest Classifier
focuses almost exclusively on the lower-middle and middle of the income spectrum, not
targeting the highest earning 20% at all. Similarly, the Gradient Boosted classification model
concentrates most of the audit selection to the middle of the income spectrum (4-8th decile),
with a strong drop-off for the top 20% of the population. (Appendix D.4 shows that another
simpler model (logistic regression) also results in rough monotonicity.)

Second, the simpler LDA model more closely matches the oracle. The LDA classifier has
an audit selection curve that is roughly monotonic in income, with large increases in audit
rate in the high income region. As LDA has been the IRS’ historical modeling approach
(although it differs in practice with our implementation), this suggests that the large spike
in operational audit selection rate on the lower end of the income spectrum apparent in 2014
may not stem directly from the predictions algorithmic components of the decision system,
but rather other policy and modeling choices.

Third, increased classification accuracy does not imply increased revenue. Table 5.1 shows
that the Random Forest and Gradient Boosted models have significantly lower no-change
rates than the LDA model (3.5% and 4.2% vs. 12.8%), yet also substantially lower revenue
(≈$3B and $4B vs. ≈6B). This highlights that improved performance on one objective
(e.g., accuracy) may come at the expense of other seemingly intertwined objectives (e.g.,
revenue).
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Figure 5.3: In-process fairness techniques imposed on a Random Forest model. From left to right: enforcing
Demographic Parity (DP), Equal True Positive Rates (TPR), and Equalized Odds (EO). Black (blue) series
represent the unconstrained (constrained) allocation.

5.5 Fairness Constrained Classification

We now explore the use of bias mitigation methods to promote vertical equity.

5.5.1 Experimental Details

We enforce algorithmic fairness definitions on the Random Forest model at different points in
the audit selection process: during training, or in-processing, following Agarwal et al. [8], and
after training but before prediction, or post-processing (deferred to Appendix D.6, following
Hardt et al. [105]). Our setup for training the fairness-constrained models mirrors our setup
for the fairness-unconstrained models, with the exception that we do not train the models
with sampling weights, but rather subsample a dataset from the NRP weighted data as we
do for LDA models as described in Section 5.4. This is because the in-processing methods are
implemented using the FairLearn package [22], and the FairLearn package leverages sklearn’s
sampling weight functionality in the course of their algorithm.

5.5.2 Results

Our high-level result is that enforcing fairness constraints during training results in steep
trade-offs with limited fairness payoffs for the budgeted allocation problem. Figure 5.3
displays audit rate by income decile for Random Forest Classifier trained to respect each of
the fairness definitions considered. We present revenue and no-change rate in Table 5.1.

Equal TPR and EO models do lead to overall lower focus on low and middle income groups.
However, they continue to under-target the highest end of the income spectrum when
compared with the oracle predictor. And perhaps surprisingly, despite this shift to focus
slightly more on higher ends of the income spectrum, enforcing these constraints actually
leads to a large decrease in revenue: from over $3B to as low as $600M in revenue. We
additionally notice a decrease in the no-change rate towards levels closer to the baseline LDA
predictor. Finally, they imperfectly enforce the targeted fairness constraints once the audit
budget is imposed: this is immediately evident in the allocation from a model constrained to
respect demographic parity, as the audit rate is not equal across groups.

Given these results, we argue that enforcing fairness constraints during training is not an
effective technique to improve vertical equity in an audit allocation setting. We highlight
some broader implications of vertical equity for algorithmic fairness in Section 5.9.
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Figure 5.4: Left: Monotonicity constraints explicitly enforced on audit allocations of a Random Forest
Classifier. The black line represents the allocation, the red line represents the oracle. Right: Audit Rate
by Income in Random Forest Regressor, and Gradient Boosted Regressor, presented in black. The oracle
allocation on the same budget is presented in red on the same graph.

5.6 Enforcing Monotonicity
In this section, we instead enforce monotonicity directly. We do this by solving the following
linear program:

max
α

∑
b∈B

∑
i∈b

αiπ̂iwi s.t. αi ∈ [0, 1]∀i;
∑
b∈B

∑
i∈b

wiαi = 1;
∑
i∈b1

αiwi ≤
∑
i∈b2

αiwi · · ·
∑
i∈b9

αiwi ≤
∑
i∈b10

αiwi

where all notation follows Section 5.3.1, wi represents sampling weights, and the Random
Forest Classifier generates π̂i.

The leftmost panel of Figure 5.4 shows the audit distribution of the solution to the linear
program. Notably, all income buckets from the fourth decile and above are audited at the
same rate. In other words, the constrained solution audits higher income deciles at the
minimum in order to focus most energy on the fourth decile. The trade-off with performance
is relatively modest relative to the unconstrained classifier, as seen in Table 5.1: revenue does
decrease, but by only $50 million; the no-change rate increases by half a percentage point.
These results indicate that, especially compared to enforcing traditional fairness constraints,
enforcing monotonicity may be a relatively economical approach to encourage (one notion
of) vertical equity. The next section shows, however, that this approach may be far from
optimal.

5.7 From Classification to Regression
We now demonstrate that changing the model’s prediction target from the probability of
misreport to expected misreport amount—i.e. changing from a classification to regression
algorithm— can reduce burden on lower-income taxpayers and make audit rates more
closely mirror the oracle while also increasing revenue. This demonstrates that, in some
circumstances, changing the model’s prediction task to reflect behavioral desiderata–rather
than enforcing a constraint on top of a model optimizing for an imperfectly aligned task—is
a more effective technique to reach equity goals.

We train regression models with the same process described in Section 5.4 for classification
models, but use the misreport amount as the label rather than to a binary indicator of
misreport. The audit rate by income decile of Random Forest and Gradient Boosting
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Figure 5.5: Left: Revenue-optimal allocation from all models considered in chapter so far, considering
budget as a dollar amount. The x-axis represents income deciles, and the y-axis represents audit rate. We
consider the budget to be 125 million, or the average budget over 2010-2014 using our approximation of cost
described in Section 5.8. The revenue-optimal allocation requires that the individuals with the highest ratio
of revenue returned to IRS over cost to the IRS are selected for audit up to the dollar budget, which results
in a similar allocation from all models. Right: No-change rate, revenue, cost, and net revenue of allocations
from different models considered in the chapter when modeling audit budget as a dollar amount, for both for
net-revenue optimal and naive allocations.

regression models are displayed in black in Figure 5.4, along with the oracle in dashed
red.

We highlight two chief results. First, shifting the prediction target from the probability of
misreport (classification) to the expected amount of misreport (regression) shifts audit focus
from lower income to higher income taxpayers, resulting an audit allocation that is not only
nearly monotonic, but also closely matches the oracle allocation. As can be seen in Figure
5.4 and the right column of Table 5.1, the resulting allocation is in fact closer to the oracle
than any other prior allocation. Thus, changing from a classification to a regression task can
be seen as one method to directly optimize for (multiple notions of) vertical equity in the
IRS context.

Second, while changing the prediction target from presence of significant misreport to amount
of misreport does increase the no-change rate (up to 20-23%), it also results in a dramatic
increase in revenue. Table 5.1 shows that assessed revenue under regression rises to $10B,
compared to the $3.6B baseline of high-powered classification models.

Thus, within the set of higher complexity models, switching from classification to regression
may provide an effective way to decrease the mismatch between audit allocations and
ground truth levels of misreport, as well as decrease audit focus on lower and middle income
individuals, while increasing under-reported tax liability detected by the IRS. We leave the
discussion of how regression-based allocations interact with the IRS goal of broad-spectrum
noncompliance deterrence—which may necessitate additional focus on lower-magnitude
noncompliance—to future work.

5.8 Agency Resources and The Impact of a Narrow Return-
on-Investment Approach

We now turn to examining the relationship between vertical equity and agency resources.
As noted, how an audit proceeds depends upon the type of noncompliance suspected: for
example, many audits on lower-to-middle income individuals concern a potentially incorrectly
claimed tax credit, whereas audits on higher income individuals more often involve insufficient
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taxes being paid on income or other assets [122]. Audits concerning tax credits are largely
done via correspondence, where the IRS sends a letter to the taxpayer requesting verification
of qualification for the claimed credit [122]. Other types of misreporting often incur in-person
IRS audits [122]. Correspondence audits are extremely resource-efficient for the IRS. On
the other hand, in-person audits require more time and expertise, and tend to incur much
higher costs. Further, a non-response from a correspondence audit is taken as an admission
of non-compliance, resulting in revenue returned to the IRS [101], and keeping investigation
costs low. One study on EITC correspondence audits found that up to 75% were determined
to be noncompliant due to nonresponse, undeliverable mail, or insufficient response [101].
Thus, the ease of correspondence audits, coupled with the high nonresponse rate leading to
frequent revenue returned to the IRS, may result in more reliably recovered income than
in-person audits, in addition to their lower direct costs. Here, we use a simple model to
explore whether a constrained monetary budget, coupled with differential cost of audits across
the income spectrum, might affect audit allocation. We model the audit budget in terms of a
dollar cost11 as opposed to a constraint on the fraction of the population audited.

5.8.1 Experimental Details
In our consideration of the effects of agency resource limitations on audit allocation, we
focus on the dollar cost of audits to the IRS and its budgetary constraints. We calculate a
simplified version of cost that only takes into account the cost of the actual tax examination,
based on data from previous real operational audits. We calculate cost as the product of the
examiner’s time spent on a given audit with their hourly pay. We average this product over
income deciles and activity code, which roughly corresponds to groupings of individuals based
upon what tax forms they have filled out, to estimate audit cost. We incorporate cost into our
analysis by directly including the dollar budget as an audit selection constraint, thus creating
a linear program to maximize total predictive value (i.e. probability or amount of misreport)
with respect to the dollar budget. As we show in Appendix D.7, this formulation is equivalent
to a fractional knapsack problem; thus, the optimal solution is to select individuals in order
of their ratio of cost to return to the IRS, in other words, return-on-investment. We use a
dollar budget of $125M, the average estimated total cost of audits from years 2010-2014.
Further details are in Appendix D.8.

5.8.2 Results
We present three main results. First, due to the differing audit costs to the IRS by income,
return-on-investment focused audit selection results in an allocation which overwhelmingly
targets lower income taxpayers. In the left panel of Figure 5.5, we show the optimal audit
selection policy under a dollar budget with rankings from each of the models considered in
the chapter thus far. As described in Appendix D.7, the revenue-optimal audit allocation
is to choose returns with the return on investment, i.e. the best ratio of predicted reward
(adjustment in regression or change probability in classification) to audit cost. Based on
our calculations of audit cost, audits in the highest income decile may cost up to 41 times

11We note that a fixed monetary budget may not perfectly capture the resource constraints faced in
practice; for instance, the limited number of auditors of a given expertise level may bind more tightly than
any short-term dollar budgets. Still, this simplification captures important heterogeneity in the degree to
which audits push against agency resource constraints. In addition to shedding light on the status quo audit
distribution, such analysis may be interesting to the field of applied ML, as relatively few papers consider
budget-constrained allocation models.
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the least costly audits. Given the disparities in audit costs over the income spectrum, the
revenue-optimal audit selection method results in an allocation that almost exclusively
targets lower income individuals.

Second, the return on investment of auditing lower income individuals may shed light on
the status quo allocation’s focus on low and middle income individuals. We note that the
optimal allocation with a dollar budget looks similar to the 2014 operational audit selection
policy (Figure 5.1). Given the decreasing IRS budget over time, prioritization of net revenue
maximization may influence the vertical equity of status-quo allocations. However, we note
that the extremely low cost of audits on the lower end of the income spectrum result at least
partially from a policy choice made to proceed with different types of audits in asymmetric
ways: i.e., via correspondence audits on the lower end of the spectrum, and in-person audits
on the higher end. This decision, coupled with the choice to view a lack of response as
noncompliance, results in less time, and fewer resources, spent on audits for individuals in
the lower end of the income spectrum, thus resulting in the constrained revenue-optimal
allocation focusing so highly on low-income individuals.

Third, we find that to improve vertical equity and increase revenue collected, regression models
require a higher dollar budget. As demonstrated in Section 5.7 and Table 5.1, regression
models produce the highest net revenue allocations amongst models constrained to only
audit a given percentage of the population (0.644%). However, the cost to the IRS of these
allocations are considerably higher than classification methods—and indeed, higher than our
approximation of average IRS budget between 2010-2014, $125M. At this low dollar budget,
regression models under-perform on revenue compared to classification models, demonstrated
in the right panel of Figure 5.5: this is because regression models target individuals in the
higher income realm, where the audit cost is greater, thus preventing such allocations from
targeting enough individuals to generate high revenue returns. This suggests that increasing
the dollar budget available for audits may present an opportunity for not only more net
revenue, but also in a more equitable allocation of audits.

5.9 Discussion

Through this unique collaboration with the Treasury Department and IRS, we have studied
the impact of machine learning on vertical equity. Our work suggests that: (1) more accurate
classifiers may exacerbate rather than improve income fairness concerns; (2) off-the-shelf
fairness solutions are not well-suited for attaining income fairness; (3) fundamental modeling
changes, like switching from a binary target to a regression target, can improve income
fairness; and (4) external constraints, like institutional budgets, may influence fairness
regardless of what underlying predictive model is used. Specifically, a return-on-investment
focused audit allocation may undermine vertical equity under current conditions. More
broadly, this work underscores the importance of vertical equity, in addition to horizontal
equity, in real-world application areas of machine learning. To our knowledge, the term does
not appear in the algorithmic fairness literature,12 and traditional fairness metrics can be
seen as focusing on horizontal, rather than vertical, equity. Given the importance of achieving

12Outside the fairness community, but inside the general umbrella of technology and engineering, the
term has been used; in particular, [257] use both terms in a study of equity in access to transportation, and
point towards a possible link to algorithmic fairness. However, their interpretation of vertical and horizontal
equity are substantially different from ours; for instance, they suggest that group fairness should be linked to
vertical equity.
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vertical equity for policy, this work points towards further development of algorithmic fairness
techniques as a promising path for future research.

Our results also reveal a subtle dimension of fairness when resources are allocated under a
budget constraint. When there is greater uncertainty for high-income individuals, classification
risk scores can shift audit allocations to lower-income individuals simply because misreports
are easier to predict. Exploring the role of heterogeneity in uncertainty and its fairness
implications might explain a wide range of other policies that have disparate impact (e.g.,
enforcement against blue collar vs. white collar crime). In the tax context, this insight also
underscores the need for information collection mechanisms (e.g., third party reporting by
offshore financial institutions) to reduce such uncertainty in the high income space, which
has been the subject of significant policy debate [74, 189].

We conclude by noting several limitations and opportunities for further work. First, we do
not have access to the exact models employed by the IRS or the complete procedures, so we
cannot make definitive inferences about past or current practice. Second, we only observe (an
imperfect proxy of) the IRS cost of an audit, not taxpayer costs; the true societal cost of an
audit may thus be materially different than what is used in Section 5.8. Third, our approach
has not distinguished between underreporting from misreported income versus over-claimed
refundable credits; some policymakers may view these forms of noncompliance differently.
Finally, while the notion of monotonicity is motivated in part by the near-monotonicity of
adjustments and the oracle results, it is not grounded in a full welfare analysis. Such an
approach might take into account audit costs to taxpayers, deterrence effects, and other
policy levers, such as tax rates or penalty amounts. Accounting for these dimensions may not
necessarily yield strict monotonicity as a form of vertical equity, and we view this theoretical
development as an important path to refining vertical fairness.

Despite these limitations, this work represents an important step given the policy significance
and complexity of this setting. The scale of the problem is substantial — amongst U.S.
taxpayers alone, improvements in this area can affect more than 100M individuals annually.
Moreover, “government by algorithm” continues to grow [79], and understanding how to
incorporate fundamental fairness and redistribution concerns in taxation may serve as a
model for other governance-related settings. Finally, insights derived in this setting — such
as the differing effects of costs when considered as a constraint rather than in the objective —
may carry over to other unrelated settings. Our finding that a narrow return-on-investment
approach may degrade rather than improve vertical equity may be critical in a range of
policy contexts [196]. Thus, both the technical concepts and policy problem are important
and vital avenues for future research.
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Chapter 6

Vertical Equity and Related
Fairness Concepts

In this chapter, we delve in to slightly greater detail on the concept of vertical equity,
and how it relates to other conceptualizations of fairness; namely, individual fairness and
proportionality.

6.1 Vertical Equity and Horizontal Equity

Vertical equity is not so much a definition of fairness, but one framework for understanding
equity in a given context. While we make no attempt to formalize vertical equity, as it is
too general of a framework, vertical equity generally concerns appropriately accounting for
relevant differences across individuals or groups, in other words, the “unequal, but equitable,
treatment of unequals” [178]. In order to turn vertical equity into a useful set principles to
guide equitable distribution of a burden, good, or service, assumptions must be made about
the given context: what are relevant differences? What is an “appropriate” treatment of these
differences?

Historically, vertical equity is strongly tied to the context of taxation, and is often understood
as a foundational principle for building an equitable tax system[77]. Vertical equity is often
cited as the ethical framework behind the progressive nature of the US income tax system:
individuals with higher income pay a higher percentage tax. A simplified version of a common
set of principles used to justify this tax allocation with vertical equity is that (a) the main
relevant difference to account for across individuals when determining income tax is income1
(b) the marginal utility of income is monotonically decreasing in income; and (c) the burden of
taxation should be equally distributed across the population2 and/or social welfare should be
maximized[182]. Progressive taxation is often argued to be a consequence of such assumptions,

1The meaning of income is complicated, as tax scholars are cognizant of the many axes over which tax
filers with the same income may not be in the same financial situation: for example, single versus joint filers,
or individuals with and without children; etc. [18] We do not attempt to delve in to these complexities in
this discussion of VE, but assume the relevant income referenced here takes these differences into account.

2This is often referred to as the ability-to-pay principle [18].
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as well as other formulations of welfare maximization [182] or as a result of axiomatic social
marginal welfare weights [217].

Vertical equity is often compared to horizontal equity, a framework which prioritizes the
equal treatment of equals[77]. Again, horizontal equity requires several assumptions before
it can be understood in a given context: what comprises equal treatment, and how can we
determine when individuals or groups are equal? In tax policy, horizontal and vertical equity
are seen as related, but separate, goals [170]. Under certain assumptions in the taxation
context, horizontal equity is often viewed as ensuring that individuals with the same ability
to pay experience the same amount of tax burden—however, individuals with the same
ability to pay may have different incomes, but with different life circumstances, e.g. a married
couple filing jointly with a child, versus a single filer [18]. In the tax audit context, horizontal
equity can be instantiated as, for example, ensuring that irrelevant factors, such as race,
does not impact audit probability.

We argue that most common definitions of fairness can be understood under the umbrella
of horizontal equity. In particular, group fairness measures quantify whether some relevant
prediction quantity (overall rate of predicting a particular label, true positive rate, etc.)
differs by protected feature. The protected feature is generally assumed to be irrelevant to
the task (except insofar as it may be correlated with relevant features); violating group
fairness measures would suggest, then, that similar individuals are not being treated similarly.
Individual fairness, as we discuss below, seems to instantiate the concept of horizontal equity
on the level of individuals: similar people should be treated similarly according to a given
metric.

Once notions of vertical equity and horizontal equity are contextualized in a given application,
then they can be compared, and can overlap. In Chapter 5, we apply vertical equity to the
tax audit context. Based on our investigation of noncompliance data, our assumptions here
were that (a) again, the main relevant difference to account for across individuals when
determining income tax is income; (b) the audit rate should be monotonic in income; and (c)
the allocation of audits should closely match that of an oracle model, with perfect knowledge
of noncompliance, which selects in order of greatest non-compliance. We consider several
implementations of horizontal equity, including equalized odds and equalized true positive
rates across income groups.

We show that under certain (differing) conditions, equalized odds and equalized true positive
rates (instantiations of horizontal equity) will lead to monotonicity in audit rate across
income groups (one component of our implementation of vertical equity). We present the
theorem statement and proof in Appendix D.8. However, as later demonstrate, even if the
instantiations of these frameworks in a given context overlap, achieving vertical equity via
techniques aimed at establishing horizontal equity are not always optimal.

If both vertical and horizontal equity are instantiated with the same set of assumptions
(i.e., relevant quantities to the decision and notion of similarity or difference), it is possible
that vertical equity may imply horizontal equity, or vice versa [170]. However, part of the
utility of vertical and horizontal equity as frameworks is that in practice, they invite different
instantiations of these missing pieces, as their central concerns vary. An audit allocation
can be monotonic and maximize social welfare from the perspective of ability-to-pay, but
still over-allocate audits to one demographic group. While the perfect ideal of a similarity
metric or notion of appropriate different treatment and relevant attributes may roll of these
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concerns into one, in practice, it may be impossible to find such a set of perfect definitions—
so to approach an optimal-as-possible allocation of burden, goods, or services, it can be
helpful to use both of these ethical frameworks to create a set of desiderata for allocation
system function. In what follows, we compare the concept of vertical equity with common
conceptualizations of fairness.

6.2 Vertical Equity and Individual Fairness
Individual fairness is concerned with treating similar people similarly [72], and thus, is much
more strongly tied to horizontal equity than vertical equity. At a high level, both vertical and
horizontal equity are more general notions than individual fairness, as horizontal and vertical
equity are not specific to acting on the level of individuals or groups, whereas individual
fairness, as evident from its name, only focuses on the treatment of individual people.

Individual fairness [72] is defined as a Lipschitz constraint on a model, given similarity
metrics over model inputs and outputs. More formally,

Definition 6.1. Individual Fairness [72]: Given a distribution of individuals V, a similarity
metrics between individuals d : V × V → R, a set of possible outcomes A, and a model which
maps individuals to distributions of outcomes M : V → δ(A), and a distance metric D over
distributions of outcomes, a model M satisfies individual fairness if:

D(Mx,My) ≤ d(x, y)

As mentioned above, we do not attempt to give a formal definition of vertical or horizontal
equity, as it is largely used more as a framework for understanding equity, rather than a
definition of fairness in and of themselves. However, individual fairness can be seen as a
formalization of the concept of horizontal equity on the level of individuals.

Still, even in the abstract, it is clear that vertical equity and individual fairness are not
interchangeable. As a quick example of how these two concepts differ, consider an allocation
where everyone gets an equal share—for example, everyone has the same tax rate. This
would satisfy individual fairness, as any two individuals deemed the same by the given metric
(e.g. have the same income) would be treated equally—more formally, D(Mx,My) = 0 ≤
d(x, y)∀x, y. However, vertical equity would not be satisfied if there exists any meaningful
difference between individuals, as these individuals would receive the same treatment.

6.3 Vertical Equity and Proportionality
The concept of proportionality is treating individuals “in relation to their due”, as opposed to
completely equally [98]. Proportional equality only recommends equal allocations when the
individuals at hand are indistinguishable with respect to the allocation task—for example,
equal work in a group project deserves equal credit. Thus, proportionality has to to with the
equitable but unequal treatment of unequals, and is related to vertical equity.

These notions have a slightly different valence in practice, however. Proportionality is
more often tied with an individualized concept of the concept of the unequal, but equitable,

81



CHAPTER 6. VERTICAL EQUITY AND RELATED FAIRNESS CONCEPTS

treatment of unequals; perhaps even agnostic to a greater social context [102]. Proportionality
is often described as reaping what one sows, or getting out what one puts in: for example, in
a group project, credit being shared according to effort spent or amount contributed [102].
Historically, vertical equity has been tied to finding an societally optimal allocation of a
burden or service/good, typically of tax burden [182, 217]. This societal optimality is often
framed as maximizing societal welfare or minimizing societal harm, which may lead to
different allocations than common conceptions of proportionality.
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Chapter 7

Model Multiplicity: Opportunities,
Concerns, and Solutions

In this chapter, we consider the legal repercussions of the modeling flexibility afforded by the
machine learning pipeline. In practice, for a given prediction task–e.g. predicting probability
of loan default—there will not exist one singularly most accurate model, but a set of models
with equivalent accuracy, made with different choices along the modeling pipeline. While
these models may look similar from an aggregate accuracy standpoint, as we have shown
throughout this thesis, there are often other behavioral differences between equally accurate
models–for example, they may differ in their individual predictions, as shown in Chapter 2,
differing explanations, as shown in Chapter 4, or even different fairness properties, as shown
by prior work [214].

This fact affords model makers the flexibility to prioritize other values, such as fairness, in
their model’s behavior, at no cost to accuracy. In fact, we argue that the existence of this
set of equally accurate models—which we call model multiplicity—leads to legal pressure
to choose models which are least discriminatory among the set of equally accurate models.
Symmetrically, however, this vast choice among potential models leads to a question of how
to justify the decisions of the eventual model selected. We suggest that, in order to take
advantage of the flexibility that model multiplicity provides while preventing its downsides,
modeling choices should be carefully documented and justified throughout the model creation
process.1

7.1 Introduction

How do model developers select which model to deploy for a given prediction task? Even
after a model developer translates a decision into a prediction task (e.g. casting the task
of determining who is “creditworthy” as predicting whether applicants are likely to default

1We note that, for the sake of ease of our formal definitions and exploration of model multiplicity, we
assume that the prediction task for a given model is set, we suggest that the ideas of the repercussions and
implications of model multiplicity extend to decisions over how to translate a policy or other application
problem into an optimization task [197].
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on a loan), there are myriad decisions made about how to make a model, all of which may
influence its ultimate behavior: what model type should be used (from simple linear models
to more complex random forests and neural networks); what factors should be considered as
inputs to the model; how many times should the model iterate through the training data
to learn the patterns therein? How should model developers select between all the possible
models that could have been created for a prediction task?

The standard answer to this question is to choose the model that maximizes accuracy. Using
maximum accuracy as a decision criterion for model selection may suggest that there is one
model with the best accuracy, a common assumption in the technical literature. However,
recent work has reminded us that there are usually multiple models with equivalent accuracy
but significantly different properties. For example, Rodolfa et al. [214] have demonstrated
that maximally accurate models can produce varying degrees of demographic disparities;
D’Amour et al. [53] have shown that models with the same accuracy can be more or less
robust; Chen et al. [41] have shown that it is possible to create interpretable models with
the same accuracy as neural networks.

We call this phenomenon model multiplicity : when models with equivalent accuracy for
a certain prediction task differ in terms of their internals—which determine a model’s
decision process—and their predictions. The existence of model multiplicity presents exciting
opportunities because it offers model developers the flexibility to prioritize, and optimize for,
desirable properties at no cost to accuracy, contrary to some conventional wisdom [20, 42,
68, 174, 239, 248, 265]. The existence of equally accurate models that differ along other axes,
including fairness, interpretability, and robustness, allows for model selection to be guided by
these other desiderata alongside accuracy. For example, as much recent work in algorithmic
fairness has demonstrated, it is often possible to improve the fairness of models with no cost
to accuracy [48, 68, 214, 253]. Model multiplicity can also improve individual experiences
with automated decision making by allowing model developers to create models that make
recourse easier (e.g., by limiting the use of features to only those over which individuals
have control). While the freedom that model multiplicity affords is broad, in this chapter
we largely focus on its implications with respect to the fairness of a model and the ability
for people subject to the model to seek recourse. We also show that model multiplicity has
legal implications—which we study in the context of lending—because it places pressure on
model developers to search for and adopt the least discriminatory model among those that
are equally accurate.

However, along with these benefits comes a potentially surprising revelation: given that there
are multiple models for a prediction task with equivalent accuracy, selecting models on the
basis of accuracy alone—the default procedure in many deployment scenarios—does not lead
to a selection of one unique model best suited for the task. Model selection on the basis
of accuracy alone is an underspecified [53] selection process. Unless other considerations
are explicitly incorporated into the model development process, model developers selecting
models on the basis of accuracy are unlikely to happen upon the model, among all those
which are equally accurate, that best addresses those considerations (e.g., minimizes disparate
impact).

Further, model multiplicity undermines the justification that we can offer individuals for
being subject to any adverse decision process or outcome. Consider the situation where an
individual is denied a loan, yet there exists an equally accurate model which would have
recommended acceptance. Why must they be subject to the model that rejected them and
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not an equally accurate, and thus equally viable, one that does not? The fact that such
high-stakes decisions may come down to arbitrary choices on the part of model developers
may be quite unsettling—and may even conflict with the expectations of the laws that govern
such decision making. Thus, while model multiplicity allows for greater choice in the model
selection process, it also imposes an additional burden on model developers to put that
freedom of choice to good use and to justify how they reach their decisions.

In this chapter, we attempt to answer the following question: how do we take advantage
of model multiplicity while addressing its concerning implications? To do so, we propose
a process by which model developers can specify, justify, and document a wider set of
behaviors which qualify a model for use in a specific context to guide the model selection
process. Concretely, we present three main contributions: (1) a principled understanding of
the relationships between multiplicity, accuracy, and variance, providing intuition for why
multiplicity may actually increase with accuracy, backed by theoretical results deferred to
Appendix E.1; (2) connections between the technical aspects of model multiplicity and their
legal implications; and (3) a set of policy recommendations for how to take advantage of model
multiplicity while addressing the concerns it raises. Ultimately, we hope that the explicit
recognition of model multiplicity, along with legal requirements preventing discrimination,
will lead policy makers and model developers to hold models to a higher standard on axes
beyond accuracy—and restore the justifiability of model decisions.

The rest of this chapter proceeds as follows: in Section 7.2, we provide an overview of model
multiplicity and situate it in the existing literature. Section 7.3 explores the relationship
between multiplicity and accuracy, connecting multiplicity to standard ideas from machine
learning theory. Sections 7.4 and 7.5 articulate the potential benefits and harms respectively
of model multiplicity, drawing connections to the law. In Section 7.6, we provide recommen-
dations for a model development process that explicitly accounts for multiplicity.

7.2 Defining Multiplicity
Model multiplicity occurs when models with equivalent accuracy for a certain prediction
task differ in terms of their internals or their predictions. In this section, we define model
multiplicity in more detail, beginning by describing the setting in which we consider model
multiplicity, our definition of model accuracy, key terms for the chapter, and, finally, the
definitions of the components of model multiplicity: procedural and predictive multiplicity
.

7.2.1 Preliminary Definitions

Setting In this chapter, we focus on classification models, although the main insights
of this work apply to the regression setting as well. A classification model predicts to
which class, or category, an input x belongs, from some pre-set collection of categories. For
example, predicting whether an individual will default on their loan is a classification task.
Classification models have decision surfaces which delineate between different classes in the
model’s input space (see Figure 7.1). We will focus on the case where there are only two
classes (also known as binary classification).

Accuracy Broadly, accuracy is a measure of how well a model’s predictions match the
underlying labels in the data. Importantly, model developers cannot know how accurate the
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Figure 7.1: A stylized graphic displaying how models with higher accuracy can actually lead to more model
multiplicity: On the left, we show a simple linear model on some data, with accuracy of approximately 75%.
On the right, we show a more complex model which fits the data better and reaches 92% accuracy. In order
to achieve a better fit to the data, the more complex model has a more complex decision surface. In having
a more complex decision surface, there are more opportunities for shifts in decision surface to take place
in reaction to changes in the training process, and thus there are more points in the distribution that are
susceptible to a change in prediction.

model is on all possible model inputs (e.g., over all possible loan applicants); accuracy must
be estimated on available data. In practice, there are a variety of measures of accuracy; for
simplicity, we will take accuracy to mean the fraction of predictions for which the model
is correct. When we refer to several models exhibiting equivalent accuracy, they may not
have exactly the same accuracy, but accuracy that is functionally indistinguishable (e.g., an
accuracy of 97.8989 and 97.8990).2

7.2.2 Procedural and Predictive Multiplicity

Model multiplicity describes how models for a given prediction task can differ even when they
exhibit equal accuracy. We draw attention to two ways in which models can differ despite
being equally accurate: in their internals, or procedural multiplicity, and in their predictions,
or predictive multiplicity.

Procedural Multiplicity Procedural multiplicity refers to the phenomenon where several
models for a given prediction task have equivalent accuracy, yet differ in their model internals.
More technically, procedural multiplicity occurs when models which have the same accuracy
exhibit some difference in their decision surface, as this changes the way in which a model’s
inputs are combined to reach a conclusion. In other words, procedural multiplicity describes
the situation where models of equal accuracy differ in the process by which they reach a
given prediction. One example of a difference in the model’s internals is the use of various
input features into a model’s decision for a given prediction: for example, one model may
use gender as a feature to make loan granting decisions; another may not. Another example
of a difference in model internals is a difference in model class. For example, a random forest
model and a linear model may have equivalent accuracy for a certain task, but likely vary in
the way they reach each prediction. One way procedural multiplicity can become apparent to
model subjects is when equally accurate models produce qualitatively different explanations
for the same decision. In one example from Anders et al., two credit scoring models make
the exact same predictions on every point, but one model justifies its decision on the basis of
gender, while the other relies on income and tax payments [9].

2We note that what levels of accuracy are functionally indistinguishable may depend on the context in
which the model is used.
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Predictive Multiplicity Predictive multiplicity refers to the phenomenon where models
with equivalent accuracy for a certain task differ in their predictions (i.e., two models predict
different classes for the same input). Predictive multiplicity, like accuracy, is measured
on the labeled data available to a model developer: given a prediction task, models that
exhibit predictive multiplicity have equal accuracy but predict different classes for some
data points in the training or test set.3 Thus, model developers cannot measure the full
extent of disagreement between any two models, but can only estimate it based on available
data.

Relationship Between Procedural and Predictive Multiplicity Note that differ-
ences in model predictions on a certain input require differences in the decision surface,
implying predictive multiplicity is a special case of procedural multiplicity. The converse does
not hold: two models with the same prediction on a given point may still exhibit variation
in the process by which that outcome was reached [9, 25]. However, we draw attention
to predictive multiplicity on its own due to its unique normative and legal implications.
Throughout this chapter, when we refer to procedural multiplicity, we refer to the aspects of
procedural multiplicity that occur even in the absence of (observed) predictive multiplicity:
that is, models with equal accuracy with different decision processes that do not necessarily
manifest in different predictions on the available data. Of course, any change to a model’s
decision surface, and thus any two models exhibiting procedural multiplicity, will differ on
some potential input point; but if no such input is present in the data, then this difference
will not result in observable predictive multiplicity.

7.2.3 Sources of Multiplicity

When creating a model for a given learning problem, every decision point a model developer
faces along the model building pipeline serves as a fork, where each potential choice may
lead to multiplicitous models. In the context of this chapter, we define a learning problem
to be the prediction of a pre-defined target. While there may be further multiplicity-like
problems stemming from the various ways that a nebulous real-world goal may be translated
into predicting a specific target [197], we view these as out of scope for this chapter. However,
all modeling decisions made once the prediction target is set are within-scope and possible
sources of model multiplicity.

Decisions that can result in multiplicity include choosing what features should be included
as input to the model [63], which points are included in the training set [24], which model
class should be adopted [41], what random numbers the model’s parameters are initialized
with [24, 172], among many others [168]. Through these choices, the model developer creates
one model, but each other choice they could have taken may have lead to a model that would
have performed with similar accuracy. In theory, the sources of multiplicity are infinite, as
there are infinite possible modeling choices. In practice, however, the range of choices is
restricted by practical (including budgetary) constraints.

7.2.4 Aggregate and Individual Effects

Model multiplicity can result in differences between models at the aggregate level or at
the individual level. By aggregate effects, we refer to differences in global model properties

3There is disagreement in the literature on this definition: for example, Marx et al. [168] define predictive
multiplicity only on a model’s training set.
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between multiplicitous models (e.g., satisfaction of group-level fairness criteria (such as equal
selection rates across different demographic groups)). By individual effects, we refer to the
way in which differences between models of equal accuracy impact individuals’ experience
with the model, including differences in individual predictions or explanations of those
predictions. Aggregate and individual effects are not disjoint categories of model behavior,
as some forms of model multiplicity may impact both aggregate-level and individual-level
outcomes. Often, however, individual effects do not manifest at the aggregate level. For
example, differences in individual predictions may not impact the overall treatment of any
demographic group. We therefore find that making these two perspectives explicit helps to
better understand the overall impacts of multiplicity.

7.2.5 Arbitrariness Versus Randomness
In this work, we draw a distinction between arbitrariness and randomness in selection
processes. By an arbitrary selection process, we mean a completely unconsidered decision—
one that is made without thought or perhaps even without knowledge that a choice was
being made. By a random selection process, we mean a decision which is purposefully left to
chance. We draw this distinction to stress that a random selection process is predicated on
a conscious choice to employ this selection method: as Perry and Zarsky [204] write, “the
decision to opt for chance must be reasoned.”4

7.2.6 Related Work
Model multiplicity has been recognized in the machine learning literature, though not always
under the same name, starting with Breiamn’s characterization of the “Rashomon Effect” [33].
For example, Dong and Rudin [63] and Fisher et al. [87] demonstrate procedural multiplicity
in feature importance, showing that models relying on different sets of features can reach the
same accuracy; Black et al. [25] and Mehrer et al. [172] have shown that deep models with
similar accuracies relying on the same features may still combine those features in different
ways to reach a given output. Recent studies also provide evidence for predictive multiplicity:
Marx et al. [168], who introduced the term, focus on its effects at the individual level
(equally accurate models can make different predictions for individuals), while others have
demonstrated its effects at the aggregate level (equally accurate models can have different
properties, including fairness and robustness) [53, 215]. A recent line of work has sought to
quantify and mitigate model multiplicity in a variety of settings [24, 25, 26, 49, 200, 212, 221].
Our work builds upon and synthesizes this technical foundation to understand the relationship
between model multiplicity, complexity, and error, as discussed in Section 7.3, and to relate
the wide range of effects of model multiplicity to the law.

Some legal scholars have also begun to consider the possibility of model multiplicity and its
implications, though this discussion is largely focused around predictive, and not procedural,
multiplicity. Kim [137] has argued that predictive multiplicity means that certain interventions
aimed at reducing disparate impact “do not require special legal justification” as the lack of one
“correct” model means that there is “no clear baseline” against which any departures might be
challenged. Kim points out that it simply does not make sense to say that someone has been
unfairly denied a job that they would have otherwise secured if not for the attempt to reduce

4As Perry and Zarsky [204] describe in their work, there are many situations where random (not arbitrary)
selection is justifiable: for example, allocating a scarce, indivisible resource among many with equally strong
claims—such as allocating public housing among equally needy applicants.
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disparate impact because there is nothing that entitles anyone to having a particular model
chosen over an equally accurate alternative. On this account, multiplicity provides developers
with the freedom to choose the model among those with equal accuracy that exhibits the
least disparate impact without raising concerns with disparate treatment. However, this work
does not address the concerns that model multiplicity may raise. Creel and Hellman [51]
briefly note the unsettling implications of predictive multiplicity with respect to arbitrariness
in algorithmic decision making, but ultimately argue that arbitrariness is only a problem in
algorithmic decision making when there is an algorithmic monoculture that locks an individual
out from certain opportunities across the board (e.g., when all lenders use the same algorithm
and thus all reach similarly adverse decisions for a particular individual). Contra Creel and
Hellman [51], many legal scholars have been calling for legal protections, inspired by due
process principles and practices, to address the potential arbitrariness of algorithmic decision
making more generally, even in the absence of an algorithmic monoculture [44, 45, 50]. In
contrast to prior work, we address both the benefits and the concerns of procedural and
predictive multiplicity, and we provide concrete recommendations for how to take advantage
of the benefits of model multiplicity in practice, without falling prey to the concerns that it
might provoke.

7.3 Accuracy and Model Multiplicity

By default, accuracy is the primary measure by which machine learning systems are evaluated.
This focus is pervasive throughout machine learning scholarship and practice [23], perhaps
best evidenced by the Common Task Framework [66], through which independent researchers
compare predictive performance on common datasets. But accuracy plays a larger role in
model development than evaluation alone: accuracy is typically the main or sole criterion used
for model selection. When deciding which of many possible models to deploy, a practitioner
will often choose the most accurate one.

The idea that model selection can be reduced to accuracy-maximization rests on a pair of
premises: that accuracy is the primary measure of how “good” a model is, and that, for a given
task, models that maximize accuracy do not differ meaningfully from one another. In other
words, if accuracy-maximization leads to a unique or near-unique optimal model, then no
other criteria need be used in model selection. Even if we accept that accuracy should be the
primary evaluation criterion (setting aside, for now, properties like fairness, robustness, and
interpretability that might be perceived as crucial to model performance in practice), evidence
suggests that accuracy-maximizing models are not unique [24, 25, 26, 53, 168, 200, 215]. And
yet, the intuition that there exists a unique “correct” model, and that accuracy-maximization
should ultimately discover it, remains pervasive [137, 153, 213]. In what follows, we trace the
roots of this intuition and offer a theoretical basis for why, as machine learning becomes more
sophisticated, we should expect accuracy-maximization to yield more multiplicity, rather
than less. As a result, accuracy is an incomplete basis for model selection. We focus here on
predictive multiplicity, though it may be possible to derive analogous results for procedural
multiplicity as well.

Does accuracy-maximization reduce predictive multiplicity? Our intuition that
accuracy-maximization should lead to little or no predictive multiplicity comes from the
idea that there exists a single “best” or “correct” predictor (known as the Bayes optimal
predictor [222]), and increasingly sophisticated models will converge to this optimal predictor.

91



CHAPTER 7. MODEL MULTIPLICITY: OPPORTUNITIES, CONCERNS, AND SOLUTIONS

In general, Bayes optimal models are unique, and it may be tempting to apply this intuition
more broadly: we might believe that even when our models aren’t Bayes-optimal, the
maximally accurate model for a given dataset is near-unique. We can make this idea rigorous:
Theorem E.2, included in the appendix, demonstrates as the error of a model approaches
that of the Bayes optimal predictor, the model must approach the Bayes optimal predictor.5
In other words, as models get more accurate, they must converge to one another in the
limit. Results like these can lead to a slippage in intuition: Bayes optimal predictors are
unique, so the best predictor we can build should also be unique. And yet, empirical evidence
seems to suggest the opposite: developing more accurate models can often lead to more
multiplicity (see Figure 7.1 for an example) [24, 172]. While this might appear to contradict
Theorem E.2, in reality, models are sufficiently far from Bayes optimal, leaving plenty of
room for multiplicity. To derive a more nuanced view, we turn to standard bias-variance
decompositions of error.

Bias, variance, and multiplicity. Conceptually, errors in machine learning systems come
from three sources: bias, variance, and irreducible noise [62, 94]. This decomposition helps us
understand fundamental trade-offs in machine learning: more expressive and sophisticated
machine learning techniques (such as deep learning) have less bias because the average
model can more accurately approximate the Bayes optimal predictor than less expressive
techniques (such as linear regression); but this increased expressivity comes at the cost
of high variance, since any particular model is much more sensitive to random choices in
the model development pipeline. Crucially, as Theorem E.3 shows, multiplicity is tightly
related to variance. To the extent that increased accuracy is achieved through increased
model complexity (and therefore variance), we should therefore expect to see more predictive
multiplicity, as noted in Corollary E.3.1. Thus, accuracy is not an antidote to multiplicity,
and model selection cannot simply be reduced to accuracy-maximization. Instead, we must
explicitly consider and deal with multiplicity, beginning with an understanding of the benefits
and challenges it brings.

7.4 Opportunities
By shattering the intuition that there is one most accurate—and therefore correct—model,
multiplicity can introduce much more freedom into the model selection process. On the
aggregate level, this means that model developers can express preferences over values beyond
accuracy at no cost to accuracy, including with respect to properties like fairness, robustness,
and interpretability, among others. This same flexibility manifests on an individual level:
to illustrate this point, we focus on the ability to improve the recourse available to the
individuals subject to a model’s adverse decisions. This section will consider the benefits at
both levels.

7.4.1 Aggregate Benefits: Flexibility
By demonstrating that there are many different ways of making equally accurate predictions,
multiplicity gives model developers the flexibility to prioritize other values in their model
selection process without having to abandon their commitment to maximizing accuracy.
While this benefit is broad, we focus in particular on its implications for fairness. In fact, as
we’ll discuss in this section, the flexibility afforded by multiplicity is particularly relevant to

5This result holds as long as data points are more predictable than 50-50 coin flips.
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the law because it creates legal pressure for model developers to reduce avoidable disparate
impact in their deployed models. We demonstrate this flexibility—and its connections to the
law—through both procedural and predictive multiplicity.

Procedural Multiplicity Model developers can leverage procedural multiplicity to ensure
that a model has desirable model internals without sacrificing accuracy. As shown in prior
work, model developers might exploit procedural multiplicity to select a model class that is
more robust or interpretable than other model classes of equal accuracy [53, 216]. This is far
from an exhaustive list, as procedural multiplicity creates the possibility for any quality of a
model’s decision process to be prioritized at potentially no cost to accuracy. However, in the
context of fairness, the possibility that replacing or removing certain features from a model
may not affect its accuracy is particularly relevant. If there are certain features that are
perceived as a normatively objectionable basis for decision making, procedural multiplicity
suggests—and research has demonstrated empirically [27, 63]—that model developers can
remove these from their models while still potentially achieving the same level of accuracy
in their predictions. For example, features may be normatively objectionable because they
are legally protected characteristics such as race or sex or because they are proxies for
such characteristics, such as zip code. Discrimination law imposes exactly these kinds of
constraints on model developers in certain regulated domains via a prohibition on so-called
“disparate treatment.” For example, the Equal Credit Opportunity Act (ECOA) prohibits
the consideration of race, sex, age, and a number of other legally protected characteristics
in lending decisions [2, 80]. Thus, lenders using machine learning to develop credit scoring
models are understood to be legally prohibited from including these features in their models.
While this prohibition is designed to prevent lenders from relying on features that have
served as the basis for discriminatory decision making in the past, it is also designed to
encourage lenders to find other features that serve their goals at least as well. Procedural
multiplicity demonstrates that it may be technically possible to do so, putting to bed the
idea that there is only ever one set of features that would allow model developers to achieve
some level of accuracy in their decision making.

Predictive Multiplicity While procedural multiplicity gives model developers the flexi-
bility to incorporate their normative preferences into the model’s decision-making process,
predictive multiplicity allows model developers to impose their preferences on the model’s
predictions—potentially without impacting accuracy. In the context of fairness, predictive
multiplicity creates the possibility to minimize differences in prediction-based metrics across
groups, notably differential validity (i.e., differences in the accuracy of the predictions) and
disparate impact (i.e., differences in the predictions themselves). Rodolfa et al. [215] show
that this is possible in practice across a wide range of real-world applications, including
such high-stakes domains as criminal justice, housing, and education. Similarly, algorithmic
hiring companies such as HireVue require that their models return similar distributions of
predictions across demographic groups, and claim that this has little impact on predictive
accuracy [147].

This aspect of predictive multiplicity speaks directly to the disparate impact doctrine in
discrimination law, which imposes liability on model developers for avoidable disparities in
the rate at which members of legally protected groups obtain the desired outcome from a
decision-making process. As the official commentary on ECOA states, the law “prohibit[s] a
creditor practice that is discriminatory in effect because it has a disproportionately negative
impact on a prohibited basis, even though the creditor has no intent to discriminate and the
practice appears neutral on its face, unless the creditor practice meets a legitimate business
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need that cannot reasonably be achieved as well by means that are less disparate in their
impact” [2].6 To appreciate what this means in the context of a lender employing machine
learning, imagine that the “creditor practice” in question is the use of a machine learning
model developed to predict default and that the lender’s primary “business need” is predicting
default as accurately as possible so as to make appropriate lending decisions. The official
commentary suggests that even when machine learning has been adopted for this purpose,
involves no legally proscribed features, and demonstrates a high degree of accuracy, lenders
still face liability if they fail to adopt whatever alternative “means” might exist for achieving
their same goal but with smaller disparities in outcomes across legally protected groups.
Predictive multiplicity suggests that there may exist such alternative “means” because there
may be a different model of equivalent accuracy that generates less disparate impact. The
disparate impact doctrine can thus be interpreted to say that predictive multiplicity creates
legal risk for those who fail to adopt the least discriminatory model among those that are
equally accurate [209, 210].

7.4.2 Individual Benefits: Improved Possibilities for Recourse

Multiplicity can also provide the flexibility necessary to improve individuals’ experience of
model procedures and their outcomes. To illustrate this point in the context of fairness, we
explain how procedural and predictive multiplicity can improve an individual’s capacity to
achieve recourse—that is, to obtain a more desirable outcome after receiving an adverse
decision.

Procedural Multiplicity Recent scholarship has suggested that one of the important
functions of providing explanations of model decisions is to help people subject to an adverse
decision understand how they might obtain a more favorable prediction in the future [247].
In the United States, the Fair Credit Reporting Act (FCRA) and ECOA both require that
lenders explain their decisions to consumers who were unsuccessful in their applications
for credit [80, 188]. Both laws compel lenders to provide so-called “adverse action notices”
that state the “principle reasons” for adverse decisions, on the belief that doing so may help
consumers more effectively navigate the process of obtaining credit in the future [16, 220].
Scholars have suggested that lenders might comply with these requirements by offering
counterfactual explanations that point out, for example, that an applicant would have
been successful if their annual income had been $10,000 higher [241]. In light of such an
explanation, the consumer might look for ways to increase their income and then reapply for
a loan. However, as prior work has pointed out, such explanations may not facilitate recourse
if the highlighted factors are immutable and thus cannot be acted upon by the consumer
[241]. Explanations only facilitate recourse if they suggest changes to features that consumers
can actually execute in practice. This insight has motivated a good deal of recent research
focused on developing methods to produce explanations that suggest viable and efficient
paths to future success [130]. Procedural multiplicity suggests that there is another—and
more direct—way to achieve these same goals. Rather than searching for different possible
explanations of the decisions of a fixed model that would be easiest for consumers to act upon
(the current focus in the literature on recourse), model developers could exploit procedural
multiplicity to find models that exhibit the same degree of accuracy but differ in the degree
to which they rely on features known to be difficult or impossible for people to change. Thus,

6While disparate impact is not written directly into ECOA, the formal guidance suggests that it is
understood to apply under the law.
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procedural multiplicity gives model developers a way to take recourse into account in the
model development process, not just in deciding which techniques to rely on when explaining
a model’s decisions.

Predictive Multiplicity As algorithms have been adopted in a growing range of high-
stakes decisions, scholars have begun to worry about the possible harms of an algorithmic
monoculture [51, 138]. For example, if several lenders all converge on one credit scoring
model (and thus on the same predictions of default for each applicant), consumers who
were rejected by one lender may find that they have no better luck when they submit an
application to other lenders. This, too, is a problem of recourse, but at the level of an entire
domain of decision making, rather than at the level of a model. Predictive multiplicity may
serve as a natural bulwark against this worrisome possibility: even if lenders all maximize
prediction accuracy, they may still end up with models that produce different individual-level
predictions. The perhaps surprising benefit of predictive multiplicity is that, even when
models are selected on the basis of accuracy alone, there will be inherent heterogeneity in
the models selected by different firms [51].

7.5 Concerns

While procedural and predictive multiplicity gives us the flexibility to prioritize values
beyond accuracy, this very same flexibility can be cause for serious concern. The fact that we
can choose among many possible models with equivalent accuracy can lead to problems of
underspecification and to arbitrariness in decision making. Selecting models on the basis of
accuracy alone can obfuscate large differences between multiplicitous models that we might
actually care about, but have failed to explicitly integrate into the set of considerations that go
into the model development process. Perhaps even more importantly, model multiplicity also
means that accuracy alone is an insufficient justification for why one model was chosen over
another equally viable (i.e., accurate) alternative. In this section, we consider the concerning
implications of model multiplicity and how the law bears on some of these concerns.

7.5.1 Aggregate Concerns: Underspecification

As we’ve shown, model multiplicity gives model developers the option to prioritize values
beyond accuracy, since models with equal accuracy can have quite different aggregate-
and individual-level effects. This also means, however, that failing to consider what other
behaviors may be desired, and continuing to choose models on the basis of accuracy alone,
leaves model behavior on axes other than accuracy up to an arbitrary choice: without
explicitly specifying what behaviors a model should exhibit—such as fairness, robustness,
and interpretability—and optimizing for them, it is unlikely that a model will naturally
exhibit such behaviors. D’Amour et al. [53] call this the problem of underspecification.7
Underspecification reveals that we need to make our desired model properties explicit if we
want our models to exhibit them.

7We note that there is a subtle difference between underspecification, where a model developer fails to
fully articulate and incorporate their full set of behavioral desiderata into the model building process (as
D’Amour et al. [53] show in the case of model robustness) and mis-specification, where a model developer
chooses the wrong target to optimize for (as Obermeyer et al. [187] demonstrate in a healthcare system’s
choice to use healthcare costs as a proxy for healthcare needs).
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Procedural Multiplicity Procedural multiplicity can give rise to three rather serious
problems. First, as mentioned, selecting a model on the basis of accuracy does not guarantee
that it will exhibit other desirable properties. Second, because it may be possible for models
with different internals to still generate the same set of predictions, changes made to the
internals of a model may not have the anticipated effect on predictions. Third, procedural
multiplicity can be leveraged to remove anything from the decision-making process that
would raise legal or normative concerns (e.g., legally protected or otherwise controversial
features), while preserving a troubling, but avoidable, outcome (e.g., disparate impact). We
focus on the second two concerns.

First, procedural multiplicity means that removing features proscribed by discrimination law
may do nothing to reduce disparities in predictions, which may have been the explicit intent
of such an intervention. As discussed earlier, discrimination law imposes strict prohibitions
on the use of certain characteristics in decision making across a range of high-stakes domains,
including lending. These prohibitions on disparate treatment were put in place to protect
people who possess these characteristics from systematically worse treatment than others
(hence the term “protected characteristics”). Procedural multiplicity undermines these pro-
tections because it opens up the possibility that people with these characteristics might be
subject to the same disfavorable predictions without directly considering these characteristics
[57]. While disparate impact doctrine has developed, in part, in recognition of the potentially
limited efficacy on prohibitions on disparate treatment [15]—placing demands on decision
makers to be able to justify disparities in model predictions, even if they haven’t considered
any protected characteristics—calls for procedural interventions remain commonplace. For
example, Black et al. [27] observe this phenomenon in debates about the design and use of risk
assessment tools in the criminal justice system, where procedural interventions recommended
by experts and advocates, such as removing nonviolent arrests from the criminal history
considered by the tools, seem to be suggested with the expectation that they will reduce racial
disparities in tools’ predictions. Procedural multiplicity means that there is no guarantee
that these changes will have the desired effects on model predictions.

Second, given that there might be many ways to develop a model that generates the same
predictions, developers could search for models that seem to be more palatable from a
procedural perspective (e.g., because they don’t involve legally proscribed or otherwise
controversial features) but display the same worrisome predictive behavior. Objecting to
these predictions might be more difficult when the process that generates them seems benign
or perhaps even desirable. This is not just a hypothetical concern; recent work has shown
that it is possible to create two models with exactly the same predictions that rely on
completely different features to make up their decision [9, 25]. This suggests that not only
might procedural interventions fail to have their intended effects on predictions, but that
procedural multiplicity can be exploited adversarially to develop a compelling justification
for whatever disparities in predictions that model developers might like to preserve. While
this possibility, often referred to as proxy discrimination [57], is well-studied in the literature,
we note that it is a result of procedural multiplicity.

Taken together, these observations about procedural multiplicity highlight the need for
model developers—or those seeking to influence or regulate their choices—to fully specify the
kinds of predictions that they would like models to generate. Unless these are optimized for
explicitly, there is no reason why maximizing accuracy or making procedural interventions
will lead to the desired model behavior.
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Predictive Multiplicity The reality of predictive multiplicity highlights that model
selection on the basis of accuracy does not guarantee the desired prediction-based behaviors
beyond accuracy. Specifically, in the context of fairness, predictive multiplicity tells us that
there may be several equally accurate models that each vary in the degree to which accuracy,
selection rates, or other fairness metrics differ across groups. Unless this is made an explicit
consideration in the model development process, the chosen model can be an arbitrarily bad
pick with respect to fairness metrics among those that are all equally accurate.

7.5.2 Individual Level Concerns: Loss of Justifiability
Model multiplicity also creates serious challenges for justifying the ultimate choice of model,
given that different choices can result in more or less favorable situations and predictions for
any given individual. Globally, this raises a fundamental question: what justification is there
for subjecting a particular person to an adverse model procedure or model prediction if that
person would have received more favorable treatment under a different, but equally accurate
model? This section will consider the crisis of justifiability brought about by both procedural
and predictive multiplicity and again discuss how the law bears on this challenge.

Procedural Multiplicity As discussed, procedural multiplicity admits the possibility of
creating models with very different internals, even if they all exhibit the same degree of
accuracy and all result in the same predictions. This increased flexibility, however, leads to a
difficulty in justifying why a particular way of reaching the prediction is necessary. We again
focus on the example of recourse: we previously suggested that predictive multiplicity is
desirable when it allows developers to favor models with internals that would make recourse
easier (e.g., selecting models with features that people would find less challenging to change).
Yet, for any given individual, there might exist an alternative model with identical predictions
that would have given the individual an easier path to recourse. Consider a scenario in which
a lender offers an explanation for an adverse decision that an applicant for credit would
find challenging to act on. Even if the applicant accepts that this is a valid explanation for
their adverse prediction and the easiest of all possible explanations for the applicant to act
on, the applicant might nevertheless ask: why did the lender choose the model that makes
recourse more difficult for me instead of the model that would have made recourse easier
for me, given that both would have resulted in the same predictions? The applicant might
ask more generally: why must I be subject to this model rather than the other? Procedural
multiplicity makes it challenging to answer these questions because accuracy alone cannot
justify the ultimate choice of model.

Predictive Multiplicity Predictive multiplicity can be just as unsettling when it comes
to the justifiability of decisions because individuals might receive favorable predictions under
some models and unfavorable predictions under others, even when all of these models are
equally accurate. To illustrate this point, consider a situation in which there are two models
that exhibit the same accuracy, but only one of which would instruct a lender to grant
an applicant’s request for credit. If the lender happens to choose the one that denies the
applicant’s request, how would the lender justify its adverse decision, given that the lender
could have just as easily chosen the other model? This line of questioning is unsettling because
it reveals that choosing a model based on accuracy alone is akin to choosing arbitrarily
between more or less favorable predictions for certain individuals.

The disquieting prospect that consumers’ access to credit might rest on decisions made
without adequate care was one of the main concerns that motivated the passage of FCRA and
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ECOA, both of which target arbitrariness in lending decisions. The legislative record suggests
the FCRA was designed to “protect consumers from inaccurate or arbitrary information in a
consumer report which is being used as a factor in determining an individual’s eligibility
for credit, insurance, or employment” [1]. It seeks to do this by requiring that lenders
adopt reasonable procedures to ensure the “accuracy, relevancy, and proper utilization” of the
information in credit reports. In regulating the information that goes into high-stakes decision
making, FCRA seems to be designed to guard against capricious, sloppy, and otherwise faulty
decision making. As discussed earlier, ECOA requires lenders facing a disparate impact claim
to demonstrate that “the creditor practice meets a legitimate business need”; in practice, this
is often accomplished by demonstrating that their credit scoring models reasonably accurately
predict default. In other words, absent some justification for assessing applicants for credit in
a manner that generates a disparate impact, lenders will be found liable for discrimination.
Finally, both FRCA and ECOA require that lenders provide adverse action notices, on the
belief that having to justify their decisions will cause lenders to be less arbitrary in their
decision making [220]. Note that lenders are only required to justify their particular way of
making decisions when they face a disparate impact charge. Absent any identified disparate
impact, FCRA and ECOA only require that lenders provide an explanation for any particular
decision, not a justification for the manner in which they make decisions. Yet it is possible
to interpret this more modest requirement as an indirect way of trying to ensure that there
are good justifications for why lenders make decisions the way that they do. For example,
if the proffered reason for an adverse decision is something that seems to lack face validity
as a predictor of default, then consumers might question whether the basis for decision
making is well justified (namely because it seems unlikely that predictions of default on
that basis would be accurate) [220]. These laws are obviously both premised on the idea
that there should be good reasons for the manner in which lenders go about making their
highly-consequential decisions.8 The problem with predictive multiplicity is that it makes
avoiding arbitrariness difficult even when lenders seek maximally accurate predictions.

Accuracy has traditionally provided a justification for model selection because it was assumed
that there must be one unique model of maximally achievable accuracy. If selecting on
the basis of accuracy leaves model developers with only one choice, then, according to this
thinking, the ultimate choice must be justified. Multiplicity reveals this assumption to be
false. While we might welcome the fact that selecting models on the basis of accuracy does
not limit developers’ choices to just one option, we should also recognize the threat that
it poses to the justifications that we can now offer for the ultimate choice of model. Just
as selecting on the basis of accuracy does not entitle anyone to a specific prediction [137],
selecting on the basis of accuracy need not condemn anyone to a specific prediction. Whatever
the chosen model, there always exists an alternative model of equal accuracy that would
reverse an individual’s prediction.9 And any given individual might ask: why was one model
chosen over the other? Model multiplicity means that we have lost a fundamental basis for
justification that needs to be replaced.

This is well reflected in the worries expressed by Citron and Pasquale [45] when they
point to a “a study of 500,000 files [in which] 29% of consumers had credit scores that

8While Creel and Hellman [51] suggest that arbitrariness in decision making is only a problem when there
is no alternative decision maker to whom a person can turn after receiving an adverse decision, these legal
requirements seem to be designed to guard against arbitrariness in the decision making of private actors
whether or not there are alternatives in the marketplace.

9In theory, such a model always exists; whether one could reasonably be found in practice depends on
both the model developer’s choices and the individual in question.
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differed by at least 50 points between the three credit bureaus.” They argue that “[b]arring
some undisclosed, divergent aims of the bureaus, these variations suggest a substantial
proportion of arbitrary assessments” [45]. If we assume that the three credit bureaus all
have access to similar information, that they are all seeking to predict default, and that
they each have the means to achieve similar accuracy in their predictions, then much of
the resulting divergence in scores for particular individuals is likely the result of predictive
multiplicity. Rather than accepting this as an unavoidable or even desirable effect of the
heterogeneity naturally engendered by predictive multiplicity, Citron and Pasquale argue
that the divergence is evidence of arbitrariness, on the likely belief that if the bureaus had
good reasons for choosing their credit scoring models, the models would not return different
predictions. Accuracy is no longer a sufficiently good reason because selecting models on
that basis cannot supply one correct answer; there now remains an unaddressed degree of
arbitrariness. In a perhaps surprising reversal, what we described earlier as a welcome guard
against algorithmic monoculture is here presented as a threat to justifiability: why must any
individual be subject to the chosen model when an equally accurate alternative exits that
would have given the individual a more desirable prediction?

In order to recover the justifiability of model decisions, accuracy can no longer be used
as the reason why a particular model was chosen in high-stakes applications. There must
be additional criteria used to determine whether a model performs sufficiently well for
high-stakes deployment, and why one model—and therefore its decision procedure and
predictions—should have been chosen over an equally accurate alternative.

7.6 Solutions

The problems arising from model multiplicity underscore the need for a more careful model
selection process that explicitly takes multiplicity into account. A core component of the
risks imposed by model multiplicity is that there is no thought given to the selection of the
model among apparently equally viable choices: the selection is arbitrary, as it occurs without
admission or even knowledge that a choice is being made. In order to take advantage of model
multiplicity while making justifiable model decisions, we must create a non-arbitrary method
of choosing between high-accuracy models that specifies the behaviors we wish to see in the
model, and documents the reasoning behind the choices made. Towards this goal, we can
make explicit and justify a set of criteria for acceptable model properties or model behavior
beyond accuracy alone, document these criteria and justifications, and then only consider
models that meet these criteria. We call this set of criteria the meta-rule. As there may still
be multiplicitous models that all satisfy the meta-rule, we suggest ways to further choose
between models with differing individual predictions to prevent arbitrariness that satisfy
a given meta-rule via various prediction aggregation techniques. Importantly, all of these
choices—the meta-rule and the aggregation technique—must be justified and documented.
This, ultimately, serves as a justification for why an individual is subject to a certain model
decision.

7.6.1 Meta-Rules

Using a meta-rule provides a reasoned way to choose amongst multiplicitious models: the
explicit consideration of what model behaviors make up the meta-rule may provide model
developers greater clarity on how to optimize for these behaviors during the model building
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process, preventing issues of underspecification discussed in Section 7.5.1. For example, for a
loan prediction model, a meta-rule may be: the model must have over 95% accuracy, rely on
features only available in the individual’s recent banking activity, and have near-equal true
positive rates across demographic groups. Moreover, the documentation of these decisions
and the reasoning behind them can serve as a justification for the model.

The restriction to only consider models that satisfy all criteria of a meta-rule reduces the
set of multiplicitious models which all reach similar accuracy on a given prediction task
to a smaller set—which, crucially, all satisfy certain specifications for what it means to be
an acceptable model in a given context. Importantly, a meta-rule should specify the actual
behaviors desired : if minimal racial disparity is preferable subject to maximal accuracy, this
should be enforced through an explicit outcomes-based constraint, rather than a procedural
constraint that stakeholders may expect to reach such an outcome.

A meta-rule should be deliberated over and documented, with justifications for each qualifi-
cation on the model. Put together, the explanations of the desiderata within a meta-rule
constitute the justification behind a decision from a model that satisfies such desiderata.
This is because the meta-rule compels model developers to explicitly consider the differences
that may exist between multiplicitous models and decide on the criteria that are relevant to
the application that would disqualify a model (even with high accuracy), instead of choosing
arbitrarily.

In practice, the ability to explore the space of equally accurate models in order to find
one which satisfies a meta-rule may be constrained by the model developer’s ability to
experiment with different design choices, which in turn may be influenced by restrictions on
the amount of time and money that they can spend on the exploration process. Following
Selbst and Barocas [220], the meta-rule should also document the practical constraints that
developers face (e.g. available funding, available talent, available data, etc.) in their model
selection process, as this ultimately influences the breadth with which they may search for
multiplicitous models. Doing so would help to justify the choice of model among a potentially
infinite set of alternatives, while also providing the necessary information for others (e.g., the
person subject to the decision, an auditor, a regulator, etc.) to assess whether the efforts to
find more desirable alternatives were reasonably exhaustive under these constraints.

Further, the very question of how to search among equally accurate models is only beginning
to be addressed by the research literature. While some dimensions of exploration may be
costly, such as collecting more data to explore alternate features to include in a model,
the most common method of exploration—hyperparameter variation [168, 215]—is already
standard machine learning practice. Whereas model developers currently explore a range of
possible models through hyperparameter tuning and select one that maximizes accuracy, a
meta-rule would require that the model developer maintain a set of models that satisfy the
meta-rule.

In theory, and often even in practice [214], it is unlikely there is only one model which
satisfies a meta-rule. As we discuss in the next section, we can account for residual differ-
ences in predictions between models which satisfy the meta-rule with model aggregation
techniques.

100



CHAPTER 7. MODEL MULTIPLICITY: OPPORTUNITIES, CONCERNS, AND SOLUTIONS

7.6.2 Aggregation Techniques

Given a set of models that all satisfy the meta-rule, how might a decision maker choose
among models? In fact, there are several ways to produce a single model from a set of equally
“good” models. Here, we focus on three such techniques, and, in particular, we demonstrate
that each may be appropriate for use in different contexts. LetM be a distribution over
models that satisfy decision makers’ meta-rule.10 The techniques that follow require that the
model developer can construct a random sample fromM, as opposed to enumerating all of
the models inM. The three aggregation techniques we consider are mode aggregation,
randomized predictions, and random model selection. Importantly, these techniques
help to restore justifiability because they each involve deliberating over how to choose between
multiplicitious models.

• Mode aggregation [25]: The mode predictor m aggregates models from the model
distribution M by outputting the majority vote over the models m ∈ M for each
example x. Formally, in the case of binary classification, this is

m(x) ,

{
1 Prm∼M[m(x) = 1] ≥ 1

2

0 otherwise
.

Note that the mode predictor m is the one that minimizes the expected disagreement
between itself and a randomly chosen model m ∼M.

• Randomized Predictions: Under randomized prediction, the decision maker uses
the classifier mrand that, for each example x, randomly samples a model m ∼M and
outputs m(x). Formally, this is

Pr[mrand(x) = y] , Pr
m∼M

[m(x) = y].

• Random Model Selection: Under random model selection, the decision maker
randomly samples some m ∼M and applies that m to every decision subject. Note
that random model selection differs from an arbitrary selection in that the randomness
(and the act of choosing) is made explicit [204].

Each of these techniques, alongside documentation of the reasons why a given method
was chosen, provides a justifiable way to resolve multiplicity in different contexts. When
decisions are made by a centralized authority, the decision maker’s objective may be to
resolve multiplicity by providing a consistent predictor (i.e., contains no explicit randomness)
that minimizes multiplicity across the model distributionM. The government, for example,
has a special legal burden to ensure consistency in decision making [34]. In such cases,
the mode predictor best achieves these goals: it is the model that minimizes multiplicity
compared to the model distributionM.11 Recent work has shown that, beyond stabilizing
model predictions, mode aggregation also results in more stable model explanations, and
thus suggests that models which return the mode over a random sample of similar models
have more stable internals than individual models [25].

10In practice,M may be constrained by the decision maker’s ability to experiment with different design
choices (e.g., type of model, random seed, etc.).

11Black et al. [25] provides an evaluation of this approach, including theoretical guarantees on the consistency
of mode-aggregated decisions.
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On the other hand, consider decisions that are low-stakes and frequent, such as choosing
which advertisement to show to a user. Suppose 70% of models in the distributionM predict
that a user x prefers credit card ads, and 30% predict that x prefers ads for cars. While
the mode predictor would resolve this multiplicity by always showing x an ad for credit
cards, under randomized prediction, the model will show the user credit card ads 70% of the
time and car ads the other 30% of the time.12 Of course, there are plenty of applications
where such randomized predictions are undesirable; but in applications where decisions are
low-stakes and repeated, this randomized sampling might give a person outcomes that better
reflect the uncertainty contained in the model distribution.

Finally, there are cases where society would prefer that the model developer simply samples
a random model m ∼M and always uses m. For example, consider an application like hiring
or lending where multiple private actors make independent decisions. We may not want
explicit randomness through sampling in these decisions, but if each supposedly independent
actor uses the same mode predictor, then decision making effectively becomes a monoculture,
which can have negative impacts both for individuals’ recourse and social welfare [51, 138]. To
prevent this, we might prefer that each model developer independently choose its own random
model m ∼M. And while random model selection may seem like the de facto resolution of
predictive multiplicity in practice, private model developers may end up converging on the
same models for a variety of reasons, including third-party vendors selling the same tools to
multiple clients [210] or centralized evaluation (e.g., credit scores).

Crucially, all three of these methods mitigate arbitrariness since choosing among them
requires considering and deliberating between the different options. By requiring model
developers to document the model building process—and their ultimate decision on how to
address remaining multiplicity—we can reach a justification for why a model’s internals and
predictions are the way that they are [220].

7.7 Conclusion
Our work considers the implications of model multiplicity, the phenomenon of multiple models
with equal accuracy for a given prediction task exhibiting different individual predictions or
aggregate properties. We show that model multiplicity leads to increased flexibility—and
perhaps even legal pressure—to prioritize fairness, robustness, and interpretability, among
other values, in the model building process. However, this increased flexibility also leads to
the risk of avoidable discrimination and to a lack of justification for model decisions when
the model is chosen on the basis of accuracy alone. While this work does not serve as a
complete exploration of the impact that predictive multiplicity may have on law and policy,
we hope that by bringing attention to model multiplicity that we can add to the momentum
to take advantage of the opportunities that it creates and head off the resistance that it
could provoke.

12Randomized prediction is often used in the fairness literature to ensure that individuals or groups have
similar probabilities of receiving an given outcome from a classifier [8, 72]. Our use of randomized prediction
ensures that an individual has a chance of getting any outcome available to them under some m ∼M.
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Conclusion

In this thesis, we present examples of how considering the AI pipeline in the ideation of notions
of fairness, as well as in the creation of techniques to mitigate unfair behavior, can expand our
understanding of what algorithmic fairness means, and of how to mitigate unfairness. Towards
the former, we have shown how considering the AI pipeline expands fairness conceptualization
by encouraging us to examine whether a model’s decision procedure is unfair. After displaying
how learning rule instability can lead to certain types of unfair behavior, we have shown how
to mitigate inconsistency in predictions and model explanations.

Towards the latter point, we have demonstrated how the AI pipeline expands our toolbox
of bias mitigation techniques, by showing how changing choices along the AI pipeline not
necessarily related to fair behavior at first glance—such as changing a model’s prediction target
from classification to regression—can greatly improve context-specific fairness behavior. This
work also showcases the utility of pipeline-based fairness interventions in deeply contextualized,
real-world machine learning bias mitigation: given that pipeline-based interventions are not
inherently tied to any one notion of fairness, pipeline interventions can be constructed for a
wide variety of desired behaviors.

Finally, we have pointed to legal and policy implications of this flexibility and instability,
which we have combined under the umbrella of model multiplicity. In particular, we argue that
model multiplicity puts legal pressure on companies to search among the set of equally viable
models for a given task, to find the most equitable model, and we suggest a documentation
framework for providing justification for decisions made along the model creation pipeline,
to remedy any concerns of arbitrary decision-making.

As a whole, this work aims to show the immense flexibility that the machine learning creation
pipeline gives practitioners with respect to how to reach the goals they set out to acheive with
machine learning models— but also, how the choices made along the AI pipeline have to be
carefully considered in terms of their impact on desired model behaviors, as even seemingly
small choices can have a large impact. By considering all the choices made along the machine
learning pipeline—from feature selection, to model type, to the objective functions—as places
where changes can be made to improve fairness behavior, we can greatly expand our arsenal
of unfairness-fighting tools, and our understanding of fairness behavior.

This work shows that pipeline-based perspective of on fairness in AI systems can add to the
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arsenal that we use to understand and improve fairness behavior. However, at present it is
unclear how to transfer knowledge from this approach across applications or even across
implementations. In order for such methods to be used with similar efficacy as mainstream
fairness interventions—i.e. in order to acheive some degree of generalizability—much research
must be done to map the choices made along the pipeline to fairness behaviors.

For example, on the purely technical side, how do decisions at each stage of the pipeline—
data selection; feature creation; definition of the prediction target; model, learning rule, and
hyperparameter selection—influence machine learning behavior? What additional unfairnesses
can these decisions produce? Are there any generalizable patterns across deployment contexts?
Can any of these intervention points reliably be used as fairness solutions? Even more broadly,
how do parts of the pipeline beyond purely technical functioning, such as meeting points
between machine and human control and agency constraints, influence fairness performance?
We leave these lines of inquiry as exciting areas for future work.
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Appendix A

Leave-one-Out Unfairness
Appendix

A.1 Proofs
We present the full proofs from Section 2.

Proposition A.1. Let h be a learning rule optimizing 0-1 loss and ε(m) be a montonically-
decreasing function such that LUF(h, S, x) ≤ ε(n) for all S ∼ Dm and x. Then h is on-average
leave-one-out stable with rate at most ε(m).

Proof. We prove the case for binary classification. The result generalizes to multiclass
problems in a straighforward fashion. Note that because LUF is bounded for all S, we can
disregard the expectation over S in the definition of LOO-stability, and assume that the
randomness in the expectations comes from the learning rule h exclusively. By linearity of
expectation, we have that,

E[|`(hS , zi)− `(hS(\i) , zi)|] = Pr[hS(zi) 6= hS(\i)(zi)]

= |Pr[hS(zi) = 1]− Pr[hS(\i)(zi) = 1]|

Now, assuming,

∀x, S,max
i
|Pr[hS(x) = 1]− Pr[hS(\i)(x) = 1]| ≤ ε(m)

we have:

1

m

m∑
i=1

E
S∼Dn

[|`(hS , zi)− `(hS(\i) , zi)|]

≤ max
S

1

m

m∑
i=1

E[|`(hS , zi)− `(hS(\i) , zi)|]

The result follows by noting that each term in the above sum is bounded by ε(m).
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Figure A.1: Additional experiments on the LFW dataset, with identical setup to the results presented in
the paper, but with a static group of face pairs encountered during training. From left to right, we have:
the experiments presented in Section 5 concerning the extent of LUF in deep models (first two graphs),
experiments from Section 5 showing the consistency of leave-one-out unfair behavior across different model
architectures and seeds, and experiments showing the effect of instability from other sources discussion in
Section 6.

Proposition A.2. Let h be an (ε, δ)-differentially private learning rule, and x ∼ D be a
point. Then LUF(h, x) ≤ eε − 1 + δ.

Proof. We prove the case where h produces binary classifiers. The extension to multi-class
learning is straightforward. The result follows from a general property of differentially-private
algorithms [73, Lemma 6] which is that when hS ranges in [0, 1],

|E[hS(x)]− E[hS(\i)(x)]| ≤ eε − 1 + δ

Noting that E[hS(x)] = Pr[hS(x) = 1], the result follows.

A.2 Additional LFW Results
We present additional experiments on the LFW dataset, with identical setup to the results
presented in the paper, with the exception of the training set face pair generation process.
In this setup, the model is trained on a static set of face pairs common across all models,
as opposed to a being trained with a generator creating random face pairs that may differ
on each training run. This static setup along with the rest of the precautions taken in all
our experiments ensures that all possible sources of instability are controlled, aside from
leave-one-out unfairness. One other difference in this set of experiments is that we sample 25
points to remove from the dataset, as opposed to 50 as in the results presented in the main
paper. The results are qualitatively similar to the results presented in the paper, and still
show far greater expected LUF than any other models presented, with LUF of approximately
69%. However, due to memory constraints, a comparatively small set of pairs of faces from
LFW can be contained statically in memory, and the accuracy of the model suffers: the
accuracy of hS in this setup is 76%, with a generalization error of 22%.

A.3 Datasets
The German Credit data set consists of individuals financial data, with a binary response
indicating their creditworthiness. There are 1000 points, and 20 attributes. We one-hot
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encode the data to get 61 features, and standardize the data to zero mean and unit variance
using SKLearn Standard scaler. We partitioned the data intro a training set of 700, a
leave-one-out-set of 100, and a test set of 200.

The Adult dataset consists of a subset of publicly-available US Census data, binary response
indicating annual income of > 50k. There are 14 attributes, which we one-hot encode to
get 96 features. We normalize the numerical features to have values between 0 and 1. After
removing instances with missing values, there are 30, 162 examples which we split into a
training set of 14891, a leave one out set of 100, and a test set of 1501 examples.

The Seizure dataset comprises time-series EEG recordings for 500 individuals, with a binary
response indicating the occurrence of a seizure. This is represented as 11500 rows with 178
features each. We split this into 7,950 train points and 3,550 test points. We standardize the
numeric features to zero mean and unit variance.

Fashion MNIST contains images of clothing items, with a multilabel response of 10 classes.
There are 60000 training examples and 10000 test examples. We pre-process the data by
normalizing the numerical values in the image array to be between 0 and 1.

The Labeled Faces in the Wild dataset (LFW) consists of 13,000 cropped images of 1,680
individuals’ faces, with a multiclass label of 1,680 classes, corresponding to which individual
is in what image. We pre-process the images by normalizing the numerical values in the image
array to be between 0 and 1. Since the model that we use on the data is a face-matching
model, we create a training set of pairs of images from the processed LFW. First, we split the
original LFW dataset in a training set and test set, of sizes 6,873 and 2,291. For the results
presented in the main paper, we use a data generator to create 6,873 pairs of images from
the training set on each epoch. These pairs of images have a 50% match rate (that is, 50%
of the pairs are of the same individual, and 50% are not). For the results for LFW presented
in the supplementary material, we generate a static training set of 6,873 face pairs that stay
consistent epoch to epoch. Note that this results in many fewer unique face pairs seen by the
face-matching algorithm. For the test set in both the main paper and the supplementary
material, we generate a static 2,291 pairs of images from the test set, again with 50% match
rate.

A.4 Calculating LUF in All Experiments
We provide a description of how we calculated (an approximation of) LUF in our experiments.
Given predictions of the entire dataset for both hS and hS(\i) models: For binary classification
models, for each hS(\i) , and for hS , we calculate whether the output is class 1 or 0. We then
take the difference in binary predictions from the baseline model and hS(\i) , for each of the
100 hS(\i) . We choose the maximum difference over all hS(\i) for each point (i.e., searching to
see if the removal of any point removed results in a change in prediction for an individual in
the distribution.) This approximates the leave-one-out unfairness for each x in the dataset,
in the setting of a deterministic learning rule, as described in the main paper. Note that
the approximation arises from the fact that we sample 100 points at random with which to
create hS\i , rather than creating a different model for each point in the dataset. We then
divide the number of individuals experiencing LUF by the size of the dataset to calculate
the expected LUF over the dataset.

For multiclass problems, we follow a similar procedure, except that we calculate the probabil-
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ities that hS(\i) and hS output a given class for each class, compute the differences between
these probabilities, take the maximum over k classes, and then proceed as in the binary
case.

Finally, for calculating the effects of random seed and architecture on unfair arbitrariness
as displayed in the discussion, we follow the exact same procedure as above, but where
hS(\i) is a model trained on a different seed, or in the architecture results, on a different
architecture.

A.5 Experimental Setup Further Details
For German Credit and Seizure datasets, we trained all models in the paper with three
hidden layers, of size 100, 32, and 16, over 100 epochs. The inner activations are ReLu, and
the final activation is Sigmoid. The model is trained with binary crossentropy. We used the
Adam optimizer with the default parameters used by Keras. The linear models for both
datasets are trained over 100 epochs with a batch size of 32. For the German Credit models
in Section 3, and the random smoothing experiments in Section 4, we use a batch size of 32.
For the adversarially trained models, we use a batch size of 4. For the models used to compare
the variance of LUF over different architectures, we train a one hidden layer of size 100 with
the same hyperparameters as described for the main model, and a 3-hidden layer model with
layer sizes 64, 16, and 8, again with the other hyperparamters kept constant.

For the Adult dataset, our main model was one hidden layer of size 200, over 50 epochs with
a batch size of 128. The activations, loss, and optimizer were the same as those for German
Credit. The linear models for Adult were also trained with a batch size of 128 over 50 epochs.
For the adversarial experiments, we use a batch size of 32. For the models used to compare
the variance of LUF over different architectures, we train a one hidden layer of size 100 with
the same hyperparameters as described for the main model, and a 3-hidden layer model with
layer sizes 128, 32, and 16, again with the other hyperparamters kept constant.

For the Seizure dataset, we trained the main models in the paper with three hidden layers,
of size 128, 32, and 16, over 100 epochs. All models, including the linear models, were
trained with a batch size of 128. The activations, loss, and optimizer were the same as those
for German Credit. For the models used to compare the variance of LUF over different
architectures, we train models with the same architecture as the German Credit datasets,
with the rest of the parameters kept the same as in the main experiments.

For the FMNIST data set, for all models in the paper, we used a LeNet[152] architecture
modified for the size of the data, trained with dropout: this consists of 2 convolutional layers
with 20 and 50 channels respectively, each followed by a max pooling layer, and finally a
dense layers with 200 neurons. We train with SGD, batch size 128, and 50 epochs. For the
linear data, we used a batch size of 128 and 50 epochs as well. For the adversarially trained
models, we use a batch size of 32. The models over FMNIST with varying architecture
included a the same model described above, but trained without dropout, and a shallower
model with the middle layer (along with the corresponding pooling and convolution layers)
removed.

For LFW, we train a face-matching model, that takes a pair of images and outputs a
binary label whether or not the pair of images are of the same individual. The LFW face-
matching model consists of a concatenation layer composing the two input images, a 4-layer
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convolutional stack, followed by a dense layer, and a sigmoid output. It is trained with
the Adam optimizer with the default learning rate, batch size of 128, over 50 epochs. To
compare the effect of LUF across architectures, we train use a ResNet50 model, pre-trained
on ImageNet weights from Keras, modified to take two images as input and have a Sigmoid
output. We also compare the effects of LUF on a model with the same architecture as the
original one described, but with doubled filter sizes for the convolutions. All other models
are trained with the same hyperparameters as the original model.

A.6 Experimental Setup For Decision Boundary Images
To generate the pictures in Figure 1, we train a model 3 Relu layers, each with 1000 neurons,
trained on 100 uniform-random points with Bernoulli labels.
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Selective Ensembles Appendix

Proofs

B.0.1 Proof of Theorem 1
Theorem B.1. Let H : X → {−1, 1} = sign(h) be a binary classifier and g : X → R
be an unrelated function that is bounded from above and below, continuous, and piecewise
differentiable. Then there exists another binary classifier Ĥ = sign(ĥ) such that for any
ε > 0,

∀x ∈ X . 1. Ĥ(x) = H(x) 2. inf
x′:H(x′) 6=H(x)

{
||x−x′||

}
> ε/2 =⇒ ∇ĥ(x) = ∇g(x)

Proof. We divide X into regions {I1....Ik} determined by the decision boundaries of H.
That is, each Ii represents an area where H predicts a certain class (−1 or 1) up until the
boundaries to predict a different class.

Recall we are given a function g : Rn → R which is bounded from above and below. We
create a set of functions ĝIi(x) : x ∈ Ii → R such that

ĝIi(x) =

{
g(x)− infx g(x) if H(Ii) = 1

g(x)− (supx g(x) + c) if H(Ii) = −1

Where c is some constant greater than zero. Additionally, let d(x) be the `2 distance from x

to the nearest decision boundary of h. Then, we define ĥ to be:

ĥ =

{
ĝIi(x) for x ∈ Ii if d(x) > ε

2

ĝIi(x)× 2d(x)
ε for x ∈ Ii if d(x) ≤ ε

2

And, as described above, we define Ĥ = sign(h). First, we show that Ĥ(x) = H(x)∀x ∈ Rn.
Consider the case when H(x) = 1, and d(x) > ε

2 . By construction, Ĥ(x) = sign(h(x)) =
sign(ĝIi(x)) = sign(g(x)−infx g(x)), where x ∈ region Ii whereH(Ii) = 1. By definition of the
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infimum, g(x)− infx g(x) >= 0, and thus sign(g(x)− infx g(x)) = 1, and Ĥ(x) = 1 = H(x).
Note that in the case where d(x) ≤ ε

2 , we can follow the same argument as the value of ˆh(x)
only differs by a positive constant. A similar argument follows for the case where H(x) = −1;
thus, Ĥ(x) = H(x)∀x ∈ Rn.

Secondly, we show that 5ĥ(x) = 5g(x)∀xwhered(x) > ε
2 . Consider the case where H(x) = 1.

By construction, ĥ(x) = ĝIi(x) = g(x)− infx g(x). Note that this means ĥ(x) = g(x) plus a
constant, so the gradient of the two functions at x is the same. A symmetric argument holds
for the case where H(x) = −1.

It remains to prove that ĥ is continuous and piece-wise differentiable, in order to be a
realizable as a Relu-network. See that ĥ is piece-wise differentiable as g is, as required, which
means that ĝi are continuous well, and also ĝi(x)× d(x)

ε ∀i, which comprise ĥ. To see that ĥ is
continuous, consider the case where d(x) = ε for some x: then ĝi(x)× d(x)

ε = ĝi(x)× ε
ε = ĝi(x).

Additionally, consider the case where d(x) = 0, i.e. x is on a decision boundary of h(x),
between two regions Ii, Ij . Then ĥ(x) = ĝi(x) × d(x)

ε = ĝi(x) × 0 = 0 = ĝj(x) × 0 = ĝj(x).
This shows that ĥ has continuous behavior between transitioning from case to case of its
output. Further, when d(x) 6= 0, ε, then ĥ is continuous since g is continuous as required,
and thus ĝi are continuous ∀i, as well as ĝi × 2d(x)

ε , as the multiplied expression is simply a
constant.

B.0.2 Proof of Theorem 2

Theorem B.2. An ensemble model hS,r,n will return the majority prediction gh,S,R(x) on a
point x, or abstain, with probability 1-α. In other words, with probability at most α, they will
return a value that is not gh,S,R(x).

Proof. En(h, S,R, n) is an ensemble of n models. By the definition of the Predict algorithm,
En(h, S,R, n) gathers a vector of class counts the prediction for x from each model in
the ensemble. Let the class with the highest count be cA, with counts nA, and the class
with the second highest count be called cB, with counts nB. In order for the ensemble
to predict, the ensemble models runs a two-sided hypothesis test to ensure that Pr[nA ∼
Binomial(nA + nB , 0.5)] < α, i.e. that A is the true majority prediction over R. See that

P [gh,S,R(x) 6= cA ∧ En(h, S,R, n)(x) = cA]

= P [gh,S,R(x) 6= cA]P [En(h, S,R, n)does not abstain|gh,S,R(x) 6= cA]

≤ P [En(h, S,R, n) does not abstain|gh,S,R(x) 6= cA]

By Hung and Fithian[], we have that

≤ P [En(h, S,R, n) does not abstain|gh,S,R(x) 6= cA] = α

Thus,
P [gh,S,R(x) 6= cA ∧ En(h, S,R, n)(x) = cA] ≤ α
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Datasets

The German Credit and Taiwanese data sets consist of individuals financial data, with a
binary response indicating their creditworthiness. For the German Credit dataset, there
are 1000 points, and 20 attributes. We one-hot encode the data to get 61 features, and
standardize the data to zero mean and unit variance using SKLearn Standard scaler. We
partitioned the data intro a training set of 700 and a test set of 200. The Taiwanese credit
dataset has 30,000 instances with 24 attributes. We one-hot encode the data to get 32 features
and normalize the data to be between zero and one. We partitioned the data intro a training
set of 22500 and a test set of 7500.

The Adult dataset consists of a subset of publicly-available US Census data, binary response
indicating annual income of > 50k. There are 14 attributes, which we one-hot encode to
get 96 features. We normalize the numerical features to have values between 0 and 1. After
removing instances with missing values, there are 30, 162 examples which we split into a
training set of 14891, a leave one out set of 100, and a test set of 1501 examples.

The Seizure dataset comprises time-series EEG recordings for 500 individuals, with a binary
response indicating the occurrence of a seizure. This is represented as 11500 rows with 178
features each. We split this into 7,950 train points and 3,550 test points. We standardize the
numeric features to zero mean and unit variance.

Fashion MNIST contains images of clothing items, with a multilabel response of 10 classes.
There are 60000 training examples and 10000 test examples. We pre-process the data by
normalizing the numerical values in the image array to be between 0 and 1.

The Warfain dataset is collected by the International Warfarin Pharmacogenetics Consor-
tium [120] about patients who were prescribed warfarin. We removed rows with missing
values, 4819 patients remained in the dataset. The inputs to the model are demographic
(age, height, weight, race), medical (use of amiodarone, use of enzyme inducer), and genetic
(VKORC1, CYP2C9) attributes. Age, height, and weight are real-valued and were scaled to
zero mean and unit variance. The medical attributes take binary values, and the remaining
attributes were one-hot encoded. The output is the weekly dose of warfarin in milligrams,
which we encode as "low", "medium", or "high", following [120]

Model Architecture and Hyper-Parameters

The German Credit and Seizure models have three hidden layers, of size 128, 64, and 16.
Models on the Adult dataset have one hidden layer of 200 neurons. The FMNIST model is
a modified LeNet architecture [152]. This model is trained with dropout. The LFW face-
matching model consists of a concatenation layer composing the two input images, a 4-layer
convolutional stack, followed by a dense layer, and a Sigmoid output. German Credit, Adult,
and Seizure models are trained for 100 epochs; FMNIST and LFW models are trained for 50.
German Credit models are trained with a batch size of 32, FMNIST 64, and Adult, Seizure,
and LFW used batch sizes of 128. German Credit, Adult, Seizure a
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portion of test data with pflip > 0
Randomness n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS 1 0.585 0.089 0.061 0.0 0.080 0.115 0.066
RS (5, 10, 15, 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LOO 1 0.250 0.068 0.060 0.028 0.030 0.056 0.068
LOO (5, 10, 15, 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B.1: The percentage of points with disagreement between at least one pair of models (pflip > 0)
trained with different random seeds (RS) or leave-one-out differences in training data, for singleton models
(n = 1) and selective ensembles (n > 1). Results for selective ensembles all selective ensembles are shown
together, as they all have no disagreement. Note that these results are for α = 0.01. But this different α also
leads to zero disagreement between predicted points.

mean accuracy (abstain as error) / std. dev
S n Ger. Credit Adult Seizure Wafarin Tai. Credit FMNIST Colon

RS 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
RS 10 .461± .016 .807± 1e− 3 .945± 2e− 3 .646± 3e− 3 .788± 2e− 3 .870± 5e− 3 .902± 2e− 3
RS 15 .589± .015 .822± 8e− 4 .961± 1e− 3 .661± 3e− 3 .802± 9e− 4 .890± 2e− 3 .915± 1e− 3
RS 20 .593± .011 .822± 7e− 4 .961± 8e− 4 .662± 1e− 3 .803± 9e− 4 .991± 1e− 3 .926± 1e− 3

LOO 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
LOO 10 .618± .017 .818± 1e− 3 .947± 4e− 3 .674± 2e− 3 .807± 1e− 3 .904± 6e− 4 .901± 2e− 3
LOO 15 .656± .017 .828± 1e− 3 .963± 1e− 3 .678± 9e− 4 .812± 9e− 4 .908± 1e− 3 .912± 2e− 3
LOO 20 .661± .018 .829± 7e− 4 .964± 1e− 3 .678± 7e− 4 .812± 8e− 4 .909± 6e− 4 .912± 2e− 3

mean abstention rate / std dev
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
RS 10 .449± .021 .068± 2e− 3 .045± 2e− 3 .078± 5e− 3 .063± 2e− 3 .087± 8e− 3 .050± 3e− 3
RS 15 .278± .017 .041± 1e− 3 .025± 1e− 3 .049± 3e− 3 .037± 1e− 3 .055± 2e− 3 .030± 2e− 3
RS 20 .270± .015 .040± 1− e3 .024± 1e− 3 .047± 2e− 3 .036± 1e− 3 .054± 9e− 4 .038± 1e− 3

LOO 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
LOO 10 .215± .030 .049± 2e− 3 .045± 5e− 3 .027± 2e− 3 .025± 1e− 3 .029± 1e− 3 .054± 2e− 3
LOO 15 .144± 0.040 .030± 2e− 3 .026± 1e− 3 .017± 2e− 3 .017± 2e− 3 .021± 3e− 3 .035± 2e− 3
LOO 20 .135± .040 .029± 1e− 3 .025± 1e− 3 .017± 1e− 3 .017± 2e− 3 .019± 1e− 3 .035± 3e− 3

Table B.2: Accuracy (above) and abstention rate (below) of selective ensembles with n ∈ {5, 10, 15, 20}
constituents. Results are averaged over 24 models, standard deviation is presented. Note that these results
are for alpha=0.01.

Metrics

B.0.3 SSIM

Experimental Results for α = 0.01

Selective Ensembling Full Results

Explanation Consistency Full Results

B.0.4 Attributions
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mean accuracy (abstain as error) / std. dev
S n Ger. Credit Adult Seizure Wafarin Tai. Credit FMNIST Colon

RS 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
RS 10 .461± .016 .807± 1e− 3 .945± 2e− 3 .646± 3e− 3 .788± 2e− 3 .870± 5e− 3 .902± 2e− 3
RS 15 .589± .015 .822± 8e− 4 .961± 1e− 3 .661± 3e− 3 .802± 9e− 4 .890± 2e− 3 .915± 1e− 3
RS 20 .593± .011 .822± 7e− 4 .961± 8e− 4 .662± 1e− 3 .803± 9e− 4 .991± 1e− 3 .926± 1e− 3

LOO 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
LOO 10 .618± .017 .818± 1e− 3 .947± 4e− 3 .674± 2e− 3 .807± 1e− 3 .904± 6e− 4 .901± 2e− 3
LOO 15 .656± .017 .828± 1e− 3 .963± 1e− 3 .678± 9e− 4 .812± 9e− 4 .908± 1e− 3 .912± 2e− 3
LOO 20 .661± .018 .829± 7e− 4 .964± 1e− 3 .678± 7e− 4 .812± 8e− 4 .909± 6e− 4 .912± 2e− 3

mean abstention rate / std dev
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
RS 10 .449± .021 .068± 2e− 3 .045± 2e− 3 .078± 5e− 3 .063± 2e− 3 .087± 8e− 3 .050± 3e− 3
RS 15 .278± .017 .041± 1e− 3 .025± 1e− 3 .049± 3e− 3 .037± 1e− 3 .055± 2e− 3 .030± 2e− 3
RS 20 .270± .015 .040± 1− e3 .024± 1e− 3 .047± 2e− 3 .036± 1e− 3 .054± 9e− 4 .038± 1e− 3

LOO 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
LOO 10 .215± .030 .049± 2e− 3 .045± 5e− 3 .027± 2e− 3 .025± 1e− 3 .029± 1e− 3 .054± 2e− 3
LOO 15 .144± 0.040 .030± 2e− 3 .026± 1e− 3 .017± 2e− 3 .017± 2e− 3 .021± 3e− 3 .035± 2e− 3
LOO 20 .135± .040 .029± 1e− 3 .025± 1e− 3 .017± 1e− 3 .017± 2e− 3 .019± 1e− 3 .035± 3e− 3

Table B.3: Accuracy and abstention rate of selective ensembles with n ∈ {5, 10, 15, 20} constituents for
demographic groups in each dataset. We have ensembles sampled across different training sets with a difference
of one data-point (LOO) and ensembles sampled over different random seeds (RF). At the top of each row,
we have the baseline, single-model accuracy across groups for all datasets, averaged over 500 models. For the
Adult and Taiwanese Credit datasets, we have groups of individuals identified in the data as male or female
as groups; in German Credit, we have individuals above or below median age in the dataset; in the Warfarin
dosing dataset, we have individuals identified as Black, White, and Asian in the dataset as groups.

mean accuracy (abstain as error) / std. dev
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
RS 10 .576± .013 .820± 8e− 4 .960± 1e− 3 .660± 2e− 3 .800± 1e− 3 .888± 2e− 3 .914± 1e− 3
RS 15 .636± .017 .827± 5e− 4 .965± 1e− 3 .668± 2e− 3 .807± 9e− 4 .897± 2e− 3 .919± 1e− 3
RS 20 .664± .014 .830± 5e− 4 .967± 9e− 4 .670± 3e− 3 .810± 8e− 4 .902± 1e− 3 .921± 1e− 3

LOO 5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
LOO 10 .653± .017 .827± 1e− 3 .962± 2e− 3 .677± 1e− 3 .812± 1e− 3 .909± 4e− 4 .912± 1e− 3
LOO 15 .678± .014 .832± 7e− 4 .968± 9e− 4 .679± 9e− 4 .814± 9e− 4 .910± 1e− 3 .916± 2e− 3
LOO 20 .689± .014 .834± 7e− 4 .970± 1e− 3 .680± 7e− 4 .815± 8e− 4 .911± 4e− 4 .918± 8e− 4

mean abstention rate / std dev
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

RS 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
RS 10 .291± .014 .043± 1e− 3 .02± 1e− 3 .050± 3e− 3 .039± 2e− 3 .059± 2e− 3 .032± 3e− 3
RS 15 .205± .020 .032± 1e− 3 .018± 1e− 3 .037± 3e− 3 .028± 1e− 3 .042± 2e− 3 .023± 2e− 3
RS 20 .165± .015 .024± 7− e4 .014± 7e− 4 .031± 4e− 3 .023± 8e− 4 .036± 1e− 3 .019± 2e− 3

LOO 5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
LOO 10 .151± .041 .032± 2e− 3 .027± 2e− 3 .018± 2e− 3 .017± 2e− 3 .020± 5e− 4 .036± 3e− 3
LOO 15 .105± 0.034 .022± 1e− 3 .019± 1e− 3 .013± 2e− 3 .013± 2e− 3 .016± 2e− 3 .027± 2e− 3
LOO 20 .079± .029 .018± 1e− 3 .015± 1e− 3 .011± 2e− 3 .010± 1e− 3 .012± 8e− 4 .023± 2e− 3

Table B.4: Accuracy (above) and abstention rate (below) of selective ensembles with n ∈ {5, 10, 15, 20}
constituents. Results are averaged over 24 models, standard deviation is presented. Note that these results
are for alpha=0.05, which are presented in the main paper.
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Figure B.1: We plot the average similarity across feature attributions for an individual point, averaged
over 276 comparisons of feature attributions from two different models. This is aggregated across the entire
validation split. The error bars represent the standard deviation over the 276 comparisons between models.
Each row of plots constitutes the plots for a given dataset, noted on the far left, and each column of plots
is for a given metric, noted at the top. Note that for image datasets, (FMNIST and Colon), we plot SSIM
instead of Spearman’s Ranking Coefficient (ρ). The x-axis is the number of models in the ensemble, starting
with one, and the y-axis indicates the value of the similarity metric averaged over all 276 comparisons of
individual points’ in the validation split’s attributions. The red and orange lines depict regular ensembles,
and the green and blue represent selective ensembles.
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(a)

(b)

(c)

(d)

(e)

Figure B.2: Inconsistency of attributions on the same point across an individual (left) and ensembled (right)
model (n = 15), for all datasets, over differences in random seed chosen for initialization parameters before
training. The height of each bar on the horizontal axis represents the attribution score of a distinct feature,
and each color represents a different model. Features are ordered according to the attribution scores of one
randomly-selected model. Figure a depicts the German Credit Dataset, Figure b depicts Adult, Figure c
Seizure, Figure d Taiwanese, and Figure e Warfarin. We do not include feature attribution for image datasets
as the individual pixels are less meaningful than the feature attributions in a tabular dataset.
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disagreement of non-abstaining ensembles
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

LOO 1 0.250 0.068 0.060 0.028 0.030 0.056 0.068
LOO 5 .180 .033 .028 .017 .030 .019 .022
LOO 10 .120 .023 .020 .013 .020 .025 .013
LOO 15 .065 .019 .016 .011 .013 .025 .010
LOO 20 .060 .016 .014 .010 .013 .027 .003

RS 1 0.585 0.089 0.061 0.0 0.080 0.115 0.066
RS 5 .290 .043 .028 .000 .040 .028 .0168
RS 10 .245 .030 .022 .000 .028 .029 .012
RS 15 .175 .025 .015 .000 .023 .020 .011
RS 20 .155 .021 .014 .000 .020 .018 .010

Table B.5: The percentage of points with disagreement between at least one pair of models (pflip > 0)
trained with different random seeds (RS) or leave-one-out differences in training data, for singleton models
(n = 1) and non-selective ensembles (n > 1). Results presented over 10 re-samplings of different constituent
models. While ensembling alone mitigates much of the prediction instability, it is unable to eliminate it as
selective ensembles do.

accuracy of non-abstaining ensembles
S n Ger. Credit Adult Seizure Warfarin Tai. Credit FMNIST Colon

LOO 5 .728 .844 .978 .685 .821 .918 .927
LOO 10 .728 .844 .978 .686 .821 .918 .927
LOO 15 .733 .844 .979 .685 .821 .917 .927
LOO 20 .730 .843 .979 .685 .821 .918 .927

RS 5 .745 .842 .975 .688 .822 .919 .927
RS 10 .746 .843 .975 .688 .822 .920 .928
RS 15 .750 .842 .975 .688 .822 .920 .928
RS 20 .747 .842 .975 .688 .822 .920 .938

Table B.6: The mean and standard deviation of the accuracy of non-selective ensembles for sizes n=5,10,15,20
over 10 re-samplings of different constituent models.
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(a)

(b)

(c)

(d)

(e)

Figure B.3: Inconsistency of attributions on the same point across an individual (left) and ensembled
(right) model (n = 15), for all datasets, over leave-one-out differences in the training set. The height of each
bar on the horizontal axis represents the attribution score of a distinct feature, and each color represents a
different model. Features are ordered according to the attribution scores of one randomly-selected model.
Figure a depicts the German Credit Dataset, Figure b depicts Adult, Figure c Seizure, Figure d Taiwanese,
and Figure e Warfarin. We do not include feature attribution for image datasets as the individual pixels are
less meaningful than the feature attributions in a tabular dataset.
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Appendix C

Consistent Counterfactuals
Appendix

C.1 Proofs

C.1.1 Theorem 1 and Lemma 1

Theorem 1 Suppose that H1, H2 are orthogonal decision boundaries in a piecewise-linear
network F (x) = sign{w>1 ReLU(W0x)}, and let x be an arbitrary point in its domain. If the
projections of x onto the corresponding halfspace constraints of H1, H2 are on H1 and H2,
then there exists a point x′ such that:

1 ) d(x′, H2) = 0 2 ) d(x′, H2) < d(x, H2) 3 ) d(x, H1) ≤ d(x′, H1)

where d(x, H∗) denotes the distance between x and the nearest point on a boundary H∗.

Proof. Let u(x)i = W0x be the pre-activation of the neuron i-th output in the hidden layer.
The status of the neuron therefore will have the following two status: ON if u(x)i > 0 and
OFF otherwise. When a neuron is ON, the post-activation is identical to the pre-activation.
Therefore, we can represent the ReLU function as a linear function of all neurons’ activation
status. Formally, the logit output of the network F can be written as

f(x) = w>1 ΛW0x (C.1)

where Λ is a diagonal matrix diag([λ0, λ1, ..., λn]) such that λi = I(u(x)i > 0). The network
is a linear function within a neighborhood if all points in such a neighborhood have the same
activation matrix Λ. For any two decision boundaries H1 and H2, the normal vectors of
these decision boundaries can be written as n>1 = w>1 Λ1W0 and n>2 = w>1 Λ2W0, respectively,
where Λ1 and Λ2 are determined by the activation status of internal neurons.

For an input x, if the projections of x onto the corresponding halfspace constraints of H1, H2

are on H1 and H2, then the distance d(x, H1) and d(x, H2) are given by projections as
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follows:

d(x, H1) =
|n>1 x|
||n1||2

, d(x, H2) =
|n>2 x|
||n2||2

(C.2)

W.L.O.G. we assume F (x) = 1 and n1 and n2 point towards x. Let a point y defined as

y = y′ − |n
>
2 y
′|n2

||n2||22
(C.3)

y′ = x + η
n1

||n1||2
(C.4)

where η is tiny positive scalar such that F (y) = F (x) = 1. We firstly show that d(y, H2) = 0
as follows:

d(y, H2) =
|n>2 y|
||n2||2

(C.5)

=
|n>2 (y′ − |n

>
2 y′|n2

||n2||22
)|

||n2||2
(C.6)

=
|n>2 y′ − |n>2 y′||

||n2||2
(C.7)

=
|n>2 y′ − n>2 y

′|
||n2||2

(η is tiny so n2 points to y′) (C.8)

= 0 (C.9)

We secondly show that d(y, H1) > d(x, H1) as follows:

d(y, H1) =
|n>1 y|
||n1||2

(C.10)

=
|n>1 (y′ − |n

>
2 y′|n2

||n2||22
)|

||n1||2
(C.11)

=
|n>1 (x + η n1

||n1||2 −
|n>2 (x+η

n1
||n1||2

)|n2

||n2||22
)|

||n1||2
(C.12)

=
|n>1 x + η||n1||2 − n>1 n2

|n>2 (x+η
n1
||n1||2

)|
||n2||22

)|
||n1||2

(C.13)

=
|n>1 x + η||n1||2|

||n1||2
(H1 and H2 are orthogonal) (C.14)

≥ |n
>
1 x|

||n1||2
= d(x, H1) (C.15)

The proof of Theorem 1 is complete.

Lemma 1 Let H1, H2, F and x be defined as in Theorem 1. If the projections of x onto the
corresponding halfspace constraints of H1, H2 are on H1 and H2, but there does not exist a
point x′ satisfying (2) and (3) from Theorem 1, then H1 = H2.
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Note if we remove the assumption that H1 and H2 are orthogonal, we will show that Theorem

1 will hold by condition. Letm(x) = |n>1 x+η||n1||2−n>1 n2
|n>2 (x+η

n1
||n1||2

)|
||n2||22

)|. Assume the angle
between the normal vectors of H1 and H2 is θ such that n>1 n2 = ||n1||2||n2||2 cos θ.

m(x) = |n>1 x + η||n1||2 − n>1 n2

|n>2 (x + η n1

||n1||2 )|
||n2||22

)| (C.16)

= |n>1 x + η(||n1||2 −
n>1 n2 · n>2 n1

||n2||22||n1||2
)− n>1 n2 · n>2 x

||n2||22
| (C.17)

= |n>1 x + η(1− cos2 θ)||n1||2 − n1x cos θ| (C.18)

Since d(y, H1) ∝ m(x) and d(x, H1) ∝ |n>1 x| and they share they same denominator ||n1||2.
In order to have m(x) > |n>1 x|, we just need η(1 − cos2 θ)||n1||2 − n1x cos θ > 0, which
means we need to find a η such that η(1− cos2 θ)||n1||2 > n1x cos θ. Moving terms around
we have the following inequality:

η >
n1x cos θ

(1− cos2 θ)||n1||2
=

||x||2
1

cos θ − cos θ
(C.19)

The RHS goes to 0 when θ → π
2 , which corresponds to the situation of Theorem 1. When

θ → 0 (H1 = H2), RHS goes to ∞, which means we cannot find a point y satisfying the
Theorem 1, which completes the proof of Lemma 1.

C.1.2 Theorem 2 and Proposition 1
Theorem 2 Let f(x)

def
= w> · h(x) + b be a ReLU network with a single logit output (i.e., a

binary classifier), where h(x) is the output of the penultimate layer, and denote σw = σ(f(x))
as the sigmoid output of the model at x. Let W def

= {w′ : ||w − w′|| ≤ ∆}, χDx(x) be the
distributional influence of f when weights ware used at the top layer, and χ′Dx

(x) be the
distributional influence of f when weights w’ are used at the top layer. If h is K-Lipschitz
in the support S(Dx), the following inequality holds:

∀w′ ∈ W, ||χDx(x;w)− χDx(x;w′)|| ≤ K
√

[dσ(x;w)||w||+ C1]
2

+ C2

where C1 and C2 are constants and dσ(x;w)
def
= ∂σw/∂f .

Proof. Consider a ReLU network as g(h(x)). We first write out the expression of h(x):

h(x) = φN−1(WN−1(· · ·φ1(W1x+ b1)) + bN−2) (C.20)

where Wi, bi are the parameters for the i-th layer and φi(·) is the corresponding ReLU
activation. By the definition of the distributional influence,

χD(x) = Ez∼D(x)
∂σ(g(h(z);w))

∂z
(C.21)

= Ez∼D(x)
σ(g)

∂g

∂g(h;w)

∂h

∂h(z)

∂z
(C.22)

= Ez∼D(x)

[
σ(z;w)(1− σ(z;w))w

N−1∏
i=1

(WiΛi(z))>

]
(C.23)

(C.24)
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where Wi is the weight of the layer li if li is a dense layer or the equivalent weight matrix of
a convolutional layer and Λi(z) is an diagonal matrix with each diagonal entry being 1 if the
neuron is activated or 0 other wise when evaluated at the point z.

||χD(x)− χ′D(x)|| (C.25)

= ||Ez∼D(x)

[
σ(z;w)(1− σ(z;w))w

N−1∏
i=1

(WiΛi(z))>

]
(C.26)

− Ez∼D(x)

[
σ(z;w′)(1− σ(z;w′))w′

N−1∏
i=1

(WiΛi(z))>

]
|| (C.27)

= ||Ez∼D(x)

[
(σ(z;w)(1− σ(z;w))w − σ(z;w′)(1− σ(z;w′))w′)

N−1∏
i=1

(WiΛi(z))>

]
||

(C.28)

≤ Ez∼D(x)

[
||(σ(z;w)(1− σ(z;w))w − σ(z;w′)(1− σ(z;w′))w′)

N−1∏
i=1

(WiΛi(z))>||

]
(C.29)

(Jensen’s Inequality from (33) to (34))

≤ Ez∼D(x)

[
||(σ(z;w)(1− σ(z;w))w − σ(z;w′)(1− σ(z;w′))w′)|| · ||

N−1∏
i=1

(WiΛi(z))>||

]
(C.30)

(By the definition of matrix operator norm from (34) to (35))

To simplify the expression, we denote

a = σ(z;w)(1− σ(z;w))w − σ(z;w′)(1− σ(z;w′))w′ (C.31)

B =

N−1∏
i=1

(WiΛi(z))> (C.32)

and now Equation (35) now becomes

||χD(x)− χ′D(x)|| ≤ Ez∼D(x) [||a|| · ||B||] (C.33)

with Cauchy-Shwartz inequality, we find that

Ez∼D(x) [||a|| · ||B||] ≤
√

Ez∼D(x)||a||2 ·
√

Ez∼D(x)||B||2 (C.34)

Now we will show that these two terms
√

Ez∼D(x)||a||2 and
√

Ez∼D(x)||B||2 are bounded.

(1) Bound for the term
√

Ez∼D(x)||a||2
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Consider the relation between the expectation and the variance of random variables

EX2 = (EX)2 + V ar(X) (C.35)

which implies that

Ez∼D(x)||a||2 = (Ez∼D(x)||a||)2 + V ar(||a||) (C.36)

We simplify the notation by defining

dσ(z;w′)
def
= σ(z;w′)(1− σ(z;w′)

and we denote dσ(z;w) = dσ(x;w) + δ(z;w) and dσ(z;w′) = dσ(x;w′) + δ(z;w′). Note
that δ ≤ 1

4 because dσ ∈ [0, 1
4 ]. Therefore, the Ez∼D(x)||a|| can be simplified as

Ez∼D(x)||a|| = Ez∼D(x)||dσ(x;w)w − dσ(x;w′)w′ + δ(z;w)w − δ(z;w′)w′|| (C.37)
≤ ||dσ(x;w)w − dσ(x;w′)w′||+ Ez∼D||δ(z;w)w − δ(z;w′)w′|| (Triangle Inequality)

(C.38)

≤ ||dσ(x;w)w − dσ(x;w′)w′||+ Ez∼D||δ(z;w)w||+ Ez∼D||δ(z;w′)w′||
(C.39)

≤ ||dσ(x;w)w − dσ(x;w′)w′||+ Ez∼D|δ(z;w)|||w||+ Ez∼D|δ(z;w′)|||w′||
(C.40)

≤ ||dσ(x;w)w − dσ(x;w′)w′||+ 1

4
(||w||+ ||w′||) (δ ≤ 1

4
) (C.41)

≤ ||dσ(x;w)w − dσ(x;w′)w′||+ 1

2
(||w||+ 1

2
∆) (||w − w′|| ≤ ∆) (C.42)

≤ ||dσ(x;w)w||+ ||dσ(x;w′)w′||+ 1

2
(||w||+ 1

2
∆) (Triangle Inequality)

(C.43)

≤ dσ(x;w)||w||+ 1

4
(||w||+ ∆) +

1

2
(||w||+ 1

2
∆) (dσ ≤ 1

4
) (C.44)

≤ dσ(x;w)||w||+ 3

4
||w||+ 1

2
∆ (C.45)

To summarize, we find that

Ez∼D(x)||a|| ≤ dσ(x;w)||w||+ 3

4
||w||+ 1

2
∆ (C.46)

Since both sides of the inequalities are non-negative scalars, we see that

(Ez∼D(x)||a||)2 ≤
[
dσ(x;w)||w||+ 3

4
||w||+ 1

2
∆

]2

(C.47)

The derivation of the variance term V ar(||a||) may not have a simple analytical form to
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show that it is bounded, but it is easy to find an upper bound of ||a||

||a|| = ||dσ(x;w)w − dσ(x;w′)w′ + δ(z;w)w − δ(z;w′)w′|| (from Equation (43))

(C.48)

≤ ||dσ(x;w)w||+ ||dσ(x;w′)w′||+ ||δ(z;w)w||+ ||δ(z;w′)w′|| (Triangle Inequality)
(C.49)

≤ 1

4
||w||+ 1

4
(||w||+ ∆) + ||w||+ (||w||+ ∆) (dσ ≤ 1

4
), (||w − w′|| ≤ ∆) (C.50)

≤ 5

2
||w||+ 5

4
∆ (C.51)

which implies that ||a|| ∈ [0, 5
2 ||w||+

5
4∆]. With Popoviciu’s inequality, the variance V ar(||a||)

must be bounded such that

V ar(||a||) ≤ 1

4

[
5

2
||w||+ 5

4
∆

]2

(C.52)

Now so far we have derived the upper-bounds for (Ez∼D(x)||a||)2 and V ar(||a||); put together,
we show that

√
Ez∼D(x)||a||2 ≤

√
[dσ(x;w)||w||+ C1]

2
+ C2 (C.53)

where

C1 =
3

4
||w||+ 1

2
∆ (C.54)

C2 =
1

4

[
5

2
||w||+ 5

4
∆

]2

(C.55)

(2) Bound for the term
√

Ez∼D(x)||B||2

||B|| is the operator norm, namely the spectral norm for the matrix B. As we assume h(x)
is K-Lipschitz, we know that

Ez∼D(x)||B|| = Ez∼D(x)||

[
N−1∏
i=1

(WiΛi(z))>

]
|| ≤ sup

z∼D(x)

||

[
N−1∏
i=1

(WiΛi(z))>

]
|| = K (C.56)

(C.57)

and ∀z ∼ D(x)
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||B|| ≤ sup
z∼D(x)

||

[
N−1∏
i=1

(WiΛi(z))>

]
|| = K (C.58)

(C.59)

Therefore,

||B||2 ≤ K2 (C.60)

Ez∼D(x)||B||2 ≤ K2 (C.61)

which implies
√

Ez∼D(x)||B||2 ≤ K. To put together, we finish the proof and show that

||χD(x)− χ′D(x)|| ≤
√

Ez∼D(x)||a||2 ·
√

Ez∼D(x)||B||2 ≤ K
√

[dσ(x;w)||w||+ C1]
2

+ C2

(C.62)

C.1.3 Proposition 1
Proposition 1 Let q be a differentiable, real-valued function in Rd and S be the support set
of Uniform(0→ x). ∀x′ ∈ S,

||∂q(x
′)

∂x′
|| ≥ ||x||−1|∂q(rx

′)

∂r
|r=1|

Proof. First, we show that ∀x′ ∈ S

|∂q(x
′)

∂x′

>
· x′| ≤ ||∂q(x

′)

∂x′
|| · ||x′|| (Cauchy–Schwarz) (C.63)

By the construction of x′ we know ||x′|| ≤ ||x||; therefore,

|∂q(x
′)

∂x′

>
· x′| ≤ ||∂q(x

′)

∂x′
|| · ||x|| (C.64)

||∂q(x
′)

∂x′
|| ≥ ||x||−1|∂q(x

′)

∂x′

>
· x′| (C.65)

Now consider a function p(r;x′) = rx′. Then we show a trick of chain rule.

∂q(p)

∂r
=
∂q(p)

p

>
· ∂p(r;x

′)

∂r
=
∂q(p)

p

>
· x′ (C.66)

Replacing the notation p with x′ in ∂q(x′)
∂x′

>
does not change the computation of taking the

Jacobian of q’s output with respect to the input; therefore, we show that
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∂q(x′)

∂x′

>
· x′ =

∂q(p)

p

>
|r=1 · x′ =

∂q(p)

∂r
|r=1 =

∂q(rx′)

∂r
|r=1 (C.67)

We therefore complete the proof of Proposition 1 by showing

||∂q(x
′)

∂x′
|| ≥ ||x||−1|∂q(rx

′)

∂r
|r=1| (C.68)

C.2 Experiment Details

C.2.1 Meta information for Datasets
The German Credit [67] and Taiwanese Credit [67] data sets consist of individuals financial
data, with a binary response indicating their creditworthiness. For the German Credit [67]
dataset, there are 1000 points, and 20 attributes. We one-hot encode the data to get 61
features, and standardize the data to zero mean and unit variance using SKLearn Standard
scaler. We partitioned the data intro a training set of 700 and a test set of 200. The Taiwanese
Credit [67] dataset has 30,000 instances with 24 attributes. We one-hot encode the data to
get 32 features and normalize the data to be between zero and one. We partitioned the data
intro a training set of 22500 and a test set of 7500.

The HELOC dataset [85] contains anonymized information about the Home Equity Line of
Credit applications by homeowners in the US, with a binary response indicating whether or
not the applicant has even been more than 90 days delinquent for a payment. The dataset
consists of 10459 rows and 23 features, some of which we one-hot encode to get a dataset
of 10459 rows and 40 features. We normalize all features to be between zero and one, and
create a train split of 7,844 and a validation split of 2,615.

The Seizure [67] dataset comprises time-series EEG recordings for 500 individuals, with a
binary response indicating the occurrence of a seizure. This is represented as 11500 rows with
178 features each. We split this into 7,950 train points and 3,550 test points. We standardize
the numeric features to zero mean and unit variance.

The CTG [67] dataset comprises of 2126 fetal cardiotocograms processed and labeled by
expert obstetricians into three classes of fetuses, healthy, suspect, and pathological. We have
turned this into a binary response between healthy and other classes. We split the data into
1,700 train points and a validation split of 425. There are 21 features for each instance, which
we normalize to be between zero and one.

The Warfain dataset is collected by the International Warfarin Pharmacogenetics Consor-
tium [47] about patients who were prescribed warfarin. We removed rows with missing values,
4819 patients remained in the dataset. The inputs to the model are demographic (age, height,
weight, race), medical (use of amiodarone, use of enzyme inducer), and genetic (VKORC1,
CYP2C9) attributes. Age, height, and weight are real-valued and were scaled to zero mean
and unit variance. The medical attributes take binary values, and the remaining attributes
were one-hot encoded. The output is the weekly dose of warfarin in milligrams, which we
encode as "low", "medium", or "high", following [47].
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The UCI datasets are under an MIT license, and Warfarin datasets are under a Creative
Commons License. [47, 67]. The license for the FICO HELOC dataset is available at the
dataset challenge website, and allows use for research purposes [86].

C.2.2 Hyper-parameters and Model Architectures

The German Credit and Seizure models have three hidden layers, of size 128, 64, and 16.
Models on the Taiwanese dataset have two hidden layers of 32 and 16, and models on the
HELOC dataset have two deep layers with sizes 100 and 32. The Warfarin models have one
hidden layer of 100. The CTG models have three layers, of sizes 100, 32, and 16. German
Credit, Adult, Seizure, Taiwanese, CTG and Warfarin models are trained for 100 epochs;
HELOC models are trained for 50 epochs. German Credit models are trained with a batch
size of 32; Adult, Seizure, and Warfarin models with batch sizes of 128; Taiwanese Credit
models with batch sizes of 512, and CTG models with a batch size of 16. All models are
trained with keras’ Adam optimizer with the default parameters.

C.2.3 Implementation of Baseline Methods

We describe the parameters specific to each baseline method here. Common choices of
hyper-parameters are shown in Table C.1.

Min-Cost `1/`2 [247] We implement this by setting β = 1.0 for `1 (or β = 0.0 for `2) and
confidence=0.5 for the elastic-net loss [43] in ART [184].

Min-ε PGD [166]: For a given ε, we use 10 interpolations between 0 and the current ε as
the norm bound in each PGD attack. The step size is set to 2 ∗ εc/ max_steps where
εc is the norm bound used. The maximum allowed norm bound is the median of the `2
norm of data points in the training set.

Pawelczyk et al. [200]: We train an AutoEncoder (AE) instead of a Variational AutoEn-
coder (VAE) to estimate the data manifold. Given that VAE jointly estimate the
mean and the standard deviation of the latent distribution, it creates non-deterministic
latent representation for the same input. In the contact with Pawelczyk et al., we are
informed that we can only use the mean as the latent representation for an input;
therefore, by taking out the standard deviation from a VAE, we instead train a AE
that produces deterministic latent representation for each input. When searching for
the latent representation of a counterfactual, we use random search as proposed by
Pawelczyk et al. [200]: we randomly sample 1280 points around the latet representation
of an input within a norm bound of 1.0 in the latent space. When generating random
points, we use a fixed random seed 2021. If there are multiple counterfactuals, we return
the one that is closest to the input. For all datasets, we use the following architecture
for the hidden layers: 1024-128-32-128-1024.

Looveren et al. [243]: We use the public implementation of this method1. We use k-d
trees with k = 20 to estimate the data manifold as the curre implementation only
supports an AE where the input features must be between 0 and 1, while our dataset
are not normalized into this range. The rest of the hyper-parameters are default values
from the implementation: theta=100, max_iterations=100. This implementation

1https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html
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Hyper-parameters and Success Rate
Min `1 German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

ε - - - - - -
step size 0.05 0.05 0.05 0.5 0.01 0.05

success rate 0.35 0.14 1.00 1.00 1.00 1.00

Min `2 German Credit Seizure CTG Warfarin HELOC Taiwanese Credit
ε - - - - - -

step size 0.01 0.01 0.01 0.01 0.01 0.01
success rate 0.84 0.71 1.00 1.00 1.00 1.00

Min ε PGD German Credit Seizure CTG Warfarin HELOC Taiwanese Credit
Max. ε 3.00 3.00 0.20 0.50 2.10 5.00

step size adp. adp. adp. adp. adp. adp.
success rate 0.90 0.86 0.51 0.85 1.00 1.00

Looveren et al. German Credit Seizure CTG Warfarin HELOC Taiwanese Credit
ε - - - - - -

step size - - - - - -
success rate 1.0 1.0 1.0 1.0 1.0 1.0

Pawelczyk et al. German Credit Seizure CTG Warfarin HELOC Taiwanese Credit
ε 0.3 1.0 1.0 1.0 1.0 1.0

step size - - - - - -
success rate 0.38 1.00 0.87 0.72 0.76 0.14

Table C.1: Hyper-parameters and Success Rate for each baseline methods. adp. denotes that the step size
for each iteration is 2 ∗ ε/max_steps.

only supports for non-eager mode so we turn off the eager execution in TF2 by running
tf.compat.v1.disable_eager_execution() for this baseline.

SNS : We run SNS for 200 steps for all datasets and project the counterfactual back to a `2
ball. The size of the ball is set to be 0.8 multiplied by the largest size of the ball used
for the baseline Min-ε PGD. For Max `1/`2 without a norm bound, we use the norm
bound from Min-ε PGD. Similarly, the step size is set to 2 ∗ 0.8 ∗ ε/200.

C.2.4 Details of Retraining

We evaluate counterfactual invalidation over models with one-point differences in their
training set, or different random initialization. For each dataset, we train a base model F (θ)
with a specified random seed to determine initialization, and a specified train-validation
split. We use this to generate all counterfactuals. We then train 100 models with one-point
differences in the training set from a base model, as well as 100 models trained with different
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Invalidation Rate (LOO)
Method German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

Min. `1 0.41±0.04 - 0.07±0.09 0.44±0.02 0.30±0.03 0.30±0.03
+SNS 0.00±0.00 - 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Min. `2 0.36±0.05 0.64±0.06 0.48±0.17 0.35±0.02 0.55±0.05 0.27±0.05
+SNS 0.00±0.00 0.02±0.02 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Min. ε PGD 0.28±0.03 0.94±0.01 0.04±0.03 0.10±0.01 0.04±.0.01 0.04±0.00
+SNS 0.00±0.00 0.04±0.02 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00

Looveren et al. 0.25±0.03 0.48±0.04 0.11±0.08 0.26±0.02 0.25±0.03 0.29±0.06
Pawelczyk et al. 0.20±0.13 0.16±0.14 0.00±0.00 0.02±0.00 0.05±0.06 0.02±0.01

Invalidation Rate (RS)

Min. `1 0.56±0.05 - 0.29±0.09 0.35±0.08 0.43±0.07 0.78±0.06
+SNS 0.07±0.02 - 0.01±0.00 0.00±0.00 0.00±0.00 0.04±0.02

Min. `2 0.56±0.06 0.77±0.12 0.49±0.15 0.30±0.05 0.61±0.07 0.72±0.07
+SNS 0.06±0.04 0.13±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.04±0.04

Min. ε PGD 0.61±0.04 0.94±0.12 0.09±0.04 0.12±0.03 0.11±0.02 0.24±0.07
+SNS 0.12±0.03 0.16±0.08 0.00±0.00 0.02±0.01 0.00±0.00 0.11±0.05

Looveren et al. 0.40±0.03 0.54±0.05 0.18±0.08 0.25±0.02 0.34±0.05 0.53±0.06
Pawelczyk et al. 0.35±0.16 0.11±0.17 0.06±0.04 0.01±0.00 0.15±0.21 0.20±0.09

Table C.2: Invalidation Rates with standard deviations for each datasets and each re-training situations.
Results are aggregated over 100 models.

random initialization parameters. To do this, we randomly derive: a training set S, a set
O ⊆ S of size 100 that consists of points drawn randomly from test data (i.e. with which to
create 100 different training sets with one point removed, S(\i)), and a test set. Then, For
each zi ∈ O, we train F (θ)′ on S(\i) by removing zi from S. To train the 100 models with
different initialization parameters, we simply change the numpy random seed directly before
initializing a model.

C.2.5 Full results of IV with Standard Deviations
The full results of invalidation rates with standard deviations are shown in Table C.2.

C.2.6 `1 and `2 results
The full results of `1 and `2 costs with standard deviations are shown in Table C.3.
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Counterfactual Cost (`2)
Method German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

Min. `1 1.33±1.07 - 0.17±0.12 0.50±0.33 0.24±0.18 1.56±0.94
Min. `2 4.49±1.90 8.23±2.27 0.06±0.04 0.54±0.57 0.11±0.08 2.65±1.08

Looveren et al. 5.37±2.53 8.40±6.96 0.11±0.06 1.03±0.46 0.45±0.45 2.82±1.89
Min. ε PGD 1.02±0.57 1.36±0.38 0.08±0.03 0.31± 0.12 0.32±0.12 0.75±0.27
Min.`1 + SNS 3.40±0.82 - 0.25±0.08 0.80±0.29 1.71±0.12 3.50±0.91
Min.`2 + SNS 6.23±1.65 9.60±2.31 0.21±0.04 0.90±0.54 1.71±0.11 4.68±1.03
PGD + SNS 3.03±0.38 3.60±0.59 0.22±0.04 0.50±0.11 1.79±0.15 2.78±0.49

Pawelczyk et al. 7.15±2.12 13.66±7.46 1.07±0.20 2.62±0.79 1.35±0.93 4.24±2.23

Counterfactual Cost (`1)
Method German Credit Seizure CTG Warfarin HELOC Taiwanese Credit

Min. `1 2.09±2.00 - 0.16±0.19 0.48±0.59 0.35±0.30 2.40±2.84
Min. `2 24.70±13.14 77.89±28.38 0.18±0.12 1.17±0.91 0.43±0.31 9.76±3.93

Looveren et al. 15.93±8.93 76.99±69.93 0.16±0.12 1.75±0.99 0.97±1.05 6.11±5.12
Min. ε PGD 6.31±3.56 14.55±4.15 0.30±0.12 1.07±0.42 1.45±0.54 3.19±1.09
Min.`1 + SNS 13.81±2.96 - 0.58±0.14 1.61±0.52 7.11±0.72 11.04±3.17
Min.`2 + SNS 34.38±11.54 96.08±27.80 0.57±0.10 2.17±0.95 7.18±0.73 16.63±3.76
PGD + SNS 14.21±2.31 38.55±6.36 0.63±0.14 1.41±0.36 7.64±0.88 10.19±2.54

Pawelczyk et al. 38.48±12.31 145.36±77.67 3.03±0.63 ±6.48±2.66 4.51±3.52 12.22±7.49

Table C.3: `1 and `2 costs of counterfactuals with standard deviations.
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IRS Case Study Appendix

D.1 Fairness constraints and Monotonicity
In this section, we show that a selection process which achieves either equal true positive
rates or equalized odds will, under certain (differing) conditions, satisfy monotonicity with
respect to the ranking of bins by true misreport rate. That is, such models must choose a
higher audit rate in a group with a higher rate of misreport than it chooses in a group with
a lower rate of misreport. Given that, in our setting, misreport rate appears to be monotonic
with respect to income, such results would imply audit rate monotonicity with respect to
income as well.

For this section, we assume the following setup. There are two groups of observations G1 and
G2 of equal size n, and they have m1 and m2 positive labels respectively and r1 = n−m1

and r2 = n−m2 negative labels. An auditor selects A1 observations for audit from G1 and
A2 from G2 such that the total audits A1 + A2 is their audit budget A. The auditor has
access to a modelM which gives binary predictions ŷ ∈ {0, 1}. The auditor would like to
select A1 and A2 in such a way that she maximizes true positives selected; we assume that
A <<

∑
j∈{1,2}

∑
i∈Gj

M(Xi) - that is, the audit budget is much smaller than the total
amount of positive predictions by the model.

After the auditor makes selections A1 and A2, we define the α1 as the false positive rate of
the audits for G1; that is,

α1 = FPR1 =
False Positives in G1 selected

r1
.

In other words, α1 is the false positive rate of the composition of whatever the auditor’s
selection process is with the predictions of the model (not the false positive rate of the model
itself). We define α2 similarly. Additionally, we define β1 as the true positive rate of the
audits for G1, i.e.:

β1 = TPR1 =
True Positives in G1 selected

m1

and β2 similarly. Finally, let pi = True Positive Predictions for group i
Ai

, often known as preci-
sion.
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D.1.1 Equal TPR and Monotonicity

Our first lemma relates monotonicity to precision in the case of a selection process satisfying
equal true positive rates:

Lemma 2. Suppose that the selection process satisfies equal true positive rates. Then with
Ai, mi, and pi defined as above: A2 ≥ A1 ⇐⇒ m1

m2
≤ p1

p2
.

Proof. Note that:

pi =
True Positive Predictions
All Positive Predictions

=⇒ True Positivesi = Aipi.

Then the true positive rate can be written as

βi =
True Positivei
Positivesi

=
Aipi
mi

.

But by assumption, β1 = β2 = β, so

A1p1

m1
=
A2p2

m2
.

But this implies that

A1

A2
=
m1

m2

p2

p1
.

Hence, A2 ≥ A1 if and only if m1

m2

p2
p1
≤ 1, or in other words:

A2 ≥ A1 ⇐⇒
m1

m2
≤ p1

p2
.

To interpret this lemma, suppose that Group 2 has a higher misreport rate than Group 1
by some factor. Then the lemma states that for any selection process satisfying equal true
positive rates, monotonicity with respect to misreport rate requires precision in Group 2
greater than in Group 1 by at least the same factor, and vice versa.

D.1.2 Equalized Odds and Monotonicity

The following lemma shows that, in this setting, any allocation that satisfies equalized odds
(i.e. α1 = α2 = α and β1 = β2 = β) must audit the group with a higher misreport rate at a
higher rate if the true positive rate is larger than the false positive rate; conversely, it must
audit the group with a higher misreport rate at a lower rate if the true positive rate is lower
than the false positive rate.

Lemma 3. Suppose that the allocation A1, A2 satisfies equalized odds. That is, α1 = α2 = α
and β1 = β2 = β. If β ≥ α, then A2 ≥ A1 ⇐⇒ m2 ≥ m1; otherwise, A2 ≥ A1 ⇐⇒ m1 ≥
m2.
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Proof. Note that A1 is the sum of true and false positives in G1 and A2 is the sum of true
and false positives in G2. Since

α = α1 =
FP1

r1
and β = β1 =

TP1

m1
,

we can observe that:

A1 = r1α+m1β

and similarly for A2. But then:

A2 −A1 = r2α+m1β − (r1α+m1β)

= α(r2 − r1) + β(m2 −m1)

= α((n−m2)− (n−m1)) + β(m2 −m1)

= α(m1 −m2) + β(m2 −m1)

= (β − α)(m2 −m1).

But then we have that:

A2 −A1 > 0 ⇐⇒ (β − α)(m2 −m1) > 0,

yielding the claimed result.

Lemma 3 shows that if the selection process as a whole satisfies equalized odds, then groups
with higher misreport rates will be audited at a higher rate if and only if the process catches a
larger fraction of misreporters than the fraction of non-misreporters it ensnares. In balanced
settings and with good models, we might expect that generally the true positive rate will
be higher than the false positive rate, and this is what provides intuition that imposing
equalized odds might push the process towards monotonicity in misreport rate. But these
rates interact with the overall audit budget: in the regime where the budget is very small
and models are good, then it may be possible to obtain a low false positive rate but an even
lower true positive rate. In that case, equalized odds will require that the group with higher
non-compliance is audited less.

D.2 Further Experimental Details
In this paper, we compare LDA, Random Forest Classifier, Random Forest Regressor,
Gradient Boost Classifier, and Gradient Boost Regressor models. We use the sklearn python
package [202] to implement all models except for gradient boosted models, and search for
optimal hyperparameters using sklearn’s GridSearchCV method with 5-fold cross validation.
Gradient boosted models are created through the XGBoost python package, and optimal
hyperparameters are also found using GridSearchCV. We use NRP data from 2010-2014
to train all models in this paper, with dollar values scaled to 2014 values. Our threshold
for determining what qualifies as a tax misreport is a $200 difference between paid tax and
amount owed. We winsorize amount of misreport to the 1st and 99th percentiles. We split
the data into train, test, and validation sets randomly. Our train and validation sets comprise
75% of the data, with a test set of 25% of the data.
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Figure D.1: Audit rate over income deciles, for LDA, Random Forest, and XGBoost classifiers trained with
unweighted datasets of size 100k, subsampled from the weighted NRP data. (These allocations are in black,
with oracle in red).

Model Type Label Subsampled Revenue No-Change Cost Net Revenue Oracle
Type (Data Size) ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00
LDA Class X11M 6.07 12.8% 0.21 5.86 0.09
LDA Class X1100k 6.61 16.0% 0.30 6.31 0.09
Random Forest Class × 3.05 3.5% 0.08 2.97 0.00
Random Forest Class X1100k 3.19 4.5% 0.07 3.12 0.01
Grad Boost Class × 4.05 4.2% 0.08 3.97 0.00
Grad Boost Class X1100k 3.72 4.7% 0.09 3.61 0.00

Table D.1: Revenue, No-change rate, cost, and net revenue for models trained on a subsampled dataset of
size 100k. No-change rate represents the percentage of audits that were allocated to compliant tax-payers;
cost reflects cost to the IRS as described in Section 5.8. These results reflect audit allocations which select
the top 0.644% of taxpayers predicted most likely to misreport from each model. All metrics are reported on
the test set, weighted using the sampling weights provided by the IRS to scale up to a representative sample
of the US population.

We note that the IRS NRP data contains sampling weights, which are used to ensure that the
NRP data is representative of the true underlying distribution of taxpayers [124]. We train
all unconstrained models with sampling weights included in the NRP data using sklearn’s
built in data-weighting feature, except LDA, whose sklearn implementation does not does not
support training weights. For LDA, we create a representative dataset from the NRP data by
randomly subsampling rows from the weighted training data according to the weights. For
example, consider that each row x has a weight w, and the sum of all weights in the training
set is W . Then each observation has probability w

W of getting selected as any given row in the
subsampled data. This produces an unweighted training set reflecting the same proportions
as the weighted training data, with one million samples. As mentioned in Section 5.5, the
FairLearn package [22] requires the use of the sklearn training weights feature to implement
its in-process fairness enforcement algorithms. As a result, we also use the subsampling
technique to create training sets for in-process fairness models, but with samples of 100, 000
points, as the algorithm is extremely time-intensive on large datasets (over 48 hours for one
model). In order to show that the use of sampling weights during training, or the difference
in training set size from 100k to 1M, does not strongly affect the results presented in the
paper, we show the audit allocations and revenue, cost, and no-change rates of the LDA,
Random Forest, and XGBoost classifiers in Figure D.1 and Table D.1 respectively.
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Figure D.2: Audit rate over income deciles, for random forest classification models trained with different
thresholds for what consitutes a significant amount of misreport. From left to right, we have the allocation
for a model trained with a threshold of $1,000, $5,000, and $10,000. (These allocations are in black, with
oracle in red).

All analyses sections are produced on the test set. Cost and revenue calculations are reported
by rescaling costs and revenues to reflect estimated annual values for the full population, for
each year 2010-2014, and then dividing by five.

We sort taxpayers by descending order of predicted misreport probability from all classification
models (using sklearn’s predict_proba()) method, in order to produce a ranking. We use
sklearn’s predict method to return expected misreport for regression models. We use an
audit rate budget of 0.644% of the taxpayer population, reflecting the average audit rate
from 2010-2014, and select audits ai by taking the top 0.644% of the taxpayer population in
rank order. This 0.644% corresponds to weighted percentage of the population, computed
with sampling weights, i.e.

∑
aiwi∑
wi

where i is an observation in the weighted dataset, ai
is an indicator of whether to audit that observation, and wi is the number of people the
observation represents to create a representative population from the sampling data. The
audit budget of 0.644% of the taxpayer population, is equivalent to 1125000 audits.

D.3 Robustness Checks on Classification Thresholds

In this section, we compare the audit allocations of high-flexibility classification models
(namely, random forest classifiers) with different thresholds for what constitutes a significant
adjustment. In the main text, we use a threshold of $200 to signify a significant misreport. In
these experiments, we consider thresholds of $1,000, $5,000, and $10,000. Experimental setup
is identical to that described in Section D.2, with the exception of the change in threshold.
We display our results in Figure D.2, and Table D.2.

The results show us that changing the threshold of a significant adjustment to $1,000 does
not significantly impact audit allocation compared to the results presented in the main text.
A threshold of $5,000 exacerbates the classification model’s excess focus on the lower end of
the income spectrum, even beyond results shown in the main paper. Only a threshold of
$10,000 makes a significant difference in terms of the audit allocation—shifting the focus
to high income individuals almost exclusively— however, it results in an extremely high
no-change rate.
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Model Type Label Revenue No-Change Cost Net Revenue
Type Threshold ($B) Rate ($B) ($B)

Oracle - × 29.40 0.0% 0.33 29.07
LDA Class 200 6.07 12.8% 0.21 5.86
Random Forest Class 200 3.05 3.5% 0.08 2.97
Random Forest Class 1,000 4.92 5.6% 0.10 2.87
Random Forest Class 5,000 6.48 43.6% 0.15 6.35
Random Forest Class 10,000 10.1 64.1% .45 10.55
LDA Class 1,000 6.3 17.4% 0.20 6.1
LDA Class 5,000 7.52 53.3% 0.30 7.22
LDA Class 10,000 9.0 70.8% .47 8.53

Table D.2: Revenue, No-change rate, cost, and net revenue for models with different thresholds for what
constitutes a significant misreport. No-change rate represents the percentage of audits that were allocated to
compliant tax-payers; cost reflects cost to the IRS as described in Section 5.8. These results reflect audit
allocations which select the top 0.644% of taxpayers (i.e. top 1125000 taxpayers) predicted most likely to
misreport from each model. All metrics are reported on the test set, weighted using the sampling weights
provided by the IRS to scale up to a representative sample of the US population.

Figure D.3: Audit rate over income deciles, for LDA, Logisitc Regression, Random Forest, and XGBoost
classifiers trained on NRP data. The new figure included in this graph, relative to the figures in the main
paper, is the introduction of the logistic regression model. (These allocations are in black, with oracle in red).

D.4 Increased Audit Focus on Lower-and-Middle Income
only in High Complexity Models

In this section, we provide results from a logistic regression model to further buttress the
claim that only higher-complexity classification models result in audit allocations which
exacerbate focus on lower and middle-income taxpayers. We train the Logistic Regression
classification model with the same procedure outlined in Appendix D.2, with sampling
weights directly included during training. The audit allocation is depicted in Figure D.3:
the allocation is more monotonic than the higher complexity classification models; and is
apparent in Table D.3, the no-change rate is higher, but the revenue is higher as well.

D.5 Additional Robustness Checks
As noted in the main text, we make several important choices. First, we focus on total
positive income (TPI), rather than adjusted gross income (AGI; roughly corresponding to
the taxpayer’s total net income) because it it represents a simple measure of earnings that is
less likely to be affected by audit determinations. Second, for our analysis of the status quo,
we do not differentiate between EITC-specific audits for EITC claimants (e.g. qualifying
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Model Type Label Subsampled Revenue No-Change Cost Net Revenue Oracle
Type (Data Size) ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00
LDA Class X11M 6.07 12.8% 0.21 5.86 0.09
Random Forest Class × 3.05 3.5% 0.08 2.97 0.00
Grad Boost Class × 4.05 4.2% 0.08 3.97 0.00
Log. Reg. Class × 5.42 15.3% 0.19 5.23 0.06

Table D.3: Revenue, No-change rate, cost, and net revenue for models presented in the paper alongside
results for a logistic regression model. No-change rate represents the percentage of audits that were allocated
to compliant tax-payers; cost reflects cost to the IRS as described in Section 5.8. These results reflect audit
allocations which select the top 0.644% of taxpayers predicted most likely to misreport from each model. All
metrics are reported on the test set, weighted using the sampling weights provided by the IRS to scale up to
a representative sample of the US population.

child eligibility) and income-centered audits (e.g. confirmation of reported small business or
self-employment income). As we note above, this distinction is not relevant for the purposes
of an ultimate determination as to a liability to the government, but for operational purposes,
it may be meaningful to understand which type of audit is driving the vertical equity
findings. Third, we focus on reported income figures rather than audit-adjusted figures. This
is because, by definition, audit-adjusted income is not available to the IRS before auditing,
so any policy or choice that relies on access to audit-adjusted income is unimplementable.
However, audit-adjusted income may provide a better picture of distributional effects (at
least for audited taxpayers).

D.5.1 Status Quo

In this section, we consider how the alternative choices (using AGI, splitting up EITC and
income audits, and measuring model outcomes with respect to audit-adjusted income) in
turn affect our status quo findings. We interpret these results as primarily confirming our
main results.

Adjusted Gross Income First, we consider whether our motivating stylized facts — that
low-income taxpayers are audited at rates about as high as very-high income taxpayers
despite change rate being monotonic in income and average adjustment being much higher
for high income taxpayers — is dependent on the choice of TPI rather than AGI. We thus
recreate the left-most and right-most panels of Figure 5.1 with AGI as our feature in the
x-axis. We use NRP data, which is selected via stratified random sampling, as before to
avoid selection bias.

The left panel of Figure D.4 shows the 2014 audit rate for taxpayers in each $10,000-wide bin
of AGI. The figure shows that the large spike near 0 observed with respect to TPI remains
for AGI as well. However, the graph looks different in that AGI, unlike TPI, can be negative;
the negative-AGI portion of the graph qualitatively resembles a (much noisier) mirror image
of the non-negative-AGI porion, though negative-AGI taxpayers made up just over 1% of all
taxpayers according to NRP data.

The right panel of Figure D.4 depicts change rate and average adjustment across AGI bins.
Here, the bins consist of AGI deciles for non-negative AGI taxpayers augmented by a single
bin for all negative-AGI taxpayers. Excluding the negative-AGI bin, the change rate and
average adjustment follow a qualitatively similar trend to their counterparts observed on
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TPI. That is, the change rate increases nearly monotonically, while the average adjustment
is increasing overall but has a decreasing or flat portion. However, the overall difference
between the average adjustment in the highest AGI bin and highest average adjustment
among the lower-AGI bins is smaller than for TPI. As for the negative AGI bin, it has a
relatively low (compared to other bins) change rate, but a higher average adjustment than
any positive-AGI bin. Recall that AGI is income less various adjustments (e.g. for student
loan interest, alimony payments, health insurance for self-employed taxpayers, etc.). As
mentioned, given additional scope relative to TPI for errors, subjective determinations, or
manipulation to influence ultimate AGI figures, we focus on TPI as our primary measure of
income.

Figure D.4: Robustness checks with adjusted gross income. Left: The figure shows the audit rate by year
at a given amount of adjusted gross income (discretized into bins of $10,000. Note that AGI may be negative;
however, just over 1% of NRP observations submit negative AGI, so the noise in the left half of the graph
is due to small sample size. Right: The figure shows outcomes in terms of misreport rate and average
adjustment by AGI “deciles” (we compute deciles for observations non-negative AGI and add all negative
AGI observations as an additional initial bin).

Income vs. EITC Audits Next, we explore whether the extent to which the observed
non-monotonicity in audit rates by income is driven primarily by income-related audits
(e.g. verifying that claimed income was truly received, that reported income presents a full
picture of true income, etc.) or eligibity-related audits (e.g., whether a claimed dependent
satisfies residency or relationship tests for EITC eligibility). To do this, we replicate our main
audit-rate analysis after removing dependent-related audits. We do this using project codes.
Projects codes are given to returns upon audit and correspond to a focus on particular issues.
These do not necessarily map one-to-one with the income/EITC distinction — for example,
some project codes correspond to a particular flag being triggered, and can result in focus
on both eligibility and/or income issues depending on the return; still, careful examination
of the issues considered allow us to develop an approximate measure of the intent of the
audit.1

1We started with a list of project codes, project titles, and project descriptions. We examined all projects
with EITC-related words in the title (e.g. “EITC" or “EIC"), as well as all projects indicated to be related to
EITC by 4.19.14.4 in the Internal Revenue Manual.
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We categorize EITC-related projects into three categories: most narrowly, EITC-eligibility
projects, which only consider questions related to whether a taxpayer’s EITC claim satisfies
eligibility requirements; more generally, EITC-Only projects, which may consider more than
eligibility but are still related to the EITC claim (e.g. verifiability of Schedule C income
for EITC claimants); and most broadly, EITC-mentioning projects, which constitute any
project which mentions EITC as the population of interest. So, for instance, audits about
the premium tax credit within EITC claimants would be considered as part of the EITC-
mentioning projects but not the EITC-Only or EITC-eligibility projects. Note that these
categories are nested, so if we move from excluding only the first to the next to the last we
end up with a successively narrower set of included audits. In particular, the set of audits that
fall into EITC-eligibility projects but not EITC-Only projects are those which correspond
strictly to eligibility questions, and so the effect of removing them shows (a lower bound
on) the portion of audits which are due to eligibility and not income. (It is a lower bound
because some projects in the EITC-Only do not only focus on income, but may also focus
on eligibility; without further detail unavailable in our data, we cannot further distinguish
between specific issues considered for each return within the same project code.)

Figure D.5 shows the results of this analysis for the tax year 2014. The figure depicts audit
rate by TPI, but with several different lines indicating different levels of exclusions that
have been made when calculating the audit rate. The shading increases with the breadth of
exclusions (no exclusions, corresponding to our results in Figure 5.1, are plotted in lightest
red, while the broadest exclusions, of all projects with any mention of EITC at all, are
plotted in darkest red). Notice that the lightest color shows the ‘spike’ in audit rates for low
income taxpayers, as displayed before, and excluding successively more returns unsurprisingly
diminishes the calculated audit rate, until we are left with very few audits that are entirely
unrelated to EITC claims for near-zero TPI taxpayers. Most interestingly, moving from no
exclusions to excluding EITC-eligibility-specific projects decreases the audit rate at the spike
from about 1.2% to about .7%. This indicates that, as a lower bound, about half of the spike
is explained by EITC-eligibility-related projects.
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Figure D.5: Audit rate by TPI for tax year 2014 after excluding EITC-related projects of varying stringency
of definition. The shades of lines move from light to dark mirroring how the consider exclusions move from
very little to very broad. In particular, the lightest shade shows audit rate before any exclusions, the next
shows audit rate after excluding projects related specifically to EITC eligibility, the next after excluding
all projects related only to EITC, and the darkest after excluding all projects which mention EITC even if
focused on unrelated issues.

More coarsely, we can simply look at to what extent the spike is being driven by EITC
claimants at all, as indicated by claimants’ activity codes. Activity code 270 correspond to
EITC claimants with less than $25,000 of Schedule C (non-wage) income (e.g. income from
self-employment), while activity code 271 captures the remainder. (Recall that income for the
purposes of the EITC is not TPI, but AGI, as described above. So it is possible, though rare,
for a taxpayer with high TPI to nonetheless be eligible for the EITC.) Figure D.6 displays the
results of a similar exercise, moving from excluding 270 to excluding 270 and 271. The fact
that the spike is essentially eliminated moving from no exclusions to excluding 270 suggests
that non-monotonicity is driven by EITC claimants. (Note that this is not inconsistent with
Figure D.5 because EITC claimants in 270 may be audited for non-eligibility matters, like
income verification.)
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Figure D.6: Audit rate by TPI for tax year 2014 after excluding EITC-related activity codes. The lightest
line corresponds to the underlying audit rate without exclusions, the next darkest to the audit rate after
excluding activity code 270, and the darkest to after removing 270 and 271 (i.e. all EITC claimants).

Outcomes with respect to true TPI Finally, we recalculate no-change rates and average
adjustments by corrected, rather than reported, TPI and AGI. (Note that since outcomes
are measured in NRP, we have corrected incomes for nearly all taxpayers, modulo a small
number of missing observations.) The outcomes are displayed in Figure D.7. Qualitatively,
the TPI picture (left panel) looks similar to the right panel of Figure 5.1, but with an even
clearer monotonicity pattern in average adjustment, as the downward trend in adjustments in
between the 3rd-7th bins of (uncorrected) TPI is replaced by a plateau. Moreover, measured
according to corrected TPI, the average adjustment is higher in the highest-income bin than
according to reported TPI, but lower in the lower-income bins; in other words, the overall
trend is much starker for corrected than reported TPI. The AGI picture (right panel) appears
qualitatively very similar to the TPI picture, indicating that monotonicity of change rate and
adjustment holds regardless of income measure, at least after correcting for the truth.
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Figure D.7: The figures display outcomes — no-change rate, in blue and measured on the left y-axis, and
average adjustment, in red and measured on the right y-axis — by corrected TPI (left panel) and corrected
AGI (right panel).

D.5.2 Fairness methods and Modeling Choices
In this section, we display audit rate by income of classification, regression, and fairness-
constrained models presented in the main paper, but with income buckets over audit-adjusted
adjusted gross income (AA-AGI), and audit-adjusted total positive income (AA-TPI). This
provides a robustness check to test whether models which display low audit focus on reported
low income also do so on true low income populations, and if this pattern carries over to
other notions of income, such as taxable (and not total) income.

Experimental Setup. For AA-TPI, we use the same income buckets as we have through-
out the paper (which determine deciles on total positive income) for consistency and ease
of comparison. For AA-AGI, we re-compute buckets, and also create a separate bucket for
individuals with negative AGI, but note that they only make up approximately 0.7% of
the population (less than 1/10 of a decile), and thus the results on this population are not
directly comparable to those on the rest of the deciles due to the vastly different sample
size. For both measures of income, approximately 1,000 out of 71,000 rows do not contain
audit-adjusted AGI or TPI, which we exclude from the analysis.

Results The audit distributions over income deciles over AA-AGI and AA-TPI are largely
similar. For AA-AGI, the boosted regressor focuses slightly less on middle-to-high income.
For both AA-TPI and AA-AGI, the EO constrained classifier focuses lightly less on middle
income individuals (∼47k). Regression and LDA models select a high rate for individuals with
negative AA-AGI, but this is drawn from a very small percentage of the population (0.7%).
Otherwise, the overall trends of audit focus for audit focus across the different classifiers
remains the same.

The most notable change from reported TPI to AA-TPI and AA-AGI is the extent to which
the oracle focuses on “truly” high income individuals — whereas the oracle audited up to
1% individuals with zero and middling reported TPI, from the perspective of AA-TPI and
AGI, the oracle focuses almost exclusively on the upper third of the income spectrum, and
most dramatically (approx 4.5%, as opposed to approx. 2% for reported TPI) on the highest
income decile.
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Figure D.8: Audit rate by income for classification models. From left to right: LDA classifier, Random
Forest Classifier, and Boost Classifier. We use the same income deciles as presented throughout the paper for
ease of comparison, but with corrected total positive income (after audit) as opposed to reported. Income
decile lower bounds are given in thousands of dollars.

Figure D.9: Audit rate by income for regression models. We use the same income deciles as presented
throughout the paper for ease of comparison, but with corrected total positive income (after audit) as opposed
to reported. Income decile lower bounds are given in thousands of dollars.

Figure D.10: Audit rate by income from in-process fairness constrained random forest models, graphed
over audited corrected TPI (AA-TPI). We use the same income deciles as presented throughout the paper
for ease of comparison, but with corrected total positive income (after audit) as opposed to reported.
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Figure D.11: Audit rate by income for classification models. From left to right: LDA classifier, Random
Forest Classifier, and Boosted Classifier. We plot over 10 AGI-derived deciles (0-127k are the lower-bounds),
with an additional column for the taxpayers with negative corrected AGI. Note that the first column (-inf) is
not a true decile, as individuals with true negative AGI make up less than 0.7% of the population.

Figure D.12: Audit rate by income for regression models. We plot over 10 AGI-derived deciles (0-127k are
the lower-bounds), with an additional column for the taxpayers with negative corrected AGI. Note that the
first column (-inf) is not a true decile, as individuals with true negative AGI make up less than 0.7% of the
population.
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Figure D.13: Audit rate by income from in-process fairness constrained random forest models, graphed
over audited corrected AGI. We plot over 10 AGI-derived deciles (0-127K are the lower-bounds), with an
additional column for the taxpayers with negative corrected AGI. Note that the first column (-inf) is not a
true decile, as individuals with true negative AGI make up less than 0.7% of the population. Income decile
bounds are given in thousands.

D.6 Further Fairness Results

In this section, we present complete in-processing results, and also show results from another
technique, specifically, post-processing techniques for enforcing fairness constraints. We also
discuss why pre-processing techniques, and perhaps counterintuitively, fair ranking methods
are not well-suited to our setting.

D.6.1 In-processing

As noted in Section 5.5, the in-processing results do not result in audit allocations which
respect the fairness constraints the models are trained to obey, partially due to the fact
that the audit allocation focuses only on the top 0.644% of predictions. First, we present (i)
numerical evidence that in-process fairness constrained models do not produce allocations
which respect the constraints they are trained to satisfy (Tables D.4 and D.5), (ii) we show
evidence that the in-processing results did perform according to expectation, i.e., they do
produce models which satisfy their respective constraints over the full suite of predictions on
the training set, in Table D.6.

We present only numeric clarification for the fact that the allocations do not satisfy the
constraints which are enforced on the model for true positive and false positive rates, as the
fact that selection rate parity is not upheld is clear from the graph of the allocation (as an
allocation which satisfies selection rate parity would have equal audit rate across all income
groups).

We note that we present the true and false positive rates calculated over the weighted
population—i.e. calculating all metrics taking into account the sample weight of each row—as
well as over the unweighted raw data. This is due to the fact that the algorithm used to
implement these results do not offer any guarantees over weighted data [8]. However, we find
that the results are qualitatively similar.
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In-Process Fairness Method: False Positive Rates
Unweighted Weighted (W)

Income
Bucket Uconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W
0 0.000 0.008 0.002 0.011 0.000 0.006 0.000 0.005
7 0.000 0.008 0.003 0.001 0.000 0.009 0.002 0.004
13 0.000 0.012 0.002 0.006 0.000 0.010 0.001 0.003
18 0.000 0.016 0.000 0.002 0.000 0.010 0.000 0.007
26 0.006 0.009 0.002 0.006 0.004 0.007 0.000 0.006
36 0.000 0.003 0.005 0.015 0.000 0.002 0.001 0.003
47 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.009
62 0.000 0.000 0.004 0.010 0.000 0.000 0.003 0.012
86 0.000 0.000 0.005 0.008 0.000 0.000 0.004 0.018
126 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.007

Post-Process Fairness Method: False Positive Rates

Income
Bucket Unconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.006 0.006 0.006 0.000 0.004 0.004 0.004 0.000
36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
47 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
62 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
86 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
126 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.022

Table D.4: We present the false positive rates by income bucket for the audit allocations generated from
unconstrained and fairness-constrained random forest classifier models on the test set, where an audit
allocation corresponds to the highest ranked predictions from each model up to a budget of 0.644% of the
taxpayer population, or 1125000 audits. Unconstr. refers to an unconstrained model, SR PAR to selection
rate parity, TPR PAR to true positive rate parity, and EO to equalized odds. We note that the algorithms
implemented in Fairlearn[22] only guarantee satisfying fairness constraints in expectation on the training
set, over the entire set of predictions (i.e. not simply the top 0.64%). Also note that the only column where
we would expect to see equalized false positive rates is the equalized odds (EO) column(s). The top table
represents results from in-process fairness methods, and the lower table from post-process fairness enforcement
methods. The numbers in the left side (left four columns) of the table corresponds to the calculation on the
raw data, without sample weights, and the right four columns display the calculation weighted by the sample
weights, denoted with W. We present the unweighted calculation as the fairness methods do not guarantee
equalized false positive rates over the weighted data, but rather only on the unweighted—however, false
positive rates are not equalized with either calculation method.
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In-Process Fairness Method: True Positive Rates
Unweighted Weighted (W)

Income
Bucket Uconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W
0 0.000 0.015 0.021 0.014 0.000 0.011 0.034 0.014
7 0.015 0.029 0.010 0.010 0.012 0.032 0.011 0.010
13 0.008 0.015 0.015 0.013 0.007 0.011 0.020 0.013
18 0.018 0.024 0.015 0.022 0.027 0.025 0.015 0.022
26 0.045 0.019 0.016 0.009 0.056 0.022 0.018 0.009
36 0.019 0.015 0.016 0.013 0.025 0.011 0.014 0.013
47 0.027 0.000 0.026 0.006 0.040 0.000 0.030 0.006
62 0.007 0.000 0.018 0.018 0.012 0.000 0.015 0.018
86 0.001 0.000 0.017 0.013 0.002 0.000 0.009 0.013
126 0.000 0.000 0.009 0.010 0.000 0.000 0.016 0.010

Post-Process Fairness Method: True Positive Rates
Unweighted Weighted (W)

Income
Bucket Unconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.015 0.015 0.015 0.000 0.012 0.012 0.012 0.000
13 0.008 0.008 0.008 0.000 0.007 0.007 0.007 0.000
18 0.018 0.018 0.018 0.000 0.027 0.027 0.027 0.000
26 0.045 0.045 0.045 0.000 0.056 0.056 0.056 0.000
36 0.019 0.019 0.019 0.000 0.025 0.025 0.025 0.000
47 0.027 0.027 0.027 0.000 0.040 0.040 0.040 0.000
62 0.007 0.007 0.007 0.000 0.012 0.012 0.012 0.000
86 0.001 0.001 0.001 0.000 0.002 0.002 0.002 0.000
126 0.000 0.000 0.000 0.092 0.000 0.000 0.000 0.117

Table D.5: We present the true positive rates by income bucket for the audit allocations generated from
unconstrained and fairness-constrained random forest classifier models on the test set, where an audit
allocation corresponds to the highest ranked predictions from each model up to 0.644% of the taxpayer
population (i.e. around 1.1M audits). Unconstr. refers to an unconstrained model, SR PAR to selection rate
parity, TPR PAR to true positive rate parity, and EO to equalized odds. Note that the only column where
we would expect to see equalized true positive rates are the true positive rate parity (TPR PAR) equalized
odds (EO) columns. The top table represents results from in-process fairness methods, and the lower table
from post-process fairness enforcement methods. The numbers in the left side (left four columns) of the table
corresponds to the calculation on the raw data, without sample weights, and the right four columns display
the calculation weighted by the sample weights, denoted with W. We present the unweighted calculation as
the fairness methods do not guarantee equalized true positive rates over the weighted data, but rather only
on the unweighted—however, true positive rates are not equalized over income deciles in either calculation
scheme. Income buckets are given in thousands.
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DP Enforc. TPR Enforc. EO Enforc. EO Enforc.
Income Bucket SRP TPR TPR FPR

0 0.348 0.979 0.981 0.006
7 0.348 0.981 0.980 0.009

0.349 0.983 0.982 0.013
18 0.348 0.985 0.985 0.007
26 0.367 0.986 0.986 0.006
36 0.350 0.982 0.982 0.005
47 0.368 0.993 0.993 0.004
62 0.368 0.996 0.995 0.004
86 0.368 0.996 0.996 0.004
126 0.366 0.990 0.991 0.003

Table D.6: We present a verification of the fact that in-process fairness techniques work as billed. From left
to right, we have the selection rate by income bucket in the equalized selection rate model, the true positive
rate by income bucket in the true positive parity constrained model, and the true and false positive rates by
income bucket in the equalized odds constrained model. All results are presented over all predictions in the
training set, not over an allocation the size of 0.644% of taxpayer population (i.e. about 1.1M audits), as in
the majority of the paper. This is in order to verify the guarantees the in-processing method implemented in
FairLearn actually provides, which is that the model will satisfy the fairness constraint desired in expectation
on the training set, within error 2(ε + best_gap), where best_gap is a determined at run-time and not
released to the model users, and ε is a user-set slack parameter. We set the slack parameter to 1% in our
implementation. Note that for each metric presented, all rates across income buckets are within 2% of each
other. Thus, the fairness metrics are satisfied within the expected parameters of 2(ε) ≤ 2(ε+ best_gap).
Income buckets are given in thousands.

D.6.2 Post-processing

Post-processing involves intervening at prediction time by developing group-specific thresh-
olds for positive predictions on top of the original model to ensure a model’s predictions
satisfy the relevant fairness constraints. We use a method developed by Hardt et al [106] to
implement this technique.

Implementation. In post-processing methods, the base random forest model is trained
exactly as described in Section D.2. We again use FairLearn [22] to implement the post-
processing technique based upon Hardt et al. [105]. Post-processing methods as implemented
in FairLearn are not engineered to return a ranking but only a binary prediction, thus in order
to accommodate creating a ranking from predictions, we multiply the binary predictions of the
fair classifier (which satisfy the desired metric across groups) by the predicted probabilities
from the baseline classifier in order to be able to meaningfully rank the output.

Results Figure D.14 displays audit rate by income for post-processed Random Forest
classifiers to respect each of the three fairness metrics. Again, the constrained model’s audit
rates are in blue, the unconstrained in black, and the oracle in red dashed. The revenue,
no-change rate, and cost of each are also displayed in Table 5.1.

A key takeway is that post-processing techniques are ill-fit to the audit allocation problem as
they often result in minimal changes to prediction on the most confidently predicted points,
which can leave aggregate audit allocations unchanged from the unconstrained model. Figure
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Figure D.14: Post-process fairness techniques imposed on a random forest model. From left to right:
enforcing Equal True Positive Rates (FP), Demographic Parity (DP), and Equalized Odds (EO). Each blue
graph depicts of the results of enforcing a fairness constraint, the black graph is the original allocation.

D.14 shows that the audit selection from post-processed models often lead to no change in
aggregate audit rates (demographic parity, true positive rate parity). This is likely due to the
fact that re-drawing group-specific thresholds to determine a final prediction which satisfies
a fairness constraint is less likely to affect the most confidently predicted points, which we
select for the top 0.644%. This is by design to keep error to a minimum, and to keep the
post-processed model as similar to the original model as possible [105].

In terms of the equalized odds allocations suggested by the post-processed random forest
model, it is unclear what benefits enforcing these constraints provides, as they do not satisfy
the respective fairness definitions on the top 0.644% of predictions, as is noticable from the
demographic parity allocation (which does not change from the baseline model). Additionally,
enforcing equalized odds actually substantially increases audit focus on the lower end of the
income distribution through this method, so we do not reduce audit focus on lower income
individuals.

Thus, post-processing techniques are technically mismatched for the budgeted audit selection
setting, and we argue, do not lead to an increase in equity.

Fair Ranking and Pre-Processing. We omit two major alternative categories of meth-
ods: pre-processing and fair ranking. Pre-processing methods alter the data before model
training; this may be as simple as re-sampling the data or as involved as learning alternative
representations of data that obfuscate any correlation between outcomes and sensitive fea-
tures. Such methods tend to have sharp tradeoffs with accuracy [146], and often sacrifice
interpretability, which may limit applicability in this setting. Fair ranking methods attempt
to achieve fairness guarantees in settings where the ranking of individuals matter.[37], [228]
While this may appear related to the audit problem, an important distinction is that in
the fair ranking problem, the relative placement of items matters even beyond the decision
to include or exclude them from some selection set. This is a more difficult setting than
the audit problem as defined in Section 5.1, in which the precise ranking within audited
taxpayers and separately within non-audited taxpayers does not matter2 to the IRS (nor
does it matter to the taxpayers). Hence, methods aimed at fair ranking are ‘overkill’ for our
setting.

2This may be less true if the budget is not known in advance, but we do not consider such a scenario here.
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D.7 Revenue-Optimal Problem as Fractional Knapsack
Given audit variables ai, net revenues ri, costs ci and weights wi, and a budget A, the
revenue-optimal selection of audits is described by the following LP:

maximize
m∑
j=1

ajr
net
j

subject to
m∑
j=1

ajcj ≤ A

ai ∈ [0, wi], ∀ai

Note that this is simply an instantiation of the fractional knapsack problem, which is often
intuitively described as, given an option of several items with different values and weights,
choosing a subset of x items to put into a “knapsack” in order to maximize the value in
the knapsack given the constraint of how much a person can carry (where, in the fractional
approximation, one is allowed to put a fraction of the item in the knapsack). The analogues
here is the audit allocation is our knapsack, taxpayers are items to put in the knapsack,
total net revenue is the value, and the cost of each taxpayer audit to the IRS is the weight.
The optimal solution to this problem is a greedy selection of the objects with the best value
per unit weight, i.e., in our setting, taxpayers in order of the ratio of their net tax liability
returned to the IRS over the cost to the IRS to audit that individual.

D.8 Cost Calculations
We base our estimate of cost off of:
(examiner time spent on an audit)*(cost per time unit of that grade examiner)3 averaged
over income decile and activity code groups, which approximately corresponds to groupings
of individuals based upon what tax forms they have filled out. Importantly, we base our
calculation of audit cost off of operational IRS audits, i.e., not audits completed as a part of
the National Research Program (NRP), but rather those conducted explicitly to enforce the
tax code and reclaim misreported revenue. This is due to the fact that audits used for NRP
are conducted differently, using more time-consuming methods, and thus relying on these
cost estimates may provide a skewed picture of monetary cost to the IRS. We winsorize cost
to 1st and 99th percentiles. To calculate a dollar audit budget, we calculate the yearly cost
of audits using our cost metrics from operational audit data from 2010-2014, and then we
average this result by five to get the average dollar cost per year in amounts proportional to
our conception of cost.

3We note that this data recorded is grade of the lead examiner, but in some cases multiple people of
different grades are involved. This is a shortcoming of the data for determining cost.
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Appendix E

Model Multiplicity Appendix

E.1 A Formal Model of Multiplicity
Here, we formalize the relationship between individual-level disagreement in models and
standard formulations of the bias-variance trade-off. Standard models of the bias-variance
trade-off decompose loss into three components: bias, variance, and noise (e.g., [139]). Bias
refers to the difference between the mean predictor (or in the case of 0-1 loss, which is simplest,
the mode predictor) and the Bayes optimal predictor. Variance refers to the difference between
any particular model and the mode predictor. Noise refers to the expected loss of the Bayes
optimal model. For simplicity, we focus on the case of binary classification with 0-1 loss,
though similar approaches could be used to characterize continuous models.

We begin by providing basic definitions in Section E.1.1. We explore the relationship between
predictive multiplicity and accuracy in Section E.1.2, showing a fairly loose connection. We
conclude by showing a tighter connection between predictive multiplicity and variance in
Section E.1.3.

E.1.1 Basic Definitions
Suppose binary classification models come from some fixed distributionM (e.g., the distri-
bution induced by random seeds, inclusion of data, etc.). Let D be the distribution over data.
In a slight abuse of notation, we will denote a random data point as x ∼ D, and a random
(data point, label) pair as (x, y) ∼ D. Let m∗ be the Bayes optimal model, and let m be the
mode predictor, defined as

m(x) ,

{
1 Prm∼M[m(x) = 1] ≥ 1

2

0 otherwise
,

i.e., m assigns x the most probable label over the distribution of modelsM. The 0-1 loss is
defined as

L(y1, y2) ,

{
0 y1 = y2

1 otherwise
.
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For a given data point x, define

N(x) , Ey | x [L(m∗(x), y)] (noise)

B(x) , L(m(x),m∗(x)) (bias)

Vm(x) , L(m(x),m(x)) (variance)

Note that of these three, variance is the only one that depends on the particular model m.
The expected error (also known as the “loss”) of a model m on dataset D is

err(m,D) , E(x,y)∼D [L(m(x), y)] .

Define the disagreement between two models m1 and m2 as

d(m1,m2) , Pr
x∼D

[m1(x) 6= m2(x)] = Ex∼D [L(m1(x),m2(x))] ,

i.e., d(m1,m2) is the probability that m1 and m2 disagree on a randomly drawn data point.
Intuitively, predictive multiplicity flips decisions for more people as d grows. Note that d(·, ·)
is symmetric and satisfies the triangle inequality:1

d(m1,m2) ≤ d(m1,m3) + d(m2,m3)

A natural way to formalize predictive multiplicity for a distributionM over models is the
expected pairwise disagreement over the distribution of models: if two models are randomly
selected, how many points do they disagree on in expectation?

I(M) , Em1,m2∼M [d(m1,m2)] .

Thus, I is a formal measure of the predictive multiplicity present in a distributionM over
models. Note that I is task-specific, since it depends on the data distribution D. For the
remainder of this paper, we will assume thatM refers to the Rashomon set, i.e., all models
inM have the same error L∗.

E.1.2 Predictive Multiplicity and Accuracy

Here, we present results relating predictive multiplicity to error. If all models inM have
error L∗, Theorem E.1 upper-bounds predictive multiplicity I(M) by 2L∗. We will revisit
this bound in Section E.1.3 to derive a tighter bound. Theorem E.2 shows that under certain
assumptions, as L∗ decreases (models inM become more accurate), predictive multiplicity
approaches 0.

Theorem E.1.
I(M) ≤ 2L∗

Proof. We formalize the observation that two models that only make mistakes with probability

1In fact, d is a metric, since it is nonnegative and d(m,m) = 0.
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p can only disagree with one another with probability at most 2p:

Pr
x∼D

[m1(x) 6= m2(x)]

≤ Pr
(x,y)∼D

[(m1(x) = y ∩m2(x) 6= y) ∪ (m1(x) 6= y ∩m2(x) = y)]

= Pr
(x,y)∼D

[m1(x) = y ∩m2(x) 6= y] + Pr
(x,y)∼D

[m1(x) 6= y ∩m2(x) = y]

≤ Pr
(x,y)∼D

[m2(x) 6= y] + Pr
(x,y)∼D

[m1(x) 6= y]

= 2L∗

Since this holds for any m1,m2 ∈ M, it holds in expectation over for random m1,m2 ∼
M.

Note that this characterization is essentially tight: consider the case where the true label
is always y = 1 and M assigns equal probability to each of k models, where mi(xi) = 0
and mi(x) = 1 for all x 6= xi. Then, each model makes exactly one error (on xi), and
models mi and mj disagree in exactly two points (xi and xj). Thus, the expected number of
disagreements between two randomly selected models is 2L∗(1− 1/k), taking into account
the probability that the same model is selected twice.

Uniqueness. Next, we show that optimal models are in some sense unique. Our intuition
is that the Bayes-optimal model is unique. This isn’t strictly true: if Pr[y = 1] = 1/2 given an
x, then all models are Bayes-optimal, since they all have loss 1/2. But our intuition should
still hold for “predictable” problems, where y can be predicted from x better than random
chance.

Assume |Pry∼D | x[y = 1]− 1/2| > c, i.e., y can be predicted better than 50-50 chance for
every x. We will show that predictive multiplicity goes to 0 as model performance approaches
the Bayes risk. As before, let L∗ be the loss of any model inM. Then, the following theorem
shows that as the models inM approach the Bayes risk R on D, predictive multiplicity goes
to 0.

Theorem E.2. If |Pry∼D | x[y = 1]− 1/2| > c, then

I(M) ≤ L∗ −R
c

.
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Proof.

E(x,y)∼D [L(m(x), y)]

= Pr
(x,y)∼D

[m(x) 6= y]

= Pr
(x,y)∼D

[m∗(x) 6= y] + Pr
(x,y)∼D

[m(x) 6= m∗(x)]

− 2 Pr
(x,y)∼D

[m(x) 6= m∗(x) ∩m∗(x) 6= y]

= R+ d(m,m∗)

− 2 Pr
(x,y)∼D

[m(x) 6= m∗(x)] Pr
(x,y)∼D

[m∗(x) 6= y | m(x) 6= m∗(x)]

L∗ = R+ d(m,m∗)

(
1− 2 Pr

(x,y)∼D
[m∗(x) 6= y | m(x) 6= m∗(x)]

)
d(m,m∗) =

L∗ −R
1− 2 Pr(x,y)∼D[m∗(x) 6= y | m(x) 6= m∗(x)]

≤ L∗ −R
1− 2(1/2− c)

(m∗ is wrong with probability at most 1/2− c by assumption)

=
L∗ −R

2c

Thus, the distance between any m ∼M and the Bayes optimal model m∗ is bounded. We
can use this to bound predictive multiplicity as follows:

I(M) = Em1,m2∼M [d(m1,m2)]

≤ Em1,m2∼M [d(m1,m
∗) + d(m2,m

∗)]

≤ 2(L∗ −R)

2c

=
L∗ −R

c

E.1.3 Predictive Multiplicity and Variance
Next, we show a tight connection between predictive multiplicity and variance. Theorem E.3
shows that predictive multiplicity and variance are within a factor of 2 of one another. As a
corollary, we show that reducing loss can increase predictive multiplicity (Corollary E.3.1).
Theorem E.4 uses this result to sharpen the bound in Theorem E.1.

Let the expected variance of a model distributionM be

V (M) , Em∼M,x∼D [Vm(x)] .

Theorem E.3.
1

2
V (M) ≤ I(M) ≤ 2V (M)
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Proof. We begin with an upper bound on predictive multiplicity.

I(M) = Em1,m2∼M [d(m1,m2)]

≤ Em1,m2∼M [d(m1,m) + d(m2,m)]

= 2Em∼M [d(m,m)]

= 2Em∼M [Ex∼D [L(m,m)]]

= 2V (M)

We derive a lower bound with the following observation: if m disagrees with the mode
predictor m on an instance x, then m must disagree on x with at least half of the models in
M.2 Formally, we can write this as

m(x) 6= m(x) =⇒ Pr
m′∼M

[m(x) 6= m′(x)] ≥ 1

2
,

which implies
Pr
x∼D

[m(x) 6= m(x)] ≤ 2 Pr
m′∼M,x∼D

[m(x) 6= m′(x)]. (E.1)

Using this, we have

V (M) = Em∼M,x∼D [Vm(x)]

= Em∼M
[

Pr
x∼D

[m(x) 6= m(x)]
]

≤ 2Em∼M

[
Pr

m′∼M,x∼D
[m(x) 6= m′(x)]

]
(by (E.1))

= 2Em,m′∼M
[

Pr
x∼D

[m(x) 6= m′(x)]
]

= 2Em,m′∼M [d(m,m′)]

= 2I(M)

Putting this together, we have

1

2
V (M) ≤ I(M) ≤ 2V (M).

This shows a fairly tight connection between model variance and predictive multiplicity, which
can help our intuition in a few ways. First, we see that increasing accuracy by increasing
variance and reducing bias (e.g., using a more complex model class) can actually increase
predictive multiplicity, consistent with empirical findings [24, 26]. Second, we see that efforts
to decrease model variance (e.g., more data) should reduce predictive multiplicity. This yields
the following result:

Corollary E.3.1. Reducing loss by decreasing bias and increasing variance can increase
predictive multiplicity.

2By “half,” we mean models that account for at least half the probability mass ofM.
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Deriving a tighter relationship between predictive multiplicity and accuracy.
We can use this insight on the connection between predictive multiplicity and accuracy to
improve the bound in Theorem E.1. As before, let L∗ be the loss of any model inM. Let R
be the Bayes risk, and let B be the bias ofM (i.e., the error of the mode predictor m).

Theorem E.4.
I(M) ≤ 2[L∗ −R(1− 2B)]

Proof. We begin with decomposition of error into noise, bias, and variance from [62].

L∗ = E(x,y)∼D,m∼M [L(m(x), y)]

= (2 · Pr
x∼D

[m(x) = m∗(x)]− 1)Ex∼D [N(x)] + Ex∼D [B(x)]

+ Ex∼D,m∼M
[
(−1)1m(x)6=m∗(x)Vm(x)

]
= (2(1− d(m,m∗)− 1)R+ d(m,m∗) + Ex∼D,m∼M [(1− 2B(x))Vm(x)]

= (1− 2B)R+B + V (M)− 2Ex∼D,m∼M [B(x)Vm(x)]

= (1− 2B)R+B + V (M)− 2 Pr
x∼D,m∼M

[B(x) = 1 ∩ Vm(x) = 1]

= (1− 2B)R+B + V (M)− 2 Pr
x∼D

[B(x) = 1] Pr
m∼M

[Vm(x) = 1 | B(x) = 1]

Note that for any x, Prm∼M[Vm(x) = 1] ≤ 1
2 because by definition of the mode predictor,

the probability a random model disagrees with the mode predictor on a given x as at most a
half. Since this holds for every x, this is true conditioned on B(x) = 1, so

Pr
m∼M

[Vm(x) = 1 | B(x) = 1] ≤ 1

2
.

Thus, we have

L∗ = (1− 2B)R+B + V (M)− 2 Pr
x∼D

[B(x) = 1] Pr
m∼M

[Vm(x) = 1 | B(x) = 1]

≥ (1− 2B)R+B + V (M)− Pr
x∼D

[B(x) = 1]

= (1− 2B)R+B + V (M)−B
= (1− 2B)R+ V (M)

≥ (1− 2B)R+
1

2
I(M) (By Theorem E.3)

Rearranging yields the desired result:

I(M) ≤ 2[L∗ −R(1− 2B)].

Note that B ≤ 1
2 , since a model that deterministically predicts the more likely class achieves

loss at most 1
2 . As a result, Theorem E.4 immediately implies Theorem E.1.
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