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Abstract
The problem of constructing codes resilient to deletions, where bits go missing

and a subsequence is received, has a long history. Optimal binary single-deletion
codes, which have size Θ(2n/n) (or redundancy log n + O(1)), for length n, have
been known since the 60s. Regardless of the alphabet size of the code, the redun-
dancy of a code is measured in bits. Although the optimal binary single-deletion
codes have been established, the situation even for two deletions is a lot more com-
plex. A non-constructive greedy argument shows the existence of binary codes of
redundancy 4 log2 n, whereas redundancy 2 log2 n is necessary. Compared with bi-
nary deletion codes, the topic of deletion codes over an alphabet of an arbitrary size
q (or q-ary deletion codes) received much less attention. In this work, we describe
2-deletion codes over an alphabet of size q of redundancy 3 log2 n+Oq(log log n) +
r2(n), assuming r2(n) is the minimum redundancy needed for binary 2-deletion
code, thus opening up a new direction of study. Combining with Håstad’s list-
decodable binary 2-deletion codes, which have redundancy 3 log2 n + O(log log n)
and allow the received word to be list-decoded into at most two possibilities from 2
deletions, we obtain a list-decodable q-ary 2-deletion code with 6 log2 n+Oq(log log n)
redundancy and a list size 2. Our approach in the proof uses indicator strings and
the run numbers in the string to compute various check sums that together enable
recovery of the two missing bits. We hope this new perspective will be a useful way
to think about and construct further deletion codes.



iv



Acknowledgments
I would like to thank my professor Venkatesan Guruswami for giving me count-

less valuable advice on this project as well as technical writing. I have gotten support
from professor Guruswami even in the most difficult times of my research. I have
also learned many valuable lessons from his methods of approaching research ques-
tions.

I would like to thank professor Johan Håstad for sharing and discussing some of
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Chapter 1

Introduction

An error-correcting code is an encoding scheme used in communication over a noisy channel,
which allows the recovery of an altered message. Here, noisy means that the channel might be
unstable and would potentially change or delete the content of the message. In general, the goal
of error-correcting codes is to provide an efficient method of encoding and decoding the message,
such that the intended message can be encoded efficiently with small redundancy, as well as de-
coded in a small amount of time. Meanwhile, it is crucial that the code is robust against the error
that might occur, such that even in the worst-case scenarios, information can still be retrieved
from the partially corrupted message. In general, different encoding schemes may need to deal
with different types of noise in the communication channel, such as erasure (when a codeword
bit is missing), error (when a codeword bit is flipped), deletion (when a codeword bit is deleted,
and the rest are concatenated) and so on. In this work, we focus on the problem of recovering
messages from deletions. Furthermore, we focus on the case where the number of deleted bits
is a constant and study how to minimize the redundancy and maximize the efficiency in our code.

Let Σq = {0, 1, · · · q − 1} be an alphabet of size q. A k-deletion code over Σq maps an
n-symbol message x ∈ Σn

q into a codeword c ∈ ΣN
q , such that x can be recovered from any

subsequence of c of length N − k. A code C is a list of codewords c, and |C| is the size of the
code. The rate of the code is the ratio R = n

N
that measures the efficiency of the code. Such a

code allows for recovery from k worst-case deletions (where the locations of the deleted bits are
not known). Similarly, a list-decodable k-deletion code of message length n over Σq allows a list
Lx to be recovered from any subsequences of c of length N − k, such that x ∈ Lx. The quantity
maxx |Lx| is the list size of the list-decodable code. In general, a k-deletion code over Σq is also
referred to as q-ary k-deletion code, and when q = 2, it is referred to as a binary k-deletion code.
We will use these terms interchangeably.

To measure efficiency of the k-deletion codes in another metric, we define the redundancy of
a code as follows: We assume that all codes we construct are systematic codes, where the mes-
sage sequence x is a substring of the corresponding codeword c. Without the loss of generality,
we assume that any codeword c ∈ ΣN

q can be written as the concatenation of two sequences,
c = x1 · · ·xns(x)1 · · · s(x)N−n, where the sequence x1 · · ·xn = x ∈ Σn

q is the message, and the
binary sequence s(x)1 · · · s(x)N−n = s(x) ∈ ΣN−n

2 is the additional (N −n)-bits of information
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needed. We define the binary sequence s(x) as the sketch of the message x, and define the quan-
tity r = N − n as the redundancy of the code. Note that in this thesis, the redundancy of a code
is always measured in bits, rather than q-ary symbols.

Early in the 1960s, Levenshtein [1] provided the very first result on binary k-deletion codes.
Let us denote C∗(n, k) as the largest binary k-deletion code for strings of length n. Levenshtein
showed the following bounds on the size of largest binary k-deletion code:

2k(k!)22n

n2k
/ |C∗(n, k)| / k!2n

nk

However, the construction of binary k-deletion code from Levenshtein’s result [1] was not effi-
cient because it was based on a greedy algorithm and required exponential decoding time with
respect to k. Recent works by [2], [3], [4] and [5] showed much more efficient constructions with
reasonable redundancy. In comparison, the q-ary extension of k-deletion code has been rarely
explored. The q-ary extension of single-deletion codes was studied early in the work of [6], but
the general case where k is a constant is far from being studied. Only a recent work of [7] has
come up with efficient construction for this extension.

1.1 Main Contributions
In this thesis, we focus on the case k = 2 and the encoding over q-ary alphabet. We present the
following results:

• We present a reduction from q-ary 2-deletion codes to binary 2-deletion codes, which al-
lows a construction of q-ary 2-deletion code with redundancy of 3 log2 n+Oq(log log n)+
r2(n) bits, assuming r2(n) is the minimum redundancy needed for the optimal binary 2-
deletion code.

• We present a detailed proof of Håstad’s list-decodable binary 2-deletion code [8] with list
size 2, that uses 3 log2 n + O(log log n) redundancy bits. This is based on Johan Håstad’s
result in 2015 [9] and 2017 [8].

• Combining the first two results, we present a list-decodable q-ary 2-deletion code with list
size of 2, that uses 6 log2 n+Oq(log log n) redundancy bits. It is the best-known result on
2-deletion over q-ary alphabet.

In fact, Håstad’s result [9] contains a 4 log2 n + O(log log n) redundancy construction of a
binary 2-deletion code, which if combined with our reduction result, would provide a q-ary 2-
deletion code with 7 log2 n + Oq(log log n) redundancy. However, since Håstad’s list-decoding
result from [8] has a much cleaner proof, we are including it in this thesis.
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Formally, we summarize our contribution as the following theorems:

Theorem 1. Let q be a constant with respect to n, and assume that the optimal binary 2-deletion
code uses r2(n) redundancy bits and requiresO(t(n)) time to encode and decode. Then there ex-
ists a 2-deletion code over an alphabet of size q, that uses at most 3 log2 n+Oq(log log n)+r2(n)
bits of redundancy, and allows encoding and decoding in O(n2 + t(n)) time.

Theorem 2. (Håstad’s List-Decoding Theorem) There exists a list-decodable binary 2-deletion
code with list size 2, that uses at most 3 log2 n + O(log log n) bits of redundancy, and allows
encoding and decoding in O(n2) time.

As a corollary of Theorem 1 and Theorem 2, we obtain the following theorem:

Theorem 3. Let q be a constant with respect to n. Then there exists a list-decodable 2-deletion
code over an alphabet of size q with list size 2, that uses at most 6 log2 n + Oq(log log n) bits of
redundancy, and allows encoding and decoding in O(n2) time.

1.2 Organization of Article

In Chapter 1.3, we provide an overview of the literatures on the topics that are related to this
thesis. In Chapter 2, we review the construction of the VT-code [10] and its q-ary extension
[6], describe the sketch we use in our construction, and introduce all the necessary notations we
need for the proof. In Chapter 3 and Chapter 4 we prove our main results by first proving our
reduction from q-ary 2-deletion code to binary 2-deletion code, then use Håstad’s list-decodable
binary 2-deletion code [8] to complete the proof. In Chapter 5, we summarize our results and
discuss some salient open problems.

1.3 Related Works

1.3.1 Existential Bounds of Code Size

As we have mentioned earlier, Levenshtein’s result [1] showed the limits of the optimal binary
k-deletion codes. It implied that (2k + o(1)) log2 n bits of redundancy is sufficient for a binary
k-deletion code, and (k+o(1)) log2 n bits of redundancy is necessary for the code. Therefore, the
bounds in [1] are often referred to as the existential bounds of binary k-deletion codes, because
the bounds only implied the existence of such codes. Later works such as [11], [12] and [13]
improved the upper bounds of Levenshtein’s bounds. However, since the main focus of this
thesis is to find an efficient construction of 2-deletion codes, we will not go into details regarding
the existential bounds.
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1.3.2 k-Deletion Codes

single-deletion codes. When the number of deleted bits k = 1, the k-deletion code is often re-
ferred to as single-deletion code. In 1960s, Varshamov and Tenengolts [10] constructed a concise
binary single-deletion code, usually referred to as VT-code, that achieved a code size of 2n

n+1
. Ac-

cording to Levenshtein’s upper bound(Θ(2
n

n
)) [1], VT-code has a code size that is asymptotically

optimal. It was later shown by Sloan’s survey [14] that VT-code is truly optimal for message
length up to 10. We will review the details of VT-code in later chapters since it is crucial in our
constructions.

k-deletion codes. While constructive codes for single-deletion has been established since 1960s,
efficient k-deletion codes for fixed k have not been discovered until recent years. A naive solution
for constructing a k-deletion code would be using (k + 1)-repetition code, which simply repeats
the message k+1 times and requiresOk(n) redundancy bits. Inspired by VT-codes, construction
by Helberg and Ferreira [15] used Fibonacci sequence vi to replace weights i in the VT-code for
their binary k-deletion codes (usually known as the Helberg codes), and work by [16] studied
the decodablility of run-length limited sequences. However, the code rate of both results are far
from optimal. In the work of [15], the weights grow exponentially, therefore the construction
requires Ω(n) bits of redundancy. Similarly, the result of [16] has code rate bounded away from
1. An improvement was made by Guruswami and Wang [17] in 2014, whose work implicitly
gave a O(

√
kn) redundancy construction of binary k-deletion code, but the redundancy was still

bounded away from the existential bounds.

In 2015, a breakthrough was made by Brakensiek, Guruswami and Zbarsky [2] to finally
bring down the redundancy to the level of Ok(log n) for binary k-deletion codes. They showed a
construction for a binary k-deletion code that only requiredO(k2 log k log n) redundancy bits and
allowed efficient decoding in Ok(n(log n)4) time. In 2018, Cheng, Jin, Li and Wu [3] and Haeu-
pler [4] simultaneously and independently presented an amazing algorithm that can be adapted to
a binary k-deletion code with O(k log n) redundancy and poly(n) decoding time. Their results
were already asymptotically optimal with respect to the existential bound [1]. To take a step
further, recent result by Sima and Bruck in 2019 [18] and result by Sima, Gabrys and Bruck in
2020 [5] showed two k-deletion codes with 8k log n and 4k log n redundancy respectively. These
results further reduce the constant factor in redundancy, but their drawbacks are clear as well:
construction of [18] is non-systematic, and both results require exponential decoding time with
respect to k. In the upcoming sections, we will make the distinction between systematic and
non-systematic codes.

After result of [2] was posted, many results were discovered on k edit-errors. Naturally,
insertion errors is defined by addition of symbols into the message sequence, and edit-errors in-
clude both insertion and deletion errors. On this topic, construction by Belazzougui [19] showed
a O(k2 + k log2 n) redundancy one-pass protocol of document exchange with k edit-errors. Re-
sults of [3] and [4] both provided O(k2 log n

k
) redundancy solution to solve the document ex-

change problem with binary alphabet over a noisy channel that causes up to k edit-errors for any
k. An important technique introduced by Haeupler and Shahrasbi in [20] called synchronization
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string transformed the edit-error type problems to erasure/corruption error problems. Further
works of [21] and [22] improved upon this reduction technique. For the scope of this thesis, we
will mainly focus on 2-deletion code, although some extension to 2 edit-errors will be discussed
at the end of the proof section.

2-deletion codes. Although the general techniques for binary k-deletion code have pushed the
number of redundancy bits to the existential bounds, those techniques usually perform poorly
on cases such as k = 2. When applying existing k-deletion code constructions such as [2] on
binary 2-deletion problem, the resulting redundancy can be as large as 128 log n [23]. Observe
that each constant factor introduced in the number of redundancy bits shrink the code size by
poly(n) factor. Therefore, alternative solutions other than general techniques on k-deletion are
needed for 2-deletion codes.

To solve this problem, work by Gabrys and Sala [24] and work by Sima, Raviv and Bruck
[23] showed two different constructions of binary 2-deletion codes with 8 log n and 7 log n re-
dundancy respectively. Both constructions were efficient, but not optimal when compared with
the existential bound of 4 log n. So far, the best result on binary 2-deletion code came from
Hastad’s unpublished results in 2015 [9] and 2017 [8], which showed a 4 log n redundancy con-
struction. Hastad’s proof in [8] included a nice construction of a list-decoding result, which will
be presented in detail in the second half of the thesis.

q-ary k-deletion codes. As part our focus, the q-ary extension of deletion codes has been rarely
studied. After the discovery of VT-codes [10], Tenengolts proposed a q-ary single-deletion code
in [6]. He reduced the problem of q-ary single-deletion code to binary single-deletion code,
which inspired us greatly in this thesis. Later work by [15] was originally proposed for binary k-
deletion codes, but was later proven in the work of Le and Nguyen [25] that the same technique
is also applicable to q-ary k-deletion codes. However, the code in [25] has an unsatisfactory
rate. Result of [4] on k edit-errors can be adapted to q-ary as well, but it suffers from an extra
log n factor from adaptation, resulting in a O(k log2 n) redundancy. Only most recently, work
by Sima, Gabrys and Bruck [7] showed a 4k log n + oq(log n) redundancy construction for q-
ary k-deletion code, which is the only known result that asymptotically matches the existential
upper-bound among all q-ary k-deletion codes.

Related to the topic of q-ary deletion codes, there also has been some results on q-ary burst
deletion codes. A burst deletion code can recover message x from substrings of c when adjacent
bits are deleted. In particular, a single-burst k-deletion code allows the recovery from deleting k
adjacent symbols from c. Work by Schoeny, Wachter-Zeh, Gabrys and Yaakobi [26] constructed
single-burst binary k-deletion codes for k = 3, 4, and further work by [27] studied the extension
of the problem on q-ary alphabet. However, since burst deletion is not the main topic of the
thesis, we will only be mentioning it again when we use burst deletion results in the construction
of our sketches and in the proof.

5



1.3.3 List-Decodable Codes
Although one of our main focus of the thesis, Håstad’s list-decodable code [8] focused on list-
decodable results for small number of deletions, literature in the past on list-decodable codes
mainly focused on the case where a large fraction of bits is deleted. For example, work by
Guruswami and Wang [17] was the first to study the list-decodability of binary deletion codes
on high rate deletions. Later work by Haeupler, Shahrasbi and Sudan [28] further investigated
the potential of list-decoding using a larger alphabet, and work by Liu, Tjuawinata and Xing
[29] showed other bounds for large rate deletion codes. However, the case where k is a fixed
integer has received much less attention in list-decodable k-deletion codes. When k is treated as
a fixed constant, work by Wachter-Zeh [30] constructed a binary list-decodable k-deletion code
of list size nk−1 based on VT-code and parity checks. As we will show in the thesis, Håstad’s
list-decodable 2-deletion code [8] is an improvement to this result for the case k = 2.
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Chapter 2

Preliminaries

2.1 Coding Via Sketches

Recall that when we work under systematic code setting, any codeword c can be written as a
concatenation of the message x and the sketch s(x). We claim that there exists a reduction be-
tween an efficient sketch and an efficient 2-deletion code. As a result, we should focus on finding
the sketch of the minimum size for the 2-deletion problem. We will formalize our claim as the
following lemma:

Lemma 1. For every message x ∈ Σn
q , assume that there exists an encoding algorithm Enc that

produce the q-ary 2-deletion sketch s(x), such that |s(x)| ≤ t log n, where t is a constant, and
there exists an decoding algorithm Dec(x′, s(x)) that takes in any subsequence of x of length n−2
and the sketch s(x), and outputs x. Then, there exists a q-ary 2-deletion code with redundancy
t log n+O(log log n).

Proof. Observe that when s(x) is an effective q-ary 2-deletion sketch for x, we can apply the
encoding algorithm Enc on s(x) again and obtain s(s(x)). Then the size of s(s(x)) has a lower
asymptotic order: |s(s(x))| < t log t log n = O(log log n). Therefore, we are free to use 3-
repetition code on s(s(x)) to protect it from 2-deletion. The total number of redundancy bits will
be t log n+ 3t log t log n = t log n+O(log log n).

For the decoding algorithm, we can decode the strings in the following order: s(s(x)) −→
s(x) −→ x. The sketch s(s(x)) can be decoded by the decoding algorithm of 3-repetition code,
and s(x) and x can be decoded subsequently by using the 2-deletion decoding algorithm Dec.

By proving the above theorem, we shift our focus to constructing an efficient 2-deletion
sketch, rather than constructing the entire 2-deletion code. We can also assume that any problem
in decoding 2-deletion comes down to decoding the message with a subsequence of length n− 2
and the sketch. We will refer to such a sketch as an effective 2-deletion sketch.

7



2.2 Review of VT-Code and Its q-ary Generalizations
For any message x of length n, we can write it as a sequence of n characters x1, x2, · · · , xn. We
recall that in VT-code [10], a binary single-deletion code is constructed as the set of all binary
sequences x1, x2, · · · , xn that satisfy the following equation for some fixed integer a:

n∑
i=1

ixi ≡ a mod n+ 1 (2.1)

Therefore, it is equivalent to think of VT-code as a sketch defined by
∑n

i=1 ixi mod n + 1
on any message x, which requires log2 n+ 1 number of redundancy bits.

Example 1. For a binary sequence x = 110010, the associated sketch is
∑n

i=1 ixi mod n+1 =
1 + 2 + 5 mod 7 = 1.

To generalize VT-code to an alphabet of size q, Tenengolts proposed a construction of q-ary
single-deletion code [6], which we reiterate as follows: For any q − ary sequence x1, x2, · · ·xn,
where xi ∈ Σq, associate it with a sequence α1, α2, · · · , αn, where αi ∈ Σ2. Each number αi is
defined by the following rule:

αi =

{
1 if i = 1 or xi ≥ xi−1

0 if xi < xi−1
(2.2)

Example 2. For a q-ary sequence x = 123321, the associated αi’s are 1,1,1,1,0,0.

Tenengolts’ paper [6] showed that a q-ary single-deletion code can be constructed as a set of
all binary sequences of length n that satisfy

∑n
i=1 xi mod q = a and

∑n
i=1(i−1)αi mod n = b

for some fixed integers a, b. Tenengolts’ code is slightly different from VT-code because α1 = 1
is fixed in the definition. Using Tenengolts’ code is equivalent to having the following sketch
T (x):

T (x) = (a, b),where

a =
n∑
i=1

xi mod q

b =
n∑
i=1

(i− 1)αi mod n

(2.3)

Example 3. For a ternary sequence x = 123321, the associated sketch is T (x) = (0, 0).

In this thesis, for any q-ary sequence x = x1x2 · · ·xn, denote the string α(x) as the concate-
nation of the αi as defined previously. We will refer to the sequence α(x) as the α-indicator
sequence of message x. To distinguish between characters in α-indicator sequence of different
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messages, we use αi(x) to refer to the ith character of α(x).

2.3 Sketch Construction
Sketch For Håstad’s List-Decodable Code: Many properties of the run numbers of a sequence
are essential in Håstad’s proof [8] of his list-decodable binary 2-deletion code. We define run
numbers of a sequence as follows: For any sequence x1, x2, · · · , xn ∈ Σq, associate it with a
sequence r1, r2 · · · , rn, where ri ∈ N+. Each number ri is defined recursively by the following
rule:

ri =


1 if i = 1

ri−1 if i 6= 1 & xi = xi−1

ri−1 + 1 if i 6= 1 & xi 6= xi−1

(2.4)

Example 4. For a sequence x = 123321, the associated ri’s are 1,2,3,3,4,5.

For any string x = x1x2 · · ·xn, we define ri(x) as the run number of string x at index i.
The consecutive characters are in the same run when their run numbers are the same. Using
the definition of run numbers, the sketches R1(x), R2(x) used in Håstad’s list-decodable binary
2-deletion code are defined as follows:

R1(x) =
n∑
i=1

ri(x) mod 2n+ 1

R2(x) =
n∑
i=1

(ri(x))2 mod 2n2 + 1

(2.5)

Example 5. For a sequence x = 123321, the associated sketches are R1(x) = 5, R2(x) = 64.

Observation 4. As a side note, we observe that by using our notion of run numbers, the VT-code
[10] and its q-ary extension [6] do not in fact decode the exact index of deleted bit. Instead, they
decode the exact run number of the deleted bit. An example would be deleting a 0 from the string
0011. It would result in the same string 011 regardless of the choice of deleting first or second
0. Therefore, the decoder should not worry about decoding exact index in many cases, but rather
focus on decoding the run number of deleted bits.

Sketch For Reduction From q-ary to Binary: For the reduction, we first define a run-number-
weighted sketch on α-indicator of x, which we denote as rwα(x), as follows:

rwα(x) =
n∑
i=1

ri(α(x)) · xi mod qn (2.6)

We will also use a sketch for binary single-burst 2-deletion code. For sequence x = x1x2 · · ·xn,
let xodd be the sequence x1x3 · · · that consists of odd-indexed characters in x, and xeven be the
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sequence x2x4 · · · that consists of even-indexed characters in x. Our sketch for single-burst
2-deletion code will be applying Tenengolts’ q-ary single-deletion sketch on xodd and xeven re-
spectively, which we denote as T (xodd), T (xeven). We will formally prove that it is a single-burst
2-deletion sketch in the upcoming chapter.

To simplify, we will use Red(x) to denote the concatenation of all the sketches we use in the
reduction step:

Red(x) = (T (xodd), T (xeven), rwα(x)) (2.7)

Other Constant-Sized Sketches: For simplicity, we assume the following constant-sized sketches
are known in advance, but we omit them in our analysis:

1. For each character i ∈ Σq, we keep a counter ci mod 3 in our sketch.

2. For the sequence x, we keep rn(x) mod 5 in our sketch.

The first sketch helps the decoder recover the identity of deleted characters, and the second
sketch helps the decoder compute the change in number of runs of the message and its subse-
quence.

Sketch Notations and Redundancy Recap:
• Sketch for reduction from q-ary to binary: Red(x) = (T (xodd), T (xeven), rwα(x))

Redundancy: 2 ∗ (log2
n
2

+ log2 q) + log2 qn = 3 log2 n+Oq(1)

• Sketch for Håstad’s list-decodable code: R1(x), R2(x)

Redundancy: log2 (2n+ 1) + log2 (2n2 + 1) = 3 log2 n+O(1)

• Sketch known in advance (constant-sized): ci mod 3, rn(x) mod 5

Redundancy: q ∗ log2 3 + log2 5 = Oq(1)

Additional Notation:
In many works related to k-deletion codes, σk(c) denotes the deletion ball of c, consisting of

all the subsequences of c of length N − k, we will stick with this notation as well.

2.4 Overview of Proof Strategy
The crux of our approach is to take the viewpoint of a decoder in the protocol. Whenever two
different messages can be decoded, we use the information from sketch to eliminate at least one.
Our main proof shows a reduction from the decoding of q-ary 2-deletion problem to the decoding
of binary 2-deletion problem, as well as showing a proof on a list-decodable binary 2-deletion
code by Håstad [8]. For the reduction, we will first show that the α-indicator of the message can
be recovered by using an existing binary 2-deletion code, by using a reduction from [6]. We then
prove Theorem 1 by showing that α-indicator and the sketch Red(x) are sufficient in fixing the
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positions of deleted bits by a case analysis on the run where character was deleted. In our proof
of Theorem 2, we present a detailed proof for Håstad’s list-decodable binary 2-deletion code by
analyzing some monotonicity results of run numbers of the message.

After proving the first two theorems, we will combine the results to present an efficient en-
coding and decoding algorithm for a q-ary 2-deletion code as our Theorem 3. The encoding
algorithm of this code is based on the sketches we presented earlier in this chapter. The decoding
algorithm breaks down the decoding procedure into a two-stage problem, which involves solving
a binary 2-deletion problem on α-indicator first, then solves the q-ary 2-deletion problem using
our reduction.
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Chapter 3

Reduction From q-ary 2-Deletion to Binary
2-Deletion

3.1 Naive q-ary Single-Burst 2-Deletion Code
In the previous chapter, we claimed that Tenengolts’ sketch on xodd, xeven are effective single-
burst 2-deletion sketches. We will prove the claim here since it will be helpful in our proof of the
main theorem.
Lemma 2. T (xodd), T (xeven) are effective q-ary single-burst 2-deletion sketches for any x ∈ Σn

q .

Proof. Any q-ary single-burst 2-deletion problem on x can be reduced to a q-ary single-deletion
problem on xodd and a q-ary single-deletion problem on xeven, because deleting two adjacent
bits in x would cause exactly one bit to be deleted from xodd and xeven each. Since T (x) is an
effective q-ary single-deletion sketch for x as shown in [6], T (xodd), T (xeven) can help recover
xodd and xeven respectively, and therefore help recover x.

3.2 Decoding q-ary 2-Deletion Code with Known α-Indicator
In order to demonstrate the effectiveness of our technique, we will show that it is compatible with
all existing binary 2-deletion codes. To do so, we will show a reduction from q-ary 2-deletion
codes to binary 2-deletion codes. Assume that there exist some binary 2-deletion codes, we claim
that we can uniquely recover the α-indicator sequence of x.

Claim 1. Let s be a positive integer. Let x be a q-ary sequence of length n > s. For every
x′ ∈ σs(x), α(x′) ∈ σs(α(x)).

Proof. Instead of proving the claim directly, we will show a reduction from this claim to a result
that was proven in [6]: For all sequences x′ ∈ σ1(x), α(x′) ∈ σ1(α(x)). Observe that when
x′ ∈ σs(x), we can construct a sequence of q-ary sequences y0, y1, · · · , ys, such that y0 = x′ and
ys = x, and for all 1 ≤ i ≤ s, yi−1 ∈ σ1(yi). Then by applying the claim from [6], we can show
that for all 1 ≤ i ≤ s, α(yi) ∈ σ1(yi−1). Therefore, we obtain that α(y0) ∈ σs(α(ys)), which is
exactly α(x′) ∈ σs(α(x)).
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From the claim proven, we know that having a binary 2-deletion code allows us to re-
cover α(x) uniquely. Then we claim that proving Theorem 1 requires us to prove the fol-
lowing lemma, which we refer to as the Unique-Decoding Lemma. Recall that Red(x) =
(T (xodd), T (xeven), rwα(x)).

Lemma 3. (Unique-Decoding Lemma) For sufficiently large n, if x ∈ Σn
q is a q-ary sequence

of symbols, and x′ ∈ σ2(x) is a subsequence of x of length n− 2, then there exists an algorithm
DecRed(x′, Red(x), α(x)) that computes x in O(n2) time.

3.3 Proof of Unique-Decoding Lemma

Figure 3.1: 2-deletion projection from q-ary alphabet to binary alphabet

Proof. When α(x) is recovered, the identities of the two bits deleted from α(x) to α(x′) are also
recovered by counting the difference in number of 0, 1 between α(x) and α(x′). Denote these
two bits deleted from α(x) as λ1, λ2 ∈ {0, 1}, corresponding to the characters b1, b2 ∈ Σq deleted
from x. The values of λi and bi are known in advance by using our constant-sized sketches. With-
out the loss of generality, assume that λ1 ≤ λ2. In order to analyze how to recover x, we first
analyze how α(x) is recovered by inserting λ1, λ2 into α(x′) by a case analysis on λi:

Case 1: λ1 = λ2. When λ1 = λ2, we claim that we can recover the runs i, j in which two bits
are inserted from α(x) by a simple linear-time procedure DecodePosition: Recall that αi(x) is
the ith character of α(x). For each 1 ≤ i ≤ n, we greedily match the bits αi(x) and αi(x′). If
they are not equal, output the run number of the current character αi(x′), and delete the bit αi(x)
from α(x) to continue matching. If we finished matching, and there are still characters left in
α(x), we can out put their run numbers.

By applying this algorithm, we recover at least one set of positions (i, j) to insert λ1, λ2 to
recover α(x). We make the following claim:

Claim 2. If λ1 = λ2, there exists a unique pair of runs (i, j) to insert λ1, λ2 to recover α(x) from
α(x′).

Proof. Let (i, j) be the solution obtained from running DecodePosition(α(x), α(x′). Without
the loss of generality, assume λ1 = λ2 = 0, and i ≤ j. Assume for the sake of contradiction that
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Algorithm 1 Algorithm for Finding the Runs Where Two bits Are Deleted
1: function DECODEPOSITION(α(x), α(x′))
2: n← |α(x)|, index← 0, offset← 0, Runs← [rn−3(x

′), rn−2(x
′)]

3: while index 6= n− 2 do
4: if αindex(x

′) 6= αindex+offset(x) then
5: Runs[offset]← [rindex(x

′)]
6: offset← offset + 1
7: else
8: index← index + 1
9: end if

10: end while
11: return Runs . Two entries indicates two runs to insert the bits
12: end function

there exists another set of runs (i′, j′) 6= (i, j) to insert λ1, λ2 respectively to recover α(x) from
α(x′). Let s1 denote the string obtained from inserting two bits at run (i, j), and let s2 denote the
string obtained from inserting two bits at run (i′, j′). By our construction, s1 = α(x). We want
to show that (i′, j′) 6= (i, j) implies s1 6= s2.

Since (i′, j′) 6= (i, j), either we have i′ 6= i, or we have i′ = i and j′ 6= j. In the first case,
let i∗ = min(i, i′), and compare the number of zeroes in run i∗ in s1 and s2 respectively. Notice
that because λ1 = λ2, the character inserted in run j, j′ would not decrease the number of zeroes
in run i∗, and therefore, in s1 and s2 the number of zeroes in run i∗ must differ by at least 1,
so we obtain that s1 6= s2. Similarly, in the second case, let j∗ = min(j, j′), we can show that
in s1 and s2, the number of zeroes in run j∗ must differ by 1, and therefore s1 6= s2. Since the
contradiction is shown in both cases, we have shown that s2 must differ from s1, which indicates
that the set of runs to insert must be unique when λ1 = λ2.

After fixing the run i, j, we know one of the following cases should happen:

A. λ1 is inserted in run i, λ2 is inserted in run j. (Fig 4.2, Case A)
B. λ1 is inserted in run j, λ2 is inserted in run i. (Fig 4.2, Case B)

In the above two cases, the same α(x) is obtained, but the strings obtained from inserting
b1, b2 ∈ Σq to recover x still might be different. To show that we can obtain exactly one string
from each case, we provide a simple observation to facilitate the proof:

Observation 5. When the run i to insert λ1 is fixed, the index to insert b1 is uniquely fixed.
Similarly, when the run j to insert λ2 is fixed, the index to insert b1 is also uniquely fixed.

To prove this observation, we simply notice that each run in α(x) represents a monotone se-
quence in x. A sequence of 1’s in α(x) represents a monotonically non-decreasing sequence in
x, and a sequence of 0’s in α(x) represents a monotonically decreasing sequence in x. Therefore,
if we know the identity of b1 and the monotone sequence to insert it, its position in the sequence
is fixed. Therefore, we obtain exactly one string in each case A,B. Denote the strings obtained
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from case A,B as sA, sB respectively. Given that at least one out of the two strings sA, sB is the
message x, we want to show that either sA = sB = x, or one of the string does not produce the
same sketch as x. We will do so by a case analysis by comparing b1, b2:

• Special case 1. When b1 = b2, we will recover the same string in the two cases, sA = sB.
Therefore, we recover x uniquely (Fig 4.2, Special 1).

• Special case 2. If i = j, we will recover the same string in the two cases again, and there-
fore we recover x uniquely (Fig 4.2, Special 2).

• In the general case, when b1 6= b2 and i 6= j, we may check the string obtained with
our sketch rwα(x) =

∑n
i=1 ri(α(x)) · xi mod qn. We can treat the sketch rwα(x) as

a potential function and calculate the value of the function on these two strings sA, sB.
Notice that:

|rwα(sA)− rwα(sB)| = |(j − i) · (b1 − b2)| mod qn 6= 0

Therefore, the sketch of at most one string out of sA, sB can match the sketch rwα(x).
Since we know at least one string out of sA, sB is x, we recover x by choosing the string
with the matching sketch value.

Figure 3.2: Graphic representation for the case λ1 = λ2

Case 2: λ1 6= λ2. When λ1 = 0 and λ2 = 1, we can use the same argument as above in most
cases to determine a unique solution. One caveat here is that now the uniqueness of the sequence
α(x) does not guarantee the uniqueness of which runs to insert the two characters. Particularly,
we will show how the previous Claim 2 fails to hold in some special cases when λ1 6= λ2 in the
following example:

Example 6. To recover the string x = 19281919 from the subsequence x′ = 191919, we first
recover the indicator sequences α(x′) = 110101 and α(x) = 11010101. By running our al-
gorithm DecodePosition on α(x′) and α(x) as input, we would obtain that we need to insert
the numbers 2, 8 at the last two positions. We then will obtain the string 19191928 instead of
the desired result. Similarly, our algorithm would fail only if two adjacent bits are deleted. In
general, if some α(x) contains O(n) length of alternating 01 pattern, then up to O(n) strings can
share the same α-indicator sequence. In such cases, we obtain up to O(n) different strings.
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To resolve this issue, we notice that Claim 2 only fails to hold when we are in the spe-
cial case where two adjacent symbols are deleted, which is exactly the problem of single-burst
2-deletion. Since we have shown in Lemma 2 that T (xodd), T (xeven) are effective q-ary single-
burst 2-deletion sketches, x can be uniquely decoded by using these sketches in the special cases.

After showing the correctness of the code above, a decoding algorithm DecRed works as
follows: First, determine the identity of λ1, λ2 by α(x′). Then, determine the positions to insert
both bits to complete α(x). It takes O(n2) time to run brute-force algorithm over all valid insert
positions to compute the sketch for each position, and check if it is equal to Red(x).

3.3.1 Generalization and Limitation
We have presented in this chapter on how to construct a q-ary 2-deletion code assuming there
exists an efficient binary 2-deletion code. Notice that the same technique also applies to all
list-decoding results on binary 2-deletion code, without increasing the size of the resulting list.
One would only need to apply the reduction on each of the α-indicators obtained by the binary
2-deletion code. Therefore, our result can be generalized to adapt to any list-decodable binary
2-deletion code.

Meanwhile, it is tempting to generalize our reduction technique, which uses α-indicator se-
quence, to other k-deletion questions with k = 3, 4 or larger. However, one main challenge in
doing so has been discussed in our proof: Up to polynomially many different strings might share
the same indicator sequence α(x). This sharing issue is a fundamental problem of using the
α-indicator. In some cases such as k = 2, one can use an existing code such as the single-burst
2-deletion code to distinguish between the strings that share the same α-indicator string, but it is
much harder to do so in the general setting when k is a larger constant. In the general setting,
it may require complex case analysis, as well as more complex k-burst deletion codes, since the
burst can be split up to multiple locations.
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Chapter 4

Completing Sketch by Håstad’s
List-Decodable Code

In this chapter, we present a detailed proof of correctness of Håstad’s construction [8] of list-
decodable binary 2-deletion codes, with a list size 2. Combining this list-decoding result with
our reduction, we obtain a list-decodable 2-deletion code on q-ary alphabet, with list size up to
2. We will first show that part of Håstad’s sketch is effective against binary single-deletion, then
show that the entire sketch is effective against binary 2-deletion. Since now we are working with
binary sequences, we will now be working with binary alphabet {0, 1} in this section instead of
q-ary alphabet.

For simplicity, we may assume that x1 = 1 and xn = 0, as we may pay extra constant number
of bits in our sketch to compensate for this. The following lemma will be useful in our proof,
and we will be proving the lemma at the end of the chapter:

Lemma 4. (Run Number Lemma) For any x ∈ Σn
2 , if bit b is deleted from x to obtain x′, then

one of the following two cases applies: 1. rn(x)− rn−1(x′) = 0, 2. 2. rn(x)− rn−1(x′) = 1, and
b is either at the beginning or at the end of x.

4.1 Håstad’s Single-Deletion Code
Before showing how effective the entire sketch is, we present a lemma that shows Håstad’s sketch
is equally efficient as the VT-code sketch [10], up to an additive constant factor:

Lemma 5. For any x ∈ Σn
2 , R1(x) and rn(x) mod 5 are effective binary single-deletion

sketches.

Proof. Recall that R1(x) is defined as R1(x) =
∑n

i=1 ri(x) mod 2n + 1. Since we know the
sketch rn(x) mod 5, we can use it to compute rn(x)−rn−1(x′) for any x′ ∈ σ1(x). By using the
Run Number Lemma, we know that we can prove this lemma by a case analysis on the value
of rn(x)− rn−1(x′):
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• rn−1(x′) = rn(x). Denote yi as the string obtained from inserting b at index i. Then we
can define a potential function f(i) = R1(yi), by calculating the sketch value on each
yi. Let f(i) be only defined on the values of i such that rn−1(yi) = rn(x), then we ob-
serve that f(i) is a monotonically increasing function if the mod is not taken as in R1(x).
Additionally, all the f(i) values differ by at most r, where r is the total number of runs
in yi. The total number of runs can not exceed the number of bits, therefore r ≤ n. So
if we take mod 2n+1 on f(i), only one position has the matching sketch value asR1(x).

Figure 4.1: When rn−1(x′) = rn(x), graphic representation of R1(yi) as a function of i

Example 7. Assume x′ = 10100, and the sketch R1(x) = 5. Then the list of all the
possible yi obtainable from x′ and their corresponding sketches R1(yi) (without the mod)
are as follows:

yi R1(yi)

110100 5

100100 6

101100 7

101000 8

• rn(x)− rn−2(x′) = 2. Similar to previous case, define yi and f(i) = R1(yi). In this case,
let f(i) be only defined on the values of i such that rn−1(yi) = rn(x) − 2, then observe
that f(i) is a monotonically decreasing function if the mod is not taken as in R1(x). Addi-
tionally, all the f(i) values differ by at most 2r, where r is the total number of runs in yi,
and again we have r ≤ n. Therefore, with the mod 2n + 1 taken, only one position has
the matching sketch value as R1(x).

20



Figure 4.2: When rn(x)− rn−1(x′) = 2, graphic representation of R1(yi) as a function of i

• rn(x) − rn−2(x′) = 1. By the claim 3 we know that the bit is deleted either from the be-
ginning or the end, then we can use the fact that x1 = 1 and xn = 0 to decode x uniquely.

The technique we used in this proof involves using the sketch as a potential function. We
then showed some monotone property of the potential function, while proving that the function
values can only vary within a certain range. This technique will appear again in the upcoming
main proof of Håstad’s list-decodable binary 2-deletion code.

4.2 List-Decoding α-Indicator
To prove Theorem 2, we will need to show that R1(x), R2(x) are effective sketches for list-
decoding binary 2-deletion codes. Recall that when we can list-decode a binary 2-deletion
code, we can list-decode α-indicator for any q-ary sequence and construct a q-ary 2-deletion
code. We claim that the proof of Håstad’s code [8] can be done by a case analysis on the value
rn(x) − rn−2(x

′), which indicates the difference in total number of runs between the message
x and the subsequence x′. For the trivial cases not covered by the case analysis, we show that
decoding the message can be reduced to a binary single-deletion problem, which is easily solved
with our sketch R1(x). We formalize our claim as the following:

Claim 3. If x ∈ Σn
2 is recovered from x′ ∈ σ2(x) by inserting b1, b2 ∈ {0, 1} into x′, then each

inserted bit bi increases the total number of runs by 0 or 2; otherwise, recovering x is reduced to
a single-deletion problem.

Proof. By using our previous Run Number Lemma, we can simply break down the problem
into the following cases:

• Deleting b1, b2 both decreased number of runs by 0 or 2.
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• Exactly one of bi decreased number of runs by 1. Then by applying Run Number Lemma,
the bit decreased number of runs by 1 must be deleted at the beginning or the end of x.
We then use the fact that x1 = 1 and xn = 0 to recover that bit, so only one bit’s position
remains unknown. As we have shown earlier, Håstad’s code can deal with the remaining
single-deletion problem.

• Both bi decrease number of runs by 1. Then the fact x1 = 1 and xn = 0 allows us to
recover x directly.

Notation 6. We can take the perspective of a decoder trying to insert bi into x′ ∈ σ2(x) to
recover x. Since the inserted bits can either add 0 or 2 runs, to simplify our language, we will use
bc (create) to denote the bit creating 2 runs and use bnc (not create) to denote the bit not creating
a run.

4.2.1 Proof of Håstad’s List-Decoding Theorem
After proving the Claim 3 above, it is not hard to verify that proving the following two lem-
mas proves that we can list-decode message x with sketches x′, R1(x), R2(x), which then proves
Theorem 2. Since the first lemma studies relatively simple cases, we refer to it as Lemma Sim-
ple, and we denote the second lemma as Lemma Complex:

Lemma 6. (Lemma Simple) For all x ∈ σn2 , and for all x′ ∈ σ2(x), if rn(x)− rn−2(x′) = 0, 4,
then R1(x), R2(x) are effective binary 2-deletion sketches that allows recovery of x in O(n2)
time.

Lemma 7. (Lemma Complex) For all x ∈ σn2 , and for all x′ ∈ σ2(x), if rn(x)− rn−2(x′) = 2,
then R1(x), R2(x) are effective list-decodable binary 2-deletion sketches, that allows a list L ⊆
σn2 of at most size 2 to be decoded in O(n2) time, such that x ∈ L.

Proof of Lemma Simple

Proof. Case 1: rn(x)− rn−2(x′) = 0. Therefore, both bits inserted increase rn(x) by 0. Assume
that runs ri, rj are the correct runs to insert bnc1 and bnc2 to recover x, and without the loss of
generality, assume i ≤ j. By definition of sketch R1(x), R2(x), we obtain equations (4.1) with
ri, rj as unknowns. Since equations (4.1) have a unique solution, x can be uniquely recovered by
solving this set of equation.

R1(x)−R1(x
′) = ri + rj mod 2n+ 1

R2(x)−R2(x
′) = r2i + r2j mod 2n2 + 1

(4.1)

Case 2: rn(x)−rn−2(x′) = 4. Both bits increase rn(x) by 2. To recover the correct positions
to insert bc1, bc2, we can insert two bits at some positions to make the sketch of current string
matches the sketch of x. When two bits are inserted after index s, t respectively, denote the
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string we obtain from such insertion as ys,t = x′0x
′
1 · · ·x′sbc1x′s+1 · · · x′tbc2x′t+1 · · · x′n. Then, we

would move two bits from some positions until both sketches match the sketch of x. To reason
over the valid positions, define the functions f(x′, s, t) = R1(ys,t) and g(x′, s, t) = R2(ys,t).
Expand f by the definition and we obtain: (We omit the mod taken here and later for simplicity)

f(x′, s, t) = R1(ys,t) =
n∑
i=1

ri(ys,t)

=(
s∑
i=1

ri(x
′)) + (rs∗(x) + 1)[

t∑
i=s+1

(ri(x
′) + 2)] + (rt∗(x

′) + 3) +
n∑

i=t+1

(ri(x
′) + 4)

(4.2)

Similarly, expanding out the expression for g and obtain:

g(x′, s, t) = R2(ys,t) =
n∑
i=1

(ri(ys,t))
2

=(
s∑
i=1

(ri(x
′))2) + (rs(x

′) + 1)2 + [
t∑

i=s+1

(ri(x
′) + 2)2] + (rt(x

′) + 3)2 +
n∑

i=t+1

(ri(x
′) + 4)2

(4.3)
Notice that the goal now is to not only find a solution (s, t) for the following equations (6),

but also prove that the solution is unique up to the proper mod taken as specified in the sketch.

f(x′, s, t) = R1(x)

g(x′, s, t) = R2(x)
(4.4)

An iterative method to solve this set of equations is to find a pair (s′, t′), such that (s′, t′) =
arg min(s,t):f(x′,s,t)=R1(x) |s − t|. Then we keep f(x′, s, t) = R1(x) as an invariant, and modify
the values of s, t from s′, t′ until both constraints are satisfied. By keeping f(x′, s, t) = R1(x) as
an invariant, one observes that t > t′ =⇒ s < s′.

To show that function g changes monotonically under the invariant, one can calculate the
partial derivative of the ratio between g and f , with respect to the positions s, t. After some

calculation, we see that
∂| g(x

′,s,t)
f(x′,s,t) |
∂t

<
∂| g(x

′,s,t)
f(x′,s,t) |
∂s

, indicating the following:

∀(s, t) 6= (s′, t′), f(x′, s, t) = R1(x) =⇒ g(x′, s, t) < g(x′, s′, t′)

Example 8. Assume x′ = 1111111, and the sketch R1(x) = 2. Then the list of all the possible
ys,t obtainable from x′ while keeping f(x′, s, t) = R1(x) as an invariant, and their corresponding
sketches R2(ys,t) (without the mod) are as follows:

ys,t R2(ys,t)

111010111 107

110111011 99

101111101 91
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Figure 4.3: When rn(x)− rn−2(x′) = 4, graphic representation of R2(ys,t) as a function of s

From here, we know that the solution is unique because ∀(s, t), f(x′, s, t) = R1(x) =⇒
|g(x′, s, t) − g(x′, s′, t′)| < 2n2, and such solution exists because we can always decode x.
Therefore, with the appropriate mod taken, there exists a unique solution (s, t) that satisfies
both equations. To obtain the solution in O(n2) time, we can run a brute-force algorithm on
all positions (s, t), and checks if sketch of ys,t of current position is equal to the sketch of x.
The monotonicity of g under the invariant will be useful in the upcoming proof of the Lemma
Complex.

Proof of Lemma Complex:

Proof. Similar to proof of Lemma Simple, we can insert two bits at some positions to make
the sketch of current string matches the sketch of x. We insert bnc after index s of x′ and in-
sert bc after index t of x′. Define f(x′, s, t) and g(x′, s, t) as the same potential function in
Lemma Simple. To solve the equations, we use the same iterative method by finding a pair
(s′, t′) such that (s′, t′) = arg min(s,t):f(x′,s,t)=R1(x) s+ t. We then keep f(x′, s, t) = R1(x) as an
invariant, and modify the value of s, t until both constraints are satisfied. Similarly, by keeping
f(x′, s, t) = R1(x) as an invariant, if s > s′ =⇒ t > t′.

One may verify that |∂f(x
′,s,t)
∂s
| ≤ |∂f(x

′,s,t)
∂t
|, which indicates that when changing the value

of s, t while keeping the first constraint satisfied, s changes faster than t. To establish the list-
decoding result, we prove the uniqueness of solution by casing on whether s ≤ t:

A. s ≤ t. From previous proof, we obtain that
∂| g(x

′,s,t)
f(x′,s,t) |
∂t

>
∂| g(x

′,s,t)
f(x′,s,t) |
∂s

, indicating that as long
as s ≤ t and f(x′, s, t) = R1(x), the value of g(x′, s, t) changes monotonically with the
increase of s. Therefore, there exists at most one solution (s, t) that satisfies both equations
when s ≤ t.

B. s > t. We can apply the same analysis as above. Since the value of g(x′, s, t) changes
monotonically in the opposite direction as case A, there exists at most one solution (s, t)
for both equations as long as s > t.
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Figure 4.4: When rn(x)− rn−2(x′) = 2, graphic representation of R2(ys,t) as a function of s

Since at most one solution can be obtained from each case, at most 2 strings can be obtained
from solving the equation. Additionally, we are guaranteed that one of the strings is x, which
proves the list-decoding result. To understand how to decode in O(n2) time, one can calculate
the value of f, g on all valid (s, t) pairs, and check the values obtained in each position with
sketch of x with brute-force algorithm. For up to two solutions obtained, output a unique string
corresponding to each solution.

Now we come back to prove the Run Number Lemma.

Proof of Run Number Lemma:

Proof. If the bit b is not deleted from the beginning or the end of x, then b has two neighbors
in x. In binary, it must be one of the following cases: If at least one neighbor is the same as b,
then rn(x) is decreased by 0. If both neighbors are different from b, then rn(x) is decreased by
2. Otherwise, when at least one bit is inserted at the beginning or end of x′, it can happen that
rn(x) is decreased by 1.

Example 9. If x = 101110 and x′ = 10110, then r6(x) = 4 and r5(x′) = 4.

Example 10. If x = 101110 and x′ = 11110, then r6(x) = 4 and r5(x′) = 2.

4.3 Extensions of Current Result
There are several extensions and claims that can be made about this result: First, the list-
decodable q-ary 2-deletion code specified in this paper also guards against single-deletion or
single-insertion error over q-ary alphabet. This simply follows from the fact that Håstad’s sketch
R1(x) corrects single-deletion and single-insertion error in linear time as well. Meanwhile,
R1(x) is also an effective sketch against single-error (substitution).
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Secondly, the sketch R1(x), R2(x) used in Håstad’s binary 2-deletion code can also guard
against binary 2-insertion error, allowing a list-decoding result up to list size 2. Combined
with the first extension, this presents a binary code that list-decodes against 2 edit-errors with
3 log2 n + O(log log n) redundancy, with list size 2. Combining this 2 edit-error extension
with our main result, we obtain a list-decodable code that corrects 2-edit errors with 6 log2 n +
Oq(log log n) redundancy, with list size 2.

4.4 Encoding Algorithm
Overall, the encoding and decoding algorithm of our q-ary 2-deletion code can be both split into
two stages: the first stage for binary 2-deletion code, and the second stage for the reduction.
Assume Enc2 and Dec2 are the encoding and decoding algorithms of some systematic binary
2-deletion code, and the sketch obtained by the same code is s2(x). Similarly, let EncRedq and
DecRedq be the encoding and decoding algorithms of our reduction step. We will also use Repi
to denote the function that calculate i-repetition code.

Algorithm 2 Algorithm for Encoding q-ary 2-deletion code
1: function ENCODEHELPER(x, Enc2)
2: αSeq← α(x)
3: sketch2 ← Enc2(αSeq)
4: sketchred ← EncRedq(x)
5: sketchq ← (sketch2, sketchred)
6: return sketchq
7: end function

8: function ENCODEQ(x, Enc2)
9: k ← ENCODEHELPER(x)

10: k′ ← ENCODEHELPER(k)
11: return (x, k, Rep3(k

′))
12: end function

If we are working with an optimal binary 2-deletion code, the sketch s2(x) uses r2(n) bits.
The reduction sketch sketchred uses a total of 3 log2 n + Oq(log log n) bits. Notice that we can
compress any binary sketch into a q-ary sketch with constant overhead. Therefore, the overall
redundancy is bounded by (3 + o(1)) log2 n+ r2(n).

4.5 Decoding Algorithm
For decoding, we can assume that there exists an algorithm to parse the input to the format we
desire, since we are working under the systematic code setting. We will first use the decoding
algorithm for repetition code to recover k′ as the sketch of the sketch. Then solving the 2-deletion
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Algorithm 3 Algorithm for Decoding q-ary 2-deletion code
1: function DECODEHELPER(x′, sketchq, Dec2)
2: (sketch2, sketchred)← Parse(sketchq)
3: α(x)← Dec2(x

′, sketch2)
4: x← DecRed(x′, sketchred, α(x))
5: return x
6: end function

7: function DECODEQ(y, Dec2)
8: (x′, s, s′)← Parse(y)
9: k′ ← RepDec(s′)

10: k ← DecodeHelper(s, k′, Dec2)
11: x← DecodeHelper(x′, k, Dec2)
12: return x
13: end function

problem on our sketch to obtain k, eventually solve the 2-deletion problem on x′ ∈ σ2(x) to
recover x. Any parsing can be done in linear time, therefore the entire procedure takes O(n2)
time overall, assuming Dec2 uses O(n2) time. If we set s2(x) = (R1(x), R2(x)) as in Håstad’s
code, then we obtain a list-decodable code that allows O(n2) time decoding, and list size up to
2. This code uses 6 log2 n+Oq(log log n) redundancy bits.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

In this thesis, we presented a construction of q-ary 2-deletion codes efficiently, as well as a de-
tailed proof for Håstad’s list-decodable binary 2-deletion codes [8]. The correctness of the codes
was based on many combinatorial properties of the numeric sequences. The application of such
properties in the proof was successful in arriving at the results of this thesis, but there are many
drawbacks to use them as well.

The combinatorial properties, such as the properties of the indicator strings used in this the-
sis, prove to be elegant and yield deterministic and concise results. The VT-code [10] and its
extension [6] are great examples for the elegance of these methods. We have discussed their ef-
fectiveness in the introduction chapter as well. On the other hand, it is hard to ignore the difficulty
in discovering such nice combinatorial properties. For example, it is natural to wonder if sketches
like

∑
i ixi could result in effective binary k-deletion code, but all such candidate sketches so far

have met with counterexamples. Similarly, many attempts that were made during this project to
find similar properties of 2-deletion codes failed as well. Therefore, it is worthwhile for anyone
who wants to find a efficient k-deletion code to consider more general frameworks, and find a
balance between general frameworks and the combinatorial properties.

There are many existing frameworks and techniques for k-deletion codes for k as a constant,
as we have introduced in the related works section. There are frameworks for k as a fraction of n
as well, and these frameworks are potentially better in generalizing the k-deletion constructions
to q-ary case. For example, a framework called concatenated codes was used in [31], [28] and
[32] as well as other literatures. Concatenated code uses an alphabet of large size to encode an
outer code, where each symbol of the outer code is encoded with an inner code by a sequence
of symbols in a smaller alphabet. This technique opens up the opportunity to apply binary re-
sults onto large alphabet results and is successful in dealing with deletion error being a constant
fraction of the message in [32]. This technique has disadvantages as well, such as having too
much overhead when k values are small. Therefore, finding a balance between the combinatorial
techniques and the general frameworks might be another great direction to explore.
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5.2 Future Work
From the result of this thesis, we identify several major open questions on the related topics:

The first question is that, is it possible to find the optimal binary k-deletion code, with both
redundancy (2k + o(1)) log n that matches the existential bound, and an efficient decoding al-
gorithm? Regarding the redundancy, Håstad’s binary 2-deletion code [9] matched the existential
bound for k = 2, while Sima, Gabrys and Bruck’s result [5] showed that it is possible for the
general case to get a 4k log n redundancy construction. However, in order for the code to be
useful in practice, it is crucial to have an efficient decoding algorithm as well. In this sense,
result of [5] is not ideal because the decoding algorithm runs in exponential time with respect to
k. Meanwhile, works of Cheng, Jin, Li and Wu [3] and Haeupler [4] showed O(k log n) redun-
dancy construction of a binary k-deletion code with poly(n) decoding time. Their code have a
much more efficient decoding algorithm than [5], but the redundancy of the code is less optimal.
Therefore we ask: Is there an algorithm that allows both optimal redundancy and efficient de-
coding?

The second question relates to our q-ary extension of the k-deletion code. As we mentioned
at the end of Chapter 3, one major standing issue is that α-indicator sequence can be shared
across many messages, so our result does not directly apply to k-deletion problems in general.
One direction we can take is to generalize α-indicator to the case for constant k. One major chal-
lenge in continue to use α-indicator is that, to uniquely decode the message out of polynomially
many candidate that share the same α-indicator, one may need to create or make use of k-burst
deletion codes, with each burst of up to k-deletions. Another direction one might choose is to
avoid using α-indicator sequence and resort to a general framework, as we have mentioned in
our conclusion. The major challenge in this direction would be finding another framework to
complete the reduction.

The third question is related to an observation on Håstad’s list-decodable binary 2-deletion
code [8]. One notice that if the receiver of Håstad’s code is allowed to ask a log2 n bits long ques-
tion to the sender of message and sender is allowed to reply 1 bit, then the receiver can just query
the first position that the two strings in the list differ, and the total bits communicated is at most
4 log n+O(1), which is exactly the existential bound of binary 2-deletion code. Our question is:
In general, if we allow constant rounds of communication, is there an efficient communication
algorithm that matches the existential bound up to o(log n) factor? We have seen that constant
round communication is easily more powerful than a single-round procedure, but the limitations
of using constant rounds of communication in deletion codes is still unknown. Since the question
that receiver asks might be depended upon the position of deletion, the constant-round procedure
is related to oblivious model of this problem, which assumes the deletions are not adversarial,
but random. Papers like [31] explored the potential of using oblivious deletion model, rather than
the worst-case adversarial deletion model. However, the effectiveness of oblivious model on the
constant-round procedures is still unknown.
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