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Abstract

�e growing cost gap between DRAM and storage together with increas-
ing database sizes means that database management systems (DBMSs) now
operate with a lower memory to storage size ratio than before. On the other
hand, modern DBMSs rely on in-memory search trees (e.g., indexes and �l-
ters) to achieve high throughput and low latency. �ese search trees, how-
ever, consume a large portion of the total memory available to the DBMS.
�is dissertation seeks to address the challenge of building compact yet fast
in-memory search trees to allow more e�cient use of memory in data pro-
cessing systems. We �rst present techniques to obtain maximum compres-
sion on fast read-optimized search trees. We identi�ed sources of memory
waste in existing trees and designed new succinct data structures to reduce
the memory to the theoretical limit. We then introduce ways to amortize
the cost of modifying static data structures with bounded and modest cost
in performance and space. Finally, we approach the search tree compression
problem from an orthogonal direction by building a fast string compressor
that can encode arbitrary input keys while preserving their order. Together,
these three pieces form a practical recipe for achieving memory-e�ciency in
search trees and in DBMSs.
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Chapter 1

Introduction

Memory has been a limiting resource since people �rst built computer systems. Such
capacity constraint exists until today, and it seems to get worse. Although DRAM
price dropped drastically in the last decade (i.e., the 2000s), the trend stops as Moore’s
Law fades: DRAM price has been relatively stable since 2013 for over six years [28].
Main-memory today is still a non-trivial capital cost when purchasing new equipment,
and it incurs real operational costs in terms of power consumption. Studies have
shown that memory accounts for 5% – 40% of the total power consumed by a database
server [102, 110, 128]. Meanwhile, we observe a growing cost gap between memory and
storage. For example, the price for solid-state drives (SSDs) keeps decreasing thanks to
new technologies such as the introduction of 3D NAND in 2012 [16]. �e $/GB ratio of
DRAM versus SSDs increased from 10× in 2013 to 40× in 2018 [28, 41].

Together with the rapidly growing database sizes, database management systems
(DBMSs) now operate with a lower memory to storage size ratio than before. Today,
a typical mid-tier Amazon Elastic Compute Cloud (EC2) machine optimized for transac-
tional workloads has roughly a 1:30 DRAM to SSD ratio [21]. DBMS developers in turn
are changing how they implement their systems’ architectures. For example, a major
Internet company’s engineering team assumes a 1:100 memory to storage ratio (instead
of 1:10 a few years ago) to guide their future system designs [77].

On the other hand, modern online transaction processing (OLTP) applications de-
mand that most if not all transactions complete in a short time (e.g., submillisecond) [155]
– performance that is achievable only when the working set �ts in memory. For instance,
Alibaba’s e-commerce platform maintains an average response time (i.e., transaction la-
tency) of less than 0.5ms even during the Singles’ Day Global Shopping Festival, where
the database processes up to 70 million transactions per second [96]. Improving memory-
e�ciency in a DBMS, therefore, has two bene�ts. First, for a �xed working set size, re-
ducing the required memory can save cost, both in capital and operating expenditures.
Second, higher memory-e�ciency allows the DBMS to keep more data resident in mem-
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Primary Secondary
Tuples Indexes Indexes

TPC-C [156] 42.5% 33.5% 24.0%
Voter [45] 45.1% 54.9% 0%
Articles [12] 64.8% 22.6% 12.6%

Table 1.1: Index Memory Overhead – Percentage of the memory usage for tuples, primary
indexes, and secondary indexes in H-Store [13] using the default indexes (DB size ≈ 10 GB).

ory, and a larger working set enables the system to achieve be�er performance with the
same hardware.

To ensure fast query execution, applications o�en maintain many search trees (e.g.,
indexes and �lters) in memory to minimize the number of I/Os on storage devices.
But these search trees consume a large portion of the total memory available to the
DBMS [59, 109, 168]. Table 1.1 shows the relative amount of storage used for indexes
in several OLTP benchmarks deployed in H-Store main-memory DBMS [13]. We used
the DBMS’s internal statistics API to collect these measurements a�er running the work-
loads on a single node until the database size≈ 10 GB. We found that indexes (i.e., B+trees
in this case) consume up to 58% of the total database size for these benchmarks, which
is commensurate with our experiences with real-world OLTP systems, where tuples are
relatively small, and each table can have multiple indexes. Reducing the memory foot-
print of these search trees can lead to the aforementioned bene�ts: lower costs and larger
working sets. However, simply ge�ing rid of all or part of the search trees is suboptimal
because they are crucial to query performance.

1.1 Existing Solutions: Performance vs. Space

Search trees in DBMSs mainly fall into two categories. �e �rst is the B-tree/B+tree [69]
family, including the more recent Cache Sensitive B+trees (CSB+trees) [148] and Bw-
Trees [117, 160]1. �ese trees store keys horizontally side-by-side in the leaf nodes and
have good range query performance. �e second category includes tries and radix trees
[53, 60, 63, 83, 94, 105, 112, 124, 129]. �ey store keys vertically to allow pre�x sharing.
Recent memory-e�ciency tries such as ART [112] and HOT [60] are proven to be faster
than B+trees on modern hardware.

Existing search tree designs trade between performance and space. Performance-
optimized search trees such as the Bw-Tree [117], the Adaptive Radix Tree (ART) [112],
and Masstree [124] consume a large amount of memory, and they are a major factor in

1�is category also includes skip lists [141]
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the memory footprint of a database, as shown in Table 1.1. Although a performance-
optimized search tree today can execute a point or short-range query in a few hundred
nanoseconds – a latency that is equivalent to several DRAM accesses only, few compres-
sion techniques can reduce the search tree sizes signi�cantly while maintaining their
high-performance.

Most common compression techniques for search trees leverage general-purpose
block compression algorithms such as LZ77 [27], Snappy [39], and LZ4 [26]. For ex-
ample, InnoDB uses the zlib library [18] to compress its B+tree pages/nodes before they
are wri�en to disk. �is approach works well for disk-based search trees because it min-
imizes data movement between disk and memory. For in-memory search trees, however,
block compression algorithms impose too much computational overhead because the
DBMS is unable to operate directly on the search tree data without having to decom-
press it �rst. With hundreds of nanoseconds, the fastest block compression algorithms
can decompress only a few 4 KB memory pages [26].

�eoretically, we can only compress search trees to a certain degree before they start
to lose the necessary information to answer queries correctly. �is limit is called the
information-theoretic lower bound. A data structure is called “succinct” if its size is close
to the information-theoretic lower bound. Succinct trees [99] have been studied for over
two decades, and there is rich literature [52, 57, 90, 91, 100, 126, 131, 143, 150] in theory
and practice. A key advantage of succinct trees besides their space-e�ciency is that
they can answer queries directly from their compact representations without expensive
decoding/decompressing operations.

Although succinct trees work well in speci�c scenarios, such as in information re-
trieval and XML processing [136, 144], their application in more general real-world sys-
tems is limited. To the best of our knowledge, none of the major databases and storage
systems use succinct trees for data storage or indexing. �ere are two major reasons
for their limited use. First, succinct trees are static. Inserting or updating an entry re-
quires reconstructing a signi�cant part of the structure. �is is a fundamental limitation
of all succinct data structures. Second, existing implementations of succinct trees are
at least an order of magnitude slower than their corresponding pointer-based uncom-
pressed trees [52]. �is slowdown is hard to justify for most systems despite the space
advantage.

1.2 A Pareto Improvement

As discussed in the section above, existing search tree designs typically focus on one
of the optimization goals: performance or memory-e�ciency. Performance-optimized
trees use a lot of space to guarantee fast queries, while memory-optimized trees require
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Figure 1.1: A Pareto Improvement – �e goal of this thesis is to advance the state of the art in
the performance-space trade-o� when building in-memory search trees.

a lot of computation to achieve the level of memory-e�ciency. State-of-the-art search
trees make trade-o�s by moving along the Pareto frontier connecting the two extremes
as shown in Figure 1.1. In this dissertation, We ask the following question: can we build
search trees that are beyond the Pareto frontier in the performance-memory trade-o�, that
is, can we have the best of both worlds? We answer this question in the a�rmative by
proposing a new recipe for constructing memory-e�cient yet high-performance search
trees for database applications. Figure 1.2 depicts our steps towards memory-e�ciency.

Starting with a performance-optimized search tree, we �rst investigate techniques
to compress the structure into a compact static/read-only tree (Chapters 2–4). We sac-
ri�ce temporarily the data structure’s ability to e�ciently support dynamic operations
(e.g., inserts, updates) so that we can maximize compression. �e Dynamic-to-Static
Rules in Chapter 2 are a set of guidelines to help reduce two major sources of structural
overhead in dynamic data structures: pre-allocated empty space and excessive pointers.
We applied the rules to four widely-used index structures (B+tree, Masstree [124], Skip
List [141], and ART [112]) and achieved 30 – 71% memory reduction depending on the
workloads.

We then show that we can push the memory consumption of a search tree to the the-
oretical optimum without compromising its query performance. In Chapter 3, we intro-
duce the Fast Succinct Trie (FST) that is only 6% larger than the minimum space required

4



by information theory (i.e., the information-theoretic lower bound) while matching the
query performance of the state-of-the-art uncompressed search trees. Compared to ear-
lier succinct tries [3, 91], FST consumes even less space (10 bits per node) and is an order
of magnitude faster. Based on FST, we build the Succinct Range Filter (SuRF) [169] in Chap-
ter 4. Unlike traditional Bloom �lters [62], SuRF supports approximate membership tests
for both single-key and range queries. To the best of our knowledge, SuRF is the �rst
data structure that is fast and small enough to solve the range �ltering problem practi-
cally for general data processing systems. We applied SuRF to Facebook’s RocksDB [37]
and observed up to 5× speed up for range queries because of the unnecessary I/Os saved
by the �lters.

�e next step in our recipe is to add support for dynamic operations back to the
search trees with bounded and amortized cost in performance and space. We present a
dual-stage architecture, called the hybrid index [168], in Chapter 5. A hybrid index is a
single logical index but made of two physical search trees. �e tree in the �rst stage in-
gests all incoming entries and is kept small for fast read and write operations. �e index
periodically migrates entries from the �rst stage to the second, which uses a compact and
read-optimized data structure. A hybrid index guarantees memory-e�ciency by storing
the majority of the entries in the second (i.e., more compressed) stage. �e hybrid index
method completes our study on structural compression of search trees because it pro-
vides an e�cient way to modify the memory-e�cient but static data structures proposed
in Chapters 2–4.

As the structural overhead of a search tree approaches the minimum, the keys stored
in the tree becomes the dominating factor in its memory consumption. As a �nal step in
the recipe, we present in Chapter 6 the High-speed Order-Preserving Encoder (HOPE) [170]
that can compress arbitrary input keys e�ectively and e�ciently while preserving their
order. HOPE’s approach is to identify common key pa�erns at a �ne granularity and then
exploit the entropy to achieve high compression rates with a small dictionary. HOPE in-
cludes six representative compression schemes that trade between compression rate and
encoding performance, and its modularized design makes it easy to incorporate new al-
gorithms. HOPE is an orthogonal approach that one can apply to any of the compressed
search trees above to achieve additional space savings and performance gains. Our ex-
periments show that using HOPE improves the search trees’ query latency (up to 40%
faster) and memory-e�ciency (up to 30% smaller) simultaneously for most string key
workloads, advancing the state-of-the-art Pareto frontier in the performance-memory
trade-o� to a new level, as shown in Figure 1.1.
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Build fast static search trees with 
maximum structural compression 

Support dynamic operations with 
bounded and amortized overhead

Memory-Efficiency

Compress arbitrary keys efficiently
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Dynamic-to-Static Rules (ch.2)
Fast Succinct Tries (ch.3)
Succinct Range Filters (ch.4)

Hybrid Indexes (ch.5) High-speed Order-Preserving 
Encoder (ch.6)

Figure 1.2: Steps Towards Memory-E�ciency – �e main contribution of this thesis is a new
recipe for designing memory-e�ciency yet high-performance search trees from existing solu-
tions. �e body of the thesis is organized according to these steps.

1.3 �esis Statement and Contributions

�is dissertation seeks to address the challenge of building compact yet fast in-memory
search trees to allow e�cient use of memory in data processing systems. We provide
evidence to support the following statement:

�esis: Compressing in-memory search trees via e�cient algorithms and careful engi-
neering improves the performance and resource-e�ciency of database management systems.

A recurring theme in this dissertation is to make data structures in a DBMS memory-
e�cient without compromising (and in many cases, improving) query performance. �e
solutions provided in the thesis (outlined in Section 1.2) amalgamate algorithmic inno-
vations that allow us to store, retrieve, and analyze data using fewer operations and
resources, and system-aware performance engineering that allows us to exploit the un-
derlying hardware capabilities be�er. We summarize the technical contributions of this
thesis as follows:

• A set of guidelines (Dynamic-to-Static Rules) to help convert any dynamic search
tree to a compact, immutable version (Chapter 2).
• Applications of the Dynamic-to-Static Rules to four di�erent in-memory search

trees to illustrate the e�ectiveness and generality of the method (Chapter 2).
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• A new algorithm (LOUDS-DS) for trie representation that combines two encoding
schemes to achieve high performance while remaining succinct (Chapter 3).
• A new succinct data structure (Fast Succinct Trie) that is as fast as the state-of-

the-art performance-optimized search trees while being close to the minimal space
de�ned by information theory (Chapter 3).
• �e �rst practical and general-purpose data structure (SuRF) for range �ltering, i.e.,

approximate membership test for ranges (Chapter 4).
• An application of SuRF to RocksDB that improves the system’s range query per-

formance by up to 5× (Chapter 4).
• A new dual-stage index architecture (Hybrid Index) that amortizes the cost of up-

dating read-optimized data structures through ratio-bounded batching (Chapter 5).
• An application of hybrid indexes to H-Store that reduces the DBMS’s index memory

by up to 70% while achieving comparable query performance (Chapter 5).
• A new theoretical model to characterize the properties of dictionary encoding and

to reason about order-preserving compression (Chapter 6).
• A new order-preserving key compressor (HOPE) for in-memory search trees, in-

cluding six entropy encoding schemes that trade between compression rate and
performance (Chapter 6).
• Applications of HOPE to �ve state-of-the-art search trees that achieve a Pareto

improvement on performance and memory-e�ciency (Chapter 6).
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Chapter 2

Guidelines for Structural Compression: �e
Dynamic-to-Static Rules

In the �rst part of the thesis (Chapters 2–4), we consider the problem of building fast and
memory-e�cient static search trees. “Static” means that the data structure is optimized
for read-only workloads. A dynamic operation (e.g., insert, update) will typically cause
a signi�cant part of the static structure to be reconstructed. �e RUM conjecture in
designing databases’ access methods states that: “Read, update, memory – optimize two
at the expense of the third” [54]. We found this conjecture applicable to data structure
designs. We, therefore, sacri�ce temporarily the performance of dynamic operations to
achieve optimal space and read performance �rst. Later in Chapter 5, we study how to
speed up modi�cation queries on these static solutions with minimal overhead.

�e Dynamic-to-Static Rules (D-to-S Rules) introduced in this chapter is our �rst at-
tempt to structurally compress in-memory search trees. �e crux of the D-to-S Rules is
to exploit the fact that existing search trees such as B+trees and radix trees allocate extra
space to support dynamic operations e�ciently. We observe two major sources of such
extra memory consumption in dynamic data structures. First, dynamic data structures al-
locate memory at a coarse granularity to minimize the allocation/reallocation overhead.
�ey usually allocate an entire node or memory block and leave a signi�cant portion
of that space empty for future entries. Second, dynamic data structures contain a large
number of pointers to support fast modi�cation of the structures. �ese pointers not only
take up space but also slow down certain operations due to pointer-chasing.

Given a dynamic data structure, the D-to-S Rules are:

• Rule #1: Compaction – Remove duplicated entries and make every allocated
memory block 100% full.
• Rule #2: Structural Reduction – Remove pointers and structures that are un-

necessary for e�cient read-only operations.

9



Year Supported Index Types

ALTIBASE [22] 1999 B-tree/B+tree, R-tree
H-Store [13] 2007 B+tree, hash index
HyPer [84] 2010 Adaptive Radix Tree, hash index
MSFT Hekaton [115] 2011 Bw-tree, hash index
MySQL (MEMORY) [31] 2005 B-tree, hash index
MemSQL [29] 2012 skip list, hash index
Peloton [33] 2017 Bw-tree
Redis [36] 2009 linked list, hash, skip list
SAP HANA [8] 2010 B+tree/CPB+tree
Silo [157] 2013 Masstree
SQLite [40] 2000 B-tree, R*-tree
TimesTen [42] 1995 B-tree, T-tree, hash index, bitmap
VoltDB [6] 2008 Red-Black Tree, hash index

Table 2.1: Index Types – �e di�erent types of index data structures supported by major com-
mercial and academic in-memory OLTP DBMSs. �e year corresponds to when the system was
released or initially developed. �e default index type for each DBMS is listed in bold.

• Rule #3: Compression – Compress parts of the data structure using a general-
purpose block compression algorithm.

In the rest of this chapter, we explain each rule in detail through example applica-
tions to four di�erent search trees. We then evaluate brie�y the memory savings and
performance impact of the static trees created by the rules in Section 2.5.

2.1 Example Data Structures

In order to pick the most representative search trees used in modern DBMSs, we exam-
ined twelve major commercial and academic in-memory OLTP DBMSs that were devel-
oped in the last two decades. Table 2.1 shows the index types supported by each DBMS
and the year that they were released. We also include which index type is used as the
default when the user does not specify any hints to the DBMS; that is, the data struc-
ture that the DBMS uses when an application invokes the CREATE INDEX command.
According to the survey, we select B+tree, Masstree, Skip List, and Adaptive Radix Tree
(ART) as example data structures to apply the D-to-S rules on. We brie�y introduce these
four search trees in this section.

B+tree: �e B+tree is the most common index structure that is used in almost every
OLTP DBMS [69]. It is a self-balancing search tree, usually with a large fanout. Al-
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Figure 2.1: Masstree – Masstree adopts a multi-structure design, where a group of �xed-height
B+trees conceptually forms a trie.

though originally designed for disk-oriented databases to minimize disk seeks, B+trees
have maintained their prevalence in the main-memory DBMSs, as shown in Table 2.1.
For our analysis, we use the STX B+tree [2] as the baseline implementation. We found in
our experiments that a node size of 512 bytes performs best for in-memory operations.

Masstree: Masstree [124] is a high-performance key-value store that also supports
range queries. It is used as index in main-memory databases such as SILO [157]. Masstree
combines B+trees and tries to speed up key searches. �e trie design makes the index
particularly e�cient in terms of both performance and space when handling keys with
shared pre�xes. As shown in Figure 2.1, the dashed rectangles in Masstree represent the
individual B+trees that conceptually form a trie. �e keys are divided into �xed-length 8-
byte keyslices and are stored at each trie level. Unique key su�xes are stored separately
in a structure called a keybag1 Each B+tree leaf node has an associated keybag with a
maximum capacity equal to the fanout of the B+tree. A value pointer in a leaf node can
point to either a data record (when the corresponding keyslice is uniquely owned by a
key) or a lower-level B+tree.

Skip List: �e Skip List was introduced in 1990 as an alternative to balanced
trees [141]. It has recently gained a�ention as a lock-free index for in-memory
DBMSs [140]. �e internal structure of the index is a linked hierarchy of subsequences
that is designed to “skip” over fewer elements. �e algorithms for insertion and deletion
are designed to be simpler and potentially faster than equivalent operations in balanced
trees. For our analysis, we use an implementation [15] of a variation of Skip List (called
the paged-deterministic Skip List [133]) that resembles a B+tree.

Adaptive Radix Tree (ART): �e Adaptive Radix Tree [112] is a fast and space-

1�is structure is termed a stringbag in the Masstree implementation; we use keybag here for clarity.
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Figure 2.2: ART Node Layouts – Organization of the ART index nodes. In Layout 1, the key
and child arrays have the same length and the child pointers are stored at the corresponding key
positions. In Layout 2, the current key byte is used to index into the child array, which contains
o�sets/indexes to the child array. �e child array stores the pointers. Layout 3 has a single 256-
element array of child pointers as in traditional radix trees [112].

e�cient data structure designed for in-memory databases. ART is a 256-way radix tree
(i.e., each level represents one byte of the key). Unlike traditional radix trees (or tries)
where each node is implemented as a �xed-size (256 in this case) array of child point-
ers, ART uses four node types (Node4, Node16, Node48, and Node256) with dif-
ferent layouts and capacities adaptively to achieve be�er memory-e�ciency and be�er
cache utilization. Figure 2.2 illustrates the three node layouts used in ART. Node4 and
Node16 use the representation in Layout 1 with n=4, 16, respectively. Node48 uses
Layout 2 (n=48), and Node256 uses Layout 3.

2.2 Rule #1: Compaction

�e Compaction Rule seeks to generate a more e�cient layout of a search tree’s entries
by minimizing the number of memory blocks allocated. �is rule includes two steps.
�e �rst is to remove duplicate content. For example, to map multiple values to a single
key (for secondary indexes), dynamic data structures o�en store the same key multiple
times with di�erent values. Such key duplication is unnecessary in a static data structure
because the number of values associated with each key is �xed. �e second step is to
�ll all allocated memory blocks to 100% capacity. �is step may include modi�cations
to the layouts of memory blocks/nodes. Memory allocation is done at a �ne granularity
to eliminate gaps between entries; furthermore, leaving spacing for future entries is un-
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necessary since the data structure is static. �e resulting data structure thus uses fewer
memory blocks/nodes for the same entries.

As shown in Figure 2.3, a major source of memory waste in a B+tree, Masstree, Skip
List, or ART is the empty space in each node. For example, the expected node occupancy
of a B+tree is only 69% [164]. We observed similar occupancies in Masstree and Skip
List. For ART, our results show that its node occupancy is only 51% for 50 million 64-bit
random integer keys. �is empty space is pre-allocated to ingest incoming entries e�-
ciently without frequent structural modi�cations (i.e., node splits). For B+tree, Masstree,
and Skip List, �lling every node to 100% occupancy, as shown in Figure 2.3 (column “Com-
paction”), reduces space consumption by 31% on average without any structural changes
to the search tree itself.

ART’s pre�x tree structure prevents us from �lling the �xed-sized nodes to their full
capacity. We instead customize the size of each node to ensure minimum slack space.
�is is possible because the content of each node is �xed and known when building the
static structure. Speci�cally, let n denote the number of key-value pairs in an ART node
(2 ≤ n ≤ 256). We choose the most space-e�cient node layout in Figure 2.2 based on n.
If n ≤ 227, Layout 1 with array length n is used; otherwise, Layout 3 is used.

Because of the multi-structure design, compacting Masstree’s memory blocks is a
more complicated process: both its internal nodes and its dynamically-allocated keybags
for su�xes require modi�cation. We found that the original implementation of Masstree
allocates memory for the keybags aggressively to avoid frequent resizing, which means
that it wastes memory. �us, for this rule, we instead only allocate the minimum memory
space to store these su�xes.

For secondary indexes where a key can map to multiple values, the only additional
change to the indexes is to remove duplicated entries by storing each key once followed
by an array of its associated values.

2.3 Rule #2: Structural Reduction

�e goal of the Structural Reduction Rule is to minimize the overhead inherent in the data
structure. �is rule includes removing pointers and other elements that are unnecessary
for read-only operations. For example, the pointers in a linked list are designed to allow
for fast insertion or removal of entries. �us, removing these pointers and instead using a
single array of entries that are stored contiguously in memory saves space and speeds up
linear traversal of the index. Similarly, for a tree-based index with �xed node sizes, we can
store the nodes contiguously at each level and remove pointers from the parent nodes to
their children. Instead, the location of a particular node is calculated based on in-memory
o�sets. �us, in exchange for a small CPU overhead to compute the location of nodes
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* * 

key length … 
… keyslice 

… key suffix 
offset 

key suffix 
… 

… value ptr 

Primary: value pointer points to a database tuple: *tuple 

Secondary: value pointer points to a value array: header	
   …*tuple	
   *tuple	
  

Figure 2.4: Compact Masstree – �e internal architecture of Masstree a�er applying the Com-
paction and Structural Reduction Rules.

at runtime we achieve memory savings. Besides pointers, other redundancies include
auxiliary elements that enable functionalities that are unnecessary for static indexes (e.g.,
transaction metadata).

We applied this rule to our four indexes. �e resulting data structures are shown in
Figure 2.3 (column “Reduction”). We note that a�er the reduction, the nodes in B+tree,
Masstree, and Skip List are stored contiguously in memory. �is means that unnecessary
pointers are gone (dashed arrows indicate that the child nodes’ locations in memory are
calculated rather than stored). For ART, however, because its nodes have di�erent sizes,
�nding a child node requires a “base + o�set” or similar calculation, so the bene�t of
storing nodes contiguously is not clear. We, therefore, keep ART unchanged for this
step.

�ere are additional opportunities for reducing the space overhead with this rule. For
example, the internal nodes in the B+tree, Masstree, and Skip List can be removed en-
tirely. �is would provide another reduction in space but it would also make point queries
slower. �us, we keep these internal nodes in B+tree and Skip List. For Masstree, how-
ever, it is possible to do this without a signi�cant performance penalty. �is is because
most of the trie nodes in Masstree are small and do not bene�t from a B+tree structure.
As a result, our compacted version of Masstree only stores the leaf nodes contiguously
as an array in each trie node. To perform a look-up, it uses binary search over this array
instead of a B+tree walk to �nd the appropriate entries. Our results show that performing
a binary search is as fast as searching a B+tree in Masstree. We also note that this rule
does not a�ect Masstree’s overall trie, a distinguishing feature of Masstree compared to
B+trees and Skip Lists.
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We also need to deal with the Masstree keybags. In Figure 2.4, we provide a detailed
structure of the compacted Masstree. We concatenate all the key su�xes within a trie
node and stores them in a single byte array, along with an auxiliary o�set array to mark
their start locations. �is reduces the structural overhead of maintaining multiple key-
bags for each trie node.

2.4 Rule #3: Compression

�e �nal rule is to compress internal nodes or memory pages used in the index. For
this step, we can use any general-purpose block compression algorithm. We choose the
ones that are designed to have fast decompression methods in exchange for a lower com-
pression rate, such as Snappy [39] or LZ4 [26]. Diagrams in Figure 2.3 (column “Com-
pression”) show how we apply the Compression Rule to B+tree, Masstree, Skip List, and
ART. Only the leaf nodes are compressed so that every point query needs to decompress
at most one node. To minimize the cost of an expensive decompress-node operation, we
maintain a cache of recently decompressed nodes. �e node cache approximates LRU
using the CLOCK replacement algorithm.

�e Compression Rule is not always appropriate because of its performance overhead.
Our results in Section 2.5 show that using general-purpose compression algorithms for
in-memory data structures is expensive even with performance optimizations, such as the
node cache. Furthermore, the compression ratio depends heavily on the workload. For
many applications, the signi�cant degradation in throughput may not justify the space
savings; nevertheless, structural compression remains an option for environments with
signi�cant space constraints.

2.5 Evaluation

We compare the search trees created by the D-to-S Rules to the original data structures.
Compact X represents the result a�er applying the Compaction and Structural Reduction
Rules to the original structure X. while Compressed X means that the search tree is also
compressed using Snappy [39] according to the Compression Rule. Here, X represents
either B+tree, Masstree, Skip List, or ART. For the Compression Rule, we only imple-
mented Compressed B+tree to verify that using block compression on search trees is not
a desirable solution for improving the space-e�ciency of main-memory OLTP databases
(refer to Chapter 5 for an end-to-end system evaluation).

We run the experiments on a server equipped with 2×Intel® Xeon® E5-2680 v2 CPUs
@ 2.80 GHz with 256 KB L2-cache, 26 MB L3-cache, and 4×32 GB DDR3 RAM. We used a
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Figure 2.5: Compaction, Reduction, and Compression Evaluation – Read performance and
memory overhead for the compacted and compressed data structures generated by applying the
D-to-S Rules. Note that the �gures have di�erent Y-axis scales. (rand=random integer, mono-
inc=monotonically increasing integer).

set of YCSB-based microbenchmarks to mimic OLTP index workloads. �e Yahoo! Cloud
Serving Benchmark (YCSB) approximates typical large-scale cloud services [70]. We used
its default workload C (read-only) with Zip�an distributions, which have skewed access
pa�erns common to OLTP workloads. We tested three key types: 64-bit random integers,
64-bit monotonically increasing integers, and email addresses with an average length of
30 bytes. �e random integer keys came directly from YCSB while the email keys were
drawn from a large email collection. All values are 64-bit integers to represent tuple
pointers.

�e experiments in this section are single-threaded. We �rst insert 50 million en-
tries into the search tree and then execute 10 million point queries. �roughput results
in the bar charts are the number of operations divided by the execution time; memory
consumption is measured at the end of each trial. All numbers reported are the average
of three trials.
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Instructions IPC L1 Misses L2 Misses

B+tree 4.9B 0.8 262M 160M
Masstree 5.4B 0.64 200M 174M
Skip List 4.5B 0.78 277M 164M
ART 2.1B 1.5 58M 26M

Table 2.2: Point�ery Pro�ling – CPU-level pro�ling measurements for 10M point queries of
random 64-bit integer keys for B+tree, Masstree, Skip List, and ART (B=billion, M=million).

As Figure 2.5 shows, the read throughput for the compact indexes is up to 20% higher
in most cases compared to their original data structures. �is is not surprising be-
cause these compact versions inherit the core design of their original data structures but
achieve a more space-e�cient layout with less structural overhead. �is results in fewer
nodes/levels to visit per look-up and be�er cache performance. �e only compact data
structure that performs slightly worse is the Compact ART for random integer (4%) and
email keys (1%). �is is because unlike the other three compact indexes, Compact ART
uses a slightly di�erent organization for its internal nodes that causes a degradation in
performance in exchange for a greater space saving (i.e., Layout 1 is slower than Layout
3 for look-ups – see Figure 2.2).

Figure 2.5 also shows that the compact indexes reduce the memory footprint by up to
71% (greater than 30% in all but one case). �e savings come from higher data occupancy
and less structural waste (e.g., fewer pointers). In particular, the Compact ART is only
half the size for random integer and email keys because ART has relatively low node oc-
cupancy (54%) compared to B+tree and Skip List (69%) in those cases. For monotonically
increasing (mono-inc) integer keys, the original ART is already optimized for space. �e
Compact Masstree has the most space savings compared to the others because its internal
structures (i.e., B+trees) are completely �a�ened into sorted arrays.

We also tested the Compression Rule on the B+tree. As shown in Figure 2.5a, although
the Compressed B+tree saves additional space for the mono-inc (24%) and email (31%)
keys, the throughput decreases from 18–34%. Since the other data structures have the
same problems, we choose not to evaluate compressed versions of them and conclude
that naı̈ve compression is a poor choice for in-memory OLTP indexes.

We note that ART has higher point query performance than the other three index
structures. To be�er understand this, we pro�led the 10 million point queries of ran-
dom 64-bit integer keys for the four original data structures using PAPI [32]. Table 2.2
shows the pro�ling results for total CPU instructions, instructions per cycle (IPC), L1
cache misses and L2 cache misses. We observe that ART not only requires fewer CPU
instructions to perform the same load of point queries but also uses cache much more
e�ciently than the other three index structures. Results in other recent work [60, 160]
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con�rm that trie-based indexes o�en outperform Btree-based ones for in-memory work-
loads. We, therefore, take a closer look at optimizing the memory-e�ciency and perfor-
mance of tries in the next chapter.
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Chapter 3

Reducing Space to the �eoretical Limit: Fast
Succinct Tries

In this chapter, we continue our investigation on compressing static search trees. We
take the more performant trie indexes from the previous chapter and push its memory
usage to the theoretical limit. We present the design and implementation of a new suc-
cinct data structure, called the Fast Succinct Trie (FST). FST is a space-e�cient, static trie
that answers point and range queries. FST consumes only 10 bits per trie node, which
is close to the information-theoretic lower bound. FST is 4–15× faster than earlier suc-
cinct tries [3, 91], achieving performance comparable to or be�er than the state-of-the-art
pointer-based indexes [2, 112, 168].

FST’s design is based on the observation that the upper levels of a trie comprise few
nodes but incur many accesses, while the lower levels comprise the majority of nodes but
are relatively “colder”. We, therefore, encode the upper levels using a fast bitmap-based
encoding scheme (i.e., LOUDS-Dense) in which a child node search requires only one
array lookup, choosing performance over space. We encode the lower levels of the trie
using the space-e�cient succinct representation (i.e., LOUDS-Sparse) so that the overall
size of the encoded trie is bounded.

Combining LOUDS-Dense and LOUDS-Sparse within the same data structure is key
to achieving high performance while remaining succinct. To the best of our knowledge,
FST is the �rst succinct trie that matches the performance of the state-of-the-art pointer-
based index structures (existing succinct trie implementations are usually at least an order
of magnitude slower). �is performance improvement allows succinct tries to meet the
requirements of a much wider range of real-world applications.

For the rest of the chapter, we assume that the trie maps the keys to �xed-length
values. We also assume that the trie has a fanout of 256 (i.e., one byte per level).
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Figure 3.1: Level-Ordered Unary Degree Sequence (LOUDS) – An example ordinal tree en-
coded using LOUDS. LOUDS traverses the nodes in a breadth-�rst order and encodes each node’s
degree using the unary code.

3.1 Background: Succinct Trees and LOUDS

A tree representation is “succinct” if the space taken by the representation is close1 to
the information-theoretic lower bound, which is the minimum number of bits needed
to distinguish any object in a class. A class of size n requires at least log2 n bits to
encode each object. A trie of degree k is a rooted tree where each node can have at
most k children with unique labels selected from set {0, 1, . . . , k − 1}. Since there are(
kn+1
n

)
/kn+1 n-node tries of degree k, the information-theoretic lower bound is approx-

imately n(k log2 k − (k − 1) log2(k − 1)) bits [57].
An ordinal tree is a rooted tree where each node can have an arbitrary number of

children in order. �us, succinctly encoding ordinal trees is a necessary step towards
succinct tries. Jacobson [99] pioneered research on succinct tree representations and
introduced the Level-Ordered Unary Degree Sequence (LOUDS) to encode an ordinal tree.
As the name suggests, LOUDS traverses the nodes in a breadth-�rst order and encodes
each node’s degree using the unary code. For example, node 3 in Figure 3.1 has three
children and is thus encoded as ‘1110’. Follow-up studies include LOUDS++ [143]
which breaks the bit sequence into two parts that encode the runs of ones and zeros
separately.

Navigating a tree encoded with LOUDS uses the rank & select primitives. Given a bit
vector, rank1(i) counts the number of 1’s up to position i (rank0(i) counts 0’s), while
select1(i) returns the position of the i-th 1 (select0(i) selects 0’s). �e original Jacob-
son paper showed how to support RS operations in O(log n) bit-accesses [99]. Modern

1�ere are three ways to de�ne “close” [38]. Suppose the information-theoretic lower bound is L bits.
A representation that uses L+O(1), L+o(L), and O(L) bits is called implicit, succinct, and compact, respec-
tively. All are considered succinct, in general.
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rank & select implementations [87, 137, 159, 171] achieve constant time by using look-
up tables (LUTs) to store a sampling of pre-computed results so that they only need to
count between the samples. A state-of-the-art implementation is from Zhou et al. [171],
who carefully sized the three levels of LUTs so that accessing all the LUTs incurs at most
one cache miss. �eir implementation adds only 3.5% space overhead to the original bit
vector and is among the fastest rank & select structures available. In FST, we further opti-
mized the rank & select structures according to the speci�c properties of our application
to achieve be�er e�ciency and simplicity, as described in Section 3.6.

With proper rank & select support, LOUDS performs tree navigation operations that
are su�cient to implement the point and range queries required in FST in constant time.
Assume that both node/child numbers and bit positions are zero-based:

• Position of the i-th node = select0(i) + 1

• Position of the k-th child of the node started at p = select0(rank1(p+ k)) + 1

• Position of the parent of the node started at p = select1(rank0(p))

3.2 LOUDS-Dense

LOUDS-Dense encodes each trie node using three bitmaps of size 256 (because the node
fanout is 256) and a byte-sequence for the values as shown in the top half of Figure 3.2.
�e encoding follows the level order (i.e., the breadth-�rst order).

�e �rst bitmap (D-Labels) records the branching labels for each node. Speci�cally,
the i-th bit in the bitmap, where 0 ≤ i≤ 255, indicates whether the node has a branch
with label i. For example, the root node in Figure 3.2 has three outgoing branches labeled
f, s, and t. �e D-Labels bitmap thus sets the 102nd (f), 115th (s) and 116th (t) bits and
clears the rest.

�e second bitmap (D-HasChild) indicates whether a branch points to a sub-trie or
terminates (i.e., points to the value or the branch does not exist). Taking the root node
in Figure 3.2 as an example, the f and the t branches continue with sub-tries while the s
branch terminates with a value. In this case, the D-HasChild bitmap only sets the 102nd
(f) and 116th (t) bits for the node. Note that the bits in D-Labels and D-HasChild have a
one-to-one correspondence.

�e third bitmap (D-IsPre�xKey) includes only one bit per node. �e bit indicates
whether the pre�x that leads to the node is also a valid key. For example, in Figure 3.2,
the �rst node at level 1 has f as its pre�x. Meanwhile, ‘f’ is also a key stored in the trie.
To denote this situation, the D-IsPre�xKey bit for this child node must be set.

�e �nal byte-sequence (D-Values) stores the �xed-length values (e.g., pointers)
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Figure 3.2: LOUDS-DS Encoded Trie – �e upper levels of the trie are encoded using LOUDS-
Dense, a bitmap-based scheme that is optimized for performance. �e lower levels (which is the
majority) are encoded using LOUDS-Sparse, a succinct representation that achieves near-optimal
space. �e $ symbol represents the character whose ASCII number is 0xFF. It is used to indicate
the situation where a pre�x string leading to a node is also a valid key.

mapped by the keys. �e values are concatenated in level order – same as the three
bitmaps.

Tree navigation uses array lookups and rank & select operations. We denote
rank1/select1 over bit sequence bs on position pos to be rank1/select1(bs, pos). Let pos
be the current bit position in D-Labels. Assume that D-HasChild[pos] = 1, indicating that
the branch at pos points to a child node (i.e., sub-trie). To move to the child node, we �rst
compute its rank in the node list: r = rank1(D-HasChild, pos). Since the child node is the
rth node and each node has a �xed-size of 256 bits in D-Labels, the position of the child
node is 256× r.

To move up the trie to the parent node, we �rst get the rank of the current node:
r = bpos/256c. Since the current node is the rth node in the node list, its parent node
must contain the rth set-bit in D-HasChild. Hence, the position of the parent node is
select1(D-HasChild, r).

If the branch at pos terminates (i.e., D-HasChild[pos] = 0), and we want to �nd out its
associated value, we compute the rank of the value inD-Values. We �rst compute the total
number of branches up to pos: Nb = rank1(D-Labels, pos). Among those Nb branches,
there areNc = rank1(D-HasChild, pos) non-terminating branches. Among thoseNc non-
terminating branches, there areNp = rank1(D-IsPre�xKey, bpos/256c) branches who are
both pre�xes and valid keys (and thus have values); the rest Nc − Np branches do not
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have values associated. Hence, there are Nb − (Nc −Np) entries in D-Values up to pos.
To summarize:

• D-ChildNodePos(pos) = 256× rank1(D-HasChild, pos)
• D-ParentNodePos(pos) = select1(D-HasChild, bpos/256c)
• D-ValuePos(pos) = rank1(D-Labels, pos) - rank1(D-HasChild, pos) + rank1(D-
IsPre�xKey, bpos/256c) - 1

3.3 LOUDS-Sparse

As shown in the lower half of Figure 3.2, LOUDS-Sparse encodes a trie node using four
byte- or bit-sequences. �e encoded nodes are then concatenated in level order.

�e �rst byte-sequence, S-Labels, records all the branching labels for each trie node.
As an example, the �rst non-value node at level 2 in Figure 3.2 has three branches. S-
Labels includes their labels r, s, and t in order. We denote the case where the pre�x
leading to a node is also a valid key using the special byte 0xFF at the beginning of the
node (this case is handled by D-IsPre�xKey in LOUDS-Dense). For example, in Figure 3.2,
the �rst non-value node at level 3 has ‘fas’ as its incoming pre�x. Since ‘fas’ itself
is also a stored key, the node adds 0xFF to S-Labels as the �rst byte. Because the special
byte always appears at the beginning of a node, it can be distinguished from the real
0xFF label: if a node has a single branching label 0xFF, it must be the real 0xFF byte
(otherwise the node will not exist in the trie); if a node has multiple branching labels, the
special 0xFF byte can only appear at the beginning while the real 0xFF byte can only
appear at the end.

�e second bit-sequence (S-HasChild) includes one bit for each byte in S-Labels to
indicate whether a child branch continues (i.e., points to a sub-trie) or terminates (i.e.,
points to a value). Taking the rightmost node at level 2 in Figure 3.2 as an example,
because the branch labeled i points to a sub-trie, the corresponding bit in S-HasChild is
set. �e branch labeled y, on the other hand, points to a value, and its S-HasChild bit is
cleared.

�e third bit-sequence (S-LOUDS) also includes one bit for each byte in S-Labels. S-
LOUDS denotes node boundaries: if a label is the �rst in a node, its S-LOUDS bit is set.
Otherwise, the bit is cleared. For example, in Figure 3.2, the �rst non-value node at level
2 has three branches and is encoded as 100 in the S-LOUDS sequence. Note that the bits
in S-Labels, S-HasChild, and S-LOUDS have a one-to-one correspondence.

�e �nal byte-sequence (S-Values) is organized the same way as D-Values in LOUDS-
Dense.
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Tree navigation on LOUDS-Sparse is as follows. Given the current bit position pos
and S-HasChild[pos] = 1, to move to the child node, we �rst compute the child node’s
rank in the level-ordered node list: r = rank1(S-HasChild, pos) + 1. Because every node
only has its �rst bit set in S-LOUDS, we can use select1(S-LOUDS, r) to �nd the position
of the rth node.

To move to the parent node, we �rst get the rank r of the current node by r = rank1(S-
LOUDS, pos) because the number of ones in S-LOUDS indicates the number of nodes. We
then �nd the node that contains the (r − 1)th children: select1(S-HasChild, r − 1).

Given S-HasChild[pos] = 0, to access the value associated with pos, we compute the
rank of the value in S-Values. Because every clear-bit in S-HasChild has a value, there are
pos - rank1(S-HasChild, pos) values up to pos (non-inclusive).

To summarize:

• S-ChildNodePos(nodeNum) = select1(S-LOUDS, rank1(S-HasChild, pos) + 1)
• S-ParentNodePos(pos) = select1(S-HasChild, rank1(S-LOUDS, pos) - 1)
• S-ValuePos(pos) = pos - rank1(S-HasChild, pos)

3.4 LOUDS-DS and Operations

LOUDS-DS is a hybrid trie in which the upper levels are encoded with LOUDS-Dense and
the lower levels with LOUDS-Sparse. �e dividing point between the upper and lower
levels is tunable to trade performance and space. FST keeps the number of upper levels
small in favor of the space-e�ciency provided by LOUDS-Sparse. We maintain a size ra-
tioR between LOUDS-Sparse and LOUDS-Dense to determine the dividing point among
levels. Suppose the trie hasH levels. Let LOUDS-Dense-Size(l), 0 ≤ l ≤ H denote the size
of LOUDS-Dense-encoded levels up to l (non-inclusive). Let LOUDS-Sparse-Size(l), rep-
resent the size of LOUDS-Sparse encoded levels from l (inclusive) to H . �e cuto� level
is de�ned as the largest l such that LOUDS-Dense-Size(l) × R ≤ LOUDS-Sparse-Size(l).
Reducing R leads to more LOUDS-Dense levels, favoring performance over space. We
use R=64 as the default so that LOUDS-Dense is less than 2% of the trie size but still
covers the frequently-accessed top levels.

LOUDS-DS supports three basic operations e�ciently:

• ExactKeySearch(key): Return the value of key if key exists (NULL otherwise).
• LowerBound(key): Return an iterator pointing to the key-value pair (k, v) where
k is the smallest in lexicographical order satisfying k ≥ key.
• MoveToNext(iter): Move the iterator to the next key-value.
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Algorithm 1 LOUDS-DS Point �ery
1: Variables
2: DenseHeight← the height of the LOUDS-Dense encoded trie
3: DenseNodeCount← total number of nodes in LOUDS-Dense levels
4: DenseChildCount← total number of non-terminating branches LOUDS-Dense levels
5:
6: function LOOKUP(key)
7: level← 0, pos← 0
8: while level < DenseHeight do . First searching in LOUDS-Dense levels
9: nodeNum← bpos/256c

10: if level ≥ LEN(key) then . If run out of search key bytes
11: if D-IsPre�xKey[nodeNum] == 1 then . If the current pre�x is a key
12: return D-Values[D-ValuePos(nodeNum× 256)]
13: else
14: return NULL
15: pos← pos+ key[level]
16: if D-Labels[pos] == 0 then . Search failed
17: return NULL
18: if D-HasChild[pos] == 0 then . reached leaf node
19: return D-Values[D-ValuePos(pos)]
20: pos← D-ChildNodePos(pos) . Move to child node and continue search
21: level← level + 1

22:
23: pos← S-ChildNodePos(nodeNum−DenseNodeCount) . Transition to

LOUDS-Sparse
24:
25: while level < LEN(key) do . Searching continues in LOUDS-Sparse levels
26: if key[level] does NOT exists in the label list of the current node (starting at pos)

then
27: return NULL
28: if S-HasChild[pos] == 0 then . reached leaf node
29: return S-Values[S-ValuePos(pos)]
30: nodeNum← S-ChildNodeNum(pos) +DenseChildCount
31: pos← S-ChildNodePos(nodeNum−DenseNodeCount) . Move to child node

and continue search
32: level← level + 1

33:
34: if S-Labels[pos] == 0xFF and S-HasChild[pos] == 0 then . If the search key is a

“pre�x key”
35: return S-Values[S-ValuePos(pos)]

A point query on LOUDS-DS works by �rst searching the LOUDS-Dense levels. If
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the search does not terminate, it continues into the LOUDS-Sparse levels. �e high-level
searching steps at each level are similar regardless of the encoding mechanism: First,
search the current node’s range in the label sequence for the target key byte. If the key
byte does not exist, terminate and return NULL. Otherwise, check the corresponding bit
in theHasChild bit-sequence. If the bit is set (i.e., the branch is non-terminating), compute
the child node’s starting position in the label sequence and continue to the next level. If
the HasChild bit is not set, return the corresponding value in the value sequence. We
precompute two aggregate values based on the LOUDS-Dense levels: the node count and
the number of HasChild bits set. Using these two values, LOUDS-Sparse can operate as
if the entire trie is encoded with LOUDS-Sparse. Algorithm 1 shows the detailed steps.

LowerBound uses a high-level algorithm similar to the point query implementation.
If the search byte does not exist in the label sequence of the current node, the algorithm
looks for the smallest label that is greater than or equal to the search byte. If the search
byte is greater than every label in the current node, the algorithm recursively moves up
to the parent node and looks for the smallest label L that is greater than or equal to the
previous search byte. Once label L is found, the algorithm then searches for the le�-most
key in the subtrie rooted at L.

For MoveToNext, the iterator starts at the current position in the label sequence and
moves forward. If another valid label L is found within the node, the algorithm searches
for the le�-most key in the subtrie rooted at L. If the iterator hits node boundary instead,
the algorithm recursively moves the iterator up to the parent node and repeat the “move-
forward” process.

We include per-level cursors in the iterator to minimize the relatively expensive
“move-to-parent” and “move-to-child” calls, which require rank & select operations.
�ese cursors record a trace from root to leaf (i.e., the per-level positions in the label
sequence) for the current key. Because of the level-order layout of LOUDS-DS, each
level-cursor only moves sequentially without skipping items. With this property, range
queries in LOUDS-DS are implemented e�ciently. Each level-cursor is initialized once
through a “move-to-child” call from its upper-level cursor. A�er that, range query op-
erations at this level only involve cursor movement, which is cache-friendly and fast.
Section 3.7.1 shows that range queries in FST are even faster than pointer-based tries.

Finally, LOUDS-DS can be built using a single scan over a sorted key-value list.

3.5 Space and Performance Analysis

Given an n-node trie, LOUDS-Sparse uses 8n bits for S-Labels, n bits for S-HasChild, and
n bits for S-LOUDS – a total of 10n bits (plus auxiliary bits for rank & select). Referring to
Section 3.1, the information-theoretic lower bound (Z) for an n-node trie of degree 256
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Rank	LUT

Bit-vector Bit-vector

Select	Samples

Basic	blocks	of	size	B

(every	S	1’s)

Bit-vector 11010	11011	10110	11001	00001	0000
Rank	LUT 0										3										7									10							13								14

Bit-vector 11010	11011	10110	11001	00001	0000
Select	Samples 0				3										8 12					16								

B	=	5 S =	3

Figure 3.3: Rank and select structures in FST – Compared to a standard implementation, the
customized single-level lookup table design with di�erent sampling rates for LOUDS-Dense and
LOUDS-Sparse speeds up the rank and select queries in FST.

is approximately 9.44n bits. Although the space taken by LOUDS-Sparse is close to the
theoretical limit, technically, LOUDS-Sparse can only be categorized as compact rather
than succinct in a �ner-grained classi�cation scheme because LOUDS-Sparse takesO(Z)
space (despite the small multiplier) instead of Z + o(Z). In practice, however, FST is
smaller than other succinct tries (see the evaluation in Section 3.7.2).

LOUDS-Dense’s size is restricted by the ratio R to ensure that it does not a�ect the
overall space-e�ciency of LOUDS-DS. Notably, LOUDS-Dense does not always consume
more space than LOUDS-Sparse: if a node’s fanout is larger than 51, it takes fewer bits to
represent the node using the former instead of the la�er. Since such nodes are common
in a trie’s upper levels, adding LOUDS-Dense on top of LOUDS-Sparse o�en improves
space-e�ciency.

For point queries, searching at each LOUDS-Dense level requires two array lookups
plus a rank operation on bitvector D-HasChild; searching at each LOUDS-Sparse level
involves a label searching sub-routine plus a rank and a select operation on S-HasChild
and S-LOUDS, respectively. �e dominating operations are, therefore, the ranks and se-
lects on all the bit vectors, as well as the label searching at LOUDS-Sparse levels. We next
describe optimizations for these critical operations.

3.6 Optimizations

We focus on optimizing the three most critical operations: rank, select, and label search.
Because all the bit-sequences in LOUDS-DS require either rank or select support, but not
both, we gain the �exibility to optimize rank and select structures separately. We present
a performance breakdown to show their e�ects in Section 3.7.3.

29



Rank. Figure 3.3 (le� half) shows our lightweight rank structure. Instead of three levels
of LUTs (look-up tables) as in Poppy [171], we include only a single level. �e bit-vector
is divided into �xed-length basic blocks of size B (bits). Each basic block owns a 32-bit
entry in the rank LUT that stores the pre-computed rank of the start position of the block.
For example, in Figure 3.3, the third entry in the rank LUT is 7, which is the total number
of 1’s in the �rst two blocks. Given a bit position i, rank1(i) = LUT[bi/Bc] + (popcount
from bit (bi/Bc×B) to bit i), where popcount is a built-in CPU instruction. For example,
to compute rank1(12) in Figure 3.3, we �rst look up slot b12/5c = 2 in the rank LUT
and get 7. We count the 1’s in the remaining 3 bits (bit b12/5c × 5 = 10 to bit i = 12)
using the popcount instruction and obtain 2. �e �nal result is thus 7 + 2 = 9.

We use di�erent block sizes for LOUDS-Dense and LOUDS-Sparse. In LOUDS-Dense,
we optimize for performance by se�ing B=64 so that at most one popcount is invoked
in each rank query. Although such dense sampling incurs a 50% overhead for the bit-
vector, it has li�le e�ect on overall space because the majority of the trie is encoded using
LOUDS-Sparse, where we set B=512 so that a block �ts in one cacheline. A 512-bit block
requires only 6.25% additional space for the LUT while retaining high performance [171].

Select. �e right half of Figure 3.3 shows our lightweight select structure. �e select
structure is a simple LUT (32 bits per item) that stores the precomputed answers for the
sampled queries. For example, in Figure 3.3, because the sampling rate S = 3, the third
entry in the LUT stores the position of the 3 × 2 = 6th (zero-based) set bit, which is
8. Given a bit position i, select1(i) = LUT[i/S] + (selecting the (i − i/S × S)th set bit
starting from position LUT[i/S] + 1) + 1. For example, to compute select1(8), we �rst
look up slot 8/3 = 2 in the LUT and get 8. We then select the (8− 8/3× 3) = 2nd set bit
starting from position LUT [8/3] + 1 = 9 by binary-searching between position 9 and 12
using popcount. �is select equals 1. �e �nal result for select1(8) is thus 9 + 1 = 10.

Sampling works well in our case because the only bit vector in LOUDS-DS that re-
quires select support is S-LOUDS, which is quite dense (usually 17-34% of the bits are
set) and has a relatively even distribution of the set bits (at least one set bit in every 256
bits). �is means that the complexity of selecting the remaining bits a�er consulting the
sampling answers is constant (i.e., needs to examine at most 256S bits) and is fast. �e
default sampling rate S is set to 64, which provides good query performance yet incurs
only 9-17% space overhead locally (1-2% overall).

Label Search. Most succinct trie implementations search linearly for a label in a se-
quence. �is is suboptimal, especially when the node fanout is large. Although a binary
search improves performance, the fastest way is to use vector instructions. We use 128-bit
SIMD instructions to perform the label search in LOUDS-Sparse. We �rst determine the
node size by counting the consecutive 0’s a�er the node’s start position in the S-LOUDS
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bit-sequence. We then divide the labels within the node boundaries into 128-bit chunks,
each containing 16 labels, and perform group equality checks. �is search requires at
most 16 SIMD equality checks using the 128 bit SIMD instructions. Our experiments in
Section 3.7 show that more than 90% of the trie nodes have sizes less than eight, which
means that the label search requires only a single SIMD equality check.

Prefetching. In our FST implementation, prefetching is most bene�cial when invoked
before switching to di�erent bit/byte-sequences in LOUDS-DS. Because the sequences in
LOUDS-DS have position correspondence, when the search position in one sequence is
determined, the corresponding bits/bytes in other sequences are prefetched because they
are likely to be accessed next.

3.7 Evaluation

In this section, we evaluate FST using in-memory microbenchmarks. �e Yahoo! Cloud
Serving Benchmark (YCSB) [70] is a workload generation tool that models large-scale
cloud services. We use its default workloads C and E to generate point and range queries.
We test two representative key types: 64-bit random integers generated by YCSB and
email addresses (host reversed, e.g., “com.domain@foo”) drawn from a real-world dataset
(average length = 22 bytes, max length = 129 bytes). �e machine on which we run the
experiments has two Intel®Xeon®E5-2680v2 CPUs @ 2.80 GHz and 4×32 GB RAM. �e
experiments run on a single thread. We run each experiment three times and report the
average result. We omit error bars because the variance is small.

We evaluate FST in three steps. First, we compare FST to three state-of-the-art
pointer-based index structures. We use equi-cost curves to demonstrate FST’s relative
advantage in the performance-space trade-o�. Second, we compare FST to two alterna-
tive succinct trie implementations. We show that FST is 4–15× faster while also using less
memory. Finally, we present a performance breakdown of our optimization techniques
described in Section 3.6.

We begin each experiment by bulk-loading a sorted key list into the index. �e list
contains 50M entries for the integer keys and 25M entries for the email keys. We report
the average throughput of 10M point or range queries on the index. �e YCSB default
range queries are short: most queries scan 50–100 items, and the access pa�erns follow a
Zipf distribution. �e average query latency here refers to the reciprocal of throughput
because our microbenchmark executes queries serially in a single thread. For all index
types, the reported memory number excludes the space taken by the value pointers.
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3.7.1 FST vs. Pointer-based Indexes
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Figure 3.4: FST vs. Pointer-based Indexes – Performance and memory comparisons be-
tween FST and state-of-the-art in-memory indexes. �e blue equi-cost curves indicate a balanced
performance-space trade-o�. Points on the same curve are considered “indi�erent”.

We examine the following index data structures in our testing framework:

• B+tree: �is is the most common index structure used in database systems. We use the
fast STX B+tree [2] to compare against FST. �e node size is set to 512 bytes for best
in-memory performance. We tested only with �xed-length keys (i.e., 64-bit integers).
• ART: �e Adaptive Radix Tree (ART) is a state-of-the-art index structure designed for

in-memory databases [112]. ART adaptively chooses from four di�erent node layouts
based on branching density to achieve be�er cache performance and space-e�ciency.
• C-ART: We obtain a compact version of ART by converting a plain ART instance to
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a static version according to the Compaction and Structural reduction rules discussed
in Chapter 2.

We note that ART, C-ART, and FST are trie indexes and they store only unique key
pre�xes in this experiment.

Figure 3.4 shows the comparison results. Each sub�gure plots the locations of the four
(three for email keys) indexes in the performance-space (latency vs. memory) map. We
observe that FST is among the fastest choices in all cases while consuming less space. To
be�er understand this trade-o�, we de�ne a cost function C = P rS, where P represents
performance (latency), and S represents space (memory). �e exponent r indicates the
relative importance between P and S: r > 1 means that the application is performance-
critical, and 0 < r < 1 suggests otherwise. We de�ne an “indi�erence curve” as a set
of points in the performance-space map that have the same cost. We draw the equi-
cost curves in Figure 3.4 using cost function C = PS (r = 1), assuming a balanced
performance-space trade-o�. We observe that FST has the lowest cost (i.e., is the most
e�cient) in all cases. In order for the second place (C-ART) to have the same cost as FST
in the �rst sub�gure, for example, r needs to be 6.7 in the cost function, indicating an
extreme preference for performance.

3.7.2 FST vs. Other Succinct Tries

We compare FST against the following alternatives:

• tx-trie: �is is an open-source succinct trie implementation based on LOUDS [3]. Its
design is similar to LOUDS-Sparse but without any optimizations from Section 3.6.
• PDT: �e path-decomposed trie [91] is a state-of-the-art succinct trie implementation

based on the Depth-First Unary Degree Sequence (DFUDS) [57]. PDT re-balances the
trie using path-decomposition techniques to achieve latency and space reduction.

We evaluate the point query performance and memory for both integer and email key
workloads. All three tries store the complete keys (i.e., including the unique su�xes).
Figure 3.5 shows that FST is 6–15× faster than tx-trie, 4–8× faster than PDT, and is
also smaller than both. Although tx-trie shares the LOUDS-Sparse design with FST, it is
slower without the performance boost from LOUDS-Dense and other optimizations. We
also notice that the performance gap between PDT and FST shrinks in the email workload
because the keys have a larger variance in length and PDT’s path decomposition helps
rebalance the trie.
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between FST and two other state-of-the-art succinct trie implementations. All three tries store
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3.7.3 Performance Breakdown

We then analyze these performance measurements to be�er understand what makes
FST fast. Figure 3.6 shows a performance breakdown of point queries in both integer
and email key workloads. Our baseline trie is encoded using only LOUDS-Sparse with
Poppy [171] as the rank and select support. “+LOUDS-Dense” means that the upper-
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levels are encoded using LOUDS-Dense instead, and thus completes the LOUDS-DS de-
sign. “+rank-opt”, “+select-opt”, “+SIMD-search”, and “+prefetching” correspond to each
of the optimizations described in Section 3.6.

We observe that the introduction of LOUDS-Dense to the upper-levels of FST provides
a signi�cant performance boost at a negligible space cost. �e rest of the optimizations
reduce the overall query latency by 3–12%.

3.7.4 Trade-o�s between LOUDS-Dense and LOUDS-Sparse

We next examine the performance and memory trade-o�s as we increase the number of
LOUDS-Dense levels in FST (controlled by the R parameter as described in Section 3.4).
Figure 3.7 shows the results for point queries in both 64-bit integer and email work-
loads. We observe that the query performance improves by up to 3× as we include more
LOUDS-Dense levels in the trie. �is is because searching in a LOUDS-Dense node re-
quires only one bitmap lookup, which is more performant than searching in a LOUDS-
Sparse node.

In terms of memory, we observe the opposite results in the two workloads. For the
email workload, the memory used by FST grows as the number of LOUDS-Dense lev-
els increases, because LOUDS-Dense sacri�ces space for performance when the node
fanout is low. For the integer workload, however, the LOUDS-Dense encoding is more
space-e�cient than the LOUDS-Sparse encoding. �is is because the randomness of the
integers creates trie nodes with large fanouts. As we have shown in the space analysis in
Section 3.5, LOUDS-Dense takes fewer bits than LOUDS-Sparse to encode a node with a
fanout greater than 51.

Although we observed a Pareto improvement on latency and memory by aggressively
using LOUDS-Dense in the random integer workload, we believe that the LOUDS-Dense
encoding should be restricted to the top levels in FST for other common workloads, where
keys are less randomly distributed, to achieve a good performance-memory balance.
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Chapter 4

Application: Succinct Range Filters

Write-optimized log-structured merge (LSM) trees [138] are popular low-level storage
engines for general-purpose databases that provide fast writes [30, 151] and ingest-
abundant DBMSs such as time-series databases [17, 149]. One of their main challenges
for fast query processing is that items could reside in immutable �les (SSTables) from all
levels [5, 107]. Item retrieval in an LSM tree-based design may therefore incur multiple
expensive disk I/Os [138, 151]. �is challenge calls for in-memory data structures that
can help locate query items.

Bloom �lters [62] are a good match for this task. First, Bloom �lters are fast and small
enough to reside in memory. Second, Bloom �lters answer approximate membership
tests with “one-sided” errors—if the querying item is a member, the �lter is guaranteed
to return true; otherwise, the �lter will likely return false, but may incur a false positive.
Many LSM tree-based systems [5, 37, 149, 151], therefore, use in-memory Bloom �lters
to “guard” on-disk �les to reduce the number of unnecessary I/Os: the system reads an
on-disk �le only when the corresponding Bloom �lter indicates that a relevant item may
exist in the �le.

Although Bloom �lters are useful for single-key lookups (“Is key 50 in the SSTable?”),
they cannot handle range queries (“Are there keys between 40 and 60 in the SSTable?”).
With only Bloom �lters, an LSM tree-based storage engine still needs to read additional
disk blocks for range queries. Alternatively, one could maintain an auxiliary index, such
as a B+Tree, to accelerate range queries, but the memory cost is signi�cant. To partly
address the high I/O cost of range queries, LSM tree-based designs o�en use pre�x Bloom
�lters to optimize certain �xed-pre�x queries (e.g., “where email starts with com.foo@”)
[37, 78, 149], despite their in�exibility for more general range queries. �e designers
of RocksDB [37] have expressed a desire to have a more �exible data structure for this
purpose [76]. A handful of approximate data structures, including the pre�x Bloom �lter,
exist that can accelerate speci�c categories of range queries, but none is general purpose.
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In this chapter, we present the Succinct Range Filter (SuRF), a fast and compact
�lter that provides exact-match �ltering, range �ltering, and approximate range counts.
Like Bloom �lters, SuRF guarantees one-sided errors for point and range membership
tests. SuRF can trade between false positive rate and memory consumption, and this
trade-o� is tunable for point and range queries semi-independently.

SuRF is built upon the Fast Succinct Trie (FST) introduced in the previous chapter.
�e key insight in SuRF is to transform the FST into an approximate (range) membership
�lter by removing levels of the trie and replacing them with some number of su�x bits.
�e number of such bits (either from the key itself or from a hash of the key—as we
discuss later in the chapter) trades space for decreased false positives.

We evaluate SuRF via microbenchmarks (Section 4.3) and as a Bloom �lter replace-
ment in RocksDB (Section 4.4). Our experiments on a 100 GB time-series dataset show
that replacing the Bloom �lters with SuRFs of the same �lter size reduces I/O. �is speeds
up open-range queries (i.e., without upper-bound) by 1.5× and closed-range queries (i.e.,
with upper-bound) by up to 5× compared to the original implementation. For point
queries, the worst-case workload is when none of the query keys exist in the dataset.
In this case, RocksDB is up to 40% slower when using SuRFs because the SuRFs have
higher false positive rates than the Bloom �lters of the same size (0.2% vs. 0.1%). One can
eliminate this performance gap by increasing the size of SuRFs by a few bits per key.

SuRF is open-sourced [20] and has been implemented/incorporated to the production
systems of several major internet companies, while many more expressed interest in
using SuRF because they can “see exactly where SuRF can �t in and bene�t their systems,”
[quoted from a lead system developer from a storage company].

4.1 Design

In building SuRF using FST, our goal was to balance a low false positive rate with the
memory required by the �lter. �e key idea is to use a truncated trie; that is, to remove
lower levels of the trie and replace them with su�x bits extracted from the key (either
the key itself or a hash of the key). We introduce four variations of SuRF. We describe
their properties and how they guarantee one-sided errors. �e current SuRF design is
static, requiring a full rebuild to insert new keys. We discuss ways to handle updates
in Section 4.5.

4.1.1 Basic SuRF

FST is a trie-based index structure that stores complete keys. As a �lter, FST is 100% ac-
curate; the downside, however, is that the full structure can be big. In many applications,
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Figure 4.1: SuRF Variations – An example of deriving SuRF variations from a full trie.

�lters must �t in memory to protect access to a data structure stored on slower stor-
age. �ese applications cannot a�ord the space for complete keys, and thus must trade
accuracy for space.

�e basic version of SuRF (SuRF-Base) stores the minimum-length key pre�xes such
that it can uniquely identify each key. Speci�cally, SuRF-Base only stores an additional
byte for each key beyond the shared pre�xes. Figure 4.1 shows an example. Instead of
storing the full keys (‘SIGAI’, ‘SIGMOD’, ‘SIGOPS’), SuRF-Base truncates the full
trie by including only the shared pre�x (‘SIG’) and one more byte for each key (‘C’,
‘M’, ‘O’).

Pruning the trie in this way a�ects both �lter space and accuracy. Unlike Bloom �l-
ters where the keys are hashed, the trie shape of SuRF-Base depends on the distribution
of the stored keys. Hence, there is no theoretical upper-bound of the size of SuRF-Base.
Empirically, however, SuRF-Base uses only 10 bits per key (BPK) for 64-bit random inte-
gers and 14 BPK for emails, as shown in Section 4.3. �e intuition is that the trie built by
SuRF-Base usually has an average fanout F > 2. When F = 2 (e.g., a full binary trie),
there are twice as many nodes as keys. Because FST (LOUDS-Sparse to be precise) uses
10 bits to encode a trie node, the size of SuRF-Base is less than 20 BPK for F > 2.

Filter accuracy is measured by the false positive rate (FPR), de�ned as FP
FP+TN

, where
FP is the number of false positives and TN is the number of true negatives. A false
positive in SuRF-Base occurs when the pre�x of the non-existent query key coincides
with a stored key pre�x. For example, in Figure 4.1, querying key ‘SIGMETRICS’ will
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cause a false positive in SuRF-Base. FPR in SuRF-Base depends on the distributions of the
stored and queried keys. Ideally, if the two distributions are independent, SuRF-Base’s
FPR is bounded by N · 256−Hmin , where N is the number of stored keys and Hmin is the
minimum leaf height (i.e., the smallest depth among all the leaf nodes). To show this
bound, Suppose we have a key s stored in SuRF-Base, with its leaf node L at height H
(i.e.,H bytes of s are stored in the trie). Given a querying key q, because we assumed that
the byte distribution in q is independent of that in s, the probability that q reaches node
L is 256−H . Because q and s can be arbitrarily long, the probability that q and s have
the same remaining su�x approaches 0. �e stored key s, therefore, has a probability of
256−H to lead query q to a false positive. Since there areN stored keys, the false positive
rate for a query is N · 256−H . Note that this analysis assumes that the byte distributions
in q and s are independent. In practice, however, query keys are almost always correlated
to the stored keys. For example, if a SuRF-Base stores email addresses, query keys are
likely of the same type. Our results in Section 4.3 show that SuRF-Base incurs a 4% FPR
for integer keys and a 25% FPR for email keys. To improve FPR, we include three forms
of key su�xes described below to allow SuRF to be�er distinguish between the stored
key pre�xes.

4.1.2 SuRF with Hashed Key Su�xes

As shown in Figure 4.1, SuRF with hashed key su�xes (SuRF-Hash) adds a few hash bits
per key to SuRF-Base to reduce its FPR. Let H be the hash function. For each key K ,
SuRF-Hash stores the n (n is �xed) least-signi�cant bits of H(K) in FST’s value array
(which is empty in SuRF-Base). When a key (K ′) lookup reaches a leaf node, SuRF-Hash
extracts the n least-signi�cant bits of H(K ′) and performs an equality check against the
stored hash bits associated with the leaf node. Using n hash bits per key guarantees that
the point query FPR of SuRF-Hash is less than 2−n (the partial hash collision probability).
Even if the point query FPR of SuRF-Base is 100%, just 7 hash bits per key in SuRF-Hash
provide a 1

27
' 1% point query FPR. Experiments in Section 4.3.1 show that SuRF-Hash

requires only 2–4 hash bits to reach 1% FPR.
�e extra bits in SuRF-Hash do not help range queries because they do not provide

ordering information on keys.

4.1.3 SuRF with Real Key Su�xes

Instead of hash bits, SuRF with real key su�xes (SuRF-Real) stores the n key bits imme-
diately following the stored pre�x of a key. Figure 4.1 shows an example when n = 8.
SuRF-Real includes the next character for each key (‘I’, ‘O’, ‘P’) to improve the dis-
tinguishability of the keys: for example, querying ‘SIGMETRICS’ no longer causes a
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false positive. Unlike in SuRF-Hash, both point and range queries bene�t from the real
su�x bits to reduce false positives. For point queries, the real su�x bits are used the
same way as the hashed su�x bits. For range queries (e.g., move to the next key > K),
when reaching a leaf node, SuRF-Real compares the stored su�x bits s to key bits ks of
the query key at the corresponding position. If ks ≤ s, the iterator points to the current
key; otherwise, it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and range queries, the trade-o�
is that using real keys for su�x bits cannot provide as good FPR as using hashed bits
because the distribution correlation between the stored keys and the query keys weakens
the distinguishability of the real su�x bits.

4.1.4 SuRF with Mixed Key Su�xes

SuRF with mixed key su�xes (SuRF-Mixed) includes a combination of hashed and real
key su�x bits. �e su�x bits for the same key are stored consecutively so that both
su�xes can be fetched by a single memory reference. �e lengths for both su�x types
are con�gurable. SuRF-Mixed provides the full tuning spectrum (SuRF-Hash and SuRF-
Real are the two extremes) for mixed point and range query workloads.

4.1.5 Operations

We summarize how SuRF’s basic operations are implemented using FST. �e key is to
guarantee one-sided error (no false negatives).
build(keyList): Construct the �lter given a list of keys. Su�x bits are stored in the FST’s
value vectors: D-Values and S-Values.
result = lookup(k): Point membership test on k. Return true if k may exist (could be false
positive); false guarantees non-existence. �is operation �rst searches for k in the FST.
If the search terminates without reaching a leaf, return false. If the search reaches a leaf,
return true in SuRF-Base. In other SuRF variants, fetch the stored key su�x ks of the leaf
node and perform an equality check against the su�x bits extracted from k according to
the su�x type as described in Sections 4.1.2–4.1.4.
iter, fp flag = moveToNext(k): Return an iterator pointing to the smallest key ≥ k. Set
fp �ag when the pointed key is a pre�x of k to indicate the possibility of a false positive.
�is operation �rst performs a LowerBound search on the FST to reach a leaf node and
get the stored key k′. If SuRF-Real or SuRF-Mixed is used, concatenate the real su�x bits
to k′. It then compares k′ to k. If k′ > k, return the current iterator and set fp �ag to
false; if k′ is a pre�x of k, return the current iterator and set fp �ag to true; if k′ < k and
k′ is not a pre�x of k, advance the iterator (iter++) and set fp �ag to false.
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Figure 4.2: An overview of RocksDB architecture – RocksDB is implemented based on the
log-structured merge tree.

result = lookupRange(lowKey, highKey): Range membership test on (lowKey, highKey).
Return true if there may exist keys within the range; false guarantees non-existence. �is
operation �rst invokes moveToNext(lowKey) and obtain an iterator. It then compares
the key k pointed to by the iterator to highKey. If k < highKey, return false. Otherwise,
return true. A false positive could happen if k is a pre�x of highKey.
count = count(lowKey, highKey): Return the number of keys contained in the range
(lowKey, highKey). �is operation �rst performs moveToNext on both boundary keys
and obtain two iterators. We extend each iterator down the trie to �nd the position of
the smallest leaf key that is greater than the iterator key for each level, until the two it-
erators move to the same position or reach the maximum trie height. �e operation then
counts the number of leaf nodes at each level between the two iterators by computing
the di�erence of their ranks on the FST’s D-HasChild/S-HasChild bitvector. �e sum of
those counts is returned. False positives (over-counting) can happen at the boundaries
when the �rst/last key included in the count is a pre�x of lowKey/highKey. �e count
operation, therefore, can at most over-count by two.

4.2 Example Application: RocksDB

We integrated SuRF with RocksDB as a replacement for its Bloom �lter. Figure 4.2 il-
lustrates RocksDB’s log-structured merge tree architecture. Incoming writes go into the
MemTable and are appended to a log �le (omi�ed) for persistence. When the MemTable
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is full (e.g., exceeds 4 MB), the engine sorts it and then converts it to an SSTable that
becomes part of level 0. An SSTable contains sorted key-value pairs and is divided into
�xed-length blocks matching the smallest disk access units. To locate blocks, RocksDB
stores the “restarting point” (a string that is≥ the last key in the current block and< the
�rst key in the next block) for each block as a fence index.

When the size of a level hits a threshold, RocksDB selects an SSTable at this level and
merges it into the next-level SSTables that have overlapping key ranges. �is process is
called compaction. Except for level 0, all SSTables at the same level have disjoint key
ranges. In other words, the keys are globally sorted for each level ≥ 1. Combined with a
global table cache, this property ensures that an entry lookup reads at most one SSTable
per level for levels ≥ 1.

To facilitate searching and to reduce I/Os, RocksDB includes two types of bu�er
caches: the table cache and the block cache. �e table cache contains meta-data about
opened SSTables while the block cache contains recently accessed SSTable blocks. Blocks
are also cached implicitly by the OS page cache. When compression is turned on, the OS
page cache contains compressed blocks, while the block cache always stores uncom-
pressed blocks.

We modi�ed RocksDB’s point (Get) and range (Seek, Next) query implementations
to use SuRF. SuRF also supports functionality beyond �ltering. We implemented a new
approximate Count query that returns the number of entries in a key range. We note that
the query may over-count the deletion and modi�cation entries in an LSM-tree, because
it cannot distinguish update/delete records from insert records.

Figure 4.3 shows the execution paths for Get, Seek, and Count queries in RocksDB.
Next’s core algorithm is similar to Seek. We use colors to highlight the potential I/O
reduction by using �lters. Operations in blue boxes can trigger I/O if the requesting
block(s) are not cached. Filter operations are in red boxes. If the box is dashed, checks
(by fetching the actual keys from SSTables) for boundary keys might be necessary due to
false positives.

ForGet(key), SuRF is used exactly like the Bloom �lter. Speci�cally, RocksDB searches
level by level. At each level, RocksDB locates the candidate SSTable(s) and block(s) (level 0
may have multiple candidates) via the block indexes in the table cache. For each candidate
SSTable, if a �lter is available, RocksDB queries the �lter �rst and fetches the SSTable
block only if the �lter result is positive. If the �lter result is negative, the candidate
SSTable is skipped and the unnecessary I/O is saved.

For Seek(lk, hk), if hk (high key) is not speci�ed, we call it an Open Seek. Otherwise,
we call it a Closed Seek. To implement Seek(lk, hk), RocksDB �rst collects the candidate
SSTables from all levels by searching for lk (low key) in the block indexes.

Absent SuRFs, RocksDB examines each candidate SSTable and fetches the block con-
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taining the smallest key that is ≥ lk. RocksDB then compares the candidate keys and
�nds the global smallest key K ≥ lk. For an Open Seek, the query succeeds and returns
the iterators (at least one per level). For a Closed Seek, however, RocksDB performs an
extra check against the hk: if K ≤ hk, the query succeeds; otherwise the query returns
an invalid iterator.

With SuRFs, however, instead of fetching the actual blocks, RocksDB can obtain
the candidate key for each SSTable by performing a moveToNext(lk) operation on the
SSTable’s SuRF to avoid the I/O. If the query succeeds (i.e., Open Seek or K ≤ hk),
RocksDB fetches exactly one block from the selected SSTable that contains the global
minimum K . If the query fails (i.e., K > hk), no I/O is involved. Because SuRF’s move-
ToNext operation returns only a key pre�x Kp, three additional checks are required to
guarantee correctness. First, if the moveToNext operation sets the fp �ag (refer to Sec-
tion 4.1.5), RocksDB must fetch the complete keyK from the SSTable block to determine
whetherK ≥ lk. Second, ifKp is a pre�x of hk, the complete keyK is also needed to ver-
ify K ≤ hk. �ird, multiple key pre�xes could tie for the smallest. In this case, RocksDB
must fetch their corresponding complete keys from the SSTable blocks to �nd the globally
smallest. Despite the three potential additional checks, using SuRF in RocksDB reduces
the average I/Os per Seek(lk, hk) query, as shown in Section 4.4.

To illustrate how SuRFs bene�t range queries, suppose a RocksDB instance has three
levels (LN , LN−1, LN−2) of SSTables on disk. LN has an SSTable block containing keys
2000, 2011, 2020 with 2000 as the block index; LN−1 has an SSTable block containing keys
2012, 2014, 2029 with 2012 as the block index; and LN−2 has an SSTable block containing
keys 2008, 2021, 2023 with 2008 as the block index. Consider the range query [2013,
2019]. Using only block indexes, RocksDB has to read all three blocks from disk to verify
whether there are keys between 2013 and 2019. Using SuRFs eliminates the blocks in LN
and LN−2 because the �lters for those SSTables will return false to query [2013, 2019]
with high probabilities. �e number of I/Os is likely to drop from three to one.

Next(hk) is similar to Seek(lk, hk), but the iterator at each level is already initialized.
RocksDB increments the iterator (at some level) pointing to the current key, and then
repeat the “�nd the global smallest” algorithm as in Seek.

For Count(lk, hk), RocksDB �rst performs a Seek on lk to initialize the iterators and
then counts the number of items between lk and hk at each level. Without SuRF, the
DBMS computes the count by scanning the blocks in SSTable(s) until the key exceeds
the upper bound. If SuRFs are available, the counting is performed in memory by calling
SuRF’s count operation. As in Seek, similar boundary key checks are required to avoid
the o�-by-one error. Instead of scanning disk blocks, Count using SuRFs requires at most
two disk I/Os (one possible I/O for each boundary) per level. �e cumulative count is
then returned.
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4.3 Microbenchmarks

In this section, we �rst evaluate SuRF using in-memory microbenchmarks to provide a
comprehensive understanding of the �lter’s strengths and weaknesses. Section 4.4 cre-
ates an example application scenario and evaluates SuRF in RocksDB with end-to-end
system measurements.

We use the YCSB [70] default workloads C and E to generate point and range queries.
We test two representative key types: 64-bit random integers generated by YCSB and
email addresses (host reversed, e.g., “com.domain@foo”) drawn from a real-world dataset
(average length = 22 bytes, max length = 129 bytes). �e machine on which we run
the experiments has two Intel®Xeon®E5-2680v2 CPUs @ 2.80 GHz with each having 10
physical cores and 20 hardware threads (with hyper-threading enabled), and 4×32 GB
RAM. We run each experiment three times and report the average result.

�e three most important metrics with which to evaluate SuRF are false positive rate
(FPR), performance, and space. �e datasets are 100M 64-bit random integer keys and
25M email keys. In the experiments, we �rst construct the �lter under test using half of
the dataset selected at random. We then execute 10M point, range, mixed (50% point and
50% range, interleaved), or count queries on the �lter. �e querying keys (K) are drawn
from the entire dataset according to YCSB workload C so that roughly 50% of the queries
return false. We tested two query access pa�erns: uniform and Zipf distribution. We
show only the Zipf distribution results because the observations from both pa�erns are
similar. For 64-bit random integer keys, the range query is [K + 237, K + 238] where 46%
of the queries return true. For email keys, the range query is [K , K(with last byte ++)]
(e.g., [org.acm@sigmod, org.acm@sigmoe]) where 52% of the queries return true. For
count queries, we draw the lower and upper bounds from the dataset randomly so that
most of them count long ranges. We use the Bloom �lter implementation from RocksDB1.

4.3.1 False Positive Rate

We �rst study SuRF’s false positive rate (FPR). FPR is the ratio of false positives to the
sum of false positives and true negatives. Figure 4.4 shows the FPR comparison between
SuRF variants and the Bloom �lter by varying the size of the �lters. �e Bloom �lter
only appears in point queries. Note that SuRF-Base consumes 14 (instead of 10) bits per
key for the email key workloads. �is is because email keys share longer pre�xes, which
increases the number of internal nodes in SuRF (Recall that a SuRF node is encoded using
10 bits). SuRF-Mixed is con�gured to have an equal number of hashed and real su�x bits.

1Because RocksDB’s Bloom �lter is not designed to hold millions of items, we replaced its 32-bit Murmur
hash algorithm with a 64-bit Murmur hash; without this change, the false positive rate is worse than the
theoretical expectation.
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Figure 4.4: SuRF False Positive Rate – False positive rate comparison between SuRF variants
and the Bloom �lter (lower is be�er).

For point queries, the Bloom �lter has lower FPR than the same-sized SuRF variants
in most cases, although SuRF-Hash catches up quickly as the number of bits per key
increases because every hash bit added cuts the FPR by half. Real su�x bits in SuRF-
Real are generally less e�ective than hash bits for point queries. For range queries, only
SuRF-Real bene�ts from increasing �lter size because the hash su�xes in SuRF-Hash do
not provide ordering information. �e shape of the SuRF-Real curves in the email key
workloads (i.e., the la�er 4 su�x bits are more e�ective in recognizing false positives
than the earlier 4) is because of ASCII encoding of characters.

For mixed queries, increasing the number of su�x bits in SuRF-Hash yields dimin-
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Figure 4.5: SuRF Performance – Performance comparison between SuRF variants and the
Bloom �lter (higher is be�er).
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ishing returns in FPR because they do not help the range queries. SuRF-Mixed (with an
equal number of hashed and real su�x bits) can improve FPR over SuRF-Real for some
su�x length con�gurations. In fact, SuRF-Real is one extreme in SuRF-Mixed’s tuning
spectrum. �is shows that tuning the ratio between the length of the hash su�x and that
of the real su�x can improve SuRF’s FPR in mixed point and range query workloads.

We also observe that SuRF variants have higher FPRs for the email key workloads.
�is is because the email keys in the data set are very similar (i.e., the key distribution is
dense). Two email keys o�en di�er by the last byte, or one may be a pre�x of the other. If
one of the keys is represented in the �lter and the other key is not, querying the missing
key on SuRF-Base is likely to produce false positives. �e high FPR for SuRF-Base is
signi�cantly lowered by adding su�x bits, as shown in the �gures.

4.3.2 Performance

Figure 4.5 shows the throughput comparison. �e SuRF variants operate at a speed com-
parable to the Bloom �lter for the 64-bit integer key workloads, thanks to the LOUDS-DS
design and other performance optimizations mentioned in Section 3.6. For email keys,
the SuRF variants are slower than the Bloom �lter because of the overhead of search-
ing/traversing the long pre�xes in the trie. �e Bloom �lter’s throughput decreases as
the number of bits per key gets larger because larger Bloom �lters require more hash
probes. �e throughput of the SuRF variants does not su�er from increasing the number
of su�x bits because as long as the su�x length is less than 64 bits, checking with the
su�x bits only involves one memory access and one integer comparison. �e (slight)
performance drop in the �gures when adding the �rst su�x bit (i.e., from 10 to 11 for
integer keys, and from 14 to 15 for email keys) demonstrates the overhead of the extra
memory access to fetch the su�x bits.

Range queries in SuRF are slower than point queries because every query needs to
reach a leaf node (no early exit). Count queries are also slower because such a query
requires managing iterators at both ends and counting the leaf nodes between them at
each trie level. Nevertheless, count queries in SuRF are much faster than those in previous
trie implementations where they count by advancing the iterator one entry at a time.

Some high-level takeaways from the experiments: (1) SuRF can perform range �lter-
ing while the Bloom �lter cannot; (2) If the target application only needs point query
�ltering with moderate FPR requirements, the Bloom �lter is usually a be�er choice than
SuRF; (3) For point queries, SuRF-Hash can provide similar theoretical guarantees on FPR
as the Bloom �lter, while the FPR for SuRF-Real depends on the key distribution; (4) To
tune SuRF-Mixed for mixed point and range queries, one should start from SuRF-Real
because real su�x bits bene�t both query types and then gradually replace them with
hash su�xes until the FPR is optimal.
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Figure 4.6: SuRF Build Time – Build time comparison between SuRF variants and the Bloom
�lter (lower is be�er).

4.3.3 Build Time

We also measure the construction time of each �lter in the above experiments. Recall
that a �lter stores half of the corresponding dataset (i.e., 50M 64-bit integer keys or 12.5M
email keys) where the keys are sorted. As shown in Figure 4.6, building a SuRF is faster
than building a Bloom �lter. �is is because a SuRF can be built in a single scan of the
sorted input keys and it only involves sequential memory accesses during construction.
Building a Bloom �lter, however, requires multiple random writes per key. �erefore,
building a SuRF has be�er cache performance. We also note that Bloom �lters take longer
to build as the number of bits per key increases because larger Bloom �lters require more
hash probes (and thus more random memory accesses). On the other hand, the number
of su�x bits in SuRF a�ects li�le on the build time because extracting the su�x bits from
a key only involves a memory read that is very likely a cache hit.

4.3.4 Scalability

In this experiment, we verify that SuRFs are scalable on multi-core systems. We repeat
the SuRF experiments above by varying the number of threads. Figure 4.7 shows the
aggregate point query throughput for 64-bit integer keys as the number of threads in-
creases. We omit other scalability graphs because they show similar results. As shown
in Figure 4.7, SuRF scales almost perfectly when disabling hyper-threading (only a bit
o� due to cache contention). Even with hyper-threading, SuRF’s throughput keeps in-
creasing without any performance collapse. �is result is expected because SuRF is a
read-only data structure and is completely lock-free, experiencing li�le contention with
many concurrent threads.
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Figure 4.7: SuRF Scalability – Point query performance as the number of threads increases.

4.3.5 Comparing ARF and SuRF

�e Adaptive Range �lter (ARF) [49] introduced as part of Project Siberia [79] in Heka-
ton [74] is the state-of-the-art range �lter. An ARF is a simple binary tree that covers the
entire key space (e.g., for 64-bit integer keys, the root node represents range [0, 264-1]
and its children represent [0, 263-1] and [263, 264-1]). Each leaf node indicates whether
there may be any key or absolutely no key in its range. Using an ARF involves three
steps: building a perfect trie, training with sample queries to determine which nodes to
include in an ARF, and then encoding the trained ARF into a bit sequence in breadth-�rst
order that is static.

In this experiment, we compare SuRF against ARF. We integrate the ARF implemen-
tation published by the paper authors [11] into our test framework. We set the space limit
to 7 MB for ARF and use a 4-bit real su�x for SuRF so that both �lters consume 14 bits
per key. We use the same YCSB-based range query workloads described at the beginning
of this section (Section 4.3). However, we scale down the dataset by 10× because ARF
requires a large amount of memory for training. Speci�cally, the dataset contains 10M
64-bit integer keys (ARF can only support �xed-length keys up to 64 bits). We randomly
select 5M keys from the dataset and insert them into the �lter. �e workload includes
10M Zipf-distributed range queries whose range size is 240, which makes roughly 50% of
the queries return false. For ARF, we use 20% (i.e., 2M) of the queries for training and the
rest for evaluation.

Table 4.1 compares the performance and resource use of ARF and SuRF. For query
processing, SuRF is 20× faster and 12× more accurate than ARF, even though their �nal
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ARF SuRF Improvement

Bits per Key (held constant) 14 14 -
Range �ery �roughput (Mops/s) 0.16 3.3 20×
False Positive Rate (%) 25.7 2.2 12×
Build Time (s) 118 1.2 98×
Build Mem (GB) 26 0.02 1300×
Training Time (s) 117 N/A N/A
Training �roughput (Mops/s) 0.02 N/A N/A

Table 4.1: SuRF vs. ARF – Experimental comparison between ARF and SuRF.

�lter size is the same. Moreover, ARF demands a large amount of resources for building
and training: its peak memory use is 26 GB and the building + training time is around 4
minutes, even though the �nal �lter size is only 7 MB. In contrast, building SuRF only uses
0.02 GB of memory and �nishes in 1.2 seconds. SuRF outperformed ARF mainly because
ARF is not designed as a general-purpose range �lter, but with speci�c application and
scalability goals. We discuss the detailed reasons in Chapter 7.

�e next section shows the evaluation of SuRF in the context of an end-to-end real-
world application (i.e., RocksDB), where SuRF speeds up both point and range queries by
saving I/Os.

4.4 System Evaluation

Time-series databases o�en use RocksDB or similar LSM-tree designs for the storage
engine. Examples are In�uxDB [17], �asarDB[34], Li�leTable [149] and Cassandra-
based systems [9, 107]. We thus create a synthetic RocksDB benchmark to model a time-
series dataset generated from distributed sensors and use this for end-to-end performance
measurements. We simulated 2K sensors to record events. �e key for each event is a 128-
bit value comprised of a 64-bit timestamp followed by a 64-bit sensor ID. �e associated
value in the record is 1 KB long. �e occurrence of each event detected by each sensor
follows a Poisson distribution with an expected frequency of one every 0.2 seconds. Each
sensor operates for 10K seconds and records ∼50K events. �e starting timestamp for
each sensor is randomly generated within the �rst 0.2 seconds. �e total size of the raw
records is approximately 100 GB.

Our testing framework supports the following database queries:

• Point�ery: Given a timestamp and a sensor ID, return the record if there is an event.
• Open-Seek �ery: Given a starting timestamp, return an iterator pointing to the
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Figure 4.8: Point and Open-Seek�eries – RocksDB point query and Open-Seek query eval-
uation under di�erent �lter con�gurations.

earliest event a�er that time.
• Closed-Seek �ery: Given a time range, determine whether any events happened

during that time period. If yes, return an iterator pointing to the earliest event in the
range.

Our test machine has an Intel®Core™i7-6770HQ CPU, 32 GB RAM, and an Intel®540s
480 GB SSD. We use Snappy (RocksDB’s default) for data compression. �e resulting
RocksDB instance has four levels (including Level 0) and uses 52 GB of disk space. We
con�gured2 RocksDB according Facebook’s recommendations [10, 78].

We create four instances of RocksDB with di�erent �lter options: (1) no �lter, (2)
Bloom �lter, (3) SuRF-Hash, and (4) SuRF-Real. We con�gure each �lter to use an equal
amount of memory. Bloom �lters use 14 bits per key. �e equivalent-sized SuRF-Hash
and SuRF-Real include a 4-bit su�x per key. We �rst warm the cache with 1M uniformly-

2Block cache size = 1 GB; OS page cache ≤ 3 GB. Enabled
pin l0 filter and index blocks in cache and cache index and filter blocks.
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Figure 4.9: Closed-Seek�eries – RocksDB Closed-Seek query evaluation under di�erent �lter
con�gurations and range sizes.

distributed point queries to existing keys so that every SSTable is touched approxi-
mately 1000 times and the block indexes and �lters are cached. A�er the warm-up, both
RocksDB’s block cache and the OS page cache are full. We then execute 50K application
queries, recording the end-to-end throughput and I/O counts. We compute the DBMS’s
throughput by dividing query counts by execution time, while I/O counts are read from
system statistics before and a�er the execution. �e query keys (for range queries, the
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starting keys) are randomly generated. �e reported numbers are the average of three
runs. Even though RocksDB supports pre�x Bloom �lters, we exclude them in our eval-
uation because they do not o�er bene�ts over Bloom �lters in this scenario: (1) range
queries using arbitrary integers do not have pre-determined key pre�xes, which makes
it hard to generate such pre�xes, and (2) even if key pre�xes could be determined, pre�x
Bloom �lters always return false positives for point lookups on absent keys sharing the
same pre�x with any present key, incurring high false positive rates.

Figure 4.8 (the �rst row) shows the result for point queries. Because the query keys are
randomly generated, almost all queries return false. �e query performance is dominated
by the I/O count: they are inversely proportional. Excluding Level 0, each point query
is expected to access three SSTables, one from each level (Level 1, 2, 3). Without �lters,
point queries incur approximately 1.5 I/Os per operation according to Figure 4.8, which
means that the entire Level 1 and approximately half of Level 2 are likely cached. �is
agrees with the typical RocksDB application se�ing where the last two levels are not
cached in memory [76].

Using �lters in point queries reduces I/O because they prevent unnecessary block
retrieval. Using SuRF-Hash or SuRF-Real is slower than using the Bloom �lter because
the 4-bit su�x does not reduce false positives as low as the Bloom �lter con�guration
(refer to Section 4.3.1). SuRF-Real provides similar bene�ts as SuRF-Hash because the key
distribution is sparse. One can shrink or eliminate the performance gap between Bloom
�lters and SuRFs by adding a few more su�x bits per key to the SuRFs.

�e main bene�t of using SuRF is accelerating range queries. Figure 4.8 (the second
row) shows that using SuRF-Real can speed up Open-Seek queries by 50%. SuRF-Real
cannot improve further because an Open-Seek query requires reading at least one SSTable
block as described in Section 4.2, and that SSTable block read is likely to occur at the last
level where the data blocks are not available in cache. In fact, the I/O �gure shows that
using SuRF-Real reduces the number of I/Os per operation to 1.023, which is close to the
maximum I/O reduction for Open-Seeks.

Figure 4.9 shows the throughput and I/O count for Closed-Seek queries. On the x-
axis, we control the percent of queries with empty results by varying the range size.
�e Poisson distribution of events from all sensors has an expected frequency of one per
λ = 105 ns. For an interval with length R, the probability that the range contains no
event is given by e−R/λ. �erefore, for a target percentage (P ) of Closed-Seek queries
with empty results, we set range size to λ ln( 1

P
). For example, for 50%, the range size is

69310 ns.
Similar to the Open-Seek query results, the Bloom �lter does not help range queries

and is equivalent to having no �lter. Using SuRF-Real, however, speeds up the query
by 5× when 99% of the queries return empty. Again, I/O count dominates performance.
Without a range �lter, every query must fetch candidate SSTable blocks from each level
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to determine whether there are keys in the range. Using the SuRF variants, however,
avoids many of the unnecessary I/Os; RocksDB performs a read to the SSTable block
only when the minimum key returned by the �lters at each level falls into the querying
range. Using SuRF-Real is more e�ective than SuRF-Hash in this case because the real
su�x bits help reduce false positives at the range boundaries.

To continue scanning a�er Seek, the DBMS callsNext and advances the iterator. We do
not observe performance improvements for Next when using SuRF because the relevant
SSTable blocks are already loaded in memory. Hence, SuRF mostly helps short range
queries. As the range gets larger, the �ltering bene�t is amortized.

�e RocksDB API does not support approximate queries. We measured the perfor-
mance of approximate count queries using a simple prototype in LevelDB, �nding that the
speedup from using SuRF is similar to the speedup for Closed-Seek queries. (�is result is
expected based upon the execution paths in Figure 4.3). We believe it an interesting ele-
ment of future work to integrate approximate counts (which are exact for static datasets)
into RocksDB or another system more explicitly designed for approximate queries.

As a �nal remark, we evaluated RocksDB in a se�ing where the memory vs. storage
budget is generous. �e DBMS will bene�t more from SuRF under a tighter memory
constraint and a larger dataset.

4.5 �e�eory-Practice Gaps

In this section, we discuss the theory-practice gaps between SuRF and an ideal range �l-
ter. �e discussion includes a worst-case workload analysis on SuRF. Although we show
that SuRF lacks certain theoretic guarantees, SuRF is still practical for many common
applications. �e discussion also suggests future directions in building a more powerful
and e�cient range �lter.

�e �rst theory-practice gap is that SuRF’s performance and space-e�ciency are
workload-dependent. To illustrate this point, we constructed one of the worst-case
datasets for SuRF in terms of performance and space-e�ciency, as shown in Figure 4.10.
In this dataset, we restrict the alphabet to be the lower case le�ers. Each key is 64 char-
acters long, including a 5-character pre�x, followed by a 58-character random string and
1-character su�x. �e pre�xes cover all possible 5-character combinations, with each
combination appearing twice. �e pair of keys that share the same pre�x has the same
random string followed but di�ers in the last byte. �is way of constructing keys is
unfriendly to SuRF because it maximizes the trie height (i.e., hurts performance) and
minimizes the internal node sharing (i.e., hurts space-e�ciency).

We evaluate SuRF on the above worst-case dataset. �e experiment is similar to the
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aaaaa random string 1 a
aaaaa random string 1 b
aaaab random string 2 a
aaaab random string 2 b

zzzzz random string 265 a
zzzzz random string 265 b

58 Characters

2×265

keys

64 Characters

Figure 4.10: Worst-case Dataset – A worst-case dataset for SuRF in terms of performance and
space-e�ciency.

SuRF microbenchmarks in Section 4.3. Speci�cally, we insert all the keys in the dataset
into SuRF-Base and then execute 10M point queries generated by YCSB workload C. Note
that we store the entire dataset in SuRF (instead of 50% as in Section 4.3) so that every
query reaches a leaf node in SuRF (i.e., no early exit) to allow the worst-case performance.

Figure 4.11 shows the throughput and memory results. We include the numbers for
64-bit integers and emails obtained from Section 4.3.2 for comparison. SuRF’s perfor-
mance is greatly compromised in the worst-case scenario because every query must tra-
verse down 64 levels in the trie, causing a large number of cache misses. In terms of
memory consumption, SuRF in the worst-case scenario takes 328 bits on average to en-
code each key, consuming memory that is equivalent to 64.1% of the dataset size. �is is
because our designed keys maximize the number of internal nodes in SuRF but minimize
pre�x sharing (i.e., each 58-character random string is only shared by two keys). Mean-
while, we have no su�x in the trie to truncate to save space. In other words, the SuRF
that we built in the experiment is perfectly accurate (i.e., no false positives) because we
stored every byte in each key.

�e second theory-practice gap is that SuRF does not guarantee a theoretical false
positive rate for range queries based on the number of bits used, despite that it achieves
good empirical results. Goswami et al. [88] studied the theory aspect of the approximate
range emptiness (i.e., range �ltering) problem. �ey proved that any data structure that
can answer approximate range emptiness queries has the worst-case space lower bound
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Figure 4.11: Worst-case Evaluation – SuRF’s throughput and memory consumption on a
worst-case dataset. �e percentage numbers on the right are the size ratios between SuRF and
the raw keys for each dataset.

of Ω(n lg(L/ε)) − O(n) bits, where n represents the number of items, L denotes the
maximum interval length for range queries (in SuRF, L equals to the size of the key
space), and ε is the false positive rate. In fact, this bound shows that there does not
exist a “magic” data structure that can solve the range �ltering problem by using only
n lg(1/ε) +O(n) bits as in Bloom �lters [66]. In other words, even an “optimal” solution
must use, in the worst case, close to the same number of bits needed to store the original
data, truncated to the point where keys can be su�ciently di�erentiated from each other.
In practice, on many datasets, however, SuRF provides a useful tradeo� between space
and false positives. �ere is no contradiction here: SuRF ’s succinct encoding helps it
approach the lower bound in the worst case, and its trie structure practically compresses
shared key pre�xes when they exist.

Finally, the current version of SuRF only targets static use cases such as the log-
structured merge tree described in Section 4.2. SuRF is a natural �t for LSM tree designs:
when compaction creates a new SSTable, simply rebuild its associated SuRF. To create
a deletable �lter, we can introduce an additional “tombstone” bit-array with one bit per
key to indicate whether the key has been deleted or not. With the tombstone bit-array,
the cost of a delete in SuRF is almost the same as that of a lookup. For applications that
require modi�able range �lters, one can extend SuRF using a hybrid index [168]: A small
dynamic trie sits in front of the SuRF and absorbs all inserts and updates; batch merges
periodically rebuild the SuRF, amortizing the cost of individual modi�cations. We discuss
the hybrid index architecture in detail in the next chapter.
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Chapter 5

Supporting Dynamic Operations E�ciently:
�e Hybrid Index

So far in this thesis, we have focused on techniques to compress read-optimized (i.e.,
static) data structures. We showed in Chapters 2–4 that we can achieve optimal space
while retaining high performance for static search trees. Although these static structures
such as SuRF are useful in many practical scenarios, they lack e�cient support for dy-
namic operations: An insert or update typically causes a rebuild of a signi�cant part of the
data structure. Such high modi�cation cost limits the use of static trees in many database
applications, especially for online transaction processing (OLTP) workloads where the
ingestion rate is high. In this chapter, we relax this constraint by introducing techniques
to speed up inserts and updates on static search trees with bounded and amortized cost
in performance and space.

We present hybrid index, a dual-stage index architecture that can amortize the cost
of modifying compact static data structures. Hybrid index is mainly designed for in-
memory OLTP databases. It maintains a small dynamic “hot” store to absorb writes and
a more compact, but read-only store to hold the bulk of index entries. Merge between the
stages is triggered periodically and can be performed e�ciently. Hybrid index leverages
the skewed access pa�ern typically found in OLTP workloads. �is skew manifests itself
with respect to item popularity [72, 116]: certain data items are accessed more o�en than
others and thus are more likely to be accessed again in the near future. �is observation
has been used extensively to move cold data from memory to block-based storage [72,
79, 154], and to store data e�ciently by compressing the cold data in a main-memory
database [84]. Unlike prior work [67, 108, 119, 152, 161], our design o�ers low latency
and high throughput for the point queries and short-range scans that typify the OLTP
workloads used with main-memory databases [106, 155].

A hybrid index explored unifying multiple underlying physical data structures, each
with di�erent optimization focuses, to construct a single logical entity. Our approach
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Figure 5.1: Dual-Stage Hybrid Index Architecture – All writes to the index �rst go into the
dynamic stage. As the size of the dynamic stage grows, it periodically merges older entries to the
static stage. For a read request, it searches the dynamic stage and the static stage in sequence.

di�ers from the log-structured merge trees (LSM-trees) [138] in several ways. First, log-
structured engines are storage management systems that leverage the storage hierarchy
while a hybrid index is an index data structure that resides only in memory. Such dif-
ference greatly in�uences a number of design decisions. For example, unlike LSM-trees,
hybrid indexes avoid having too many stages/levels (unless the workload is extremely
skewed) because the additional stages cause the worst-case read latency to increase pro-
portionally to the number of stages. Furthermore, log-structured engines focus on speed-
ing up writes while hybrid indexes target at saving memory space.

5.1 �e Dual-Stage Architecture

As shown in Figure 5.1, the hybrid index architecture is comprised of two stages: the
dynamic stage and the static stage. New entries are added to the dynamic stage. �is stage
is kept small so that queries to the most recent entries, which are likely to be accessed and
modi�ed in the near future, are fast. As the size of the dynamic stage grows, the index
periodically triggers the merge process and migrates aged entries from its dynamic stage
to the static stage which uses a more space-e�cient data structure to hold the bulk of the
index entries. �e static stage does not support direct key additions or modi�cations. It
can only incorporate key updates in batches through the merge process.

A hybrid index serves read requests (e.g., point queries, range queries) by searching
the stages in order. To speed up this process, it maintains a Bloom �lter for the keys in the
dynamic stage so that most point queries search only one of the stages. Speci�cally, for
a read request, the index �rst checks the Bloom �lter. If the result is positive, it searches
the dynamic stage and the static stage (if necessary) in sequence. If the result is negative,
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the index bypasses the dynamic stage and searches the static stage directly. �e space
overhead of the Bloom �lter is negligible because the dynamic stage only contains a small
subset of the index’s keys.

A hybrid index handles value updates di�erently for primary and secondary indexes.
To update an entry in a primary index, a hybrid index searches the dynamic stage for
the entry. If the target entry is found, the index updates its value in place. Otherwise,
the index inserts a new entry into the dynamic stage. �is insert e�ectively overwrites
the old value in the static stage because subsequent queries for the key will always �nd
the updated entry in the dynamic stage �rst. Garbage collection for the old entry is
postponed until the next merge. We chose this approach so that recently modi�ed entries
are present in the dynamic stage, which speeds up subsequent accesses. For secondary
indexes, a hybrid index performs value updates in place even when the entry is in the
static stage, which avoids the performance and space overhead of having the same key
valid in both stages.

For deletes, a hybrid index �rst locates the target entry. If the entry is in the dynamic
stage, it is removed immediately. If the entry is in the static stage, the index marks it
“deleted” and removes it at the next merge. Again, depending on whether it is a unique
index or not, the DBMS may have to check both stages for entries.

�is dual-stage architecture has two bene�ts over the traditional single-stage indexes.
First, it is space-e�cient. �e periodically-triggered merge process guarantees that the
dynamic stage is much smaller than the static stage, which means that most of the entries
are stored in a compact data structure that uses less memory per entry. Second, a hybrid
index exploits the typical access pa�erns in OLTP workloads where tuples are more likely
to be accessed and modi�ed soon a�er they were added to the database. New entries are
stored in the smaller dynamic stage for fast reads and writes, while older (and therefore
unchanging) entries are migrated to the static stage only for occasional look-ups.

To facilitate using the dual-stage architecture to build hybrid indexes, we provide the
following Dual-Stage Transformation steps for converting any order-preserving index
structure to a corresponding hybrid index:

• Step 1: Select an order-preserving index structure (X) that supports dynamic op-
erations e�ciently for the dynamic stage.

• Step 2: Design a compact, read-optimized version of X for the static stage.
• Step 3: Provide a routine that can e�ciently merge entries from X to compact X.
• Step 4: Place X and compact X in the dual-stage architecture as shown in Figure 5.1.

We note that these steps are a manual process. �at is, a DBMS developer would need
to convert the index to its static version. Automatically transforming any arbitrary data
structure is outside the scope of this thesis.
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An ideal data structure for the static stage must have three properties: First, it must
be memory-e�cient (i.e., have low space overhead per entry). Second, it must have good
read performance for both point queries and range queries. �is is particularly impor-
tant for primary indexes where guaranteeing key uniqueness requires checking the static
stage for every insert. �ird, the data structure must support merging from the dynamic
stage e�ciently. �is not only means that the merge process is fast, but also that the
temporary memory use is low.

We have discussed techniques to accomplish Step 2 in the previous chapters. In this
chapter, we choose to use the compacted search trees developed in Chapter 2 as example
data structures for the static stage. �ese data structures (i.e., Compact B+tree, Com-
pact Masstree, Compact Skip List, and Compact ART) were developed by applying the
Dynamic-to-Static Rules to existing search trees, and they are good candidates for the
static stage. First, they are more memory-e�cient than the dynamic stage’s indexes.
Second, the data structures preserve the “essence” of the original indexes (i.e., they do
not change the core structural designs fundamentally). �is is important because ap-
plications sometimes choose certain index structures for certain workload pa�erns. For
example, one may want to use a trie-based data structure to e�ciently handle variable-
length keys that have common pre�xes. A�er applying the Dynamic-to-Static rules, a
static trie is still a trie. Moreover, the similarity between the original and the compact
structures enables an e�cient merge routine to be implemented and performed without
signi�cant space overhead.

5.2 Merge

We focus on Step 3 of the Dual-Stage Transformation in this section: merging tuples from
the dynamic stage to the static stage. Although the merge process happens infrequently,
it should be fast and e�cient on temporary memory usage. Instead of using standard
copy-on-write techniques, which would double the space during merging, we choose
a more space-e�cient merge algorithm that blocks all queries temporarily. �ere are
trade-o�s between blocking and non-blocking merge algorithms. Blocking algorithms
are faster but hurt tail latency while non-blocking algorithms execute more smoothly but
a�ect more queries because of locking and latching. Implementing non-blocking merge
algorithms is out of the scope of this thesis, and we brie�y discuss a proposed solution
in Chapter 8.

�e results in Section 5.3.3 show that our merge algorithm takes 60 ms to merge a
10 MB B+tree into a 100 MB Compact B+tree. �e merge time increases linearly as the
size of the index grows. �e space overhead of the merge algorithm, however, is only
the size of the largest array in the dynamic stage structure, which is almost negligible
compared to the size of the entire dual-stage index. Section 5.2.1 describes the merge
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algorithm. Section 5.2.2 discusses two important runtime questions: (1) what data to
merge from one stage to the next; and (2) when to perform this merge.

5.2.1 Merge Algorithm

Even though individual merge algorithms can vary signi�cantly depending on the com-
plexity of the data structure, they all have the same core component. As shown in the
�rst part of this thesis (i.e., Chapters 2–4), the basic building blocks of a compacted data
structure are sorted arrays containing all or part of the index entries. �e core compo-
nent of the merge algorithm is to extend those sorted arrays to include new elements
from the dynamic stage. When merging elements from the dynamic stage, we control
the temporary space penalty as follows. We allocate a new array adjacent to the original
sorted array with just enough space for the new elements from the dynamic stage. �e
algorithm then performs in-place merge sort on the two consecutive sorted arrays to ob-
tain a single extended array. �e temporary space overhead for merging in this way is
only the size of the smaller array, and the in-place merge sort completes in linear time.

We now brie�y introduce the algorithms for merging B+tree, Masstree, Skip List, and
ART to their compacted variations. �e steps for merging B+tree to Compact B+tree is
straightforward. �ey �rst merge the new items from the dynamic stage to the leaf-node
arrays using the in-place merge sort algorithm described above. �en, the algorithm
rebuilds the internal nodes level by level bo�om up. �e internal nodes are constructed
based on the merged leaf nodes so that the balancing properties of the structures are
maintained. Skip List merging uses a similar algorithm.

Merging Masstree and ART to their compacted versions uses recursive algorithms.
When merging two trie nodes, the algorithms (depth-�rst) recursively create new merg-
ing tasks when two child nodes (or leaves/su�xes) require further merging. Figure 5.2
shows the pseudo-code for merging Masstree to Compact Masstree. �e algorithm is a
combination of merging sorted arrays and merging tries. We de�ne three merge tasks
that serve as building blocks for the merge process: merge two trie nodes, insert an item
into a trie node, and create a trie node to hold two items. Note that the “==” sign between
items in the pseudo-code means that they have equivalent keyslices.

�e initial task is to merge the root nodes of the two tries, as shown in the
merge nodes(root m, root n) function in Figure 5.2. Merging any two trie nodes, including
the root nodes, involves merging the sorted arrays of keys within the nodes. Conceptu-
ally, the algorithm proceeds as in a typical merge sort, except that it recursively creates
new merging tasks. �e merge process ends once the root node merge completes.

Merging ART to Compact ART adopts a slightly more complex recursive algorithm.
Instead of checking the key su�xes directly within the node (as in Masstree), ART has to
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merge_nodes(node m, n, parent):	


    //merge the sorted arrays together	


    merge_arrays(m, n)	


    link n to parent	


	


merge_arrays(node m, n):	


    //2 running cursors: x for m, y for n	


    for item x in m and item y in n:	


        if x == y:                    //equal keyslice	


            recursively invoke:	


            case 1: both x and y have child:	


                merge_nodes(x.child, y.child, n)	


            case 2: x has child, y has suffix:	


                add_item(y.suffix, x.child, n)	


            case 3: y has child, x has suffix:	


                add_item(x.suffix, y.child, n)	


            case 4: x.suffix != y.suffix:	


                create_node(x.suffix, y.suffix, n)	


        else	


            move min(x, y) to new position in n	



add_item(item x, node n, parent):	


    //insert item x to the sorted arrays in n	


    insert_one(x, n)	


    link n to parent	


	


insert_one(item x, node n):	


    if x == (any item y in n):	


        recursively invoke:	


        case 1: y has child:	


            add_item(x.suffix, y,child, n)	


        case 2: y has suffix:	


            create_node(x.suffix, y.suffix, n)	


    else	


        insert x to appropriate position in n	


	


create_node(item x, y, node parent):	


    //create a new node to hold x and y	


    n = new_node(x, y)	


    if x == y:	


        create_node(x.suffix, y.suffix, n) 	


    link n to parent	



Figure 5.2: Algorithm of merging Masstree to Compact Masstree – A recursive algorithm
that combines trie traversal and merge sort.

load the full keys from the records and extract the su�xes based on the current trie depth.
�e two optimizations (lazy expansion and pass compression) in ART further complicates
the algorithm because child nodes of the same parent can be at di�erent levels.

5.2.2 Merge Strategy

In this section, we discuss two important design decisions: (1) what to merge, and (2)
when to merge.
What to Merge: On every merge operation, the system must decide which entries to
move from the dynamic stage to the static stage. Strategy one, called merge-all, merges
the entire set of dynamic stage entries. �is choice is based on the observation that many
OLTP workloads are insert-intensive with high merge demands. Moving everything to
the static stage during a merge makes room for the incoming entries and alleviates the
merge pressure as much as possible. An alternative strategy, merge-cold, tracks key pop-
ularity and selectively merges the cold entries to the static stage.
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�e two strategies interpret the role of the dynamic stage di�erently. Merge-all treats
the dynamic stage as a write bu�er that absorbs new records, amortizing the cost of bulk
insert into the static stage. Merge-cold, however, treats the dynamic stage as a write-
back cache that holds the most recently accessed entries. Merge-cold represents a tunable
spectrum of design choices depending on how hot and cold are de�ned, of which merge-
all is one extreme.

�e advantage of merge-cold is that it creates “shortcuts” for accessing hot entries.
However, it makes two trade-o�s. First, it typically leads to higher merge frequency
because keeping hot entries renders the dynamic stage unable to absorb as many new
records before hi�ing the merge threshold again. �e merge itself will also be slower
because it must consider the keys’ hot/cold status. Second, merge-cold imposes additional
overhead for tracking an entry’s access history during normal operations.

Although merge-cold may work be�er in some cases, given the insert-intensive work-
load pa�erns of OLTP applications, we consider merge-all to be the more general and
more suitable approach. We compensate for the disadvantage of merge-all (i.e., some
older yet hot tuples reside in the static stage and accessing them requires searching both
stages in order) by adding a Bloom �lter atop the dynamic stage as described in Sec-
tion 5.1.
When to Merge: �e second design decision is what event triggers the merge process
to run. One strategy to use is a ratio-based trigger: merge occurs whenever the size ratio
between the dynamic and the static stages reaches a threshold. An alternative strategy
is to have a constant trigger that �res whenever the size of the dynamic stage reaches a
constant threshold.

�e advantage of a ratio-based trigger is that it automatically adjusts the merge fre-
quency according to the index size. �is strategy prevents write-intensive workloads
from merging too frequently. Although each merge becomes more costly as the index
grows, merges happen less o�en. One can show that the merge overhead over time is
constant. �e side e�ect is that the average size of the dynamic stage gets larger over
time, resulting in an increasingly longer average search time in the dynamic stage.

A constant trigger works well for read-intensive workloads because it bounds the size
of the dynamic stage ensuring fast look-ups. For write-intensive workloads, however,
this strategy leads to higher overhead because it keeps a constant merge frequency even
though merging becomes more expensive over time. We found that a constant trigger
is not suitable for OLTP workloads due to too frequent merges. We perform a sensitiv-
ity analysis of the ratio-based merge strategy in Section 5.3.3. Although auto-tuning is
another option, it is beyond the scope of this thesis.
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5.3 Microbenchmark

For our evaluation, we created �ve hybrid indexes using the Dual-Stage Transformation
steps proposed in Section 5.1. We use X to represent either B+tree, Masstree, Skip List, or
ART. Hybrid-Compact (or simply Hybrid) X means that the static stage uses Compact X,
i.e., the structures developed by applying the Compaction and Structural Reduction Rules
to X as shown in Chapter 2. Hybrid-Compressed means that the static stage structure is
also compressed using Snappy [39] according to the Compression Rule.

We evaluate hybrid indexes in two steps. In this section, we evaluate the hybrid index
as stand-alone key-value data structure using YCSB-based microbenchmarks. We �rst
show the separate impact on performance and space of a hybrid index’s building blocks.
We then compare each hybrid index to its original structure to show the performance
trade-o�s made by adopting a hybrid approach for be�er space-e�ciency. We did not
use an existing DBMS for this section because we did not want to taint our measurement
with features that are not relevant to the evaluation.

In Section 5.4, we evaluate hybrid indexes inside H-Store, a horizontally partitioned
in-memory OLTP database management system. We replace the default B+tree indexes
with the corresponding transformed hybrid indexes and evaluate the entire DBMS end-
to-end.

5.3.1 Experiment Setup & Benchmarks

We used a server with the following con�guration in our evaluation:

CPU: 2×Intel® Xeon® E5-2680 v2 CPUs @ 2.80 GHz
DRAM: 4×32 GB DDR3 RAM
Cache: 256 KB L2-cache, 26 MB L3-cache
Disk: 500 GB, 7200 RPM, SATA (used only in Section 5.4)

We used a set of YCSB-based microbenchmarks to mimic OLTP index workloads [70].
We used its default workloads A (read/write, 50/50), C (read-only), and E (scan/ insert,
95/5) with Zipf distributions, which have skewed access pa�erns common to OLTP work-
loads. �e initialization phase in each workload was also measured and reported as the
insert-only workload. For each workload, we tested three key types: 64-bit random in-
tegers, 64-bit monotonically increasing integers, and email addresses with an average
length of 30 bytes. �e random integer keys came directly from YCSB while the email
keys were drawn from a large email collection. All values are 64-bit integers to represent
tuple pointers. To summarize:

Workloads: insert-only, read-only, read/write, scan/insert
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Figure 5.3: Hybrid B+tree vs. Original B+tree – �roughput and memory measurements for
B+tree, Hybrid B+tree, and Hybrid-Compressed B+tree on di�erent YCSB-based workloads and
key types. �e data structures are used as primary key (i.e., unique) indexes. Note that the �gures
have di�erent Y-axis scales.

Key Types: 64-bit random int, 64-bit mono-inc int, email
Value: 64-bit integer (tuple pointers)

All experiments in this section are single-threaded without any network activity. We
�rst insert 50 million entries into the index. We then execute 10 million key-value queries
according to the workload and measure the execution time and index memory. �rough-
put results are the number of operations divided by the execution time; memory con-
sumption is measured at the end of each trial. We report the average measurements from
three independent trials.

5.3.2 Hybrid Indexes vs. Originals

We compare the hybrid indexes to their corresponding original structures to show the
trade-o�s of adopting a hybrid approach. We conducted separate experiments using the
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Figure 5.4: HybridMasstree vs. Original Masstree – �roughput and memory measurements
for Masstree and Hybrid Masstree on di�erent YCSB-based workloads and key types. �e data
structures are used as primary key (i.e., unique) indexes.

data structures as both primary key (i.e., unique) and secondary key (i.e., non-unique) in-
dexes. We present the primary key index evaluation in this section. Results for secondary
key indexes are in Section 5.3.5.

Figures 5.3–5.6 shows the throughput and memory consumption for hybrid indexes
used as primary key indexes. �e main takeaway is that all of the hybrid indexes provide
comparable throughputs (faster in some workloads, slower in others) to their original
structures while consuming 30–70% less memory. Hybrid-Compressed B+tree achieves
up to 30% additional space saving but loses a signi�cant fraction of the throughput. �is
trade-o� might only be acceptable for applications with tight space constraints.

Insert-only: One disadvantage of a hybrid index is that it requires periodic merges.
As shown in Figures 5.3–5.6, all hybrid indexes are slower than their original structures
under the insert-only workloads since they have the highest merge demand. �e merging,
however, is not the main reason for the performance degradation. Instead, it is because
a hybrid index must check both the dynamic and static stages on every insert to verify
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Figure 5.5: Hybrid Skip List vs. Original Skip List – �roughput and memory measurements
for Skip List and Hybrid Skip List on di�erent YCSB-based workloads and key types. �e data
structures are used as primary key (i.e., unique) indexes.

that a key does not already exist in either location. Such key uniqueness check causes
about a 30% insert throughput drop. For the Hybrid-Compressed B+tree, however, merge
remains the primary overhead because of the decompression costs.

Read/Write: Despite having to check for uniqueness in two locations on inserts, the
hybrid indexes’ dual-stage architecture is be�er at handling skewed updates. �e results
for this workload show that all of the hybrid indexes outperform their original structures
for all key types because they store newly updated entries in the smaller (and therefore
more cache-friendly) dynamic stage.

Read-only: We compared the point-query performance between the dynamic and
static stage data structures in Section 2.5. When we put these structures together in a
single hybrid index, the overall point-query performance is only slightly slower than the
static stage alone because a query may have to check both data structures. We, therefore,
use a Bloom �lter in front of the dynamic stage to ensure that most reads only search one
of the stages. We evaluate the impact of this �lter later in Section 5.3.4.

69



64-bit Random Int 64-bit Mono-Inc Int

insert-only read/write read-only scan/insert0

10

20

30

40
Th

ro
ug

hp
ut

(M
op

s/
s)

4.
5 6.

6

23
.7

2.
93.
8

23
.8

19
.8

0.
8

ART
Hybrid

insert-only read/write read-only scan/insert0

10

20

30

40

50

Th
ro

ug
hp

ut
(M

op
s/

s)

38
.4

25
.4

31
.6

3.
4

34
.7

33
.6 35

.8

0.
9

ART
Hybrid

Email Memory

insert-only read/write read-only scan/insert0

5

10

15

20

Th
ro

ug
hp

ut
(M

op
s/

s)

2.
82

2.
79

8.
01

2.
40

2.
45

12
.5

0

7.
86

0.
39

ART
Hybrid

rand int mono-inc int email0.0

0.5

1.0

1.5

2.0

M
em

or
y(

G
B

)

1.
2

0.
4

1.
3

0.
6

0.
4

0.
7

ART
Hybrid

Figure 5.6: Hybrid ART vs. Original ART – �roughput and memory measurements for ART
and Hybrid ART on di�erent YCSB-based workloads and key types. �e data structures are used
as primary key (i.e., unique) indexes.

Scan/Insert: �is last workload shows that the hybrid indexes have lower through-
put for range queries. �is is expected because their dual-stage design requires compar-
ing keys from both the dynamic and static stages to determine the “next” entry when
advancing the iterator. �is comparison operation is particularly ine�cient for Hybrid
ART because the data structure does not store the full keys in the leaf nodes. �ere-
fore, performing full-key comparison requires fetching the keys from the records �rst.
We also note that range query results are less optimized in Masstree because it does not
provide the same iterator API that the other index implementations support. We do not
believe, however, that there is anything inherent to Masstree’s design that would make
it signi�cantly be�er or worse than the other data structures for this workload.

Memory: All of the hybrid indexes use signi�cantly less memory than their original
data structures. An interesting �nding is that although the random and mono-inc integer
key datasets are of the same size, the B+tree and Skip List use more space to store the
mono-inc integer keys. �is is because the key insertion pa�ern of mono-inc integers
produces B+tree nodes that are only 50% full (instead of 69% on average). �e paged-
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Figure 5.7: Merge Ratio – A sensitivity analysis of hybrid index’s ratio-based merge strategy.
�e index used in this analysis is Hybrid B+tree.

deterministic Skip List that we used has a similar hierarchical structure as the B+tree and
thus has a similar node occupancy. ART, however, uses less space to store mono-inc keys
than the random keys because of pre�x compression, which also reduces memory for the
email keys.

5.3.3 Merge Strategies & Overhead

We next zoom in and evaluate the merge process that moves data from the dynamic stage
to the static stage at runtime. We concluded in Section 5.2.2 that ratio-based triggers are
more suitable for OLTP applications because it automatically adjusts merge frequency
according to the index size. �us, we �rst show a sensitivity analysis of the ratio-based
merge strategy

To determine a good default merge ratio that balances read and write throughput,
we use the insert-only workload followed by the read-only workload with 64-bit integer
keys to test ratios ranging from 1 to 100. For each ratio se�ing, we adjust the number
of entries inserted so that the dynamic stage is about 50% “full” right before the read-
only workload starts. We measure the average throughput of the hybrid index for the
insert-only and read-only phases separately for each ratio. We only show the results for
Hybrid B+tree because they are su�cient to demonstrate the relationship between the
read/write throughput and merge ratio.

�e results in Figure 5.7 show that a larger merge ratio leads to slightly higher read
throughput and lower write throughput. A larger ratio keeps the dynamic stage smaller,
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Figure 5.8: Merge Overhead – Absolute merge time given the static-stage index size. Dynamic-
stage index size = 1

10 static-stage index size.

thereby speeding up traversals in the dynamic stage. But it also triggers merges more
frequently, which reduces the write throughput. As the merge ratio increases, the write
throughput decreases more quickly than the read throughput increases. Since OLTP
workloads are generally write-intensive, they bene�t more from a relatively small ra-
tio. Based on the analysis, we choose 10 as the default merge ratio for all hybrid indexes
in the subsequent experiments in this chapter.

Using the default merge strategy, we next measure the cost of the merge process. We
used the insert-only workload in this experiment because it generates the highest merge
demand. For all four hybrid indexes and all three key types, we recorded the absolute
time for every triggered merge operation along with the static-stage index size at the
time of the execution to measure the merge speed. Note that the size of the dynamic
stage is always 1/10 of that of the static stage at merge.

Figure 5.8 illustrates how the merge time changes with the size of the static stage of
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Figure 5.9: Auxiliary Structures – �is �gure is an extended version of the (B+tree, 64-bit
random int) experiment in Figure 5.3 that shows the e�ects of the Bloom �lter and the node
cache separately in the hybrid index architecture.

the indexes. In general, the time to perform a merge increases linearly with the size of the
index. Such linear growth is inevitable because of the fundamental limitations of merging
sorted arrays. But merging occurs less frequently as the index size increases because it
takes longer to accumulate enough new entries to reach the merge ratio threshold again.
As such, the amortized cost of merging remains constant over time. We also observe
an interesting exception when running Hybrid ART using mono-inc integer keys. As
Figure 5.8d shows, the merge time (red line) is much lower than the other key types.
�is is because the Hybrid ART does not store nodes at the same level contiguously in
an array in the same manner as the other data structures. Hence, the merge process for
ART with mono-inc integers only needs to create and rebuild a few number of nodes to
complete the merge, which is faster than re-adjusting the entire array.

5.3.4 Auxiliary Structures

We show the e�ects of two auxiliary structures presented in the hybrid index architec-
ture: the Bloom �lter (see Figure 5.1) and the node cache (see Figure 2.3). We extend the
(B+tree, 64-bit random int) experiment in Figure 5.3 by making the inclusion of Bloom
�lter and node cache controlled variables to show their e�ects on performance separately.
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Figure 5.10: Hybrid Index vs. Original (Secondary Indexes) – �roughput and memory
measurements for di�erent YCSB workloads using 64-bit random integer keys when the data
structures are used as secondary (i.e., non-unique) indexes. �e data set contains 10 values for
each unique key.

Figure 5.9 presents the results. For all variants of the hybrid index, the read-only
throughput improves signi�cantly when adding the Bloom �lter; similarly, adding a node
cache also improves throughput over the same index variant without a node cache. In
addition, Bloom �lter and node cache improve read performance without noticeable over-
head for other non-read-only workloads.

5.3.5 Secondary Indexes Evaluation

Lastly, we extend Section 5.3.2 by providing the experiment results for hybrid indexes
used as secondary indexes. �e experiment setup is described in Section 5.3.1. We insert
ten values (instead of one, as in primary indexes) for each unique key. Because we im-
plement multi-value support for all indexes in the same way, we only show the result for
Hybrid B+tree in the 64-bit random integer key case as a representative to demonstrate
the di�erences between using hybrid indexes as primary and secondary indexes.

As shown in Figure 5.10, the secondary index results are consistent with the primary
index �ndings with several exceptions. First, the insert throughput gap between the
original and Hybrid B+tree shrinks because secondary indexes do not require a key-
uniqueness check for an insert, which is the main reason for the slowdown in the primary
index case. Second, Hybrid B+tree loses its large throughput advantage in the read/write
(i.e., update-heavy) workload case because it handles these value updates in-place rather
than inserting new entries into the dynamic stage (as for primary indexes). In-place
updates prevent the same key from appearing in both stages with di�erent sets of values,
which would require a hybrid index to search both stages to construct a complete value
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Figure 5.11: In-MemoryWorkload (TPC-C) – �roughput and memory measurements of the
H-Store DBMS using the default B+tree, Hybrid, and Hybrid-Compressed B+tree when running
the TPC-C workload that �t entirely in memory. �e system runs for 6 min in each trial.

list for a key. �ird, the memory savings of Hybrid B+tree are more signi�cant in the
secondary index case because the original B+tree stores duplicate keys while Compact
B+tree does not.

5.4 Full DBMS Evaluation

�is section shows the e�ects of integrating hybrid indexes into the in-memory H-Store
OLTP DBMS [13, 101]. �e latest version of H-Store uses B+tree as its default index data
structure. We show that switching to hybrid B+tree reduces the DBMS’s footprint in
memory and enables it to process transactions for longer without having to use secondary
storage. We omit the evaluation of the other hybrid data structures because they provide
similar bene�ts.

5.4.1 H-Store Overview

H-Store is a distributed, row-oriented DBMS that supports serializable execution of trans-
actions over main memory partitions [101]. It is optimized for the e�cient execution of
workloads that contain transactions invoked as pre-de�ned stored procedures. Client
applications initiate transactions by sending the procedure name and input parameters
to any node in the cluster. Each partition is assigned a single-threaded execution engine
that is responsible for executing transactions and queries for that partition. A partition
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H-Store DBMS using the default B+tree, Hybrid, and Hybrid-Compressed B+tree when running
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is protected by a single lock managed by its coordinator that is granted to transactions
one-at-a-time based on the order of their arrival timestamp.

Anti-caching is a memory-oriented DBMS design that allows the system to manage
databases that are larger than the amount of memory available without incurring the
performance penalty of a disk-oriented system [72]. When the amount of in-memory
data exceeds a user-de�ned threshold, the DBMS moves data to disk to free up space for
new data. To do this, the system dynamically constructs blocks of the coldest tuples and
writes them asynchronously to the anti-cache on disk. �e DBMS maintains in-memory
“tombstones” for each evicted tuple. When a running transaction a�empts to access an
evicted tuple through its tombstone, the DBMS aborts that transaction and fetches the
tuple from the anti-cache without blocking other transactions. Once the data that the
transaction needs is in memory, the system restarts the transaction.

5.4.2 Benchmarks

We use H-Store’s built-in benchmarking framework to execute three workloads:
TPC-C: �e TPC-C benchmark is the current industry standard for evaluating the

performance of OLTP systems [156]. Its �ve stored procedures simulate a warehouse-
centric order processing application. Approximately 88% of the transactions executed in
TPC-C modify the database. We con�gure the database to contain eight warehouses and
100,000 items.
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Voter: �is benchmark simulates a phone-based election application. It is designed to
saturate the DBMS with many short-lived transactions that all update a small number of
records. �ere are a �xed number of contestants in the database. �e workload is mostly
transactions that update the total number of votes for a particular contestant. �e DBMS
records the number of votes made by each user based on their phone number; each user
is only allowed to vote a �xed number of times.

Articles: �is workload models an on-line news website where users submit content,
such as text posts or links, and then other users post comments to them. All transactions
involve a small number of tuples that are retrieved using either primary key or secondary
indexes. We design and scale the benchmark so that the transactions coincide roughly
with a week of Reddit’s [35] tra�c.

5.4.3 In-Memory Workloads

We �rst show that using hybrid indexes helps H-Store save a signi�cant amount of mem-
ory. We ran the aforementioned three DBMS benchmarks on H-Store (anti-caching dis-
abled) with three di�erent index types: (1) B+tree, (2) Hybrid B+tree, and (3) Hybrid-
Compressed B+tree. Each benchmark warms up for one minute a�er the initial load and
then runs for �ve minutes on an 8-partition H-Store instance (one CPU core per par-
tition). We deployed eight clients on the same machine using another eight cores on
the other socket to exclude network factors. We compared throughput, index memory
consumption, and total database memory consumption between the three index types.
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B+tree Hybrid Hybrid-Compressed

50%-tile 10 ms 10 ms 11 ms
99%-tile 50 ms 52 ms 83 ms

MAX 115 ms 611 ms 1981 ms

Table 5.1: TPC-C Latency Measurements – Transaction latencies of H-Store using the default
B+tree, Hybrid B+tree, and Hybrid-Compressed B+tree as indexes for the TPC-C workload (same
experiment as in Figure 5.11).

Figures 5.11–5.13 show the results. �e throughput results are the average throughputs
during the execution time (warm-up period excluded); memory consumption is measured
at the end of each benchmark. We repeated each benchmark three times and compute
the average for the �nal results.

As shown in Figures 5.11–5.13, both Hybrid and Hybrid-Compressed B+tree have a
smaller memory footprint than the original B+tree: by 40–55% and 50–65%, respectively.
�e memory savings for the entire database depend on the relative size of indexes to the
database. Hybrid indexes favor workloads with small tuples, as in TPC-C and Voter, so
the index memory savings translate into signi�cant savings at the database level.

Hybrid B+tree incurs a 1–10% average throughput drop compared to the original,
which is fairly small considering the memory savings. Hybrid-Compressed B+tree, how-
ever, sacri�ces throughput more signi�cantly to reap its additional memory savings.
�ese two hybrid indexes o�er a throughput-memory tradeo� that may depend on the
application’s requirements.

�e results in Figures 5.11–5.13 are consistent with our �ndings in the microbench-
mark evaluation (Section 5.3). �e throughput drops associated with hybrid indexes are
more noticeable in the TPC-C (10%) and Voter (8%) benchmarks because they are insert-
intensive and contain a large fraction of primary indexes. Referring to the insert-only
workloads in Figures 5.3–5.6, we see that hybrid indexes are slower when used as pri-
mary indexes because of the key-uniqueness check. �e Articles benchmark, however, is
more read-intensive. Since hybrid indexes provide comparable or be�er read throughput,
the throughput drop in Figure 5.13 is small (1%).

Table 5.1 lists the 50%-tile, 99%-tile, and MAX latency numbers for the TPC-C bench-
mark. Hybrid indexes have li�le e�ect on 50%-tile and 99%-tile latencies. For example,
the di�erence in 99% latency between Hybrid B+tree and the original is almost negligi-
ble. �e MAX latencies, however, increase when switching to hybrid indexes because
our current merge algorithm is blocking. But the infrequency of merge means that the
latency penalty only shows up when looking at MAX.
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Figure 5.14: Larger-than-Memory Workload (TPC-C) – �roughput and memory measure-
ments of the H-Store DBMS using B+tree, Hybrid, and Hybrid-Compressed B+tree as index struc-
tures when running the TPC-C workload that is larger than the amount of memory available to
the system. H-Store uses its anti-caching component to evict cold data from memory out to disk.
�e system runs 12 minutes in each benchmark trial.

5.4.4 Larger-than-Memory Workloads

�e previous section shows the savings from using hybrid indexes when the entire
database �ts in memory. Here, we show that hybrid indexes can further help H-Store
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Figure 5.15: Larger-than-Memory Workload (Voter) – �roughput and memory measure-
ments of the H-Store DBMS using B+tree, Hybrid, and Hybrid-Compressed B+tree as index struc-
tures when running the Voter workload that is larger than the amount of memory available to
the system. �e system runs 12 minutes in each benchmark trial.

with anti-caching enabled expand its capacity when the size of the database goes beyond
physical memory. When both memory and disk are used, the memory saved by hybrid
indexes allows the database to keep more hot tuples in memory. �e database thus can
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Figure 5.16: Larger-than-MemoryWorkload (Articles) – �roughput and memory measure-
ments of the H-Store DBMS using B+tree, Hybrid, and Hybrid-Compressed B+tree as index struc-
tures when running the Articles workload that is larger than the amount of memory available to
the system. �e system runs 12 minutes in each benchmark trial.

sustain a higher throughput because fewer queries must retrieve tuples from disk.
We ran TPC-C, Voter, and Articles on H-Store with anti-caching enabled for all three

index con�gurations: B+tree, Hybrid B+tree, and Hybrid-Compressed B+tree. Each
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benchmark executes for 12 minutes a�er the initial load. We used the same client-server
con�gurations as in Section 5.4.3. We set the anti-caching eviction threshold to be 5 GB
for TPC-C and Voter, 3 GB for Articles so that the DBMS starts anti-caching in the middle
of the execution. �e system’s eviction manager periodically checks whether the total
amount of memory used by the DBMS is above this threshold. If it is, H-Store selects the
coldest data to evict to disk. Figures 5.14–5.16 show the experiment results; note that we
use the total number of transactions executed on the x-axis rather than time.

Using hybrid indexes, H-Store with anti-caching executes more transactions than the
original B+tree index during the same 12-minute run. We note that the B+tree and Hybrid
B+tree con�gurations cannot execute the Voter benchmark for the entire 12 minutes
because the DBMS runs out of memory to hold the indexes: only the database tuples can
be paged out to disk.

Two features contribute to H-Store’s improved capacity when using hybrid indexes.
First, with the same anti-caching threshold, hybrid indexes consume less memory, al-
lowing the database to run longer before the �rst anti-caching eviction occurs. Second,
even during periods of anti-caching activity, H-Store with hybrid indexes sustains higher
throughput because the saved index space allows more tuples to remain in memory.

H-Store’s throughput when using anti-caching depends largely on whether the work-
load reads evicted tuples [72]. TPC-C is an insert-heavy workload that mostly reads new
data. �us, TPC-C’s throughput decreases relatively slowly as the tuples are evicted
to disk. Voter never reads evicted data, so the throughput remains constant. Articles,
however, is relatively read-intensive and occasionally queries cold data. �ese reads im-
pact throughput during anti-caching, especially at the end of the run when a signi�cant
number of tuples have been evicted. �e throughput �uctuations for hybrid indexes (es-
pecially Hybrid-Compressed indexes) before anti-caching are due to index merging. Af-
ter anti-caching starts, the large throughput �uctuations are because of the anti-caching
evictions since the current version of anti-caching is a blocking process: all transactions
are blocked until the eviction completes.
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Chapter 6

Compressing Input Keys: �e High-Speed
Order-Preserving Encoder

As we reduce the structural overhead of in-memory search trees towards the theoretical
minimum, the actual keys stored in the trees start to dominate the space. In the �nal
piece of this thesis, we address this problem by proposing an orthogonal approach to
compress the individual input keys before inserting them into the search trees. Key com-
pression is important for reducing index memory because real-world databases contain
many variable-length string a�ributes [130] whose size o�en dominates the data struc-
ture’s internal overheads. A common application of string compression is in columnar
DBMSs [47], which o�en use dictionary compression to replace string values in a column
with �xed-length integers. Traditional dictionary compression, however, does not work
for in-memory search trees (e.g., OLTP indexes) for two reasons. First, the DBMS must
continually grow its dictionary as new keys arrive. Second, key compression in a search
tree must be order-preserving to support range queries properly.

We, therefore, present the High-speed Order-Preserving Encoder (HOPE), a
dictionary-based key compressor for in-memory search trees (e.g., B+trees, tries). HOPE
includes six entropy encoding schemes that trade between compression rate and encod-
ing performance. When the DBMS creates a tree-based index/�lter, HOPE samples the
initial bulk-loaded keys and counts the frequencies of the byte pa�erns speci�ed by a
scheme. It uses these statistics to generate dictionary symbols that comply with our the-
oretical model to preserve key ordering. HOPE then encodes the symbols using either
�xed-length codes or optimal order-preserving pre�x codes. A key insight in HOPE is
its emphasis on encoding speed (rather than decoding) because our target search tree
queries need not reconstruct the original keys.

To evaluate HOPE, we applied it to �ve in-memory search trees: SuRF [169],
ART [112], HOT [60], B+tree [43], and Pre�x B+tree [55]. Our experimental results show
that HOPE improves their latency by up to 40% and reduces their memory consumption
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Figure 6.1: String Axis Model – �e symbols are divided into connected intervals in lexico-
graphical order. Strings in the same interval share a common pre�x (si) that maps to code (ci).

by up to 30%. HOPE improves both performance and memory use at the same time for
most string key workloads.

6.1 Compression Model

Di�erent dictionary encoding schemes, ranging from Hu�man encoding [97] to the ALM-
based compressor [50], provide di�erent capabilities and guarantees. For example, some
can encode arbitrary input strings while others preserve order. In this section, we in-
troduce a uni�ed model, called the string axis model, to characterize the properties of
a dictionary encoding scheme. �is model is inspired by the ALM string parsing algo-
rithm [51], which solves the order-preserving problem for dictionary-based string com-
pression. Using the string axis model, we can construct a wide range of dictionary-based
compression schemes that can serve our target application (i.e., key compression for in-
memory search trees). We divide quali�ed schemes into four categories, each making
di�erent trade-o�s. We then brie�y describe six representative compression schemes
supported by HOPE.

6.1.1 �e String Axis Model

As shown in Figure 6.1, a string axis lays out all possible source strings on a single axis in
lexicographical order. We can model a dictionary encoding scheme using this representa-
tion and highlight three important properties: (1) completeness, (2) unique decodability,
and (3) order-preserving.

Let Σ denote the source string alphabet. Σ∗ is the set of all possible �nite-length
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Figure 6.2: Dictionary Entry Example – All sub-intervals of [abc, abd) are valid map-
pings for dictionary entry abc −→ 0110.

strings over Σ. Similarly, let X denote the code alphabet and X∗ be the code space.
Typically, Σ is the set of all characters, and X = {0, 1}. A dictionary D maps a subset of
the source strings S to the set of codes C :

D : S → C, S ∈ Σ∗, C ∈ X∗

On the string axis, a dictionary entry si → ci is mapped to an interval Ii, where si is
a pre�x of all strings within Ii. �e choice of Ii is not unique. For example, as shown in
Figure 6.2, both [abcd,abcf) and [abcgh,abcpq) are valid mappings for dictionary
entry abc→0110. In fact, any sub-interval of [abc,abd) is a valid mapping in this
example. If a source string src falls into the interval Ii, then a dictionary lookup on src
returns the corresponding dictionary entry si → ci.

We can model the dictionary encoding method as a recursive process. Given a source
string src, one can lookup src in the dictionary and obtain an entry (s → c) ∈ D, s ∈
S, c ∈ C , such that s is a pre�x of src, i.e., src = s · srcsuffix, where “·” is the concatena-
tion operation. We then replace s with c in src and repeat the process1 using srcsuffix.

To guarantee that encoding always makes progress, we must ensure that every dic-
tionary lookup is successful. �is means that for any src, there must exist a dictionary
entry s → c such that len(s)> 0 and s is a pre�x of src. In other words, we must con-
sume some pre�x from the source string at every lookup. We call this property dictio-
nary completeness. Existing dictionary compression schemes for DBMSs are usually
not complete because they only assign codes to the string values already seen by the
DBMS. �ese schemes cannot encode arbitrary strings unless they grow the dictionary,
but growing to accommodate new entries may require the DBMS to re-encode the entire

1One can use a di�erent dictionary at every step. For performance reasons, we consider a single dictio-
nary throughout the process in this chapter.
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corpus [61]. In the string axis model, a dictionary is complete if and only if the union of
all the intervals (i.e.,

⋃
Ii) covers the entire string axis.

A dictionary encoding Enc : Σ∗ → X∗ is uniquely decodable if Enc is an injection
(i.e., there is a one-to-one mapping from every element of Σ∗ to an element in X∗). To
guarantee unique decodability, we must ensure that (1) there is only one way to encode a
source string and (2) every encoded result is unique. Under our string axis model, these
requirements are equivalent to (1) all intervals Ii’s are disjoint and (2) the set of codes C
used in the dictionary are uniquely decodable (we only consider pre�x codes here).

With these requirements, we can use the string axis model to construct a dictio-
nary that is both complete and uniquely decodable. As shown in Figure 6.1, for a
given dictionary size of n entries, we �rst divide the string axis into n consecutive in-
tervals I0, I1, . . . , In−1, where the max-length common pre�x si of all strings in Ii is
not empty (i.e., len(si) > 0) for each interval. We use b0, b1, . . . , bn−1, bn to denote in-
terval boundaries. �at is, Ii = [bi, bi+1) for i = 0, 1, . . . , n − 1. We then assign a
set of uniquely decodable codes c0, c1, . . . , cn−1 to the intervals. Our dictionary is thus
si → ci, i = 0, 1, . . . , n−1. A dictionary lookup maps the source string src to a single
interval Ii, where bi < src < bi+1.

We can achieve the order-preserving property on top of unique decodability by
assigning monotonically increasing codes c0 < c1 < . . . < cn−1 to the intervals. �is is
easy to prove. Suppose there are two source strings (src1, src2), where src1 < src2. If
src1 and src2 belong to the same interval Ii in the dictionary, they must share common
pre�x si. Replacing si with ci in each string does not a�ect their relative ordering. If
src1 and src2 map to di�erent intervals Ii and Ij , then Enc(src1)=ci · Enc(src1suffix),
Enc(src2)=cj ·Enc(src2suffix). Since src1<src2, Ii must preceed Ij on the string axis.
�at means ci<cj . Because ci’s are pre�x codes, ci ·Enc(src1suffix) < cj ·Enc(src2suffix)
regardless of what the su�xes are.

For encoding search tree keys, we prefer schemes that are complete and order-
preserving; unique decodability is implied by the la�er property. Completeness allows
the scheme to encode arbitrary keys, while order-preserving guarantees that the search
tree supports meaningful range queries on the encoded keys. For search tree applications
that do not require unique decodability, a lossy compression scheme might be acceptable
(or even preferable). Exploring lossy compression is out of the scope of this thesis, and
we defer it to future work.

6.1.2 Exploiting Entropy

For a dictionary encoding scheme to reduce the size of the corpus, its emi�ed codes
must be shorter than the source strings. Given a complete, order-preserving dictionary
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D : si → ci, i = 0, 1, . . . , n−1, let pi denote the probability that a dictionary entry
is accessed at each step during the encoding of an arbitrary source string. Because the
dictionary is complete and uniquely decodable (implied by order-preserving),

∑n−1
i=0 pi =

1. �e dictionary encoding scheme achieves the best compression when the following
compression rate is maximized:

CPR =

∑n−1
i=0 len(si)pi∑n−1
i=0 len(ci)pi

According to the string axis model, we can characterize a dictionary encoding scheme in
two parts: (1) how to divide intervals and (2) what code to assign to each interval. Interval
division determines the symbol lengths (len(si)) and the access probability distribution
(pi) in a dictionary. Code assignment exploits the entropy in pi’s by using shorter codes
(ci) for more frequently-accessed intervals.

We consider two interval division strategies: �xed-length intervals and variable-
length intervals. For code assignment, we consider two types of pre�x codes: �xed-length
codes and optimal variable-length codes. We, therefore, divide all complete and order-
preserving dictionary encoding schemes into four categories, as shown in Figure 6.3.
Fixed-length Interval, Fixed-length Code (FIFC): �is is the baseline scheme be-
cause ASCII encodes characters in this way. We do not consider this category for com-
pression.
Fixed-length Interval, Variable-length Code (FIVC): �is category is the classic Hu-
Tucker encoding [95]. If order-preserving is not required, both Hu�man encoding [97]
and arithmetic encoding [162] also belong to this category2. Although intervals have a
�xed length, access probabilities are not evenly distributed among the intervals. Using
optimal (pre�x) codes, thus, maximizes the compression rate.
Variable-length Interval, Fixed-length Code (VIFC): �is category is represented by
the ALM string compression algorithm proposed by Antoshenkov [50] Because the code
lengths are �xed (i.e., len(ci) = L), CPR = 1

L

∑n−1
i=0 len(si)pi. ALM applied the “equal-

izing” heuristic of le�ing len(s0)p0 = len(s1)p1 = · · · = len(sn)pn to try to achieve
optimal compression (i.e., maximize CPR). We note that the example in Figure 6.3 has
two intervals with the same dictionary symbol. �is is allowed because only one of the
intervals will contain a speci�c source string, which uniquely determines the result of a
dictionary lookup. Also, by using variable-length intervals, we no longer have the “con-
catenation property” for the encoded results (e.g., Code(ab) 6= Code(a) · Code(b)). �is
property, however, is not a requirement for our target application.
Variable-length Interval, Variable-length Code (VIVC): To the best of our knowl-
edge, this category is unexplored by previous work. Although Antoshenkov suggests

2Arithmetic encoding does not operate the same way as a typical dictionary encoder. But its underlying
principle matches this category.
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Figure 6.3: Compression Models – Four categories of complete and order-preserving dictio-
nary encoding schemes.

that ALM could bene�t from a supplementary variable-length code [50], it is neither im-
plemented nor evaluated. VIVC has the most �exibility in building dictionaries (one can
view FIFC, FIVC, and VIFC as special cases of VIVC), and it can potentially lead to optimal
compression rate. We describe the VIVC schemes in HOPE in Section 6.1.3.

Although VIVC schemes can have higher compression rates than the other schemes,
both �xed-length intervals and �xed-length codes have performance advantages over
their variable-length counterparts. Fixed-length intervals create smaller and faster dic-
tionary structures, while �xed-length codes are more e�cient to decode. Our objective
is to �nd the best trade-o� between compression rate and encoding performance for in-
memory search tree keys.

6.1.3 Compression Schemes

Based on the above dictionary encoding models, we next introduce six compression
schemes implemented in HOPE. We select these schemes from the three viable categories
(FIVC, VIFC, and VIVC). Each scheme makes di�erent trade-o�s between compression
rate and encoding performance. We �rst describe them at a high level and then provide
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Figure 6.4: Compression Schemes – Example dictionary segments.
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their implementation details in Section 6.2.
Single-Char is the FIVC compression algorithm used in Hu�man encoding and arith-
metic encoding. �e �xed-length intervals have consecutive single characters as the
boundaries (e.g., [a,b), [b,c)). �e dictionary symbols are 8-bit ASCII characters, and
the dictionary has a �xed 256 entries. �e codes assigned to the symbols are Hu-Tucker
codes. Hu-Tucker codes are optimal order-preserving pre�x codes (they are essentially
order-preserving Hu�man codes). Figure 6.4a shows an example dictionary segment.
Double-Char is a FIVC compression algorithm that is similar to Single-Char, except that
the interval boundaries are consecutive double characters (e.g., [aa,ab), [ab,ac)). To
make the dictionary complete, we introduce a terminator character ∅ that is smaller than
ASCII characters to �ll the interval gaps between [a‘\255’,b) and [b‘\0’,b‘\1’),
for example, with the interval [b∅,b‘\0’). Figure 6.4b shows an example dictionary.
�is scheme should achieve be�er compression than Single-Char because it exploits the
�rst-order entropy of the source strings instead of the zeroth-order entropy.
ALM is a state-of-the-art VIFC string compression algorithm. To determine the interval
boundaries from a set of sample source strings (e.g., initial keys for an index), ALM �rst
selects substring pa�erns that are long and frequent. Speci�cally, for a substring pa�ern
s, it computes len(s) × freq(s), where freq(s) represents the number of occurrence
of s in the sample set. ALM includes s in its dictionary if the product is greater than a
threshold W . It then creates one or more intervals for each gap between the adjacent
selected symbols. �e goal of the algorithm is to make the above product (i.e., length
of the common pre�x × access frequency) for each interval as equal as possible. �e
detailed algorithm is described in [50].

ALM uses monotonically increasing �xed-length codes. Figure 6.4c shows an example
dictionary segment. �e dictionary size for ALM depends on the thresholdW . One must
binary search on W ’s to obtain a desired dictionary size.
3-Grams is a VIVC compression algorithm where the interval boundaries are 3-character
strings. Given a set of sample source strings and a dictionary size limit n, the scheme �rst
selects the top n/2 most frequent 3-character pa�erns and adds them to the dictionary.
For each interval gap between the selected 3-character pa�erns, 3-Grams creates a dictio-
nary entry to cover the gap. For example, in Figure 6.4d, “ing” and “ion” are selected
frequent pa�erns from the �rst step. “ing” and “ion” represent intervals [ing,inh)
and [ion,ioo) on the string axis. �eir gap interval [inh,ion) is also included as a
dictionary entry. 3-Grams uses Hu-Tucker codes.
4-Grams is a VIVC compression algorithm similar to 3-Grams with 4-character string
boundaries. Figure 6.4e shows an example. Compared to 3-Grams, 4-Grams exploits
higher-order entropy; but whether it provides a be�er compression rate over 3-Grams
depends on the dictionary size.
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ALM-Improved improves the ALM scheme in two ways. First, as shown in Figure 6.4f,
we replace the �xed-length codes in ALM with Hu-Tucker codes because we observe ac-
cess skew among the intervals despite ALM’s “equalizing” algorithm. Second, the original
ALM counts the frequency for every substring (of any length) in the sample set, which is
slow and memory-consuming. In ALM-Improved, we simplify the process by only col-
lecting statistics for substrings that are su�xes of the sample source strings. Our eval-
uation in Section 6.4 shows that using Hu-Tucker codes improves ALM’s compression
rate while counting the frequencies of string su�xes reduces ALM’s build time without
compromising the compression rate.

6.2 HOPE

We now present the design and implementation of HOPE. �ere are two goals in HOPE’s
architecture. First, HOPE must minimize its performance overhead so that it does not
negate the bene�ts of storing shorter keys. Second, HOPE must be extensible. From our
discussion in Section 6.1, there are many choices in constructing an order-preserving
dictionary encoding scheme. Although we support six representative schemes in the
current version of HOPE, one could, for example, devise be�er heuristics in generating
dictionary entries to achieve a higher compression rate, or invent more e�cient dictio-
nary data structures to further reduce encoding latency. HOPE can be easily extended to
include such improvements through its modularized design.

6.2.1 Overview

As shown in Figure 6.5, HOPE executes in two phases (i.e., Build, Encode) and has four
modules: (1) Symbol Selector, (2) Code Assigner, (3) Dictionary, and (4) Encoder.
A DBMS provides HOPE with a list of sample keys from the search tree. HOPE then
produces a Dictionary and an Encoder as its output. We note that the size and represen-
tativeness of the sampled key list only a�ect the compression rate. �e correctness of
HOPE’s compression algorithm is guaranteed by the dictionary completeness and order-
preserving properties discussed in Section 6.1.1. In other words, any HOPE dictionary
can both encode arbitrary input keys and preserve the original key ordering.

In the �rst step of the build phase, the Symbol Selector counts the frequencies of
the speci�ed string pa�erns in the sampled key list and then divides the string axis into
intervals based on the heuristics given by the target compression scheme. �e Symbol
Selector generates three outputs for each interval: (1) dictionary symbol (i.e., the common
pre�x of the interval), (2) interval boundaries, and (3) probability that a source string falls
in that interval.
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Figure 6.5: �e HOPE Framework – An overview of HOPE’s modules and their interactions
with each other in the two phases.

�e framework then gives the symbols and interval boundaries to the Dictionary
module. Meanwhile, it sends the probabilities to the Code Assigner to generate codes for
the dictionary symbols. If the scheme uses �xed-length codes, the Code Assigner only
considers the dictionary size. If the scheme uses variable-length codes, the Code Assigner
examines the probability distribution to generate optimal order-preserving pre�x codes
(i.e., Hu-Tucker codes).

When the Dictionary module receives the symbols, the interval boundaries, and the
codes, it selects an appropriate and fast dictionary data structure to store the mappings.
�e string lengths of the interval boundaries inform the decision; available data struc-
tures range from �xed-length arrays to general-purpose tries. �e dictionary size is a
tunable parameter for VIFC and VIVC schemes. Using a larger dictionary trades perfor-
mance for a be�er compression rate.

�e encode phase uses only the Dictionary and Encoder modules. On receiving an
uncompressed key, the Encoder performs multiple lookups in the dictionary. Each lookup
translates a part of the original key to some code as described in Section 6.1.1. �e En-
coder then concatenates the codes in order and outputs the encoded result. �is encoding
process is sequential for variable-length interval schemes (i.e., VIFC and VIVC) because
the remaining source string to be encoded depends on the results of earlier dictionary
lookups.

We next describe the implementation details for each module. Building a decoder and
its corresponding dictionary is optional because our target query workload for search
trees does not require reconstructing the original keys.
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Scheme Symbol Selector Code Assigner Dictionary Encoder

Single-Char Single-Char
Hu-Tucker Array

Fast
Encoder

Double-Char Double-Char

ALM ALM Fixed-Length ART-Based

3-Grams 3-Grams

Hu-Tucker
Bitmap-Trie

4-Grams 4-Grams

ALM-Improved ALM-Improved ART-Based

Table 6.1: Module Implementations – �e con�guration of HOPE’s six compression schemes.

6.2.2 Implementation

HOPE users can create new compression schemes by combining di�erent module im-
plementations. HOPE currently supports the six compression schemes described in Sec-
tion 6.1.3. For Symbol Selector and Code Assigner, the goal is to generate a dictionary
that leads to the maximum compression rate. We no longer need these two modules a�er
the build phase. We spend extra e�ort optimizing the Dictionary and Encoder modules
because they are on the critical path of every search tree query.
Symbol Selector: It �rst counts the occurrences of substring pa�erns in the sampled
keys using a hash table. For example, 3-Grams collects frequency statistics for all three-
character substrings. �e ALM, however, considers substrings of all lengths. For Single-
Char and Double-Char, the interval boundaries are implied because they are �xed-length-
interval schemes (i.e., FIVC). For the remaining schemes, the Symbol Selectors divide
intervals using the algorithms described in Section 6.1.3: �rst identify the most frequent
symbols and then �ll the gaps with new intervals.

�e ALM and ALM-Improved Symbol Selectors require an extra blending step be-
fore their interval-division algorithms. �is is because the selected variable-length sub-
strings may not satisfy the pre�x property (i.e., a substring can be a pre�x of another
substring). For example, “sig” and “sigmod” may both appear in the frequency list,
but the interval-division algorithm cannot select both of them because the two intervals
on the string axis are not disjoint: “sigmod” is a sub-interval of “sig”. A blending
algorithm redistributes the occurrence count of a pre�x symbol to its longest extension
in the frequency list [50]. We implement this blending algorithm in HOPE using a trie
data structure.
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A�er the Symbol Selector decides the intervals, it performs a test encoding of the
keys in the sample list using the intervals as if the code for each interval has been as-
signed. �e purpose of this step is to obtain the probability that a source string (or its
remaining su�x a�er certain encoding steps) falls into each interval so that the Code
Assigner can generate codes based on those probabilities to maximize compression. For
variable-length-interval schemes, the probabilities are weighted by the symbol lengths
of the intervals.
Code Assigner: Assume that the Code Assigner receives N probabilities from the Sym-
bol Selector. To assign �xed-length codes, the Code Assigner outputs monotonically
increasing integers 0, 1, 2, · · · , N − 1, each using dlog2Ne bits. For variable-length
codes, HOPE uses the Hu-Tucker algorithm to generate optimal order-preserving pre-
�x codes. One could use an alternative method, such as Range Encoding [125] (i.e., the
integer version of Arithmetic Encoding). Range Encoding, however, requires more bits
than Hu-Tucker to ensure that codes are exactly on range boundaries to guarantee order-
preserving.

�e Hu-Tucker algorithm works in four steps. First, it creates a leaf node for each
probability received from the Symbol Selector and then lists the leaf nodes in interval
order. Second, it selects the two least-frequent nodes and merges them to create a new
internal node. �is new node takes the place of the existing le� node. Unlike the Hu�man
algorithm, Hu-Tucker allows two nodes to merge only if there are no leaf nodes between
them. �is is where the algorithm guarantees order. A�er constructing this probability
tree, it computes the depth of each leaf node to derive the lengths of the codes. Finally,
the algorithm constructs a tree by adding these leaf nodes level-by-level starting from the
deepest and then connecting adjacent nodes at the same level in pairs. HOPE uses this
Hu�man-tree-like structure to extract the �nal codes. Our Hu-Tucker implementation in
the Code Assigner uses an improved algorithm that runs in O(N2) time [165].
Dictionary: A dictionary in HOPE maps an interval (and its symbol) to a code. Because
the intervals are connected and disjoint, the dictionary needs to store only the le� bound-
ary of each interval as the key. A key lookup in the dictionary then is a “greater than or
equal to” index query to the underlying data structure. For the values, we store only the
codes along with the lengths of the symbols to determine the number of characters from
the source string that we have consumed at each step.

We implemented three dictionary data structures in HOPE. �e �rst is an array for the
Single-Char and Double-Char schemes. Each dictionary entry includes an 8-bit integer to
record the code length and a 32-bit integer to store the code. �e dictionary symbols and
the interval le� boundaries are implied by the array o�sets. For example, the 97th entry
in Single-Char has the symbol a, while the 24770th entry in Double-Char corresponds to
the symbol aa3. A lookup in an array-based dictionary is fast because it requires only a

3 24770 = 96×(256+1)+97+1. �e +1’s are because of the terminator character ∅. See Section 6.1.3.
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Figure 6.6: 3-Grams Bitmap-Trie Dictionary – Each node consists of a 256-bit bitmap and a
counter. �e former records the branches of the node and the la�er represents the total number
of set bits in the bitmaps of all the preceding nodes.

single memory access and the array �ts in CPU cache.
�e second dictionary data structure in HOPE is a bitmap-trie used by the 3-Grams

and 4-Grams schemes. Figure 6.6 depicts the structure of a three-level bitmap-trie for
3-Grams. �e nodes are stored in an array in breadth-�rst order. Each node consists of a
32-bit integer and a 256-bit bitmap. �e bitmap records all the branches of the node. For
example, if the node has a branch labeled a, the 97th bit in the bitmap is set. �e integer
at the front stores the total number of set bits in the bitmaps of all the preceding nodes.
Since the stored interval boundaries can be shorter than three characters, the data struc-
ture borrows the most signi�cant bit from the 32-bit integer to denote the termination
character ∅. In other words, ∅ is the �rst bit of the 257-bit bitmap in a node.

Given a node (n, bitmap) where n is the count of the preceding set bits, its child node
pointed by label l is at position n+popcount(bitmap, l)4 in the node array. Our evaluation
shows that looking up a bitmap-trie is 2.3× faster than binary-searching the dictionary
entries because it require fewer memory probes and has be�er cache performance.

Finally, we use an ART-based dictionary to serve the ALM and ALM-Improved
schemes. ART is a radix tree that supports variable-length keys [112]. We modi�ed three
aspects of ART to make it more suitable as a dictionary. First, we added support for pre�x
keys in ART. �is is necessary because both abc and abcd, for example, can be valid
interval boundaries stored in a dictionary. We also disabled ART’s optimistic common
pre�x skipping that compresses paths on single-branch nodes by storing only the �rst

4�e POPCOUNT CPU instruction counts the set bits in a bit-vector. �e function popcount(bitmap, l)
counts the set bits up to position l in bitmap.
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few bytes. If a corresponding segment of a query key matches the stored bytes during a
lookup, ART assumes that the key segment also matches the rest of the common pre�x
(a �nal key veri�cation happens against the full tuple). HOPE’s ART-based dictionary,
however, stores the full common pre�x for each node since it cannot assume that there
is a tuple with the original key. Lastly, we modi�ed the ART’s leaf nodes to store the
dictionary entries instead of tuple pointers.
Encoder: HOPE looks up the source string in the dictionary to �nd an interval that
contains the string. �e dictionary returns the symbol length L and the code C . HOPE
then concatenates C to the result bu�er and removes the pre�x of length L that matches
the symbol from the source string. It repeats this process on the remaining string until it
is empty.

To make the non-byte-aligned code concatenation fast, HOPE stores codes in 64-bit
integer bu�ers. It adds a new code to the result bu�er in three steps: (1) le�-shi� the
result bu�er to make room for the new code; (2) write the new code to the bu�er using
a bit-wise OR instruction; (3) split the new code if it spans two 64-bit integers. �is
procedure costs only a few CPU cycles per code concatenation.

When encoding a batch of sorted keys, the Encoder optimizes the algorithm by �rst
dividing the batch into blocks, where each block contains a �xed number of keys. �e
Encoder then encodes the common pre�x of the keys within a block only once, avoiding
redundant work. When the batch size is two, we call this optimization pair-encoding.
Compared to encoding keys individually, pair-encoding reduces key compression over-
head for the range queries in a search tree. We evaluate batch encoding in Section 6.4.4.

6.3 Integration

Integrating HOPE in a DBMS is a straightforward process because we designed it to be
a standalone library that is independent of the target search tree data structure and with
zero external dependencies.

When the DBMS creates a new search tree, HOPE samples the initial bulk-loaded
keys to construct the dictionary (i.e., the build phase). Once HOPE creates the Dictionary
and Encoder modules, every query for that tree, including the initial bulk-inserts, must
go through the Encoder �rst to compress the keys. If the search tree is initially empty,
HOPE samples keys as the DBMS inserts them into the tree. It then rebuilds the search
tree using the compressed keys once it sees enough samples. We use a small sample size
because it guarantees fast tree rebuild, and it does not compromise the compression rate,
as shown in Section 6.4.1.

We typically invoke HOPE’s Build Phase only once because switching dictionaries
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causes the search tree to rebuild, which is particularly expensive for large trees. Our
assumption is that the value distribution in a database column is relatively stable, espe-
cially at the substring level. For example, “@gmail.com” is likely a common pa�ern
for emails. Because HOPE exploits common pa�erns at relatively �ne granularity, its
dictionary remains e�ective in compressing keys over time. We evaluated HOPE under
a dramatic key distribution change in Section 6.4.5 and observed a compression rate de-
creases as expected, with simpler schemes such as Single-Char less a�ected. Even if a
dramatic change in the key distribution happens, HOPE is not required to rebuild im-
mediately because it still guarantees query correctness. �e system can schedule the
reconstruction during maintenance to regain the compression rate.

We applied HOPE to �ve in-memory search trees used in today’s DBMSs:

• SuRF: �e Succinct Range Filter [169] is a trie-based data structure that performs ap-
proximate membership tests for ranges. SuRF uses succinct data structures [38] to
achieve an extremely small memory footprint.
• ART: �e Adaptive Radix Tree [112, 113] is the default index structure for HyPer [103].

ART adaptively selects variable-sized node layouts based on fanouts to save space and
to improve cache performance.
• HOT: �e Height Optimized Trie [60] is a fast and memory-e�cient index structure.

HOT guarantees high node fanouts by combining nodes across trie levels.
• B+tree: We use the cache-optimized TLX B+tree [43] (formerly known as STX). TLX

B+tree stores variable-length strings outside the node using reference pointers. �e
default node size is 256 bytes, making a fanout of 16 (8-byte key pointer and 8-byte
value pointer per slot).
• Pre�x B+tree: A Pre�x B+tree [55] optimizes a plain B+tree by applying pre�x and

su�x truncation to the nodes [89]. A B+tree node with pre�x truncation stores the
common pre�x of its keys only once. During a leaf node split, su�x truncation allows
the parent node to choose the shortest string quali�ed as a separator key. We imple-
mented both techniques on a state-of-the-art B+tree [14, 114] other than TLX B+tree
for be�er experimental robustness.

HOPE provides the most bene�t to search trees that store the full keys. Many tree
indexes for in-memory DBMSs, such as ART and HOT, only store partial keys to help the
DBMS �nd the record IDs. �ey then verify the results against the full keys a�er fetching
the records because the step is as cheap as accessing index nodes. To understand HOPE’s
interaction with these di�erent search trees, we arrange them in Figure 6.7 according to
how large a part of the keys they store. �e B+tree is at one extreme where the data
structure stores full keys. At the other extreme sits the T-Tree [111] (or simply a sorted
list of record IDs) where no keys appear in the data structure. Pre�x B+tree, SuRF, ART,
and HOT fall in the middle. HOPE is more e�ective towards the B+tree side, especially
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Figure 6.7: Search Tree on Key Storage – B+tree, Pre�x B+tree, SuRF, ART, HOT, and T-
Tree get decreasing bene�ts from HOPE, especially in terms of compression rate (CPR), as the
completeness of key storage goes down.

in terms of compression rate. �e query latency improvement is the di�erence between
the speedup due to shorter keys and the overhead of key compression. For the B+tree
family, shorter keys means larger fanouts and faster string comparisons. Although tries
only store partial keys, HOPE improves their performance by reducing the tree height.
�e rest of this section analyzes the latency reduction of using HOPE on a trie.

Let l denote the average key length and cpr denote the compression rate (i.e., uncom-
pressed length / compressed length). �e average height of the original trie is h. We use
ttrie to denote the time needed to walk one level (i.e., one character) down the trie, and
tencode to denote the time needed to compress one character in HOPE.

�e average point query latency in the original trie is h × ttrie, while this latency in
the compressed trie is l × tencode + h

cpr × ttrie, where l × tencode represents the encoding
overhead. �erefore, the percentage of latency reduction is:

h× ttrie − (l × tencode + h
cpr × ttrie)

h× ttrie
= 1− 1

cpr
− l × tencode

h× ttrie

If the expression > 0, we improve performance. For example, when evaluating SuRF on
the email workload in Section 6.5, the average key length l is 21.2 bytes. �e original
SuRF has the average trie height h = 18.2, and has an average point query latency of
1.46µs. ttrie is, thus, 1.46µs

18.2
= 80.2ns. Our evaluation in Section 6.4 shows that HOPE’s

Double-Char scheme achieves a compression rate cpr = 1.94 and an encoding latency
per character tencode = 6.9ns. Hence, we estimate that by using Double-Char on SuRF,
we can reduce the point query latency by 1 − 1

1.94
− 21.2×6.9

18.2×80.2 = 38%. �e real latency
reduction is usually higher (41% in this case as shown in Section 6.5) because smaller
tries also improve the cache performance.
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Figure 6.8: Sample Size Sensitivity Test – Compression rate measured under varying sample
sizes for all schemes in HOPE. �e dictionary size limit is set to 216 (64K) entries.

6.4 HOPE Microbenchmarks

We evaluate HOPE in the next two sections. We �rst analyze the trade-o�s between
compression rate and compression overhead of di�erent schemes in HOPE. �ese mi-
crobenchmarks help explain the end-to-end measurements on HOPE-integrated search
trees in Section 6.5.

We run our experiments using a machine equipped with two Intel® Xeon® E5-2630v4
CPUs (2.20GHz, 32 KB L1, 256 KB L2, 25.6 MB L3) and 8×16 GB DDR4 RAM. In each
experiment, we randomly shu�e the target dataset before each trial. We then select
1% of the entries from the shu�ed dataset and use that as the sampled keys for HOPE.
Our sensitivity test in Section 6.4.1 shows that 1% is large enough for all schemes to
reach their maximum compression rates. We repeat each trial three times and report the
average result.
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Figure 6.9: Microbenchmarks (CPR) – Compression rate measurements of HOPE’s six schemes
on the di�erent datasets.

We use the following datasets for all our experiments:

• Email: 25 million email addresses (host reversed – e.g., “com.gmail@foo”) with an
average length of 22 bytes.
• Wiki: 14 million article titles from the English version of Wikipedia with an average

length of 21 bytes [46].
• URL: 25 million URLs from a 2007 web crawl with an average length of 104 bytes [44].

6.4.1 Sample Size Sensitivity Test

We �rst perform a sensitivity test on how the size of the sampled key list a�ects HOPE’s
compression rate. We use the three datasets (i.e., Email, Wiki, and URL) introduced above.
We �rst randomly shu�e the dataset and then select the �rst x% of the entries as the
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Figure 6.10: Microbenchmarks (Latency) – Compression latency measurements of HOPE’s
six schemes on the di�erent datasets.

sampled keys for HOPE. We set x to 0.001, 0.01, 0.1, 1, 10, and 100, which translates to 250,
2.5K, 25K, 250K, 2.5M, and 25M samples for the Email and URL datasets, and 140, 1.4K,
14K, 140K, 1.4M, and 14M samples for the Wiki dataset. We measure the compression
rate for each scheme in HOPE for each x. We set the dictionary size limit to 216 (64K)
entries. Note that for x = 0.001, 0.01, schemes such as 3-Grams do not have enough
samples to construct the dictionary of the limit size.

Figure 6.8 shows the results. Note that for x = 100, the numbers are missing for
ALM and ALM-Improved because the experiments did not �nish in a reasonable amount
of time due to their complex symbol select algorithms. From the �gures, we observe that
a sample size of 1% of the dataset (i.e., 250K for Email and URL, 140K for Wiki) is large
enough for all schemes to reach their maximum compression rates. 1% is thus the default
sample size percentage used in all experiments. We also notice that the compression rates
for schemes that exploit higher-order entropies are more sensitive to the sample size be-
cause these schemes require more context information to achieve be�er compression. As
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Figure 6.11: Microbenchmarks (Memory) – Dictionary memory of HOPE’s six schemes on
the di�erent datasets.

a general guideline, a sample size between 10K and 100K is good enough for all schemes,
and we can use a much smaller sample for simpler schemes such as Single-Char.

6.4.2 Performance & E�cacy

In this microbenchmark, we evaluate the runtime performance and compression e�cacy
of HOPE’s six built-in schemes listed in Table 6.1. HOPE compresses the keys one-at-
a-time with a single thread. We vary the number of dictionary entries in each trial and
measure three facets per scheme: (1) the compression rate, (2) the average encoding la-
tency per character, and (3) the size of the dictionary. We compute the compression rate
as the uncompressed dataset size divided by the compressed dataset size. We obtain the
average encoding latency per character by dividing the execution time by the total num-
ber of bytes in the uncompressed dataset.
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Figure 6.12: Dictionary Build Time – A breakdown of the time it takes for HOPE to build
dictionaries on a 1% sample of email keys.

Figures 6.9–6.11 show the experiment results. We vary the number of dictionary
entries on the x-axis (log scaled). �e Single-Char and Double-Char schemes have �xed
dictionary sizes of 28 and 216, respectively. �e 3-Grams dictionary cannot grow to 218

because there are not enough unique three-character pa�erns in the sampled keys.
Compression Rate: Figure 6.9 shows that the VIVC schemes (3-Grams, 4-Grams, ALM-
Improved) have be�er compression rates than the others. �is is because VIVC schemes
exploit the source strings’ higher-order entropies to optimize both interval division and
code assignment at the same time. In particular, ALM-Improved compresses the keys
more than the original ALM because it uses a be�er pa�ern extraction algorithm and the
the Hu-Tucker codes. �ese Hu-Tucker codes improve compression in ALM-Improved
because they leverage the remaining skew in the dictionary entries’ access probabilities.
ALM tries to equalize these weighted probabilities but our improved version has be�er
e�cacy. We also note that a larger dictionary produces a be�er compression rate for the
variable-length interval schemes.
Encoding Latency: �e latency results in Figure 6.10 demonstrate that the simpler
schemes have lower encoding latency. �is is expected because the latency depends
largely on the dictionary data structures. Single-Char and Double-Char are the fastest
because they use array dictionaries that are small enough to �t in the CPU’s L2 cache.
Our specialized bitmap-tries used by 3-Grams and 4-Grams are faster than the general
ART-based dictionaries used by ALM and ALM-Improved because (1) the bitmap speeds
up in-node label search; and (2) the succinct design (without pointers) improves cache
performance.
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Figure 6.13: Batch Encoding – Encoding latency measured under varying batch sizes on a pre-
sorted 1% sample of email keys. �e dictionary size is 216 (64K) for 3-Grams and 4-Grams.

�e �gures also show that latency is stable (and even decrease slightly) in all work-
loads for 3-Grams and 4-Grams as their dictionary sizes increase. �is is interesting
because the cost of performing a lookup in the dictionary increases as the dictionary
grows in size. �e larger dictionaries, however, achieve higher compression rates such
that it reduces lookups: larger dictionaries have shorter intervals on the string axis, and
shorter intervals usually have longer common pre�xes (i.e., dictionary symbols). �us,
HOPE consumes more bytes from the source string at each lookup with larger dictionar-
ies, counteracting the higher per-lookup cost.
DictionaryMemory: Figure 6.11 shows that the dictionary sizes for the variable-length
schemes grow linearly as the number of dictionary entries increases. Even so, for most
dictionaries, the total tree plus dictionary size is still much smaller than the size of the cor-
responding uncompressed search tree. �ese measurements also show that our bitmap-
tries for 3-Grams and 4-Grams are up to an order of magnitude smaller than the ART-
based dictionaries for all the datasets. �e 3-Grams bitmap-trie is only 1.4× larger than
Double-Char’s �xed-length array of the same size.
Discussion: Schemes that compress more are slower, except that the original ALM is
strictly worse than the other schemes in both dimensions. �e latency gaps between
schemes are generally larger than the compression rate gaps. We evaluate this trade-o�
in Section 6.5 by applying the HOPE schemes to in-memory search trees.

6.4.3 Dictionary Build Time

We next measure how long HOPE takes to construct the dictionary using each of the six
compression schemes. We record the time HOPE spends in the modules from Section 6.2.2
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when building a dictionary: (1) Symbol Selector, (2) Code Assigner, and (3) Dictionary.
�e last step is the time required to populate the dictionary from the key samples. We
present only the Email dataset for this experiment; the results for the other datasets
produce similar results and thus we omit them. For the variable-length-interval schemes,
we perform the experiments using two dictionary sizes (212, 216).

Figure 6.12 shows the time breakdown of building the dictionary in each scheme.
First, the Symbol Selector dominants the cost for ALM and ALM-Improved because these
schemes collect statistics for substrings of all lengths, which has a super-linear cost rel-
ative to the number of keys. For the other schemes, the Symbol Selector’s time grows
linearly with the number of keys. Second, the time used by the Code Assigner rises dra-
matically as the dictionary size increases because the Hu-Tucker algorithm has quadratic
time complexity. Finally, the Dictionary build time is negligible compared to the Symbol
Selector and Code Assigner modules.

6.4.4 Batch Encoding

We also evaluate the batching optimization described in Section 6.2.2. In this experiment,
we sort the email dataset and then encode the keys with varying batch sizes (1, 2, 32).
As shown in Figure 6.13, batch encoding signi�cantly improves encoding performance
because it encodes the common pre�x of a batch only once to avoid redundant work.
ALM and ALM-Improved schemes do not bene�t from batch encoding. Because these
schemes have dictionary symbols of arbitrary lengths, we cannot determine a priori a
common pre�x that is aligned with the dictionary symbols for a batch without encoding
them.

6.4.5 Updates and Key Distribution Changes

As discussed in Sections 6.2 and 6.3, HOPE can support key updates without modifying
the dictionary because the completeness and order-preserving properties of the String
Axis Model (refer to Section 6.1.1) guarantee that any HOPE dictionary can encode arbi-
trary input keys while preserving the original key ordering. However, a dramatic change
in the key distribution may hurt HOPE’s compression rate.

To simulate a sudden key distribution change, we divide our email dataset into two
subsets (roughly the same size): Email-A and Email-B. Email-A contains all the Gmail
and Yahoo accounts while Email-B has the rest, including accounts from Outlook,
Hotmail, and so on. In the experiments, we build two dictionaries (i.e., Dict-A and Dict-
B) using samples from Email-A and Email-B, respectively for each compression scheme
in HOPE. We use the di�erent dictionaries to compress the keys in the di�erent datasets
and then measure the compression rates.
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Figure 6.14 shows the results. “Dict-A, Email-A” and “Dict-B, Email-B” represent cases
where key distributions are stable, while “Dict-A, Email-B” and “Dict-B, Email-A” sim-
ulate dramatic changes in the key pa�erns. From the �gure, we can see that HOPE’s
compression rate decreases in the “Dict-A, Email-B” and “Dict-B, Email-A” cases. �is re-
sult is expected because the dictionary built based on earlier samples cannot capture the
new common pa�erns in the new distribution for be�er compression. We also observe
that simpler schemes (i.e., schemes that exploit lower-order entropy) such as Single-Char
are less a�ected by the workload changes. We note that a compression rate drop does
not mean that we must rebuild the HOPE-integrated search tree immediately because
HOPE still guarantees query correctness. A system can monitor HOPE’s compression
rate to detect a key distribution change and then schedule an index rebuild to recover the
compression rate if necessary.

6.5 Search Tree Evaluation

To experimentally evaluate the bene�ts and trade-o�s of applying HOPE to in-memory
search trees, we integrated HOPE into �ve data structures: SuRF, ART, HOT, B+tree, and
Pre�x B+tree (as described in Section 6.3). Based on the microbenchmark results in Sec-
tion 6.4, we evaluate six HOPE con�gurations for each search tree: (1) Single-Char, (2)
Double-Char, (3) 3-Grams with 64K (216) dictionary entries, (4) 4-Grams with 64K dictio-
nary entries, (5) ALM-Improved with 4K (212) dictionary entries, and (6) ALM-Improved
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Figure 6.15: SuRF YCSB Evaluation – Runtime measurements for executing YCSB workloads
on HOPE-optimized SuRF with three datasets.

with 64K dictionary entries. We include the original uncompressed search trees as base-
lines (labeled as “Uncompressed”). We choose 64K for 3-Grams, 4-Grams, and ALM-
Improved so that they have the same dictionary size as Double-Char. We evaluate an
additional ALM-Improved con�guration with 4K dictionary size because it has a similar
dictionary memory as Double-Char, 3-Grams (64K), and 4-Grams (64K). We exclude the
original ALM scheme because it is always worse than the others.
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Figure 6.16: SuRF Trie Height – the average height of each leaf node a�er loading all keys

6.5.1 Workload

We use the YCSB-based [70] index-benchmark framework proposed in the Hybrid In-
dex [168] and later used by HOT [60] and SuRF [169]. We use the YCSB workloads C and
E with a Zipf distribution to generate point and range queries. Point queries are the
same for all trees. Each range query for ART, HOT, B+tree, and Pre�x B+tree is a start
key followed by a scan length. Because SuRF is a �lter, its range query is a start key and
end key pair, where the end key is a copy of the start key with the last character increased
by one (e.g., [“com.gmail@foo”, “com.gmail@fop”]). We replace the original YCSB
keys with the keys in our email, wiki and URL datasets. We create one-to-one mappings
between the YCSB keys and our keys during the replacement to preserve the Zipf distri-
bution. We omit the results for other YCSB query distributions (e.g., uniform) because
they demonstrate similar performance gains/losses as in the Zipf case when applying
HOPE to the search trees.
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6.5.2 YCSB Evaluation

We start each experiment with the building phase using the �rst 1% of the dataset’s
keys. Next, in the loading phase, we insert the keys one-by-one into the tree (except for
SuRF because it only supports batch loading). Finally, we execute 10M queries on the
compressed keys with a single thread using a combination of point and range queries
according to the workload. We obtain the point, range, and insert query latencies by di-
viding the corresponding execution time by the number of queries. We measure memory
consumption (HOPE size included) a�er the loading phase.

�e results for the benchmarks are shown in Figures 6.15–6.21. We �rst summarize
the high-level observations and then discuss the results in more detail for each tree.
High-Level Observations: First, in most cases, multiple schemes in HOPE provide a
Pareto improvement to the search tree’s performance and memory-e�ciency. Second,
the simpler FIVC schemes, especially Double-Char, stand out to provide the best trade-o�
between query latency and memory-e�ciency for the search trees. �ird, more sophis-
ticated VIVC schemes produce the lowest search tree memory in some cases. We believe
that compared to Double-Char, however, their small additional memory reduction does
not justify the signi�cant performance loss in general.
SuRF: �e heatmaps in the �rst column of Figure 6.15 show the point query latency vs.
memory trade-o�s made by SuRFs with di�erent HOPE con�gurations. We de�ne a cost
function C = L × M , where L represents latency, and M represents memory. �is
cost function assumes a balanced performance-memory trade-o�. We draw the equi-cost
curves (as heatmaps) where points on the same curve have the same cost.
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HOPE reduces SuRF’s query latencies by up to 41% in all workloads with Single-
Char, Double-Char, 3-Grams, and 4-Grams encoders. �is is because compressed keys
generate shorter tries, as shown in Figure 6.16. According to our analysis in Section 6.3,
the performance gained by fewer levels in the trie outweighs the key encoding overhead.
Although SuRF with ALM-Improved (64K) has the lowest trie height, it su�ers high query
latency because encoding is slow for ALM-Improved schemes (refer to Figure 6.10).

Although the six HOPE schemes under test achieve compression rates of 1.5–2.5× in
the microbenchmarks, they only provide ∼30% memory savings to SuRF. �e reason is
that compressing keys only reduces the number of internal nodes in a trie (i.e., shorter
paths to the leaf nodes). �e number of leaf nodes, which is o�en the majority of the
storage cost, stays the same. SuRF with ALM-Improved (64K) consumes more memory
than others because of its large dictionary.

�e results for SuRF with ALM-Improved (4K) are interesting. For email keys, Sec-
tion 6.4.2 showed that ALM-Improved (4K) achieves a be�er compression rate than
Double-Char with a similar-sized dictionary. When we integrate this scheme into SuRF,
however, the memory saving is smaller than Double-Char even though it produces a
shorter trie. Although this seems counterintuitive, it is because ALM-Improved allows
dictionary symbols to have arbitrary lengths and it favors long symbols. Encoding long
symbols one-at-a-time can prevent pre�x sharing. As an example, ALM-Improved may
treat the keys “com.gmail@c” and “com.gmail@s” as two separate symbols and thus
have completely di�erent codes.

All schemes, except for Single-Char, add computational overhead in building SuRF.
�e dictionary build time grows quadratically with the number of entries because of the
Hu-Tucker algorithm. One can reduce this overhead by shrinking the dictionary size, but
this diminishes performance and memory-e�ciency gains.

Finally, the HOPE-optimized SuRF achieves lower false positive rate under the same
su�x-bit con�gurations, as shown in Figure 6.17. �is is because each bit in the com-
pressed keys carries more information and is, thus, more distinguishable than a bit in the
uncompressed keys.
ART, HOT: Figures 6.18 and 6.19 show that HOPE improves ART and HOT’s perfor-
mance and memory-e�ciency for similar reasons as for SuRF because they are also trie-
based data structures. Compared to SuRF, however, the amount of improvement for ART
and HOT is less. �is is for two reasons. First, ART and HOT include a 64-bit value
pointer for each key, which dilutes the memory savings from the key compression. More
importantly, as described in Section 6.2.2 and Section 6.3, ART and HOT only store par-
tial keys using optimistic common pre�x skipping (OCPS). HOT is more optimistic than
ART as it only stores the branching points in a trie (i.e., the minimum-length partial keys
needed to uniquely map a key to a value pointer). Although OCPS can incur false posi-
tives, the DBMS will verify the match when it retrieves the tuple. �erefore, since ART
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Figure 6.18: ART YCSB Evaluation – Runtime measurements for executing YCSB workloads
on HOPE-optimized ART with three datasets.

and HOT store partial keys, they do not take full advantage of key compression. �e
portion of the URL keys skipped by ART is large because they share long pre�xes. Nev-
ertheless, our results show that HOPE still provides some bene�t and thus is worth using
in both of these data structures.
B+tree, Pre�x B+tree: �e results in Figures 6.20 and 6.21 show that HOPE is bene�cial
to search trees beyond tries. Because the TLX B+tree uses reference pointers to store
variable-length string keys outside of each node, compressing the keys does not change
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Figure 6.19: HOT YCSB Evaluation – Runtime measurements for executing YCSB workloads
on HOPE-optimized HOT with three datasets.

the tree structure. In addition to memory savings, the more lightweight HOPE schemes
(Single-Char and Double-Char) also improve the B+tree’s query performance because of
faster string comparisons and be�er cache locality. To validate this assumption, we re-
ran the point-query workload on email keys and used cachegrind [23] to measure
cache misses. We found that Double-Char on TLX B+tree reduces the L1 and last-level
cache misses by 34% and 41%, respectively.
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Figure 6.20: B+tree YCSB Evaluation – Runtime measurements for executing YCSB workloads
on HOPE-optimized B+tree with three datasets.

Compared to plain B+trees, we observe smaller memory saving percentages when
using HOPE on Pre�x B+trees. �is is because pre�x compression reduces the storage
size for the keys, and thus making the structural components of the B+tree (e.g., pointers)
relatively larger. Although HOPE provides similar compression rates when applied to a
Pre�x B+tree compared to a plain B+tree, the percentages of space reduction brought
by HOPE-compressed keys in a Pre�x B+tree is smaller with respect to the entire data
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Figure 6.21: Pre�x B+tree YCSB Evaluation – Runtime measurements for executing YCSB
workloads on HOPE-optimized Pre�x B+tree with three datasets.

structure size.
As a �nal remark, HOPE still improves the performance and memory for highly-

compressed trees such as SuRF. It shows that HOPE is orthogonal to many other com-
pression techniques and can bene�t a wide range of data structures.
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Chapter 7

Related Work

�e overhead of managing disk-resident data has given rise to a new class of OLTP
DBMSs that store the entire database in main memory [73, 74, 82, 155]. �ese systems
outperform traditional disk-oriented DBMSs because they eschew the legacy components
that manage data stored on slow, block-based storage [93]. Unfortunately, this improved
performance is achievable only when the database is smaller than the amount of physical
memory available in the system. If the database does not �t in memory, then the operat-
ing system will move virtual memory pages out to disk, and memory accesses will cause
page faults [154]. Because these page faults are transparent to the DBMS, the threads ex-
ecuting transactions will stall while the page is fetched from disk, degrading the system’s
throughput and responsiveness. �us, the DBMS must use memory e�ciently to avoid
this performance bo�leneck.

Indexes are a major factor in the memory footprint of a database. OLTP applications
o�en maintain several indexes per table to ensure that queries execute quickly. �is
is important in applications that interact with users and other external systems where
transactions must complete in milliseconds or less [155]. �ese indexes consume a sig-
ni�cant fraction of the total memory used by a database. Designing memory-e�cient in-
dexes is thus important for improving database performance and reducing costs. Achiev-
ing space-e�cient indexes is, however, non-trivial because there are trade-o�s between
function, performance, and space. For example, hash tables are fast and potentially more
space-e�cient than tree-based data structures, but they do not support range queries,
which prevents them from being ubiquitous. We now discuss prior work related to the
concepts and techniques introduced in this thesis.
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Figure 7.1: Succinct Tree Representations – An example ordinal tree encoded using three
major succinct representations: LOUDS, BP, and DFUDS.

7.1 Succinct Tree Representations

Besides the Level-Ordered Unary Degree Sequence (LOUDS) discussed in Chapter 3, a
second type of succinct tree representation is based on “balanced parentheses” (BP) se-
quences [131]. As shown in Figure 7.1, BP traverses the nodes in depth-�rst order and
appends to the sequence an opening parenthesis when a node is �rst visited and a clos-
ing parenthesis a�er the entire subtree is covered. �e BP representations support a
wider range of tree operations in constant time than LOUDS [85, 121, 132, 134]. �e
most recent “fully functional” representation [150] reduces the conceptual and imple-
mentational complexity of BP by reducing the tree operations to primitives that give the
di�erence between the opening and closing parentheses at a certain position. Although
BP supports more functions, it is more complex and is slower than LOUDS for the simple
“move-to-child” and “more-to-parent” navigations that are essential to FST [52]. More-
over, developing an e�cient trie representation from BP is di�cult because child labels
of the same node have poor locality.

Many state-of-the-art succinct tries [57, 91, 145] are based on a third type of succinct
tree representation that combines LOUDS and BP, called the Depth-First Unary Degree
Sequence (DFUDS) [57]. As shown in Figure 7.1, It uses the same unary encoding as
in LOUDS, but traverses the tree in depth-�rst order as in BP. DFUDS o�ers a middle
ground between fast operations and additional functions, and is popular for building
general succinct tries. Grossi and O�aviano [91] provided a state-of-the-art succinct trie
implementation based on DFUDS, which we compare against in Section 3.7.2.

We choose to use LOUDS in FST and SuRF because it is fast and easy to implement
compared to the alternatives. With proper rank and select support, LOUDS can perform
“move to i-th child” and “move to parent” in constant time, and they are su�cient to
implement the point and range queries in our system indexing use case. As Arroyuelo et
al. [52] reported, LOUDS outperforms all the other succinct tree representations in the
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above two operations. Although LOUDS lacks e�cient support for many other opera-
tions such as subtree size and level ancestor [136], its good performance and moderate
complexity in the simple “parent-child” navigations �t our needs.

Succinct [48] and follow-up work BlowFish [104] are among the few a�empts in sys-
tems research to use succinct data structures extensively in a general distributed data
store. �ey store datasets using compressed su�x arrays [92] and achieve signi�cant
space savings. Compared to other non-compressed systems, Succinct and BlowFish
achieve be�er query performance mainly through keeping more data resident in DRAM.
FST can provide similar bene�ts when used in larger-than-DRAM workloads. In addition,
FST does not slow down the system even when the entire data set �ts in DRAM.

7.2 Range Filtering

�e Bloom �lter [62] and its major variants [64, 81, 142] are compact data structures de-
signed for fast approximate membership tests. �ey are widely used in storage systems,
especially LSM trees, to reduce expensive disk I/O. Similar applications can be found
in distributed systems to reduce network I/O [4, 153, 166]. �e downside for Bloom �l-
ters, and other �lters such as �otient �lters [56], Cuckoo �lters [80] and Morton �l-
ters [65], however, is that they cannot handle range queries because their hashing does
not preserve key order. One could build state-of-the-art tree indexes [43, 60, 112, 160]
for the task, but the memory cost is high (see evaluation in Section 3.7). In practice, peo-
ple o�en use pre�x Bloom �lters to help answer range-emptiness queries. For example,
RocksDB [37], LevelDB [5], and Li�leTable [149] store pre-de�ned key pre�xes in Bloom
�lters so that they can identify an empty-result query if they do not �nd a matching pre�x
in the �lters. Compared to SuRFs, this approach, however, has worse �ltering ability and
less �exibility. It also requires additional space to support both point and range queries.

Adaptive Range Filter (ARF) [49] was introduced as part of Project Siberia [79] in
Hekaton [74] to guard cold data. ARF di�ers from SuRF in that it targets di�erent appli-
cations and scalability goals. First, ARF behaves more like a cache than a general-purpose
�lter. Training an ARF requires knowledge about prior queries. An ARF instance per-
forms well on the particular query pa�ern for which it was trained. If the query pa�ern
changes, ARF requires a rebuild (i.e., decode, re-train, and encode) to remain e�ective.
ARF works well in the se�ing of Project Siberia, but its workload assumptions limit its
e�ectiveness as a general range �lter. SuRF, on the other hand, assumes nothing about
workloads. It can be used as a Bloom �lter replacement but with range �ltering ability.
In addition, ARF’s binary tree design makes it di�cult to accommodate variable-length
string keys because a split key that evenly divides a parent node’ key space into its chil-
dren nodes’ key space is not well de�ned in the variable-length string key space. In con-
trast, SuRF natively supports variable-length string keys with its trie design. Finally, ARF
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performs a linear scan over the entire level when traversing down the tree. Linear lookup
complexity prevents ARF from scaling; the authors suggest embedding many small ARFs
into the existing B-tree index in the hot store of Hekaton, but lookups within individual
ARFs still require linear scans. SuRF avoids linear scans by navigating its internal tree
structure with rank & select operations. We compared ARF and SuRF in Section 4.3.5.

7.3 Log-Structured Storage

Many modern key-value stores adopt the log-structured merge tree (LSM-tree) de-
sign [138] for its high write throughput and low space ampli�cation. Such systems in-
clude LevelDB [5], RocksDB [37], Cassandra [7, 107], HBase [24], WiredTiger [1], Oc-
topusDB [75], LHAM [135], and cLSM [86] from Yahoo Labs. Monkey [71] explores the
LSM-tree design space and provides a tuning model for LSM-trees to achieve the Pareto
optimum between update and lookup speeds given a certain main memory budget. �e
RocksDB team published a series of optimizations (including the pre�x Bloom �lter) to
reduce the space ampli�cation while retaining acceptable performance [78]. �ese op-
timizations fall under the RUM Conjecture [54]: for read, update, and memory, one can
only optimize two at the cost of the third. �e design of FST also falls under the RUM Con-
jecture because it trades update e�ciency for fast read and small space. LSM-trie [163]
improves read and write throughput over LevelDB for small key-value pairs, but it does
not support range queries.

SILT is a �ash-based key-value store that achieves high performance with a small
memory footprint by using a multi-level storage hierarchy with di�erent data struc-
tures [119]. �e �rst level is a log-structured store that supports fast writes. �e second
level is a transitional hash table to perform bu�ering. �e �nal level is a compressed trie
structure. Hybrid indexes borrow from this design, but unlike SILT, a hybrid index does
not use a log-structured storage tier because maximizing the number of sequential writes
is not a high priority for in-memory databases. Hybrid indexes also avoid SILT’s heavy-
weight compression because of the large performance overhead. Similar systems include
Anvil, a modular framework for database backends to allow �exible combinations of the
underlying key-value stores to maximize their bene�ts [123].

7.4 Hybrid Index and Other Compression Techniques
for Main-memory Databases

A common way to reduce the size of B+trees is to compress their nodes before they
are wri�en to disk using a general-purpose compression algorithm (e.g., LZMA) [25].
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�is approach reduces the I/O cost of fetching pages from disk, but the nodes must be
decompressed once they reach memory so that the system can interpret their contents.
To the best of our knowledge, the only compressed main-memory indexes are for OLAP
systems, such as bitmap [67] and columnar [108] indexes. �ese techniques, however,
are inappropriate for the write-heavy workload mixtures and small-footprint queries of
OLTP applications [155]. As we show in Sections 2.5 and 5.3, compressed indexes perform
poorly due to the overhead of decompressing an entire block to access a small number
of tuples.

An important aspect of these previous approaches is that the indexes treat all of the
data in the underlying table equally. �at is, they assume that the application will exe-
cute queries that access all of the table’s tuples in the same manner, either in terms of
frequency (i.e., how many times it will be accessed or modi�ed in the future) or use (i.e.,
whether it will be used most in point versus range queries). �is assumption is incorrect
for many OLTP applications. For example, a new tuple is likely to be accessed more o�en
by an application soon a�er it was added to the database, o�en through a point query on
the index. But as the tuple ages, its access frequency decreases. Later, the only time it is
accessed is through summarization or aggregation queries.

One could handle this scenario through multiple partial indexes on the same keys in
a table that use di�erent data structures. �ere are several problems with this approach
beyond just the additional cost of maintaining more indexes—foremost is that developers
might need to modify their application so that each tuple speci�es what index it should
be stored in at runtime. �is information is necessary because some a�ributes, such as
a tuple’s creation timestamp, may not accurately represent how likely it will be accessed
in the future. Second, the DBMS’s query optimizer might not be able to infer what index
to use for a query since a particular tuple’s index depends on this identifying value. If a
complex query accesses tuples from multiple partial indexes that each has a portion of
the table’s data, then the system will need to retrieve data from multiple sources for that
query operator. �is type of query execution is not possible in today’s DBMSs, so the
system would likely fall back to scanning the table sequentially.

We, therefore, argue that a be�er approach is to use a single logical hybrid index
that is composed of multiple data structures. �is approach gives the system more �ne-
grained control over data storage without requiring changes to the application. To the
rest of the DBMS, a hybrid index looks like any other, supporting a conventional inter-
face and API. Previous work such as LSM-trees showed the e�ectiveness of using multi-
ple physical data structures or building blocks to construct a higher-level logical entity.
Applying these ideas to database indexes is a natural �t, especially for in-memory OLTP
systems. In these applications, transactions’ access pa�erns vary over time with respect
to age and use. Index entries for new tuples go into a fast, write-friendly data structure
since they are more likely to be queried again in the near future. Over time, the tuples
become colder and their access pa�erns change, usually from frequent modi�cation to
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occasional read [72]. Aged tuples thus eventually migrate to a more read-friendly and
more compact data structure to save space [152].

Several DBMSs use compressed indexes to reduce the amount of data that is read
from disk during query execution. �ere has been considerable work on space-e�cient
indexes for OLAP workloads to improve the performance of long-running queries that
access large segments of the database [67, 161]. SQL Server’s columnar indexes use a
combination of dictionary-based, value-based, and run-length encoding to compress the
column store indexes [108]. MySQL’s InnoDB storage engine has the ability to compress
B-tree pages when they are wri�en to disk [25]. To amortize compression and decom-
pression overhead, InnoDB keeps a modi�cation log within each B-tree page to bu�er
incoming changes to the page. �is approach di�ers from hybrid indexes, which focus
on structural reduction rather than data compression. Because hybrid indexes target in-
memory databases and their concomitant performance objectives, data compression is
prohibitive in most cases.

Other in-memory databases save space by focusing on the tuple stores rather than the
index structures. One example is SAP’s HANA hybrid DBMS [82, 152]. In HANA, all new
data is �rst inserted into a row-major store engine that is optimized for OLTP workloads.
Over time, the system migrates tuples to dictionary-compressed, in-memory columnar
store that is optimized for OLAP queries. �is approach is also used in HyPer [84]. Hybrid
indexes take a similar approach to migrate cold data from the write-optimized index to
the compact, read-only index. Both these techniques are orthogonal to hybrid indexes.
A DBMS can use hybrid indexes while still moving data out to these compressed data
stores.

Other work seeks to reduce the database’s storage footprint by exploiting the access
pa�erns of OLTP workloads to evict cold tuples from memory. �ese approaches di�er
in how they determine what to evict and the mechanism they use to move data. �e anti-
caching architecture in H-Store uses an LRU to track how o�en tuples are accessed and
then migrates cold data to an auxiliary, on-disk data store [72]. Although the tuple data
is removed from memory, the DBMS still has to keep all of the index keys in-memory. A
similar approach was proposed for VoltDB (the commercial implementation of H-Store)
where the database relies on the OS’s virtual memory mechanism to move cold pages
out to disk [154]. �e Siberia Project for Microso�’s Hekaton categorizes hot/cold tuples
based on sampling their access history [116] and can also migrate data out to an on-disk
data store [79]. Hekaton still uses a disk-backed index, so cold pages are swapped out
to disk as needed using SQL Server’s bu�er pool manager and the remaining in-memory
index data is not compressed. Hybrid indexes do not rely on any tracking information
to guide the merging process since it may not be available in every DBMS. It is future
work to determine whether such access history may further improve hybrid indexes’
performance.
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�e Dynamic-to-Static Rules are inspired by work from Bentley and Saxe [58]. In
their paper, they propose general methods for converting static structures to dynamic
structures; their goal is to provide a systematic method for designing new, performance-
optimized dynamic data structures. In Chapter 2, we use a di�erent starting point, a
dynamic data structure, and propose rules for creating a static version; furthermore, our
focus is on creating space-optimized rather than performance-optimized variants.

Dynamic materialized views materialize only a selective subset of tuples in the view
based on tuple access frequencies to save space and maintenance costs [172]. Simi-
larly, database cracking constructs self-organizing, discriminative indexes according to
the data access pa�erns [98]. Hybrid indexes leverage the same workload adaptivity by
maintaining fast access paths for the newly inserted/updated entries to save memory and
improve performance.

7.5 Key Compression in Search Trees

Existing compression techniques for search trees leverage general-purpose block com-
pression algorithms such as LZ77 [27], Snappy [39], and LZ4 [26]. Block compression
algorithms, however, are too slow for in-memory search trees: query latencies for in-
memory B+trees and tries range from 100s of nanoseconds to a few microseconds, while
the fastest block compression algorithms can decompress only a few 4 KB memory pages
in that time [26]. Recent work has addressed this size problem through new data struc-
tures [60, 127, 168, 169]. Compressing input keys using HOPE is an orthogonal approach
that one can apply to any of the above search tree categories to achieve additional space
savings and performance gains.

One could apply existing �eld/table-wise compression schemes to search tree keys.
Whole-key dictionary compression is the most popular scheme used in DBMSs today.
It replaces the values in a column with smaller �xed-length codes using a dictionary.
Indexes and �lters, therefore, could take advantage of those existing dictionaries for
key compression. �ere are several problems with this approach. First, the dictio-
nary compression must be order-preserving to allow range queries on search trees.
Order-preserving dictionaries, however, are di�cult to maintain with changing value
domains [120], which is o�en the case for string keys in OLTP applications. Second, the
latency of encoding a key is similar to that of querying the actual indexes/�lters because
most order-preserving dictionaries use the same kind of search trees themselves [61].
Finally, dictionary compression only works well for columns with low/moderate cardi-
nalities. If most values are unique, then the larger dictionary negates the size reduction
in the actual �elds.

Existing order-preserving frequency-based compression schemes, including the one
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used in DB2 BLU [147] and padded encoding [118], exploit the column value distribution
skew by assigning smaller codes to more frequent values. Variable-length codes, how-
ever, are ine�cient to locate, decode, and process in parallel. DB2 BLU, thus, only uses
up to a few di�erent code sizes per column and stores the codes of the same size together
to speed up queries. Padded encoding, on the other hand, pads the variable-length codes
with zeros at the end so that all codes are of the same length (i.e., the maximum length
in the variable-length codes) to facilitate scan queries. DB2 BLU and padded encoding
are designed for column stores where most queries are reads, and updates are o�en in
batches. Both designs still use the whole-key dictionary compression discussed above
and therefore, cannot encode new values without extending the dictionary, which can
cause expensive re-encodes of the column. HOPE, however, can encode arbitrary in-
put values using the same dictionary while preserving their ordering. Such property is
desirable for write-intensive OLTP indexes.

HOPE focuses on compressing string keys. Numeric keys are already small and can be
further compressed using techniques, such as null suppression and delta encoding [47].
Pre�x compression is a common technique used in B+trees, where each node only stores
the common pre�x of its keys once [55]. Pre�x compression can achieve at most the same
level of reduction as a radix tree. Su�x truncation is another common technique where
nodes skip the su�xes a�er the keys are uniquely identi�ed in the tree [60, 112, 169].
Su�x truncation is a lossy scheme, and it trades a higher false positive rate for be�er
memory-e�ciency.

Prior studies considered entropy encoding schemes, such as Hu�man [97] and arith-
metic coding [162], too slow for columnar data compression because their variable-length
codes are slow to decode [47, 59, 61, 68, 120, 146]. For example, DB2 BLU only uses up
to a few di�erent code sizes [147]. �is concern does not apply to search trees, because
non-covering index and �lter queries do not reconstruct the original keys1. In addition,
entropy encoding schemes produce high compression rates even with small dictionaries
because they exploit common pa�erns at a �ne granularity.

Antoshenkov et al. [50, 51] proposed an order-preserving string compressor with a
string parsing algorithm (ALM) to guarantee the order of the encoded results. We intro-
duced our string axis model in Section 6.1, which is inspired by the ALM method but is
more general: �e ALM compressor belongs to a speci�c category in our compression
model.

1�e search tree can, of course, recover the original keys if needed: entropy encoding is lossless, unlike
su�x truncation.
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Chapter 8

Conclusion and Future Work

In this dissertation, we presented three steps towards memory-e�cient search trees for
database management systems. In the �rst step, we target at building fast static search
trees to approach theoretically optimal compression. In this step, we �rst developed the
Dynamic-to-Static Rules to serve as the high-level guidelines for identifying and reducing
structural memory overhead in existing search trees. We then introduced the Fast Suc-
cinct Trie (FST ) that consumes space close to the information-theoretic lower bound but
achieves query performance comparable to the state-of-the-art solutions. Using FST, we
built the Succinct Range Filter (SuRF ) that solves the range �ltering problem practically in
real databases. In the second step, we introduced the Hybrid Index architecture that can
support inserts and updates on static search trees e�ciently with bounded and amortized
cost in performance and memory. In the �nal step, we focused on compressing the keys
stored in a search tree instead of the tree structure by building the High-speed Order-
Preserving Encoder (HOPE) for search tree keys that achieves high compression rates and
performance while preserving the ordering of arbitrary input keys. �ese three steps
together form a practical recipe for achieving memory-e�ciency in search trees and in
databases.

We brie�y discuss several directions to extend the work presented in this dissertation.
As we discussed in Chapter 4, the current version of SuRF has two major limitations that
prevent it from being used in a wider range of applications First, SuRF is static. Inserts
and updates will cause a signi�cant part of the data structure to rebuild. Second, SuRF
lacks a theoretical guarantee on the false positive rate for range queries, despite its good
empirical performance. Addressing these limitations should be the focus of the next-
generation range �lters.

�e rise of main-memory (and NVM) databases running on multicore machines has
motivated research in developing highly concurrent indexes to support simultaneous
reads and writes at scale. However, existing concurrent indexes are memory-consuming.
One possible solution is to extend the hybrid index architecture (Chapter 5) to support
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concurrent operations. Recall that a hybrid index includes the dynamic stage and a static
stage. �e main challenge in building a concurrent hybrid index is to design an e�cient
non-blocking algorithm to periodically merge the two stages. We brie�y describe a pro-
posed non-blocking merge algorithm here.

We �rst add a temporary intermediate stage between the dynamic and the static
stages. When a merge is triggered, the current dynamic stage freezes and becomes the
read-only intermediate stage. Meanwhile, a new empty dynamic stage is created to con-
tinue receiving all the writes. �e writes are thus independent of the merge process. �e
problem reduces to merging two read-only indexes (i.e., from the intermediate stage to
the static stage) without blocking access to any item. A naive solution is to create an
entire copy of the static stage and then perform the merge on the copy (i.e., a full copy-
on-write). �is is undesirable because it doubles the memory use during a merge. We
can, however, merge the two structures incrementally by performing atomic updates at
the subtree level in the static stage. It is valid to have a partially-merged static stage
(i.e., with a subset of the new items merged in) in this case because read requests for the
to-be-merged items will hit in the intermediate stage instead of in the �nal static stage.

Applying the compression techniques in HOPE to further parts of the DBMS is an-
other potential extension to this thesis. For example, because HOPE exploits entropy at
the substring level, table columns that store the same type of information could share a
HOPE dictionary while still achieving good compression rates. Encoding columns using
the same dictionary could speed up joins by allowing them to operate on compressed
data directly, avoiding the cost of decoding and re-encoding the joining columns.

Two trends have emerged in recent database designs. �e �rst trend is to o�oad data-
intensive jobs to specialized hardware such as GPUs and FPGAs to achieve be�er perfor-
mance and energy e�ciency. �e problem with today’s hardware accelerators, however,
is that they can only bene�t a subset of queries in an ad-hoc manner. �e architecture
community is experimenting with new hardware, such as the Con�gurable Spatial Ac-
celerator (CSA) [19] from Intel, that can directly map and execute compiler-generated
data�ow graphs with a short (e.g., a few microseconds) board-recon�guration time. Un-
like using today’s FPGAs, DBMSs can determine what tasks to accelerate on-the-�y by
directly loading the compiled programs to the board. If such recon�gurable data�ow
units co-exist with CPUs on the same Xeon-like die, it will eliminate the PCIe bo�leneck
and the cache-coherence problem faced by today’s FPGAs. �at means shorter-running
queries, including those in OLTP applications, can also bene�t from the hardware accel-
eration. For search tree indexes, this architectural change might bring us opportunities
to hard-code the branching keys and comparison logic of heavily-queried indexes to the
board so that index lookups can happen at bare-metal speed [167].

�e second trend is to use machine learning to automate systems’ con�guration and
performance tuning. Recent work [122, 139, 158] studied using machine learning to pre-
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dict simple workload pa�erns and to tune certain database knobs. An interesting problem
is to �gure out how to automatically select and tune the index data structures in a DBMS.
One challenge is that many index data structures today are di�cult to tune: they are not
designed to facilitate systems to make trade-o�s (e.g., between performance, memory,
and accuracy). �erefore, we must �rst create a spectrum of index structures that are
“tuning-friendly”, and then use machine learning and program synthesis techniques to
automatically obtain optimized con�gurations of those structures to achieve maximized
DBMS performance. �e goal is to allow the long tail of database applications to bene�t
from the latest advanced data structures, such as the ones introduced in this dissertation,
with a modest engineering expense.
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