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Abstract
Network system operation is typically divided into control and data planes—while

the data plane is responsible for processing individual messages or packets, the control
plane computes the con�guration of devices and optimizes system-wide performance.
Unfortunately, the control plane of each network system or protocol layer typically
operates independently (e.g., CDNs selecting servers without coordinating with ISPs),
resulting in poor interactions between control planes across systems. We can categorize
existing systems into one of four general control plane coordination mechanisms that
overcome these problems, based on how much information can be shared between
control planes. If no information can be shared, control planes simply react to data
plane changes as a rudimentary form of coordination (e.g., CDN server selection + ISP
tra�c engineering). If all information can be shared, transparency in decisionmaking
can remove most poor interactions (e.g., Co�ow datacenter �ow scheduling). In
many scenarios, however, only some information can be shared (e.g., between control
planes running in di�erent companies). Coordination in these scenarios is more
specialized; control planes with separate data plane resources can use priority ranking
(i.e., providing a list of preferences for resources without needing to show how these
preferences were decided; e.g., BGP routing between ISPs), and control planes with
shared data plane resources can use hierarchical partitioning (i.e., making coarse-
grained decisions globally, and �ne-grained decisions locally; e.g., internet-wide BGP
+ OSPF routing). While systems utilizing control plane coordination exist today, they
have been designed ad hoc. We propose a set of recipes that show when it’s appropriate
to use di�erent coordination mechanisms, based on key properties (information
sharing and shared resources) in varied scenarios (layering, administrative separation,
and internet-scale systems).

We use these recipes to guide system design in a variety of contexts, as a case study
in control plane coordination. First, many systems use layer separation for modularity,
but in doing so trade performance for generality. As layered systems have no infor-
mation sharing constraints, we argue that transparency (i.e., cross-layer optimization;
allowing layers to run specialized code to better use other layers) is the correct tech-
nique for regaining performance. We explore this with our emulator Etalon [116], in
the context of recon�gurable datacenters. Second, some systems are administratively
separate (i.e., are split across di�erent companies), limiting information sharing for
business reasons. ¿ese systems may overcome adverse interactions using priority
ranking. We explore this with VDX [114, 115], in the context of content brokering.
Finally, systems needing internet scalability are increasingly combining a slow central-
ized control plane with a fast distributed control plane. Complete information sharing
(and thus, transparency) would appear possible, but timescale separation makes this
fundamentally impractical. Instead, hierarchical partitioning can overcome the chal-
lenges present in this scenario. We explore this with VDN [117], in the context of live
video delivery. ¿rough this case study we �nd that these coordination mechanism
not only solve a variety of problems, but can be e�ciently implemented.
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Chapter 1 Introduction

Control of networked systems has a long and storied past, from initial telephone system control
“Signaling System No. 7” (SS7) [72], to internet routing [101, 112], to modern so ware-de�ned
networks [44]. Network control is not just about routing packets from some source to some
destination within a network, but also includes a myriad of decision making problems, such as:
selecting the best server to deliver content to users around the globe, deciding when is the right time
to migrate a virtual machine to a new physical machine in a datacenter, or more classic problems
like internet congestion control.

¿e core focus of this thesis is that no matter how clever a system is at solving one of these
problems, it doesn’t exist in isolation; many other systems external to it make decisions that directly
impact it in complex ways, in a variety of metrics (e.g., performance, correctness, cost). ¿e crux
of this issue is that other systems may make decisions without understanding what’s important
to our system. Succinctly, these systems need to communicate over interfaces that allows them
to make decisions that are mutually bene�cial. We call this explicit communication for decision
making coordination.

To understand the bene�ts of coordination, we �rst need to understand the problems caused by
the lack of coordination. We take routing as an illustrative example (e.g., OSPF [112], BGP [101]).
Routing (and more generally, networked systems) can o en be logically broken into two pieces:
a control plane and a data plane. ¿e data plane’s responsibility is the forwarding of packets or
messages, while the control plane is responsible for optimizing system performance by con�guring
di�erent devices in the data plane (e.g., routers, switches, servers).

In internet routing, the control plane (called “routing”) periodically determines the best
paths from sources to destinations (in terms of a variety of metrics, e.g., path length, cost, band-
width/latency), while the data plane (called “forwarding”) handles the actual per-packet data
transmission. Separation of routing and forwarding allows forwarding to be very fast (line-rate)
while easing the timescale requirements for routing. ¿is provides them both �exibility. While for-
warding is simply a mapping of packets to router output ports, what data is used during forwarding
(e.g., destination address, destination port, other headers) is le open to implementation.

Similarly, control planes for routing have much variety. ¿ey can be a distributed computation
across routers within one ISP (e.g., OSPF [112]) or across ISPs (e.g., BGP [101]), they can be a
centralized computation for all routers within an ISP (e.g., SDN [44]), etc. Each has di�erent
pros and cons. Distributed approaches tend to have quick failure response, but may have trouble
providing optimal performance (e.g., path lengths, cost, bandwidth), as they have a limited local
view of current network conditions. Centralized approaches have been employed more recently
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Figure 1.1: Control planes decide how to con�gure devices within the data plane. ¿ese decisions are reached
by measuring the data plane, using internal policy, and potentially through external policy learned from
other control planes (coordination). Two control planes might be separated by administrative, timescale, or
layering boundaries.

due to their ability to provide optimal performance from their global view of the network, but tend
to have more complex failures to contend with (e.g., partitions between the controller and routers).

Network control plane design is not as simple as choosing a distributed approach or a centralized
one; even for a relatively well understood problem like routing, other systems (e.g., CDN server
selection) may make decisions that make a routing control plane’s job of determining the best paths
unnecessarily di�cult. Figure 1.1 shows an abstract view of the systems we consider. Each control
plane is responsible for deciding how to con�gure a set of data plane devices. ¿ese decisions
are reached through measurements of certain aspects of the data plane (e.g., current load, link
capacities, latencies, etc.), through pre-con�gured policies within the control plane (e.g., move
tra�c to a new server a er current load exceeds 60%), and potentially through external policy
learned from other control planes (e.g., tra�c can be sent to devices in other data planes but will
cost $0.05 per Gbps). We refer to decisions made using external policy as a decision achieved
through coordination.

We refer to systems comprised of two or more control planes as split control plane systems
(e.g., CDN server selection + ISP tra�c engineering, or BGP [101] running in two di�erent ISPs).
Control planes may be split due to administrative separation, timescale separation, layering, etc.
Decisions made by split control planes may be made for di�erent data plane devices (Figure 1.1), or
the same set of data plane devices (Figure 1.2). If decisions are made by multiple control planes for
the same set of devices, we say these control planes have shared resources.
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Figure 1.2: Separate control planes may make decisions on how to con�gure shared data plane devices.

Returning to our internet routing example, a single OSPF domain is not a split control plane
system, but BGP running across two neighboring ISPs is. BGP instances only make decisions for
their own independent set of data plane routers, so they do not have shared resources. Now that we
have some understanding about split control planes and routing, we can understand the problems
caused by a lack of coordination between split control planes.

For example, imagine a content delivery network (CDN) can choose to deliver content from
one of two servers within an ISP. If one server is in an expensive part of the ISPs network (in terms
of energy cost, capacity limitations, etc.), and another server is in a cheap location, the ISP would
prefer the CDN uses the cheaper alternative. ¿e CDN, however, likely does not know about these
internal costs, and therefore may consistently use the expensive server, (unknowingly) putting
pressure on the ISP.

A second example of issues arsing from a lack of coordination between control planes is BGP
route �apping, where an ISP observes a change in the network and responds by recon�guring its
network. Another ISP responds to this recon�guration by doing its own recon�guration. ¿e �rst
ISP sees this recon�guration in response to its own recon�guration, and decides to respond by
doing an additional recon�guration, ad in�nitum. Building a proper interface to explain why a
recon�guration happened would help ISPs come to a proper coordinated decision.

¿e key problem is that, in terms of coordination, many split control plane systems have been
designed in an ad hoc fashion, leading to the problems we’ve seen. ¿e focus of this thesis is a
design methodology for eliminating adverse control plane interactions. While adverse interactions
may arise from an overwhelming variety of reasons, we show in this thesis that for a core set of
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very common scenarios (layering, administrative separation, and internet-scale systems), there are
simple design recipes for control plane coordination that help eliminate issues.

While we see coordination mechanisms used in an ad hoc fashion in prior work, in this thesis
we present a case study of principled uses of these recipes, building systems in a variety of contexts
(recon�gurable datacenters, Ch. 2; content brokering, Ch. 3; and live video delivery, Ch. 4). ¿is
case study shows that these coordination mechanisms arise naturally from key properties of each
scenarios (information sharing constraints and shared resources), and shows why these mechanism
perform well in practice.
In summary:

THESIS STATEMENT

While past control plane coordination systems have been designed in an ad hoc fashion,
we show that control plane coordination designs that operate e�ciently and avoid adverse
interactions can be designed and implemented using a framework built upon simple design
recipes for a variety of very distinct, yet common scenarios.

In the rest of this chapter, we �rst de�ne a core set of control coordination mechanisms
(§1.1), before categorizing prior work based on these mechanisms (§1.2). We then explore key
scenarios that naturally lead to split control plane systems (§1.3). We map these scenarios to proper
mechanisms by exploring the design space of control plane coordination, ultimately providing a set
of recipes guiding coordination design (§1.4). We conclude with the scope, goals, and contributions
of the thesis (§1.5–1.7).

1.1 CoordinationMechanisms

Coordination between control planes is done through two parts: 1) information is shared using
some interface between the two (or more) control planes, and 2) the control planes may need to
reconcile their decisions in some manner (e.g., one has priority over the other if the decisions are
for shared resources [51, 81, 117, 149], or if decisions are for separate resources reconciliation may
be unnecessary [101, 103], etc.).

In this section, we identify four general coordination mechanism designs seen across a large
variety of prior work, providing examples of systems that make use of them: Reaction is a rudi-
mentary form of coordination without a coordination interface; decisions by other control planes
are just observed by measuring the data plane (example: CDN server selection and its interactions
with ISP tra�c engineering). Transparency (cross-layer optimization) is the other end of this
spectrum; all information that is needed for coordination is shared through an interface (example:
Co�ow [29, 31]. Priority ranking has control planes share a ranking of how they would like their
resources used, without explaining how these rankings were computed (example: BGP across two
ISPs [101]). Hierarchical partitioning has a global control plane make coarse-grained or long-
timescale decisions while a local control plane makes �ne-grained or short-timescale decisions
(example: internet-wide BGP + OSPF routing [101, 112]).
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Reaction

Control planes that don’t have an explicit interface between them have di�culties coordinating
with each other, e�ectively being limited to reacting to each other’s decisions as they measure
them in the data plane. ¿ere are likely few scenarios that outright forbid an interface between
control planes. Most systems that use this design were built to work autonomously for simplicity,
rather than for any hard information sharing constraint. Building a proper coordination interface
(e.g., between content brokers and CDNs, like in VDX [114, 115]; Chapter 3)), may help systems
improve performance, cost, and/or responsiveness issues. If a system does have strong requirements
forbidding any information sharing, reaction is likely the only coordination mechanism that can
be employed.

Example

CDN server selection and its e�ects on ISP tra�c engineering (TE) is a common issue reported
in content deliver. CDNs try to �nd the optimal server to deliver content to clients, but this may be
a server that is costly for transit ISPs to deliver from. To avoid costly paths, some ISPs may route
tra�c through slower links than the CDN expects, leading to poor performance. As both parties
don’t communicate their decisions to each other, they can only react to each other’s changes as
they observe them.

Transparency

Transparency builds an interface where all information that needs to be shared for coordination
is shared. ¿us, two control planes e�ectively have perfect insight into how one another will
make decisions, given the state of the network. Issues caused by the lack of coordination between
control planes (e.g., poor performance, high cost, lack of responsiveness) can mostly be avoided,
as assumptions made about the other control plane should almost always hold true. ¿is doesn’t
imply that both control planes become one; depending on their locations in the network, both
control planes may have slightly di�erent views of current network state. If a system can share all
information necessary for coordination between control planes, it likely should use transparency.

Example

Co�ow scheduling [29, 31] is the idea that the network should schedule bundles of �ows together
that represent an application workload (co�ows). Co�ow scheduling presents a by-the-book
layering problem: while a �ow abstraction is great for modularity, it hides the fact that many �ows
are dependent upon one another, and that scheduling them without knowing this can greatly
impact performance and responsiveness. For example, an application may require a set of �ows to
all complete before it can progress. Naive network scheduling will not know this, leading to slow
applications. As the separation between applications and network scheduling is simply layering,
Co�ow can easily share as much information is needed for coordination purposes. ¿us, Co�ow
uses transparency to have applications inform the network scheduler of their demands.
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Figure 1.3: Priority ranking is a coordination mechanism where control planes communicate a list of data
plane device con�gurations with priorities, to tell each other how they would like their devices con�gured.
Priority ranking allows control planes to share their preferences, without needing to explain how those
preferences were decided. As these are just preferences, peers need not honor them precisely.

Priority Ranking

Priority ranking is a coordination design that shares a ranked list of how to use resources between
control planes, without explaining how this list was computed. Figure 1.3 shows an abstract view of
priority ranking. Two control planes (α and β) give each other an ordered list of con�gurations
([B, D, A, C] and [Z, X, Y], respectively) they would like the other to use in con�guring their data
plane devices (shown in green). Control plane β would like α to use con�guration Z on all of its
devices, but this may cause issues for α, e.g., in terms of cost, performance, responsiveness, etc.
¿us α uses decision X (β’s second choice) for two data plane devices, and decision Z for another
device. β con�gures devices similarly, based on its concerns and α’s priority rankings.

¿e key point is that priority ranking allows control planes to share con�gurations with each
other in away that provides options, without needing to explicitly showhow/why those optionswere
picked. As shown, the rankings are simply preferences. Which con�guration to use is ultimately up
to the receiver. Systems that use priority ranking generally incentivize honoring priorities though
symmetry; if α consistently ignores β’s priority values, then β will likely ignore α’s, negatively
impacting α’s performance, cost, responsiveness, etc. In this example, some decisions were mixed
(e.g., X and Z), which may cause issues in certain scenarios. System designers need to decide
whether this mixing should be allowed.

Example

Across ISPs, two instances of BGP [101] communicate to try to �nd high performance / low cost
routes through each other’s networks. As both instances are in separate administrative domains, not
all information can be shared. Naively, this lack of transparency may result in ISP A sending a large
volume of tra�c to ISP B through a path that is very costly for ISP B. Multi-Exit Discriminators
(MEDs) are designed to solved this. ISPs can tell each other a priority ranking of di�erent entry
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Figure 1.4: Hierarchical partitioning is a coordination mechanism where slow-timescale or coarse-grained
global control decisions are augmented by fast-timescale or �ne-grained local control decisions for an
individual regions. For the timescale variant, global control generally optimizes for performance and local
control provides responsiveness.

points into their network, without needing to tell the other ISP why those values were chosen (e.g.,
for cost reasons, capacity, performance, etc.).

Hierarchical Partitioning

Hierarchical partitioning is a coordination design that combines a slow (or coarse-grained) global
controller with multiple fast (or �ne-grained) local controllers. Figure 1.4 shows an example of
hierarchical partitioning. Data plane devices are partitioned into “regions” (e.g., geographically)
supported by a “local controller”. ¿e local controllers and a “global controller” form a hierarchy of
controllers.

Typically, the global controller computes a complex performance optimization for all data
plane devices, internet-wide, using its global view. If the optimization is �ne-grained, this may
take minutes, depending on the application (e.g., internet-scale live video delivery, Chapter 4). ¿e
most recent decision is disseminated to all local controllers in all regions. A local controller uses
this (potentially stale) decision until a newer decision is propagated to it. During network events
(e.g., link failures, client churn, etc.), a local controller can decide (typically based on the severity
of the network event) to deviate from the global decision. ¿ese deviations are typically tolerated
by maintaining “slack” in the global decision (e.g., reserved network capacity). ¿e key point is
that global control gets priority over local control in steady-state, and that its global view a�ords it
a unilaterally better decision.
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If the optimization is coarse-grained (e.g., internet-wide routing with BGP [101] + OSPF [112]),
the global controller can quickly make a very coarse con�guration decision for data plane devices,
and then the local controllers can re�ne that decision for their local region (again by using slack in
the decision). Well slightly di�erent, this alternate version is functionally similar, and solves the
same set of coordination issues. Deciding which version to use is likely tied to the speci�cs of the
scenario.

Example

In internet-wide routing, we can consider internet-wide BGP as one global control plane, and look
at its interactions with many “local” instances of OSPF. With this view, it clearly uses hierarchical
partitioning. E�ectively, BGP forms a coarse-grained “big picture” as to how routing should work
across the whole internet at the ISP-level, leaving each of the local OSPF instances to re�ne that
picture within their ISP.

1.2 Understanding designs for split control plane systems

In this section, we provide intuition as to how split control systems may fundamentally di�er from
one another by examining salient features in related work. We use this intuition to build a design
space of split control plane systems.

1.2.1 Salient features

Peer-Peer / Master-Slave: Do the control planes have equal say in decisions (peer-peer; e.g.,
BGP [101]) or does one have clear priority in decision making (master-slave; e.g., Co�ow [29, 31])?

Separation of Control Planes: How are the control planes separated from one another? e.g., by
layering (e.g., Co�ow [29, 31]), granularity (e.g., Bohatei [43]), timescale (e.g., C3 [51]), so admin-
istration boundaries (within a company; e.g., OSPF areas [113]), hard administration boundaries
(between companies; e.g., BGP [101]), etc.

Information Sharing: How much information can / is shared between the two control planes?
Typically this depends on the nature of the control plane separation. e.g., it is simple to share
information between layers (e.g., Co�ow [29, 31]) but di�cult to share information between
companies (e.g., BGP [101]).

Shared Resources: Are the data plane resources controlled by each control plane completely
disjoint (e.g., BGP [101]), are there partially shared resources (e.g., BGP + OSPF route redistribu-
tion [147]), or fully shared resources (e.g., C3 [51])? If a control plane is distributed, we consider all
devices participating in the control plane to be “part” of it.

Information Flow: Is information shared in both directions between control planes? Do the con-
trol planes avoid sharing information (None; e.g., CDN server selection + ISP tra�c engineering),
does one control plane simply inform the second of its decision (One-way; e.g., Co�ow [29, 31]),
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or do both control planes tell each other their decisions (Two-way; e.g., BGP [101]). We do not
consider measurements a part of information �ow, just explicit communication between control
planes.

Incorrect Assumptions: What are possible incorrect assumptions that one control plane might
make about the other? ¿ese tend to be very context-speci�c (e.g., applications make assumptions
about what types of tra�c are easy for the network to deliver, which are broken in recon�gurable
datacenters [116]; Chapter 2).

DecisionMaking: Is the decision itself a combination of the decisions made by the control planes
(Joint; e.g., BGP [101]), is it a choice between alternatives (Choice; e.g., C3 [51]), is it always just the
decision proposed by one side (Master; e.g., Co�ow [29, 31]), or does each side make independent
decisions over their resources (Separate; e.g., OSPF areas [113]). Some joint decisions are made in a
two-way exchange of decisions, and some are made by having one side make a coarse decision,
with the other re�ning it (Joint (Re�nement); e.g., internet-wide BGP + OSPF routing [101, 112]).

Problems from Bad Decisions: What are possible metrics impacted by poor decisions? We
consider Performance (P), Responsiveness/Fault Tolerance (R), Cost/Pro�ts (C), and Correctness
(Cor).

Distilling down to themost important features

While there are many salient features, we �nd that two of them are fundamental: information
sharing (None, Incomplete, Complete) and shared resources (Disjoint, Partial, Full). Namely,
information sharing e�ectively de�nes the control plane coordination interface, while shared
resources limits the styles of decision making that can be used, as we shall show.

We �nd the rest of the features have strong overlaps with these features. Peer-peer systems tend
to have disjoint resources, while master-slave systems tend to have fully shared resources. Layer
separated systems tend to allow for complete information sharing, while other separations tend to
require incomplete information sharing. Systems will fully shared resources tend to have one-way
information �ow, while systems with disjoint resources vary in their information �ow. Systems
with fully shared resource tend to use re�nement or choice as a decision making process, while
systems with disjoint resources tend to use master or joint as a decision making process.
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System Context Control Planes PP/MS Separation Info. Sharing Shared Resources Info. Flow Assumptions Decision Making Problems

Solution:
Reaction

CDN Server Selection + ISP TE Content Delivery CDN + ISP TE MS Admin (Hard) None Disjoint None CDN server selection / ISP paths optimal Master P / C
OSPF Areas [113] Intra-Domain Routing OSPF + OSPF PP Admin (So ) None Disjoint None Splits are optimal Separate P / Cor

Competing CC Algos. Congestion Control CC + CC PP Admin (So /Hard) None Disjoint / Full None CC tries maximizing link util. Separate P
CC + AQM Congestion Control CC + AQM MS Admin (So /Hard) None Disjoint None CC backs o� on drops Master P

DASH [1, 140] Video Streaming DASH + HTTP + TCP MS Layering None Full None HTTP/TCP quickly retrieves chunks Master P

Solution:
Transparency

Co�ow [29, 31] Datacenter Network Scheduling Apps + Net Scheduling MS Layering Complete Disjoint One-way Complex app/�ow relationships Master P / R
Route Redistribution [147] Inter-/Intra-Domain Routing BGP + OSPF MS Layering Complete Partial One- or Two-way Redistributed routes are up-to-date Joint P / C

Recon�gurable DCs [116] (Ch. 2) Recon�gurable Datacenters Apps + Net Scheduling MS Layering Complete Disjoint One-way What’s easy for the network to deliver Master P / R

Solution:
Priority Ranking

BGP (Across ISPs) [101] Inter-Domain Routing BGP + BGP PP Admin (Hard) Incomplete Disjoint Two-way Routers expose best paths Joint P / C
Wiser [103] Inter-Domain Routing BGP + BGP PP Admin (Hard) Incomplete Disjoint Two-way Routers expose best paths Joint P / C
P4P [155] P2P/ISP TE P2P Apps + ISPs TE MS Admin (Hard) Incomplete Disjoint One-way Apps honor priority, ISP cost honesty Master P / C

VDX [114, 115] (Ch. 3) Content Brokering Broker + CDNs PP Admin (Hard) Incomplete Disjoint Two-way CDN / client assignments optimal Joint P / C

Solution:
Hierarchical Partitioning

Internet-wide Routing [101, 112] Routing BGP + OSPF MS Granularity Incomplete Full One-way OSPF provides good paths Joint (Re�nement) P / C
Klein [132] Cellular Core Global + Local Control MS Granularity Incomplete Full One-way Global decision is correct Joint (Re�nement) P

Bohatei [43] DDoS Defense Global + Local Control MS Granularity Incomplete Full One-way Global decision is correct Joint (Re�nement) P / Cor
OSPF Fibbing [149] Intra-Domain Routing SDN + OSPF MS Timescale Incomplete Full One-way Global decision is correct Choice P / Cor

Pytheas [81] Video Delivery Global + Local Control MS Timescale Incomplete Full One-way Global decision is correct Choice P / R
C3 [51] Content Brokering Global + Local Control MS Timescale Incomplete Full One-way Global decision is correct Choice P / R

VDN [117] (Ch. 4) Live Video Delivery Global + Local Control MS Timescale Incomplete Full One-way Global decision is correct Choice P / R

Table 1.1: Examining prior work with split control planes to understand the nature of their separation, possible problems, and how they overcome them.

10



1.2.2 RelatedWork

We examine systems with split control planes to better understand why they naturally arise, what
sorts of problems may be faced due to the separation, and what solutions are encountered. ¿is
examination is summarized in Table 1.1. We walk through this table in detail below, sorting the
work based on which coordination mechanism they use (de�ned in §1.1):

Coordination through reaction

CDN server selection and its e�ects on ISP tra�c engineering (TE) is explained in §1.1.

OSPF areas [113] are a means of dividing large networks run by one ISP into smaller regions
(“areas”), helping minimize the cost of recomputing shortest paths when link state changes. While
this does provide scalability, care must be given to how regions are divided, or there can be
performance (i.e., stretched paths) or correctness (i.e., partitions) issues. Other OSPF areas are
considered opaque black-boxes. Coordination is mainly just through reacting to changes.

Competing congestion control (CC) algorithmsmay run on the same machine or on di�er-
ent machines, but share some bottleneck link in the network. ¿e assumption is that both CC
algorithms are trying to maximize their link bandwidth, but neither communicate their strategy
with each other. ¿is can lead to poor performance (i.e., overshooting bottleneck link bandwidth
leading to increased delay, or fairness issues, depending on the CC algorithms). ¿is is, perhaps,
the most classic example of two control planes that make independent decisions, but coordinate
through reaction. If both congestion control algorithms are running on the same machine (or
even within the same administrative domain) smarter coordination solutions could be applied
(e.g., Congestion Manager [17]).

Congestion control (CC) and active queuemanagement (AQM) interact in amanner similar
to two CC algorithms. Namely, when an AQM algorithm makes a decision that a �ow is sending
too much, it sends the CC algorithm associated with this �ow an implicit signal (e.g., a packet
drop), e�ectively making a unilateral decision that the CC algorithm should slow this �ow down.
An AQM algorithm can limit CC performance by sending these signals at di�erent times than the
CC algorithm expects.

Dynamic Adaptive Streaming over HTTP (DASH) [1, 140] is a protocol for streaming video
that is widely used today. DASH builds on the already widely used HTTP and TCP protocols to
enable easy deployment of video delivery servers throughout the web. DASH uses HTTP and TCP
as-is, treating them as black-boxes for reliable video chunk delivery. We argue that while this does
simplify things, transparency (cross-layer optimization) could potentially provide opportunities to
improve user quality-of-experience.

Coordination through transparency

Co�ow is explained in §1.1.
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Within the realm of a single ISP, the interactions between BGP and OSPF come down to route
redistribution [147]. Typically OSPF routes are redistributed into BGP and can be used in their
entirety, as there is no hard administrative or timescale separation. ¿us, transparency can be used.
As long as the OSPF routes are up-to-date, BGP should be able to use OSPF route information to
communicate lower cost / lower stretch paths to other ISPs. Interestingly, this is the only system
we’ve identi�ed that has partially shared data plane resource, as all routers generally run OSPF, but
only some routers run BGP.

Ourwork on end-to-end problems in recon�gurable datacenters [116] (Ch. 2) focuses on issues
caused by application-/transport-layer assumptions about the network that become invalidated
in future recon�gurable datacenter networks. We show three key end-to-end problems that must
be solved to provide good performance and responsiveness in these kinds of networks. ¿e key
idea is coordination between endhost and network control planes using transparency (cross-layer
optimization). ¿is trades some of the modularity obtained from layering for massively improved
performance.

Coordination through priority ranking

BGP interactions between ISPs are explained in §1.1.

Wiser [103] presents a modi�cation to BGP, allowing two ISPs to better expose cost / perfor-
mance / capacity concerns with each other without exposing information directly, through priority
ranking. Wiser extends MEDs with a more complex scheme that provides incentives for ISPs to act
truthfully, leading to globally shorter paths.

P4P [155] is a system for coordinating peer-to-peer (P2P) application performance concerns
and ISP delivery cost concerns. ¿e key observation is that P2P applications o en have multiple
locations they can choose to request content from. ISPs provide P2P applications with a priority
ranking for di�erent destinations, based on their internal concerns (e.g., delivery cost, path capacity,
etc.). As P2P applications ultimate make the decision where to request content from, it is unclear if
there are incentives for P2P applications to honor ISP concerns. ¿is problem is very similar to
CDN server selection + ISP TE.

Our work on content brokering,VDX [114, 115] (Ch. 3), focuses on building a system that allows
content brokers and CDNs to interact with each other in a way that is fair to both. E�ectively, as
content providers have started using content brokers to send users to the best CDN at a given time,
CDNs have seen erratic request patterns that are potentially very costly to respond to. Conversely,
brokers have noticed that treating CDNs as black-boxes limits the extent of the performance /
cost optimization they can do for content providers. We argue that exposing more information
between brokers andCDNs, using priority ranking (building a “marketplace”), solves both problems
simultaneously.
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Coordination through hierarchical partitioning

Internet-wide routing is explained in §1.1.

Klein [132] is a system focused on building an elastic cellular core network that can run various
network functions (NFs) at the right point in the network, at the right time. ¿e key idea is to
compute a coarse global decisions of NF placement, and then make a re�ned decision for a local
region, i.e., hierarchical partitioning.

Bohatei [43] is a distributed denial of service (DDoS) prevention system that uses network
function virtualization (NFV) to elastically add individual DDoS prevention NFs at the right place
in the network, at the right time. Once again, it computes a coarse-grained decision globally, and
then re�nes it locally (hierarchical partitioning).

OSPF Fibbing [149] is a system that seeks to provide SDN-like capabilities to legacy networks
by injecting fake links/hosts into OSPF computations. Fibbing uses the SDN decision except during
failures, when it reverts back to vanilla OSPF. Fibbing provides the ability to use SDN-like policy
constraints on routes, but during failures the correctness of these policies can be violated.

Pytheas [81] is a control plane for internet-scale video delivery. It uses local clusters to commu-
nicate with clients and a global controller to build the correct mapping of clients to local clusters.
¿e global controller maintains a slightly stale view of the network, requiring local clusters to make
small adjustments to the global decision during network events, a clear instance of hierarchical
partitioning.

C3 [51] is an internet-scale content brokering system. C3 maps clients to the best CDN for them,
at the current time, based on client meta-data (e.g., location, device type, ISP). C3 uses hierarchical
partitioning, computing a �ne-grained global decision periodically, using it directly in data plane
devices. During signi�cant changes (e.g., failures), local control deviates from the global decision.

Our work, VDN [117] (Ch. 4), focuses on building a system that increases performance and
lowers cost for CDN-based live video streaming. ¿e core contribution of the system is applying
hierarchical partitioning (“hybrid control”) to live video delivery. VDN seeks to provide the high
quality of centralized optimization, with the responsiveness of a distributed control plane. A
�ne-grained global decision is computed periodically, and is used directly by data plane devices. If
there are signi�cant changes (e.g., link failure), local control makes a quick decision how to deviate
from the global decision, through the use of slack network capacity.

1.2.3 Design Space

Now that we have a way to characterize the space of split control plane systems, we look at how
to categorize di�erent systems (“design space”), as well as the mechanisms these systems use to
coordinate (“coordination mechanisms”).

Figure 1.5 organizes the systems from §1.2.2 in terms of the two key features we previously
identi�ed (§1.2.1): information sharing and shared resources. A few interesting insights come from
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Figure 1.5: Design space. Systems in Table 1.1 can be classi�ed based on their information sharing constraints
and if they make decisions for shared data plane resources.

this categorization: older systems tend to not share information and focus on splitting problems into
smaller independent pieces. Incomplete information sharing systems with fully shared resources
tend to be almost entirely modern systems. A few areas do not have any prior work, mainly partially
shared resources. ¿ese areas represent unlikely scenarios.

Control plane coordination mechanisms fall out nicely from our categorization of the design
space, as illustrated in Figure 1.6. If no information can be shared in a control plane coordination
interface, very little can be done; reacting to changes seen in the data plane is likely the only
rudimentary coordination solution. If all information can be completely shared, transparency is a
solution that can side-step virtually all adverse control plane interactions.

Incomplete information sharing represents the interesting middleground; if control planes
make decisions for the same set of data plane resources, then hierarchical partitioning should be
used. If decisions are made for a disjoint set of resources, priority ranking should be used. If other
coordination mechanisms exist, they likely fall under incomplete information sharing, but may
di�er in terms of granularity (e.g., how incomplete is their information sharing or howmany shared
resources are there), or require an additional (albeit less important) axis (e.g., information �ow).

1.3 Common Scenarios

From the design space presented in Figure 1.5, we notice many systems have similar scenarios:
layering, administrative separation, and internet scalability. While each of these three scenarios
naturally leads to split control plane systems, they cover wildly di�erent aspects of system design
(i.e., modularity, business concerns, and scale). For the rest of this thesis, we will use these scenarios
to gain insight into why certain control plane coordination mechanisms naturally suit certain
design constraints. While we �nd these scenarios both intuitive and illustrative, they are not the
only scenarios that lead to split control planes (as touched on in §5.2).
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Layering

Systems with layers generally trade performance formodularity. ¿is can o en cause issue if high
performance is needed. We argue that such systems can be easily augmented with a coordina-
tion mechanism to improve performance, as there are no hard boundaries (e.g., administrative,
timescale). Nothing stops additional code specialization in each layer with respect to other lay-
ers (cross-layer optimization), or a wider interface that explicitly covers special cases. Either can
greatly recover performance. Co�ow [29, 31] and application / network scheduling in recon�gurable
datacenters [116] (Ch. 2) provide examples of layering.

Administrative separation

Systems separated by hard administrative boundaries, by de�nition, can not share all information
due to business concerns. Administratively separate systems also typically have independent data
plane resources, as each business will generally want to control their own set of devices. BGP (across
ISPs) [101], Wiser [103], P4P [155], and VDX [114, 115] (Ch. 3) provide examples of administrative
separation.

Internet-scale systems

Many modern systems require complex internet-scale performance optimization, but also need
responsiveness. For example, internet-scale video performance optimization may take minutes to
run [51, 117], yet if a new client joins the system between computations, they should not be forced
to wait for the next round of the optimization, as they will likely stop watching the video. In order
to combat slow global optimization, these modern systems introduce an additional control plane
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that can run at a much faster timescale, that handles events like new user joins. Systems with this
kind of timescale separation can not share information precisely when its needed (e.g., the slow
control plane can not help the fast control plane when a new user arrives), thus they can not use
coordination designs that require complete information sharing. ¿ese systems, by de�nition, have
two control planes making decisions for shared data plane resources. Klein [132], Bohatei [43],
C3 [51], VDN [117] (Ch. 4), etc. provide examples of internet-scale systems.

1.4 Recipes for control plane coordination

Here we place the three scenarios from §1.3 (layering, administrative separation, and internet-scale
systems) into our design space. Figure 1.5 groups di�erent systems into these scenarios. Combining
our knowledge of coordination mechanisms from Figure 1.6, we derive the following simple set of
design recipes for control plane coordination:

• Systems designed around layering should try using transparency for coordination.
• Systems designed around administrative separation should try using priority ranking for
coordination.

• Systems designed for internet scalability should try using hierarchical partitioning for coordi-
nation.

Systems involving layering generally have a single entity that has full knowledge of all aspects
of all layers. ¿ese systems are split for modularity, and likely gives up some performance. ¿e
entity in charge of all layers could add specialized code to each layer to regain this performance
(cross layer optimization). ¿is is what we de�ned as transparency (§1.1). We explore this scenario
in Chapter 2.

Systems involving administrative separation by de�nition involve multiple di�erent entities
(e.g., businesses) controlling di�erent parts of the system. Business concerns forbid these entities
from sharing all information. Generally, each entity only make decisions for their own set of data
plane resources. Priority ranking (§1.1) provides a way for entities to share their concerns (e.g.,
avoid using these paths within my network) with each other without needing to explicitly show the
reasons for these concerns (e.g., these paths are double the cost of these other paths). We explore
this scenario in Chapter 3.

Systems built for internet scalability involve one entity, but have a global and local control
plane. While lacking the hard administrative boundaries found in the administrative separation
scenario, internet-scale systems still have trouble sharing completely up-to-date, �ne-grained
information with each other due to granularity separation or timescale separation. Additionally,
these systems generally have both the global and local control planes make decisions for shared
data plane resources. Hierarchical partitioning (§1.1) has the global control plane take priority over
the local control plane, and has the local control plane work within the “slack” provided by the
global control plane. ¿is provides an e�ective means of coordination between the two control
planes. We explore this scenario in Chapter 4.
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1.5 Scope

¿e focus of this thesis is to provide a set of recipes for control plane coordination when designing
split control plane systems in a speci�c set of diverse scenarios. ¿e primary focus is on three
speci�c scenarios (layering, administrative separation, and internet-scale systems). Other scenarios
may exist that require complex combinations of the coordinationmechanisms presented, or perhaps
alternate coordination mechanisms all together. Furthermore, while the design space presented in
§1.2.3 uses two axes (information sharing and shared resources) that represent fundamental aspects
of coordination (interfaces and decision making, respectively), other scenarios with alternate
solutions may not �t cleanly within the design space as drawn. Interesting alternative scenarios
likely are constrained to partial information sharing, but my require an additional axis beyond
shared resources to di�erentiate them from administrative separation and internet-scale systems.
We touch more on these limitations in §5.2.

1.6 Goals

In this thesis, our primary goal is to examine di�erences between di�erent networked system
involving split control planes, in order to understand why they are o en solved with di�erent
coordination mechanisms. To this end, we argue that there are three goals fundamental to this
work:

1. Identify common scenarios that naturally lead to split control planes and why certain
coordination mechanisms help eliminate adverse interactions in these scenarios: We
wish to show that there are key scenarios with wildly di�erent properties (i.e., layering,
administrative separation, and internet scalability; §1.3) that each lead to unique coordination
mechanisms (transparency, priority ranking, and hierarchical partitioning, respectively;
§1.4), due to fundamental di�erences between scenarios (constraints on information sharing
and sharing of data plane resources; §1.2.3).

2. Show that these coordination design recipes provide natural guidelines for system de-
sign: We wish to show that knowledge of these coordination design recipes aids in solving
real-world system design problems, and helps provides context to previous ad hoc designs.

3. Provide insight into e�cient implementations of control coordinationmechanism: We
wish to show that control plane coordinationmechanisms are not infeasible to build e�ciently,
in a variety of contexts.

1.7 Contributions

¿e contributions of this thesis come naturally from the goals:
• In order to ease future system building in scenarios built around split control planes, we
provide a set of recipes for coordination (§1.4): layering systems should try transparency;
administratively separate systems should try priority ranking; systems trying to achieve
internet scalability should try hierarchical partitioning. To understand why these scenarios
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lead to these coordination mechanisms, we provide an initial design space primarily built
around these scenarios (§1.2.3). We show that these scenarios require di�erent coordination
mechanisms because they fundamentally di�er in terms of what information can be shared,
and whether they make decisions for disjoint or shared data plane resources. What informa-
tion can be shared constrains the interface between control planes, and sharing data plane
resources constrains the style of decision making.

• To both understand how to use our coordination design recipes in practice, as well as how
to implement coordination mechanisms e�ciently, we present a case study of systems we
built in a variety of contexts (Chapters 2–4).

• We examine layered control planes, in the context of recon�gurable datacenter networks.
While layering trades performance for modularity, there are no issues blocking information
sharing between layers. We can regain performance though transparency (here “cross-layer
optimization”), as we show with our emulator Etalon [116] (Chapter 2).

• We examine control planes that are administratively separate, in the context of content
brokering. Not all information can be shared (due to business concerns), and there are
no shared resources. Our system, VDX [114, 115] (Chapter 3), uses priority ranking (here
a “marketplace-style interface”), between a content broker and CDNs, to remove many
problems brokers and CDNs cause for each other, in terms of performance and cost.

• We examine control planes for internet-scale systems, in the context of live video delivery.
While not all information can be shared because of timescale separation, data plane resources
are completely shared between the control planes. ¿us, our system, VDN [117] (Chapter 4),
uses hierarchical partitioning (here “hybrid control”) to provide the performance of a cen-
tralized controller, with the responsiveness of a distributed one.

¿e rest of this thesis focuses on this case study (Chapters 2–4) before concluding (Chapter 5).
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Chapter 2 Control Planes in Di�erent
Layers: A Case Study in
Recon�gurable Datacenters

In this chapter, we explore one example, in detail, where transparency can be used to overcome
adverse interactions between control planes. Speci�cally, we look at how application-/transport-
layer assumptions about the network can cause issues with in-network scheduling, in recon�gurable
datacenters. For example, applications like HDFS make assumptions about what tra�c patterns
are simple to deliver over the network, which no longer hold true in recon�gurable datacenters.

We argue that these incorrect assumptions lead to decisions that are sub-optimal, and that
building specialized versions of applications, endhost stacks, and switches (i.e., cross-layer op-
timization) allows us to overcome these issues. Functionally, cross-layer optimization means
building awareness into each layer about the speci�cs of the other layers. Doing this requires deep
insight into how the other layers function and why they make certain decisions. As datacenter
operators have full control over all aspects of their endhosts and network infrastructure, there are
no fundamental limitations in understanding other layers. ¿us, we argue that transparency (in this
scenario usually called cross-layer optimization) is the correct way to avoid adverse interactions
between endhost and in-network control planes. Figure 2.1 summarizes this in the context of our
control plane coordination design space from §1.2.3.

Recon�gurable datacenter networks serve as an illustrative (and timely) context; increasing
pressure for higher throughput, better response times, and lower cost in datacenters have lead
to proposals augmenting traditional packet networks with very high bandwidth recon�gurable
circuits. ¿ese proposals have focused on switch implementation or scheduling, not end-to-end
challenges. In this chapter, we identify three key challenges: 1) rapid bandwidth �uctuation, 2)
poor demand estimation, and 3) di�cult-to-schedule workloads. Bandwidth �uctuation requires
TCP to immediately jump in sending rate for <10 RTTs; poor demand estimation from shallow
ToR queues leads to ine�cient circuit schedules; and �nally, certain application workloads are
fundamentally di�cult to schedule.

To overcome these challenges, we build an open-source recon�gurable datacenter network
emulator, Etalon, for public testbeds. ¿is emulator is a means to an end; using Etalon provides
insight into the causes and e�ects of adverse control plane interactions in this context. We �nd
solutions at di�erent layers: we combat 1) bandwidth �uctuation with dynamic in-network queue
resizing to ramp up TCP earlier, 2) poor demand estimation by communicating endhost stack
bu�er occupancy, leading to more accurate schedules, and 3) di�cult-to-schedule workloads by
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Figure 2.1: ¿is chapter focuses on end-to-end challenges seen in recon�gurable datacenters due to layering,
as shown with Etalon. Looking back at our design space (§1.2.3), layered systems (e.g., Etalon, Co�ow) can
share all information needed for coordination, but make decisions for their own data plane resources. ¿ese
systems should coordinate using transparency (§1.1).

rewriting application logic (e.g., HDFS’ write placement algorithm). We conclude that cross-layer
optimization is necessary and provides the most bene�t at higher layers.

2.1 Introduction

Modern datacenter (DC) applications have staggering compute and storage requirements, leading
to increased pressure for high bandwidth, low latency, high port count, and low cost networks
to connect them. Traditional packet switches are hitting CMOS manufacturing limits, unable to
simultaneously provide high bandwidth and port counts [109]. ¿us, researchers have proposed
augmenting DCs with recon�gurable circuit switches (e.g., optical, wireless) that provide high
bandwidth between racks on demand [28, 42, 52, 61, 62, 84, 97, 130, 150, 164]. ¿ese recon�gurable
DC networks (RDCNs; hybrid circuit + packet networks), however, are less �exible than traditional
networks, as adding/removing bandwidth has a non-trivial recon�guration penalty during which
the circuit switch is unavailable.

Prior work has generally focused on two thrusts: switch implementation [42, 52, 61, 62, 84, 97,
130, 150, 164], or scheduling [20, 95, 98]. While important, little focus has been on end-to-end
challenges faced by real applications and network stacks. While some end-to-end problems on
switches with millisecond-scale recon�guration have been explored [42, 150], modern µs-scale
switches [52, 97, 130] have changed the nature of these problems, as well as the solutions needed.

We identify three such challenges in modern RDCNs:

1. Rapid bandwidth �uctuation: while circuits need to be enabled for a long period of time
relative to the recon�guration penalty, circuit uptimemay be only a few (e.g., <10) round-trip
times (RTTs), causing rapid bandwidth �uctuation. TCP’s additive increase is too slow to
utilize the large (e.g., 10×) temporary bandwidth increase, leading to low circuit utilization
(§2.4).

2. Poor demand estimation: RDCN schedulers require accurate tra�c estimation to produce
e�cient schedules. Prior work suggests Top-of-Rack (ToR) switch queues as a possible source
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of estimates [42, 95, 130]. We �nd that these queues must be shallow to provide low latency,
meaning most demand is hidden from the scheduler on endhosts. ¿is makes it di�cult to
di�erentiate large and small �ows, leading to idle schedules (§2.5).

3. Di�cult-to-schedule workloads: certain workloads are fundamentally di�cult to schedule
on RDCNs e�ciently. Workloads with large, all-to-all �ows (i.e., lacking skew and sparsity)
waste time repeatedly recon�guring the network (§2.6).

¿ese challenges arise from broken assumptions made by endhosts about the network: TCP
assumes bandwidth does not predictably �uctuate at short timescales, the network stack assumes
the network doesn’t perform better if it can see demand in advance, and applications assume that
all tra�c patterns are equally easy to deliver. Either all layers need additional specialization for
this new network (cross-layer optimization), or interfaces need to be changed to accommodate
di�erent behaviors or expose more info. As one entity controls all endhosts / networks in the DC,
cross-layer optimization is the easiest solution.

We use cross-layer optimization to overcome these challenges at the lowest layer possible,
providing transparency, less deployment pain, and keeping higher layers general:

1. Overcoming rapid bandwidth �uctuation with dynamic in-network bu�er resizing: In-
creasing ToR queue sizes in advance of a circuit start gives TCP time to ramp up its sending
rate and �ll the circuit as soon as it gets it (§2.4). Cross-layer: [network understands TCP
behavior]

2. Overcoming poor demand estimation with endhost ADUs: An interposition library re-
ports data waiting on endhosts to the scheduler by tracking the sizes of write()s / send()s
in unmodi�ed applications. ¿e scheduler uses these sizes (though not the boundaries) to
decide which �ows will bene�t most from transiting the circuit switch (§2.5). Cross-layer:
[network understands app behavior]

3. Overcoming di�cult-to-schedule workloads by rewriting application logic: Modifying
applications to introduce skew and sparsity into workloads results in schedules that require
less recon�guration. We demonstrate this with HDFS’ write placement algorithm (§2.6).
Cross-layer: [apps understand network behavior]

We argue that these solutions operate at the lowest layer possible; dynamic bu�er resizing in-
network is enough to insulate TCP from bandwidth �uctuation, exposing demand (ADUs) in the
endhost stack is the only way to provide proper estimates without greatly increasing switch queuing
delay, and changing application behavior is the only way to fundamentally change the workload.

To evaluate the e�cacy of these solutions, we design and implement an open-source RDCN
emulator, Etalon1, for use on public testbeds (§2.3). Tests on CloudLab’s 40Gbps APTDC cluster [35,
41] show: 1) dynamic bu�er resizing can reduce median packet latency by ∼36%, 2) ADUs can
reduce median �ow-completion time by 8× for large �ows, and 3) modifying HDFS can reduce
tail write times by 9×. We conclude that while cross-layer optimizations involving higher layers
are harder to implement (e.g., modifying individual applications), they may provide the greatest
bene�t.

1Named a er an optical �lter used for solar observation. Source code: http://github.com/mukerjee/etalon
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Figure 2.2: Overview of RDCNs. N racks of M servers connect to a low bandwidth packet network and
a high bandwidth circuit switch. Application demand is sent through ToR switches to circuit or packet
switches. ¿is network requires scheduling, decomposing demand (e.g., ToR queue occupancy) into explicit
circuit schedules and “le overs” for the packet network. During schedule execution, circuit changes incur a
recon�guration penalty, which downs the circuit switch. Flows must use very brief bandwidth jumps. ¿is
model leads to three challenges.

To summarize, we make three contributions in this chapter:
1. We analyze three critical end-to-end challenges in RDCNs (rapid bandwidth �uctuation, poor
demand estimation, and di�cult-to-schedule workloads) caused by erroneous assumptions
between layers.

2. We design solutions that require modi�cations at varying layers (in-network, network stack,
application).

3. We design and implement an emulation platform, Etalon, for evaluating RDCNs end-to-
end with real applications, �nding that solutions at higher layers (while more painful to
implement) lead to more bene�t.

2.2 Setting

To better understand the challenges and solutions presented in this chapter, we �rst examine RDCNs
in detail in Figure 2.2. While we use optical circuit switching [42, 97, 130, 150] as an illustrative
example for the rest of the chapter, the results generalize to other recon�gurable technologies
(e.g., free-space optics [52, 62], 60GHz wireless [61, 84, 164]). We eschew older millisecond-scale
recon�gurable switches [42, 150] for modern µs-scale switches [52, 97, 130], as the nature of end-to-
end challenges and solutions di�er with timescale.

2.2.1 NetworkModel

We consider an RDCN of N racks of M servers, each containing a Top-of-Rack (ToR) switch
(Figure 2.2(a)). ToRs connect racks to a packet network (one or more switches) and a single circuit
switch. ¿e packet switches are low bandwidth (e.g., 10Gbps), but can make forwarding decisions
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for individual packets. ¿e circuit switch is high bandwidth (e.g., 100Gbps), but makes forwarding
decisions (i.e., sets up circuits) at much longer timescales to amortize a recon�guration penalty.

We make the pessimistic assumption that during circuit recon�guration no circuit links can
be used, following prior work [97, 98, 130], allowing us to apply our results to a larger set of
technologies. ¿e packet switch, however, can be used at all times. Both switches source packets
from N×N virtual output queues (VOQs) on the ToRs. ¿e circuit switch is queue-less; it functions
as a crossbar, only allowing con�gurations that form perfect matchings [20, 42, 97, 98, 130, 150]
(i.e., a given sender is connected to exactly one receiver and vice-versa). ¿us, at any point in time,
the circuit switch may at most drain one VOQ on each ToR, whereas the packet switch may drain
multiple VOQs.

2.2.2 Computing Schedules

Network scheduling in RDCNs is mapping rack-level demand to a set of circuit con�gurations
(circuit switch port-matchings) with corresponding time durations. Any “le over” demand is
handled by the low-bandwidth packet switch (see Figure 2.2(b)). Borrowing terminology from
prior work [130], we refer to a set of circuit con�gurations as a week of one or more variable-length
days (individual circuit con�gurations), each followed by a night (down time from recon�guration).
Nights are generally 10-30µs [52, 97, 98, 130]. To allow for 90% link utilization, the average day
length must be ≥9× the night length (e.g., 90-270µs). Weeks must be su�ciently long to amortize
schedule computation (e.g., 2ms).

Scheduling is a three-step loop: 1) demand for the next week is estimated (e.g., through ToR
VOQ occupancy), 2) an algorithm computes the schedule for the next week, and 3) the schedule
is disseminated to the circuit switch. Scheduling algorithms for RDCNs (e.g., Solstice [98] and
Eclipse [20]) use skew and sparsity in demand to minimize the number of circuit con�gurations.

2.2.3 Schedule Execution

Once a schedule is disseminated to the circuit switch, it runs the circuit con�gurations for their
respective durations (see Figure 2.2(c)). A er recon�guration, a �ow may transition from packet
to circuit and vice-versa, but time spent on the circuit switch is likely only a few RTTs (e.g., <10).
Flows must cope with these large (e.g., 10×) bandwidth variations.

2.2.4 Challenges

¿ree end-to-end challenges arise naturally (Figure 2.2):
1. Rapid bandwidth �uctuation: can TCP e�ciently use a 10× increase in bandwidth in so
few RTTs?

2. Poor demand estimation: e�cient schedules require accurate demand estimates. Is ToR
queue occupancy accurate enough for scheduling a week worth of demand (e.g., 2ms)?

3. Di�cult-to-schedule workloads: schedulers require skew and sparsity for e�ciency. Do
all DC application workloads have these characteristics?
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circuit & packet switches. Time dilation provides faster links.

2.3 Etalon

In this section, we present our open-source emulator, Etalon, which measures end-to-end perfor-
mance of real applications and endhost stacks on emulated RDCNs in public testbeds.

2.3.1 Overview

Figure 2.3 presents an overview of Etalon. Each of the N physical machines emulates a rack
of M servers using Docker containers [38, 110]. Containers are connected to the physical NIC
using macvlan [39]. Macvlan virtualizes a NIC into multiple vNICs, connecting them with a
lightweight layer-2 so ware switch. tc limits link bandwidths between the containers and the
vswitch, emulating a server-to-ToR link. A separate physical machine serves as the emulated hybrid
switch, running a so ware switch (Click [88]) using DPDK [40] to process packets at line rate.
ToR VOQs are emulated in the so ware switch for convenience, making circuit and packet link
emulation straightforward. We maintain a separate control network for convenience, although it is
not strictly necessary.
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2.3.2 Software Switch

Figure 2.4 shows the so ware switch’s internals. Packets enter the switch via DPDK [40] and are
sent to a ToR VOQ based on their (source, destination) rack pair. Packets are pulled from each
VOQ by the packet switch or circuit switch.

Packet up link i is connected to the N VOQs in ToR i, pulling packets from these VOQs in
a round-robin fashion. A packet pulled by a packet up link enters the packet switch, where it is
multiplexed over a packet down link and exits using DPDK. If a packet would be dropped in the
packet switch, it is held at the ToR VOQ (similar to PFC [71]).

Circuit link i is wired to the ith VOQ of each of the N ToRs via a pull switch. A settable “input”
value on pull switch i connects circuit link i to exactly one VOQ at a time. A er packets transit the
circuit link, they exit using DPDK.

Our so ware switch contains three control elements (shown in gray): demand estimator,
scheduler, and schedule executor. Demand estimator estimates rack-to-rack demand using ToR
VOQ occupancy. ¿e scheduler computes a schedule from this demand, which is run by the
schedule executor by modifying the circuit link pull switches’ “input” value. Our scheduler element
is pluggable; we implement Solstice [98] as an example, but modify its objective to schedule
maximal demand within a set windowW (like Eclipse [20]), rather than scheduling all demand in
unbounded time.
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Expected Experimental Mean Std. Dev.

Circuit day 180µs 180.25µs 0.04µs
Week length 1400µs 1400.02µs 0.05µs

Packet utilization 10Gbps 9.93Gbps 0.75Gbps
Circuit utilization 80Gbps 79.99Gbps 1.60Gbps

Table 2.1: Validating Etalon’s timing and throughput.

2.3.3 Time Dilation

As the goal of Etalon is to emulate RDCNs on public testbeds, the so ware switch machine likely
only has one high-speed NIC, yet we wish to emulate a switch with N high-speed ports. We
solve this with time dilation (TD). Originally proposed for VMs [58, 59, 148] (and recently contain-
ers [93, 157, 158]), TD provides accurate emulation of higher bandwidth links by “slowing down”
the rest of the machine. We implement an open-source TD interposition library called LibVir-
tualTime (LibVT2) which applies TD to many common syscalls in unmodi�ed applications. We
catch: clock_gettime(), gettimeofday(), sleep(), usleep(), alarm(), select(), poll(),
and setitimer(). Extending LibVT to other calls is trivial. We verify that common network
benchmarks (iperf [73], iperf3 [74], netperf [65], sockperf [107], �owgrind [165, 166], ping) perform
correctly with TD. We additionally limit CPU time for containers with respect to TD.

2.3.4 Testbed

All experiments are performed using Etalon on the public APT DC cluster [41] (CloudLab [35]),
with 8 “racks”, each containing 16 “hosts” (Figure 2.3). Each machine has an 8-core 2.1GHz Xeon
and 16GB of RAM. Each machine is connected to a 40Gbps data network (with jumbo frames)
and a 10Gbps control network, and uses TCP Reno.

We use a time dilation factor (TDF) of 20× to emulate an 8-port 10Gbps (0.5Gbps)3 packet
switch and an 8-port 80Gbps (4Gbps) circuit switch. Outside of TD, 0.5Gbps * 8 + 4Gbps * 8 =
36Gbps total tra�c, below our 40Gbps physical link speed. Each per-container link is limited to
10Gbps (0.5Gbps). Packet switch up/down links have 5µs (100µs) delay each. ¿e circuit links have
30µs (600µs) delay. While this delay is 3× higher than the packet links, prior work assumes a single
circuit switch, requiring long �bers. We perform circuit link delay sensitivity analysis in §2.4.5.

We emulate a circuit switch with recon�guration penalty (night length) 20µs (400µs) and run
the Solstice [98] scheduler overW = 2ms windows (week length). To avoid out-of-order delivery,
we disable the packet switch when the circuit is available for a rack pair. For the rest of this chapter
all timing values and bandwidth values presented will be time dilated.

2Available: http://github.com/mukerjee/libVT
3values in parenthesis represent bandwidth/delay outside TD
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Figure 2.5: Strobe schedule used in §2.4 experiments. All (source, destination) pairs of racks can communicate
1/7th of the time. Tra�c is generated from rack 1 to rack 2.

2.3.5 Validation

We validate Etalon using a strobe schedule (Figure 2.5) of seven days of minimal length (9 * night
length, 180µs), while sending TCP tra�c between all pairs of racks for 2 seconds. ACKs are diverted
around the switch for this one experiment to avoid ACK loss. We �nd timing and bandwidth to be
as expected, shown in Table 2.1.

2.4 Overcoming rapid bandwidth �uctuationwith dynamic
bu�er resizing

While circuits need to be enabled for long periods of time relative to the recon�guration penalty,
this may be only a few (e.g., 3) RTTs, causing rapid bandwidth �uctuation. TCP’s additive increase
requires a longer timescale to make use of the extra (e.g., 8×) bandwidth. While TCP’s interaction
with RDCNs has been explored previously, it was on millisecond-scale recon�gurable switches
(with thousands of RTTs per circuit con�guration) [150], or required kernel/NIC modi�cations
to pause/unpause �ows according to the schedule [97, 130]. We explore an entirely in-network
solution, dynamic bu�er resizing, which to our knowledge has not been explored in the context of
network scheduling.

2.4.1 Understanding the problem

Modern recon�gurable switches can only be e�cient if they make forwarding decisions for hun-
dreds of packets at a time (e.g., for 80Gbps links / 9000 byte packets / recon�gured every 180µs),
due to a recon�guration penalty (e.g., 20µs). To avoid generating schedules with too many con�gu-
rations (thus many recon�gurations), schedulers like Solstice [98] have a minimum day length
parameter (180µs; 9 * night length in Etalon). ¿us, in our worst case (minimal length circuit
con�guration), TCP �ows are expected to immediately burst packets at 8× their rate for 3 RTTs
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Figure 2.6: Sequence plots for (a) bu�er sizes / (b) how early bu�ers are resized. Circuit use is shaded.
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Figure 2.7: Circuit utilization as a function of (a) bu�er size / (b) how early bu�ers are resized.

when a circuit starts. ¿is is di�cult for TCP Reno’s one-packet-per-RTT additive increase, as we
will show.

We illustrate the problem in an experiment. Using Etalon, we �x a strobe schedule of 7 days,
covering all (source, destination) rack pairs (except where the source and destination are the same
rack), shown in Figure 2.5. We �x the day length to the minimum, 180µs, thus, our schedule’s week
repeats every 1400µs. Solstice [98] would produce this schedule for an all-to-all workload (e.g.,
MapReduce’s shu�e [37]). We generate 2-second-long TCP �ows using �owgrind [165, 166] from
rack 1 to rack 2. A �xed schedule and small �ow count is illustrative, but limited. We relax these
assumptions in §2.5.

Figure 2.6a shows three weeks versus the expected next TCP sequence number. We vary
static ToR VOQ sizes from 4 to 128 packets, and plot an optimal line numerically, based on link
bandwidths. Circuit uptime is shaded. ¿e slope of each line is the �ow’s bandwidth; the area
under the curve is data transmitted. As optimal shows, we expect an 8× bigger slope during circuit
uptime. Circuit utilization is how well the slope matches optimal’s slope during uptimes.

For small bu�ers, circuit utilization is low, while large bu�ers fare better. Figure 2.7a illustrates
this concisely, showing circuit utilization directly. While TCP grows at one-packet-per-RTT
regardless of bu�er size, larger switch bu�ers, allow �ows to have a “backlog” of packets queued up,
draining during circuit uptime.
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Figure 2.8: Median latency for (a) bu�er size / (b) how early bu�ers are resized, split per switch.

Finding the “proper” bu�er size for a hybrid switch is di�cult; common wisdom is to use the
bandwidth-delay product (BDP), but the BDP is di�erent for the packet and circuit switches (∼4
packets and ∼32 packets respectively). Using a weighted sum based on the schedule gives ∼8 packets.
As seen, none of these values provide maximum circuit utilization; 64+ packets are needed.

Queues this large have high latency. Figure 2.8a shows median latency, measured per-packet
entering and leaving the so ware switch. We see that the packet switch latency grows sharply (as
we already past the BDP for the packet switch), becoming high compared to latency over the circuit
switch.

We want the best of both worlds: can we minimize latency and simultaneously maximizing
our circuit utilization? No static bu�er setting achieves this. We propose an entirely in-network
solution to overcome this, dynamic bu�er resizing.

2.4.2 Dynamic bu�er resizing

Wepropose dynamically resizing ToRVOQ capacity to �x the e�ects of rapid bandwidth �uctuation
on TCP. ¿e key insight is bandwidth �uctuation within RDCNs is not arbitrary; it is part of a
schedule and is known in advance.

With this knowledge, we can choose the ToR bu�er sizes with respect to the packet switch or
circuit switch BDPs in real time. By itself, a packet switch can e�ectively achieve full throughput
with a very small bu�er (e.g., 4 packets), but large bu�ers cause queuing delay (Figure 2.8a). And,
by itself, a circuit switch needs larger bu�ers (e.g., 32+) to achieve full utilization, but incurs no
queuing delay up to that point.

With dynamic bu�er resizing we try to get the “best of both worlds” by keeping bu�ers small
when the packet switch is in use and big when the circuit is in use. Doing this naively (i.e., resize
bu�ers when the circuit comes up) provides little bene�t; there is simply not enough time in one
day for TCP to grow to �ll the circuit link, regardless of how large you make the bu�er. Data needs
to be available immediately at circuit start (either bu�ered or via a high TCP send rate); ramping
up post facto means circuit time is already wasted.

Instead, we dynamically resize ToR VOQs for a (source, destination) rack pair in advance of a
circuit starting for that pair. In scenarios where this pair spends most time using the packet switch,
small bu�ers are used to avoid additional latency. In advance of getting a circuit, this pair’s VOQ
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size increases, providing time to 1) queue up packets, and 2) ramp up TCP �ows, leading to better
circuit utilization.

Our bu�er resize function has three parameters:

resize(s, b, τ)

where s and b are the small and large bu�er sizes in packets, and τ is how early a bu�er should be
resized in advance of the circuit start. For the rest of this chapter we use s = 16 and b = 128 to slightly
favor throughput, although (4, 64) would be reasonable to slightly favor latency in Etalon. τ is a
tradeo�; resizing too late means low circuit utilization, but resizing too early increases latency. We
vary τ in experiments below. While the value of τ impacts the circuit utilization/latency tradeo�,
we �nd that waiting to resize the bu�er back to s a er a circuit stops has no bene�t, thus we always
set bu�ers back to s immediately a er circuit teardown.

2.4.3 Experiments

To test the e�cacy of dynamic in-network bu�er resizing, we repeat the experiments from §2.4.1
(strobe schedule, TCP �ows between racks 1 and 2), but with resizing.

We vary τ from 0 to 1400µs at intervals of 200µs. ¿ese values correspond to the length of
a day + night in our schedule (Figure 2.5). ¿us, at τ = 0µs bu�ers are always size s = 16, and at
τ = 1400µs bu�ers are always sized b = 128.

Figure 2.6b shows a sequence plot for the next expected TCP sequence number for the various
τ and a calculated optimal based on link rates. Circuit uptimes are shaded. ¿e earlier we resize,
the higher bandwidth obtained, as expected.

Recall that the bene�ts of resizing come from 1) packet buildup in queues and 2) TCP ramp up.
Both are illustrated in the inset in Figure 2.6b: when the circuit comes up, there is an initial region
with high slope as built-up packets drain from the queue. ¿en there is a plateau as TCP waits for
ACKs from these packets before sending more data (recall we disable the packet switch in advance
of the circuit start to avoid out-of-order packets). ¿e higher the slope a er the plateau, the more
TCP ramped up before the circuit start. We see both an increase in the length of the initial burst
(how many packets built up) and the following slope, as we move to earlier resize times. Achieving
line rate requires the initial queue-draining burst to be long enough to overcome the length of the
plateau, and then TCP’s sending rate equaling the link rate, e�ectively achieved by τ = 1400.

Figure 2.7b show circuit utilization for the various τ. As expected from the sequence plot, circuit
utilization increases rather dramatically when compared to a static bu�er size of 16, eventually
achieving full utilization for large τ.

¿e remaining question is whether this utilization comes at the cost of high latency, as it did
for static bu�ers. Figure 2.8b shows how dynamic resizing a�ects median latency (we show 99th
percentile latency in §2.4.4). Surprisingly, median latency is relatively �at until τ > 1000µs. More
concisely, 5/7ths of a week (1000 / 1400µs) can be spent with large bu�ers with negligible impact
on median latency (even for packets sent over the packet switch), while doubling circuit utilization.
Takeaway: comparing the results for τ = 1000µs to a static bu�er with similar throughput (64
packets), dynamic bu�ering improvesmedian latency by ∼36%, or for the same latency as a static
bu�er with 16 packets increases circuit utilization by ∼2×.
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Figure 2.9: Comparing throughput to median
latency for various con�gurations.
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Figure 2.10: Comparing throughput to 99th per-
centile latency for various con�gurations.

2.4.4 Incorporating explicit network feedback

Dynamically resizing in-network bu�ers raised circuit utilization without raising latency (for
τ ≤ 1000µs) and did not require endhost modi�cation. Next we remove that limitation to see if
incorporating explicit network feedback about circuit state into TCP o�ers additional improvement.

For some rack pair (S ,D), we modify our so ware switch to set the ECN-echo (ECE) bit in
the TCP headers of ACKs sent by D, if there is currently a circuit enabled from S to D.

We create a pluggable TCP congestion control module (recon�gurable DC network TCP:
reTCP) which looks at this stream of ECE bits, multiplicatively increasing it’s cwnd by α ≥ 1 on
0 → 1 transitions and decreasing by 0 ≤ β ≤ 1 on 1 → 0 transitions. We set α = 2 and β = 0.5
empirically. Intuitively, this provides higher circuit utilization; TCP will immediately have higher
sending rate on circuit start.

reTCP additionally requires a single line kernel change, as the kernel only passes ECE �ags to
congestion control modules if ECN is enabled on the system. Enabling ECN lowers cwnd upon
receiving an ECE marked packet, so we modify the kernel to pass the ECE �ag even when ECN is
disabled.

Results: Figure 2.9 shows the tradeo� of circuit utilization versus median latency for various
static bu�er sizes, various τ values (from above) for dynamic bu�er resizing, reTCP, and reTCP +
dynamic bu�ers with various τ values. ¿ese mechanism are bene�cial when they are below and
to the right of the “static bu�ers” curve.

Dynamic bu�er resizing is an improvement over static bu�ers, but interestingly reTCP does
not help unless paired with dynamic bu�er resizing. Bu�er resizing helps because it provides both
a backlog of queued packets at circuit start and a higher sending rate for TCP. reTCP without
resizing just provides the latter. Combining them helps, resulting in a higher TCP sending rate
than dynamic bu�ers alone. ¿is allows reTCP + dynamic bu�ers to eek out slightly more circuit
utilization for the same τ values.

Figure 2.10 shows the same results for 99th percentile latency. Given that resizing forces �ows
to use a large bu�er for a signi�cant amount of time (e.g., 5/7ths of the schedule for τ = 1000µs)
it is surprising that tail latency is not worse than static bu�ers for comparable circuit utilization.
Since some portion of time still uses small bu�ers (e.g., 2/7ths) even for large τ, this may be enough
to keep low tail latency. Curiously, reTCP + dynamic bu�ers mostly does worse than just dynamic
bu�ering in terms of tail latency. ¿is is likely due to the fact that the jumps in cwnd caused

31



0 1 2 3 4 5 6 9 18
# of RTTs in a day

0
10
20
30
40
50

M
ed

ia
n 

la
t. 

im
pr

ov
em

en
t (

%
)

Figure 2.11: Improvement in latency for same circuit utilization for dynamic bu�ering versus static bu�ering,
as a function of the number of RTTs in day.

by reTCP can sometimes occur when cwnd is already very large or very small leading to more
variability, increasing tail latency.

2.4.5 Delay sensitivity analysis

Finally, we analyze how circuit link propagation delay a�ects the usefulness of dynamic bu�er
resizing. We use 30µs in previous experiments (§2.3). Varying link delay with �xed day length
changes how many RTTs are in a day. In our experiments so far, 30µs delay and 180µs days
gives 3 RTTs per day. How does changing link delay (and therefore # RTTs per day) a�ect the
improvements in median latency (for the same circuit utilization) that we saw for dynamic bu�er
resizing (with τ = 1000µs) compared to static bu�ers?

Figure 2.11 shows the improvement in median latency as a function of RTTs per day. We see
that increasing the number of RTTs (decreasing link delay) makes early resizing is less important,
as there is now more time for TCP to ramp up a er the circuit starts. Decreasing the number of
RTTs (increasing link delay) makes early bu�er resizing more important, as there is less chance
to grow TCP during the day. Once days become shorter than an RTT, little improvement can be
made.

2.5 Overcoming poor demand estimation with ADUs

Poor demand estimation leads to ine�cient schedules (i.e., unnecessary recon�gurations or circuits
that sit idle due to insu�cient demand), an issue pointed out in scheduling work that is di�cult to
correct in-network [20, 95]. We argue that this must be solved at endhosts and demonstrate its
impact on real �ows over modern switches and schedulers.

2.5.1 Understanding problems with demand estimation

¿e quality of the schedules produced by an RDCN scheduler is largely based on the accuracy of
the demand estimate. If demand estimation is limited by the size of shallow ToR VOQs (e.g., 16
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Figure 2.12: ¿e problem of poor demand estimation: big and small �ows can’t be di�erentiated in shallow
ToR VOQs, leading to long schedules with much idle time. Communicating endhost ADUs solves this.

packets as we suggest in §2.4), then the scheduler cannot tell which �ow are large (and should be
scheduled on the circuit switch) and which �ows are small (and should be scheduled on the packet
switch). Figure 2.12 illustrates this; ToR VOQ-based estimation produces long schedules requiring
more recon�guration penalties and idle times where the scheduler mistakenly assumed small �ows
were large.

Communicating the size of application data units (ADUs) sitting in endhost bu�ers eliminates
this problem. We argue that proper demand estimation must be done in the endhost stack because
scheduler overhead is amortized by scheduling a week of demand (3ms in ReacToR [97]; order
.1-1ms in Eclipse [20]; 2ms here) at once. Gathering 2ms of tra�c at 80Gbps would require per-port
bu�ers for ∼2000 (9000 byte) packets, which is likely impractical on a switch and would (greatly)
increase packet latency. Using endhost information requires no switch modi�cations nor in�ates
latency.

2.5.2 Using ADUs

We gather ADU information by creating an interposition library (libADU) that sends �ow �ve-
tuples (addresses, protocol, ports) and ADU sizes to the demand estimator on the so ware switch,
using TCP over our control network (see Figure 2.3). LibADU interposes on write and send
to get ADU sizes, and shutdown and close to indicate when outstanding demand for this �ow
should be removed. We modify the demand estimator (Figure 2.4) to keep track of outstanding
demand per-�ow to ease cleanup on �ow shutdown. Alternative solutions could track outstanding
demand at the rack level, but would either need to tolerate potential inaccuracies a er shutdowns
or require more complex cleanup (e.g., timeouts). We additionally modify ToR VOQs to count the
amount of application-layer bytes seen per-�ow (with care given to avoid double-counting TCP
retransmits). While individual ADU sizes are communicated to the scheduler, the scheduler we
use (Solstice [98]) does not take advantage of knowing the boundaries between ADUs.
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Figure 2.13: Small �ow FCT (1 ring).
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Figure 2.14: Big �ow FCT (1 ring).
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Figure 2.15: Small �ow throughput (1 ring).
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Figure 2.16: Big �ow throughput (1 ring).

2.5.3 Experiments

Tra�c generation: we test the impact of ADU-based demand estimation by using �owgrind [165,
166] to generate a workload of big and small �ows. Big �ows consist of 1, 000 to 10, 000 packets,
chosen uniformly at random; small �ows have 10 to 100. All packets are 9000 bytes. For each �ow,
we select a start time such that given their start times and sizes, all big �ows from a source rack use
1/3 of the circuit bandwidth, and all small �ows from a source rack use 1/3 of the packet bandwidth.
(source, destination) rack pairs are chosen for the big �ows so that they form a ring; the remaining
racks send small �ows. We run this workload for 2 seconds (a er which we kill any un�nished
�ows), resulting in ∼10,000 small �ows and ∼1,000 big �ows.
Results: we compare ToR VOQ-based estimation to ADU-based estimation, as well as the single
“�xed schedule” that our scheduler would output with perfect demand estimation (i.e., send the
single ring of big �ows over the circuit switch). We show separate �ow-completion time (FCT)
CDFs for small and big �ows in Figures 2.13 and 2.14, respectively. We �nd that for small �ows,
there is not much room to do better, as they are already fairly well serviced by the packet switch,
although ADU-based estimation does cut 99% latency by half. For large �ows, however, the median
(99%) FCT is cut by almost 8 (11)×. ¿is is due to the smaller number of con�gurations per schedule,
meaning fewer recon�guration penalties/idle small-�ow circuits (see Figure 2.12). We also �nd
that ADU-based estimation tightly hugs the �xed schedule, implying that for this workload, ADUs
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ToR VOQ VOQ +
Resize

VOQ +
reTCP ADU ADU +

Resize
ADU +
reTCP

Fixed
Schedule

Packet
(10Gbps)

Packet
(20Gbps)

Packet
(40Gbps)

Packet
(80Gbps)

Median small FCT (ms) 1.52 1.57 1.60 1.51 1.58 1.59 1.49 2.19 1.05 0.71 0.65
99th small FCT (ms) 56.39 76.54 69.86 65.71 79.07 77.80 64.99 36.34 22.25 14.50 5.20

Median big FCT (ms) 1162.04 737.64 660.19 644.01 110.61 102.11 724.08 1680.35 1025.92 46.95 45.30
99th big FCT (ms) 1988.84 1917.55 1869.50 1815.74 432.50 406.44 1860.53 1998.27 1944.73 134.29 114.77

Table 2.2: Median and 99th percentile �ow-completion time for small and big �ows (2 ring workload).

provide optimal results. We show throughput for small and big �ows in Figures 2.15 and 2.16,
respectively. While the trends are the same, small �ow throughput shows two peaks for ToR VOQ,
likely due to the separation of small �ows sent over the packet switch and those accidentally sent
over the circuit switch. Takeaway: ADU-based estimation improves median (tail) big FCT by
8 (11)×.

2.5.4 Cumulative results

Next we test the techniques from this section (ToR VOQ, ADU, Fixed) together with the techniques
from the last section (dynamic bu�er resizing and reTCP + resize, both with τ = 1000µs). We
also try various higher bandwidth traditional packet networks (10, 20, 40, 80Gbps) without circuit
switches. We generate the same workload as above, but create two rings of big �ows instead of one.
Two rings aremore di�cult to schedule than one ring, requiring two circuit con�gurations per week
(and thus more recon�gurations). We update our “�xed schedule” to include both con�gurations.

Table 2.2 shows the median and 99th percentile FCT for small and big �ows. As with the
prior experiment, we �nd that for small �ows, having better demand estimates or mechanisms to
increase circuit utilization does not provide much bene�t, as these �ows are generally better served
by the packet switch. Interestingly, all of our mechanisms (and the �xed schedule) increase the
tail FCT for small �ows compared to ToR VOQ, likely because ToR VOQ accidentally sends some
small �ows over the circuit switch, giving them more bandwidth than they would get if properly
scheduled.

Small �ow FCTs on increasingly high-bandwidth packet switches are even smaller, mainly
due to increasing capacity as well as their �ner-grained per-packet forwarding decisions when
compared to circuit switches. Interestingly, while the setup using only a 10Gbps packet switch has
median small FCT worse then all other scenarios, its tail small FCT is better than VOQ. ¿is is
likely due to less variability in the network, due to the lack of circuit ups/downs.

By accidentally scheduling small �ows on the circuit, ToR VOQ starves big �ows as we see in
its big �ow FCT. VOQ+Resize, VOQ+reTCP, ADU, and Fixed Schedule reduce the median (by
∼1.5–1.8×), but not tail FCTs. For VOQ+Resize & VOQ+reTCP this is due to ine�cient schedules
computed from inaccurate VOQ-based demand estimation. For ADU & Fixed Schedule this is
due to small static switch bu�ers that (while providing low per-packet latency) cannot provide the
required high throughput to big �ows.

We see a big drop (highlighted) in median and tail FCT for big �ows with ADU+Resize &
ADU+reTCP, ∼10-11× over ToR VOQ. ADU+Resize & ADU+reTCP take advantage of ADU-based
estimation leading to a repeating two con�guration schedule serving only the big �ows in this two
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Figure 2.17: Packet and circuit utilization for various methods (2 ring workload). High circuit utilization is
key to low �ow-completion times in RDCNs.

ring workload; bu�er resizing only happens to the big �ow VOQs because of this schedule, and
VOQs are resized early enough (given τ = 1000µs and week length 2000µs) to pin them to the
large size. TCP takes advantage of the permanently large bu�ers in this workload to provide big
�ows much higher throughput than with either optimization on its own, greatly lowering FCT.

Replacing an RDCN with a higher-bandwidth traditional packet network (without a circuit
switch) can eek out another 2 (3.5) × improvement (highlighted) over our best optimizations
in median (tail) big FCT. ¿is additional improvement is due to its �ner-grained per-packet
forwarding decisions. ¿ese improvements require a 4× jump in capacity over our RDCN packet
switch (10Gbps to 40Gbps). CMOS manufacturing limits, however, are making it increasingly
di�cult to make these capacity jumps for high-port count packet switches [109], making RDCNs
more attractive.

To better understand the results, Figure 2.17 shows packet switch and circuit switch utilization
for each scenario. High circuit utilization is a key factor for low �ow-completion time in RDCNs.
We see that dynamic bu�er resizing and reTCP help move signi�cant tra�c to the circuit switch,
both for VOQ- and ADU-based estimation. Using a �xed schedule does similarly, but requires
knowledge of the demand a priori. A 10G packet switch by itself on this workload is so overloaded
that it can not send all bytes within the 2 second time limit, ending with outstanding data.

2.6 Overcoming di�cult-to-schedule workloads with
application-speci�c changes

Workloads that are not skewed (easily separable into big �ows for circuit switch and small �ows for
packet switch) or sparse (few pairs of hosts communicate) are fundamentally di�cult to schedule
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Figure 2.18: HDFS’ default write placement algorithm. Data nodes communicate with the name node to
learn where to write data replicas (1). ¿e are told to write to themselves and two nodes in another randomly
selected rack (2, 3). ¿is results in all-to-all tra�c that is di�cult to schedule.

on RDCNs [98], as they require many disruptive switch recon�gurations. ¿e techniques from
§2.4 can help work around this, but it would be better not to need them in the �rst place. An ideal
workload would require a single circuit schedule; in this case, there are no switch recon�gurations
and techniques like dynamic bu�er resizing and reTCP are not necessary because TCP would
consistently see a large circuit link. Unfortunately, many existing distributed data center application
workloads are not as skewed or sparse as we would like. However, in many cases, this is not a
fundamental property of the application; their workloads are uniform simply because there was no
reason not to be.

In preparation for running on a RDCN, a few simple application-layer modi�cations can greatly
increase performance by introducing skew and sparsity. Applications amenable to this are those
whose communication patterns are �exible rather than completely prescribed—that is, a source
sending a large �ow has multiple choices of recipient. Introducing skew does not require nodes to
have very detailed knowledge of the network topology, simply which circuit group (e.g., rack) other
nodes belongs to. With this information, the nodes in a circuit group should aim to minimize the
number of other circuit groups to which they collectively send large �ows. For example, in a ring,
which can be serviced with a single circuit con�guration, each group sends to exactly one other
group. In the rest of this section, we use replica selection in HDFS [11] as a running example.

2.6.1 HDFS write placement di�culties and solutions

Original workload: HDFS is a distributed �le system made up of racks of datanodes (DNs) and a
namenode (NN) which coordinates access. Data is generally replicated on three di�erent servers.
In the current HDFS write placement algorithm (see Figure 2.18), when a client writes to HDFS, the
client �rst contacts the NN and is told where to place (blocks of) the �le. If the client happens to be
a DN, then the client’s machine will be the �rst replica (otherwise a random DN is chosen). Second
and third replicas are picked in a di�erent, randomly chosen rack. Di�erent clients in the same
rack may be instructed to write to di�erent racks (as shown); the same is true for di�erent �les on
the same client or blocks within the same �le. ¿is results in all-to-all workloads that require many
circuit con�gurations to properly schedule, incurring more recon�guration penalties.

Modi�ed workload (reHDFS): we create a modi�ed HDFS write placement algorithm for the
NN, reHDFS (recon�gurable DC network HDFS), that introduces skew and sparsity by selecting
replica racks as a function of the source rack, rather than randomly (Figure 2.19). For source rack
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Figure 2.19: Our modi�ed HDFS write placement algorithm, reHDFS. Replica rack selection is a function of
the source rack (e.g., rack i writes to rack i + 2), rather than random. ¿is results in a single ring of demand
that is easy to schedule.

i, the NN selects (i + 1) mod N as the replica rack. ¿is ensures that each circuit group (rack i)
only sends to one other circuit group (rack i + 1). By choosing replicas in this way, the workload
shi s from all-to-all to a single ring, which can be scheduled in a single circuit con�guration.
Concerns that this may cause availability issues during simultaneous rack failures can be addressed
by changing this mapping function (e.g., to i + 2 etc.) on short timescales (e.g., seconds).

2.6.2 Experiments

Methodology: We test reHDFS’s modi�ed write placement algorithm using an industry standard
benchmark, DFSIO, in Intel HiBench [68]. DFSIO runs a Hadoop [10] (MapReduce [37]) job in
which each of J mappers writes a �le of X bytes to HDFS in parallel and then send statistics to a
single reducer to output. We use J = 64 mappers to write 64 X = 400MB �les (25GBs of inter-rack
tra�c). ¿is kind of workload might be seen during logging in big data applications or in scienti�c
computing.

As we focus on improving network performance in our algorithm, we con�gure HDFS to use
a 10GB RAM disk per host as its backing store to avoid being bottlenecked by slow mechanical
disks. Running multiple virtualized Hadoop stacks (Hadoop, YARN, HDFS, JVM) per physical
machine is di�cult given the limited RAM (16GB) in our testbed machines. Instead, we run 8
mappers per physical machine (one per CPU core), sharing the underlying Hadoop stack to avoid
this overhead. While this means tasks no longer have individual server-to-ToR link rate limiting,
the lack of memory pressure makes this worthwhile. Machines with more RAM could avoid this
limitation.

Results: Figure 2.20 shows the CDF of HDFS write time, for both HDFS and reHDFS. reHDFS
reduces the median write time by ∼4.7×, the 99th by ∼7.6×, and the max by ∼9×. Additionally,
we reduce the job completion time for the DFSIO MapReduce task by 47%. Takeaway: reHDFS
improves write latency up to 9×.

Cumulative results: Next, we look at how various combinations of current and previous optimiza-
tions (bu�er resizing and reTCP + resizing, with τ = 1000µs) perform under DFSIO. Combinations
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DFSIO benchmark.

involving ADUs are less interesting in this workload due to the lack of many small �ows. We verify
this for some combinations and leave them out for space.

Figure 2.21 shows the 99th percentile HDFS write times for various combinations of previous
optimizations. Without application-layer changes, dynamic bu�er resizing by itself (§2.4) provides
a modest 20% improvement (similar to our previous results with a more controlled workload).
Modifying HDFS’ workload to increase skew and sparsity, however, yields a drastic improvement:
reHDFS improves 99th percentile latency by 87% compared to HDFS and 84% compared to HDFS
with dynamic bu�er resizing. Adding bu�er resizing to reHDFS gives only an additional 3%
improvement over vanilla HDFS because the modi�ed workload is close to ideal; applications
that cannot reduce their circuit group fan-out as much as reHDFS will bene�t more from bu�er
resizing and reTCP.

Figure 2.22 shows the aggregate HDFS write throughput for various combinations of previous
optimizations, with a dashed line indicating maximum cluster bandwidth. Again, reHDFS provides
the largest bene�t (∼5×), with others similar to the previous graphs (∼1.6×). Interestingly, reHDFS
+ reTCP gets close to the maximum cluster capacity.

Figure 2.23 shows packet switch and circuit switch utilization for various combinations of
previous optimizations, measured in the so ware switch. While the results are again similar, it is
interesting to note how little data is sent over the packet switch for reHDFS-based optimizations,
implying that reHDFS provides an astoundingly easier workload to schedule over RDCNs than
vanilla HDFS. Finally, summing the bytes sent over both switches, we �nd that for HDFS-based
methods send roughly 30GB of data, while reHDFS-based methods send about 27GB. Setting aside
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the 25GB written to HDFS in both cases, we are le with a 60% reduction in the rest of the data
transfered (e.g,. MapReduce results shu�e tra�c, HDFS name node tra�c, etc.).

¿ough we have focused on only one application in this section, our reHDFS results suggest a
few key points that likely generalize:

1. As expected, application workloads have a big impact on RDCN performance.
2. ¿ere are real world applications that can be easily modi�ed for RDCNs.
3. ¿ough application-agnostic techniques like dynamic bu�er resizing and reTCP are useful,
modifyingworkloads to bemore skewed and sparse can o�er signi�cantlymore improvement,
meaning application-speci�c changes are worth the extra e�ort.

2.7 Related work

While there has been much work on RDCN design [28, 42, 52, 61, 62, 84, 97, 130, 150, 164] and
scheduling [20, 95, 98], however, no prior work has speci�cally focused on the end-to-end chal-
lenges presented in this chapter. Some do brie�y touch on them:

Rapid bandwidth �uctuation: prior work brie�y explores TCP ramp-up issues, but either does
so on millisecond-scale recon�gurable switches with thousand RTT-long days (removing the
issue) [150], or avoid sending packets over the packet switch unless absolutely necessary (using a
modi�ed endhost kernel pause protocol) [97]. We only require in-network changes to ramp up
TCP, and allow �ows to use the packet switch when a circuit is down.

Poor demand estimation: most RDCN designs brie�y touch on demand estimation [20, 95, 97,
98, 150], but little work has looked at how demand error a�ects scheduling. Albedo [95] and
Eclipse [20] propose indirect routing, but note its lack-luster performance. We argue that proper
estimation is the solution and must involve the endhost stack.

Di�cult-to-schedule workloads: While some prior work have hinted at opportunities for cross-
layer application/network co-scheduling [84, 150], work with concrete examples have focused
on making the network “application-aware” [95, 151, 154] (e.g., using MapReduce’s job tracker for
demand estimation), rather thanmaking applications “network-aware” (i.e., modifying applications
to suit the network), as we propose.

2.8 Summary

Recent work has shown the increasing need for augmenting traditional packet networks with
recon�gurable circuit technologies in DCs [52, 84, 97, 98, 109, 130]. We show the existence of three
key end-to-end challenges in such networks (RDCNs): 1) rapid bandwidth �uctuation, 2) poor
demand estimation, and 3) di�cult-to-schedule workloads. We overcome bandwidth �uctuation
with dynamic in-network resizing of ToR queues, poor demand estimation by communicating
endhost ADUs, and di�cult-to-schedule workloads by rewriting application logic (e.g., HDFS’
write placement algorithm). We design and implement an open-source RDCN emulator Etalon for
use on public testbeds, as a means of understanding and evaluating the nature of these challenges,
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and the e�cacy of our solutions. We �nd that the cross-layer optimizations we propose are
necessary, and that they provide the most bene�t at higher layers. Etalon provides additional
opportunities to explore in future work, e.g., utilizing ADU boundaries in scheduling, exploring
multicast-enabled optical circuit switching (e.g., Blast [154]), or, more importantly, providing a
cross-cutting evaluation across di�erent RDCN designs, or an investigation of the challenges faced
in future sub-µs RDCNs. We believe our experience speaks to the need for end-to-end system
evaluations in future DC designs.

Within the context of this thesis, this chapter shows that systems with separate control planes
due to layering do, in fact, bene�t from using transparency to coordinate them. ¿e fact that
layering implies a lack of constraints on information sharing (as all layers are run by one entity),
does allow for rich interfaces or specialization (here cross-layer optimization), greatly reducing
adverse interactions between control planes. Next, we examine how having control planes run by
di�erent entities changes the nature of coordination between them.
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Chapter 3 Control Planes in Di�erent
Businesses: A Case Study in
Content Brokering

In this chapter, we explore one example, in detail, where priority ranking can be used to overcome
adverse interactions between control planes. Speci�cally, we look at how decisions made by content
brokers (i.e., which CDN to use) can, by accident, greatly impact pro�ts for CDNs, and how CDNs
can accidentally limit the performance opportunities made available to content brokers (i.e., by
limiting which clusters can be used for a given client). Both of these issues are due to errant
assumptions made by both about the other.

We argue that these incorrect assumptions lead to decisions that are sub-optimal (i.e., in terms
of the quality/cost tradeo� brokers try to meet on behalf of content providers, and in terms of
pro�ts for CDNs), and that building amarketplace-style interface between them alleviates these
problems through joint decision making. As CDNs and brokers are separate businesses, they
can not share all their information. Sharing a small amount of speci�c information is enough to
remove most erroneous assumptions, as we will show. Since brokers and CDNs have independent
data plane resources (i.e., clients and servers, respectively), our categorization in §1.2.3 leads us to
coordinate using priority ranking (here a marketplace-style interface). Figure 3.1 summarizes this.

Functionally, a marketplace e�ectively provides a way for CDNs to priority rank their clusters
with respect to di�erent clients, allowing brokers to make decisions based on these priorities,
without needing to understand how/why those priorities were computed. ¿is allows CDNs to
hide their most important data (e.g., internal costs, raw capacity values, etc.) from other CDNs
and brokers.

Content brokering serves as an illustrative (and timely) context; various trends are reshaping
Internet video delivery: exponential growth in video tra�c, rising expectations of high video
quality of experience (QoE), and the proliferation of varied content delivery network (CDN)
deployments (e.g., cloud computing-based, content provider-owned datacenters, and ISP-owned
CDNs). More fundamentally though, content providers are shi ing delivery from a single CDN
to multiple CDNs, through the use of a content broker. Brokers have been shown to invalidate
many traditional delivery assumptions (e.g., shi ing tra�c invalidates short- and long-term tra�c
prediction), by not communicating their decisions with CDNs.

In this chapter, we analyze these problems using data from a CDN and a broker. We examine
the design space of potential solutions, �nding that a marketplace design (inspired by advertising
exchanges) potentially provides interesting tradeo�s. A marketplace allows all CDNs to pro�t on
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Figure 3.1: ¿is chapter focuses on challenges in content brokering due to administrative separation, as
shown with VDX. Looking back at our design space (§1.2.3), administratively separate systems (e.g., VDX,
BGP, Wiser, P4P) have constraints on information sharing due to business concerns, but make decisions for
their own data plane resources. ¿ese systems should coordinate using priority ranking (§1.1).

video delivery through �ne-grained pricing and optimization, where CDNs learn risk-adverse
bidding strategies to aid in tra�c prediction. We implement a marketplace-based system (which
we dub Video Delivery eXchange or VDX) in CDN and broker data-driven simulation, �nding
signi�cant improvements in cost and data-path distance.

3.1 Introduction

Content delivery is constantly changing to meet the evolving challenges created by new workloads
(e.g., streaming video), new actors (e.g., CDNs), new protocols (e.g., HTTP chunk-based video),
new algorithms (e.g., video rate adaptation), and new demand (e.g., exponential growth in video
tra�c). Techniques introduced to accommodate these challenges have far-reaching repercussions
on �ows across all layers of the network stack. For example, the introduction of content delivery
networks (CDNs) dramatically changed the tra�c patterns that ISPs handled, clients’ performance
expectations, and the sheer volume of content that the Internet could deliver.

Content delivery is in the midst of another such major change. Until recently, major content
providers (CPs) either contracted with a single CDN, such as Akamai [123], Level 3 [94], or Cloud-
Front [8], or deployed their own CDN, such as Google [55] andNet�ix [118]. ¿e recent rise of CDN
management services (“brokers”), such as Cedexis [26], Conviva [36], or NicePeopleAtWork [122],
and CDN federation techniques [33, 121] has made it easier for content providers to enlist multiple
CDNs to deliver content. Simultaneously, the rise of ISP CDNs (e.g., Comcast [12]) and proposals
like running virtualized CDN nodes inside of ISPs [47, 49], are moving previous ISP-CDN tussle
concerns [49, 82, 83, 128, 129] into the new context of a CDN-broker tussle.

At �rst glance, it may seem that the addition of brokers to content delivery is a minor change;
however, brokering is a surprisingly complicated process. Our previous work [114] uses CDN and
broker data to show there are signi�cant issues in today’s content brokering ecosystem, due to the
lack of CDN-broker coordination in optimizing delivery objectives (e.g., cost, performance, etc.),
that require fundamental changes. ¿ese issues, however, have not been widely identi�ed as they
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are hard to diagnose without both broker and CDN data. ¿ey have also yet to become widespread,
as broker tra�c is still a small (but growing) portion of overall CDN tra�c.

In this chapter, we �rst characterize the kinds of problems brokers and CDNs face due to
independent decision making by examining data from both a popular broker and a major CDN.
Among the problems we uncover is that brokers may make tra�c unpredictable for CDNs, making
it di�cult for CDNs to pro�t, due to combination of long-term CDN-CP contracts (months
or years [6]) and �at-rate pricing. Additionally, despite having multiple clusters with similar
performance, CDNs have no incentives to share this information with brokers today, limiting a
broker’s ability to optimize for certain CP goals, and to handle failures.

¿ese problems lead us to three requirements needed for proper CDN-broker decision making:
1) CDNs need to replace today’s �at-rate price model and re�ect dynamic per-cluster prices to
improve pro�tability; 2) CDNs need incentives for providing a �ne-grained cluster-level view to
brokers, allowing them to better optimize for CP goals; and 3) CDNs and brokers need to make
decisions jointly, removing today’s tra�c unpredictability in the content delivery ecosystem.

Solutions that only address one of these requirements do not provide the right adoption
incentives for CDNs, brokers, and CPs; CDNs only bene�t from dynamic cluster-level pricing and
tra�c stability, but Brokers/CPs only bene�t from cluster-level optimization. Addressing all the
requirements simultaneously provides incentives to all parties. While similar to the well studied
ISP-CDN collaboration problem [49, 82, 83, 128, 129], we argue CDN-broker collaboration is easier
to achieve, as there are signi�cantly fewer CDNs than ISPs, and business relationships are already
more attuned to collaboration (CDNs and brokers both directly optimize content delivery under
contract with CPs).

We address the above requirements directly by examining promising points in the design space.
Simple tweaks to today’s practices (e.g., providing brokers multiple clusters to choose from) do
not meet all the requirements (and thus lack deployment incentives). In addition, multiparty
transaction designs requiring all CDNs and brokers to agree are impractical. We �nd that a
marketplace-like design represents a reasonable tradeo�. It meets the �rst two requirements
while allowing CDNs to learn “bidding” strategies that likely provide them tra�c predictability. A
marketplace represents one possible solution, however, the focus of this work is that all parties
(including clients) bene�t from a content delivery service sold at much �ner granularity than today.
Any mechanism that supports these requirements may be su�cient.

We present a prototype marketplace design called Video Delivery eXchange (VDX). We leverage
real-world traces obtained from a major CDN and a popular broker, as well as publicly available
data from other CDNs, to build a CDN-scale simulation. We run our simulator across a variety
of scenarios (e.g., di�erences in CDN deployment models, di�erences in country pricing) to
better understand how relatively complex schemes like VDX can �ne-tune the trade-o� between
performance and cost.

To summarize, we make the following contributions:
1. Identify the challenges created by the lack of joint decision making between brokers and
CDNs by analyzing broker and CDN data.

2. Examine the design space, from simple tweaks (e.g., dynamic pricing or providing multiple
potential clusters to brokers) to more complex designs (e.g., marketplace or multiparty
transactions), evaluating their tradeo�s.
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3. Evaluate a marketplace design (VDX), where all CDNs can pro�t on video delivery, in-depth,
through CDN-scale simulations using data from both a broker and a CDN, �nding signi�cant
improvements in cost and data-path distance.

3.2 Content Delivery: The Past and the Present

¿e arrival of CDNs has had a dramatic impact on the Internet. In this section, we explain how
content delivery is again being reshaped for content providers by contrasting broker-based delivery
with traditional CDN delivery.

3.2.1 Traditional Content Delivery

Content providers (CPs), such as ESPN, Net�ix, and HBO, create or license content that users
are interested in. In order to provide good “quality of experience” (QoE) (e.g., a combination of
metrics such as average bitrate, bu�ering ratio, and join time [15]) to viewers around the globe, CPs
would need to build massive amounts of infrastructure. ¿us, most CPs rely on CDNs to provide
reasonable QoE. CPs generate revenue through premium services and/or advertising, and try to
minimize their delivery costs. CPs o en pay CDNs based on bandwidth usage based on a 95/5
model [105].

CDNs deliver content to clients through clusters nearby (e.g., in datacenters, peering points,
universities, large businesses, or ISP networks) tominimize latency and improve throughput. CDNs
have a wide variety of deployment models: some deploy servers in a large number of geographic
regions (e.g., Akamai [123]); others deploy in a small set of strategic regions (e.g., Level 3 and
CloudFront) [91]; other “ISP CDNs” operate extremely locally, serving a single ISP’s customers in a
region (e.g., Comcast [12]). CDNs typically choose which cluster to serve a client request from
based on network measurements or static assignments. Akamai, for example, uses latency and loss
measurements from clusters to gateway routers in the network (not individual clients) [27, 96] to
decide on an initial cluster assignment.

CDNs wish to provide reasonable performance to clients while minimizing their bandwidth
and co-location (energy) costs. In a recent annual report [3], Akamai lists bandwidth costs as
their largest cost ($150M/year) behind payroll, with slightly lower co-location costs ($126M/year).
CDNs generally do not price their services to re�ect costs at individual server locations (which
may vary considerably; see §3.3.1), and, instead, use a �at-rate price across large geographic regions
(e.g., continents) [9, 111] regardless of the actual delivery cost. Prices vary as CDNs typically
negotiate individual contracts with CPs over long timescales (e.g., months, years [6]). ¿is lack of
�ne-grained cost-aware pricing can lead to signi�cant problems, as we show in §3.3.2.

Traditionally (see Figure 3.2), CPs contract with a single CDN and express very broad policy
goals (e.g., what content can be served by the CDN). ¿e CDN typically caches the content on
front-end servers close to the clients (although more complicated caching structures also exist).
Clients request an HTML page or video manifest from the CP’s website that indicates which CDN
to contact for the content. ¿e CDN chooses which server to use for a given client, and provides a
mechanism (e.g., DNS) for reaching the server. ¿e client connects to this server and retrieves the
content.
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Figure 3.2: Traditional content delivery.
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Figure 3.3: Brokered content delivery.

3.2.2 Brokers and Delivery Today

With increasing pressure from users in terms of QoE expectations, as well as the sheer volume of
tra�c, CPs have moved from a single-CDN delivery model to employing multiple CDNs [19, 134].
Due to variations in price and performance, spatially and temporally [99], CDN selection must be
dynamic. Figure 3.3 shows brokered content delivery. From a client’s perspective, brokers are a
level of indirection for CDN selection; clients �rst ask a CP’s broker which CDN to use, before
querying a CDN’s DNS server.

Brokers (e.g., Cedexis [26], Conviva [36], NPAW [122]) measure QoE within client applications
(e.g., video players) and build predictive models to determine the best assignments of clients
to CDNs (using CPs’ QoE and cost goals), based on various factors (e.g., client’s location, ISP,
etc.) [51, 79]. Brokers not only select the initial CDN a client is assigned to, but also move clients
between CDNs in real-time (e.g., mid-stream). Although a CP could function as a broker for its
own content, independent brokers can leverage data across CPs’ clients and CDNs to form a more
complete view.

¿ere is no explicit coordination between brokers and CDNs, a key point of tension addressed
in this chapter (see §3.3). CDNs, however, implicitly see the e�ects of brokers’ decisions when
clients are suddenly moved to/away from their clusters. ¿is increased tra�c unpredictability,
along with long-term CDN-CP contracts still based on �at-rate pricing, potentially makes the
disparity between prices and internal CDN costs even worse. (see §3.3.2). Brokering also facilitates
a wider variety of small-scale deployment models (e.g., regional CDNs, city-centric CDNs, etc.),
although we have yet to see these types of CDNs in practice.

3.3 Potential Problems and Opportunities

Although brokers may appear to add a simple layer of indirection, they greatly complicate content
delivery. Brokers and CDNs run independent control loops to maximize their own objectives,
without explicitly communicating their decisions. ¿ese decisions directly impact one another,
potentially leading to sub-optimal decisions for both parties.
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Brokers have a global view of all client performance (app-level QoE) and costs for a CP, but
can only make decisions by selecting which CDN to send a client to. Individual CDNs, conversely,
have a large set of clusters to choose from but typically make their choice only on network level
measurements, rather than QoE (each CDN would need to instrument CPs’ so ware to get QoE).
¿is mismatch of data richness (brokers) and selection richness (CDNs) leads to many potential
problems.

We examine these problems separately, using data from a major CDN and a popular broker.
¿e broker data allows us to understand when it uses di�erent CDNs (e.g., over geographic regions,
time, etc.). ¿e CDN data allows us to understand its use of di�erent server clusters. We distill these
problems down to a short list of key requirements any proposed CDN-broker decision interface
must meet to aid in CDN pricing, meet �exible performance goals, and provide tra�c stability.

3.3.1 Traces

Broker: We collect trace data from a video delivery broker. ¿e trace includes an entry for each
client session containing the request arrival time, which video was requested, the average bitrate,
session duration, the client city and AS, the initial CDN contacted, and the current CDN delivering
the video. ¿e data covers roughly an hour of o�-peak requests (33.4K total) for one content
provider (a music video streaming website). Even this small window illustrates many problems.

¿e data exhibits similar trends to those seen in other works [13]: video popularity follows a
Zipf distribution, and the distribution of client cities follows a power-law. Most clients abandon
almost immediately (around 78%). ¿e distribution of bitrates is bimodal with peaks at the lowest
and highest bitrate. ¿e trace identi�es three large CDNs (here “A,” “B,” and “C”) directly and
lists the rest as “other.” CDN A is a CDN with clusters in many locations. CDN B and C deploy
large amounts of capacity in a small number of locations. We investigate the e�ects of di�erent
deployment models in our evaluation (§3.7).

CDN: We collect Internet mapping data from a major CDN to compare performance estimates
across its clusters. ¿e data provides a score estimating the performance between blocks of client
IP addresses and candidate CDN clusters. ¿is score is a simple function of latency and packet
loss. Measurement happens periodically and frequently (several times per minute) through pings
from clusters to routers with large networks of clients behind them.

From the same CDN, we collect data on the average cost per byte delivered for the 20 countries
with the highest volume of tra�c, using client geolocation to bin requests into countries. We then
compare them to the average delivery cost. We anonymize this data and present it in Figure 3.4.

3.3.2 Potential Problems for a CDN

Brokers create problems for CDNs for three main reasons: 1) brokers make load balancing di�cult
due to short-term tra�c unpredictability, 2) brokers make provisioning di�cult due to long-term
tra�c unpredictability, and 3) (broker-created) tra�c unpredictability negatively impacts pro�ts
due to �at-rate CDN-CP contracts.

Short-term provisioning problems due to tra�c unpredictability: Figure 3.5 shows a time-
series graph of the percentage of client sessions in the broker trace, within 5 second intervals, that
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have been shi ed from one CDN to another mid-stream. ¿is value is surprisingly high throughout
(averaging ∼40%). We note, however, that at some points this dips to ∼20% and at other times rises
above ∼60%. ¿is indicates brokers not only o en move tra�c around, but the rate at which they
do is highly variable. ¿is potentially makes short-term provisioning (load balancing) di�cult for
CDNs.

Long-term provisioning problems due to tra�c unpredictability: Figure 3.6 shows the utiliza-
tion for the CDNs in the broker trace, plotted as a function of number of requests per city. ¿e
dotted lines are best-�t lines. We see from the best-�t lines that regardless of city size, CDN B
and CDN C’s usage does not change, whereas CDN A is strongly favored in smaller cities. ¿is is
perhaps unsurprising due to CDN A’s broader geographic deployment. CDN A is also generally
more expensive than CDN B and CDN C, suggesting that a broker will try to avoid CDN A where
other options are available. Succinctly, brokers do not merely split tra�c evenly among CDNs;
tra�c may be arbitrarily divided in geographic regions due to various factors and change over time.

¿is leads us to believe that brokers, as well as other CDNs, can cause a CDN di�culty in
cluster planning and long-term provisioning (e.g., cluster location and capacity). For example, if
a broker decides to stop using CDN A in big cities (e.g., CDN B deploys more servers) this will
impact CDN A’s future provisioning. If CDN B then raises its prices, the broker may move more
tra�c back to CDN A, again impacting future provisioning. In e�ect, in a brokered world, proper
CDN provisioning becomes more di�cult to achieve.

REQUIREMENT: Tra�c Predictability
In order to provide more stability for CDNs, broker-controlled tra�c must be more pre-
dictable. ¿us, a proper CDN-broker decision interface must make decisions jointly (i.e., share
information and decisions in both directions).

Pricing / cost disparities: Figure 3.7 illustrates a toy example of CDNpricing issues. Recall that CPs
generally pay CDNs a contracted �at rate per tra�c delivered (based on a 95/5 model [23, 105]) with
price changes (e.g., 2 − 7×) depending on very coarse geographic regions (e.g., continents) [9, 111].
CDN Y can provide good performance at a low �at-rate contract price for the CP, for all clients
except for the le -most one, who must be served by CDN X. Unfortunately for CDN X, this client
is served by a very expensive cluster. CDN X’s �at-rate contract price with the CP is more expensive
than CDN Y, so a broker (unknowingly) avoids CDN X’s cheaper clusters. ¿is unfortunately
means that CDN X actually loses money as the CP will pay CDN X at a price less than its cost.
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We see potential pricing problems like this occur at the country level. Figure 3.8 shows how the
utilization of the CDNs in our broker trace di�er in di�erent countries. ¿e remaining percentage
of clients are serviced by other smaller CDNs. We show all countries that originated 100 or more
requests in our trace, in random order. Note that utilization varies signi�cantly: e.g., CDN B barely
serves 7, yet almost entirely serves 8; CDN A is rarely used in 8, 11, and 15, etc.
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Figure 3.8: Broker’s usage of CDNs for a sampling of countries based on request count.

Di�erent countries around the globe can have markedly di�erent bandwidth costs. Our CDN
cost data shows up to a ∼30× disparity in pricing between countries (Figure 3.4). CDN CloudFlare
paints a similar picture, stating that when compared to Europe, NorthAmerica, Asia, Latin America,
and Australia, cost 1.5×, 7×, 17×, and 21×more respectively [34]. ¿ey further state that within a
region, some transit ISPs may have an order of magnitude higher cost.

If, for example, Country 7 in Figure 3.8 is very expensive for a CDN, yet Country 8 is very
cheap (with �at-rate pricing across both), CDN A will have trouble making a pro�t, whereas CDN
B will easily make a pro�t. ¿erefore, unpredictable tra�c from brokers may unintentionally cause
disparities between pricing and cost, a�ecting CDN pro�ts. Unfortunately, raising contract prices
to recoup these pro�ts will likely cause brokers to move even more tra�c away from the CDN.
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REQUIREMENT: Dynamic Cluster Pricing
In order to alleviate CDN pricing / cost disparities, a proper CDN-broker decision interface
must allow CDNs to charge CPs (or brokers) prices re�ecting their internal costs. In order to
allow CPs/brokers to optimize over these prices, a price sharingmechanism that is �ne-grained
both spatially (per-cluster, not per-continent) and temporally (per-minute, not per-year) is
needed.

3.3.3 Potential Problems for a Broker

CDNs create problems for brokers for two main reasons: 1) CDNs do not expose cluster-level
information to brokers, limiting a brokers’ ability to optimize performance and cost, and 2) CDNs
make decisions that impact end-to-end delivery without information about all of the clients seen
by brokers, directly a�ecting performance.

Limited optimization ability from lack of cluster-level view: CDNs and brokers do not explicitly
consult with each other for decision-making; they lack an interface to facilitate this exchange.
Brokers cannot gather much information about CDNs at a cluster level, and thus, treat each CDN
as a black box function of {client location, client ISP, ...}→ {performance, cost}. As CDNs typically
map individual clients to one speci�c CDN cluster at a given time, when performance is inadequate
based on the CP’s objectives, a broker’s only recourse is to switch CDNs (even if other better choices
exist within the current CDN). E�ectively, the granularity of change a broker can make is very
coarse.

1 Alternative Choice 2 Alts. 3 Alts. 4 Alts.

77.8% 64.5% 53.7% 43.8%

Table 3.1: How o en alternative CDN clusters with similar performance scores exist.

Table 3.1 shows how o en there are alternative clusters with similar estimated performance
(based on latency and loss measurements) in the CDN data. We �nd that on average there are
four server clusters (i.e., 3 alternative choices) that have similar scores (within 25% of the best),
yet typically only one choice is returned. ¿is data indicates potential opportunities; as these
clusters have similar performance estimates, brokers may be able to avoid switching CDNs due
to inaccurate estimates, congestion, or failures (unlike today), to better meet CPs’ performance
goals. As explained above, today’s �at-rate pricing discourages CDNs from making use of these
alternative clusters if their costs are higher than the primary cluster.

Poor performance due to incomplete data: Both brokers and CDNs spend signi�cant e�ort
building maps of the Internet to predict performance between clients and servers. ¿is is by no
means a small task; in recent work [51] a broker claimed that they regularly handle 100M client
sessions per day, 3M clients concurrently during peak hours, and 10s–100s of thousands of clients
entering and exiting per minute. ¿ey also imply that this leads to 50–100 GB of new sample data
to process per minute. Sharing mapping information could greatly improve the accuracy of the
data as both CDNs and brokers have limited vantage points into the network. Namely, CDNs such
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as Akamai typically measure (in advance of connections) from clusters to gateway routers [96],
whereas brokers generally only measure (during a connection) from clients to chosen CDN servers.

REQUIREMENT: Cluster-level Optimization
Brokers currently make decisions with an unnecessarily coarse view of CDNs, responding to
issues by switching CDNs entirely, despite other reasonable clusters being available within
the CDN. Clusters may also have di�erent performance/cost tradeo�s leading to better CP
goal optimization. ¿us, a proper CDN-broker decision interface should provide brokers with
cluster-level views of CDNs.

3.4 Exploring the Design Space

As seen, the problems from §3.3 motivate an explicit broker-CDN decision interface that provides:
1) cluster-level optimization, 2) dynamic cluster pricing, and 3) tra�c predictability. We �nd many
possible designs that meet some/all of these requirements have the same basic structure. While
many of these designs are reasonable, we argue that only designs that meet all three requirements
have adoption incentives for CDNs, brokers, and CPs.

3.4.1 Generalizing Designs

Building o� today’s CDN-broker interactions (as seen in §3.2), all designs we consider utilize the
following two protocol structure:

Decision Protocol: Periodically (e.g., every few minutes, as brokers do today [51]), each design
runs the seven steps below to update the mapping of clients to CDN (clusters) that maximizes CP
goals (see Figure 3.9):

1. Estimate: CDN clusters estimate capacity, cluster costs, and cluster-to-client performance.
2. Gather: Brokers count clients, including meta-data (e.g., location).
3. Share: Brokers potentially send client (meta-)data to CDNs. We will see that designs that do
not send client data make it di�cult for CDNs to provide proper matchings (as they do not
know which clients belong to which broker (or to no broker at all).
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max wp ∗∑r∈Clients,m∈Matchingsr Performance(m) ∗Ur,m

− wc ∗∑r∈Clients,m∈Matchingsr Cost(m) ∗ Bitrate(r) ∗Ur,m

subject to:
∀r ∈ Clients,m ∈Matchingsr ∶ Ur,m ∈ {0, 1}
∀r ∈ Clients ∶∑m∈Matchingsr Ur,m = 1
∀l ∈ Clusters∶∑r∈Clients,m∈Matchingsr , l Bitrate(r) ∗Ur,m

≤ Capacity(l)

Figure 3.10: Example broker optimization problem.

4. Matching: CDNs match clients to one or more potential clusters, based on performance
estimates, cluster costs, and capacities, as well as any client (meta-)data from brokers. Cur-
rent algorithms such as Akamai’s customized stable marriage algorithm [102], or simpler
algorithms, such as ranking clusters that can provide adequate performance by their costs,
provide plausible starting points.

5. Announce: Brokers receive CDNs’ matching data (either pushed or pulled), and potentially
performance, cost, and capacity information. We will see that designs that do not announce
all three provide worse overall performance and cost.

6. Optimize: Brokers map clients to CDN (clusters) to meet CP goals, using the CDNs’ match-
ings and current cost, capacity, and performance (including traditional application-level
QoE) data/estimate. We show an example optimization ILP (to be solved by the broker), in
Figure 3.10, that maximizes performance while minimizing cost (with weights wp and wc).
¿e output is stored for the Delivery Protocol. Other optimizations are equally valid (e.g.,
utilizing client meta-data, or simpler greedy algorithms).

7. Accept: Brokers tells all CDNs which matchings were used, so CDNs can modify future
matchings.

High-level designs di�er solely on how they implement Share,Matching, and Announce. As
brokers operate on behalf of CPs and can control client requests directly, all considered designs
have the broker make the �nal decision.

Delivery Protocol: Whenever a client initiates content retrieval, the following protocol runs:

1. Query: Client queries broker for CDN (cluster).
2. Result: Broker returns CDN (cluster) chosen earlier.
3. Request: Client requests content from CDN (cluster).
4. Delivery: CDN (cluster) delivers data to the client.

Note that the most recent Decision Protocol results are used, and thus decision making does
not slow down delivery. All designs use the same Delivery Protocol, thus we end our discussion of
it here.

53



Share Matching Announce CO DCP TP Runtime

Brokered Single-Cluster 1 Round
Multicluster Multi-Cluster Performance 1 Round

DynamicPricing Single-Cluster Cost 1 Round
DynamicMulticluster Multi-Cluster Cost, Performance 1 Round

BestLookup Multi-Cluster Cost, Performance, Capacities 1 Round
Marketplace Clients Multi-Cluster Cost, Performance, Capacities Weak 1 Round
Transactions Clients Multi-Cluster Cost, Performance, Capacities Strong Multi-Round

Table 3.2: Alternate designs for a CDN-broker decision making interface, and whether they meet the Cluster-
level Optimization (CO), Dynamic Cluster Pricing (DCP), and Tra�c Predictability (TP) requirements in
§3.3.

3.4.2 Design Space

We now present alternate designs for CDN-broker decision making interfaces that di�er in Share,
Matching, and Announce, and the requirements from §3.3 (see Table 3.2).

Brokered (today’s world §3.2): . CDNs and brokers share little information, and CDNs match
clients to single clusters. As we have seen in §3.3 this does not meet our Cluster-level Optimization,
Dynamic Cluster Pricing, or Tra�c Predictability requirements.

Multicluster: CDNs provide multiple similar cluster options per client. From this, brokers
learn rough performance values. ¿is provides Cluster-level Optimization, but does not address
Dynamic Cluster Pricing concerns, or provide Tra�c Predictability.

DynamicPricing: CDNs share dynamic cost information with brokers. ¿is �xesDynamic Cluster
Pricing concerns, but does not address Cluster-level Optimization or provide Tra�c Predictability.

DynamicMulticluster: Combines Multicluster and DynamicPricing. ¿is addresses both
Cluster-level Optimization and Dynamic Cluster Pricing, but does not provide Tra�c Predictability.
Its major �aw is instability; as decisions are not made jointly, the clusters with the best performance-
to-cost ratio are overwhelmed as speci�c cluster capacity values are unknown. ¿is is similar to
the instability seen in price-based routing schemes [54, 64, 86].

BestLookup: ¿is design attempts to �x DynamicMulticluster by providing cluster capacity
information to brokers. CDNs must build multiple potential client-to-cluster matchings without
knowingwhich clients are being considered by the broker. If there aremultiple brokers or signi�cant
non-broker tra�c (as there is today), “overbooking” of tra�c sources may still overwhelm capacity
(e.g., a cluster with capacity 10 units may receive 9 units of tra�c each from two brokers).

Marketplace: A marketplace-based design would view CDNs’ matchings as bids for the brokers’
resource (clients). When the Decision Protocol is run periodically, there is a single round of bidding
for clients, in which all CDNs are �rst told about all clients (meta-)data. CDNs build more nuanced
matchings, properly allocating capacity based on the received client data. Brokers optimize as
before and return a list of accepted bids to CDNs. CDNs learn which bids are likely to be used over
time (as they know which clients are associated with which broker and get explicit feedback on
why bids fail), providing “weak” Tra�c Predictability.
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Transactions: A erOptimize, the broker requests CDNs to commit the resources for the chosen
client-to-cluster mapping. If any CDN disapproves the mapping, the mapping is withdrawn from
all CDNs and a new mapping is computed. ¿is provides stronger Tra�c Predictability guarantees
than Marketplace by making the process transaction-like. It is, however, unrealistic, as CDNs
may never all approve the mapping. ¿us, we do not consider it further.

3.5 Narrowing the Design Space

We present an evaluation of the di�erent designs presented in §3.4. As it is not practical to deploy a
multi-CDN-broker marketplace for evaluation, we focused on building a realistic simulator using
CDN and broker data (§3.3.1), as well as other publicly available CDN data.

3.5.1 Simulation Overview

We simulate 14 world-wide CDNs and a broker focused on video delivery. We run one round of the
Decision Protocol (§3.4.1) to determine our results, e�ectively building a “snapshot” of client-CDN
cluster assignments. Time dynamics are less important as the Decision Protocol runs periodically
(e.g., every few minutes) over all clients.
Clients: We use the client requests (with location and bitrate) from the broker data we received
(§3.3.1). Client locations in the broker data are matched with client locations in the CDN data
to allow us to use client-to-cluster performance (latency/loss) scores in the CDN data. Some
client-clusters pairings do not have scores, so we extrapolate them by computing a linear regression
of scores with respect to client-cluster distance.

We simulate an additional 3× this amount of clients as background tra�c (e.g., other broker
tra�c or non-broker tra�c) not optimized by this broker. While di�cult to quantify (for both
the CDN and broker), tra�c today is predominantly non-brokered, but has been progressively
changing.
Broker: We simulate a broker using the ILP in §3.4.1 as the optimization function, solved by
Gurobi [60].
CDNs: Each CDN is de�ned by a list of cluster locations. We received world-wide cluster location
information from one highly distributed CDN. We additionally inferred the locations of as many
CDNs as we could �nd (13) on PeeringDB [127]. PeeringDB may underestimate cluster locations,
but for the smaller CDNs we manually verify their locations based on information available on
their websites.
CDN cluster locations and cost: Each cluster location has an associated bandwidth and co-
location (energy) cost, expressed in dollars per bit. We generate bandwidth costs by choosing
average costs for countries from the data in Figure 3.4, then assign bandwidth costs to speci�c
clusters by drawing from a normal distribution centered on this mean, with standard deviation
derived fromCDNbandwidth cost data for the top 8 ISPs within theUS. Co-location costs are based
on the cost for the country, but decrease proportional to the logarithm of the number of CDNs in
that location. ¿is models the fact that more CDNs are located in places that are inexpensive to
serve from.
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Cost Score Distance Load Congested

Brokered 136 132 297 9% 0%
Multicluster (2) 155 87 194 14% 27%

Multicluster (100) 171 85 141 20% 39%
DynamicPricing 126 148 318 11% 0%

DynamicMulticluster 115 122 219 40% 14%
BestLookup 94 108 166 14% 14%
Marketplace 93 112 178 23% 0%
Omniscient 86 111 172 48% 0%

Table 3.3: Comparing the di�erent designs for various metrics in data-driven simulation. Lower values are
better.

CDN contract price and capacity: Each CDN has a contract price that we use in �at-rate price
designs. A CDN’s contract price is the average price per bit for the CDN if it was individually
o�ered all of the clients. Cluster capacity is assigned similarly; all clients are sent to each CDN
individually and clusters are assigned 2× their received tra�c as their capacity. We assume that
in steady-state, clusters are provisioned with ample capacity. Clusters that did not see any clients
take capacity from their closest neighbor with capacity. Designs that do not share cluster capacity
information with brokers use the median cluster capacity (per-CDN) as an estimate.

CDNmatching algorithm and bidding: For each client, a CDN selects a set of candidate clusters
with scores at most 2× worse than the best score. If there is no other cluster with a score within 2×
the best, the second best scoring cluster is considered a candidate cluster. Candidate clusters are
sorted from lowest to highest cost, with the matchings prioritized in that order. ¿e scores, costs,
and capacities of CDNs are directly re�ected in Announce (depending on the design) for simplicity.
Real-world CDNmatching algorithms could change over time to �nd risk-averse strategies. We
avoid this for simplicity.

Designs: We compare the designs presented in §3.4.2. ¿eMatching algorithm in Multicluster
(2), (100), andMarketplace, produces 2, 100, and 100 alternative clusters respectively. Omniscient
exposes all CDN data to the broker.

Metrics: We compare designs using Cost, Score, Distance, Load, and Congested as metrics. Cost,
Score, and Distance are the median cost, score, and geographic cluster-to-client distance over all
clients (lower is better). Load is the median cluster load over all CDN clusters that saw any tra�c.
Congested is the percentage of clients sent to clusters that have greater than 100% load.

3.5.2 Results

In Table 3.3, we summarize the results. Brokered serves as our baseline; Both Multicluster
designs provide better performance at the expense of increased cost (as the �rst cluster bid is
always the cheapest one according to the CDNMatching algorithm above); additional clusters may
provide better performance but will not be cheaper than the �rst cluster. Both designs also overload
clusters (as these designs only estimate cluster capacities) while optimizing for performance.
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DynamicPricingmarginally saves cost by dropping performance (without overloading clusters),
by only exposing one cluster, but allowing the broker to optimize with knowledge of the CDN costs.
¿is shows that just avoiding expensive clusters is not good enough; a balance of expensive and
cheap clusters are needed provide goodperformance. DynamicMulticluster andBestLookupdo
better than Brokered in both performance and cost (with BestLookup spreading load better), but
still overloads some clusters (given their inaccurate capacity info). Marketplace does very similar
to BestLookup but avoids overloading any clusters as it has accurate capacity info. Omniscient
provides similar results, with the lowest cost overall. We see the same trends in the CDFs of cost,
score, and distance (not presented).

From these results, we see that BestLookup and Marketplace are promising points in the
design space. However, Marketplace better meets the requirements from §3.3 as it is less likely
to overload clusters. By addressing all the requirements, we argue that Marketplace is more
aligned with adoption incentives than BestLookup. To better understand the tradeo�s inherit in a
marketplace design, we additionally evaluate a concrete implementation of a marketplace system,
which we dub Video Delivery eXchange (VDX).

3.6 VDX in Detail

We now discuss the design of our system VDX, which creates amarketplace where CDNs express
performance and cost concerns at the cluster level, by programmatically sending bids to a broker
(similar in spirit to an advertising exchange), to serve clients in speci�c locations. Brokers may
use multiple bids both across and within CDNs to maximize the CPs’ QoE and cost goals, while
allowing CDNs to be paid appropriately. While this design is complex, it represents a plausible
point in the design space with reasonable tradeo�s, although other valid choices exist as well. ¿e
large variation in CDN internal cluster cost (Figure 3.4), however, may warrant complex designs.

Below, we �ll out the key details that de�ne the instance of our Marketplace design, describe
a few simple examples, and discuss some system challenges such as failures and fraud.

3.6.1 Decision Protocol Details

Share: Brokers send client (meta-)data to CDNs. ¿e speci�c format may vary depending on the
requirements of the marketplace; we use the simple format:

[share_id , location, isp, content_id , data_size , cl ient_count].
Each share contains an opaque share_id for use inMatching and Announce. ¿is format can easily
be extended to include other meta-data, e.g., client device type, depending on CP’s optimization
goals.

Announce: CDNs send the output ofMatching (“bids”) to brokers for optimization. Similar to
Share, the format of each bid should be specialized to the needs of the marketplace. We use the
simple format:

[cluster_id , share_id , per f ormance_estimate , capacity, price]
Each bid includes a cluster_id (an opaque id known only between the broker and the CDN), a
share_id from Share, performance estimates from Estimate, cluster capacity, and a price related to
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internal cost. CDNs may express policy by choosing not to bid on certain client announcements
(e.g., certain videos cannot be served from certain CDN clusters, etc.), or by announcing modi�ed
performance, capacity, or price values. ¿e broker trusts that these values are accurate. CDNs that
continuously provide inaccurate values can be held accountable by lowering the priority of their
bids, or by taking legal action if this goes against their contract.

Accept: Brokers communicate the results of Optimize to CDNs, including CDNs that “lost” the
auction. ¿is allows CDNs to understand which bids were accepted, allowing the CDN to prepare
di�erent bids (e.g., ones with lower prices, higher performance estimates, etc.) for the next round
of bidding. Once again, the format should meet the needs of the exchange. We use the simple
format:

[cluster_id , share_id , per f ormance_estimate , capacity, price]
¿e accept format is likely the same as the bid format.

3.6.2 Examples

VDX addresses many of the problems faced in §3.3. ¿ree such �xes are: 1) VDX uses per-cluster
pricing. ¿is addresses the scenario in Figure 3.7. CDN X loses money as only its expensive cluster
is used. With VDX’s per-cluster pricing, CDNX can bid using its cheap clusters at a competitive price.
2) Tra�c unpredictability (Figure 3.5) is greatly reduced in VDX as CDNs are explicitly involved
before brokers move any tra�c. 3) Applications with non-standard QoE metrics (e.g., latency
agnostic applications) are easy to accommodate by having CDNs send bids that do not prioritize
latency.

3.6.3 Challenges and Limitations

“Weak” tra�c predictability: Although better than today’s world, VDX’s marketplace design only
provides weak tra�c predictability, as it runs a single phase of bidding. Tra�c may move more
quickly than some CDNs want, or a particularly bad set of bids may be accepted in tandem,
leading to overloaded clusters. An optimal design would require all CDNs to agree on the broker’s
allocation (e�ectively multiparty consensus), which is impractical (§3.4). We argue instead that,
in VDX, CDNs can learn risk-averse bidding strategies over time that will likely provide tra�c
predictability. Modeling these strategies with game theoretic frameworks (similar to those looking
at CDN pricing [136], ISP transit pricing [138], or CDN-ISP collaboration [82, 83]) provides an
interesting future research direction.

Failures and poor performance: With many di�erent entities, Decision Protocol failures may
seem di�cult to combat. If a CDN has a failure, the rest of the system still continues to work.
Failures or poor performance in the Delivery Protocol are handled using a variety of recovery
mechanisms (e.g., moving clients mid-stream), as is done today. As brokers solely exist to optimize
performance, when a broker fails, CP so ware can always fail gracefully to ignoring the broker
and request content from a given CDN directly.

Fraud: CDNs that consistently send fraudulent bids (or fail o en) can be marked as “bad” using
a reputation system. ¿eir bids can be handled at lower priority in the brokers’ decision process.
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Figure 3.11: Per-CDN price to cost
ratio for Brokered (less than 1.0
means pro�t loss).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CDN

106

107

Tr
af

fic
 S

er
ve

d

Brokered VDX

Figure 3.12: Per-CDN tra�c for
Brokered and VDX.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CDN

−105

−102

0

102

105

Pr
of
it

Brokered
VDX

Figure 3.13: Per-CDN pro�ts for
Brokered and VDX.

Brokers that fail to provide clients to CDNs can be handled similarly. CDNs that collude with
other CDNs or brokers can be handled similarly, or through legal action if CDN-broker contracts
become commonplace (see §3.8).

Scalability limitations: For scalability, instances of VDX’s marketplace would most likely need to
focus on speci�c geographic regions, content providers, or content types. However, this division
comes at a cost: limiting the broker’s view limits the quality of the optimization. Federating these
di�erent marketplaces (as well as those run by di�erent brokers) remains an open question.

3.7 Evaluating aMarketplace Design

We evaluate VDX using the same simulation methodology from §3.5.1, focusing on comparing
Brokered to the potential bene�ts of VDX’s Marketplace design, in three broad categories: 1) data
driven which focuses on simulating VDX on real data, 2) scenarios which augment the data driven
simulation, and 3)microbenchmarks which adjust knobs within VDX to look for trade-o�s.

3.7.1 Data Driven

We answer the following two questions:
1. How do di�erent CDN deployment models compare? Does brokering really treat di�erent CDNs
di�erently? Brokeredmakes it harder for distributed CDNs to make pro�ts; VDX provides
fairness.

2. Do countries see pricing issues? Brokered causes country-level pricing issues (some entirely
unpro�table). VDX is cost-aware, moving tra�c to cheaper ones, and charging appropriately.

CDN-level Pricing Di�erences

Here we examine how brokering today a�ects individual CDNs. In Figure 3.11, we show the ratio of
�at-rate contract price to cost for Brokered. Recall that we compute contract price as an average
over all clusters when the CDN is o�ered the entire workload. We markup this price by 20% to ease
later comparison. If the price to cost ratio is less than 1.0, the CDN is losing money on delivery.

Most CDNs do not pro�t on brokered video delivery in our model of a �at-rate world, which
may accurately represents the hardships present in some CDNs quarterly �lings [5, 6, 104, 119, 120].
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Brokered and VDX.

Video delivery is traditionally hard to pro�t on, given its high-bandwidth, low-“importance-per-bit”
nature. While video delivery makes up a large portion of CDNs’ cost [6], only a subset of it is
brokered video delivery. ¿e trend, however, towards using brokers for video delivery, even among
small CPs, is rapidly accelerating [134], making these issues even more pertinent.

Examining the CDNs that make a pro�t, we note that they are all centrally deployed CDNs
mainly used in locations where costs are cheap. CDNs pro�t in Brokered only if they use clusters
that are cheaper than their contract price. Today’s world disincentivizes building large distributed
CDNs, as distributed CDNs are more likely to be picked by brokers due to their better performance,
yet their larger geographical presence potentially leads to higher cost variability.

Figure 3.12 shows tra�c allocation across CDNs. Although CDN 12’s cheap clusters are used
by our broker, it does not actually serve much tra�c. More distributed CDNs, such as CDN 1,
have more variability in cluster cost as they are in many more remote regions (see Figure 3.4).
Because of this, CDN 1 has an expensive �at-rate price (i.e., median cluster cost), so it is avoided
by Brokered in favor of the comparably cheaper CDN 11. Moving to VDX allows CDN 1’s prices
to re�ect individual cluster costs, allowing VDX to use CDN 1’s cheaper clusters while avoiding its
expensive ones.

Figure 3.13 crisply illustrates this switch. Here we plot each CDN’s pro�ts in Brokered and VDX.
In Brokered, pro�t is a markup factor (1.2) times the contract price minus internal CDN cost. VDX
uses the internal cost as the price, meaning pro�t is just the markup factor (1.2) times the cluster
cost minus the cost. In Brokeredmany expensive CDN clusters are (unknowingly) used, leading
to signi�cant de�cits for many CDNs in this �at-rate price model. VDX’s per-cluster cost model
e�ectively levels competition, allowing each CDN to make pro�ts, regardless of its deployment
style.

Country-level Cost Di�erences

We examine the same data per-country. In Figure 3.14, we see that putting clusters in certain
countries is more pro�table; namely, countries L–S are easy to pro�t in, but countries A–J are where
CDNs are losing money.

Interestingly we see di�erent patterns in per-country tra�c (Figure 3.15) than in per-CDN
tra�c (Figure 3.12). Country use is mostly even for Brokered. VDX, however, avoids the most
expensive countries (A-E).¿is implies that VDX is sending tra�c originating within these countries
to clusters in cheaper countries. ¿is may be reasonable in places like Europe, where neighboring
countries are geographically close.
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Figure 3.16 shows CDN pro�ts, calculated similar to Figure 3.13. Here it becomes very clear that
in Brokered CDNs in countries A–J are losing money, but with VDX, CDNs are able to pro�t even
within these expensive countries, as CDNs can now be properly paid for using their expensive
clusters.

3.7.2 Scenarios

Here, we answer the following question: How do hundreds of “city-centric” CDNs a�ect established
CDNs in today’s brokered world? “City-centric” CDNs are always pro�table, while traditional CDNs
lose money. VDX provides a fair playing �eld.

As previously explained, brokering (both what we see today, as well as our vision of a mar-
ketplace), allows for more varied, specialized CDNs. With brokering, CDNs no longer need to
provide global coverage (as brokers can stitch together many smaller CDNs), allowing for a rise of
“city-centric” CDNs. We model the advent of CDN proliferation by generating 200 single-cluster
CDNs to add to our trace. Each cluster is drawn randomly from the CDN location data we collected
from PeeringDB [127]. As these clusters are co-located with other CDNs, they drive down the
co-location cost in our model.

We show the pro�ts for these CDNs in Figure 3.17 (the city CDNs not shown have similar
pro�ts). We �nd that many traditional CDNs continue to do poorly in Brokered as they do in
Figure 3.13, while some are sent no tra�c at all, but the city CDNs always pro�t. ¿is is because the
cost of their single cluster is always equal to their contract price (as it is their average price), and
thus they pro�t. VDX levels out the playing �eld, allowing traditional CDNs to properly compete.

3.7.3 Microbenchmarks

We answer the following two questions:
1. How much control do CPs have over VDX’s cost / performance trade-o�? Points on VDX’s
trade-o� curve outperform most other designs.

2. How much impact does CDN bid count have on performance and cost? Bid count can improve
performance, but generally has diminishing returns.
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Understanding the performance / cost trade-o�

In Figure 3.18 we vary the cost weightwc in the optimization function run by our broker (see §3.4.1).
Not only can VDX lower the cost by ∼44% while keeping distance equivalent to Brokered, it can
instead lower distance by ∼74% while keeping cost equivalent. At the knee of the curve, it can
simultaneously lower cost and distance by ∼31% and ∼40% respectively. ¿ere are similar trade-o�s
that can be made with most other designs.

Number of Bids

Here we vary the number of bids that CDNs submit for every client location. We show its e�ects on
the average cost and score in Figure 3.19. As bids are sorted based on cost, increasing the number of
bids should allow better performance (lower score) at higher cost. Interestingly, the largest increase
in performance (drop in score) is just achieved by adding the second bid. Having two choices
provides much bene�t for brokers in meeting CPs goals, but as we have seen, having many more
choices and tuning the trade-o� is likely more important.

3.8 Discussion

Adoption incentives: While CDNs have incentives to use dynamic cluster pricing (as it removes
discrepancies between cluster price and cost), CPs may be hesitant to change their contracts.
Similarly, while cluster-level optimization is incentivized for CPs/brokers (to better meet CP goals),
CDNs may balk at the idea of providing brokers any additional control (although brokers already
ultimately decide which CDN clients go to). We argue that requiring both (seen in a few designs in
§3.4.2), provides enough incentive for both CDNs and CPs/brokers.

VDX’s marketplace requires very little change to the existing “ecosystem,” rather than the creation
of an entirely new one (e.g., CDN federation, which inherently requires competitors working
together). Furthermore, a marketplace design provides incentives to both large and small CDNs,
as it allows both to compete on equal footing (§3.7.2). More nuanced CDN pricing schemes (e.g.,
low-but-variable pricing combined with high-but-�at pricing, similar to Amazon EC2 [7]) could
o�er CPs more control in meeting their goals, while retaining similarity to today’s �at-rate pricing.

Lack of ISP integration: ¿e lack of ISP integration is a purposeful limitation of this work. First,
while there has been much spirited work looking into the ISP-CDN tussle [49, 82, 83, 128, 129],
there has been little work focused on the CDN-broker tussle [114]. We view these works as
orthogonal to ours, potentially �tting together into a single delivery ecosystem. Additionally, the
lines between ISPs and CDNs are becoming much more blurred as large ISPs run their own CDNs
(e.g., Comcast [12]), purchase CDN systems from vendors like Huawei [69] or Akamai [4, 139], or
allow CDNs to run virtual servers within the ISP [47, 49].

Evolving the ecosystem: VDX’s marketplace makes it much easier for CPs to meet their goals
across a wide array of CDNs. In today’s world, CPs sign contracts with CDNs directly, even if they
use a broker. We do not need to assume this for VDX’s marketplace. Similar to the evolution of
online advertising networks, speci�c CP-CDN contracts could be removed to much more easily
meet CP goals (by using many more CDNs), as well as lower the barrier of entry for new CDNs. If
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CP-CDN contracts are removed, we expect CP-Broker contracts and CDN-Broker contracts to
replace them. Additional intermediary players (e.g., geographic CDN aggregators) may pop up in
the ecosystem (similar to ad networks).

Extensions to non-video content: Although VDX is designed with video delivery in mind (as that
is where brokers are seen today), there is nothing inherently video-speci�c about its marketplace.
While the optimization done by a broker on behalf of the CP would need to be adjusted, we expect
that VDX could be extended to cover di�erent types of content and applications.

¿e true impact of cost savings: 31% bandwidth and co-location cost savings may seem small,
but would save Akamai ∼$22.7M per quarter [6]. While clients would also bene�t from multiple
cluster choices (decreasing cluster distance), the pressing issue is that many of the parties involved
in video delivery are having di�culty making much money from it, with some losing money on
it [119, 120] or experiencing slowing revenue growth [6, 104]. If video delivery could be assured to
be pro�table (§3.7.1), that is signi�cantly more impactful than cost savings.

3.9 Related work

Collaboration in content delivery: ¿emost relevant related work looks at widening interfaces
in content delivery through collaboration. ¿is includes alternative CDN designs, such as fed-
erated Telco-CDNs [13] and P2P-CDN hybrids [13, 163], and the potential bene�ts of CDN-ISP
collaboration [49, 128, 129]. Some focus on the mathematical basis of joint collaboration [82, 83].
¿ese works show that ISPs can aid CDNs in assigning clients to CDN clusters.

Experience Oriented Network Architecture (EONA) [78] argues abstractly that content owners
and infrastructure owners should collaborate to improve end clients’ QoE. ¿ough similar, we
focus on concrete problems faced by CDNs and brokers, and how to �x them.

Other collaboration proposals: Other work on ISP-P2P collaborations [22, 155] or ISP-ISP collab-
orations [103] are also related in terms of their designs. Both have an actor (an ISP) communicate
a set of preferences (i.e., costs) over a set a set of resources (ISP paths), which are then chosen by
another actor (an application / another ISP). Neither, however, treat this as a marketplace where
bids change over time to strategically match performance / cost goals.

Route Bazaar [24] is more closely related in design. It allows customers to build end-to-end
ISP paths using a marketplace. Tuangou [138] propose customer ISPs collaborate to share the
cost of upstream provider service. While similar, neither are directly applicable to CDN-broker
collaboration.

Online marketplaces: We note strong parallels to online marketplaces, in particular those related
to advertising. ¿e most useful for our context are survey papers tracking the evolution from one-
on-one contracts to ad networks (e.g., Google AdWords [56]) to ad exchanges (e.g., DoubleClick by
Google [57]) [125, 141, 161]. Work in other networking domains have also decried �at-rate pricing
in the context of inter-datacenter transfers [76]. Finally, di�erent auction-style pricing mechanisms
have been applied to cloud-computing [153, 162].
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3.10 Summary

¿e introduction of brokers into CDN-based content delivery may have caused many issues for
both CDNs and brokers due to the lack of explicit joint decision making. Using data from both
a broker and a CDN, we show that: 1) brokers need cluster-level info to best meet CP goals, 2)
CDNs are not being fairly paid due to the lack of cluster-level pricing, and 3) tra�c patterns are
unpredictable. We argue that there is a rich design space that solves all three problems, with a
marketplace-inspired design providing potentially nice tradeo�s. We design a marketplace-based
system called VDX that allows all CDNs to pro�t on video delivery, improving cost and data-path
distance.

Within the context of this thesis, this chapter shows that systemswith separate control planes due
to administrative separation do, in fact, bene�t from using priority ranking to coordinate them. ¿e
fact that administrative separation implies constraints on information sharing (as some information
must be kept private for business concerns), makes the use of priority ranking appealing. With
priority ranking (here a marketplace-style interface), each business can explain how they would like
data plane resources used (e.g., map this client to this cluster), without explaining why (e.g., due to
private internal cost concerns). ¿is greatly reduces adverse interactions between control planes.
Next, we examine how even systems operated by a single entity may have information sharing
constraints (e.g., due to timescale separation), and how this changes the nature of coordination
between them.
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Chapter 4 ControlPlanes in Internet-Scale
Systems: A Case Study in
Live Video

In this chapter, we explore one example, in detail, where hierarchical partitioning can be used
to overcome adverse interactions between control planes. Speci�cally, we look at how building
high-quality, responsive internet-scale live video delivery requires combining global and local
control planes. In this scenario, both control planes make speci�c decisions on how to use the
same data plane resources (here how to route live video through the distribution network).

¿is chapter highlights two key di�erences from the previous chapters: 1) even within one
business, there are scenarios that constrain information sharing, and 2) the nature of coordination
designs di�er between systems depending on if their data plane resources are separate or the same.

With VDX (Ch. 3), we saw that coordinating using transparency is untenable between two
business, requiring more complex priority ranking schemes. Here, we �nd that systems that
require internet-scale optimization may run at inappropriate timescales (or granularity) to handle
failures, and thus, require an additional, fast timescale (or �ne-grained) localized control plane.
Despite being run by the same business, this timescale separation (or granularity separation) may
constrain information sharing, precluding such systems from using transparency for coordination,
as compared to systems like Etalon (Ch. 2).

Systems with disjoint data planes use priority ranking to come to a decision mutually bene�cial
to both control planes (e.g., VDX). Systems with shared data plane resources generally prioritize
the global control plane’s decision except in unusual cases (e.g., during failures), when the local
control plane’s decision is used instead (hierarchical partitioning, as explained in Ch. 1). ¿us,
while systems like VDX need a relative complex mechanism (bidding) to build a joint decision, the
system presented in this chapter, VDN, only needs a way to choose between the global or local
decision. ¿is can lead to simpler designs.

We solve the issues presented in our live video delivery scenario with hierarchical partitioning
(here hybrid control), achieving the performance of a centralized control plane, and the responsive-
ness of distributed control plane. We build a system, VDN, where a centralized (global) control
plane has priority in how it decides to use data plane resources (CDN clusters), but in case of
short-term failures or new client joins, a distributed (local) control plane for an individual CDN
cluster (“regions” in hierarchical partitioning) can decide to temporarily override the global deci-
sion, using slack present in the network. ¿us, we argue that hierarchical partitioning (here hybrid
control) is a very reasonable way to build a high performance, responsive internet-scale live video
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Figure 4.1: ¿is chapter focuses on challenges in live video delivery when building an internet-scale system, as
shown with VDN. Looking back at our design space (§1.2.3), internet-scale systems (e.g., VDN, internet-wide
routing, Klein, Bohatei, OSPF Fibbing, Pytheas, C3) have constraints on information sharing between a
global and local control plane, due to the granularity or timescale separation they see at scale. ¿eir control
planes make decisions for a shared set of data plane resources. ¿ese systems should coordinate using
hierarchical partitioning (§1.1).

delivery system. Figure 4.1 summarizes this in the context of our control plane coordination design
space from §1.2.3.

Live video delivery serves as an illustrative (and timely) context: Live video delivery was
estimated to reach a peak of 50 Tbps in 2015 [2]. ¿is surging popularity is fundamentally changing
the Internet video delivery landscape. CDNs must meet users’ demands for fast join times, high
bitrates, and low bu�ering ratios, while minimizing their own cost of delivery and responding to
issues in real-time. Wide-area latency, loss, and failures, as well as varied workloads (“mega-events”
to long-tail), make meeting these demands challenging.

An analysis of video sessions [99] concluded that a centralized controller could improve
user experience, but CDN systems have shied away from such designs due to the di�culty of
quickly handling failures [89], a requirement of both operators and users. We introduce VDN, a
practical approach to a live video delivery network that uses a centralized algorithm for live video
optimization. VDN provides CDN operators with real-time, �ne-grained control. It does this
in spite of challenges resulting from the wide-area (e.g., state inconsistency, partitions, failures)
by using a hybrid centralized+distributed control plane, increasing average bitrate by 1.7× and
decreasing cost by 2× in di�erent scenarios.

4.1 Introduction

Demand for live video is increasing by 4–5× every three years and peak live video streaming rates
were estimated to reach 50 Tbps in 2015 [2]. ¿is demand spans wildly di�erent types of videos
(professionally-produced and user-generated) and workloads (“mega-events” to long-tail). On
one end of the spectrum, the 2014 World Cup (a professionally-produced live video mega-event)
streamed several terabits per second [137], which is estimated to be 40% of all Internet tra�c
during that time [135]. At the other extreme, 55 million Twitch users [145] watch more than 150
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billion minutes of user-generated long-tail live video each month, generated by over 1 million users,
making it the fourth largest Internet tra�c producer in the US [144, 146].

¿is diversity and volume makes live video delivery a complex challenge. ¿e challenges are
further complicated, however, as users, CDNs, and the network environment impose additional
constraints: Users demand high quality (e.g., high bitrate, instant start-up (join) times, and low
bu�ering ratios) [16]; CDNs want to minimize their delivery costs and respond to issues in real-
time [123]; and, the wide-area network environment requires designs that handle common latency
variations and communication failures. In summary, we need a live video control plane that: 1)
scales to the diversity and volume of live video streaming seen by today’s largest CDNs, 2) enables
proactive control over user quality and CDN delivery cost at �ne-grained timescales, 3) achieves
real-time responsiveness to minimize join times and failure response, despite wide-area network
delays and failures.

Previous solutions (e.g., tra�c engineering or overlay multicast) fail to meet all of these require-
ments. State-of-the-art tra�c engineering systems [66, 75] work on tra�c aggregates at coarse
timescales. Users’ demands for high per-stream quality and CDNs’ demands for fast failure recov-
ery require control over individual streams at �ne timescales, as we will show. Overlay multicast
systems [25, 32, 77, 90], while focusing on individual stream optimization, overlook issues that
arise due to the lack of coordination across concurrent, independent, high-bandwidth streams,
as we will also show. Internet-scale, video-speci�c systems like Conviva’s C3 [51] use client-side
analytics to pick the best CDN for a given client at a given time, but do not optimize actual data
delivery, which we target in this chapter.

In order to address these challenges, we propose a new system, called video delivery network
(VDN). VDN is built around the idea that centralized optimization of live stream routing (as
opposed to today’s distributed CDNs) can greatly improve user quality, as shown in previous analy-
sis [99]. Centralization alone is not enough, however, as wide-area latencies and slow optimization
times result in slow join times and failure recovery. ¿us, VDN combines the �ne-grained proactive
control of centralization with the resilience and responsiveness of distributed control in a hybrid
approach.

We evaluate VDN using a large-scale trace-driven simulation based on real live video sessions,
as well as a small-scale WAN testbed. We show that, in a variety of scenarios such as heavy-
head (e.g., a sports game) and heavy-tail (e.g., user-generated streams), VDN provides a 1.7×
improvement in average bitrate or reduces delivery costs by 2× compared to current CDNs. We
scale VDN to 10,000 di�erent videos (each with multiple streaming clients), and also show it can
react at a timescale of 200 ms.

In summary, our contributions are:

• A centralized algorithm based on integer programming that coordinates delivery to provide
high-quality live video streaming at scale, while giving control “knobs” to operators to balance
cost and quality.

• A responsive live video delivery framework that minimizes join time and mitigates WAN
challenges using a hybrid centralized+distributed control plane.
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Figure 4.2: Entities involved in live video distribution. Unlike Conviva’s C3 [51], which focuses on clients, we
focus on optimizing CDNs.

4.2 Motivation

4.2.1 Setting

CDN background: We focus on optimizing CDNs for HTTP-based live video delivery. Each
entity on the video delivery path (see Figure 4.2) can be independently optimized (e.g., clients in
Conviva’s C3 [51]), however the focus of this work is CDN optimization.
Live video: Live video is particularly challenging due to lack of caching and bu�ering within the
delivery network. In HTTP-based live streaming, a video is encoded at multiple pre-determined
bitrates. At each bitrate, each stream is broken into multiple 2–10 second chunks, which clients
fetch independently via standard HTTP GETs. Clients typically adapt to network issues by fetching
di�erent bitrates [1].
CDN structure: Figure 4.3 presents the high-level structure of a CDN’s video delivery system [89,
123, 143]. Each node represents a cluster of co-located servers. A CDN’s internal network consists
of three logical pieces: video sources that import videos into the system, re�ectors that forward
content internally, and edge clusters that directly serve end-users (individual clients or aggregate
ASes). Each link has a delivery cost associated with it. ¿ese link costs are a result of private
business deals, but they tend to be more expensive for source/re�ector links (typically long-haul
WAN links) and less expensive (some entirely free) for edge/AS links [21]. In Figure 4.3, the link
between A and D is a high cost link.
CDNs and DNS: When clients resolve the name of a video stream, the CDN’s DNS-based client
mapping service maps them to a nearby edge cluster, based on a number of factors (e.g., load,
latency, etc.) [123]. When a client’s request for a particular video arrives at an edge cluster, the edge
cluster forwards it to a re�ector (found via DNS), which in turn forwards it to a source (found via
DNS); the content is returned via the reverse path. When multiple requests for the same content
arrive at the same node (e.g., C in the �gure), only one request is forwarded upwards. ¿e end
result is a distribution tree for each video from sources to edge clusters.
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Figure 4.3: CDN live content distribution [123].

¿is has been the design used by Akamai for live streaming since 2004 [89], externally observed
in 2008 [143] and referenced by Akamai in 2010 [123]. We con�rm this holds today [21].

Problems withmodern CDNs: Using DNS to map requests to the appropriate upstream cluster is
very natural as CDN workloads have shi ed from web-oriented to live streaming. Mapping clients
to edge clusters with DNS makes sense, since most live video content is embedded in websites,
which already use DNS. However, using DNS to map internal clusters to upstream clusters causes
issues: 1) CDNs can’t “push” updates to clusters and must instead wait for clusters to “pull” from
DNS a er a timeout period (the DNS TTL); 2) To reduce load on DNS, CDNs group di�erent
videos together, reducing granularity [89, 143]; and 3) CDNs today update DNS mappings using
heuristics [21, 89, 123, 143], impacting performance. We explore these issues in more detail:

DNS TTLs: DNS relies on DNS clients (i.e., clusters) to ask for updates when cached DNS results
expire (every ∼30 seconds) [143], preventing a central controller from sending updates as they are
ready. ¿is reduces the e�cacy of the controller, thus lowering end-user quality and responsiveness
to failures. Furthermore, CDN clusters can spot local network failures long before a TTL-bound
DNS update could arrive and thus could react quicker. Lowering the TTL would help approximate
a “push”-based system but at the cost of a large increase in the number of DNS queries. We explore
this in our evaluation.

Video aggregation: Both popular and unpopular videos are binned into groups called “portsets” to
reduce the load on DNS [89, 143], while also reducing control granularity.

Heuristic-based mapping algorithm: A monitoring system collects performance and load infor-
mation and, based on this knowledge, updates the DNS system every minute [123]. Generally,
CDNs map end-users to edge clusters based on geography, load, whether or not a cluster is already
subscribed to the video, and performance relative to the requester [21, 89, 123, 143]. It is implied that
the mapping of edge clusters to re�ectors is done similarly [123], but the speci�c algorithm is not
publicly known. A measurement study points out that geographically close edge clusters all map to
the same re�ector for the same groups of videos, providing further evidence [143]. Additionally, an
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Figure 4.4: Motivating central coordination.

analysis of video traces shows that mapping requests based on a global view of the network [99]
could provide major bene�ts for end-users, implying there are opportunities for improvement.

4.2.2 Design goals

A proper live video delivery system has two jobs: 1) coordinate the selection of distribution trees
for each video and 2) assign groups of clients within a given geographic region to a good edge
server. It must perform these tasks while meeting the goals listed below.

Video-speci�c quality and low cost (quality/cost tradeo�): CDN operators must satisfy user’s
expectation for high video quality, while minimizing their delivery cost. ¿us, VDNmust optimize
for video quality directly, while considering its cost.

Internet-scale video delivery (scalability): Many di�erent types of workloads exist for live video:
(a) “mega-events” (e.g., World Cup) serving 1M+ users [137], (b) TV-style channels serving 100K
users [70], and (c) “long tail” user channels (e.g., Twitch, Ustream) serving 1-10,000 users [18].
(a) tends to be easier, as one tree can serve everyone, whereas workload (c) is the toughest, as it
requires coordinating across many videos. VDN must support these workloads, out to a target
scale of 10,000 channels [143] and 2000 edge clusters [48], beyond the scale of today’s largest CDNs.
Such scale is challenging as �nding the optimal placement complex (slow) integer programming.

Fine timescale (responsiveness): VDNmust provide fast join time (less than a second) and fast
failure recovery, despite challenges in the wide area (e.g., inconsistent state, partitions, loops).
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Figure 4.5: ¿e importance of coordinating streams generalizes to larger systems. ¿is graph shows the gain
of our system compared to a multicast-style approach as we’ll see in §4.7.

4.2.3 Case for centralized optimization

Despite the lack of public information on how the CDN internal mapping is done, prior work has
shown that a control plane designed around centralized optimization can provide great bene�t [99].
In this section we focus on the reasons for these bene�ts.

Coordination: ¿roughout this chapter, we use coordination to mean the ability to consider all
individual streams simultaneously. As mentioned, modern CDNs have di�culty with this as they
both aggregate videos and get “locked in” to decisions due to DNS TTLs [143]. Figure 4.4 illustrates
why stream coordination can lead to better resource allocation. Two video channels (V1 and V2)
originate from a single source, S. ¿e goal is to deliver V1 to client/AS A and V2 to B. ¿ree possible
distribution trees exist: T1, T2 and T3 (Figure 4.4a). We present two feasible distribution strategies
in Figure 4.4b and c. In Figure 4.4b only client A is served, whereas in Figure 4.4c both clients are
served. ¿e issue is that using distribution tree T2 would congest the RY link. However, knowing
this in advance is di�cult; it would require not only knowledge of network resources, but also
the placement of other streams. A natural solution would be centralization, which a�ords both a
global view of the network and the ability to coordinate streams.

¿is observation generalizes to large-scale networks. Figure 4.5 compares a systemwith a global
view that places streams independently without coordination (OM in §4.7) to one that has a global
view and coordinates streams (VDN in §4.7) for a 100 node topology. With 10K videos, we observe
up to a 100% improvement in average bitrate.

Application-speci�c optimization: Generic tra�c engineering at a centralized controller is not
enough; we must perform app-speci�c optimization. For example, in Figure 4.6, two videos are
encoded as low quality (400 Kbps) and high quality (1500 Kbps) versions. Due to bandwidth
constraints (Figure 4.6a), we must deliver both over link RY . We present two ways to allocate band-
width in Figure 4.6b and c. Despite fairly allocating bandwidth between the streams, Figure 4.6b
does worse overall, as both clients only receive the low quality stream. Figure 4.6c is “unfair”, but is
a better strategy as one client is able to get the higher quality stream. ¿us, careful consideration of
bitrate at the granularity of streams is needed to provide the best quality.

From the two examples, we conclude that we can improve quality with: 1) a global view of
network resources; 2) coordination across streams; and 3) consideration of the streaming bitrates.
¿is argues for a video-speci�c control plane that is logically centralized.
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Figure 4.6: Motivating app-speci�c optimization.

4.2.4 Case for hybrid control

Live video-speci�c, centralized optimization alone is not su�cient. A fully centralized system
would require new video requests to reach the controller across WAN latencies before the video
could be viewed, yielding slow join times. Additionally, centralized optimization using an integer
program can take quite long (e.g., 10s of seconds), making join times terrible. A distributed scheme,
by comparison, provides low join times and fast failure recovery, as nearby clusters could react to
requests immediately. We argue, however, that a distributed scheme is challenged to provide the
high quality demanded by users at reasonable cost, due to the lack of coordination (§4.2.3).

A combination of the two schemes, with the quality of a centralized system and the responsive-
ness of a distributed system would be best suited. We refer to this combination as hybrid control.
We avoid poor interactions between the two control loops by exploiting properties of our highly
structured topology (§4.2.1) and by keeping track of alternate paths (“slack”) in the network with
enough capacity for each video channel (§4.4).

4.3 VDN system overview

Our solution, “video delivery network” (VDN), reuses existing CDN internal infrastructure (source
clusters, re�ector clusters, edge clusters, and DNS), but employs a new control plane based on
hybrid control—a centralized controller makes optimal decisions slowly based on global state,
while individual clusters simultaneously make decisions quickly based on distributed state. VDN
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treats each cluster as an atomic unit (as in Figure 4.7) and controls the distribution of live video
from sources to clients; tra�c management within a cluster is outside the scope of this work.

When video v is requested at bitrate b by a client in an AS a, a request is sent to VDN’s DNS
server; the response directs the client to send video chunk requests to a nearby edge cluster. If this
edge cluster knows about v (i.e., has a entry for (v, b) in its forwarding table), then it forwards the
request upstream accordingly. If not, it runs the distributed control algorithm (§4.4.2). Re�ectors
pick source clusters similarly. ¿e video chunk follows this path in reverse. Eventually, centralized
control updates the clusters’ forwarding tables (§4.4.1 and 4.5).

As a control plane, VDN (1) populates application-layer forwarding tables at each cluster with
centrally computed entries, (2) creates forwarding table entries on-the-�y when necessary using
distributed control, and (3) updates the client to edge server mapping accordingly in the DNS
infrastructure.

4.3.1 Design

Physical view: VDN introduces two physical pieces to the traditional CDN infrastructure: a
logically centralized central controller and a local agent in each server cluster. ¿e central controller
and local agents are each decomposed into two pieces: (1) a discovery subsystem that tracks
incoming requests and topology information, and (2) a control subsystem that computes path
assignments based on network state.

Logical view: VDN’s control plane is driven by two control loops, which update clusters’ forward-
ing tables at di�erent timescales. A central control loop computes optimal distribution trees (as
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well as client/server mappings) using the algorithm described in §4.5. ¿is loop runs continuously
and operates on the timescale of tens of seconds to minutes. Meanwhile, the local agent runs
a distributed control loop that amends its cluster’s forwarding table to quickly (i.e., sub-second)
respond to local changes (e.g., link failures) using distributed state.

Central control loop:
1 Local discovery measures link information and tracks AS- and cluster-level channel viewer-
ship.

2 Global discovery collects measurements from each cluster and builds a global network view.
3 Global control computes optimal distribution trees.
4 Local control merges local state with the global decision and updates the forwarding table.
5 Global control updates DNS.

Distributed control loop:
1 Local discovery measures link information and tracks AS- and cluster-level channel viewer-
ship.

2 Local control merges local state with the global decision and updates the forwarding table.

¿e two loops have di�erent views of the system, and use their information for di�erent
purposes. ¿e central loop sees all clusters, the status of their links, and channel viewership
information so that it can assign optimal distribution trees. ¿e distributed loop sees local link
conditions and video requests at one cluster as well as a small amount of distributed state. ¿e local
agent merges the controller’s decision with this information and installs appropriate forwarding
rules. Our hybrid control plane strikes a balance between the high quality of a centralized system
and the responsiveness of a distributed system.

4.4 Hybrid control

Running two control loops in tandem can lead to challenges that destroy any bene�t that either
control loops would have had individually, resulting in a “worst of both worlds” scenario, as
hinted in §4.2.4. When distributed decision-making is used, hybrid control handles this by only
considering end-to-end paths in the network that were purposely le with “slack” (additional
bandwidth). In this section we examine the interactions of our central and distributed control
loops in detail and how we balance them, as well as how hybrid control mitigates issues in the
wide-area.

4.4.1 Central control

Central control takes in a global view of the network (video requests and topology information) as
input and uses the algorithm described in §4.5 to calculate the optimal con�guration of distribution
trees as output. To avoid having a single point of failure, VDN uses multiple geo-replicated
controllers, synchronized with Paxos [92]. A er making a decision, VDN’s central controller
distributes it to individual clusters. To do this, the central controller sends each cluster’s local agent
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Routing Information Base
Central / Channel Next Hop Version Evidence
Distributed Network Stats Viewership Stats

C V0 / 800 / * R2 15:20 Link1: 10Mbps V0: {800} Kbps,
Link2: 15Mbps 3000 requests

D V0 / * / * R1 15:23 Link1: 10Mbps V0: {800} Kbps,
Link2: failed 3007 requests

Forward Information Base
Channel Version Next Hop

V0 / * / * 15:23 R1

Table 4.1: Sample RIB and FIB entries. ¿e local agent uses network and viewer state as “evidence” to decide
when to override potentially stale decisions from the central controller.

a routing information base (RIB) speci�c to that cluster, as shown in Table 4.1. VDN’s RIB contains
information to support hybrid decision-making in addition to the typical routing information
(e.g., a pre�x and a next hop). In particular the RIB maintains where the information came from
(centralized or distributed control), a version number (timestamp), and a set of “evidence” providing
the context when this particular RIB entry was computed (link and viewership information sent by
this cluster to the central controller when this decision was computed). Evidence helps distributed
control decide if it should override the central control decision.

¿e RIB gets merged with distributed control’s own decision to become the Forwarding In-
formation Base (FIB), used by the data plane. If distributed control decides nothing is amiss, the
central control RIB entry’s (channel pre�x, version number, next hop) tuple is used directly as the
FIB entry.

Discovery: In order for central control to generate good distribution trees, it needs to have up-
to-date information on the state of the network and requests. Keeping track of new requests is
relatively simple at the edge clusters. Estimating changes in link capacity available to applications
in overlay networks (e.g., due routing changes, background tra�c, or failures) is a well studied
topic [100, 131, 142], and is thus considered out of scope in this work.

4.4.2 Distributed control

Distributed control keeps track of viewership and path information of upstream neighbors to make
quick local decisions in response to changes in network performance, viewership, and failures. ¿e
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Distance & Capacity Table
For Node A Via X Via Y Via Z

To v0, b1 1, 5000 1, 1500 2, 4500
To v1, b1 2, 2000 1, 1500 2, 4000
To v2, b1 2, 5000 1, 1500 1, 3000

Table 4.2: Example of the distributed state table used in Algorithm 1.

objective is to improve responsiveness by avoiding the costly latency of centralized optimization.
¿us, distributed control overrides the central decision in response to dramatic changes.

Initial requests (DNS): VDN’s DNS takes into account the user’s geographic location and AS
in order to map them to the proper edge cluster as computed by the central controller. If this
particular AS has not previously been assigned to an edge cluster, simple heuristics are used to
provide a reasonable starting assignment (e.g., an edge cluster that already is subscribed to this
video, an edge cluster that’s typically used by this location/AS, etc.). ¿is provides an initial instant
mapping of clients to edge clusters.

Distributing state: Clusters distribute video subscription and link information to other nodes
via a distance vector-like algorithm to aid in reacting to large changes. Each cluster periodically
(e.g., every second) sends all connected clusters at the next lower layer (see Figure 4.3) its “distance”
from each channel+bitrate (v , b), denoted d(v , b), representing how many hops away it is from a
cluster that is subscribed to v at bitrate b; if a cluster is already subscribed to v at bitrate b, then
d(v , b) at that cluster is 0. Recall that we focus on live video, thus caching is largely unhelpful;
clusters only advertise videos they are currently receiving.

When a cluster receives these distance values, it stores them in a table (see Table 4.2) along
with the available capacity of the bottleneck link on the path to that cluster c(v , b). ¿e cluster
propagates the distance to the closest subscribed cluster with enough path capacity for this bitrate
downwards, similar to a distance vector protocol.

Reacting to large changes: If distributed discovery has detected signi�cant changes in the local
network state or viewership used to calculate the most recent central decision (i.e., the “evidence”
in the RIB entry), it concludes that its current central forwarding strategy is out of date. Speci�cally,
a cluster considers a RIB entry stale if one or more of the following conditions are met:

• A link referenced in the evidence changes capacity by some percentage (e.g., 20%) set by the
operator.

• A link, node, or controller fails, as detected by a timeout.
• It receives a request it doesn’t have a FIB entry for.
If the central control “evidence” is deemed invalid, a forwarding strategy is computed by

Algorithm 1, using local request and link information as well as the distributed state from upper
nodes (Table 4.2).

For example, when a cluster receives a request for a video it’s not subscribed to, it uses its table
to forward the request to the parent “closest” (based on “distance” d() values) to the video that
has enough spare path capacity (c()). If there are no paths available the request is denied, to be
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Input: request for channel v, bitrate b
Output: next-hop cluster for channel v, bitrate b

/* randomly pick a parent that has a min-hop path to (v , b) with enough
capacity to support delivery */

use f ul ∶= ∅
for parent in parents do

if d(v , b)via_parent ==min(d(v , b)) and
c(v , b)via_parent > b then
use f ul = use f ul ∪ {parent}

end
end
return pick_at_random(use f ul)

Algorithm 1: Distributed control algorithm.

serviced by a di�erent edge cluster. It breaks ties randomly to avoid groups of clusters potentially
overloading a high capacity cluster a er failure. If the parent is not already subscribed to the
video, the process repeats until a subscribed cluster is found. ¿e algorithm produces a forwarding
strategy that VDN places in the RIB and FIB of the cluster for future use (Table 4.1). Large-scale
link variations, link failures, and node failures, can all be handled by treating the existing videos as
new requests.

Discussion: ¿e algorithm ensures that video streams that deviate from central control only
traverse paths with enough spare capacity to support them. ¿is is critical because it means that (1)
if the parent of a cluster is already subscribed to the requested video (and has ample bandwidth to
the requesting cluster), requests to this cluster will not propagate past the parent (i.e., 1 hop), (2)
more generally, in an n-level CDN (where n is typically 3 today), only n − 1 clusters are a�ected by
network / viewership changes as clusters only forward to parents on a path with enough capacity,
always reaching source nodes a er n − 1 hops, and (3) clusters that are involved in this algorithm
will not be forced to degrade the quality of an existing stream, as we know there is enough capacity
on the path to support the incoming request. ¿us, the distributed algorithm will not interfere
with central control’s already implemented decisions.

Note, through the use of distributed/central discovery, the central controller will eventually
become aware of new requests and failures. By checking evidence in the RIB, clusters will know
when central control has “caught up” to the current network state at which point they make the
past local decisions obsolete.

4.4.3 Issues in the wide area

Handling state transitions: When requests are sent up the distribution tree for a given channel,
they are tagged with the version number from the RIB. VDN keeps previous versions of the FIB
(“shadow FIBs”) to allow clusters to forward requests with old version numbers (e.g., during global
state transitions), similar to previous work [53, 85, 106]. When an unknown version is encountered,
VDN resorts to using distributed control.
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Partitions: Versioning helps with network partitions, where some clusters no longer receive
updates from the central controller. Clusters that are partitioned (“invisible” clusters from the
controller’s perspective) can still interact with “visible” clusters by using these old version numbers.
Eventually the partitioned clusters will switch to exclusively distributed control a er they detect
that they’re partitioned (e.g., a er a controller timeout). As distributed control and central control
interact in bene�cial ways, partitions are also not a problem.

Loops: Our system cannot have loops as requests only travel “upwards” towards sources, and
responses “downwards” towards ASes in our hierarchy.

4.5 Centralized optimization

¿is section describes our optimization algorithm that maximizes the overall service VDN delivers
to each video channel while minimizing cost. Our algorithm takes in video requests and topology
information and outputs the best way to distribute those videos. While the formulation is relatively
straightforward, the easiest way to achieve scalability is to eschew �nding the true optimal solution
in favor of �nding a good approximately optimal solution that can be computed relatively fast.
¿e optimization is called iteratively (around once a minute) allowing parameters (e.g., measured
capacities, link costs, new requests) to be modi�ed each iteration.

Input:
Videos: We denote a set of live video channels asV = {v1, . . . , vk}. Each video channel v has its own
set of bitrate, Bv . Our system treats each item in V × B as a distinct video object. We denote the set
of video objects as O = {o1, . . . , om}. Bitrate(o) is the bitrate of the video object o in Kbps. Every
video object o has a priority weight associated with it, Priorityo > 0, set by operators indicating
how important it is to serve o.

Topology: Our network topology (see Figure 4.9a) is a directed graph made of server clusters
(sources, re�ectors, and edges as explained in §4.2) and ASes, connected by links {l1, . . . , ln} ⊂ L
in a four-tier topology. We assume each video object is available at each source cluster (not
unreasonable [123], but not fundamental). We add additional dummy links out of every AS node
in the graph 1. We refer to this set of dummy links as LAS ⊂ L. For some link l = (s, s′), InLinks(l)
is the set of incoming links to s.

Link capacities: Each link l ∈ L has a capacity de�ned by Capacity(l), in Kbps. ¿is capacity is the
measured amount of capacity of the overlay link available to video delivery (i.e., the overall path
capacity minus background tra�c), which is updated by information from local discovery.

Link costs: Additionally, each link l ∈ L has a cost de�ned by Cost(l) indicating the relative price
for delivering bits over that link. ¿is cost can vary over time (i.e., updated between iterations
of the ILP) as updated by management (e.g., a er business negotiations a link is perhaps free:
Cost(l) = 0; perhaps cost varies based on usage, such as “95-percent-rule” billing; or even more
complicated policies such as a cap on total externally-bound tra�c, etc.).

1¿is is a common technique in optimization to make the formulation easier.
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max ws ∗∑l∈LAS ,o∈O Priorityo ∗ Requestl ,o ∗ Servesl ,o
− wc ∗∑l∈L,o∈O Cost(l) ∗ Bitrate(o) ∗ Servesl ,o
subject to:
∀l ∈ L, o ∈ O ∶ Servesl ,o ∈ {0, 1}
∀l ∈ L ∶ ∑o Bitrate(o) ∗ Servesl ,o ≤ Capacity(l)
∀l ∈ L, o ∈ O ∶ ∑l ′∈InLinks(l) Servesl ′ ,o ≥ Servesl ,o

Figure 4.8: Integer program at the controller.

Requests are associated with a link in LAS (i.e., a requesting AS) and a video object. For some link
l ∈ LAS associated with an AS a, if a request for video o originates from a then Requestl ,o = 1, else
Requestl ,o = 0.
Weights: ¿e system operator provides a global weight for cost wc ≥ 0 and a global weight for
service (performance) ws ≥ 0 to strike a balance between performance and cost.

Formulation: Figure 4.8 presents our problem formulation. ¿e optimization takes the following
as input (and treats them as constants): ws, wc, Priority, Request, Cost, Bitrate, Capacity, and
InLinks. It outputs variables Servesl∈L,o∈O ∈ {0, 1}, which indicates whether video object o should
be distributed over link l .

Our objective function directly maximizes service, while simultaneously minimizing its cost
(i.e., max : service − cost). We model service as∑l∈LAS ,o∈O Priorityo ⋅ Requestl ,o ⋅ Servesl ,o. ¿us we
only serve videos objects to ASes that requested them, with the biggest wins coming from higher
priority video objects. Service is only improved if a requested video reaches its destined AS. As
for priority, we explore various schemes (exploring the quality/quantity tradeo�; e.g., prioritize
high bitrate requests or prioritize satisfying as many low bitrate requests as possible) in §4.7.1. We
model cost as∑l∈L,o∈O Cost(l) ⋅ Bitrate(o) ⋅ Servesl ,o, the amount of data being transferred around
(and out of) the CDN times the link costs.

Our constraints encode the following:
1. A link either does or doesn’t send a video.
2. Obey the link capacity constraint.
3. Only send videos you’ve received.

Output: Servesl ,o, determines a set of distribution trees for every requested video. ¿is can be
easily translated into forwarding tables for incoming requests within the CDN internal network,
and DNS records for mapping clients to edge clusters.

Example: Figure 4.9 gives an example input with two channels V1 and V2, with stream bitrates
of [200, 800] and [300, 900] Kbps respectively. We see that the operator has decided that video
object (V2, 900) has a very high priority (100)—this may be a stream viewers pay to watch (e.g., a
pay-per-view sports event). Figure 4.9a shows the topology, link capacities, and costs. Link YA has
a relatively high cost of 10. Figure 4.9b shows the optimization result in which two requests for
V1 are satis�ed. Note, the optimization avoids using the high cost YA link, even though it would
have cut down the total number of links used, reducing redundant data transmissions. Once a
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Video Bitrates Priorities Requests (at Start)
(Kbps)

V1 [200, 800] [1, 1] (A, 800), (B, 800)
V2 [300, 900] [1, 100] -
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Figure 4.9: Example input and output of the centralized optimization.

third request is added (for the high priority stream V2), we observe that YA is used, as the video’s
priority outweighs the high link cost.

Approximating optimality: An integer program can take a very long time to �nd an optimal
solution. We employ two techniques (initial solutions and early termination) for fast approximation.

O en a good initial solution can dramatically reduce the integer program runtime. Although
it’s tempting to reuse the previous central decision as the initial solution for the next iteration, our
formulation changes enough (e.g., new link capacities, video requests, etc.) per iteration that our
previous decision may no longer be valid. ¿us, we instead we calculate an initial solution greedily.

Another important parameter of integer programs is the termination criteria. O en integer
programs will �nd a feasible solution very quickly that is only slightly worse than optimal, then
spend many minutes working towards the optimal solution. ¿is time/quality tradeo� guides our
decision to use a timeout to terminate our optimization. In Figure 4.10 we plot theMIP gap2 as
a function of computation time for di�ering numbers of videos. We see that for all series up to
our target scale of 10,000 videos (see §4.2.2), a 60 second timeout can provide an almost optimal
solution (e.g., ∼1%)). Although 60 seconds may seem like a long timescale for optimization with
respect to view duration, live video viewers watch on average 30 minutes per session [124], making
this a reasonable target.

2¿e distance between the current upper and lower bounds expressed as a percentage of the current upper bound
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Figure 4.10: ¿e centralized optimization MIP gap shows rapid improvement in a short time-frame, even
for large numbers of videos.

4.6 Prototype implementation

Control plane: We build a prototype central controller that uses Gurobi [60] to solve the integer
program. For trace-driven experiments, we run the controller on an r3.8xlargeEC2 instance [7]. For
end-to-end experiments, we use a smaller number of nodes than trace-driven, thus the controller
runs comfortable on a much slower machine with a 2.5GHz quad-core Intel Core i5 processor with
4GB of RAM. For these experiments, our controller communicates with data plane nodes over the
public Internet, with measured ∼10ms latency.

Data plane: We build a prototype data plane for our end-to-end experiments using Apache [46]
running on t2.small EC2 instances. Our data plane uses standard Apache modules: mod_proxy
con�gures nodes as reverse HTTP proxies andmod_cache gives us multicast-like semantics. ¿e
use of Apache is representative of a real-world deployment as modern live video streaming is
HTTP-based. Since these nodes communicate with the controller across the WAN, we see realistic
cross-tra�c, loss, and delays representative of a real-world deployment.

4.7 Evaluation

We evaluate VDN in two ways: a trace-driven evaluation of the central optimization focusing
on the quality/cost tradeo� and scalability; and an end-to-end wide-area evaluation to test the
responsiveness and performance of hybrid control in the presence of variation and failures in
real-world environments.

4.7.1 Trace-driven evaluation

We answer three questions:
1. Does VDN improve video quality and reduce cost? VDN improves the average bitrate at
clients by 1.7× in heavy-tail scenarios and can reduce cost by 2× in large-event scenarios
over traditional CDNs.
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2. How does VDN scale? How sensitive is VDN to the network topology?We scale VDN’s control
plane to 10K videos and 2K edge clusters and see it performs well even with low topological
connectivity.

3. How much control do operators have over VDN?¿e knobs o�ered by VDN are sensitive
enough for operators to �ne-tune the quality/cost tradeo� and distribution of service over
bitrates and videos.

Traces: We evaluate the e�cacy of our controller with three traces representative of common
workloads:

• Average Day: A one-hour trace from a service provider with detailed client-side analytics
for a large number of live video providers. It is comprised of 55,000 requests for 4,144 videos
from 2,587 cities (18,837 clients) and an average request bitrate of 2725 Kbps. ¿is trace has a
long tail: 7% of the videos account for 50% of the requests. ¿is represents an average day for
a low-demand live video service.

• Large Event: A partially synthetic trace made by adding four concurrent sports games with
1 million simultaneous viewers each to Average Day. It is comprised of 48M+ requests
for 4,148 videos from 2,587 cities (4M clients) and an average request bitrate of 2725 Kbps.
¿is trace has a very heavy head: 99.89% of requests are for one of the sports games. ¿is
represents a heavy (but easily coordinated) load. Although the requests are synthesized, the
request bitrate and arrival times maintain the same distribution as the raw trace.

• Heavy-Tail: A synthetic trace generated from Average Day imposing a heavy tail distribution
with narrower bitrate variety. It is comprised of 240,000 requests for 10,000 videos from 2,587
cities (82,000 clients) and an average request bitrate of 6850 Kbps. ¿is trace has a heavy tail:
the lowest 99% of videos (the tail) account for 60% of requests. Bitrates are drawn from the
recommended 240p, 480p, 1080p (400, 1000, 4500 Kbps) guidelines from YouTube live [159],
with an additional bitrate of 30Mbps representing future 4K streams. ¿is represents a heavy
load that is hard to coordinate, akin to Twitch or Ustream. Although this trace is synthesized,
the mapping of clients to cities and the request arrival times maintain the same distributions
as the raw trace.

Topology: ¿e traces contain no information about the internal CDN topology, so we generate a
three-tiered topology similar to current CDNs [123] consisting of 4 source clusters, 10 re�ectors,
and 100 edge clusters. Akamai has roughly 1,800 clusters (1,000 networks) located worldwide [48],
so this is roughly the right scale for US-wide distribution. We push the scale of the topology up to
2,000 clusters in some experiments. We use a “hose model” to determine link capacities in our
overlay network. Each source is given 1 Gbps to split between 100 Mbps overlay links to each of
the 10 re�ectors. Each re�ector has 3 Gbps to split into 100 Mbps overlay links to 30 of the 100
edge clusters. Each edge cluster is given 9 Gbps to connect to clients. We chose these capacities
based on the high cost of long-haul WAN links (see §4.2.1).

Our prototype considers requests at the granularity of client groups, which we de�ne to be (city,
AS) pairs; we assume caching and/or multicast with a client group can e�ciently distribute videos
to individual users. Edge clusters are randomly placed in the 100 largest cities (determined by
number of requests from that city) and each client group is connected to the 3 nearest edge clusters
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EE OM CDN VDN

Avg. Bitrate 624 2,725 2,725 2,725
Cost / Sat. Req. 174 1.1 1.54 1
Clients at BR 12% 100% 100% 100%

Table 4.3: Average Day trace.

EE OM CDN VDN

Avg. Bitrate 0.08 2,725 2,725 2,725
Cost / Sat. Req. 167K 1.1 2.0 1
Clients at BR 0% 100% 100% 100%

Table 4.4: Large Event trace.

EE OM CDN VDN

Avg. Bitrate 812 1,641 2068 3,454
Cost / Sat. Req. 7.7 4.1 1.2 1
Clients at BR 25% 34% 54% 78%

Table 4.5: Heavy-Tail trace.

with 150 Mbps overlay links. (Cities in our traces are anonymized, so each city ID is randomly
assigned a coordinate on a 2D grid to estimate latency.)

In addition, we assign each link a cost, loosely modeling a CDN’s cost for transferring data on
that link. Source-re�ector and re�ector-edge link costs vary from 10 to 50 units over a normal
distribution. Links from edge clusters to client groups are handled di�erently: half have a cost of 0,
since CDNs o en strike deals with edge ISPs [21]; the remaining half vary from 1 to 5.

Methodology: We break each trace into one minute windows and compute distribution trees for
each window using VDN and three additional strategies:

• Everything Everywhere (EE)—¿is strawman naively tries to stream all videos to all edge
clusters so clients can simply connect to the nearest cluster.

• Overlay Multicast (OM)—¿is strawman represents an “optimal” overlay multicast-like
scheme. Each video channel individually computes the distribution tree with the highest
quality (found using our integer program). ¿is is e�ectively VDN without coordination
across channels.

• CDN—We model a DNS-based CDN that extensively monitors links and servers [21, 89, 123,
143]. As there is not public information on the speci�c algorithm used to produce these
DNS mappings, we use the following model (based on measurement studies [99, 143] and a
high-level description [21, 123]): upon receiving a request for a new video, a cluster picks the
parent with the highest path capacity that is already subscribed to that video. If no parents
are subscribed, it picks the parent with the highest path capacity. ASes are mapped to edge
clusters that are geographically close (based on their city ID) and lightly loaded. Unlike OM,
CDN does not focus on optimal end-to-end paths, just individual overlay links. ¿is model is
more �ne-grained than an actual CDN as it considers each video independently [143]. CDN
assumes that server selection is stored in a DNS cache with a TTL of 30 seconds [143]. We
also test a variant, CDN-1, with a 1 second TTL. Note that CDN-1 would cause a large number
of DNS requests, especially if combined with per-video control.

Metrics: We use three performance metrics:
• Average Client Bitrate—¿e average bitrate delivered to each client in the trace.
• Cost / Satis�ed Request (Cost / Sat. Req.)—¿e cost of data transfer per client who receives
the bitrate they request, i.e., the sum over all links of (link cost × usage) / number of satis�ed
requests.

• % of Clients Satis�ed at Requested Bitrate (Clients at BR)—What percentage of the client
requests were served at the bitrate they requested? (Clients not served will re-request at
lower bitrates.)
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Figure 4.11: Scaling load: increasing the number of videos.

Trace results

Tables 4.3, 4.4, and 4.5 summarize the results across our workloads. Each number is the average
across one minute time windows in the trace. In Average Day and Large Event, VDN, CDN, and
OM serve all videos at their requested quality (thus achieving the best possible average bitrate
for the trace). Additionally, VDN reduces the delivery cost by 1.5-2× compared to CDN. As CDN
and VDN both satisfy all clients, this decrease in cost must come from VDN �nding lower cost
distribution trees than CDN. ¿e Large Event workload is easy to satisfy as almost all edge clusters
should receive the four sports games. OM is as e�ective as VDN in both workloads.

Heavy-Tail is the toughest workload to coordinate. VDN provides a 1.7× improvement in quality,
while serving 24% more clients at their requested bitrate. ¿is is because other schemes react to
requests individually; DNS-based schemes like CDN get “locked in” to decisions until DNS records
time-out, making it hard to coordinate streams, whereas VDN performs optimization across all
requests simultaneously. With OM, the lack of coordination causes a 44% degradation in satis�ed
requests and a 4× increase in cost.

Exploring the parameter space

Next we use our traces to evaluate the control plane scalability and the topology sensitivity of
VDN.¿roughout, we compute naive upper bounds (UB) on “average bitrate” and “% satis�ed at
requested bitrate” by comparing the demand placed on each level in the topology to the aggregate
capacity at that level.

Control plane scalability: As we increase the number of videos and the size of the topology, we
are interested in (1) the quality of the assignments VDN makes and (2) the time it takes to compute
those assignments.

Number of videos: In Figure 4.11, we augment Heavy-Tail with increasing numbers of videos and
requests, keeping the video/request ratio, topology, and capacity constant. As we stress the system,
it becomes more di�cult to place videos. ¿us, coordination becomes more important with less
spare capacity in the network. Since VDN considers all streams simultaneously, unlike CDN and
OM, as load increases the gap between them grows in terms of both quality (up to 1.6×; Figure 4.11a)
and the number of clients satis�ed at the requested bitrate (Figure 4.11b). CDN-1 does marginally
better than CDN, but a system with path-level optimization and per-stream coordination (e.g.,
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Figure 4.12: Scaling network size: increasing the number of edge clusters.
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Figure 4.13: Topology sensitivity: (x , y, z) indicates re�ectors are connected to x sources, edge clusters to y
re�ectors, and client groups to z edge clusters.

VDN) does substantially better, as expected. Interestingly, OM satis�es fewer clients than CDN,
most likely due to OM grabbing key resources early, starving later clients.

As expected, VDN’s improved assignments come at the cost of longer decision times (Fig-
ure 4.11c). However, in this experiment, we intentionally pushed the system outside the bounds of
reality; in realistic scenarios for this topology and workload (up to 6,000 videos), decision time
remains under 60 seconds (in line with §4.5). In the real world, if a CDN expects to serve upwards
of 6,000 videos in a heavy-tail workload, we imagine the network capacity would be upgraded as
well.

Network size: We expand Average Day to 10K videos (to increase demand) and vary the number of
edge clusters (Figure 4.12). We see that VDN maintains the ability to satisfy roughly 90% of clients
at their requested bitrate (e�ectively the naive upper bound) in 60 seconds for this workload (as
opposed to Heavy-Tail, which required 190 seconds; Figure 4.11c).

Topology sensitivity: Next, we explore the impact of the network topology on the designs. We
vary two aspects of the topology: (1) the degree of connectivity between tiers of the CDN and (2)
the aggregate network capacity between tiers (bottleneck placement).

Network connectivity: Figure 4.13 shows the impact of network connectivity. As we increase the
number of links between tiers, we decrease their individual capacities so the aggregate capacity
between those tiers remains constant. In general, a less connected topology is going to be easier to
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Figure 4.14: Bottleneck location: improvement over CDN with the bottleneck between source/re�ector links,
re�ector/edge cluster links, and edge cluster/client links.

manage as fewer links potentially means fewer failures. CDN performs better in highly connected
topologies, likely because it has more opportunity to �nd upstream neighbors that already have
the video they’re looking for. VDN, on the other hand, is not signi�cantly a�ected; it is able to
e�ectively use a small number of large links. OM does not bene�t from more connectivity as it
focuses on path quality rather than link quality.

Bottleneck placement: We evaluate the impact of the location of the capacity bottleneck. We
begin with the topology described in §4.7.1; the aggregate capacity from sources to re�ectors is 4
Gbps, from re�ectors to edge clusters is 30 Gbps, and from edge clusters to client groups is 900
Gbps (denoted (4, 30, 900) and named Source Constrained). We now construct two additional
topologies: Re�ector Constrained (400, 30, 900) and Edge Constrained (4000, 3000, 900).

Figure 4.14 shows VDN’s percentage improvement over CDN as a function of number of videos
(generated from Average Day). We see the largest gains in Source Constrained; we expect this
scenario to be themost realistic since their long-haul links aremore expensive than links at the edges
(as pointed to by Akamai [2, 21]). In all three cases, VDN improves average bitrate (Figure 4.14a). It
also reduces cost up through 6,000 videos (Figure 4.14b), at which point (in Source Constrained)
it slightly increases cost in favor of 28%-45% quality improvements— next, we discuss how to
explicitly control this tradeo�.

Customizing VDN

Quality vs. cost: By adjusting the weight of the global cost term in the objective function, operators
can tune the quality/cost tradeo�. Figure 4.15a shows an ROC-like curve depicting the average
bitrate and data transfer cost in Heavy-Tail as the weight of the cost term varies from 1 to 0. For
comparison, we plot CDN, CDN-1, and OM’s performance on the same trace. VDN achieves about a
1.7× increase in performance over CDN for the same cost (1.5× over OM and CDN-1), or can reduce
cost by 60% at similar quality.

Quality vs. quantity: VDN allows operators to assign each (video, bitrate) pair a priority. We
test three priority assignment strategies: Quality (priority = bitrate), Balanced (priority = 1),
and Quantity (priority = 1/bitrate). Quality favors serving high bitrate streams; Quantity favors
serving as many streams as possible. Figure 4.15b shows the percentage of satis�ed requests for
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Figure 4.15: VDN gives operators �ne-grained control.

each strategy broken down per bitrate for Heavy-Tail. Quality favors the 4K streams and Quantity
favors sending more streams overall, as expected. ¿is allows operators to not only control how
video is delivered, but what is delivered (e.g., ensuring premium customers always receive HD
streams even when many free customers request SD streams).

4.7.2 End-to-end experiments

We answer two questions:
1. Is VDN highly responsive? VDN reacts to events at a timescale of 200 milliseconds while
staying within 17% of the optimal decision.

2. Does VDN cope well with the issues of a wide-area environment? Hybrid control allows VDN
to function well despite losing controller updates and performs similarly to other schemes
during high link �uctuations (tra�c dynamics).

Setupand topology: Weuse 10 co-located nodes onEC2 [7], each representing a cluster, con�gured
in a three-tiered CDN topology (described in §4.2). Two nodes are sources, another two are
re�ectors, and the remaining six are edge clusters. Each tier is fully connected to the next one, with
measured link capacities of 75 Mbps. ¿e controller is located outside of EC2 in the eastern US,
communicating with EC2 via the public Internet.

Methodology and tra�c: To demonstrate the bene�ts of hybrid control, we compare VDN to two
other designs. Fully Distributed relies entirely on the distributed control algorithm in §4.4 and
Fully Centralized uses only the central controller in §4.5. For each experiment we generate 200
videos, each requested by one client to a random edge cluster. Each channel has multiple bitrates:
200 Kbps, 600 Kbps, and 1.4 Mbps. We add a new channel to the system once a second. With
10 nodes and 75Mbps links, 100 videos can easily place great load on the system. 100 videos *
1.4Mbps is ∼150Mbps, �lling two of the four source/re�ector links. 200 videos would �ll all four
links, overloading the system. ¿e video client is a simple HTTP chunk requester that always
fetches a new chunk 2 seconds (the chunk duration) a er the previous chunk was received.
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Figure 4.16: Client-side quality in testbed: increasing the number of videos.

Quality of experience

Figure 4.16a shows the average client bitrate as requests are added. Similar to the trace-driven
evaluation, in a system with medium load, VDN gives up to a 2x performance gain over Fully
Distributed. As the system becomes more loaded, Fully Distributed sharply drops while VDN and
Fully Centralized decay gradually. Even when the system is under medium loaded, VDN stays
close to the controller’s original decision (Optimal). Once the system reaches heavy load (∼150
videos), other problems emerge (e.g., connection establishment overhead, request incast) causing
performance to decay.

In Figure 4.16b, we see that VDN is highly responsive. Although Fully Centralized provides
good average bitrate during load, its join time (time from request to �rst byte of video) su�ers (∼7
seconds, compared to VDN’s ∼200 milliseconds). Fully Distributed also provides sub-second join
times, but as the system gets loaded, it sees massive spikes in latency as the lack of coordination
overloads interior clusters.

Figure 4.16c shows bu�ering ratio. Despite having good quality overall, Fully Centralized has a
much worse bu�ering ratio due to its lack of responsiveness.

Coping with network events

Figure 4.17a shows the e�ects of link �uctuations. We select 25% of links at random, degrade their
capacity by increasing amounts (using tc), and measure the performance 10 seconds a er adding
10 channels. We see that all three systems perform similarly.

Figure 4.17b shows the e�ects of loss. We drop updates from the controller and measure the
performance 10 seconds a er adding 10 channels. As expected, Fully Centralized performs much
worse as updates are dropped. VDN performs well even when it starts to lose all update messages
by falling back to distributed control.

4.8 Discussion

Complexity versus improvement: Despite the inherent complexity of hybrid control, VDN man-
ages to provide a signi�cant monetary bene�t (2×) to CDN operators as well as increased �exibility
(see Figure 4.15a and 4.15b). Additionally, VDN provides a centralized point of management to
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Figure 4.17: VDN handles network issues without much degradation.

adjust link costs and video priorities. Furthermore, as seen in §4.7, simple tweaks on current CDNs,
like shorter TTLs, don’t provide these bene�ts.
Alternate topologies: We assume an n-tiered topology as we feel this is representative of modern
CDNs [21, 89, 123, 143]. Additional work would be needed to �t our scheme to arbitrary topologies.
Client-side bitrate adaptation: Although not explicitly included in our system, we assume clients
independently do bitrate adaptation through some black-box assessment of delivery quality. Dis-
tributed control allows VDN to quickly respond to bitrate switching, but we assume that the rate
of switching is fairly low [14].

4.9 Related work

Content delivery networks: Large- (e.g., [89, 123]) andmedium-scale (e.g., [50, 152]) CDN systems
have explored various design choices, including peer-to-peer, hybrid [63, 156], centralized, or
hierarchical architectures [67] as well as their tradeo�s [160]. None of these papers provides the
key combination of global coordination, video-speci�c optimization, cost-minimization, attention
to live-video speci�c issues, and practical end-to-end system design.
Overlay multicast: Prior work on providing the sustained high-throughput connections needed
for live video [25, 32, 77, 90] focuses on how to best organize individual streams. However, they
do not perform extensive coordination across video streams. P2P-based approaches [90] can
potentially bene�t VDN, but may cause additional issues with hybrid control (e.g., loops) as they
complicate the topology.
Tra�c engineering: Recent work [30, 45, 66, 75] shows the bene�ts of centralized tra�c engineer-
ing in ensuring high utilization and fairness in both intra- and inter-datacenter settings. Unlike
VDN, they work on �ow aggregates at coarse timescales, making it hard for them to provide the
�ne-grained dynamic control required for live video.
Video optimization: ¿ere is much prior work on understanding and improving video delivery,
including client-side bitrate adaptation [80], metrics [14, 16], cross-CDN optimization (e.g., [99]),
and CDN-selection strategies (e.g., [51]). Our work focuses on end-to-end delivery and provides a
practical system design.
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4.10 Summary

VDN is a platform for live video delivery that helps balance the concerns of both users and CDN
operators by providing real-time control over individual streams from the CDN side. VDN employs
centralized quality optimization and hybrid control for responsiveness. We show that centralized
optimization can greatly improve video quality while minimizing cost. Our hybrid control plane
mitigates WAN challenges, providing quick join times and responsiveness to failures. Using a live
video trace, we show that VDN provides a 1.7× improvement in average bitrate and a 2× reduction
in delivery cost in di�erent scenarios. Using Amazon EC2, we show that our design is responsive
at a timescale of 200 ms.

Within the context of this thesis, this chapter shows that systems with separate global and local
control planes for achieving internet scalability do, in fact, bene�t from using hierarchical partition-
ing to coordinate them. As internet-wide scaling in many systems requires timescale separation
or granularity separation, there are constraints on information sharing (as some information will
either be stale or coarse), making the use of hierarchical partitioning appealing. With hierarchical
partitioning (here hybrid control), the global control plane can make a slow (or coarse) decision as
to how the shared data plane resources should be used, while the local control plane can make a
quick (or �ne-grained) decision when needed (e.g., during new client joins, failures). ¿e fact that
the global control plane has priority over the local control plane, and that the local control plane
only makes decisions using slack in the network relative to the global decision, greatly reduces
adverse interactions between control planes.
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Chapter 5 Conclusions

¿is dissertation focuses on eliminating adverse interactions between control planes in independent
network systems. While systems that deal with these issues have previously been designed ad
hoc, the key contribution of this thesis is a set of recipes for interfaces between control planes that
alleviate these issues. ¿ese recipes provide means for control planes to coordinate their decisions
in ways that make their individual concerns (e.g., performance with respect to di�ering metrics,
cost, etc.) apparent to other control planes.

Recipes are chosen based on 1) how much information can be shared, and 2) whether or not
both control planes make decisions for the same set of shared resources (i.e., have overlap in their
data plane devices). ¿ese two pieces are essential because constraints in information sharing
e�ectively limit what interface can be built, and having disjoint/shared resources determines the
possible styles of decision making (e.g., joint, coarse + �ne, etc.).

Here we touch on takeaways, shortcomings, and future work, before concluding.

5.1 Takeaways

¿e core contributions of this thesis are: 1) identifying a set of key scenarios that consistently appear
across systems that, by de�nition, lead to split control planes, 2) an understanding of why certain
scenarios naturally lead to speci�c coordination mechanisms, and 3) a case study showing how to
implement these key coordination mechanisms e�ectively.

Scenarios that lead to split control:¿is thesis focuses on three core scenarios that lead to split
control planes: 1) layering, 2) administrative separation, and 3) internet-scale systems. While there
are likely other scenarios that also lead to split control planes, these three appear overwhelmingly
in prior work.

Layering is when control is split for modularity, potentially giving up performance. Layering
is used throughout the network stack (e.g., splitting applications, TCP, IP), as well within the
application layer (e.g., splitting Hadoop [10] from HDFS [11]). Regaining lost performance in
layered system is o en done through cross-layer optimization (i.e., specializing two layers for one
another). While cross-layer optimization works well in practice, it tends to be fragile. As each layer
becomes tightly bound to one another, they give up much of the modularity that layering provided
initially. A better solution would be to come up with a more expressive interface between layers.
De�ning such an interface, however, tends to be very challenging.

Administrative separation is when control is split across companies. ¿is scenario is quite com-
mon (e.g., BGP running between ISPs, CDN server selection + ISP tra�c engineering, etc.). A key
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concern is that some information must be kept private for business reasons. ¿us, administratively
separate systems generally need specialized coordination mechanisms that allow them to share
some subset of information (e.g., BGP ingress preferences), without necessarily explaining how
that information was derived (e.g., from internal path costs). Both control planes make decisions
for their own disjoint sets of resources.

Internet-scale systems have started using split control planes to aid in scaling. ¿ese systems
tend run a global control plane in tandem with several local control planes in order to approximate
an optimal (global) decision while providing fast (local) response times (e.g., for new clients
or failures). We see these systems in video delivery (VDN [117], C3 [51]), DDoS prevention
(Bohatei [43]), cellular core routing (Klein [132]), as well as other contexts. Some of these systems
employ a timescale split (i.e., slow global control and fast local control), while others employ a
granularity split (i.e., coarse global control and �ne local control). All systems, however, have both
global and local control make decisions for the same set of shared resources.

Recipes for split control plane coordination:¿ese scenarios each have very di�erent mech-
anisms for coordination between control planes. We examine why these di�erent scenarios lead to
these distinct mechanisms, leading us to a set of design recipes for split control plane coordination
(i.e., if your scenario looks like this, try this coordination mechanism).

If your system is layered, use transparency.We de�ne transparency to be a coordination interface
between control planes where all information that needs to be shared, to come up with the best
decision for both control planes, can be shared. Layering is a natural candidate for transparency
because usually all layers are controlled by one entity, and are just split for modularity.

If your system is administratively split, use priority ranking. We de�ne priority ranking to be
a coordination interface between control planes where a ranked list of decisions for how to use
one control plane’s set of resources is provided to another control plane. While these decisions are
ranked in the order that the �rst control plane would like them to be used, the �rst control plane
does not provide information as to how these decisions were computed. ¿is allows them to keep
key information private for business reasons. ¿e key insight is that administratively split systems
are constrained in what information they can share, and that priority ranking is an expressive
means of coordination that respects this constraint.

If your system is split for internet scalability, use hierarchical partitioning.We de�ne hierarchical
partitioning to be a coordination interface between control planes where a global control plane
optimizes overall performance for a shared set of resources and multiple local control planes focus
on local performance and responsiveness. ¿ese two control planes may have di�ering timescales
(i.e., global control runs a slow, but �ne-grained optimization over all resources, whereas local
control comes to a fast, but sub-optimal decision) or di�ering granularity (i.e., global control
runs a fast, but coarse allocation of resources, whereas local control re�nes resource allocation
within its region). ¿e key insight is that hierarchical partitioning provides scalability because it
decouples global optimality concerns from local responsiveness. Generally, a single control plane
at internet-scale has to choose between high performance or responsiveness. A split global/local
control plane can provide a better tradeo�.

Beyond the three scenarios we look at in detail, building a design space helps us come to
understand one additional recipe:
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If your system can share no information, use reaction. We de�ne reaction to be a rudimentary
form of coordination between control planes which lack an explicit interface for decision making.
¿ey instead learn of each other’s decisions by observing their e�ects in the data plane. Systems
that can not share any information must use reaction by de�nition, but we �nd in practice very
few systems have such strong constraints. Most prior work that uses reaction (e.g., CDN server
selection + ISP tra�c engineering, competing congestion control algorithms, brokered video
delivery today), do so because reaction is easier to implement compared to an explicit coordination
interface. We argue that many reaction-based systems can be improved with the addition of a
coordination interface, as we show with brokered video delivery (Ch. 3).

Why do these scenarios lead to such varied coordination mechanisms? Coordination between
control planes can be thought of in two steps: 1) information is shared, and 2) a decision is computed.
It is clear that constraints on what information can be shared directly impacts step 1. We argue that
whether or not decisions across control planes are made for the same set of resources impacts how
an overall decision is computed. Namely, decision making styles seen in internet-scale systems
(e.g., coarse decisions + re�nement, or slow �ne-grained global decisions + fast local updates)
inherently don’t make sense in scenarios where decisions are made for disjoint resources (e.g., what
does re�nement mean for two control planes that don’t have shared resources). ¿us, we argue
that the underlying reason why these scenarios lead to these mechanisms is because of constraints
on information sharing and whether they make decisions for shared resources.

Split control planes in practice:We build three systems that exemplify these recipes.
We show that transparency can regain performance in systems split for layering using our

emulator Etalon, in the context of recon�gurable datacenter networks (Ch. 2). Recon�gurable
datacenter networks face a variety of end-to-end challenges due to their combined circuit and
packet networks. We show that there are useful cross-layer optimization techniques that can
combat many of these problems (e.g., dynamic in-network bu�er resizing to limit the impact
the impact of bandwidth �uctuation, or making application-speci�c modi�cations to alleviate
di�cult-to-schedule workloads).

We show that priority ranking can improve administratively separated systems compared to
using reaction. We show this with VDX, in the context of content brokering (Ch. 3). Brokers and
CDNs today don’t share any information (i.e., they simply use reaction as a rudimentary form of
coordination). We propose a marketplace-style design using priority ranked bids to allow CDNs
to provide rough cost and performance estimates at a much �ner cluster-level granularity. ¿is
allows brokers to better optimize performance and cost for content providers, while simultaneously
allowing CDNs to increase revenue.

We show that hierarchical partitioning can improve the scaling properties of internet-wide
systems with VDN, in the context of live video delivery (Ch. 4). VDN employs a timescale split
between a global and local control plane to achieve near-optimal performance, while being able
to quickly react to new client joins and network failures. Hierarchical partitioning provides local
control with enough information to make decisions quickly, while simultaneously a�ording global
control enough time to perform its slower (internet-scale) video optimization. ¿e key insight
is that it separates these varying timescale concerns into two control planes. VDN avoids poor
performance interactions by having global control have priority over local control, and by having
local control always use slack in the network in its decisions.
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5.2 Shortcomings

While we provide an initial view of the design space for split control plane coordination, we do not
argue that we have explored all parts of the space. ¿e core contribution of this thesis are recipes for
coordination, showing that certain extremely common scenarios lead to very speci�c coordination
mechanisms. ¿us, in this section we discuss scenarios and mechanism that have been missed in
this initial view of the design space, as well as the lack of a theoretical framework to examine why
each coordination mechanism works properly.

Scenarios and coordinationmechanisms outside of those presented:While we present three
common split control scenarios (layering, administrative separation, and internet-scale systems)
and recipes that map each scenario to di�erent coordination mechanisms (transparency, priority
ranking, and hierarchical partitioning, respectively), there are some systems that either fall outside
of these scenarios or don’t �t their respective recipes.

For example, routers may provide TCP with explicit feedback about path congestion (explicit
congestion noti�cation, ECN [133]), by setting a single bit in a packet. One could argue that this is
all the information needed to understand congestion has occurred, and thus, this is coordination
using transparency. ¿ere is, however, much more information that this router has that would
be useful for TCP in combating congestion. For example, which router on the path experienced
congestion? How many packets are sitting in queues on this router? At what point will this router
drop packets? It is clear, therefore, that there are some information sharing constraints.

Single bit ECN markings are used because routers are line-rate systems. Line-rate systems need
to send control plane messages potentially on a per-packet basis. ¿us, such systems con�ate
control plane timescales with data plane timescales. ¿is clearly constrains how complex message
generation tasks can be, as we’ve seen in this example. Line-rate systems represent a scenario
that we have not pursued in this thesis. While such systems represent an interesting scenario
for coordination, they tend to not result in interesting coordination mechanism because they are
so drastically constrained, similar to how systems that can not share any information must use
reaction.

More generally, splitting the design space based on information sharing and shared resources is
purposefully coarse; we provide an initial intuition as to how control planes may be split and how
to coordinate between them despite this split, but paint a picture with broad strokes. Simply saying
the amount of information sharing between two control planes is “complete,” “some,” or “none”
glosses over some subtlety, claiming that designs that share one bit of information and designs that
share all but one bit of information should be considered equivalent.

¿us, we argue that there likely more scenarios to uncover in this space, as well as more coordi-
nation mechanisms, by looking at both axes in �ner granularity, as well as perhaps considering
additional axes. ¿ese additional scenarios / mechanisms likely have constraints on information
sharing, as these constraints led us to our more complex mechanisms (priority ranking and hierar-
chical partitioning). Despite this, our recipes that map speci�c scenarios to speci�c coordination
mechanism are likely always correct, by their de�nitions.

A control theoretic approach to the coordinating split control planes: ¿is thesis focuses
on coordination across split network control planes through the lens of a system builder; while the
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focus of this work is providing recipes for coordination in certain common scenarios, there is less
focus on building a theoretical framework as to why each coordination mechanism works. Control
theory may provide interesting avenues to help ground the presented coordination mechanisms
into a theoretical framework.

5.3 Future work

We brie�y point to open issues found during this thesis, leaving them to future work:

Network veri�cation across control planes:¿is thesis is concernedwith interactions between
control planes that operate independently. While some of these split control planes are logically
thought of as part of the same system (e.g., two BGP instances running in di�erent ISPs), some of
these control planes are generally thought of logically distinct pieces (e.g., endhost stack layering).
While verifying the correctness of individual protocols (e.g., routing within an SDN-run ISP [87])
may be feasible, it is signi�cantly harder to verify that all implicit / explicit interactions between
control planes lead to the correct outcome.

Performance guarantees in hierarchical partitioning: Chapter 4 focused on VDN, where
global control makes long timescale decisions for performance/cost optimization, while local
control makes short timescale decisions for responsiveness to new client joins or failures. ¿us,
VDN coordinates using hierarchical partitioning. While we show through performance evaluation
that VDN’s hierarchical partitioning works correctly in a testbed, providing theoretical guarantees
that there are no pathologically bad situations that decimate performance or responsiveness has
yet to be done. Given the large di�erence in timescale, the fact that global control has priority
over local control, and that local control only makes use of slack in the network, nice theoretical
properties may be possible to prove.

Designing marketplace-style interfaces with multiple brokers: Chapter 3 focused on VDX,
a marketplace built around CDNs and a content broker. VDX levels the playing �eld for CDNs
when there is a single broker. ¿ere is still work to be done to understand what complex problems
arise when additional brokers are added to the marketplace. For example, CDNs will likely need
to send bids to multiple brokers with overlapping capacity utilization (i.e., if all bids are accepted
the CDN will be overloaded, but if only some bids are accepted, the CDN will be �ne). If CDNs
become overloaded, they will not be able to meet their performance estimates. How should brokers
handle this scenario? Should bids be considered hints or guarantees? Additionally, work must be
done to ensure that both brokers and CDNs are unable to cheat the system.

Recon�gurable datacenters: While fairly well studied over the past decade, there are still
fundamental open problems in recon�gurable DCs. ¿ere has yet to be an “apples-to-apples” com-
parison of di�erent switch designs in terms of technologies (e.g., optical, 60GHz, free-space optics),
features/limitations (e.g., circuits can be perfect matchings only, indirection routing, multicast),
and timescales (e.g., millisecond recon�guration delay, microsecond, future nanosecond). In Chap-
ter 2, we’ve shown that the nature of end-to-end challenges change based on these features (e.g.,
bandwidth �uctuations only a�ect TCP when we reach microsecond timescales); investigating
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which combinations provide optimal properties, using our open-source emulator Etalon, can
provide a principled approach to recon�gurable switch design, rather than just applying trendy
new technology.

More speci�c open problems are also interesting, e.g., remote direct memory access (RDMA)
has greatly improved DC performance by removing the remote CPU from the critical path. What
changes are needed in recon�gurable DCs to support RDMA or RDMA-like primitives?

Can machine learning-based scheduling algorithms seen at the application-layer (e.g., for
MapReduce tasks) apply to circuit scheduling in recon�gurable DCs? What challenges arise from
the 6 orders of magnitude shi in timescale, and does the resulting scheduler look similar to prior
(hand-built) schedulers like our work Solstice [98]?

Network / endhost co-design: Chapter 2 provides a cursory glance at end-to-end challenges
that arise if fundamental assumptions about the network change, without making changes to
the endhost stacks and applications. ¿is need for network / endhost co-design appears in a
variety of scenarios. A simple example would be adding multicast to datacenter networks (as has
been proposed for recon�gurable DCs, for example); not only does this break assumptions for
in-network packet / �ow scheduling algorithms, it also provides new performance opportunities
for low-level scheduling and for applications (e.g., HDFS could cut replication tra�c in half using
multicast).

Our work on recon�gurable datacenters opens up interesting questions about making appli-
cations “network-aware” (as opposed to making the network “application-aware” [95, 151, 154]),
a problem that will likely become increasing important. While we manually modify HDFS to
provide an easier-to-schedule workload for the network, the key insight was that applications make
assumptions about how easy it is for the network to transmit di�erent workloads. Are there a better
set of primitives (e.g., anycast, multicast) that could be built into applications to better automate
network-awareness?

Furthermore, some datacenter network designs propose combining multiple heterogeneous
networks. While MultiPath TCP has been explored with heterogeneous paths in the wide-area, its
impact has yet to be explored over heterogeneous paths at DC timescales.

Finally, the advent of re-programmable FPGA-based NICs and re-programmable switches
(e.g., P4-based [126] or Mellanox Spectrum Linux-based [108]) provides a strong indicator that
changes to network functionality is imminent. ¿us, a strong understanding of network / endhost
co-design will be required to overcome the challenges laid out in this thesis.

5.4 Final remarks

¿is thesis presents the idea that regardless of how clever a system is that solves a network control
problem, it doesn’t exist in isolation. Other systems may interact with it in unexpected ways,
leading to a variety of issues in varying metrics (e.g., performance, correctness, cost). ¿us, having
a mechanism to express concerns about decisions made by other control planes (coordination) is
paramount; control plane coordination should be a �rst-order design decision, not an a er-thought.

While there are an overwhelming variety of issues that arise from the lack of control plane
coordination in di�erent contexts, we �nd that there are a small set of coordination mechanisms
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that appear again and again in practice. Each of these mechanisms (reaction, transparency, priority
ranking, and hierarchical partitioning) satis�es very di�erent needs in terms of interface design (i.e,.
how much information can be shared) and decision making style (e.g., hierarchical partitioning
may do coarse grain + �ne grain decision making over shared resources).

¿ese four mechanisms prove to be interesting points in the design space, as they not only
represent drastically di�erent solutions, but they also tend to be employed in drastically di�erent
scenarios (e.g., layering, administrative separation, internet-scale systems). For each scenario there
is signi�cant prior work (in varied contexts) that makes use of the same coordination mechanisms,
leading us to simple design recipes for control plane coordination in these scenarios. Our work
forms a case study across these very di�erent scenarios, providing insight in how to build these
coordination mechanisms e�ciently, in practice.

While split control planes and how to coordinate between them is not new problem, we
argue that in this thesis, we’ve taken the �rst steps towards providing guidelines to consider when
designing systems, whereas designs today have been built ad hoc. Control plane coordination
is likely going to become an increasingly apparent problem as more systems apply SDN-like
techniques, eking out increased performance through long-timescale internet-scale centralized
optimization. ¿ese internet-scale systems will need some form of coordination (i.e., hierarchical
partitioning) to provide both high performance and responsiveness.
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