
Queueing with Redundant Requests:
First Exact Analysis

Kristen Gardner1 Samuel Zbarsky2

Sherwin Doroudi3 Mor Harchol-Balter1

Esa Hyytiä4 Alan Scheller-Wolf3

December 2014
CMU-CS-14-143

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
2Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA, USA
3Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
4Aalto University, Finland

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE-1252522.

Keywords: Redundant Requests; Markov chain; Task Assignment

Abstract

Recent computer systems research has proposed using redundant requests to reduce latency. The idea is
to run a single request on multiple servers and only wait for the first completion (discarding all remaining
instances of the request). However no exact analysis of systems with redundancy exists.

This paper presents the first exact analysis of systems with redundancy. We allow for any number of
classes of redundant requests, any number of classes of non-redundant requests, any degree of redundancy,
and any number of heterogeneous servers. In all cases we derive the limiting distribution on the state of the
system.

In small (two or three server) systems, we derive simple forms for the distribution of response time of
both the redundant classes and non-redundant classes, and we quantify the “gain” to redundant classes and
“pain” to non-redundant classes caused by redundancy. We find some surprising results. First, in many
cases the response time of the redundant class follows a simple Exponential distribution and that of the
non-redundant class follows a Generalized Hyperexponential. Second, once a class is fully redundant, it
becomes “immune” to any pain caused by other classes becoming redundant.

We also compare redundancy with other approaches for reducing latency, such as optimal probabilistic
splitting of a class among servers (Opt-Split) and Join-the-Shortest-Queue (JSQ) routing of a class. We
find that redundancy outperforms JSQ and Opt-Split with respect to overall response time, making it an
attractive solution.

1 Introduction

Reducing latency has always been a primary concern for computer systems designers. Recent papers have
proposed a new approach to reducing latency in multi-server systems: using redundant requests [1, 8, 30].
The motivation behind this approach comes from the observation that response times at servers can be highly
variable. Two servers in the same system often differ in their current loads, their network congestion, and
the configuration of their storage systems. Even if both servers are idle, the same request might experience
a far lower service time at one server than another because the request could experience a much lower disk
seek time at one server than another (seek times often dominate service times) [16]. The solution is to send
the same request to the queues at multiple servers simultaneously (i.e., redundantly). When any copy of the
request completes service, all remaining copies of the request are killed.

Using redundant requests is not free. First, data must be replicated among the set of servers to which
the copies must be sent. Furthermore, using redundant requests adds to the system load. Nonetheless, using
redundant requests has been shown to vastly improve latency in distributed systems, e.g., Google’s BigTable
service shows a 42-fold improvement in tail latency by using redundant requests [10].

Unfortunately, there is almost no work analyzing the benefits of redundant requests. Even a two-server
system with one redundant class and one non-redundant class has not been analyzed. The first attempts to
analyze systems with redundancy are as recent as 2014, but this work derives only bounds and approximations
[18].

Redundant requests require a new queueing paradigm: there is no longer a single copy of each job,
and redundant copies disappear instantly as soon as one copy completes. While redundant jobs bear some
resemblance to fork-join systems, the two models are actually quite different because all copies must complete
service in a fork-join system, whereas a redundant job only needs one copy to complete. Likewise, while
redundant jobs bear some resemblance to coupled-processor systems, they differ in that the redundant copies
can occupy multiple servers even when these servers have non-empty queues. Likewise, redundant jobs are
not the same as flexible servers (see Section 2 for more details).

The state space required to capture systems with redundant jobs is very complex. It is not enough
to know the number of jobs in each queue, or even the number of jobs of each class (redundant or non-
redundant) within each queue. Rather, one needs to track the exact position and type of every job in every
queue, so that one knows which jobs to delete when a copy of a redundant job completes service.

This paper provides the first closed form exact analysis of redundant queues. We derive the limiting
distribution of the full queue state as well as (in many cases) the distribution of response time of redundant
and non-redundant jobs. Our analysis assumes Exponential service times and Poisson arrivals. Our result
applies to systems with any number of queues, k, any number of classes of jobs, `, and a general redundancy
structure (see Figure 1). Here a class is associated with a set of servers that hold replicated data, meaning
that the jobs of a class can be run on any of the servers associated with the class.

Figure 1: The general redundancy model. Each server j provides service at rate µj . Each class of jobs
Ci arrives to the system as a Poisson process with rate λCi and joins the queue at all servers in SCi =
{j | server j can serve class Ci}.

1

(a) (b) (c)

Figure 2: (a) The N model. Class A jobs join the queue at server 2 only, while class R jobs are redundant at
both servers. (b) The W model. Class A jobs join the queue at server 1 only, class B jobs join the queue at
server 2 only, and class R jobs are redundant at both servers. (c) The M model. Class R1 jobs are redundant
at servers 1 and 2, and class R2 jobs are redundant at servers 2 and 3.

We also investigate how the approach of redundant requests compares to other common approaches for
job assignment. For example, how does making k redundant copies of each request compare with optimally
probabilistically splitting load among k queues (Opt-Split), or with joining the shortest of k queues (JSQ)?
Furthermore, while there may be a benefit to the redundant class of jobs, what is the response time penalty
to the other jobs in the system? Do other approaches create less of a penalty? Finally, if one class of jobs
creates redundant copies of itself, does that class suffer when others “join the redundancy game” and start
creating redundant copies of their jobs as well?

We start by investigating these questions in the context of three simple models, shown in Figure 2. In the
N model (Figure 2(a)), there are two arrival streams of jobs, each with its own server. However, one class
of jobs creates redundant requests at both servers. The N model illuminates the response time benefits to
the redundant class and the pain to the non-redundant class. We derive the exact distribution of response
time for both classes, and explore what happens when the non-redundant class decides that it too wants to
become redundant. In the W model (Figure 2(b)), we imagine that we have a stable system, where each
server is serving its own stream of jobs, when a new stream of jobs arrives which can be processed at either
server. We ask how to best deal with this new stream: redundancy, splitting, dispatching to the shortest
queue? We then turn to the M model (Figure 2(c)), where there is a “shared server,” which can be used by
all request streams. We ask how to best use this shared resource.

After addressing these questions for small systems, we turn to issues of scale; our exact closed-form
analysis allows us to consider systems of any size. We investigate how size affects our earlier messages for
the N, W, and M models, particularly those comparing redundancy to other resource sharing policies.

The remainder of this paper is organized as follows. In Section 2, we describe related work and how it
differs from the present work. In Section 3, we formalize our model and state our main theorem for the
general system. In Sections 4, 5, and 6, we discuss detailed results for the N, M, and W models. Section 7
addresses how these models scale as the number of servers increases. Finally, in Section 8, we conclude.

2 Prior Work

In this section, we review several models that are related to redundant requests. All of these models differ
from ours in critical ways that change both the mathematical techniques available to analyze the system,
and the results obtained. Nonetheless, we hope that the results in this paper might shed some light on the
problems below, many of which are notoriously difficult.

2

Coupled Processor/Cycle Stealing

In a coupled processor system, there are two servers with rates µ1 and µ2 and two classes of jobs, A and B.
Server 1 works on class A jobs in FCFS order, and server 2 works on class B jobs in FCFS order. However,
if there are only jobs of one class in the system, the servers “couple” to serve that class at a faster rate:
unlike in the redundancy model, class A jobs only get to use server 2 when the system is empty of B’s (and
vice-versa). Generating functions for the stationary distribution of the queue lengths in a two-server system
with Exponential service times were derived in [11, 21], but this required solving complicated boundary value
problems and provided little intuition for the performance of the systems. The stationary distribution of
the workload in the two-server system was derived in [9] using a similar approach. In [15], a power-series
approach was used to numerically compute the queue-length stationary distribution in systems with more
than two servers under Exponential service times. Much of the remaining work on coupled processor models
involves deriving bounds and asymptotic results (for example, [5]).

In the donor-beneficiary model (one-way cycle stealing), only one class of jobs (the beneficiary) receives
access to both servers, typically only when no jobs of the other class are present. In addition, if there is only
one beneficiary job present, one server must idle (the servers do not “couple”). The donor-beneficiary model
has been studied, in approximation, in a variety of settings [14, 23]. However, it differs from the redundancy
model because a job is never in service at more than one server, and because donor jobs often have full
preemptive priority at their server.

Fork-Join

Another related model is the fork-join system, in which each job that enters a system with k servers splits
into k pieces, one of which goes to each server. The job is considered complete only when all k pieces
have completed service. This is different from the redundancy model because only one redundant request
needs to finish service in the redundancy model. Furthermore, a fork-join job sends work to all k servers,
whereas a redundant job of class Ci only sends copies to the servers in SCi , where SCi is a subset of the
servers. The fork-join model is known to be very difficult to analyze. Many papers have derived bounds and
approximations for such a system (for example, [2, 3, 20, 22, 32]). Exact analysis remains an open problem
except for the two-server case [12, 13]; see [7] for a more detailed overview.

Flexible Server Systems

A third related model is the flexible server system, in which each class of jobs has its own dedicated queue,
and each server is capable of serving some subset of the classes of jobs. The design and performance of
flexible server systems has been studied in [4, 26, 27, 28]. In a flexible server system, traditionally, when
a server becomes available, it chooses the queue from which to take its next job according to some policy.
By contrast in redundancy systems, each server has its own FCFS queue and jobs are routed to a subset of
servers upon arrival. However, the key difference between flexible server systems and redundancy systems
is that in a redundancy system, a job may be in service at multiple servers simultaneously, whereas in a
flexible server system, each job may be processed by only one server.

A special case of the flexible server system uses the following policy. When a server becomes available,
it chooses the job that arrived the earliest from among those jobs that it can serve. This policy is similar
to the redundancy system because each server works in overall FCFS order among the jobs it can serve.
However, there are no redundant jobs in this flexible server system; jobs cannot be in service at two servers
at the same time. For this model, under a specific routing assumption when an arriving job sees multiple
idle servers, the stationary distribution that satisfies the balance equations is given [29]. In our redundancy
model, no such routing assumption is required, because an arriving redundant job will enter service at all
idle servers. Finally, mean response times are lower in a redundant system than in an FCFS flexible server
system; our exact analysis allows us to quantify this performance gap.

3

Redundancy Models

Recently, in 2012, the (n, k, r) system was proposed [24], where there are n servers, and each arriving job
sends a request to k ≤ n of these servers. As soon as r ≤ k requests complete, the job is considered finished.
If we view the k requests as k “redundant” copies of a job, then this problem can be seen as similar to
ours, although in our model, jobs have different levels of redundancy and can only be redundant at certain
servers. Various bounds and approximations have been derived for the (n, k, r) model [17, 18, 24], and
the optimal value of k has been determined for different system loads and costs of deleting unnecessary
redundant requests [25]. Additionally, other variants have been proposed where a job might wait before
issuing redundant requests [31]. Unfortunately, the only exact analysis of the (n, k, r) system is for a highly
simplified model in which each server is actually an M/M/∞ queue, so there is no queueing [17].

3 Model

We consider a system with k servers, denoted 1, 2, . . . , k, and ` classes of jobs, denoted C1, C2, . . . , C`.
(see Figure 1). The service time at server j is distributed Exponentially with rate µj for all 1 ≤ j ≤ k,
and each server processes the jobs in its queue in FCFS order. Each class of jobs Ci arrives to the system
as a Poisson process with rate λCi , and replicates itself by joining the queue at all servers in the subset
SCi = {j | server j can serve class Ci}. Jobs in class Ci cannot join the queue at any server j /∈ SCi . A
job may be in service at multiple servers at the same time; if a job is in service at both servers i and j, it
receives service at combined rate µi + µj .

Looking at Figure 1, it is difficult to figure out an appropriate state space. One might think that you
could keep track of the number of jobs of each class at each queue, but this state space is missing information
about which specific jobs are in multiple queues. Furthermore, servers are not independent, and job classes
are not independent, so typical product-form type state spaces and solutions are unlikely to work.

The key insight that allows us to model this system is that we can view the system as having a single
central queue in which all jobs wait in the order that they arrived (see Figure 3). Each server processes jobs
from this central queue in FCFS order, skipping over those jobs it cannot serve. For example, in Figure 3,
server 3 will skip over job A(1) and move to job B(1) when choosing its next job. We can write the state of
the system as (cn, cn−1, . . . , c1), where there are n jobs in the system, and ci is the class of the ith job in
this central queue; c1 is the class of the job at the head of the queue, which is also in service at all servers
in SC1

.

Figure 3: Let A and B be two job classes (see left), where A(i) is the ith arrival of class A. We can view
the general redundancy system (left) as having a single central queue from which each server works in FCFS
order, skipping over those jobs it cannot serve (right). The central queue is an interleaving of the individual
servers’ queues, where each job appears only once.

4

Theorem 1. The limiting probability of being in state (cn, cn−1, . . . , c1) is

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
,

where C is a normalizing constant.

Proof. See Appendix.

Although π(cn, cn−1,..., c1) looks like a product-form solution, it is not; we cannot write the limiting
probabilities as a product of independent marginal per-server terms, or as a product of independent marginal
per-class terms.

Example 1. Consider the system shown in Figure 3. The current state in this system is (B, B, A), where
the head of the queue is at the right, job A(1) is currently in service at servers 1 and 2, and job B(1) is
currently in service at server 3. From Theorem 1, we find that the limiting probability of this state is

π(B,B,A) = C
λA

µ1 + µ2

(
λB

µ1 + µ2 + µ3

)2

.

Corollary 1. The general system with redundant requests is stable when ∀C ⊆ {C1, . . . , C`},∑
C∈C

λC <
∑

m∈
⋃
C∈C

SC

µm. (1)

Proof. All limiting probabilities π(cn,..., c1) from Theorem 1 have values in (0, 1) when ∀C ⊆ {C1, . . . , C`},
(1) holds.

In Sections 4, 5, and 6, we use the result of Theorem 1 to study the N, W, and M models, defined below.

N Model

The N model is the simplest non-trivial example of a redundancy system where there are both redundant
and non-redundant classes. In an N model there are two servers running at rates µ1 and µ2 and two classes
of jobs (see Figure 2(a)). Class A jobs are non-redundant; they arrive with rate λA and join the queue at
server 2 only (SA = {2}). Class R jobs are redundant; they arrive with rate λR and join the queue at both
servers (SR = {1, 2}).

W Model

Consider a two-server, two-class system in which each class of jobs has its own dedicated server (no redun-
dancy). Now suppose that a third class of jobs enters the system and chooses to be redundant at both
servers. The W model helps us understand how the presence of this redundant class affects the existing
non-redundant classes. In a W model, there are two servers running at rates µ1 and µ2 and three classes of
jobs (see Figure 2(b)). Class A jobs arrive with rate λA and are served at server 1 only (SA = {1}), class B
jobs arrive with rate λB and are served at server 2 only (SB = {2}), and class R jobs arrive with rate λR
and may be served at both servers (SR = {1, 2}).

5

M Model

Again consider the two-server, two-class system in which each class of jobs has its own dedicated server. Now
suppose that a new shared server is added to the system, and all classes of jobs issue redundant requests at
this server. The M model helps us understand how best to use this new server. In an M model, there are
three servers running at rates µ1, µ2, and µ3 and two classes of jobs (see Figure 2(c)). Class R1 jobs arrive
with rate λR1 and join the queue at servers 1 and 2 (SA = {1, 2}), and class R2 jobs arrive with rate λR2

and have SR2
= {2, 3}).

4 N Model

We first turn our attention to the N model (Figure 2(a)). An immediate consequence of Theorem 1 is
Lemma 1, which gives the limiting distribution of the N model.

Lemma 1. In the N model, the limiting probability of being in state (cn, cn−1, . . . , c1) is:

π(cn,...,c1) = CN

(
λA
µ2

)a0 (λR
µ1 + µ2

)r (
λA

µ1 + µ2

)a1
, (2)

where a0 is the number of class A jobs before the first class R job, a1 is the number of class A jobs after the

first class R job, r is the total number of class R jobs in the queue, and CN = (µ2−λA)(µ1+µ2−λA−λR)
µ2(µ1+µ2−λA) is a

normalizing constant.

We use this result to find (Theorem 2) that for the redundant class (class R), response time is Expo-
nentially distributed, which is pleasantly surprising because the system is not an M/M/1. Specifically, the
distribution of response time is the same as that in an M/M/1, where the arrival rate is λR and the service
rate is µ′ = µ1 +µ2−λA. Note that µ′ can be viewed as giving the R jobs the full µ1, and the portion of µ2

that is not appropriated for the class A jobs (µ2−λA). Equivalently, this is the response time in an M/M/1
with arrival rate λA + λR and service rate µ1 + µ2.1

Theorem 2. In the N model,

1. The number of class R jobs in the system, NR, is distributed Geometric(1−ρ)−1, where ρ = λR
µ1+µ2−λA .

2. The response time of class R jobs, TR, is distributed Exp(µ1 + µ2 − λA − λR).

Proof. This is a special case of the more general result in Theorem 10, which is proved in Appendix B.

In Theorem 3, we find that the distribution of response time for the non-redundant class, TA, follows a
Generalized Hyperexponential distribution2. We can view the mean response time of class A jobs as that of
an M/M/1 with arrival rate λA and service rate µ2, plus a penalty term that captures the extent to which
the redundant jobs hurt the A’s (Equation 4).

Theorem 3. In the N model,

1. The number of class A jobs in the system, NA, has p.m.f.

Pr{NA = nA} = ζN1

(
λA
µ2

)n
+ ζN2

(
λA

µ1 + µ2 − λR

)n
, (3)

1This result is counterintuitive because as we later see (Lemma 3, item 2), the distribution of response time for the redundant
class does not depend on whether class A is redundant or non-redundant.

2A Generalized Hyperexponential, H2(ν1, ν2, ω) is defined as the weighted mixture of two Exponentials with rates ν1 and
ν2, where the first Exponential is given weight ω and the second is given weight 1 − ω. Note that ω can be any real number; it
need not be a probability [6].

6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

λA = λR
E
[T

R
]

Before R redundancy
After R redundancy

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

λA = λR

E
[T

A
]

Before R redundancy
After R redundancy

(a) Class R (b) Class A

Figure 4: Comparing mean response time before and after class R becomes redundant when µ1 = µ2 = 1
and λA = λR for (a) class R, and (b) class A. The mean response time for the overall system is the weighted
average of these two classes.

where

ζN1 = CN

(
µ1

µ1 − λR

)
,

ζN2 = CN

(
λR

µ1 + µ2 − λR
− λR
µ2 − λR

)
,

and CN is as in Lemma 1.

2. The distribution of response time of class A jobs is

TA ∼ H2(νN1, νN2, ωN),

where

νN1 = µ2 − λA
νN2 = µ1 + µ2 − λA − λR
νN3 = µ1 + µ2 − λA

ωN =
λRνN1

(µ1 − λR)νN3
.

The expected response time of class A jobs is

E[TA] =
1

νN1
+

1

νN2
− 1

νN3
. (4)

Proof. Deferred to the end of the section.

Figure 4 compares mean response time in the system before class R jobs become redundant (each class
sees its own independent M/M/1), and after class R jobs become redundant. We hold µ1 = µ2 = 1 and vary
the load by increasing λR = λA. We find that redundancy helps class R jobs by a factor of two (Figure 4(a)),
but can hurt the non-redundant class by up to 50% (Figure 4(b)).

In Lemma 3, we ask what happens if class A jobs decide they too should be redundant. That is, all
arriving jobs can be served at both servers - the system is fully redundant. This transforms the system into
an M/M/1 with arrival rate λA + λR and service rate µ1 + µ2 (Lemma 2). Surprisingly, class R is immune
to pain when class A also becomes redundant: as Lemma 3 shows, the distribution of response time for class
R is the same before and after class A becomes redundant. Of course, when the A’s become redundant, they
receive the benefit of having two servers.

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

λR

E
[T

R
]

Redundancy

Opt−Split

JSQ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

λR

E
[T

A
]

Redundancy

Opt−Split

JSQ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

λR

E
[T
]

Redundancy

Opt−Split

JSQ

(a) E[TR] when µ1 = µ2 (b) E[TA] when µ1 = µ2 (c) E[T] when µ1 = µ2

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T

R
]

Redundancy

Opt−Split

JSQ

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T

A
]

Redundancy

Opt−Split

JSQ

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T
]

Redundancy

Opt−Split

JSQ

(d) E[TR] when 2µ1 = µ2 (e) E[TA] when 2µ1 = µ2 (f) E[T] when 2µ1 = µ2

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T

R
]

Redundancy

Opt−Split

JSQ

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T

A
]

Redundancy

Opt−Split

JSQ

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

λR

E
[T
]

Redundancy

Opt−Split

JSQ

(g) E[TR] when µ1 = 2µ2 (h) E[TA] when µ1 = 2µ2 (i) E[T] when µ1 = 2µ2

Figure 5: Comparing redundancy, Opt-Split, and JSQ for the N model as λR increases with λA = 0.6.
We plot mean response time for the (redundant) R class (left column), the (non-redundant) A class (middle
column), and the overall system (right column). Rows represent different ratios of server speeds. Redundancy
is shown in solid blue, Opt-Split in dashed green, and JSQ in dashed red.

Lemma 2. The fully redundant system, in which both class R and class A jobs issue redundant requests at
both servers, is equivalent to an M/M/1 with arrival rate λA + λR and service rate µ1 + µ2.

Proof. Deferred to the end of the section.

Lemma 3. With respect to mean response time, both classes of jobs do at least as well in the fully redundant
model as in the N model. In particular,

1. E[TA]Fully Redundant ≤ E[TA]Redundant

2. TFully Redundant
R

d
= TRedundant

R .

Proof. Deferred to the end of the section.

Redundancy clearly helps the redundant class considerably. But there are alternative latency-reducing
strategies. For example, each class could optimally probabilistically split jobs among all allowable servers
(Opt-Split), or join the shortest queue among allowable servers (JSQ).

8

In Figure 5, we compare these other options for the N model, where the mean response times under
Opt-Split are derived analytically (Definition 1), but JSQ is simulated. We find that, for the redundant class
R, redundancy beats JSQ, which beats Opt-Split. Redundancy often is not much better than JSQ, yet they
can differ by a factor of 2, depending on the load of class R and the relative server speeds.

Surprisingly, the non-redundant class, A, often prefers redundancy of the other class to Opt-Split or JSQ.
This is because the non-redundant class wants the redundant class to spend as little time as possible blocking
the A jobs at server 2, and redundancy helps with this.

Note that under Opt-Split we see an inflection point in mean response time for both class R and class A.
For example, in Figures 5(a) and (b), there is an inflection point at λR = 0.6, when λR = λA. This phase
change occurs because when λR < λA, no class R jobs go to server 2 under Opt-Split, but when λR > λA
the R’s compete with the A’s. Also observe that E[T] is not monotonically increasing; this is because as λR
increases, the redundant class contributes more to the weighted average.

Unsurprisingly, from the overall system’s perspective, redundancy is always preferable to Opt-Split and
JSQ because it optimizes overall server utilization.

When µ1 = µ2, even when non-redundant jobs prefer Opt-Split, redundancy is never more than 50%
worse than Opt-Split for the non-redundant jobs (Theorem 4).

Definition 1. Under Opt-Split, p fraction of class R jobs go to server 2, and 1− p fraction go to server 1,
where p is chosen to minimize E[T]. The mean response times for class R jobs, class A jobs, and the system
are respectively:

E[TR]Opt−Split =
1− p

µ1 − (1− p)λR
+

p

µ2 − λA − pλR

E[TA]Opt−Split =
1

µ2 − λA − pλR

E[T]Opt−Split =
λA

λA + λR
E[TA]Opt−Split +

λR
λA + λR

E[TR]Opt−Split.

Theorem 4. If µ1 = µ2, then the following are true:

1. 1
2 ≤

E[TR]Redundant

E[TR]Opt−Split ≤ 1. If λR > λA, then E[TR]Redundant

E[TR]Opt−Split = 1
2 .

2. E[TA]Redundant

E[TA]Opt−Split ≤ 3
2 .

3. 1
2 ≤

E[T]Redundant

E[T]Opt−Split ≤ 1.

Proof. Deferred to the end of the section.

4.1 Proofs for N Model

Proof. [Theorem 3] We wish to compute Pr{NA = nA}. First we consider the case nA = 0. Then we have:

Pr{NA = 0} = C

∞∑
i=0

(
λR

µ1 + µ2

)i
= C

1

1− λR
µ1+µ2

= C
µ1 + µ2

µ1 + µ2 − λR
. (5)

Now assume nA > 0. We consider three cases:
1. There are no R jobs in the system. Then

Pr{NA = nA and no R jobs in system} = C

(
λA
µ2

)nA
. (6)

9

2. There are both R and A jobs in the system, and there is an R at the head of the queue. Let r0 + 1 be
the number of R jobs before the first A, and ri be the number of R jobs following the ith A, i > 0. Then

Pr{NA = nA, R at head} =

∞∑
r0=0

∞∑
r1=0

· · ·
∞∑

rnA=0

C

(
λR

µ1 + µ2

)1+r0+···+rnA (λA
µ1 + µ2

)nA

= C

(
λA

µ1 + µ2

)nA (∞∑
r0=0

(
λR

µ1 + µ2

)r0)
· · ·

 ∞∑
rnA=0

(
λR

µ1 + µ2

)rnA(λR
µ1 + µ2

)

= C

(
λA

µ1 + µ2

)nA (1

1− λR
µ1+µ2

)nA+1(
λR

µ1 + µ2

)

= C

(
λA

µ1 + µ2

)nA (µ1 + µ2

µ1 + µ2 − λR

)nA+1(
λR

µ1 + µ2

)
= C

(
λR

µ1 + µ2 − λR

)(
λA

µ1 + µ2 − λR

)nA
(7)

3. There are both R and A jobs in the system, and there is an A at the head of the queue. Let `+ 1 = a0
be the number of A jobs before the first R, let r1 + 1 be the number of R’s following these initial A’s, and
let ri be the number of R’s following the `+ ith A, i > 1. Then

Pr{NA =nA, A at head} =

nA−1∑
`=0

∞∑
r1=0

· · ·
∞∑

rnA−`=0

C

(
λA
µ2

)`+1(
λR

µ1 + µ2

)1+r1+···+rnA−`
(

λA
µ1 + µ2

)nA−`−1

= C

(
λR
µ2

) nA−1∑
`=0

(
λA
µ2

)`(
λA

µ1 + µ2

)nA−`(∞∑
r1=0

(
λR

µ1 + µ2

)r1)
· · ·

 ∞∑
rnA−`=0

(
λR

µ1 + µ2

)rnA−`
= C

(
λR
µ2

) nA−1∑
`=0

(
λA
µ2

)`(
λA

µ1 + µ2

)nA−`(1

1− λR
µ1+µ2

)nA−`

= C

(
λR
µ2

) nA−1∑
`=0

(
λA
µ2

)`(
λA

µ1 + µ2 − λR

)nA−`

= C

(
λR
µ2

) µ2

[(
λA
µ2

)nA
−
(

λA
µ1+µ2−λR

)nA]
µ1 − λR

= C

(
λR

µ1 − λR

)[(
λA
µ2

)nA
−
(

λA
µ1 + µ2 − λR

)nA]
(8)

Finally, we add (6), (7), and (8) to get the result in (3).

We now obtain the Laplace transform of the response time for class A jobs, T̃A(s), via distributional

Little’s Law [19]. First, we find the z-transform of the number of class A jobs in the system, N̂A(z):

N̂A(z) =

∞∑
i=0

Pr{NA = i}zi

= ζN1

∞∑
i=0

(
λA
µ2

)i
zi + ζN2

∞∑
i=0

(
λA

µ1 + µ2 − λR

)i
zi

=
ζN1µ2

µ2 − λAz
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λA − λRz
.

10

Now, observe that class A jobs depart the system in the same order in which they arrive, so ATA , the
number of class A arrivals during a class A response time, is equivalent to NA, the number of jobs seen by
an A departure. Then since ÂTA(z) = T̃A(λA − λAz), we have:

T̃A(λA − λAz) = N̂A(z) =
ζN1µ2

µ2 − λAz
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λA − λRz
.

Let s = λA − λAz, so z = 1− s
λA

. Then we have

T̃A(s) =
ζN1µ2

µ2 − λA(1− s
λA

)
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λA − λR(1− s
λA

)

= (1 + ωN)
νN1

νN1 + s
− ωN

νN2
νN2 + s

.

This is the transform of a Generalized Hyperexponential distribution, H2(νN1, νN2, ωN). Finally,

E[TA] = −T̃ ′A(s)|s=0

= −
[
(1 + ωN)

−νN1
(νN1 + s)2

+ ωN
νN2

(νN2 + s)2

] ∣∣∣∣
s=0

=
1

νN1
+

1

νN2
− 1

νN3
.

Proof. [Lemma 2] In the fully redundant model, all jobs enter the FCFS queue at both servers and depart
from both servers immediately upon completion at either server. Hence each job enters service at both
servers at exactly the same moment, and receives service rate µ1 + µ2 for the entire time it is in service.
This is exactly an M/M/1 with arrival rate λA + λB and service rate µ1 + µ2.

Proof. [Lemma 3] From Theorem 2, we know that in the N model, TR ∼ Exp(µ1 +µ2−λA−λB), which is
exactly the distribution of response time in an M/M/1 with arrival rate λA + λR and service rate µ2 + µ2.

From Theorem 3, we know that in the N model,

E[TA] =
1

µ1 + µ2 − λA − λR
+

1

µ2 − λA
− 1

µ1 + µ2 − λA
,

which is at least the mean response time in an M/M/1 with arrival rate λA + λR and service rate µ1 + µ2

since 1
µ2−λA −

1
µ1+µ2−λA is nonnegative.

Proof. [Theorem 4] Definition 1 gives us E[TR]Opt−Split, E[TA]Opt−Split, and E[T]Opt−Split. We know
E[TA]Redundant from Theorem 3. Theorem 2 tells us that

TRedundant
R ∼ Exp(µ1 + µ2 − λA − λR),

so we also know that E[TR]Redundant = 1
µ1+µ2−λA−λR . Finally,

E[T]Redundant =
λR

λA + λR
E[TR]Redundant +

λA
λA + λR

E[TA]Redundant.

Thus, E[TR]Redundant

E[TR]Opt−Split , E[TA]Redundant

E[TA]Opt−Split , and E[T]Redundant

E[T]Opt−Split , and the desired results follow after some minor algebra.

11

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

λR

E
[T

R
]

Redundancy

Opt−Split

JSQ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

λR

E
[T

A
]

Redundancy

Opt−Split

JSQ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

λR

E
[T
]

Redundancy

Opt−Split

JSQ

(a) E[TR] (b) E[TA] (c) E[T]

Figure 6: Comparing redundancy, Opt-Split, and JSQ for the W model as λR increases, for µ1 = µ2 = 1,
λA = 0.6, and λB = 0.4. Lines shown include mean response time under redundancy (solid blue), Opt-Split
(dashed green)) and JSQ (dashed red) for (a) class R, (b) class A, and (c) the system. Results for other
values of µ1 and µ2 are similar.

5 W Model

We now consider the W model (see Figure 2(b)). The W model has two non-redundant classes, A and B,
each with its own server. A third class, R, enters the system and issues redundant requests at both servers.
We study how this redundant class affects the performance of the system.

An immediate consequence of Theorem 1 is Lemma 4, which gives the limiting distribution of the W
model.

Lemma 4. In the W model, the limiting probability of being in state (cn, cn−1, . . . , c1) depends on c1, as
follows:

π(cn,...,A) = CW

(
λA
µ1

)a0 (λA
µ1 + µ2

)a1 (λB
µ1 + µ2

)b1 (λR
µ1 + µ2

)r
π(cn,...,B) = CW

(
λB
µ2

)b0 (λA
µ1 + µ2

)a1 (λB
µ1 + µ2

)b1 (λR
µ1 + µ2

)r
π(cn,...,R) = CW

(
λA

µ1 + µ2

)a1 (λB
µ1 + µ2

)b1 (λR
µ1 + µ2

)r
, (9)

where a0 is the number of class A jobs before the first class B or R job, b0 is the number of class B jobs
before the first class A or R job, a1 (respectively, b1) is the number of class A (class B) jobs after the first
job of class R or B (A), r is the total number of class R jobs, and

CW =
(µ1 − λA)(µ2 − λB)(µ1 + µ2 − λA − λB − λR)

µ1µ2(µ1 + µ2 − λA − λB)

is a normalizing constant.

Like in the N model, the redundant class (class R) has an Exponentially distributed response time
(Theorem 5). This is again surprising because the system is not an M/M/1. Nonetheless, the response time
for the redundant class is stochastically equivalent to the response time in an M/M/1 with arrival rate λR
and service rate µ′ = µ1 +µ2−λA−λB . We can interpret µ′ as the remaining service capacity in the system
after λA and λB have been apportioned to classes A and B respectively. Alternatively, we can view the
response time for the redundant class as that in an M/M/1 with arrival rate λA + λB + λR and service rate
µ1 + µ2.

Theorem 5. In the W model,

1. The number of class R jobs in the system, NR, is distributed Geometric(1 − ρ) − 1, where ρ =
λR

µ1+µ2−λA−λB .

12

2. The response time of class R jobs, TR, is distributed Exp(µ1 + µ2 − λA − λB − λR).

Proof. The proof follows the same approach as that of Theorem 10, and is omitted.

In Theorem 6, we derive the distribution of response time for the non-redundant class A (class B is
symmetric). Again like in the N model, we find that TA follows a Generalized Hyperexponential distribution.
In addition, the mean response time of class A (or class B) jobs can be interpreted as that in an M/M/1
with arrival rate λA and service rate µ1, plus a penalty term that captures the extent to which the redundant
class hurts the A’s (or B’s) (Equation 10). This penalty is the same for class A and class B even if they have
different loads: the pain caused by the redundant class is shared equally among the non-redundant classes.

Theorem 6. In the W model,

1. The number of class A jobs in the system, NA, has p.m.f.

Pr{NA = nA} = ζW1

(
λA
µ1

)nA
+ ζW2

(
λA

µ1 + µ2 − λB − λR

)nA
,

where

ζW1 =
(µ1 − λA)(µ2 − λB)(µ1 + µ2 − λA − λB − λR)

µ1(µ2 − λB − λR)(µ1 + µ2 − λA − λB)

ζW2 =
−λR(µ1 − λA)(µ1 + µ2 − λA − λB − λR)

(µ2 − λB − λR)(µ1 + µ2 − λA − λB)
.

2. The distribution of response time of class A jobs is

TA ∼ H2(νW1, νW2, ωW),

where

νW1 = µ1 − λA
νW2 = µ1 + µ2 − λA − λB − λR

ωW =
(µ2 − λB)νW2

(µ2 − λB − λR)νW3
.

The mean response time of class A jobs is

E[TA] =
1

νW1
+

1

νW2
− 1

νW3
, (10)

where
νW3 = µ1 + µ2 − λA − λB .

Proof. The proof follows the same approach as that of Theorem 3, and is omitted.

The introduction of a new redundant class clearly hurts the existing non-redundant classes, because the
new redundant jobs compete for service with the non-redundant jobs. We now ask what would happen if
class R chose which queue(s) to join according to some alternative policy, for example, Opt-Split or JSQ.

In Figure 6, we compare these options, where the mean response time under Opt-Split is derived analyt-
ically (Definition 2), but JSQ is simulated. We find that for the redundant class, redundancy outperforms
JSQ, which in turn outperforms Opt-Split (Figure 6(a)).

For the non-redundant classes (Figure 6(b)), mean response time is often lower under redundancy than
under Opt-Split or JSQ, particularly under higher loads of redundant jobs. This is because even though a
larger number of R jobs compete with class A at server 1, some of these R jobs depart the system without
ever using server 1 (they complete service at server 2 before entering service at server 1), and some of these R

13

jobs receive service on both servers at once, thus departing the system faster. As in the N model, redundancy
is always better for the overall system (Figure 6(c)).

When the servers are homogeneous, in the few cases in which mean response time of class A or B is lower
under Opt-Split than under redundancy, we show that redundancy is never more than 50% worse for the A
or B jobs.

Definition 2. Under Opt-Split, p fraction of class R jobs go to server 1, and 1− p fraction go to server 2,
where p is chosen to minimize E[T]. The mean response times for class R jobs, class A jobs, and the overall
system are:

E[TR]Opt−Split =
p

µ1 − λA − pλR
+

1− p
µ2 − λB − (1− p)λR

E[TA]Opt−Split =
1

µ1 − λA − pλR

E[T]Opt−Split =
λA

λA + λB + λR
E[TA]Opt−Split +

λB
λA + λB + λR

E[TB]Opt−Split +
λR

λA + λB + λR
E[TR]Opt−Split.

The mean response time for class B is symmetric to that of class A.

Theorem 7. If µ1 = µ2, then the following are true:

1. 1
2 ≤

E[TR]Redundant

E[TR]Opt−Split ≤ 1. If λR ≥ |λA − λB |, then E[TR]Redundant

E[TR]Opt−Split = 1
2 .

2. 1
2 ≤

E[TA]Redundant

E[TA]Opt−Split ≤ 3
2 .

3. 1
2 ≤

E[T]Redundant

E[T]Opt−Split ≤ 1.

Proof. We have E[TR]Opt−Split, E[TA]Opt−Split, and
E[T]Opt−Split from Definition 2. We also know E[TA]Redundant from Theorem 6. Theorem 5 tells us that

TRedundant
R ∼ Exp(µ1 + µ2 − λA − λB − λR),

so

E[TR]Redundant =
1

µ1 + µ2 − λA − λB − λR
.

Finally,

E[T]Redundant =
λR

λA + λB + λR
E[TR]Redundant +

λA
λA + λB + λR

E[TA]Redundant +
λB

λA + λB + λR
E[TB]Redundant.

We use these expressions to find E[TR]Redundant

E[TR]Opt−Split , E[TA]Redundant

E[TA]Opt−Split , and E[T]Redundant

E[T]Opt−Split , and the desired results follow

after some minor algebra.

6 M Model

Finally, we consider the M model (Figure 2(c)). Unlike the N and W models, there are two redundant classes
in an M model, classes R1 and R2. We study how to best use a shared server at which both classes issue
redundant requests. For convenience, throughout the remainder of this section we use the notation

µ1,2,3 = µ1 + µ2 + µ3

µ1,2 = µ1 + µ2

µ2,3 = µ2 + µ3.

An immediate consequence of Theorem 1 is Lemma 5, which gives the limiting distribution of the M
model.

14

Lemma 5. In the M model, the limiting probability of being in state (cn, cn−1, . . . , c1) depends on c1, as
follows:

π(cn,...,R1) = CM

(
λR1

µ1,2

)r1,0 (λR1

µ1,2,3

)r1,1 (λR2

µ1,2,3

)r2,1
π(cn,...,R2) = CM

(
λR2

µ2,3

)r2,0 (λR1

µ1,2,3

)r1,1 (λR2

µ1,2,3

)r2,1
(11)

where r1,0 (respectively, r2,0) is the number of class R1 (R2) jobs before the first class R2 (R1) job, r1,1
(respectively, r2,1) is the number of class R1 (R2) jobs after the first R2 (R1) job, and

CM =
(µ1,2 − λR1

)(µ1,2,3 − λR1
− λR2

)(µ2,3 − λR2
)

µ1,2µ2,3(µ1,2,3 − λR1 − λR2) + λR1λR2µ2

is a normalizing constant.

In Theorem 8, we derive the distribution of response time for class R1 (class R2 is symmetric). Again,
the response time for class R1 follows a Generalized Hyperexponential distribution. The mean response time
for class R1 can be seen as the mean response time in an M/M/1 with arrival rate λR1

and service rate µ1,2,
plus a penalty term because class R1 has to share server 2 with class R2. The penalty incurred by class R1

and class R2 differs in proportion to their relative arrival rates.
Note that in the N and W models, the redundant class had Exponentially distributed response time

and the response time distribution for non-redundant classes was a Generalized Hyperexponential, whereas
in the M model, the redundant class has a Generalized Hyperexponential response time distribution. We
hypothesize that the response time distribution is related to the degree of redundancy: fully redundant
classes see Exponentially distributed response time, and partially redundant or non-redundant classes see
Generalized Hyperexponentially distributed response times.

Theorem 8. In the M model,

1. The number of class R1 jobs, NR1
has p.m.f.

Pr{NR1 = n} = ζM1

(
λR1

µ1,2

)n
+ ζM2

(
λR1

µ1,2,3 − λR2

)n
, (12)

where
ζM1 = CM

µ3

µ3 − λR2

ζM2 = CM

(
λR2

µ2,3 − λR2

− λR1

µ1,2,3 − λR2

)
.

2. The distribution of response time of class R1 jobs is

TR1
∼ H2(νM1, νM2, ωM),

where

νM1 = µ1,2 − λR1

νM2 = µ1,2,3 − λR1
− λR2

ωM = ζM1
µ1,2

µ1,2 − λR1

Proof. The proof follows the same approach as that of Theorem 3, and is omitted.

15

0 0.5 1 1.5
0

2

4

6

8

10

λR1
= λR2

E
[T
]

Redundancy

Opt−Split

JSQ

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

µ2

E
[T
]

Redundancy

Opt−Split

JSQ

(a) µ1 = µ2 = µ3 = 1 (b) µ1 = µ3 = 1, λR1 = λR2 = 0.6.

Figure 7: Comparing redundancy, Opt-Split, and JSQ for the M model. Lines shown include mean response
time for the overall system under redundancy (solid blue), Opt-Split (dashed green), and JSQ with tiebreak-
ing in favor of the faster server (dashed red). Mean response time as a function of (a) increasing λR1 = λR2 ,
(b) increasing µ2.

Both classes obviously benefit from issuing redundant requests on a shared server rather than each
class having a single dedicated server. However, one might wonder whether mean response time could be
further reduced by using some other policy, like Opt-Split or JSQ, instead of redundancy. In Figure 7 we
investigate the relative performance of these alternative policies. Mean response time under Opt-Split is
derived analytically (Definition 3); JSQ is simulated.

Definition 3. Under Opt-Split, p fraction of class R1 jobs go to server 2, and 1 − p fraction go to server
1, and q fraction of class R2 jobs go to server 2, and 1 − q fraction go to server 3. We choose p and q to
minimize the overall mean response time, given by

E[T]Opt−Split =
(1− p)λR1

λR1 + λR2

1

µ1 − (1− p)λR1

+
pλR1

+ qλR2

λR1 + λR2

1

µ2 − pλR1 − qλR2

+
(1− q)λR2

λR1 + λR2

1

µ3 − (1− q)λR2

.

In all cases, redundancy outperforms both Opt-Split and JSQ. For homogeneous servers (Figure 7(a)),
mean response time under JSQ approaches that under redundancy at high load, but at low load, redundancy
is better by a factor of 2. For heterogeneous servers (Figure 7(b)), as the service rate of the shared server
increases, mean response time under Opt-Split approaches that under redundancy (Theorem 9), but JSQ is
worse by a factor of 2. As the system is symmetric, the response times of the individual classes are the same
as that of the overall system, and thus are not shown.

We analytically prove performance bounds for the M model:

Theorem 9. In the M model,

1. If µ1 = µ2 = µ3, then for any λR1 = λR2 such that the system is stable, 1
3 ≤

E[T]Redundant

E[T]Opt−Split ≤ 1
2 .

2. For any µ1, µ3, λR1
, and λR2

such that the system is stable, limµ2→∞
E[T]Redundant

E[T]Opt−Split = 1.

3. For any µ1, µ2, µ3, λR1
, and λR2

such that the system is stable, E[T]Redundant

E[T]Opt−Split ≤ 1.

Proof. We know E[T]Opt−Split from Definition 3, and we have

E[T]Redundant =
λR1

λR1
+ λR2

E[TR1
]Redundant +

λR2

λR1
+ λR2

E[TR2
]Redundant,

where we know E[TR1
]Redundant and E[TR2

]Redundant from Theorem 8. We can then write E[T]Redundant

E[T]Opt−Split , and

the desired results follow after some minor algebra.

16

(a) Scaled N model

(b) Scaled W model

(c) Scaled M model

Figure 8: Scaled versions of (a) the N model, (b) the W model, and (c) the M model.

7 Scale

Thus far, we only have considered systems with two servers (the N and W models) and three servers (the M
model). We now turn our attention to the question of scale.

The scaled N, W, and M models are shown in Figure 8. In the scaled N model, there are k servers and
k classes of jobs (see Figure 8(a)). Class R jobs replicate at all servers, while jobs from class Ci join only
the queue at server i for 2 ≤ i ≤ k. The scaled W model is similar; there are k servers and k + 1 classes of
jobs, with class R replicating at all servers, and class Ci going only to server i, 1 ≤ i ≤ k (see Figure 8(b)).
In the scaled M model, each class Ri, 1 ≤ i < k, joins the queue at its own dedicated server and at a single
server shared by all classes (see Figure 8(c)).

The limiting probabilities derived in Theorem 1 for the general redundancy system apply to the scaled
N, W, and M models. In Theorem 10, we use this result to find that in both the scaled N and W models,
response time for class R is Exponentially distributed, extending the results of Theorem 2 and Theorem 5
respectively.

Theorem 10.

17

2 4 6 8 10 12 14
0

2

4

6

8

k

E
[T

R
]

Redundancy

Opt−Split

JSQ

2 4 6 8 10 12 14
0

2

4

6

8

10

12

k

E
[T

R
]

Redundancy

Opt−Split

JSQ

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

k

E
[T
]
=

E
[T

R
1
]
=

E
[T

R
2
]

Redundancy

Opt−Split

JSQ

(a) Scaled N (b) Scaled W (c) Scaled M

Figure 9: Comparing E[TR] under redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red)
in scaled systems with homogeneous servers, all with rate 1. (a) The scaled N model with λCi = 0.6 for all
non-redundant classes, and λR = 1.2. (b) The scaled W model with λCi = 0.6 for all non-redundant classes,
and λR = 0.7. (c) The scaled M model with λRi = 0.6 for all classes.

1. In the scaled N model, the distribution of the number of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=2 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=2

λi − λR

)
.

2. In the scaled W model, the distribution of the number of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=1 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=1

λi − λR

)
.

Proof. See Appendix.

For the M model and for the non-redundant classes in the N and W models, the result from Theorem 1
does not easily yield a closed-form expression in the scaled models. The results discussed in the remainder
of this section for these classes are obtained via simulation.

For the two-server N and W models, we saw that the redundant class had lower mean response time
under redundancy than under both JSQ and Opt-Split, but often JSQ was very close to redundancy. Here,
for scaled models, we investigate whether redundancy enjoys a greater advantage over JSQ and Opt-Split as
the number of servers increases.

Indeed, we find that the redundant class sees a much greater benefit under redundancy than under Opt-
Split and JSQ as k increases for the scaled N and W models (see Figures 9(a) and (b)). In fact, as k increases,
the benefit grows unboundedly because when a class R job enters a system with high k, it tends to see many
idle servers. Under Opt-Split, this job may not be routed to one of the the idle servers. Under JSQ, the job
goes to a single idle server i and receives mean response time 1

µi
. Under redundancy, the job gets to use all

of the idle servers, thereby receiving mean response time 1∑
i µi

.

18

In the two-server N and W models, we saw that the benefit that class R received from redundancy came
at a cost to the non-redundant class A. In the scaled N and W models, this cost approaches 0 because the
pain caused by the redundant class is spread among all non-redundant classes, so the effect on any one of
these classes is minimal; the response time for each non-redundant class Ci approaches that of an M/M/1
with arrival rate λCi and service rate µi.

In the three-server version of the M model (Section 6), we saw that redundancy significantly outperformed
Opt-Split and JSQ. In Figure 9(c), we look at the relative performance of the three policies as k increases.
In the scaled M model, at low k, redundancy indeed gives a lower mean response time than Opt-Split and
JSQ. However, as k increases, response time becomes the same under all three policies. As the load on the
shared server becomes high, no class benefits from this server; each class experiences an independent M/M/1.
Convergence to k independent M/M/1 queues is slow; for example, at k = 200, redundancy still provides a
5% lower mean response time than independent M/M/1 queues.

8 Conclusion

In this paper we study a multi-server system with redundant requests. In such a system, each job that arrives
joins the queue at some subset of the servers and departs the system as soon as it completes service at one of
these servers. While recent empirical work in computer systems has demonstrated that redundant requests
can greatly reduce response time, theoretical analysis of systems with redundancy has proved challenging.

We present the first exact analysis of systems with redundancy, deriving the limiting distribution of the
queue state. Our state space is very complex and furthermore yields a non-product form, and non-obvious,
limiting distribution. Nonetheless, we find very clean, simple results for response time distributions for both
redundant and non-redundant classes. Many of our results are counterintuitive:

1. The redundant class experiences a response time distribution identical to that in an M/M/1, even
though the system is not an M/M/1 (N and W models).

2. Once a class is fully redundant, it is immune to additional classes becoming redundant: the distribution
of its response time does not change (N and W model).

3. The non-redundant class often prefers the other class to be redundant as opposed to routing the other
class according to Opt-Split or JSQ (N and W models).

4. When multiple classes share a single server, redundancy can improve mean response time relative to
Opt-Split and JSQ by a factor of 2 (M model).

5. As the number of servers increases, redundancy gives an even greater benefit to the redundant class
while causing less pain to the non-redundant classes (scaled N and scaled W models).

The redundancy system is closely related to many other queueing models for which exact analysis has
long been elusive: Coupled processor systems, fork-join systems, and systems with flexible servers all bear a
resemblance to redundancy systems in that they all involve jobs that can be processed by multiple servers.
The specific mechanism that determines which jobs run on which servers, and whether jobs can run simul-
taneously on multiple servers, varies between models, but all of these models share the underlying theme of
flexibility. We hope that the new analysis presented in this paper will provide insights on how to analyze
these other difficult systems.

While the results presented here apply to a very general redundancy system, we do make some simplifying
assumptions, such as Poisson arrivals and Exponential service times. One can ask how our results would
change if these assumptions were relaxed. In addition, in real systems there may be some cost to deleting
redundant requests once one request has completed. The present work provides the analytical foundation
needed to investigate these questions and others, which we leave for future work.

19

References

[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Why let resources idle? Aggressive cloning of jobs
with Dolly. In HotCloud, June 2012.

[2] F. Baccelli and A. Makowski. Simple computable bounds for the fork-join queue. Technical Report RR-0394,
Inria, 1985.

[3] F. Baccelli, A. M. Makowski, and A. Shwartz. The fork-join queue and related systems with synchronization
constraints: Stochastic ordering and computable bounds. Advances in Applied Probability, 21:629–660, 1989.

[4] A. Bassamboo, R. S. Randhawa, and J. A. V. Mieghem. A little flexibility is all you need: On the value of
flexible resources in queueing systems. Operations Research, 60:1423–1435, 2012.

[5] S. Borst, O. Boxma, and M. V. Uitert. The asymptotic workload behavior of two coupled queues. Queueing
Systems, 43(1-2):81–102, January 2003.

[6] R. F. Botta, C. M. Harris, and W. G. Marchal. Characterizations of generalized hyperexponential distribution
functions. Communications in Statistics, Stochastic Models, 3(1):115–148, 1987.

[7] O. Boxma, G. Koole, and Z. Liu. Queueing-theoretic solution methods for models of parallel and distributed
systems. In Performance Evaluation of Parallel and Distributed Systems Solution Methods. CWI Tract 105 &
106, pages 1–24, 1994.

[8] H. Casanova. Benefits and drawbacks of redundant batch requests. Journal of Grid Computing, 5(2):235–250,
February 2007.

[9] J. W. Cohen and O. J. Boxma. Boundary Value Problems in Queueing System Analysis. North-Holland Pub-
lishing Company, 1983.

[10] J. Dean. Achieving rapid response times in large online services. Slides from talk given at Berkeley AMPLab
Cloud Seminar, March 2012.

[11] G. Fayolle and R. Iasnogorodski. Two coupled processors: The reduction to a Riemann-Hilbert problem.
Zeitschrift fur Wahrscheinlichkeitstheorie und vervandte Gebiete, 47(3):325–351, 1979.

[12] L. Flatto. Two parallel queues created by arrivals with two demands II. SIAM Journal on Applied Mathematics,
45(5):1159–1166, October 1985.

[13] L. Flatto and S. Hahn. Two parallel queues created by arrivals with two demands I. SIAM Journal on Applied
Mathematics, 44(5):250–255, October 1984.

[14] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Cycle stealing under immediate
dispatch task assignment. In Annual Symposium on Parallel Algorithms and Architectures, pages 274–285, June
2003.

[15] G. Hooghiemstra, M. Keane, and S. V. de Ree. Power series for stationary distributions of coupled processor
models. SIAM Journal on Applied Mathematics, 48(5):861–878, October 1988.

[16] H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data replication in free disk space for improving disk
performance and energy consumption. In Proc. of SOSP’05, pages 263–276, December 2005.

[17] G. Joshi, Y. Liu, and E. Soljanin. Coding for fast content download. In Allerton Conference’12, pages 326–333,
2012.

[18] G. Joshi, Y. Liu, and E. Soljanin. On the delay-storage trade-off in content download from coded distributed
storage systems. IEEE Journal on Selected Areas in Communications, 32(5):989–997, May 2014.

[19] J. Keilson and L. Servi. A distributional form of Little’s Law. Operations Research Letters, 7(5):223–227, 1988.

[20] C. Kim and A. K. Agrawala. Analysis of the fork-join queue. IEEE Transactions on Computers, 38(2):1041–1053,
February 1989.

[21] A. G. Konheim, I. Meilijson, and A. Melkman. Processor-sharing of two parallel lines. Journal of Applied
Probability, 18(4):952–956, December 1981.

[22] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchronization in parallel queues. IEEE
Transactions on Computers, 37(6):739–743, 1988.

[23] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing with switching times and
thresholds. In SIGMETRICS, pages 184–195, June 2003.

20

[24] N. B. Shah, K. Lee, and K. Ramchandran. The MDS queue: Analysing latency performance of codes and
redundant requests. Technical Report arXiv:1211.5405, November 2012.

[25] N. B. Shah, K. Lee, and K. Ramchandran. When do redundant requests reduce latency? Technical Report
arXiv:1311.2851, June 2013.

[26] A. L. Stolyar and T. Tezcan. Control of systems with flexible multi-server pools: a shadow routing approach.
Queueing Systems, 66:1–51, 2010.

[27] J. Tsitsiklis and K. Xu. On the power of (even a little) resource pooling. Stochastic Systems, 2:1–66, 2012.

[28] J. Tsitsiklis and K. Xu. Queueing system topologies with limited flexibility. In SIGMETRICS, 2013.

[29] J. Visschers, I. Adan, and G. Weiss. A product form solution to a system with multi-type jobs and multi-type
servers. Queueing Systems, 70:269–298.

[30] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low latency via redundancy.
Technical Report arXiv:1306.3707, November 2013.

[31] D. Wang, G. Joshi, and G. Wornell. Efficient task replication for fast response times in parallel computation.
Technical Report arXiv:1404.1328, April 2014.

[32] C. Xia, Z. Liu, D. Towsley, and M. Lelarge. Scalability of fork/join queueing networks with blocking. In
SIGMETRICS, pages 133–144, June 2007.

21

A Proof of Theorem 1

Theorem 1. The limiting probability of being in state (cn, cn−1, . . . , c1) is

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
,

where C is a normalizing constant.

Proof. We begin by writing local balance equations for our states. The local balance equations are:

A ≡ Rate entering state (cn, . . . , c1)
due to an arrival

=
Rate leaving state (cn, . . . , c1)
due to a departure

≡ A′

Bc ≡ Rate entering state (cn, . . . , c1)
due to a departure of class c

=
Rate leaving state (cn, . . . , c1)
due to an arrival of class c

≡ B′c.

For an empty system, the state is (). It is not possible to enter state () due to an arrival or to leave due to
a departure, so we only have one local balance equation of the form Bc = B′c:

π()λc = π(c)
∑
m∈Sc

µm. (13)

For any other state (cn, cn−1, . . . , c1), we have local balance equations of the form:

A = π(cn−1,...,c1)λcn = π(cn,...,c1)
∑

m∈
⋃
j≤n Scj

µm = A′ (14)

Bc =

n∑
i=0

∑
m∈Sc,
m/∈Scj ,
1≤j≤i

π(cn,...,ci+1,c,ci,...,c1)µm = π(cn,...,c1)λc = B′c.
(15)

We guess the following form for π(cn,...,c1):

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
. (16)

We will prove inductively that our guess satisfies the balance equations. The base case is state ().
Substituting the guess from (16) into the left-hand side of (13), we get:

π(c)
∑
m∈Sc

µm = C
λc∑

m∈Sc
µm

∑
m∈Sc

µm = Cλc = π()λc,

which is exactly the right-hand side of (13).
Now, assume that (14) and (15) hold for some n− 1 ≥ 0. We will show that both hold for n.

1. A = A′. From (14), we have:

A = π(cn−1,...,c1)λcn =

n−1∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
λcn

22

= πcn,...,c1

∑
m∈

⋃
j≤n

Scj
µm

λcn
λcn

= πcn,...,c1
∑

m∈
⋃
j≤n

Scj

µm = A′.

2. Bc = B′c. From (15), we have:

Bc =

n∑
i=0

∑
m∈Sc,
m/∈Scj ,
1≤j≤i

π(cn,...,ci+1,c,ci,...,c1)µm

=

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

π(cn,...,ci+1,c,ci,...,c1)µm +
∑

m∈Sc\
⋃
j≤n

Scj

π(c,cn,...,c1)µm

=

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

λcnπ(cn−1,...,ci+1,c,ci,...,c1)∑
t∈

⋃
j≤n

Scj
⋃
Sc
µt

µm +

λc
∑
m∈Sc\

⋃
j≤n

Scj
µm∑

m∈
⋃
j≤n

Scj
⋃
Sc
µm

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm

=
λcn∑

m∈
⋃
j≤n

Scj
⋃
Sc

µm

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

π(cn−1,...,ci+1,c,ci,...,c1)µm + λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n

Scj
µm∑

m∈
⋃
j≤n

Scj
⋃
Sc
µm

=
λcn∑

m∈
⋃
j≤n Scj

⋃
Sc
µm

π(cn−1,...,c1)λc + λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=λc
λcn∑

m∈
⋃
j≤n Scj

⋃
Sc
µm

n−1∏
i=1

λci∑
m∈

⋃
j≤i Scj

µm
+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=λcπ(cn,...,c1)

∑
m∈

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=λcπ(cn,...,c1) = B′c.

Hence the local balance equations hold for all n, and so the guess for the limiting probabilities from (16)
is correct.

23

B Proof of Theorem 10

Theorem 10. 1. In the scaled N model, the distribution of the number of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=2 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=2

λi − λR

)
.

2. In the scaled W model, the distribution of the number of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=1 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=1

λi − λR

)
.

Proof. To find Pr{NR = nR}, we will consider the non-R jobs in the queue as being split into two pieces: the
non-R jobs before the first R in the queue, and the non-R jobs after the first R in the queue. We sum over
all possible lengths of these two pieces, and all possible classes of these non-R jobs. Let x0 be the number
of non-R jobs before the first R in the queue, and let x1 be the number of non-R jobs after the first R in
the queue. Then we have:

Pr{NR = nR} =

∞∑
x0=0

∞∑
x1=0

CηnRR X0

(
x1 + nR − 1

x1

) ∏
j≥x0
cj 6=R

X1

= CηnRR

(∞∑
x0=0

X0

)(∞∑
x1=0

Xx1
1

(
x1 + nR − 1

x1

))
,

where

ηR =
λR∑k
m=1 µm

,

X0 =

x0∏
j=1

∑
ci 6=R λci∑

m∈
⋃
t≤j

St
µm

,

X1 =

∑
ci 6=R λci∑k
m=1 µm

.

The sums in the numerators of X0 and X1 take into account all of the possible combinations of classes
making up the x0 and x1 jobs, respectively.

Now let C1 =
∑∞
x0=0X0 (note that this is a constant with respect to nR). Using the identity

∑∞
i=0 p

i
(
i+n−1

i

)
=(

1
1−p

)n
for |p| < 1, we have:

Pr{NR = nR} = CC1η
nR
R

(
1

1−
∑
ci 6=R λci∑
m µm

)nR

24

= CC1

(
λR∑

m µm−
∑
ci 6=R

λci

)nR
.

Using the normalization equation
∞∑

nR=0

Pr{NR = nR} = 1,

we find

CC1 = 1− λR∑
m µm −

∑
ci 6=R λci

.

Hence NR ∼ Geometric(1− λR∑
m µm−

∑
ci 6=R

λci
)− 1.

Next, we obtain the Laplace transform of the response time for class R jobs, T̃R(s), via distributional

Little’s Law. First, we consider the z-transform of the number of class-R Poisson arrivals during T , ÂTR(z) =

T̃R(λR − λRz). Class R jobs depart the system in the same order in which they arrive, so ATR is equivalent
to NR, the number of jobs seen by an R departure. Hence

T̃R(λR − λRz) = N̂R(z).

We know that NR is distributed Geometric(p)− 1, where p = 1− λR∑
m µm−

∑
ci 6=R

λci
. Hence we have

T̃R(λR − λRz) = N̂R(z) =
p

1− z(1− p)
.

Let s = λR − λRz, so that z = 1− s/λR. Then we have

T̃R(s) =
p

1− (1− s
λR

)(1− p)
,

which after some simplification gives

T̃R(s) =

∑
m µm −

∑
ci 6=R λci − λR∑

m µm −
∑
ci 6=R λci − λR + s

.

Hence TR ∼ Exp(
∑
m µm −

∑
ci 6=R λci − λR).

The derivation for the W model is very similar, and is omitted here.

25

