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ABSTRACT

The robotics field has seen indoor robots that are increasingly capable of accurately
navigating in buildings and performing service tasks, such as cleaning and transporting
items. Given the advances in accurate navigation and robust motion planning, large
scale industrial applications become feasible tasks. Two common tasks are the mapping
of large unknown structured spaces and using learned maps for coverage planning. In
this thesis, methods are presented for robotic mapping of large spaces and coverage
planning under finite energy constraints. The thesis is presented in two parts. Part
I focuses on the mapping component. We present a basic Kinect-based Simultaneous
Localization And Mapping (SLAM) system for CoBot (mobile service robot in CMU’s
Gates-Hillman Center) in predominantly planar environments. The SLAM solution is
Kinect-based in the sense that observations come only from odometry measurements
and three Kinect sensors. The system is designed for the motivating scenario of map-
ping a large room or floor with aisles and shelves for the purposes of a robot in a store
or warehouse. We present our feature extraction techniques, describe the graph SLAM
method used and show and compare SLAM results with and without parallel-orthogonal
geometric constraints on the planar environment.
Part II addresses the coverage problem. The robot coverage problem, a common plan-
ning problem, consists of finding a motion path for the robot that passes over all points
in a given area or space. In many robotic applications involving coverage, e.g., industrial
cleaning, mine sweeping, and agricultural operations, the desired coverage area is large
and of arbitrary layout. In this portion of the work, we address the real problem of plan-
ning for coverage when the robot has limited battery or fuel, which restricts the length
of travel of the robot before needing to be serviced. We consider several alterations of
the problem with varying objectives. We introduce new sweeping planning algorithms,
which build upon the boustrophedon cellular decomposition coverage algorithm to in-
clude a fixed fuel or battery capacity of the robot. We show illustrative examples of the
planned coverage outcome in a real building floor maps and run timed computational
experiments for each of the methods.





Introduction

The robotics field has seen indoor robots that are increasingly capable of accurately

navigating in buildings and performing service tasks, such as cleaning and transporting

items. Given the advances in accurate navigation and robust motion planning, large

scale industrial applications become feasible tasks. One such task is floor scrubbing in

large indoor environments. Commercial buildings such as schools, airports, stores, and

malls have their floors cleaned on a regular basis. Over a billion dollars a year is com-

mitted to these tasks. This fact naturally raises the question whether these scrubbing

tasks can be automated and completed more efficiently using artificial intelligence and

robots. Addressing the problem poses two interesting research challenges: the mapping

of large unknown structured spaces and using learned maps for coverage planning. In

this thesis, methods are presented for robotic mapping of large spaces and coverage

planning under finite energy constraints. The thesis is presented in two parts. Part

I focuses on the mapping component. We present a basic Kinect-based Simultaneous

Localization And Mapping (SLAM) system for CoBot (mobile service robot in CMU’s

Gates-Hillman Center) in predominantly planar environments. The SLAM solution is

Kinect-based in the sense that observations come only from odometry measurements

and three Kinect sensors. The system is designed for the motivating scenario of map-

ping a large room or floor with aisles and shelves for the purposes of a robot in a store

or warehouse. We present our feature extraction techniques, describe the graph SLAM

method used and show and compare SLAM results with and without parallel-orthogonal

geometric constraints on the planar environment.

Part II addresses the coverage problem. The robot coverage problem, a common plan-

ning problem, consists of finding a motion path for the robot that passes over all points

in a given area or space. In many robotic applications involving coverage, e.g., industrial

cleaning, mine sweeping, and agricultural operations, the desired coverage area is large

and of arbitrary layout. In this portion of the work, we address the real problem of plan-

ning for coverage when the robot has limited battery or fuel, which restricts the length

of travel of the robot before needing to be serviced. We consider several alterations of

the problem with varying objectives. We introduce new sweeping planning algorithms,

which build upon the boustrophedon cellular decomposition coverage algorithm to in-

clude a fixed fuel or battery capacity of the robot. We show illustrative examples of the

planned coverage outcome in a real building floor maps and run timed computational

experiments for each of the methods.

1



Part 1

SLAM for CoBot

1.1 Introduction

Carnegie Mellon’s CORAL research group led by Professor Manuela Veloso works on au-

tonomous indoor mobile robots named CoBot (Collaborative Robot). Currently, CoBot

is able to navigate through the Gates-Hillman Center by non-markov localization using

3D depth camera information [BV12] [BV14]. The localization uses a blueprint map

of each floor of the environment. With the map, it is able to combine sequences of

odometry and Kinect depth camera observations to predict its position on the map

with relatively high accuracy.

We address here a method to build maps for use in localization and navigation. We

explore and implement a basic Kinect-based Simultaneous Localization And Mapping

(SLAM) system for CoBot. The SLAM solution is be Kinect-based in the sense that

observations come only from odometry and the Kinect camera.

Fig. 1.1: CoBots 1, 2 and 4 (left to right) in the Gates Hillman Center at Carnegie
Mellon University
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1.1.1 Motivation

The motivating scenario for this thesis is the mapping of a large room or floor for the

purposes of a service robot. For example, CoBot should be able to map the floor of a

store or warehouse with many aisles and shelves. The mapping solution needs to map

walls and shelves and ignore temporary insignificant features of the environment.

The SLAM solution proposed relies on identifying features in an environment and op-

erates under the assumption of a zero-mean Gaussian error on the observations. The

proposed algorithm can then solve for the maximum a posteriori (MAP) of the trajec-

tory of the robot and the map of the environment which is in the form of a non-linear

least squares optimization problem to minimize the reprojection error of the observa-

tions. The solution uses the Ceres Non-Linear Least Squares solver [AMO] to perform

this optimization. The solution proposed is reasonable in the sense that it is capable of

generating relatively accurate maps retaining only the major features of the motivating

environments in an efficient amount of time.

1.1.2 Related work

The SLAM problem is one of the most well-studied problems in robotics. The goal of

SLAM is to combine localization measurements to aid in mapping and concurrently use

the mapping to aid in the localization. In most scenarios, a robot will have several types

of sensors. One will have readings for location but give no information about the map.

And others like range sensors will give data about landmarks in the map, but without

any localization, these readings have little value. Both sensors have errors and lead to

drift. The aim of SLAM is to combine the data and perform both processes at once to

improve accuracy for both.

SLAM techniques usually come in one of two forms. The first is an online approach

where the map and predicted locations grow with every observation. Most of these

use the Extended Kalman Filter approach [GGR+05],[LHD07],[PJTN08],[WS05]. The

method is able to incrementally estimate the “joint posterior distribution over the robot

pose and landmark positions”[MT03]. From this procedure, accurate predictions on

the updated pose and map landmarks can be made. There exists alternative online

approaches like that of FastSLAM [MT03], [SEGL05] based on particle filters (each
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particle represents a pose of the robot) to incrementally solve the SLAM problem.

The second SLAM form is the batch problem where instead of incrementally solving the

problem as more data is observed, all data and observations are gathered and stored and

then all variables (localization and map) are solved for at once offline [FC04], [OLT06],

[Thr06], [TBF05]. This approach is commonly referred to as Graph SLAM or Graphical

SLAM because it is convenient to view the problem as a large graph where each vertex

is a pose of the robot and constraint edges exist between the poses representing the

observed measurements of consecutive frames. We take this second approach and solve

the complete batch problem offline with our graph SLAM-sd algorithm. Graph SLAM-sd

is much like the standard graph slam with a shelf detection (sd) component.

In many scenarios, such as the inside of offices or academic buildings, it is often ap-

propriate to make a planar world assumption on the environment being explored (i.e.

all landmarks are large planar surfaces) [GGR+05], [NHS07], [SRD06], [TIC12], [WS05].

We, too, make this assumption and solve only the two dimensional case. Methods which

exploit this assumption are often referred to as planar SLAM or line SLAM.

We use both odometry observations and planar observations when solving SLAM unlike

occasional techniques [PVP+09] when only large plane registration is used to correct the

robot’s pose. However, the only depth data we use comes from the relatively inexpensive

Kinect sensors instead of the typical more expensive laser scanner.

1.2 Features

As typical with most SLAM solutions, the data we use to learn the map comes in two

forms: odometry features and landmark features.

1.2.1 Odometry

CoBot is equipped with an omniwheel base. The omniwheel base of CoBot is composed

of a set of four omniwheels arranged in a square formation. We have motion models

which collect data from the actuators of each of the wheels. The data gives us the

x, y, θ distance traveled by the robot at each timestep. The data measurements as

well as the model are susceptible to noise, slippage, and other inaccuracies. Because

data inaccuracies, relying on only odometry for localization for long stretches, will lead
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to large drift and dramatic error in estimating the global position of the robot. The

tendency for dramatic drift is a fundamental motivation for the SLAM solution. SLAM

uses the x, y, θ observation data from odometry for initial pose estimates in our SLAM

solution.

1.2.2 Landmarks

The landmarks observed by CoBot at each timestep are those features which construct

the map of the environment. For the purposes of this project, we have arranged three

Kinect sensors on the robot base. The sensors are arranged to increase the total field

of view of the robot so that the most features can be extracted. Each Kinect has a

depth sensor which in turn produces point cloud objects as observations. With three

Kinects working simultaneously (as opposed to just a single sensor), the point cloud

observations are then combined into single point cloud for observation. This process

requires a transform between each of the Kinects. Determining these transforms is part

of a calibration procedure and can be expressed as a learning problem in itself. See

Appendix B for the procedure on automatic calibration of the Kinects for the purposes

of this project.

With the learned transforms from the calibration process, a single composite point cloud

is observed at each timestep. The solution assumes the environment of the floor or store

is a predominantly planar environment. Thus, the algorithm must be able to detect

both walls (large planar surfaces) and shelves.

Plane Extraction

From each point cloud, we extract all large planar surfaces. We use the Fast Sampling

Plane Filtering algorithm [BV12] to extract the planar surfaces from the data of the

Kinect depth cameras. The method, which utilizes a local iterative RANSAC [FB81]

approach, is efficient and robustly identifies the large planes at each timestep.

Once the planes are identified, they are filtered so that only those perpendicular to the

ground plane remain (i.e. remove the floor, ceiling and table planes). The remaining

planes are then projected onto the xy-plane. The exteme point observations of the

projected plane define the line segment endpoints. See Figure 1.2.
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Fig. 1.2: RGB image of hallway (left); Identified planes from point cloud data (center);
Filtered planes as line segments projected on xy-plane (right)

Shelf Detection

In addition to walls, for the purposes of our motivating example, there is a need to

detect shelves in the same manner. When the shelves are full with many items (ex.

boxes, books, etc), the plane extraction method described in Section 1.2.2 often is

sufficient. However, when the shelves are sparse, it is less effective. Thus, we additionally

apply a shelf detection technique based on a region growing RGBD segmentation. Our

implementation is a variant based on the method presented in [RVvdH09].

After the initial segmentation, we keep only those segments with length > ℓ and width

w within an ǫ error, where ℓ, w, and ǫ are pre-defined parameters for the particular

shelves in the environment. After filtering, we check that several parallel segments are

identified (i.e. greater than or equal to some n) before determining that shelves are

actually present in the scene. Finally, as with plane extraction, we project the observed

shelves onto the ground plane to get the observations in the form of 2D line segments.
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Fig. 1.3: RGB image of store shelves (top-left); RGBD segmented image (top-right);
identified shelves (bottom)

1.3 Graph Slam-SD

Graph SLAM solves the full SLAM problem in the sense that it solves for the entire

map and all robot poses at once. For this setting, it is often convention to represent

the SLAM problem as a graph. Each vertex of the graph represents a pose of the robot

defined by its x, y position and its orientation θ. Each vertex also contains observations

taken by sensors at that pose. Edges in the graph come in two forms: odometry edges

and observation or correspondence edges. Odometry edges connect consecutive poses

by measured odometry. Correspondence edges connect observations of various vertices

which are measurements of the same planar surface.

1.3.1 Notation

Figure 1.4 shows an example graph for a SLAM. The notation that will be used follows

the conventions in [TBF05]

We define a pose at time instance t as xt.

xt =







x

y

θ







x and y are the coordinates of the robot from the origin and θ is its orientation measure

from the x-axis.
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Fig. 1.4: Graph for SLAM problem. There are 3 robot poses each with 2-3 observa-
tions. Red edges show observation correspondences while blue edges show odometry
correspondences.

We define ut to be the measured distance between poses xt−1 and xt.

ut =







xt − xt−1

yt − yt−1

θt − θt−1






=







∆x

∆y

∆θ







The observations extracted from the Kinect data come in the form of 2D line segments.

We define the i-th observation at timestep t as zit which is defined by its two points.

zit =

(

pt,i,1

pt,i,2

)

=













pt,i,1x

pt,i,1y

pt,i,2x

pt,i,2y













We use m to represent the entire map of the environment. m is the planar description

of the environment with which each observation corresponds:

m =
(

m1 m2 · · · mN

)⊤

where each mj is a landmark (planar surface/partial planar surface). Each mj is again

defined by two points mj = (p1 p2)
⊤ =

(

p1x p1y p2x p2y
)⊤

.
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Each observation corresponds to a feature of the map. We define cit to be the cor-

responding map feature index of zit. Thus observation zit corresponds with mcit
.

Finally, it is useful to define the variable y to denote an augmented vector combin-

ing both pose variables x and and map m. Hence, y0:t will be the vector composed

of both trajectory x0:t and map m through time t. At the same time, yt is the vector

composed of the current pose at time t and the map m.

y0:t =
(

x0 x1 · · · xt m
)⊤

and yt =
(

xt m
)⊤

1.3.2 The Posterior

The slam problem involves optimizing the following posterior.

P (y0:t|u1:t, z1:t, c1:t)

We can factor this posterior:

P (y0:t|u1:t, z1:t, c1:t) = η1 · P (zt|y0:t, u1:t, z1:t−1, c1:t) · P (y0:t|u1:t, z1:t−1, c1:t)

(1.1)

Equation (1) can be reduced further via the following observations:

P (zt|y0:t, u1:t, z1:t−1, c1:t) = P (zt|yt, ct) (1.2)

since the observations at the t timestep (zt) is independent of all states (poses, obser-

vations and correspondences) prior to t. The second probability in (1) can be broken

down by splitting y0:t into the most recent state xt and all prior augmented states y0:t−1.

P (zt|y0:t, u1:t, z1:t−1, c1:t) = P (xt|xt−1, ut) · P (y1:t−1|z1:t−1, u1:t−1, c1:t−1) (1.3)

[TBF05]. As done in the derivation of (2), irrelevant variables were removed.
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By substituting (2) and (3) back into (1), one arrives at the following recursive def-

inition.

P (y0:t|u1:t, z1:t, c1:t) = η1 · P (zt|yt, ct) · P (xt|xt−1, ut) · P (y1:t−1|z1:t−1, u1:t−1, c1:t)

With induction, one can obtain the closed form:

P (y0:t|u1:t, z1:t, c1:t) = η2 · P (x0) ·
∏

t

[

P (xt|xt−1, ut) ·
∏

i

P (zit|yt, cit)
]

Note that P (y0) was split into P (x0) and P (m) and since there is no knowledge about

the map, P (m) is consumed by η2.

1.3.3 Gaussian Noise

As is typical, we assume that the noise and general inaccuracy from the odometry and

sensors follows normal distribution probability density functions.

Keeping notation with [TBF05], it is typical to define a motion function for odome-

try. Recall that ut is the measured odometry distances between the pose at (t− 1) and

pose at t. We can define the motion function g like so.

g(ut, xt−1) = xt−1 + ut

Thus, the model with Gaussian noise becomes

xt = g(ut, xt−1) +N (0, R)

where R =







σ2
p 0 0

0 σ2
p 0

0 0 σ2
ω






. Thus we have N (g(ut, xt−1), R)

With this, we use the multivariate normal distribution PDF to determine P (xt|xt−1, ut).
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P (xt|xt−1, ut) = η3 · exp
{

−1

2
(xt − g(ut, xt−1))

⊤R−1(xt − g(ut, xt−1))

}

(1.4)

The observations extracted from the Kinect data come in the form of 2D line segments.

The line segments observed zit are defined by the two end points

zit =

(

pt,i,1

pt,i,2

)

=













pt,i,1x

pt,i,1y

pt,i,2x

pt,i,2y













For this SLAM project, we define the distance vector δ between line segment a and

line segment b as the sum of the projected distances of the endpoints of a onto the

line through b. See the Figure 1.5(a). This planar SLAM project assumes that the δ

distances are distributed normally with variance σ2
d. See 1.5(b).
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Fig. 1.5: Landmark distance metric δ (left); Gaussian observation noise (right)

zit =













x2−x1

2
y2−y1

2
x2−x1

2
y2−y1

2













+













x2−x1

||p2−p1||
y2−y1

||p2−p1||

0

0













A−













0

0
x2−x1

||p2−p1||
y2−y1

||p2−p1||













B +













C1
y1−y2

||p2−p1||

C1
x2−x1

||p2−p1||

C2
y1−y2

||p2−p1||

C2
x2−x1

||p2−p1||













C =

(

C1

C2

)

∼ N (0,

(

σ2
d 0

0 σ2
d

)

) where A,B ∼ Uniform(0, k) for some positive finite

constant k. Then defining h(yt, c
i
t) = mcit

we have
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P (zit|yt, cit) = η3 · exp
{

− 1

2σ2
2

δ(zit, h(yt, c
i
t))

⊤δ(zit, h(yt, c
i
t))

}

*Note that our motion models and sensor experiments give us estimates σp, σω, and σd.

1.3.4 Final Optimization

We want to maximize the probability of the model given the observations and corre-

spondences under the conditions stated above. Thus, we wish to solve

argmax
y0:t

P (y0:t|u1:t, z1:t, c1:t) = argmax
y0:t

(

η2 · P (x0) ·
∏

t

[

P (xt|xt−1, ut) ·
∏

i

P (zit|yt, cit)
])

Because the logorithm is a monatonically increasing function, we can apply it to the

function being optimized without it changing its nature under optimization.

argmax
y0:t

P (y0:t|u1:t, z1:t, c1:t)

=

argmin
y0:t

[const. +
∑

t

1

2
(xt − g(ut, xt−1))

⊤R−1(xt − g(ut, xt−1))

+
∑

t

∑

i

1

2σ2
2

δ(zit, h(yt, c
i
t))

⊤δ(zit, h(yt, c
i
t))]

(1.5)

Equation (5) is the non-linear least squares function to be optimized. We use the Ceres

Non-Linear Least Squares solver [AMO] as an off-the-shelf optimization solution to solve

this problem.

Parallel-Orthogonal Constraint

With the motivating example for this project as an indoor environment with many

corridors, walls, and/or aisles, it is reasonable to make the assumption that all landmark

line segments are parallel or perpendicular to each other. If we make this assumption, it
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is an additional “constraint” on the map generated from the procedure. All landmarks

in the ground truth map are to be parallel to either the x-axis or y-axis. Adding this

constraint to the optimization process is as simple as modifying the observational error

function δ(a, b) to a function δpo(a, b). δpo(a, b) with line segments a and b is defined as

the sum of the projected distances of b onto the line y = midy(a) if a is angularly closer

to the x-axis than the y-axis, otherwise δpo(a, b) is the sum of the projected distances

of b onto the line x = midx(a). Here midx(a) and midy(a) are the x and y components

of the midpoint of line segment a respectively. We compare the maps produced using

both error metrics δ and δpo.

1.4 Experimental Results

The graph-SLAM method described in this paper was implemented and tested on four

separate data sets: a single hallway with the robot moving in a swervy path, a rectan-

gular loop path in Wean Hall (WEH) Floor 8, a longer traversal of Wean Hall Floor

8, and seven aisles of a library. The robot was driven throughout the environment on

each dataset via joystick and the appropriate data was collected and bagged. We also

recorded the true global positions for start and finish of the robot path. The smallest

data set (the hallway) contained 2705 poses and 3983 planar observations while the

largest data set (the floor) contained 8912 poses and 20023 planar observations.

The SLAM algorithm was run both with and without the parallel-orthogonal constraint.

The results of the rectangular loop data set is shown in Figure 1.6. Plots of the mapping

relying only on dead-reckoning (odometry only), mapping using planar SLAM, mapping

using planar SLAM with the parallel-orthogonal contraint, and the ground truth map

of the environment are shown. Similar figures for the remaining data sets are shown in

Figures 2.22, 2.18, 2.19 (Appendix A).
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Fig. 1.6: WEH Loop Data Set: raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)

A qualitative analysis shows us that our SLAM solution significantly reduces the drift of

the robot’s navigation path and the resulting maps are dramatically closer to the ground

truth. This drift is most dramatic in the largest dataset (Figure 2.22 WEH Hall) where

relying simply on dead reckoning leads to a final pose prediction that is approximately

37 m away from the true final pose in global coordinates while the SLAM solution

reduces this error to only 1.5 m.

Fig. 1.7: Final robot position distance errors

We also note that while some minor effects can be seen by adding the parallel-orthogonal

constraint, a major improvement cannot be concluded and any corrections that the

constraint may add are highly dependent on the data set collected. The final position
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errors (measured by euclidean distance from the recorded global position) of dead-

reckoning vs. SLAM vs. SLAM (with constraints) for the four datasets are shown in

Figure 1.7. On average there is only a 3% percent decrease in overall error by applying

the parallel-orthogonal constraint. In one case, the Hallway Dataset (smallest map),

the error actually increased by adding the constraint.

From the maps generated by the graphical SLAM approach implemented here, we find

our solution is general and able to reconstruct reasonable maps to use for future nav-

igation. We attribute this relative robustness to the method’s simplicity and direct

approach to solving the problem. Though there exists more advanced and complete

methods, for our needs, graphical SLAM demonstrates sufficiency for the motivating

scenario. The design of the mapping system as an offline approach to mapping and

unknown indoor environment proves adequate.

1.5 Conclusion

In this work, we explored graphical SLAM for CoBot. We proposed, implemented,

and tested a straight-forward offline graph SLAM solution called graph slam-sd for

the motivating scenario of mapping a large room or floor with aisles and shelves for the

purposes of a service robot in a store. We gave two methods for detecting and measuring

landmarks of walls and shelves and used them as features when solving the problem.

They are sufficient for the presented scenario. We implemented the solution with the

efficient Ceres solver.

We collected four data sets of varying sizes and tested our methods on each. We find

that the graphical planar SLAM method can be successful and relatively accurate when

mapping a route of corridors or aisles with shelves. The solution leads to dramatic

reductions in navigation and mapping errors and yields maps which are close to ground

truth. Additionally, we analyzed the effects of adding a parallel-orthogonal constraint to

the optimization and conclude that adding the constraints can lead to minor corrections

for orientational errors of the map but overall yields little significant improvements.

There are several possible directions for future work for this CoBot mapping project.

Future work includes incorporating additional data sources such as vision or wifi data

to aid in the localization and mapping. Also, it would be interesting to add a form of

loop closure to the SLAM project and compare the results to those achieved already.

15



Using an advanced automatic loop closure technique or something as simple as placing

select QR codes in known locations in the environment are possibilities. Though not

directly addressed in this report, the time to perform the optimization and solve for the

larger maps is significant. Several optimizations including heuristics and compressions

should be explored to reduce the amount of computation required.
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Part 2

Methods for Coverage Planning
with Finite Resources

2.1 Introduction

We have extensively experienced mobile indoor robots that are capable of accurately

navigating in buildings and performing service tasks, such as transporting items or

accompanying people to locations [BV13]. Given their accurate localization and navi-

gation and their reliable motion planning, we investigate their service to further include

a complete sweeping task. In this work, we address a robot space coverage problem.

Coverage planning has been commonly studied in robotics (e.g., [Cho01]). The goal is

to plan a path in which the robot covers all points in a given map, i.e., the robot’s work

space. Many approaches have been explored for a variety of applications, including item

search [SXS+00a], floor cleaning [DH93], large scale agriculture [FSTC01], mowing and

milling [AM00], and painting [?]. In all of these applications, it is essential that the

robot path or sensor paths are guaranteed to cover the surface in a robust and efficient

manner to complete the objective.

These tasks inspire various methods in addressing the coverage problem. Techniques

used can be categorized by how they address altering objectives. Some works only

require the robot’s sensors to cover an area while many force the robot base to pass over

the entire region [ACZS03]. There is much work on randomized approaches without

knowledge of the environment [Gag93] as well as approaches with a predefined map like

those which use cellular decomposition [Lat91, CARL00, CP97].

Often these approaches are motivated to minimize some objective. A common choice

is to minimize the total distance traveled during the cover of the area. However, find-

ing the optimal route in this regard is an NP-Hard problem. This can be seen by its

close relation to solving the geometric Traveling Salesman Problem (TSP) with neigh-
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borhoods [AH94]. Hence, approximation heuristics are often used. Even through a

cellular decomposition where the problem is broken down into smaller regions, planning

an efficient tour through the regions requires some form of approximation. Other op-

timizations like minimizing the number of turns required in a decomposition have also

been studied [HY01] [YKPS14].

In this work, motivated by our real robot, we investigate an additional component to the

coverage problems by incorporating a consideration for a fixed battery or fuel source.

Accounting for the limited battery life is important as, in many applications, the area

to cover is too large for the robot to completely cover in a single non-interrupted charge

of a battery. Coverage planning with energy constraints and timing restrictions has

been addressed in previous works [SKPY10] [YKPS14] [HL06]. Of these works, some

consider the problem of sensor-based multi-robot coverage in narrow environments and

use a heuristic algorithm to reduce the number of robots needed under energy constraints

[SKPY10] [YKPS14]. Another scenario addressed is a multi-robot deployment problem

to determine the number of groups unloaded by a carrier, the number of robots in each

group and the initial locations of those robots for coverage tasks under both timing and

energy constraints [HL06].

We focus here on coverage planning under several objectives all with fixed energy ca-

pacity. We present both heuristic algorithms and integer programming to reduce total

distances traveled during coverage. To investigate this problem, we also assume that the

space has a service For our heuristic method, we contribute a new battery-constrained

sweep algorithm (BC Sweep) which extends the boustrophedon cellular decomposition

coverage algorithm to reason about a battery capacity constraint. We then present inte-

ger linear programming formulations to the problem to solve coverage routing solutions

optimally.

2.2 Problem Definitions

There has been limited prior work mentioned for planning an entire path for the robot

that considers the total distance the robot travels or total energy used in relation to a

fixed battery life or fuel capacity. We consider this extra constraint during path planning

coverage.

In all of the problem variations addressed here, we make the assumption that given some
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finite path for a robot, an estimate can be made on the energy used while executing

the path. We denote this estimation function f . We now define three variations of the

problem definition for the coverage scenario addressed in this work.

1. Single Robot, Single Depot Coverage (SRSD)

The most basic of the coverage variations is the single robot, single depot (SRSD)

case. The problem formulation can be stated as follows: Given a two dimensional

map M with a service center location s0, a fuel capacity λ, and a fuel consumption

function f , plan a route such that the robot covers the map and respects the robot’s

fuel capacity constraint. The robot begins and ends at s0 and returns to s0 to

refuel. M is represented as a closed figure (typically a polygon) and will usually

have obstacles. See Figure 2.1.

Fig. 2.1: An example polygonal map M with a single obstacle (black) and a single
service station (green).

2. Single Robot, Multi-Depot Coverage (SRMD)

The single robot, multi-depot coverage (SRMD) scenario is identical to the SRSD

problem description except that there are several service stations present repre-

sented by a depot set D. The robot must originate from s0 and may finish at any

other service station. Under both SRSD and SRMD, the objective is to find a

feasible solution which reduces the total distance traveled.

3. Multi-Robot, Single Depot Coverage (MRSD)

The multi-robot, single depot coverage (MRSD) has a variation in objective from

SRSD and SRMD. The ultimate goal is to achieve complete coverage, however, we

now have a fleet of robots. The robots are identical robots and originate from a
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single source depot and then perform coverage in parallel. Each robot has a fixed

capacity but recharges are not permitted. The objective here is minimizing the

total of robots needed.

2.3 Boustrophedon Coverage

Our algorithms make use of the boustrophedon cellular decomposition [CARL00] [CP97]

for bounded planar environments with obstacles. This decomposition breaks the map

into disjoint regions called cells. The individual cells can be covered simply by back-and-

forth or “ox-plow”motions. See Figure 2.2. To cover the entire free space or map, a tour

through each region is constructed and the robot visits and covers the cells sequentially

along this tour.

 

Fig. 2.2: Back-and-forth ox-plow motions.

Specifically, the boustrophedon decomposition uses a verticle line sweep approach to

construct the cells. The slice sweeps from left to right across the map. At any point,

if the continuity of the sweep line changes count, then a new cell is spawned or two

adjacent cells are merged. In the case of connectivity increasing, a new cell is added.

For the instances when connectivity decreases, then adjacent cells are merged [CARL00]

[CP97].

After decomposition, the algorithm constructs some graph (commonly a complete or

adjacency graph) between the regions. The weight on an edge is the euclidean shortest

distance path between the two points on the map. To determine the shortest paths on

a map between all cells, a visibility graph is constructed where obstacles are expanded

by the robot radius [LpW79]. The visibility graph is simply a graph where an edge

exists between two points of interest if the robot can travel between by straight line

with touching an obstacle. Figure 2.3a shows the visibility graph for our example.
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(a) Visibility Graph (b) TSP tour through cells

(c) Cell cover paths with tour

Fig. 2.3: Components of boustrophedon coverage

Diijkstra’s algorithm is then run on this graph for all pairs of cells to determine the

weight of the shortest distance between them. This gives us our complete shortest path

graph.

With the complete graph, the goal becomes finding a minimal cost tour through all

regions and reduces to solving the TSP on the graph. Typically an approximation

algorithm is used as a heuristic to solve for a reasonable tour. Figure 2.3b shows a TSP

tour through the cells and 2.3c shows the complete cover plan.

Our algorithms make use of this decomposition technique to create cellular regions and

extends touring the regions to account for a fixed fuel or battery life.
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2.4 Approximate Solutions

As discussed in the previous section, determining a minimum route through the cell

graph created by the boustrophedon decomposition requires solving or approximating

the traveling salesman problem. As an extension to the decomposition algorithm, we

wish to solve for a minimum route such that the robot (s) abides by the fuel capacity

constraint. This problem becomes more difficult than TSP. We begin with an approxi-

mation algorithm. We present now the BC Sweep algorithm.

2.4.1 BC Sweep for SRSD

Again, we presume that given some route r of the robot that we have a function f such

that f(r) is an estimation of the energy used over that route. Often, this is directly

related to the length of r and could also incorporate the turns (could be expensive). f

must also be linear (ie f(r1 → r2) = f(r1)+f(r∗12)+f(r2)) where r
∗
12 is the shortest direct

route connecting r1 to r2. We present now the BC Sweep algorithm. The intuition of BC

Sweep is straight forward. We construct a graph expressing the cellular decomposition

of the space with a refueling location. The representation accounts for the costs of

covering each cell and traveling between them. The algorithm then simply approximates

a minimum cost walk through the graph which circles back to the service station when

necessary to refuel. Our approach needs the minimum requirement that the fuel capacity

λ is large enough that the robot can depart from s0, cover any cell, and return without

running out of fuel. Under these conditions, we have the following algorithm.

BC Sweep:

1. Decomposition: Perform boustrophedon decomposition on the map M into cell set

X. Plan all back-and-forth cover-paths {r1, ..., rn} for respective cells {x1, ..., xn}.
For simplicity, we assume all cover-paths begin and end in the same location. Add

a special cell s0 of 0 size and a null cover-path r0 representing the service station s0.

2. Graph Construction: Construct a complete graph G = (V,E) between all cells

including the service station s0. Thus V = {s0} ∪ {x1, ..., xn}. For every edge

eij = (vi, vj) ∈ E let r∗ij = r∗ji be the shortest direct route on M between cell (or

station) i and j. Assign the weight w(eij) = f(r∗ij)+
1
2
(f(ri)+f(rj)) to each edge.
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This procedure is shown in Figure 2.4.
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Fig. 2.4: (Left) graph cells (nodes) with intra and inter cell fuel costs. (Right) modified
graph G of BC Sweep algorithm

3. Solve for Giant Tour : Use Christofides Algorithm [Chr76] to generate a TSP tour

T = vT0 → vT1 → · · · → vTn → vT0 starting and ending at s0 (ie s0 = vT0 ).

4. Tour Partitioning : We now optimally partition T into subroutes which meet the

fuel capacity constraint. Define a cost matrix C as follows. ∀ i, j ∈ {0, ..., n}

Cij =











































f(vT0 → vTi+1 → · · · → vTj → vT0 )

if this cost

is ≤ λ and i < j

∞ otherwise

This cost matrix defines a new directed graph H. We now use Dijkstra’s algorithm

on H to find the shortest path from node 0 to node n. Since each edge of this

path represents a subroute, we append these subroutes together to get our tour.

This gives us the shortest route using T which abides by the battery capacity

constraint.

The BC Sweep steps are shown in Figure 2.5.
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Fig. 2.5: Steps 1-4 (left to right) of the BC Sweep Algorithm

Steps 3) and 4) can be seen as an approximation of a reduction to the distance con-

strained vehicle routing problem (DCVRP). Vehicle routing with constraints is a variant

of TSP and has been studied in several works including [Bea83] [LSL90] [LSLD92] [NR].

The heuristic used here is described and analyzed in [Bea83] and [LSLD92].

We present the following theorem on completeness and correctness.

Theorem 1. BC Sweep covers M and obeys the fuel capacity constraint.

Proof. By boustrophedon decomposition, if each cell is visited, it will be covered. We

show that each cell is visited and obeys the fuel constraint. When G is constructed, we

add half of every cell’s covering fuel cost to all incident edges of that cell. See Figure 2.4.

Hence any path which passes through the cell will pick up half the weight on the way in

and the other half on the way out. Because of this set-up, our TSP tour T accounts for

all cell costs. With all fuel costs accounted for in T and H giving infinite weight to any

subroutes violating the fuel constraint, our final route abides by the constraint. Note

because we assumed a feasible solution exists, a finite cost path will always be possible.

Since our final route is the concatenation of adjacent subroutes beginning and ending

at s0, the route visits all cells.

2.4.2 Extensions for SRMD

Recall that the problem formulation for the single robot, multi-depot setting is the same

as SRSD except that we consider the ability of the robot to refuel at several refueling

stations. The robot must originate from s0 and may finish at any service station in our

depot set {s0, s1, . . . , sm−1} = D of size m. We extend BC Sweep to handle this scenario

by modifying a few of the steps.

1. Decomposition: Again, perform boustrophedon decomposition on the map M into

cell set X. Plan all back-and-forth cover-paths {r1, ..., rn} for respective cells
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{x1, ..., xn}. Add a special cells {s0, s1, . . . , sm−1} of 0 size and a null cover-path

r0 representing the service stations.

2. Graph Construction: Construct a complete graph G = (V,E) between all cells in-

cluding the service stations in D. Thus V = D ∪ {x1, ..., xn}. As before, for every
edge eij = (vi, vj) ∈ E let r∗ij = r∗ji be the shortest direct route on M between cell

(or station) i and j. Assign the weight w(eij) = f(r∗ij) +
1
2
(f(ri) + f(rj)) to each

edge.

3. Solve for Giant Tour : Generate an approximate TSP tour vT0 → vT1 → · · · →
vTn → vT0 starting and ending at v0 (ie s0 = vT0 ). Truncate the tour of the service

station T = vT1 → · · · → vTn . The important component is the trail through the

cell vertices. See Figure 2.6.
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Fig. 2.6: Giant tour through cell vertices in a multi-service station environment.

4. Tour Partitioning : We now optimally partition T into subroutes which meet the

fuel capacity constraint. Define a cost matrix C as follows. ∀i, j ∈ {0, . . . , (n +
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1)m} if we let

i′ = i mod (n+ 1)

j′ = j mod (n+ 1)

p = ⌊i/(n+ 1)⌋
q = ⌊j/(n+ 1)⌋

Cij =











































f(sp → vTi′+1 → · · · → vTj′ → sq)

if this cost

is ≤ λ and i′ < j′

∞ otherwise

This cost matrix defines a new directed graph H. We now use Dijkstra’s algorithm

m times on H to find the minimum cost path of all shortest paths from node 0

to node (k(n + 1) + n) for all k ∈ {0, . . . ,m − 1}. Since each edge of this path

represents a subroute from a depot to depot, we append these subroutes together

to get our tour. We take the minimum over them instances of Dijkstra’s algorithm

to determine the best depot at which to finish. This procedure gives us the shortest

route using T which abides by the battery capacity constraint.

2.4.3 BC Sweep for MRSD

The BC Sweep heuristic algorithm need not be modified for the multi-robot, single depot

setting. Each depot-to-depot subtour of the partitioned path becomes the entire path

for an individual robot of the multiple robots deployed. The number of robots needed

becomes the number of partitions used by BC Sweep.

2.4.4 Performance Analysis

We now show results on the performance of this optimal tour partitioning heuristic

with respect to the objectives in each scenario. The results and proofs were originally

presented in 1992 [LSLD92]. We will use a variant of their notation and proofs when

giving the results here.
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Bounds for the BC Sweep Heuristic

Since the BC Sweep algorithm is the same for both the SRSD and MRSD cases, we

begin with their performance bounds. For convenience, we define the following variable

relations.

T - the TSP tour through all cells that is partitioned by BC Sweep

S - the complete route through all the cells produced by BC Sweep

k - the number of subroutes of S starting and ending at a service station

L = f(S) - the total length of our route S

L∗ - the minimum (optimal) possible length of a tour possible over all feasible routes

k∗ - the minimum (optimal) possible number of subtours possible over all feasible routes

sp{v} - the closest service station vertex to node v in G

dm = max{w(eij)} where eij are edges in G where i ∈ D, j ∈ L

Lemma 2. L ≤ kλ.

Proof. L is composed of k subtours each of which must be less than the fuel capacity λ

thus the total length must be ≤ kλ.

Theorem 3. k ≤ min{n, w(T )−2dm
λ−2dm

+ 1}.

Proof. Consider a greedy tour partitioning of T instead of the optimal tour partitioning.

For the greedy approach, we go to the nearest service station to refuel only when we

can go no further without violating the capacity constraint. Let the greedy partitions

(without detours to service stations) of T be {T1, T2, . . . , TkG} where kG is the numberof

partitions used and

T1 = s0 − vT1 − vT2 − · · · − vTℓ(1)

T2 = vTℓ(1)+1 − vTℓ(1)+2 − · · · − vTℓ(2)
...

TkG = vTℓ(kG−1)+1 − vTℓ(kG−1)+2 − · · · − vTℓ(kG)

Also let w(Ti) = w(vTℓ(i−1)+1 − vTℓ(i−1)+2 − · · · − vTℓ(i)). Thus we have
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w(T1) + w(vTℓ(1) − vTℓ(1)+1) + w(vTℓ(1)+1 − sp{vT
ℓ(1)+1

}) ≥ λ (2.1)

w(sp{vℓ(i−1)} − vTℓ(i−1)+1) + w(Ti) + w(vTℓ(i) − vTℓ(i)+1) + w(vTℓ(i)+1 − sp{vℓ(i)}) ≥ λ

∀i s.t. 1 < i < kG (2.2)

w(TkG)− w(sp{v
ℓ(kG−1)

} − vTℓ(kG−1)+1) ≥ 0 by triangle inequality (2.3)

Using inequalities (1), (2) and (3), we can sum the inequalities over all i from 1 to kG:

w(T1) + w(vTℓ(1) − vTℓ(1)+1) + w(vTℓ(1)+1 − sp{vT
ℓ(1)+1

})+

kG−1
∑

i=2

[

w(sp{vℓ(i−1)} − vTℓ(i−1)+1) + w(Ti) + w(vTℓ(i) − vTℓ(i)+1) + w(vTℓ(i)+1 − sp{vℓ(i)})
]

+

w(TkG)− w(sp{v
ℓ(kG−1)

} − vTℓ(kG−1)+1) ≥ (k − 1)λ

=⇒ (kG − 1)λ ≤
kG
∑

i=1

w(Ti) +
kG−1
∑

i=1

w(vTℓ(i) − vTℓ(i)+1) + 2
kG−2
∑

i=2

dm

= w(T ) + 2
kG
∑

i=2

dm

≤ w(T ) + 2(kG − 2)dm

We simply rearrange (k − 1)λ ≤ w(T ) + 2(kG − 2)dm to arrive at kG ≤ w(T )−2dm
λ−2dm

+ 1.

Since our optimal tour partitioning heuristic will always yield at most as many subtours

as the greedy partition (because of triangle inequality), we have k ≤ kG. Thus, we can

simply conclude that k ≤ min{n, w(T )−2dm
λ−2dm

+ 1}.

Theorem 4. L
L∗

≤ 1 + (1.5) λ/dm
λ/dm−2
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Proof.

k ≤ w(T )− 2dm
λ− 2dm

+ 1 by Theorem 3

=⇒ L/λ ≤ w(T )− 2dm
λ− 2dm

+ 1 since L ≤ kλ

=⇒ L ≤
(

w(T )− 2dm
λ− 2dm

+ 1

)

λ

=⇒ L/L∗ ≤
(

w(T )− 2dm
λ− 2dm

+ 1

)

λ/w(T ∗) since w(T ∗) ≤ L∗

=⇒ L/L∗ ≤
(

(1.5)w(T ∗)− 2dm
λ− 2dm

+ 1

)

λ/w(T ∗) by Christofides bound

=⇒ L/L∗ ≤ (1.5)
λ

λ− 2dm
+ 1 by λ < w(T ∗)

=⇒ L/L∗ ≤ (1.5)
λ/dm

λ/dm − 2
+ 1

Note that if we don’t assume λ < w(T ∗) in the second to last step, then only a single

subtour is needed and the TSP approximation is the solution. Hence, there would be a

bound of 1.5 which is tighter than the above bound.

Theorem 5. k
k∗

≤ 1 + (1.5) λ/dm
λ/dm−2

Proof.

k ≤ w(T )− 2dm
λ− 2dm

+ 1 by Theorem 3

=⇒ k/k∗ ≤
(

w(T )− 2dm
λ− 2dm

+ 1

)

λ/w(T ∗) since k∗ ≥ w(T ∗)/λ

=⇒ k/k∗ ≤
(

(1.5)w(T ∗)− 2dm
λ− 2dm

+ 1

)

λ/w(T ∗) by Christofides bound

=⇒ k/k∗ ≤ (1.5)
λ

λ− 2dm
+ 1 by λ < w(T ∗)

=⇒ k/k∗ ≤ (1.5)
λ/dm

λ/dm − 2
+ 1
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Theorem 4 and Theorem 5 give us performance bounds for the tour partitioning heuristic

used by BC Sweep for all three cases, SRSD, SRMD, and MRSD cases. Specifically, the

length of the tour produced by BC Sweep for SRSD and SRMD is within 1+(1.5) λ/dm
λ/dm−2

times of optimal and the number of vehicles used in the MRSD case is also within

1 + (1.5) λ/dm
λ/dm−2

times of optimal. As is also noted in [LSLD92], this bound is worth

more when λ ≫ 2dm.

2.4.5 Atomic Regions

One of the nice aspects of this algorithm as its stands is that if f does not underestimate

energy usage and navigation is flawless, then each of the decomposed cells will be covered

in an atomic nature. By atomic, we mean the covering of a cell will not be interrupted

by a need for a recharge. This component is a useful feature in many applications where

a room or designated area must be swept or covered all at once with no intermission

guaranteed.
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Fig. 2.7: Modified BC Sweep illustration for non-atomic regions. The environment
contains two atomic regions and a single interruptable region. (Far-left) map decom-
position, (Center-left) key routing nodes identified, (Center-right) routing graph con-
structed, (Far-right) traversal route determined.

However, there are applications where every decomposed cell need not have an atomic

covering. In such cases, one can optimize the above algorithm to make less service

trips and only perform them in designated regions. We extend the original BC Sweep

to handle the scenario where there is a set of cells A which we want to be atomically

covered and a set of cells B which does not have this constraint. Note A ∪ B = X and

A ∩ B = ∅.

We need only redefine G = (V,E) and cost matrix C and the rest of the algorithm

remains the same.

Define G1 = (V1, E1) to be
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- x0 is a vertex in G1.

- All cells xk ∈ A are vertices in G1.

- For every ox-plow cover-path

yk1 → · · · → ykm = rk corresponding to xk ∈ B, the first and last nodes become

vertices: yk1 , y
k
m ∈ V1. Like the depot, yk1 , y

k
m will have a null cover-paths.

- There is an edge between all atomic cell vertices. There is an edge between all

atomic cell vertices and start/finish cover-path vertices.

- Assign the weight w(eij) = f(r∗ij) +
1
2
(f(ri) + f(rj)) to each edge.

Define G2 = (V2, E2) to be

- x0 is a vertex in G2.

- For all cover-paths

yk1 → · · · → ykm = rk corresponding to xk ∈ B, all nodes become vertices:

{yk1 , ..., ykm} ⊆ V2.

- For every vertex yki there is an edge e between yki and yki+1 with weight w(e) =

f(yki → yki+1).

- For every vertex yki there is an edge e between x0 and yki with weight of the shortest

path between the two.

Our final graph G is the union of these two graphs: G = G1 ∪G2.

We must now slightly change our cost matrix C after we approximate a TSP tour
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T = vT0 → vT1 → · · · → vT0 on G.

Cij =











































































































f(vT0 → vTi → · · · → vTj → vT0 )

if this cost

is ≤ λ and i < j and

vTi is spawned from B

f(vT0 → vTi+1 → · · · → vTj → vT0 )

else if this cost

is ≤ λ and i < j

∞ otherwise

This change in C is necessary because in the non-atomic regions, the robot must return

to the same spot it left off so that it may complete coverage in that area instead of

advancing to the next region.

We now simply plan the entire route by running BC Sweep on the newly defined G and

C. The route respects the λ-capacity constraint and guarantees regions xk ∈ A remain

atomic. Figure 2.7 demonstrates the modified approach.

Theorem 6. The modified BC Sweep covers M , obeys the fuel capacity constraint, and

does not service in atomic regions.

Proof. The algorithm behaves the same in the atomic regions so the proof follows

through in the same manner as the original theorem for atomic regions. It is only

necessary to argue that complete coverage occurs in non-atomic regions. Since the cost

matrix C was constructed in a manner that if a non-atomic cover path was divided by

a service trip that the tour would return to the same node after refueling, we know that

no legs of the sweep will be skipped. And since we assumed a feasible solution, after

resuming sweeping, progress will always be made in non-atomic regions until complete.

Thus, complete coverage occurs in non-atomic regions.
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2.4.6 Dynamic BC Sweep

The theoretic algorithms proposed so far are not entirely feasible in practice. BC Sweep

leveraged unrealistic liberties when planning its covering route.

First, we assumed that when in operation, the robot has perfect navigation in the envi-

ronment. Due to uncertainty in sensors, actuators and imperfect navigation algorithms,

this assumption is an impractical one.

Second, BC Sweep relies on a function f which does not underestimate the energy used

over a given path. Though one could exaggerate f to meet this requirement, the more

accurate f is, the more energy efficient and coverage effective BC Sweep becomes.

To relax some of these assumptions, we propose extensions to the BC Sweep algorithm

to be more reliable in practice. The key here is that the algorithm needs to be adaptive

while executing.

Variability in Navigation

To account for imperfection in navigation while executing a sweeping route, we dy-

namically adjust the route taken. Consider the scenario where while performing the

back-and-forth motions in a cell, the robot drifts along one of the lengths. Figure 2.8a.

If the navigation realizes the error, we can modify the route to cover the missing area.

Thus we can dynamically adjust our BC Sweep route. Figure 2.8b. In such a case, we

note that it is possible the atomic regions may need to be interrupted depending on how

much rerouting is necessary. Denoting Qλ to be the current fuel life, the online dynamic

algorithm:

while covering cell xk do

if off path then

recalc. ox-plow path r for the remainder of xk;

if xk is atomic and f(r) + f(xk → x0) > Qλ then

make xk interruptible;

end

rerun BC Sweep;

end

end
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(a) Navigation error.

 

(b) Navigation error recovery.

Fig. 2.8: Variability in navigation.

Updating f

One of the more difficult aspects of BC Sweep is determining the energy consumption

function f . Any offline theoretic function f estimate could change depending where

you are in the route, map, or on any other factors. To account for a variable function

f , it is possible to recalculate an f estimate dynamically while executing the sweeping.

For example, one could consider a moving average approach evaluated on some past

window size w for dynamically updating f . After each online update, BC Sweep can

be rerun. Similar to accounting for variability in navigation, depending on how much f

changes at any point, atomic regions may become interruptible or even revert back to

being atomic.

2.4.7 Simulations

We simulated BC Sweep on a test convenience store environment requiring covering.

Figure 2.9 shows the floor plan of a convenience store for which BC Sweep was run.
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Fig. 2.9: An example convenience store layout.

We ran the BC Sweep algorithm with the following parameters. We used a circular robot

of radius 0.75 meters. The fuel consumption function f was a one-to-one correspondence

with the total distance of a path traveled. For example, if the robot traversed a path of

10 meters then the robot would have consumed 10 units of fuel. Each cell constructed

from the boustrophedon decomposition was designated as an atomic region. Figure 2.10

shows the final cover route that BC Sweep generates for one of the parameter settings

tested with a fuel capacity of 5dm and a single service station in the top-left corner.

Appendix D shows the full set of test runs under several fuel capacities λ and varying

locations and numbers of the service station. It can be seen from these experiments that

BC Sweep is able to route the robot efficiently through a real test environment with

minimal wasted travel time. Additionally, in Appendix D, Figures 2.24 - 2.26 show the

basic BC Sweep steps while Figures 2.27 - 2.31 show the algorithm run with different

fuel capacities λ and between one and three service stations.
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Fig. 2.10: Single depot, λ = 5dm.

2.4.8 BC Sweep Timed Experiments

We also ran timed experiments using the tour partitioning heuristic for the single depot

case on the VRP problems given in [ABB+]. The problems were transformed into BC

Sweep appropriate problems by treating the item count demanded at each node as the

cover cost distance of a cell. We ran the heuristic with a fuel capacity of 2dm, 4dm, 6dm

and 10dm. We compared the total fuel used on tours generated by the BC Sweep with

lower bound costs generated using the integer programming formulation presented in

the next section.

Both BC Sweep and the integer programs were executed with a 2.40GHz Intel quad-core

Core 2 Quad Q6600 processor. The integer programs were run with ILOG CPLEX 8.1

[ILO] with a time limit of 12000 CPU seconds. A summary of results are presented in

Table 2.1.

As can be seen, the smaller the fuel capacity the weaker the heuristic performs. However,

overall we find the heuristic is competitive in the sense that the bench mark problems

run are all within 2.2% of optimal. We also found that all BC Sweep instances (up to 80
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Fuel Capacity (λ) Best Ratio Worst Ratio Average Ratio
2dm 1.2068 2.1808 1.5362
4dm 1.0164 1.2472 1.1349
6dm 1.0090 1.1276 1.0629
10dm 1.0008 1.0995 1.0289

Table 2.1: Summary of BC Sweep executed on VRP benchmark problems. Ratios are
computed by dividing the fuel consumption of the BC Sweep solution by the lower
bound generated by the ILP.

nodes and 3160 edges) executed in under 0.5 CPU seconds showing that the heuristic

is not only competitive but also fairly time efficient. For the full set of computational

results see Appendix 2.5.

2.5 Integer Programming Methods

In BC Sweep, after graph construction, we use a DCVRP tour partitioning heuristic

to solve for a feasible route abiding by the fuel capacity constraint. Instead of using a

heuristic, it is also possible to express the problem as a binary integer linear program

and to solve using studios such as CPLEX.

Though there is a wealth of work studying general forms of vehicle routing problems

where each node has some demand for a specific commodity, as stated in [Kar11], there

is limited work on ILP formulations for the DCVRP variation.

Of the existing proposed methods, the most studied component of the formulation is

that which ensures the tour produced is not disjoint and is a continuous path through

locations. This is referred to in the literature as subtour elimination. Subtour elimina-

tion is accomplished in one of three ways. One method is set partitioning which requires

an exponential number of constraints [LDN84]. Another method is MTZ formulations

which require O(n) extra variables and O(n2) additional constraints [KB85] [AC91].

There are also commodity flow network models [Wat88] [Kar11].

Here, we use a solution which is a variant based of the MTZ formulation proposed in

[KB85].
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2.5.1 MTZ TSP Formulation

Our solution is based on the Miller-Tucker-Zemlin (MTZ) formulation [MTZ60] for solv-

ing TSP problems using integer programming. We begin by presenting this formulation.

We let dij be the cost of edge eij in our graph G. zij ∈ {0, 1} will be variables we need

to solve for. zij = 1 when the edge is used in the TSP tour and 0 otherwise. Note that

we would never need to use an edge more than once because of the triangle inequality

on G. A natural starting place would be the following.

min
z∈Rn2

∑

i,j

eijzij

s.t.
∑

j

zij = 1 ∀i ∈ V, (2.4)

∑

i

zij = 1 ∀j ∈ V, (2.5)

zij ∈ {0, 1} ∀i, j (2.6)

This set-up ensures every vertex has both an in-degree and out-degree of 1 and con-

sequently, that every vertex is visited exactly once. This formulation as is, however,

allows disjoint subtours or cycles as in Figure 2.11.

 

Fig. 2.11: An example of two subcycles in a graph. Each vertex has in-degree and
out-degree of 1 and thus visited exactly once.

To force there to be a single cycle, we must add extra variables and extra constraints. We

must solve for variables {u1, u2, . . . , un} which are continuous but can viewed as taking

on the position of each vertex in the cycle; if ui < uj implies vertex i comes before

vertex j in the tour. We add the following contraints known as the MTZ constraints.
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u1 = 1, (2.7)

2 ≤ ui ≤ n ∀i 6= 1, (2.8)

ui − uj + 1 ≤ (n− 1)(1− zij) ∀i 6= 1, ∀j 6= 1. (2.9)

Note we added an extra O(n) variables and O(n2) constraints to the formulation. To

understand why this eliminates disjoint cycles, see that if every cycle in the graph

contains the start node, then there is only one cycle. This formulation forces this idea

on the tour. We force the start vertex to have position 1 (u1 = 1) and all other positions

be between 1 and n. When we use edge eij, it forces ui + 1 ≤ uj which implies ui < uj.

Now if we don’t use eij, then the inequality is not constraining and simply forces the

difference to be less than some finite value. There cannot be cycles which do not contain

the start vertex because the vertex positions ui on that cycle will be forced to increase

to infinity which would violate the upper bounds on ui.

2.5.2 SRSD IP Formulation

The integer programming formulation for the single-robot, single-depot case is based

on the MTZ formulation. For convenience, let our cell vertices be set X and our depot

vertices be D. X ∪D = V , X ∩D = ∅.
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min
z∈Rn2

∑

i,j

eijzij

s.t.
∑

j

zij = 1 ∀i ∈ X,

∑

i

zij = 1 ∀j ∈ X,

zij ∈ {0, 1} ∀i, j,

ui = 0, i ∈ D, (2.10a)

0 ≤ ui ≤ λ ∀i ∈ X, (2.10b)

ui − uj + eij ≤ (λ+ emax)(1− zij) ∀i ∈ V, ∀j /∈ D, (2.10c)

ui + eijzij ≤ λ ∀i ∈ X, j ∈ D. (2.10d)

See that we asserted that each cell is visited exactly once. We need not assert any

constraint on the degrees of the service station vertex for the degree constraints on the

cell vertices is enough to ensure its in-degree equals its out-degree.

In this formulation, the ui variables represent the concept of the amount of fuel consumed

by the robot at vertex i. Thus, we set this to be 0 for the service station vertex. To

ensure no vertex consumes more than our capacity λ, we bound this appropriately in

(2.10b). We must also assert that the last leg/edge of each subtour abides by the

capacity constraint. This is accomplished in (2.10d).

Eliminating disjoint cycles is done in the same manner as the MTZ formulation. In

this case, however, if we use an edge eij, we add the associated energy eij. See this as

constraint (2.10c) reduces to ui + eij ≤ uj when edge eij is used. When it’s not used,

we just assert that the difference between energy consumption variables ui and uj is at

most the finite value of (λ+ emax) when emax takes on the value of the maximum edge

weight in G.

2.5.3 SRMD ILP Formulation

For the single-robot, multi-depot scenario the ILP involves a bit extra work. We make

n copies of each service station. We denote this augmented depot set as D∗. The
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augmented service station set has the same function but each can only be visited at

most once (hence why we need n of each). The graph remains a complete graph.

All depot copies get the same weight on edges incident with cell vertices. We put

zero weight edges between all copies of a service station vertex and intraservice station

weights remain the same. Last, all edges coming from a depot into our special starting

service station vertex have weight 0. This allows the robot to finish at any depot with

no additional cost to complete the tour. See Figure 2.12 on this transformation. With

this in place, we present the ILP formulation for our problem.

 

�0 �  

�0∗ �  �0 �0 

�  �  

Fig. 2.12: An example of a three-cell, two-node graph into the augments graph for the
ILP. (Left) The original graph. (Right) The augment graph with 3 copies of each depot.
The solid arcs all have 0 weight. Dashed arcs retain their original weight.
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min
z∈R(n+nm)2

∑

i,j

eijzij (2.11a)

s.t.
∑

j

zij = 1 ∀i ∈ X, (2.11b)

∑

i

zij = 1 ∀j ∈ X, (2.11c)

∑

j

zij =
∑

j

zji ∀i ∈ D∗, (2.11d)

∑

j

zij ≤ 1 ∀i ∈ D∗, (2.11e)

zij ∈ {0, 1} ∀i, j, (2.11f)

ui = 0, ∀i ∈ D∗, (2.11g)

0 ≤ ui ≤ λ ∀i ∈ X, (2.11h)

ui − uj + eij ≤ (λ+ emax)(1− zij) ∀i ∈ V, ∀j /∈ D∗, (2.11i)

ui + eijzij ≤ λ ∀i ∈ V, ∀j ∈ D∗. (2.11j)

qs∗0 = 1, (2.11k)

2 ≤ qi ≤ n+mn ∀i 6= 1, (2.11l)

qi − qj + 1 ≤ (n+mn− 1)(1− zij) ∀i ∈ V, ∀j 6= 1. (2.11m)

Our objective remains the same in (2.11a) while (2.11b) and (2.11c) retain that every

cell is visited exactly once. (2.11d) and (2.11e) assert that the in-degree and out-degree

of each service station vertex is the same as the degree and is at most one. This forces

each depot to be visited at most once. Constraints (2.11g) - (2.11j) as in the SRMD and

MRSD formulations ensure that the robot capacity constraint is met. And as with the

MTZ TSP formulation constraints, 2.11k - 2.11m make certain that the tour is a single

continuous tour from start depot to start depot. Since we used a 0 weight back home

to the start service station, we can simply eliminate that edge and end on the optimal

depot.
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2.5.4 MRSD ILP Formulation

For the multi-robot, single-depot objective, only minor modifications are made from the

SRSD IP Formulation. We change the objective to minimize the number of robots k

(subtours of the route) needed. We then simply force the in-degree and out-degree of

the depot vertex to be k in (2.12a) and (2.12b).

min
z∈Rn2

k

s.t.
∑

j

zij = 1 ∀i ∈ X,

∑

i

zij = 1 ∀j ∈ X,

∑

j

zij = k i ∈ D, (2.12a)

∑

i

zij = k j ∈ D, (2.12b)

zij ∈ {0, 1} ∀i, j,

ui = 0, i ∈ D,

0 ≤ ui ≤ λ ∀i ∈ X,

ui − uj + eij ≤ (λ+ emax)(1− zij) ∀i ∈ V, ∀j /∈ D,

ui + eijzij ≤ λ ∀i ∈ X, j ∈ D.

However because we use triangle inequality, we can use the above formulation to get an

equally good result. This formulation is able to be solved easier due to the number of

varying optimal solutions.

On Conflicting Objectives

One may initially question whether the objective for minimizing total distance in the

SRSD case naturally would reduce the number of robots (refuels/loops back to the

depot) in the MRSD case. If it were the case, then the MRSD ILP formulation is worth

little for we could just reuse the SRSD formulation. This is not the case however. The
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objectives are separate and can often conflict. To demonstrate this we give the example

in Figure 2.13. We will show that for this example, increasing the number of loops (i.e.

increasing the robot count for MRSD) can actually decrease the total distance.
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2 

2 

Fig. 2.13: An example graph where the objectives conflict. Fuel capacity λ = 12.

We note first that the TSP tour on this graph has a length of 21. Figure 2.14 shows

such a tour.
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2 

2 

Fig. 2.14: TSP tour of the example graph. Total cost = 21.

There is a solution using three loops (refuels/robots) that abides by the fuel constraint

and also has a cost of 21. This route is shown in Figure 2.15. We know this solution

is optimal with respect to minimizing distance since it matches the cost of the TSP

solution.

When the objective switches to minimize the number of loops, though, we find that

there exist solutions that use just two loops. One such solution is shown in Figure 2.16
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Fig. 2.15: Distance minimizing optimal solution abiding by the fuel capacity. Total cost
= 21.

which has a total cost of 24. However, any solution which uses two loops cannot match

the total distance of 21. Hence this example shows that the objectives are distinct since

minimizing the total distance cost does not necessarily reduce the number of refuels

needed.
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Fig. 2.16: Refuel count minimizing optimal solution abiding by the fuel capacity. Total
cost = 24.

2.5.5 ILP Timed Experiments for SRSD

We ran timed experiments of the integer linear programs for the benchmark problems

of [ABB+]. We ran experiments on all the problems with fuel capacities 2dm, 4dm, 6dm
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and 10dm. The integer programs were executed with a 2.40GHz Intel quad-core Core 2

Quad Q6600 processor and were run with ILOG CPLEX 8.1 [ILO] with a time limit of

12000 CPU seconds.

We find that the smaller the fuel capacity the more difficult the problem becomes to

solve. For example, with a fuel capacity 10dm nearly all the problems were solved within

the time limit while only a few of those with capacities 2dm could be solved optimally

within the time limit. For full table computational results and times, see Appendix 2.6.

2.6 Conclusion

In this work, we have introduced the BC Sweep algorithm to address the real problem

of robot path coverage, with a battery or fuel capacity constraint. We build upon

previous coverage research using boustrophedon decomposition, and contribute the BC

Sweep heuristic planning algorithm that has the property of complete coverage, under

the assumption that there is a limited amount of space that can be covered on a single

battery charge, and the assumption that there is a recharging service station (s). We

show the algorithm is adaptable for three distinct but related problem definitions. We

presented a proofs of correctness that verify the complete coverage under the resource

constraint. BC Sweep runs on arbitrary geometrical physical layouts, and we have

demonstrated it in simulation using a real world map and a real simulated coverage

robot. We tested the algorithm with varying parameters for the fuel capacity and

service station locations. We also demonstrate that the three problem scenarios can

also be expressed by integer linear programs. We compare the optimality of the the BC

Sweep heuristic using benchmark problems in the literature. After having addressed the

real battery constraint, our future work includes to continue to bring coverage algorithms

closer to real situations faced by real robots in the real world.
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A Graph SLAM-SD Experimental Results - Extended

Fig. 2.17: WEH Floor Data Set: raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)
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Fig. 2.18: Hallway Data Set: raw data map produced using odometry only (top-top);
planar SLAM map (middle-top); planar SLAM map [parallel-orthogonal constraint]
(middle-bottom); ground truth map (bottom-bottom)

Fig. 2.19: Library Data Set: raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)
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B Kinect Calibration

B.1 Introduction

For this project, we placed 3-Kinect sensors on CoBot 4. See Figure 2.20. One Kinect is

placed horizontally at waist height directly in the front center of the robot. Two Kinects

are placed vertically on the sides of the base. They are angled at approximately 45◦ so

that their fields of vision (FOV) cross. This leads to a wide field of vision.

Fig. 2.20: CoBot4 base with 3 Kinect sensors (left); Wide FOV produced by using 3
Kinects

With multiple Kinects receiving data it becomes necessary to calibrate the relative

poses to each other so that a combined point cloud can be generated with data from each

sensor. Thus, without loss of generality, it is necessary to determine the 3D homogenous

transform H from the frame of Kinect 2 to the frame of Kinect 1. Determining this

transformation can be measured by hand or calibrated manually by using more advanced

techniques and tools. However, these processes tend to be tedious and have to be

repeated for each sensor anytime they are added or adjusted. We propose here a method

for automatic calibration of the extrinsic poses of two or more Kinect-like RGBD sensors

on a mobile robot. The objective is to give a robot the ability to automatically calibrate

various sensors while operating in the environment (self-correcting sensor alignment).

The work allows the robot to simply run in the environment and automatically compute

the relative transforms between any two Kinect sensors without prior information on

the poses of the sensors attached to the robot.
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B.2 Approach

For simplicity, we assume there are just two Kinects, Kinect 1 and Kinect 2. The goal

is to find the transform H which will take an observation in Kinect 2’s frame and put

it into Kinect 1’s.

The approach is as follows

1. Drive the robot in the environment for an extended period of time.

2. At each timestep t, record the observed point cloud C1
t from Kinect 1 and C2

t from

Kinect 2. The result is two sequences of point cloud observations: C1
0:N and C2

0:N .

3. For each pair of consecutive point clouds
(

Cx
i−1,C

x
i

)

use the ICP algorithm to

determine the transform Hx
i between them. The result from this is two sequences

of transforms H1
1:N and H2

1:N (i.e. the measured trajectories of each sensor).

4. Use a non-linear least squares optimization to determine the optimal transform H

such that when applied to H2
1:N minimizes the error between the two trajectories.

B.3 ICP

The approach above in Step 2 utilizes the Iterative Closest Point (ICP) algorithm for

point cloud registration to incrementally register pairs of clouds in a sequence from each

Kinect. The resulting sequences of transforms compose unique trajectories for each

sensor in its own frame. The ICP algorithm is able to take two point clouds C1 and

C2 and determine the homogenous transform H1
2 which puts the points in C2 into C1’s

frame. See Figure 2.21 which shows two clouds being aligned. The ICP variant which is

used is based off of a Point Cloud Library(PCL) implementation where surface normals

are used when performing the point cloud matching between the two clouds.
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Fig. 2.21: Two points clouds being aligned with the ICP algorithm

B.4 Probabilistic Foundation

Our goal is to find the transform H from Kinect 2 to Kinect 1 and the true trajectory

of Kinect 1 H1∗
1:N that are most likely given the data from each Kinect. Thus, we wish

to optimize the following posterior.

P
(

H,H1∗
1:N |H1:N

)

(2.13)

We solve for the MLE of the poster. We denote T to be the space of all transforms

argmax
H∈T,H1∗

1:N∈TN

P
(

H1
1:N ,H

2
1:N |H,H1∗

1:N

)

(2.14)

We can decompose the probability of Equation 2.14 like so.
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P
(

H1
1:N ,H

2
1:N |H,H1∗

1:N

)

=
N
∏

i=1

P
(

H1
i ,H

2
i |H,H1∗

i

)

=
N
∏

i=1

P
(

H1
i |H1∗

i

)

P
(

H2
i |H,H1∗

i

)

=
N
∏

i=1

P
(

H1
i |H1∗

i

)

P
(

HH2
iH

−1|H1∗
i

)

Here HH2
iH

−1 is the application of H to the trajectory observations of Kinect 2. See

section B.5 for why. For notational convenience, we let H̄
1
i = HH2

iH
−1. If we make the

assumption that the rotational and translational observations errors are independent,

we can further decompose.

P
(

H1
1:N ,H

2
1:N |H,H1∗

1:N

)

=
N
∏

i=1

P
(

H1
i |H1∗

i

)

P
(

H̄
1
i |H1∗

i

)

=
N
∏

i=1

P
(

R1
i |R1∗

i

)

P
(

T1
i |T1∗

i

)

P
(

R̄
1
i |R1∗

i

)

P
(

T̄
1
i |T1∗

i

)

Distribution Assumptions

Rotation

We measure the distance between two rotational transforms as the Euclidean distance

between the two unit quaternions representing them. This metric is chosen for its spa-

tial and computational efficiency[]. For convenience, define Φ (Ra,Rb) = Φ (Rb,Ra) to

be this distance.

We assume that the quaternion distance between a true rotation R1∗
i and an observed

rotation R1
i is distributed as folded normal distribution of some normal distribution

N (0, σq). Thus,

P
(

R1
i |R1∗

i

)

= P
(

Φ
(

R1
i ,R

1∗
i

))

=
2

σq

√
2π

exp

{

−
(

Φ
(

R1
i ,R

1∗
i

))2

2σ2
q

}
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and

P
(

R̄
1
i |R1∗

i

)

= P
(

Φ
(

R̄
1
i ,R

1∗
i

))

=
2

σq

√
2π

exp











−

(

Φ
(

R̄
1
i ,R

1∗
i

))2

2σ2
q











It is clear that P
(

R1
i |R1∗

i

)

P
(

R̄
1
i |R1∗

i

)

is maximized when R1∗
i becomes the midpoint

between R1
i and R̄

1
i . Since we now know R1∗

i , it can be removed from the optimization

P
(

R
1

i |R1∗

i

)

P
(

R̄
1

i |R1∗

i

)

=
2

σq

√
2π

exp











−

(

1

2
Φ
(

R
1

i , R̄
1

i

))2

2σ2
q











2

σq

√
2π

exp











−

(

1

2
Φ
(

R
1

i , R̄
1

i

))2

2σ2
q











=
4

σ2
q2π

exp











−

(

Φ
(

R
1

i , R̄
1

i

))2

4σ2
q











= η1 exp











−

(

Φ
(

R
1

i , R̄
1

i

))2

4σ2
q











(2.15)

Translation

Similar to rotation, we make a Gaussian noise assumption on the observed translations.

Assuming that

P
(

T1
i |T1∗

i

)

and P
(

T̄
1
i |T1∗

i

)

∼ N (T1∗
i ,Σ) where the covariance matrix Σ =







σ2
e 0 0

0 σ2
e 0

0 0 σ2
e







Once again P
(

T1
i |T1∗

i

)

P
(

T̄
1
i |T1∗

i

)

is maximized by making T1∗
i the midpoint of T1

i

and T̄
1
i .
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(2.16)

Optimization

Substituting using Equations 2.15 and 2.16 gives us

argmax
H∈T

P
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(2.17)

Equation 2.17 is the nonlinear least squares problem to be solved. The resulting solution

is the transform between Kinect 2 and Kinect 1.

B.5 Transform Application Proof

To see why HH2
iH

−1 is the application of H to the trajectory observations of Kinect 2,

consider the following two equations.

1) H2
i p2 = p′2

2) Hp2 = p1
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The objective is to solve for transform X in terms of H2
i and H such that

Xp1 = p′1

Inverting (2) and substituting it into (1) yields

HH−1p1 = p′2

Applying H to both sides:

HH2
iH

−1p1 = Hp′2

HH2
iH

−1p1 = p′1

C DCVRP Tour Partitioning Examples
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Fig. 2.22: Tour partitioning solutions to example Euclidean instances of DCVRPs

57



D BC Sweep Coverage Experiments for Grocery Store

Test Map

Fig. 2.23: An example convenience store layout.
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Fig. 2.24: Convenience store decomposition.

Fig. 2.25: Visibility graph for inter-cell travel.
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Fig. 2.26: TSP tour through cells.

Fig. 2.27: Single depot, λ = 5dm.
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Fig. 2.28: Single depot, λ = 3dm.

Fig. 2.29: Single depot, λ = dm.
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Fig. 2.30: Two depots, λ = 3dm.

Fig. 2.31: Three depots, λ = 2dm.
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2.5 BC Sweep Timed Experiments (Full)

We present here our full results for timed experiments using the tour partitioning heuris-

tic for the single depot case on the VRP problems given in [ABB+]. We ran the heuristic

with a fuel capacity of 2dm, 4dm, 6dm and 10dm. We compared the total fuel used on

tours generated by the BC Sweep with a lower bound costs generated using the inte-

ger programming formulation presented in this work. Both BC Sweep and the integer

programs were executed with a 2.40GHz Intel quad-core Core 2 Quad Q6600 processor.

The integer programs were run with ILOG CPLEX 8.1 [ILO] with a time limit of 12000

CPU seconds.
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Problem BC Sweep

Heuristic Value CPU Time Optimal/Lower Bound Ratio

A-32-5 1341.8521 0.1220 881.6369 1.5220

A-33-5 1231.1320 0.1171 915.3952 1.3449

A-33-6 1316.6664 0.1175 1032.9360 1.2747

A-34-5 1366.7923 0.1216 952.1842 1.4354

A-36-5 1568.3419 0.1391 958.3373 1.6365

A-37-5 1146.6036 0.1385 950.1409 1.2068

A-37-6 1819.7120 0.1340 1127.3387 1.6142

A-38-5 1263.0735 0.1797 967.1293 1.3060

A-39-5 1623.7513 0.1563 1046.4135 1.5517

A-39-6 1479.4874 0.1643 1083.7777 1.3651

A-44-7 1790.3942 0.1533 1158.3592 1.5456

A-45-6 1579.7607 0.1492 1170.5393 1.3496

A-45-7 2549.1018 0.1510 1168.8896 2.1808

A-46-7 1701.9274 0.1454 1174.2022 1.4494

A-48-7 2057.2713 0.1712 1196.9806 1.7187

A-53-7 1833.5260 0.2048 1237.6864 1.4814

A-54-7 2158.0950 0.1989 1253.3963 1.7218

A-55-9 1892.4983 0.2033 1392.6237 1.3589

A-60-9 2551.8017 0.2483 1415.5110 1.8027

A-61-9 2011.9458 0.2354 1439.4879 1.3977

A-62-8 2356.2706 0.2490 1344.0424 1.6369

A-63-10 2331.9485 0.2593 1544.3866 1.5100

A-64-9 2711.8107 0.2703 1458.4742 1.8593

A-65-9 2167.9079 0.2802 1477.5247 1.4673

A-69-9 2078.0104 0.3106 1537.1212 1.3519

A-80-10 3115.0281 0.4895 1681.6676 1.8523

Table 2.2: BC Sweep timed experiments for benchmark problems with a fuel capacity
λ = 2dm.
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Problem BC Sweep

Heuristic Value CPU Time Optimal/Lower Bound Ratio

A-32-5 976.7994 0.1200 888.6141 1.0992

A-33-5 965.5320 0.1202 927.1183 1.0414

A-33-6 1098.7139 0.1187 1037.4614 1.0590

A-34-5 1050.2624 0.1234 948.9164 1.1068

A-36-5 1085.5080 0.1233 949.9573 1.1427

A-37-5 1001.8634 0.1282 951.1124 1.0534

A-37-6 1225.2856 0.1394 1098.8713 1.1150

A-38-5 1024.1601 0.1561 974.3002 1.0512

A-39-5 1071.5750 0.1562 1054.3126 1.0164

A-39-6 1238.3060 0.1612 1075.6960 1.1512

A-44-7 1327.7768 0.1511 1160.4964 1.1441

A-45-6 1241.2875 0.1792 1170.1926 1.0607

A-45-7 1416.5897 0.1612 1156.4692 1.2249

A-46-7 1360.7620 0.1765 1170.5404 1.1625

A-48-7 1412.1144 0.1617 1196.5563 1.1801

A-53-7 1395.2306 0.2284 1238.0001 1.1270

A-54-7 1525.9796 0.2026 1250.6669 1.2201

A-55-9 1520.7633 0.1999 1396.6109 1.0889

A-60-9 1743.0462 0.2426 1415.3698 1.2315

A-61-9 1619.2133 0.2554 1438.0602 1.1260

A-62-8 1644.5083 0.2532 1347.0455 1.2208

A-63-10 1797.7477 0.2648 1539.8955 1.1674

A-64-9 1811.8566 0.2593 1452.7961 1.2472

A-65-9 1689.8584 0.2781 1475.4044 1.1454

A-69-9 1711.2556 0.3321 1539.1846 1.1118

A-80-10 2044.0104 0.4428 1684.3730 1.2135

Table 2.3: BC Sweep timed experiments for benchmark problems with a fuel capacity
λ = 4dm.
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Problem BC Sweep

Heuristic Value CPU Time Optimal/Lower Bound Ratio

A-32-5 886.5527 0.1249 877.0180 1.0107

A-33-5 904.7263 0.1317 896.6229 1.0090

A-33-6 1063.0649 0.1271 1041.1782 1.0210

A-34-5 990.1600 0.1224 946.2012 1.0465

A-36-5 990.7470 0.1291 945.7633 1.0476

A-37-5 956.6080 0.1400 936.9275 1.0210

A-37-6 1149.6745 0.1329 1103.0719 1.0422

A-38-5 988.4790 0.1517 967.9090 1.0213

A-39-5 1062.6250 0.1685 1041.5212 1.0203

A-39-6 1132.6809 0.1543 1090.7617 1.0384

A-44-7 1228.4387 0.1465 1207.3985 1.0174

A-45-6 1198.8246 0.1515 1174.2733 1.0209

A-45-7 1280.1845 0.1746 1154.2068 1.1091

A-46-7 1276.9880 0.1544 1174.2646 1.0875

A-48-7 1265.8339 0.1781 1197.1468 1.0574

A-53-7 1328.1577 0.1853 1240.5438 1.0706

A-54-7 1383.8515 0.1973 1255.6921 1.1021

A-55-9 1455.8510 0.1965 1405.7774 1.0356

A-60-9 1591.5958 0.2619 1411.4460 1.1276

A-61-9 1559.8909 0.2727 1438.9646 1.0840

A-62-8 1523.3206 0.2826 1345.4170 1.1322

A-63-10 1680.4346 0.2900 1538.9563 1.0919

A-64-9 1616.7432 0.2941 1451.7449 1.1137

A-65-9 1629.1332 0.2940 1474.7291 1.1047

A-69-9 1673.7504 0.3472 1540.5185 1.0864

A-80-10 1876.0994 0.4672 1681.0542 1.1160

Table 2.4: BC Sweep timed experiments for benchmark problems with a fuel capacity
λ = 6dm.
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Problem BC Sweep

Heuristic Value CPU Time Optimal/Lower Bound Ratio

A-32-5 886.5527 0.1249 877.1055 1.0108

A-33-5 890.7367 0.1174 882.3824 1.0095

A-33-6 1038.1970 0.1211 1017.0348 1.0208

A-34-5 959.5369 0.1191 950.1764 1.0099

A-36-5 963.8611 0.1355 922.6063 1.0447

A-37-5 932.5413 0.1239 924.1408 1.0091

A-37-6 1081.2638 0.1313 1080.3570 1.0008

A-38-5 962.4897 0.1294 950.4388 1.0127

A-39-5 1043.5868 0.1347 1017.0440 1.0261

A-39-6 1084.2549 0.1484 1074.1657 1.0094

A-44-7 1179.8530 0.1478 1163.8716 1.0137

A-45-6 1177.4215 0.1594 1167.3235 1.0087

A-45-7 1191.0457 0.1437 1160.1634 1.0266

A-46-7 1209.0902 0.1600 1168.8796 1.0344

A-48-7 1250.0388 0.1753 1196.1606 1.0450

A-53-7 1259.7351 0.2013 1235.8571 1.0193

A-54-7 1296.9474 0.1889 1250.0115 1.0375

A-55-9 1447.4495 0.2014 1401.0568 1.0331

A-60-9 1457.8535 0.2295 1423.8379 1.0239

A-61-9 1498.3937 0.2624 1441.8770 1.0392

A-62-8 1420.3737 0.2358 1343.7366 1.0570

A-63-10 1624.6901 0.2430 1523.1985 1.0666

A-64-9 1600.8198 0.2615 1578.1061 1.0144

A-65-9 1541.0332 0.2550 1476.6809 1.0436

A-69-9 1592.7001 0.3074 1538.5492 1.0352

A-80-10 1851.8863 0.4595 1684.2879 1.0995

Table 2.5: ILP timed experiments for benchmark problems with a fuel capacity λ =
10dm.
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2.6 ILP Timed Experiments (Full)

We present here our full results for the timed experiments of the integer linear programs

of the benchmark problems of [ABB+]. We ran experiments on all of the problems with

fuel capacities 2dm, 4dm, 6dm and 10dm. The integer programs were executed with a

2.40GHz Intel quad-core Core 2 Quad Q6600 processor and were run with ILOG CPLEX

8.1 [ILO] with a time limit of 12000 CPU seconds.
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Problem IP Best Value CPU Time

A-32-5 1177.4083 12000.00

A-33-5 1095.5075 12000.00

A-33-6 1246.8588 12000.00

A-34-5 1172.6370 12000.00

A-36-5 1377.0328 12000.00

A-37-5 1064.0884 12000.00

A-37-6 1606.1097 12000.00

A-38-5 1176.1386 12000.00

A-39-5 1433.1643 12000.00

A-39-6 1362.2655 12000.00

A-44-7 1575.6450 12000.00

A-45-6 1476.4414 12000.00

A-45-7 2179.2248 12000.00

A-46-7 1536.1831 12000.00

A-48-7 1689.1814 12000.00

A-53-7 1607.0092 12000.00

A-54-7 1891.8696 12000.00

A-55-9 1775.2919 12000.00

A-60-9 2211.8483 12000.00

A-61-9 1811.2861 12000.00

A-62-8 2133.1589 12000.00

A-63-10 2185.4414 12000.00

A-64-9 2023.1842 12000.00

A-65-9 1929.8371 12000.00

A-69-9 1948.1469 12000.00

A-80-10 2858.1325 12000.00

Table 2.6: ILP timed experiments for benchmark problems with a fuel capacity λ = 2dm.
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Problem IP Best Value CPU Time

A-32-5 927.5231 12000.00

A-33-5 927.1183∗ 2790.95

A-33-6 1054.3566 12000.00

A-34-5 1005.5227 12000.00

A-36-5 1049.8718 12000.00

A-37-5 951.1124∗ 950.36

A-37-6 1163.3761 12000.00

A-38-5 990.2259 12000.00

A-39-5 1054.3126∗ 7082.17

A-39-6 1137.9278 12000.00

A-44-7 1262.1916 12000.00

A-45-6 1240.8878 12000.00

A-45-7 1365.3183 12000.00

A-46-7 1220.2775 12000.00

A-48-7 1312.2947 12000.00

A-53-7 1325.4526 12000.00

A-54-7 1360.6019 12000.00

A-55-9 1472.7442 12000.00

A-60-9 1575.1471 12000.00

A-61-9 1556.5062 12000.00

A-62-8 1509.1816 12000.00

A-63-10 1716.3710 12000.00

A-64-9 1623.0203 12000.00

A-65-9 1596.7408 12000.00

A-69-9 1636.9545 12000.00

A-80-10 1966.2320 12000.00

Table 2.7: ILP timed experiments for benchmark problems with a fuel capacity λ = 4dm.
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Problem IP Best Value CPU Time

A-32-5 877.0180∗ 103.83

A-33-5 896.6229∗ 165.58

A-33-6 1041.1782∗ 9420.03

A-34-5 979.1952 12000.00

A-36-5 974.6411 12000.00

A-37-5 936.9275∗ 52.13

A-37-6 1123.7067 12000.00

A-38-5 967.9090∗ 399.46

A-39-5 1050.3523 12000.00

A-39-6 1090.7617∗ 3657.27

A-44-7 1159.5174 12000.00

A-45-6 1193.4752 12000.00

A-45-7 1230.3585 12000.00

A-46-7 1193.8324 12000.00

A-48-7 1235.4481 12000.00

A-53-7 1265.8045 12000.00

A-54-7 1287.6646 12000.00

A-55-9 1426.2345 12000.00

A-60-9 1471.5767 12000.00

A-61-9 1474.5887 12000.00

A-62-8 1395.5335 12000.00

A-63-10 1603.5497 12000.00

A-64-9 1518.8033 12000.00

A-65-9 1521.0789 12000.00

A-69-9 1580.6932 12000.00

A-80-10 1807.0996 12000.00

Table 2.8: ILP timed experiments for benchmark problems with a fuel capacity λ = 6dm.

71



Problem IP Best Value CPU Time

A-32-5 877.1055∗ 109.11

A-33-5 882.3823∗ 4.39

A-33-6 1017.0348∗ 37.52

A-34-5 950.1764∗ 950.00

A-36-5 922.6063∗ 0.94

A-37-5 924.1407∗ 12.19

A-37-6 1080.3570∗ 17.91

A-38-5 950.4388∗ 25.39

A-39-5 1017.0440∗ 9.17

A-39-6 1074.1657∗ 67.20

A-44-7 1163.8716∗ 728.16

A-45-6 1167.3235∗ 104.00

A-45-7 1160.1634∗ 1835.26

A-46-7 1168.8796∗ 61.50

A-48-7 1196.1606∗ 101.08

A-53-7 1235.8571∗ 78.45

A-54-7 1250.0115∗ 78.58

A-55-9 1401.0567∗ 736.38

A-60-9 1423.8379∗ 11075.20

A-61-9 11456.8850 12000.00

A-62-8 1343.7370∗ 70.34

A-63-10 1572.6670 12000.00

A-64-9 1504.4854 12000.00

A-65-9 1504.0432 12000.00

A-69-9 1555.57591 12000.00

A-80-10 1743.7459 12000.00

Table 2.9: ILP timed experiments for benchmark problems with a fuel capacity λ =
10dm.
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[MCaPL13] Rizwan Macknojia, Alberto Chávez-aragón, Pierre Payeur, and Robert La-

ganière. Calibration of a Network of Kinect Sensors for Robotic Inspection

over a Large Workspace University of Ottawa. pages 184–190, 2013.

[MT03] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with

unknown data association using FastSLAM. IEEE International Confer-

ence on Robotics and Automation (Cat. No.03CH37422), pages 1985–1991,

2003. 3

[MTZ60] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer Programming For-

mulation of Traveling Salesman Problems *. Journal of the ACM (JACM),

7(4):326–329, 1960. 38

76



[NHS07] Viet Nguyen, Ahad Harati, and Roland Siegwart. A lightweight SLAM algo-

rithm using Orthogonal planes for indoor mobile robotics. 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 658–663,

October 2007. 4

[NR] Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance

constrained vehicle routing problems. Networks, 59(2):209–214. 24

[OLT06] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs

with poor initial estimates. Proceedings 2006 IEEE International Confer-

ence on Robotics and Automation, 2006. ICRA 2006., (May):2262–2269,

2006. 4

[PJTN08] L M Paz, P Jensfelt, J D Tard, and J Neira. EKF SLAM updates in O ( n

) with Divide and Conquer SLAM. IEEE Transactions on Robotics, pages

1107 – 1120, 2008. 3

[Pul99] K. Pulli. Multiview registration for large data sets. Second International

Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062),

1:160–168, 1999.

[PVP+09] Kaustubh Pathak, Narunas Vaskevicius, Jann Poppinga, Max Pfingsthorn,

Soren Schwertfeger, and Andreas Birk. Fast 3D mapping by matching

planes extracted from range sensor point-clouds. 2009 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 1150–1155,

October 2009. 4

[RL01] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.

Proceedings Third International Conference on 3-D Digital Imaging and

Modeling, pages 145–152, 2001.

[RVvdH09] T Rabbani, G Vosselman, and F.A. van den Heuvel. Segmentation of point

clouds using smoothness constraint. ISPRS Commission V Symposium

’Image Engineering and Vision Metrology’, 38:1–6, 2009. 6

[SBS] Lazar Sumar and Andrew Bainbridge-Smith. Feasabliity of Fast Image

Processing Using Multiple Kinect Cameras on a Portable Platform.

77



[SEGL05] Robert Sim, Pantelis Elinas, Matt Griffin, and JJ Little. Vision-based

SLAM using the Rao-Blackwellised particle filter. IJCAI Workshop on

Reasoning with Uncertainty in Robotics, 2005. 3

[SKPY10] Aydin Sipahioglu, Gokhan Kirlik, Osman Parlaktuna, and Ahmet Yazici.

Energy constrained multi-robot sensor-based coverage path planning us-

ing capacitated arc routing approach. Robotics and Autonomous Systems,

58(5):529–538, May 2010. 18

[SM] Aaron Staranowicz and Gian-Luca Mariottinini. A Comparative Study of

Calibration Methods for Kinect-style cameras.

[SP90] Wesley Snyder and A Pirzadeh. A unified solution to coverage and search

in explored and unexplored terrains using indirect control. 3:2113–2119,

1990.

[SRD06] P. Smith, I. Reid, and a. J. Davison. Real-Time Monocular SLAM with

Straight Lines. Procedings of the British Machine Vision Conference 2006,

pages 3.1–3.10, 2006. 4

[SXS+00a] Weihua Sheng, Ning Xi, Mumin Song, Yifan Chen, and Perry Macneille.

Automated CAD-Guided Robot Path Planning for Spray Painting of Com-

pound Surfaces Ford Motor Company. Intelligent Robots and Systems,

pages 1918–1923, 2000. 17

[SXS+00b] Weihua Sheng, Ning Xi, Mumin Song, Yifan Chen, and Perry Macneille.

Automated CAD-Guided Robot Path Planning for Spray Painting of Com-

pound Surfaces Ford Motor Company. Intelligent Robots and Systems,

pages 1918–1923, 2000.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics. In Probabilistic Robotics, chapter The GraphS, pages 337–384.

The MIT Press, Cambridge, 2005. 4, 7, 9, 10

[Thr03] S. Thrun. Results for outdoor-SLAM using sparse extended information

filters. IEEE International Conference on Robotics and Automation (Cat.

No.03CH37422), 1:1227–1233, 2003.

78



[Thr06] S. Thrun. The Graph SLAM Algorithm with Applications to Large-Scale

Mapping of Urban Structures. The International Journal of Robotics Re-

search, 25(5-6):403–429, May 2006. 4

[TIC12] Alexander J B Trevor, John G Rogers Iii, and Henrik I Christensen. Planar

Surface SLAM with 3D and 2D Sensors. IEEE International Conference

on Robotics and Automation, pages 2–9, 2012. 4

[TT] Alex Teichman and Sebastian Thrun. Unsupervised intrinsic calibration of

depth sensors via SLAM.

[Wat88] CDJ Waters. Expanding the scope of linear programming solutions for

vehicle scheduling problems. Omega, 16(6):577–583, January 1988. 37

[WS05] J. Weingarten and R. Siegwart. EKF-based 3D SLAM for structured en-

vironment reconstruction. 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3834–3839, 2005. 3, 4

[YKPS14] Ahmet Yazici, Gokhan Kirlik, Osman Parlaktuna, and Aydin Sipahioglu. A

Dynamic Path Planning Approach for Multirobot Sensor-Based Coverage

Considering. 44(3):305–314, 2014. 18

79


	Title
	Abstract
	1 SLAM for CoBot
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Related work

	1.2 Features
	1.2.1 Odometry
	1.2.2 Landmarks

	1.3 Graph Slam-SD
	1.3.1 Notation
	1.3.2 The Posterior
	1.3.3 Gaussian Noise
	1.3.4 Final Optimization

	1.4 Experimental Results
	1.5 Conclusion

	2 Methods for Coverage Planning with Finite Resources
	2.1 Introduction
	2.2 Problem Definitions
	2.3 Boustrophedon Coverage
	2.4 Approximate Solutions
	2.4.1 BC Sweep for SRSD
	2.4.2 Extensions for SRMD
	2.4.3 BC Sweep for MRSD
	2.4.4 Performance Analysis
	2.4.5 Atomic Regions
	2.4.6 Dynamic BC Sweep
	2.4.7 Simulations
	2.4.8 BC Sweep Timed Experiments

	2.5 Integer Programming Methods
	2.5.1 MTZ TSP Formulation
	2.5.2 SRSD IP Formulation
	2.5.3 SRMD ILP Formulation
	2.5.4 MRSD ILP Formulation
	2.5.5 ILP Timed Experiments for SRSD

	2.6 Conclusion
	Appendix A Graph SLAM-SD Experimental Results - Extended
	Appendix B Kinect Calibration
	B.1 Introduction
	B.2 Approach
	B.3 ICP
	B.4 Probabilistic Foundation
	B.5 Transform Application Proof

	Appendix C DCVRP Tour Partitioning Examples
	Appendix D BC Sweep Coverage Experiments for Grocery Store Test Map
	2.5 BC Sweep Timed Experiments (Full)
	2.6 ILP Timed Experiments (Full)
	Bibliography



