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Abstract

Combinatorial optimization encompasses a wide range of important com-
putational tasks such as UNIFORMSPARSESTCUT (also known as NORMAL-
1ZEDCUT), MAXCUT, TRAVELINGSALESMANPROBLEM, and VERTEXCOVER.
Most combinatorial optimization problems are NP-hard to be solved opti-
mally. On one hand, a natural way to cope with this computational intractabil-
ity is via designing approximation algorithms to efficiently approximate the
optimal solutions with provable guarantees. On the other hand, given an NP-
hard optimization problem, we are also interested in the best possible approx-
imation guarantee that any polynomial-time algorithm could achieve, i.e. the
hardness of approximation of the problem. Both approximation algorithms
and hardness of approximation results contribute to understanding the approx-
imability of combinatorial optimization problems.

In the last two decades, the research frontier of approximation algorithm
design has been greatly advanced thanks to the convex optimization tech-
niques such as linear and semidefinite programming. However, the exact ap-
proximability for many problems remains mysterious but some common bar-
riers for progress revolving around a problem called Unique Games has been
identified. The limitations of convex relaxation techniques answer the ques-
tion that what is the best possible approximation guarantee to be achieved by
the state-of-the-art algorithmic design tools, and shed light on the real approx-
imability. Therefore, the study of the power of convex relaxations becomes a
valuable new research direction to get around the current barrier on hardness
proofs.

In this thesis, using constraint satisfaction problems, assignment prob-
lems, graph partitioning problems (BALANCEDSEPARATOR, UNIFORMSPARS-
ESTCUT, DENSEASUBGRAPH), and graph isomorphism as examples, we ex-
plore both the effectiveness and limitations of the most powerful convex re-
laxation techniques — convex relaxation hierarchies. We also use a proof
complexity view of the convex relaxation hierarchies to analyze their per-
formance on constraint satisfaction problems, and show that the so-called
Parrilo-Lasserre semidefinite programming relaxation hierarchy succeeds on
all hard instances constructed in literature for UNIQUEGAMES, MAXCUT,
and BALANCEDSEPARATOR.



This thesis also contains a collection of approximation algorithms for al-
most satisfiable constraint satisfaction problems and MAXBISECTION, detec-
tion of almost isomorphic trees, and estimation of the 2 — 4 operator norm
of random linear operators. There are also a few (conditional) hardness of ap-
proximation results for almost satisfiable linear systems over integers, almost
satisflable MAXHORN3-S AT, and detection of almost isomorphic graphs.
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Chapter 1

Introduction

Many important computational tasks can be modeled as combinatorial optimization prob-
lems, where the goal is to optimize a certain objective function on discrete variables subject
to some constraints. To give the readers a flavor of the optimization problems studied in
this thesis, we list a few examples as follows.

Problem 1 (the %-BALANCEDSEPARATOR problem). Given an undirected graph, parti-
tion the set of vertices into two parts so that each part contains at least % of the total
vertices and the number of edges across the partition is minimized.

There are many similar problems as BALANCEDSEPARATOR (such as MAXCUT, UNI-
FORMSPARSESTCUT), which consist of the class of graph partitioning problems, and arise
in many settings such as clustering, divide and conquer algorithms, VLSI layout, etc.
There are also many other well-studied optimization problems, including the following
examples.

Problem 2 (the TRAVELINGSALESMANPROBLEM problem). Given a list of cities and the
distances between each pair of cities, find out the shortest possible route (i.e. the one with
minimum fotal distance) that visits each city exactly once and returns to the origin city.

Problem 3 (the VERTEXCOVER problem). Given an undirected graph, find out the small-
est set of vertices (i.e. the one with minimum cardinality) such that each edge of the graph
is incident to at least one vertex of the set.

Problem 4 (solving overdetermined sparse linear systems). Given a system of linear equa-
tions over rational numbers, so that each equation contains at most 3 variables. If the lin-
ear system is consistent, it is easy to find a solution using Gaussian elimination. However,



suppose the system is not completely consistent, i.e. some of the equations are erroneous.
The natural optimization problem here is to find a solution that satisfies the maximum
number of equations.

The readers may refer to|Section 2.1|where more combinatorial optimization problems
(which are also the problems studied in this thesis) are defined.

For many combinatorial optimization problems, it is computationally intractable (NP-
hard) to find the optimal solution. A popular and extensively studied way to deal with
this intractability is via designing approximation algorithms to efficiently approximate the
optimal solutions with provable guarantees. We will briefly introduce this notion in
We will also discuss (in the notion of hardness of approximation,
1.e. the limitation on approximation guarantee for polynomial-time algorithms. While it
is desirable to design an approximation algorithm and prove hardness of approximation
matching the approximation guarantee given by the algorithm, we are usually not able to
achieve this goal due to the limited techniques on both algorithmic analysis and hardness
proofs.

On the algorithmic side, convex relaxation hierarchies, which we will introduce in[Sec
{tion 1.2| and [Section 1.3| are the most powerful framework for designing approximation
algorithms. For many important combinatorial optimization problems, the state-of-the-
art approximation algorithms only use a small portion of the power of convex relaxation
hierarchies (as later discussed in the subsections). Therefore, the pursue of better approx-
imation algorithms greatly motivates the further study of convex relaxation hierarchies.

It is also worthwhile to explore the limitation of convex relaxation hierarchies, given
the lack of sharp hardness of approximation results for many important problems. As dis-
cussed in[Section 1.3.1] although such type of results does not work against al/ polynomial-
time algorithms, they share a glimpse into the frontier of our approximation techniques,
and help us understand the complexity of approximating optimization problems where no
concrete NP-hardness is known. In the light of this, showing the limitation for the hierar-
chies can be viewed as a way of going beyond our limited NP-hardness results.

This thesis is a collection of results regarding the approximability and inapproxima-
bility of various combinatorial optimization problems, while a good portion of it is about
the effectiveness and limitations of convex relaxation hierarchies. In[Section 1.4, we will
briefly talk about the results in the thesis to conclude this introductory section.
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1.1 The notion of approximation algorithms

As we have seen, the class of combinatorial optimization problems encompasses many
important computational tasks. However, for most of these interesting optimization prob-
lems (and indeed all the example problems provided above), finding the optimal solution
is unfortunately computationally intractable (NP-hard).

One way to deal with this intractability is to use efficient algorithms to find approx-
imately optimal solutions with provable guarantees — we call these approximation algo-
rithms. For a maximization problem, we call an algorithm a-approximation algorithm
(a < 1) if the output value of the algorithm is at least a times the optimal value. Simi-
larly, for a minimization problem, an a-approximation algorithm (o« > 1) guarantees to
output a solution with value at most « times the value of the optimal solution. Clearly,
for both maximization and minimization problems, when « gets closer to 1, we get better
approximation guarantee.

Sometimes we would love to talk about the approximation guarantee in a more precise
manner. Let us take following three scenarios in the MAXCUT problem (the problem
where we are given an undirected graph and the goal is to find a partition of the vertex set
so that the fraction of edges across the partition is maximize), for example —

1. given an instance where the optimal solution cuts all the edges, and we would like
to find a partition cutting all the edges (approximation ratio : 1);

2. given an instance where the optimal solution cuts .9999 fraction of the edges, and
we would like to find a partition cutting .99 fraction of the edges (approximation
ratio : ~ .9901);

3. given an instance where the optimal solution cuts .80 fraction of the edges, and we
would like to find a partition cutting .77 fraction of the edges (approximation ratio :
.9625).

The first task is obviously easy (i.e. in P) since it is exactly to compute the bipartition
of a bipartite graph. For the second task, since the optimal solution cuts almost all the
edges, the input graph looks very close to a bipartite graph. It is conceivable that some
bipartite graph recognition algorithm might be able to deal with a tiny fraction of the
erroneous edges and output a quite good partition meeting the criteria in the task (and
indeed the Geomans-Williamson algorithm [94], which will be heavily mentioned in the
rest of this thesis, works in this way). For the third task, although the least quality of
approximation is demanded in terms of the ratio, the task itself is NP-hard by [219]. The
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hardness may be attributed to the low value of the optimal solution. These examples
motivate the definition of the approximation quality according to the value of the optimal
solution. For the MAXCUT problem and 0 < s < ¢ < 1, we say an algorithm is a (c, s)-
approximation algorithm if the algorithm outputs a partition cutting at least s fraction
of the edges whenever the optimal solution has value at least c. An «-approximation
algorithm is always a (¢, ac)-approximation algorithm for all 0 < ¢ < 1. However, as we
see from the examples above, for some particular ¢, we can get a solution with value much
better than «c. Please refer to for the precise definitions of the approximation
notions discussed here.

1.1.1 Robust algorithms

In the exemplary MAXCUT scenarios presented above, we had the intuition that if the task
of recovering the perfect solution (i.e. the partition that cuts all the edges) can be done in
polynomial time, then finding out an almost perfect solution if there is one might also be
easy. This intuition is correct for MAXCUT, but might not be the case for other problems.
However, the idea of generalizing an algorithm which works for perfect solutions to almost
perfect solution motivates the notion of robust algorithms.

At a high level, robust algorithms extremely well-approximate an almost perfect solu-
tion when such solutions exist. To make this description more precise, let us fix a maxi-
mization problem. Usually we can normalize the objective of the maximization problem so
that it always lies between [0, 1] and having objective value 1 means a perfect solution. (In
the MAXCUT example, one natural objective concerns about the number of edges across
the partition. However, we chose to rescale this objective and made it the fraction of the
desired edges.) We call an algorithm for the optimization problem robust, if there exists
a function r : [0, 1] — [0, 1] satisfying r(¢) — 0 as ¢ — 07 such that whenever the input
instance has objective value (1 — ¢), the algorithm outputs a solution with value at least

(1 — r(e)). The readers may refer to |Section 2.2.1| for more definitions and discuss on
robust algorithms.

1.1.2 Hardness of approximation

To complement algorithmic results for a problem, it is also interesting to study its hardness
of approximation, 1.e. the limitation of polynomial-time algorithms in terms of the approx-
imation guarantee they can achieve. For a maximization problem, we say it is NP-hard to
a-approximate the problem if any polynomial-time algorithm with v approximation guar-
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antee implies P = NP. We will also talk about hardness of approximation under other
complexity assumptions (such as the Unique Games Conjecture which will be introduced
in[Section 2.3)). We can define similar hardness of approximation notion for minimization
problems.

Ideally, for each problem of interest, we would like to have both an approximation
algorithm and hardness of approximation which implies that there is no algorithm with
better approximation guarantee, therefore identifying the approximation threshold of the
problem.

1.2 The relaxation and rounding framework for design-
ing approximation algorithms

Convex programming relaxations and rounding schemes are a standard tool to design ap-
proximation algorithms. A vast majority of known approximation algorithms are designed
using this approach with only a few exceptions (e.g. [14,190]). A significant part of this the-
sis is devoted to exploring the effectiveness and limitations of convex relaxations. In this
section, we provide a rudimentary introduction to this powerful framework. We suggest
readers to refer to relevant chapters in [221]] and surveys such as [66] for more information.

1.2.1 Convex relaxations

In combinatorial optimization problems, the solution space is discrete and usually we can
encode the solutions using variables those take value either O or 1. After such encoding,
it is often straightforward to formulate the optimization problem as an integer program.
However, it is NP-hard to exactly solve the integer program (as long as the original op-
timization problem is NP-hard). Such computational intractability stems from the non-
convexity (or the integrality) of the solution space. The idea here is to relax the integral
constraints to make the program tractable.

Specifically, we relax the condition that variables take values either 0 or 1 so that
variables can be real numbers or even vectors. For example, a simple relaxation would be
allow variables to take any real numbers in [0, 1] (instead of {0, 1} values). In this way, if
the objective function and other constraints in the integer program are linear, we relax it to
a tractable linear program. Other methods can be applied to deal with the integer programs
when the objective function or constraints are not linear.

Above we have just shown one simple approach of deriving linear programming re-
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laxations, while there are also many other relaxation techniques such as semidefinite pro-
graming relaxations and relaxation hierarchies. The main idea for all these approaches is
to obtain a convex optimization problem by suitable relaxations so that the new problem
is computational tractable.

1.2.2 Rounding schemes

It is clear that any solution for the original optimization problem is also a feasible solution
for the convex relaxation (one may think about the linear programming relaxation exam-
ple to get the intuition). Therefore, if the original optimization problem is a maximization
problem, the optimum of the convex relaxation is always at least the optimum of the orig-
inal problem. Fix a convex relaxation R and a specific problem instance Z, let opt(Z) be
the value of the optimal solution to Z; let opt(Z) be the value of the optimal solution to
the convex relaxation of Z. We have just derived that opt(Z) < opty(Z).

However, not every solution for the convex relaxation has a corresponding solution in
the original problem. Therefore, when using convex relaxations to design approximation
algorithms, there is usually a rounding step to convert the relaxation solution to a feasible
solution of the original problem. We call this procedure “rounding” because in the linear
programming relaxation setting, the goal is often to “round” the fractional assignments to
the variables to integral values. However, when using other relaxation techniques such as
semidefinite programs, one may have to convert vector-valued variables to integral values.

Formally, a rounding scheme is an algorithm that takes the problem instance Z and
the optimal solution x* to the convex relaxation R as input, and outputs a solution x to
the original problem. Let valz(Z;z*) = opty(Z) be the objective value of z*; and let
val(Z; x) be the objective value of =. Now still assume that the original problem is a max-
imization problem (where the case of minimization problem can be similarly deduced). If
the rounding algorithm can be proved to always output an = such that

val(Z;x) > a - opt(Z) (1.1)

for some «v € [0, 1], then we get an «-approximation algorithm by first solving the convex
relaxation and then performing the rounding scheme. However, directly proving is
often quite difficult because computing opt(Z) itself is NP-hard and we do not know much
about it. Alternatively we turn to prove

val(Z; z) > « - valg (Z; z¥) (1.2)

which is usually easier and implies (I.1)) since valg (Z; z*) = optg (Z) > opt(Z).
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1.2.3 Integrality gaps and limitations of the relaxation

As mentioned before, not every solution for the convex relaxation has a corresponding
solution in the original problem. Therefore, the relaxation optimum might be way “better”
than the optimum of the original problem.

opt(7)

optn (D) When this ratio is far

We call Z be the integrality gap instance with gap ratio
from 1, Z is a hard instance for the relaxation.

We also define the integrality gap ratio of R be the worst ratio between opt(Z) and
optr(Z), i.e. for maximization problems, let

IG(R) 4 g PHE)
7 optg(Z)

Then we have
IG(R) - optg(Z) < opt(Z) < optg(Z).

When IG(R) is close to 1 (from below), we see that the relaxation optimum is a good
estimation of the optimum of the original problem.

Similarly, for minimization problems, we let the integrality gap ratio of a specific re-

laxation R be T
e t

IG(R) def sup opt(Z)

7 optg(Z)

>1

9

and we have
optr(Z) < opt(Z) < IG(R) - optg (Z).

The relaxation optimum well approximates the optimum of the original problem when
IG(R) is close to 1 from above.

Integrality gaps serve as a measure of the quality of the relaxation R. When the inte-
grality gap of R is bad (i.e. far from 1), since we usually use (I.2)) to prove the effectiveness
of R-based approximation algorithms, we tend not to get a good approximation algorithm.
In this sense, designing the integrality gap instance with gap ratio far from 1 is a way to
show the limitation of the relaxation.

On the other hand, whenever we establish (1.2), we also know that the integrality gap
of relaxation R is no worse than «. This is also the usual way of proving the good quality
of the relaxation.

We summarize and extend the definitions made above as follows.

Definition 1.2.1. Fix an optimization problem () and an LP/SDP relaxation R for (). An
instance I of Q) is said to be a (c, s)-integrality gap instance for R,
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e (for maximization problems) if the optimal value of R(Z) is at least c while val(Z)
is less than s;

e (for minimization problems) if the optimal value of R(Z) is at most ¢ while val(Z) is
more than s.

: . . . . e
We also say that L is an integrality gap instance with gap ratio <.

Given such an instance I, we say that R has an integrality gap (c, s). The integrality
gap ratio of R (namely 1G(R)) is the infimum of the gap ratios of all integrality gap
instances for maximization problems, and the supremum of the ratios for minimization
problems.

1.3 Linear and semidefinite programming relaxations, and
methods of designing them

A large number of approximation algorithms use a specific type of convex relaxation —
linear programming (LP). While linear programs can be solved in polynomial time using
interior point methods [6} 225, 224], the simplex method is used extensively in practice.
The “basic linear programming relaxation” (i.e. the one derived from the simple exem-
plary approach described in already succeeds in efficiently approximating
problems such as VERTEXCOVER, SETCOVER, and a wide class of generalized covering
problems [152]. There are also ways to add more constraints (and variables if necessary) to
derive stronger linear programming relaxations for problems such as MULTICUT [57, 183,
SPARSESTCUT [163]], and MULTIWAYCUT [56, 1168, 51, 206]].

Semidefinite programming (SDP) relaxations are another class of powerful convex
relaxations. In a semidefinite program, the variables are vector valued, while both the
constraints and the objective are linear in terms of the inner products of the variables.
Semidefinite programs can be solved in polynomial time using the interior point methods
[6, 225, 224]. More precisely, these algorithms output a solution with the value which
differs from the optimum by at most an additive error € in time that is polynomial in the
program description size and log % Semidefinite programming relaxations proved to be
extremely successful in approximation algorithms design after being introduced by Goe-
mans and Williamson [94]] in the context of the MAXCUT problem. E] A few examples
on the semidefinite programming relaxation-based approximation algorithms include the

'Indeed, the classic work by Lovdsz [165]], known as the Lovasz Theta function today, is essentially a
semidefinite programming relaxation for the INDEPENDENTSET problem.
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ones for constraint satisfaction problems [94, 89, 132, 227, 229| 13, 91, 159, [189], UNI-
FORMSPARSESTCUT [21]], ordering problems [61], and discrete optimization problems
(63, 9]].

1.3.1 Relaxation hierarchies and the implication of their limitations

In this thesis, we are mainly interested in LP/SDP-based algorithms when talking about
convex relaxations. When designing LP/SDP-based algorithms, one usually use the most
natural and simple LP/SDP relaxation of the integer programming formulation of the orig-
inal problem. We refer to these relaxations as basic LP/SDP relaxations. As we have
defined before, fix a combinatorial optimization problem and a convex relaxation, the in-
tegrality gap serves as a measure of the quality of the relaxation, which is a different
quantity from the hardness of approximation factor for the problem. However, for many
important problems, the integrality gaps of even the simplest basic LP/SDP relaxations
interestingly correspond the hardness of approximation results [[189] 152} [168]].

On the other hand, for some other problems, in order to strengthen the algorithmic
power, one can add additional constraints into the basic relaxation, so that the resulting
relaxation is tighter and gives better approximation guarantee. One notable example is the
work by Arora, Rao, and Vazirani [21]] which added the so-called “/3-triangle inequalities™
to the basic SDP relaxation for UNIFORMSPARSESTCUT and improved the approximation
ratio from ©(log n) to O(y/logn) where n is the size of the input graph.

While analysis of the convex relaxations with such extra constraints are very problem
specific, there are several systematic ways to add additional constraints without even look-
ing at the problem. Such systematic sets of constraints include the ones defined by Lovasz
and Schrijver [166]], and Sherali and Adams [207] for LP, and the one defined by Parrilo
and Lasserre [185) [157]] for SDP. There are also hierarchies with a mixture of linear and
semidefinite constraints, such as the Sherali-Adams+SDP relaxation hierarchy. In each of
these ways, we obtain a sequence of increasingly powerful relaxations, which we often
refer to as the hierarchy of convex relaxations. The relaxation at the r-th level (also called
round) in the hierarchy typically has n°(") additional constraints (and auxiliary variables),
and can be solved in n°(") time. Please refer to [66] for a more comprehensive introduction
and comparison of these relaxation hierarchies.

Among these relaxation hierarchies, the Parrilo-Lasserre SDP hierarchy is the most
powerful. Most of the known LP/SDP relaxation-based algorithms can be derived from
at most the 4th level of the hierarchy (including the Arora-Rao-Vazirani algorithm for
UNIFORMSPARSESTCUT). Given this, it is natural to study the limitations of the Parrilo—
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Lasserre hierarchy for optimization problems where no concrete hardness of approxima-
tion result is proven. In this thesis, we will prove several new integrality gap results for
the Parrilo—Lasserre hierarchy for the problems where no concrete NP-hardness result is
known. Such results will help us understand the complexity of approximating those prob-
lems.

Prior to our work, several of the known results on strong integrality gap results for
many rounds of the Parrilo-Lasserre hierarchy, starting with the remarkable construction
by Grigoriev [97, 99] and Schoenebeck [204], apply in situations where a corresponding
NP-hardness result is already known. Thus they are not “prescriptive” of hardness. In
fact, besides the results introduced later in this thesis, we are aware of only the follow-
ing examples where a polynomial-round Lasserre integrality gap stronger than the cor-
responding NP-hardness result is known: MAXk-CSP and k-COLORING [220]. Indeed,
for all we know 4 rounds of the Parrilo—Lasserre hierarchy could improve the Goemans-
Williamson algorithm for MAXCUT, and therefore refute the famous Unique Games Con-

jecture [136, [141]] (please refer to for more on the conjecture).

A good portion of this thesis is devoted to the study of the power of the Parrilo—Lasserre
SDP hierarchy. We will be using a crucial view of the Parrilo-Lasserre SDP hierarchy as
the Sum-of-Squares algebraic proof system, and therefore also call the hierarchy as SOS
hierarchy. Depending on the context, we will use Parrilo—Lasserre, Lasserre, SOS, and
SOS/Lasserre interchangeably throughout the thesis.

1.4 A brief overview of contributions

A large part of this thesis is devoted to the study of the power the convex (LP and SDP) re-
laxation hierarchies — we explore both the effectiveness and limitations of this algorithmic
framework. The remaining part of the thesis consists of a collection of approximation al-
gorithms and hardness of approximation results, with an emphasis on the design of robust
algorithms.

In this section, we briefly introduce the results included in this thesis. A more detailed

list on these results can be found in

In we start off by showing the effectiveness of the Sherali-Adams LP relaxation
hierarchy. Even given that the hierarchy does not use the power of semidefniteness, we
show that Sherali-Adams LP gives the state-of-the-art approximation guarantee for a large
class of problems including the dense (and locally dense) constraint satisfaction problems
and assignment problems.
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Then we turn to study the limitations of the Parrilo—Lasserre hierarchy. We focus on the
problems such as DENSEASUBGRAPH, BALANCEDSEPARATOR, and UNIFORMSPARS-
ESTCUT; and prove the Parrilo-Lasserre hierarchy integrality gaps which beats the known
NP-hardness of approximation results. As mentioned in such type of results
are rare in literature and serve as an evidence that the problems are indeed hard to approx-
imate.

To motivate the contributions in we would like to mention another class of
combinatorial optimization problems, including UNIQUEGAMES and MAXCUT. These
problems seem to be significantly easier than DENSEASUBGRAPH; however, the NP-
hardness of approximation and the algorithmic bounds still do not match. While it is a
general belief that DENSEASUBGRAPH is indeed very hard to approximate, whether the
NP-hardness results for UNIQUEGAMES and MAXCUT can be improved (or even an evi-
dence for that) is of great interest in the field of approximations. Researchers have shown
Sherali-Adams+SDP integrality gaps for these problems, which serve as the best evidence
for the hardness of approximation. These integrality gap instances are the “hardest in-
stances” in literature in the sense that they are resistant to the strong relaxation hierarchy
(and perhaps the strongest excluding Parrilo—Lasserre). A natural question arise here is
whether these gap instances are also resistant to the Parrilo—Lasserre hierarchy. An affir-
mative answer to this question would further consolidate our best evidence.

In however, we show that these instances turn out to be easy for the Parrilo—
Lasserre hierarchy, giving a negative answer to the question. This result is obtained by
viewing the Parrilo—Lasserre hierarchy from a different perspective, namely as an alge-
braic proof system, instead of as a semidefinite programming. While this connection was
brought up by Parrilo [185] and Lasserre [156157] more than a decade ago, we first make
use of it in the setting of combinatorial optimization problems. Our results are the first
to separate the power of Parrilo—Lasserre from other hierarchies on UNIQUEGAMES and
MAXCUT and seriously question the possible optimality of the state-of-the-art algorithms
for the two problems. We also hope that our proof techniques help to extend our (limited)
understanding of the Parrilo-Lasserre hierarchy.

In the rest of this thesis, [Part I1I| consists of robust algorithms in different settings, such
as a special class of constraint satisfaction problems (the ones with width-1), MAXBISEC-
TION, and isomorphism detection for trees. is a collection of other approximation
algorithms and hardness of approximation results. Please refer to for a more
detailed list of these results.
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Chapter 2

Preliminaries

2.1 Problems studied in this thesis

In this section, we introduce the optimization problems studied in the thesis.

2.1.1 Constraint satisfaction problems

In a constraint satisfaction problem (CSP) with arity k£ and alphabet set 3, there is a set V/
of n variables, and a list of m constraints, where each variable takes value from an finite set
of alphabet 3., while each constraint involves exactly k variables (or at most k variables).
We also refer to this problem as £CSP.

We often talk about the special cases of a CSP where each constraint in the problem is
from one of the several prefixed forms. For example, when the alphabet set is {true, false},
we can define the following CSPs.

e In 2-SAT, each constraint is of one of the forms v; V v;, v; V vj, v;, VU;, 0; V 0;.

In MAXCUT, each constraint is of one of the forms v; # v,.

In 3-SAT, each constraint is of one of the forms v; Vv; V vy, v; Vv; V 0, v; V U; V vy,
UZ'V17j\/’Uik,171'\/’Uj\/’Uk,17,'VUjVﬁk,ﬁiV@VUk,ﬁiV@\/Uk.

In 2-LIN, each constraint is of one of the forms z; © x;, x; © ;.

In 3-LIN, each constraint is of one of the forms z; © x; ® zy, x; © z; D xy.
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e In HORN3-SAT, each constraint is of one the the forms z;, T;, v; — x;,x; N x; —
L.

When the alphabet set becomes {0, 1,2, ...,q — 1}, the following CSPs are also often
used in this thesis.

e In 2-LIN(Z,), each constraint is of one of the forms x; &= x; = ¢ mod ¢ (for some
ce{0,1,2,...,q—1}).

e In 3-LIN(Z,), each constraint is of one of the forms x; + x; & 2, = ¢ mod ¢ (for
some ¢ € {0,1,2,...,q—1}).

e InI'-2-LIN(Z,), each constraint is of one of the forms z; —2z; = ¢ mod ¢ (for some
ce{0,1,2,...,q—1}).

e InI'-3-LIN(Z,), each constraint is of one of the forms z; +x; — z;, = ¢ mod ¢ (for
some ¢ € {0,1,2,...,¢q—1}).

Given a CSP I, the natural optimization task, called “MAXI™, is to find an assignment
to the variables such that the total weight of the satisfied constraints is maximized, where
we assume that each constraint has a nonnegative weight, and the sum of all weights are
1. Fix a CSP instance Z, we use val(Z) to denote the value of the optimal solution. We say
that 7 is “satisfiable” if val(Z) = 1.

2.1.1.1 The UNIQUEGAMES problem

The UNIQUEGAMES (UG for short) problem is a special binary CSP with domain size
q. For each constraint e, there is a bijection 7, attached to it. The constraint e is satisfied
when the two corresponding variables z; and x; take values so that m.(z;) = x;. The
goal is to find an assignment to the variables so that the fraction of satisfied constraints is
maximized. The famous Unique Games Conjecture informally states that UG is very hard
to approximate, we will discuss a little more about the conjecture in

2.1.2 Graph partitioning problems
Partitioning a graph into two (balanced) parts with few edges going across them is a fun-
damental optimization problem. Graph partitions or separators are widely used in many

applications (such as clustering, divide and conquer algorithms, VLSI layout, etc). In this
thesis, we will focus on the following prototypical objectives of graph partitioning.
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Definition 2.1.1 (BALANCEDSEPARATOR). Given an undirected graph G = (V, E) and
0 < 7 < .5, the goal of the T vs. 1 — T BALANCEDSEPARATOR problem is to find a set
A C V such that 7|V | < |A| < (1 — 7)|V|, while edges(A,V \ A) is minimized. Here
edges(A, B) is the number of edges in E that cross the cut (A, B).

Definition 2.1.2 (UNIFORMSPARSESTCUT). Given an undirected graph G = (V, E), the
goal of the UNIFORMSPARSESTCUT problem is to find a set ) C A C V such that the

sparsity
edges(A, V' \ A)

[AIIVA A

is minimized.

In some other cases, we are also interested in finding a partition that maximizes the
number of edges those cross the partition (such as MAXCUT). In addition, we define the
following problem which is MAXCUT plus a global cardinality constraint.

Definition 2.1.3 (MAXBISECTION). Given an undirected graph G = (V, E), the goal of
the MAXBISECTION problem is to find a set A C |V| such that |A| = 5|V| (assume that
|V'| is an even number), such that

edges(A,V \ A)
El

is maximized.

We may also use the density of the edges within a subset as the objective value (instead
of counting the number of edges across the partition). In the light of this, we define

Definition 2.1.4 (DENSEASUBGRAPH). Given an undirected graph G = (V, E) and an
integer k, the goal of the DENSEKXSUBGRAPH problem is to find a subset A C 'V such that
|A| = k and number of edges within A is maximized.

2.1.3 Graph isomorphism and assignment problems

The GRAPHISOMORPHISM problem is one of the most intriguing and notorious problems
in computational complexity (we will also refer to it as GISO for short); we refer to [[149,
30,124,148, 169] for surveys. Together with FACTORING, it is one of the very rare problems
in NP which is not known to be in P but which is believed to be not NP-hard [29, 49, 205]]
(according to standard complexity-theoretic assumptions).
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The most well-known heuristic for GISO is the Weisfeiler-Lehman (WL) algorithm
[222] and its “higher dimensional” generalizations. These heuristics, given two graphs,
are always correct when the two graphs are isomorphic, but might misreport the noniso-
morphic pairs of graphs as being isomorphic. The “k-dimensional generalization” WL"
(see [222,[55]] for discussion) runs in time n°*) and is more and more powerful as k grows
larger (i.e. misreports less nonisomorphic pairs of graphs as being isomorphic). The WL"
heuristic is very powerful. For example, it is known to work correctly in polynomial time
for all graphs which exclude a fixed minor [102], a class which includes all graphs of
bounded tree width or bounded genus. Spielman’s 2°"/*)-time graph isomorphism al-
gorithm [212]] for strongly regular graphs is achieved by WL* with k& = O(nl/ 3). The
WL* algorithm with & = O(y/n) is also a key component in the 2°(V"1°¢")_time GIso
algorithm [33]. Throughout the *80s there was some speculation that GISO might be solv-
able on all graphs by running the WL algorithm with & = O(logn) of even k = O(1).
However this was disproved in the notable work of Cai, Fruer, and Immerman [55]], which
showed the existence of pairs of nonisomorphic n-vertex graphs which are not distin-
guished by WL unless k& = Q(n).

In this thesis proposal, we will study a potentially stronger algorithmic framework than
the WL algorithm, and also study the GISO problem from the approximation algorithms
prospect and using tools from approximation algorithms design. In order to do this, we
introduce several new definitions here.

Definition 2.1.5. Let G and H be nonempty n-vertex graphs. For 0 < < 1, we say that
a permutation 7 : V(G) — V(H) is an a-isomorphism if
[{(u,0) € E(G) : (n(u),7(v)) € E(H)} _
max{|E(G)], |E(H)[} o

where V(G) and V (H) are the vertex sets of G and H respectively, and E(G) and E(H)
are the edge sets of G and H respectively.

If there exists an a-isomorphism between G and H, we say that G and H are a-
isomorphic.

Observe that this definition is symmetric in G and H. The two graphs are isomorphic
if and only if they are 1-isomorphic. The classical GISO problem is to check whether the
two input graphs are 1-isomorphic. Now we introduce the following natural optimization
version of the problem.

Definition 2.1.6 (MAXGISO). Given two n-vertex graphs G and H, the MAXGISO prob-
lem is to find a permutation w : V(G) — V(H) such that 7 is an a-isomorphism and o is
maximized.
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The QUADRATICASSIGNMENTPROBLEM (QAP for short) is a natural generalization
of the MAXGISO problem. We now define the even more generalized problem kAP, where
the QAP problem is a special case when k = 2, as follows.

Definition 2.1.7 (kAP). For an integer k > 2, an instance of the degree k assignment
problem (kAP) is given as T = (V,w), where V is the set of variables, w is a distribution
over V¥ x V¥ The goal is find a permutation 7 of V such that the value of T, defined as
(Z,7)=n* Pr [Vie{l,2,3,....k}:7(w)=w],
wl(Z,m) =n* | Pr[vie( i) = w)

is maximized. U = (uy,us, ..., ug) and W = (wy,ws, ..., wy). We define the optimal
value of T to be val(Z) = max, {val(Z,n)}.

2.1.4 Dense and locally-dense instances

Given a CSP instance Z with arity k& and variable set V, let w : V¥ — R be the weights
on the constraints. Le. let w(vy, vg, . .., vx) be the weight on the constraint imposed on the
k-tuple (vy,vq, ..., vg); let w(vy, vg, ..., vg) be O if there is no such constraint. Since we
assumed that the weights are nonnegative and sum up to 1, we can view w as a probability
distribution on V*. We say the CSP instance Z is A-dense if w is A-dense; say Z is A-
locally dense if w is A-locally dense. We also say an instance is dense or locally-dense if
itis O(1)-dense or O(1)-locally dense. Here we define,

Definition 2.1.8 (dense and locally dense distributions). Let w be a probability distribution
over a finite set ). For A € (0,1], we say w is A-dense if for every a € €, it holds that

1
A-w(a) < ok

Let w be a probability distribution over V*. Let d;(v) = SPr |S; = ;| be the probability

that the i-th coordinate is v under w. For A € (0, 1], we say w is A-locally dense if for
every (vy,...,v) € V¥, it holds that

1
A 'W(Ul, s 7Uk) S W Z dl(vz>

1<i<k

Since d;(v) = > w(S), the RHS of the locally dense condition is equal to
SeVk:S;=v
> E [w(S) | S; = v;]. Thus the locally dense condition says that no tuple (v1, . .., vx)
1<i<k S~VF

is “wild” in that w(vy,...,v;) is at most constant times the sum over i of the average
probability mass of S with .S; = v;.
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The notion of local density is introduced in [75] to generalize the metric condition. To
see this, suppose w : V? — R is a metric. Then, w is 1-locally dense since, for any u,v €
V,we have £ (dy(u) + do(v)) = + 3 (w(u,w) + w(w,v)) > =3 w(u,v) > w(u,v).

2.2 Approximation and hardness of approximation

In this section, we define the notions of approximation algorithms and hardness of approx-
imation.

Let us first fix a problem () (which is usually computationally hard to calculate the
exact optimal objective solution). We suppose that the problem () is a maximization prob-
lem throughout this subsection, while the definitions given can be naturally adapted to
minimization problems.

Fix an instance Z from the problem (). We denote the optimal objective value of the
problem to be val(Z). Given an algorithm A for the problem G, we use val4(Z) to denote
the value of the solution output by A on input GG. Now we define the following measure of
the quality of A based on the approximation ratio.

Definition 2.2.1. We say that an algorithm A is an a-approximation algorithm (0 < o <
1) for the problem Q) if for every instance L from (), we have

vaIA(I)
val(Z)

> .

We also introduce the definition of polynomial-time approximation scheme (PTAS)
where the algorithm gives arbitrarily (and constantly) good approximation to the problem
in polynomial time.

Definition 2.2.2. Fix an optimization problem (), a PTAS is an algorithm which takes an
instance T of Q) of size n and a parameter € > 0, and in time T'(¢,n), outputs a solution
that is (1 — €)-approximation to the optimal solution of the instance, where for every € > 0
there exists a constant C = C/(¢) such that T (e,n) < O(n®).

Similarly, a quasi-polynomial-time approximation scheme (quasi-PTAS) for @) is an
algorithm which takes an instance I of Q) of size n and a parameter ¢ > 0, and in time
T'(e,n), outputs a solution that is (1 — €)-approximation to the optimal solution of the

instance, where for every ¢ > 0 there exists a constant C' = C'(¢) such that T'(e,n) <
2C(logn)o(1)
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Sometimes we need a more refined definition than [Definition 2.2.1] Take the problem
MAXCUT for example (please refer to for the precise definition of MAX-
CuT). Currently the best known approximation algorithm for MAXCUT is by Goemans
and Williamson [94]; and by [Definition 2.2.1 the Goemans-Williamson algorithm is an
agw-approximation algorithm (where agy =~ .878). However, when the optimal solution
in a MAXCUT instance cuts almost all the edges (say (1 — ¢) of the edges), Goemans-
Williamson algorithm guarantees to output a cut that cuts (1 — O(1/€)) of the edges, while
we expect a .878-approximation algorithm to output a cut only cutting .878(1 — ¢) of the
edges (which is much smaller than (1 — O(y/€)) when ¢ is small). Therefore, we need to
introduce the following refined notion of approximation to address this difference.

Definition 2.2.3. Fix ¢ > s > 0, we say that an algorithm A is a (c, s)-approximation
algorithm for the problem Q) if for every instance T from (), when val(Z) > ¢, we have
valy(Z) > s.

By definition|Definition 2.2.3| an a-approximation algorithm is a (¢, «c)-approximation
algorithm for every ¢ > (0. The Goemans-Williamson algorithm is an oy -approximation
algorithm for MAXCUT in general; but it is also a (1 — ¢,1 — O(y/€))-approximation
algorithm.

IDefinition 2.2.3| motivates us to define the following decision problem for every opti-
mization problem Q).

Definition 2.2.4. Given an optimization problem (@), for every ¢ > s > 0, let the problem
(¢, s)-gap-Q be the problem that given an instance I, to

e output YES when val(Z) > ¢;

e output NO when val(Z) < s.

A simple observation is that fix the problem () and the parameters ¢ > s > 0, if (¢, s)-
gap-() is NP-hard, then it is NP-hard to <-approximate the problem (). Therefore, a usual
strategy of proving hardness of approximation statement for an optimization problem () is
to prove the hardness of (¢, s)-gap-() problem.

2.2.1 Robust algorithms

Robust algorithms are approximation algorithms concerned with the case that the prob-
lem has an “almost perfect” solution (e.g. when all the constraints are satisfied, when two
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graphs are isomorphic, etc.). At a high level, instead of giving approximation ratio guar-
antee for general inputs, robust algorithms extremely well-approximate an almost perfect
solution when such solutions exist. Such algorithms can be viewed as a robust version of
the algorithms designed to find (exact) perfect solutions. One motivation to design robust
algorithms is that in practical situations (e.g. learning with noise), instances with perfect
solutions might be corrupted by a small amount of noise; an robust algorithm becomes
useful since it can still satisfy most of the constraints of the noisy instance.

The notion of robust algorithms was first explicitly introduced by Zwick [228] for
constraint satisfiability problems (CSPs), where he showed robust algorithms for several
CSPs including MAX2SAT and MAXHORNSAT. In this proposal, we will focus on the
robust algorithms for general CSPs, MAXBISECTION, and GRAPHISOMORPHISM. Now
we give the explicit definitions for these robust algorithms.

Definition 2.2.5 (ROBUSTSATISFIABILITY). Fix a CSP, we say that an algorithm A is
a robust satisfiability algorithm for the CSP if there exists a function v : [0,1] — [0, 1]
satisfying r(e) — 0 as € — 07 such that whenever A is given an instance T with val(Z) >
1 — ¢, A outputs a solution satisfying (1 — r(€)) of the constraints.

By definition, the famous Goemans-Williamson [94]] algorithm for MAXCUT is an ro-
bust satisfiability algorithm with r(¢) = O(y/¢€). Zwick [228] gave an robust satisfiability
algorithm for MAX2SAT with r(¢) = O(y/€), and an robust satisfiability algorithm for

MAXHORNSAT with (¢) = O (%)

We also define the notion of robust algorithms for the following two problems which
will be studied in this thesis.

Definition 2.2.6 (ROBUSTMAXBISECTION). We say that an algorithm A solves the RO-
BUSTMAXBISECTION problem if there exists a function v : [0,1] — [0, 1] satisfying
r(€) — 0 as e — 07 such that whenever A is given an undirected graph G with MAXBI-
SECTION optimum at least 1 — €, A outputs a bisection with (1 —r(€)) of the edges across
the bisection.

Definition 2.2.7 (ROBUSTGISO). We say that an algorithm A solves the ROBUSTGISO
problem if there exists a function r : [0,1] — [0, 1] satisfying r(¢) — 0 as e — 0T such
that whenever A is given a pair of graphs which are (1 — €)-isomorphic, A outputs a
(1 — r(€))-isomorphism between them.
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2.3 The Unique Games Conjecture

The Unique Games Conjecture states,

Conjecture 1 (Unique Games Conjecture [[136]). For every constant € > 0, there exists a
large enough q so that the (1 — €, €)-gap-UG problem with domain size q is NP-hard.

The Unique Games Conjecture, soon after its initial proposal Khot [136], became a
central problem in approximation algorithms research. If the conjecture is true, it implies
optimal inapproximability results for many problems including the broad class of CSPs
[189], covering and packing problems [152]], ordering CSPs [106] and MULTIWAYCUT
[168]. While numerous research has been conducted to investigate the correctness of
the conjecture (e.g. [136, 218, (144} (105, 59, [19, [16, [193]]), the status of the conjecture
remains a major open question in the field, and there is no compelling opinion about its
truth. However, through these intensive studies of UG, many connections have emerged
between the conjecture, analysis, geometry and mathematical programming, leading to
many exciting advancements in both algorithm design and hardness of approximations.
The readers are encouraged to refer to [[138] for more on the conjecture.
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Chapter 3

Summary of contributions and
organization of this thesis

The technical part of this thesis consists of 4 parts.

Part I| and [Part II| will discuss how to strengthen our current (possibly limited) under-
standing of convex relaxation hierarchies. [Iable 3.1|is a list of the relevant results.

Part [II}will be on the design (and impossibility of designing) robust algorithms.
will consist of a few other inapproximability results. [Table 3.2[is a list of the relevant re-
sults.

Finally, the thesis will be concluded by with a few future directions.

In the following 4 sections, we will give overviews of the 4 technical parts respectively.

3.1 Overview of Part I: study of the LP/SDP relaxation
hierarchies

As we mentioned before, the LP/SDP relaxation hierarchies are parameterized by an inte-
ger r — the level in the hierarchy. One challenge here is to understand the trade-off between
the approximation guarantee and the number of levels. In this subsection, we describe the
results related to this question. For some problems, we prove that a small number of levels
in the hierarchies effectively approximates the optimal solution; in other cases, we show
lower bounds for the hierarchies, i.e. a large number of levels is needed to obtain good
approximation.
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Effectiveness of hierarchies

Limitation of hierarchies

The Sherali-Adams LP relaxation
hierarchy for dense and locally-dense
instances (Theorem 3.1.1 [Theo
rem 3.1.2] and [Theorem 3.1.3)

The Parrilo-Lasserre SDP relaxation
hierarchy for known UNIQUEGAMES,
BALANCEDSEPARATOR, and MAX-

Polynomial-round Parrilo-Lasserre
integrality gap instances for

DENSEASUBGRAPH (Theorem 3.1.4))

Linear-round Parrilo-Lasserre integral-
ity gap instances for BALANCEDSEPA-
RATOR and UNIFORMSPARSESTCUT
(Theorem 3.1.5|and [Theorem 3.1.6))

CUT integrality gap instances (The{ | Linear Parrilo-Lasserre SDP does

lorem 3.2.1L [Theorem 3.2.2] and | not tell isomorphic graphs from

Theorem 3.2.3)) far-from-being-isomorphic graphs
orem 3.1.7)

Table 3.1: Table of contributions on convex relaxation hierarchies

3.1.1 Algorithmic results

In we study the algorithmic guarantee of the Sherali-Adams LP relaxation hi-
erarchy for dense and locally dense CSPs and assignment problems (APs). Prior to our
work, there was a long series of works (e.g. [74} 87, 18, [77, [17, [76, [75]), using vari-
ous techniques, such as sampling, regularity lemma, and tensor decomposition, to design
PTAS and quasi-PTAS for these instances.

We show that the Sherali-Adams LP relaxation hierarchy is a unified algorithmic
framework to obtain all the previously known results. In particular, we first show that

Theorem 3.1.1 (Pre-statement of Theorem 4.1.1). For any ¢ > 0, O(Z%)-round Sherali-
Adams LP relaxation hierarchy gives (1 — €)-approximation to dense or locally dense
MAXkCSP.

Then, we turn to dense and locally dense MAXACSP with global cardinality con-
straints. For explanatory purposes, we only consider bisection constraint, i.e., the domain
is {0, 1} and the number of variables that are assigned to 0 should be equal to the number
of variables that are assigned to 1. We show that

Theorem 3.1.2 (Pre-statement of Theorem 4.8.2). For any ¢ > 0, O(Z%)-round Sherali-
Adams LP relaxation hierarchy gives (1 — €)-approximation to dense or locally dense
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Approximation algorithms Hardness of approximation

Robust algorithm for width-1 constraint

satisfiability problems (Theorem 3.3.1) | Hardness of ROBUSTGISO (Theo-
rem 3.3.3)

An algorithm for ROBUSTMAXBISEC-
TION (Theorem 3.3.2) Hardness of MAXI'-2-LIN and MAXI'-
3-LIN over integers (Theorem 3.4.3))

A robust isomorphism algorithm for

trees (Theorem 3.3.4) Hardness of approximating almost
satisfiable MAXHORN3-SAT
Approximating the 2 — 4 norm of ran- | rem 3.4.4))

dom linear operators (I'heorem 3.4.1))

Table 3.2: Table of contributions on other approximation algorithms and hardness of ap-
proximation

bisection MAXECSP.

Finally, we consider the dense MAXkAP problems, and show that

Adams LP relaxation hierarchy gives (1 — €)-approximation to dense or locally dense

MAXKEAP problems with n variables.

Theorem 3.1.3 (Pre-statement of [Theorem 4.1.3). For any € > 0, O(X%4")-round Sherali-

3.1.2 Integrality gaps

In [Chapter 5| (Chapter 6, and [Chapter /| we study several important combinatorial opti-
mization problems and show that the strongest known SDP hierarchy (i.e. the Parrilo—
Lasserre hierarchy) does not give good approximation for them. Given that there is no
concrete inapproximability result for these problems, and (as pointed out previously) that
our results are among the few ones proving Parrilo—Lasserre lower bounds beating known
NP-hardness results, our lower bound theorems can be viewed as strong evidence of the
inapproximability of these fundamental combinatorial optimization problems.

The DENSEASUBGRAPH problem. The DENSEASUBGRAPH problem is believed to
be very hard to approximate as the best known approximation algorithm due to [41]]
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gives O(n'/**¢)-approximation in time n°("/9) for any constant ¢ > 0. On the inap-
proximability side, [88]] initially showed that a small constant factor inapproximability
for DENSEASUBGRAPH using the random 3-SAT assumption. [137]] used quasi-random
PCPs to rule out a PTAS. More recently, [193, 7] used more non-standard assumptions to
rule out any constant factor approximation algorithms. In the work with Bhaskara et al.
[40]], we showed the following integrality gap theorem.

Theorem 3.1.4 (Pre-statement of [Theorem 5.1.1). For every € > 0, there is a lower bound
of n?/53=¢ on the integrality gap of level-n‘*\) Parrilo—Lasserre SDP relaxation hierarchy
for the DENSEKXSUBGRAPH problem; there is also a lower bound of n on the integrality
gap of level-n'=°) Parrilo-Lasserre SDP relaxation hierarchy.

The BALANCEDSEPARATOR and UNIFORMSPARSESTCUT problems. For these two
problems, the best algorithms, based on semidefinite relaxations (SDPs) with triangle in-
equalities, give O(+/logn)-approximation [21]. On the inapproximability side, a Poly-
nomial Time Approximation Scheme (PTAS) is ruled out for both problems assuming
3-SAT does not have randomized subexponential-time algorithms [[10]. In the work with
Guruswami and Sinop [112]], we showed the following integrality gaps for the two prob-
lems.

Theorem 3.1.5 (Pre-statement of [Theorem 6.1.2). For 0.45 < 7 < 0.5, there are linear-
round Parrilo-Lasserre SDP gap instances for the 7 vs (1 — 7) BALANCEDSEPARATOR
problem, such that the integral optimal solution is at least (1 + €(7)) times the SDP solu-
tion, where €(1) > 0 is a constant dependent on T.

Theorem 3.1.6 (Pre-statement of [Theorem 6.1.3). There are linear-round Parrilo—Lasserre
SDP gap instances for the UNIFORMSPARSESTCUT problem, such that the integral opti-
mal solution is at least (1 + €) times the SDP solution, for some constant € > 0.

The GRAPHISOMORPHISM problem. A recent work of Atserias and Maneva [27] (see
also [103]]) shows that the power of WL" algorithm is precisely sandwiched between the k-
th and (k4 1)-st level of the canonical Sherali-Adams LP relaxation hierarchy of the GISO
problem. Given the power of WL* algorithm, this connection shows that LP relaxation
hierarchies are also useful for solving GISO. On the other hand, by the work of [53]], we
also know that the Sherali-Adams LP relaxation hierarchy also needs linearly many levels
to fully solve GISo.

This raises the natural question whether stronger LP/SDP relaxation hierarchies might
prove more powerful than WL" in the context of GISo. In the work with O’Donnell et
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al. [182], we study the Parrilo-Lasserre SDP relaxation hierarchy (which is the strongest
known hierarchy known in the literature as discussed before) for GISO and show that

Theorem 3.1.7 (Pre-statement of [Theorem 7.1.2). For infinitely many n, there exists pairs
of n-vertex, O(n)-edge graphs G and H such that

e G and H are not (1 — 10~)-isomorphic;

e in order to tell that G and H are not 1-isomorphic (i.e. isomorphic), the Parrilo—
Lasserre SDP relaxation hierarchy needs €)(n) levels.

This theorem says that the linear-level Parrilo—Lasserre hierarchy not only fails on
distinguishing nonisomorphic pairs of graphs, but also fails spectacularly — the hierarchy
cannot tell the two graphs are nonisomorphic even when they are different by a constant
fraction of the edges.

3.2 Overview of Part IlI: using the Parrilo-Lasserre hier-
archy to solve hard instances for weaker hierarchies

In we study the Parrilo-Lasserre SDP relaxation hierarchy when applied to the
known integrality gap instances (for other relaxation hierarchies such as Sherali-Adams+SDP)
in literature for several central combinatorial optimization problems, and will show that
these instances are no longer integrality gap instances for constant-level Parrilo—Lasserre
SDP relaxation hierarchy. In order to obtain such types of results, we will use a special and
novel view of the Parrilo-Lasserre SDP relaxation hierarchy, i.e. to view the hierarchy as
the so-called “sum-of-squares proof system’ and to prove the success of the hierarchy (on
given instances) via giving a proof that the given instance does not have great objective
value in the sum-of-squares proof system. Using this connection, we hope to understand
more about the the power of Parrilo—Lasserre SDP relaxation hierarchy, and proof tech-
niques that might be helpful to construct integrality gaps for the Parrilo—Lasserre hierarchy.
In particular, we will present the following results along this line.

The UNIQUEGAMES problem. We begin with showing that a very small constant level
of the Parrilo-Lasserre SDP hierarchy suffices to solve the UNIQUEGAMES instances in
the literature.
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Theorem 3.2.1 (Pre-statement of [Theorem 9.0.8)). For sufficiently small € and large k,
and every n € N, let VW be an n-variable k-alphabet UNIQUEGAMES instance of the type
considered in [|192} 154, [142] obtained by composing the “quotient noisy cube” instance
of [144] with the long-code alphabet reduction of [I41] so that the best assignment to
W’s variables satisfies at most an € fraction of the constraints. Then, there is a degree-8
SOS refutation for the statement that the best assignment to VV’s variables satisfy at least
1/100 fraction of the constraints.

Thus just the level-4 Lasserre SDP hierarchy (essentially) solves the the UNIQUEGAMES
instances.

The BALANCEDSEPARATOR problem. Devanur et al [79] gave a family of n-vertex
BALANCEDSEPARATOR instances (which we will refer to as the DKSV instances) which
are integrality gap instances with ratio ©(loglogn) for the natural SDP relaxation with
triangle inequalities. Raghavendra and Steurer [188] showed that a factor-(log log n)*®")
gap persists for these instances even for (log log 7)) rounds of the “LH+SDP relaxation
hierarchy”. In the work with O’Donnell [[184]], we show that

Theorem 3.2.2 (Corollary of [Theorem 10.3.1|and [Theorem 10.3.3). The level-2 Parrilo—
Lasserre SDP relaxation hierarchy for the BALANCEDSEPARATOR problem has integral-
ity gap at most O(1) for the DKSV instances.

The MAXCUT problem. Assuming the Unique Games Conjecture, Khot et al. [141]
showed that the Goemans-Williamson algorithm [94] for MAXCUT achieves the best
possible approximation factor, namely agy ~ .878 approximation. Khot and Vishnoi
[144] gave integrality gap instances of ratio oy for the MAXCUT problem, by com-
posing their UNIQUEGAMES instances with the MAXCUT reduction in [141]. Khot and
Saket [154] subsequently showed that this gap persists even for level-(log log log n)®)
Sherali-Adams+SDP relaxation hierarchy. In the work with O’Donnell [184], we show
that constant level of the Parrilo—Lasserre SDP relaxation hierarchy gives better than agyy -
approximation to the integrality gap instances by Khot and Vishnoi. In particular, we prove
that

Theorem 3.2.3 (Pre-statement of [Theorem 8.1.3). There exists a universal integer con-
stant C' such for the level-C Parrilo—Lasserre SDP relaxation hierarchy, the Khot-Vishnoi
MAXCUT instance has integrality gap ratio at most 1/.952(< 1/acw ).
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3.3 Overview of Part 11I: robust algorithms

In this subsection, we present several of our related results on robust algorithms.

Robust algorithms for satisfiability problems. As mentioned previously, Zwick [228]
showed robust algorithms for MAX2S AT and MAXHORNSAT. In sharp contrast, for other
problems such as MAX3LIN, although deciding whether an instance is satisfiable is in P,
there is no efficient robust algorithm unless P = NP [116]. A natural theoretical ques-
tion arising at this point is to characterize the class of CSPs that admit efficient robust
algorithms.

Towards answering this question, in a work with Guruswami [[114]], we conjectured that
the CSPs which have efficient robust algorithms (assuming P # NP) are precisely those of
“bounded width” — a notion frequently used in algebraic dichotomy theory where people
study the characterization of CSPs with exact satisfiability algorithms (we will refer to this
conjecture as Guruswami—Zhou Conjecture throughout this thesis). Roughly speaking,
bounded-width CSPs are the ones do not encode linear equations over abelian groups;
they also coincide with the CSPs solvable by the “k-consistency heuristic” algorithm in
artificial intelligence. If our conjecture is true, the natural basic SDP relaxation would be
the desired robust algorithm for every bounded-width CSP.

Towards proving the conjecture, in we prove the following theorem.

Theorem 3.3.1 (Pre-statement of [Theorem 12.1.1). If a CSP has “width-1", there is a
polynomial-time robust satisfiability algorithm for the CSP; and the algorithm is based on
the natural LP relaxation of the problem.

The Guruswami—Zhou Conjecture was later fully confirmed by Barto and Kozik [38]].

The ROBUSTMAXBISECTION problem. In[Chapter 13| we will prove the first polynomial-
time algorithm for the ROBUSTMAXBISECTION problem. Our theorem is stated as fol-
lows.

Theorem 3.3.2 (Pre-statement of [Theorem 13.1.3)). There is a randomized polynomial-
time algorithm such that for every € > 0, given an edge-weighted graph G with a MAXBI-
SECTION solution of valud'|(1—e), finds a MAXBISECTION of value (1 — O ({/elog(1/e))).

'The value of a cut in an edge-weighted graph is defined as the weight of the edges crossing the cut
divided by the total weight of all edges.
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Prior to our work ([[107]), researchers from theoretical computer science and operations
research designed various algorithms for this problem [93}1226, (115, 91], but none of them
is guaranteed to find a bisection cutting most of the edges even when the graph has a near-
perfect bisection cutting (1 — €) of the edges (in fact, they may not even cut 75% of the
edges).

The ROBUSTGISO problem. Although it is not known whether GISO has polynomial-
time algorithm, we show that assuming the so-called Feige’s R3XOR hypothesis [88],
there is no polynomial-time algorithm for ROBUSTGISO. In particular, we prove the fol-
lowing theorem.

Theorem 3.3.3 (Pre-statement of [Theorem 7.1.4). Assume Feige’s R3XOR Hypothe-
sis [88]. Then there is no polynomial-time algorithm for ROBUSTGISO. More precisely,
there exists €y > 0, such that suppose there exists € > 0 and a t(n)-time algorithm which
can distinguish (1 — €)-isomorphic n-vertex, m-edge graph pairs from pairs which are
not even (1 — €g)-isomorphic (where m = O(n)). Then there is a universal constant
A € Z* and a t(O(n))-time algorithm which outputs “typical” for almost all n-variable,
An-constraint instances of the 3-XOR problem, yet which never outputs “typical” on
instances which are (1 — ©(¢))-satisfiable.

Our proof uses a linear-size reduction from ROBUSTGISO to MAX3-LIN and uses
a hardness of approximation result for MAX3-LIN by Hastad [116]. Therefore, by the
efficient-construction of the PCP theorem [173]], and assuming the ETH ([124], i.e. 3-SAT
does not have subexponential-time algorithms), there is no subexponential-time algorithm
for ROBUSTGISO. This is in contrast with the 2°(vV"1°¢7)_time algorithm for GISO due to
[33].

Despite the impossibility of constructing efficient ROBUSTGISO algorithm for general
graphs, we design a ROBUSTGISO algorithm for trees. In|Chapter 14, we prove

Theorem 3.3.4 (Pre-statement of [Theorem 14.1.5). Given two n-vertex trees T and Ts,
there is a polynomial-time algorithm to find a (1 -0 (61/ 4))—isomorphism between them
whenever they are (1 — €)-isomorphic, for every e > 0.
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3.4 Overview of Part IV other approximation and hard-
ness of approximation results

In this subsection, we describe several related hardness of approximation results obtained
by the author.

3.4.1 Approximating the 2 — 4 norm of random linear operators

For a function f: 2 — R on a (finite) probability space €2, the p-norm is defined as
1£]l, = (Ea fP)YP. The p — q norm ||Al|,_, of a linear operator A between vector
spaces of such functions is the smallest number ¢ > 0 such that [[Af|, < c| f|, for all
functions f in the domain of A.

In[Chapter 15| we are interested in approximating || A||o—,.4. We study a natural semidef-
inite programming (SDP) relaxation for computing the 2 — 4 norm of a given linear op-
erator which we call TensorSDP. While TensorSDP is very unlikely to provide a poly-
time constant-factor approximation for the 2 — 4 norm in general (as shown in [34]), we
do show that it provides such approximation on random linear operators, as we describe
below.

Theorem 3.4.1 (Informal version of [Theorem 15.3.1). TensorSDP certifies a constant
upper bound on the ratio ||Al|2—4/ || All5_,, where A : R — R™ is a random linear
operator (e.g., obtained by a matrix with entries chosen as i.i.d Bernoulli variables) and

m > Q(n?).

In contrast, if m = o(n?) then this ratio is w(1), and hence this result is almost tight in
the sense of obtaining “good approximation” in the sense mentionen above.

3.4.2 Hardness of MAXI'-2-LIN and MAXI'-3-LIN over integers

To describe our contributions in[Chapter 16] we first define the MAXI'-2-LIN and MAXI -
3-LIN problems over Z as follows.

Definition 3.4.2. In a MAXI'-2-LIN (Z) instance, there are n variables x1, x>, ..., x, €
Z, and m equations where each equation is in the form x; — x; = c where c € Z. The goal
is to find an assignment of the variables such as the fraction of the satisfied equations is
maximized.
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In a MAXI'-3-LIN (Z) instance, there are n variables x1,xs,...,v, € Z, and m
equations where each equation is in the form x; + x; — x;, = c where ¢ € Z. The goal
is to find an assignment of the variables such as the fraction of the satisfied equations is
maximized.

Observe that by definition MAXI'-2-LIN (Z) and MAXI'-3-LIN (Z) are not ordinary
CSPs since the domain size is not constant (even not finite).

In a seminal result by Hastad [[116], it was proved that for every constant ¢ > 0, the
(1 — ¢, €)-gap-MAXI'-3-LIN (Z,) problem is NP-hard. Khot et al. [141] proved a similar
hardness of approximation result for the MAXI'-2-LIN (Z,) problem. They proved that
for every constant e, there exists ¢ > 0 such that there is no polynomial-time algorithm for
the (1 — €, €)-gap-MAXI'-2-LIN (Z,) problem, assuming the Unique Games Conjecture.

Guruswami and Raghanvendra [109] later extended Hastad’s theorem to the MAX3-
LIN(Z) problem, proving that for every constant € > 0, the (1 — ¢, €)-gap-MAX3-LIN(Z)
problem is NP-hard.

We will give a simplified proof of Guruswami and Raghavendra’s result, and prove an
analogue of the theorem for MAXI'-3-LIN (Z) assuming the Unique Games Conjecture.
In particular, we prove the following theorem.

Theorem 3.4.3. For every constant € > 0, the (1 — ¢, €)-gap-MAXI'-3-LIN (Z) problem is
NP-hard. The proof of this theorem simplifies the proof of the similar result by Guruswami
and Raghavendra.

Assuming the Unique Games Conjecture, for every constant € > 0, there is no polynomial-
time algorithm for the (1 — €, €)-gap-MAXT'-2-LIN (Z) problem.

3.4.3 Hardness of approximating almost satisfiable MAXHORN3-SAT

Zwick [228] gave an algorithm for the almost satisfiable MAXHORN3-SAT problem.
When the input instance is (1 — ¢)-satisfiable, Zwick’s algorithm finds an assignment sat-

isfying a (1 -0 (W) > -fraction of the constraints.

In we will prove that Zwick’s algorithm is essentially optimal assuming
the Unique Games Conjecture. In particular, we proved the following theorem.

Theorem 3.4.4 (Pre-statement of [Theorem 17.2.1). Assuming the Unique Games Conjecture[136]],
For some absolute constant C, for every ¢ > 0, given a (1 — €)-satisfiable instance of
MAXHORNS3-SAT, there is no polynomial-time algorithm to find an assignment satisfy-

ing more than a fraction of (1 — ﬁ of the constraints.
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Chapter 4

Approximation schemes via
Sherali-Adams hierarchy for dense
constraint satisfaction problems and
assignment problems

4.1 Introduction

Recall that in a maximum constraint satisfaction problem (MAX-CSP), given a variable
set V' over the domain D and a set of constraints C over the variables in V', we want to
find an assignment o : V' — D that maximizes the fraction of constraints satisfied by a.
MAX-CSP includes many fundamental problems such as MAX-CUT and MAX-SAT.

In general, MAX-CSP is NP-Hard, and it is even NP-Hard to approximate within a
constant factor [20]. However, de la Vega [/4]] showed that there is a polynomial-time
approximation scheme for MAX-CUT if the input graph is dense, i.e., it has 2(n?) edges.
Here, a polynomial-time approximation scheme (PTAS) is an algorithm that, given € > 0
as a parameter, gives a (1 — ¢)-approximation to the optimal value, and runs in polyno-
mial time for any constant e. MAXACSP is a subproblem of MAX-CSP, in which each
constraint involves at most k& variables, where k is a constant. Arora et al. [[18] and Frieze
and Kannan [87]] showed PTASs for dense MAXkCSP, i.e., the input instance has Q(nk)
constraints. Now it is known that we can compute (1 — €)-approximation to the optimal
value in time that depends only on k and € [§]].

There are two directions to generalize PTASs for dense MAXACSP. The first one is
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to generalize the notion of the density condition. We say that an instance of Max-2-CSP
is metric if the weights of the constraints form a metric. MAX-CUT [77] and MAX-
BISECTION [76] admit PTASs if the instance is metric. The notion of local density is
introduced to generalize the notion of metric to constraints over more than two variables.
If the instance is locally dense, MAXACSP admits PTASs [75].

The second direction is to handle the maximum assignment problems (MAX-AP). In
this problem, given a variable set V' and a set of constraints, we want to find a permutation
7 of V' to maximize the fraction of satisfied constraints. MAX-AP includes many funda-
mental problems such as MAXIMUMACYCLICSUBGRAPH, BETWEENNESS, MAXIMUM-
GRAPH ISOMORPHISM, DENSEASUBGRAPH, and QUADRATICASSIGNMENTPROBLEM.
MAXEAP is a special case of MAX-AP, in which each constraint involves at most & vari-
ables (see for the precise definition). We say that an instance of MAXkAP
is dense if it has Q(n*) constraints. Arora et al. [17] showed a quasi-polynomial-time
approximation scheme for dense MAXkAP and PTASs for many special cases.

As we have seen, MAX-CSP and MAXkKAP admit PTASs (or quasi-PTASs) in the
dense case and the locally dense case. However, the techniques to obtain them vary a lot.
For example, [18] is based on the idea of exhaustively trying all assignments for a small
number of variables and then solving the rest using the partial assignment. On the other
hand, [87] used a variant of Szemerédi’s regularity lemma [216]. To deal with the metric
case, [[77] used the method of copying important variables, and [75] considered a variant
of singular value decomposition of tensors to deal with the locally dense case.

4.1.1 Linear Programming (LP) relaxation and LP relaxation hierar-
chies

Much about LP/SDP relaxations and their hierarchies are introduced at the beginning of
this thesis. Here we would like to emphasize that LP relaxation and its hierarchies have
found many connections to other known algorithmic frameworks, and to be a unified ap-
proach to solve several classes of problems. A few examples are listed as follows. Assum-
ing the Unique Games Conjecture, a canonical LP relaxation (also referred to as the Basic
LP) is shown to provide optimal approximation guarantee for CSPs with strict constraints
[152]. It is known to the author that constant-round Sherali-Adams LP relaxation decides
the satisfiability of bounded-width CSPs; Atserias and Maneva [27] recently showed that
the Sherali-Adams LP relaxation hierarchy for graph isomorphism interleaves with the lev-
els of pebble-game equivalence with counting (i.e. higher-dimensional Weisfeiler-Lehman
color refinement algorithm).
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4.1.2 Our contributions

In this chapter, we present the Sherali-Adams LP relaxation hierarchy as a unified ap-
proach to dense and locally dense problems — we show that a small number of rounds of
the Sherali-Adams LP relaxation gives an approximation scheme to dense MAXkCSP and
all their variants studied in the previous works.

Our first main theorem deals with dense and locally dense MAXkCSP.

Theorem 4.1.1 (Informal version of Theorem 4.5.1). For any € > 0, O(Z)-round Sherali-
Adams LP relaxation gives (1 — €)-approximation to dense or locally dense MAXkCSP.

Then, we turn to dense and locally dense MAXACSP with global cardinality con-
straints. For explanatory purposes, we only consider bisection constraint, i.e., the domain
is {0, 1} and the number of variables that are assigned to 0 should be equal to the number
of variables that are assigned to 1. We show that

Theorem 4.1.2 (Informal version of [Theorem 4.8.2). For any € > 0, O(G%)—round Sherali-

Adams LP relaxation gives (1 — €)-approximation to dense or locally dense bisection
MAXECSP.

Finally, we consider the dense MAXkAP problems, and show that

logn

Theorem 4.1.3 (Informal version of |Theorem 4.5.2[). For any ¢ > 0, O(=%")-round
Sherali-Adams LP relaxation gives (1—e)-approximation to dense or locally dense MAXkAP
problems with n variables.

In all the precise theorem statements, we actually show additive approximation guaran-
tee (i.e. the value of the rounded solution being at least the fractional optimal value minus
a constant error) instead of multiplicative approximation guarantee. However, since we
define the problems in a way that the optimal solution is (1) (see for the pre-
cise definition of the problems), an additive approximation scheme implies a multiplicative
approximation scheme.

New algorithmic guarantees. Let us define the problem
MAXIMUME-HYPERGRAPHISOMORPHISM as follows. Given two weighted k-uniform
hypergraph G = (V,w') and H = (V,w"), where w’,w” : V¥ — [0, 1] are the weight
functions over all possible hyperedges. The goal is to find a permutation m over V' so
that ) .« w'(e)w”(m(e)) is maximized (where 7(e) is the edge obtained by applying 7
on each incident vertex of e). It is easy to see |Theorem 4.1.3| implies that O(loe#)—round
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Sherali-Adams LP relaxation gives (1 —  ¢)-approximation to
MAXIMUME-HYPERGRAPHISOMORPHISM when both GG and / are dense.

We are able to apply our analysis framework for the Sherali-Adams LP relaxation to
another special case of MAXIMUMA-HYPERGRAPHISOMORPHISM, getting the following
new algorithmic guarantee.

Theorem 4.1.4 (Informal version of |Theorem 4.5.3[). For any ¢ > 0, O(loin)—mund
Sherali-Adams ~ LP  relaxation  gives (1 — €) approximation to the
MAXIMUM k-HYPERGRAPHISOMORPHISM problem when one of the two graphs is lo-
cally dense and the other graph is dense, where n is the number of vertices in the hy-
pergraphs. Therefore, this special case of the problem admits a (1 — €)-approximation

1
(logm)

algorithm in time n?

4.1.3 Proof overview

The first step of our algorithms is to condition on a set of random variables in a solution to
the Sherali-Adams LP relaxation. In the ¢-round Sherali-Adams LP relaxation (or the SA
relaxation for short), for each set of variables S of size at most ¢/, we have a probability
distribution pg over assignments on S. First we solve (k + ¢)-round SA relaxation, where
¢ is a parameter depending on the error parameter ¢. Then, we randomly sample a set of
variables uy, . .., u, and assign values to them by sampling values from ey, ..., i}
respectively. By this conditioning, we obtain a solution to k-round Sherali-Adams relax-
ation p' with the same LP value in expectation. An important fact here is that variables
become almost independent in the sense that, if we sample a k-tuple (vy, ..., vy) accord-
ing to a dense (or locally dense) distribution (this distribution corresponds to the weights
of the constraints in kKCSPand kAP instances), the distribution iy, .. 1 and the product
distribution geg,,) X -+ X puyy,, ) are close in expectation.

The second step of our algorithms is to round the solution to the SA relaxation where
the variables are almost independent. For dense (or locally dense) KCSPand bisection
kECSP, the rounding algorithm just samples a value from g1,y and assigning it to v for each
variable v. It is relatively easy to show that the expected value of the sampled solution is
close to the LP value, and therefore gives a (1 — ¢)-approximation.

For kAP problems, however, such independent sampling method does not work — there
might be more than one variables assigned to the same value and we do not get a permuta-
tion when this happens. Instead, we view the marginal probability distributions on single
variables, pf,) (w), as a doubly stochastic matrix. We view this doubly stochastic matrix
as a probability distribution of permutations. We iteratively choose two permutations in
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the support of the distribution and merge them into a new permutation, until there is only
one permutation left in the support — which is the output of our rounding algorithm. The
operation of merging two permutations is interestingly similar to the merging operation
used in [17]], although the purposes are different. See for more details.

4.1.4 Comparison to previous works

We first compare the running time of our SA relaxation-based algorithms with the pre-
viously known counterparts. For MAXkCSP, the running time n°1/<") of our method
matches the one of the method by [18]. For MAXEAP the running time n°1°8™/<*) of our
method matches the one of the method by [[17]. [17] improved the running time to nO/e?)
for various problems by reducing them to CSPs. We can use the same techniques to obtain
the same running time for these problems.

The number of rounds (O(e%)) in (Theorem 4.1.1|improves the corresponding theorem

in [78]] which showed that O~(6i4)—r0und SA relaxation gives (1 —e¢)-approximation to dense
MAX-CUT.

The idea of conditioning variables of a solution to LP/SDP hierarchies is used in [195,
36] to solve variants of MAX2CSP. Let G = (V, E) be the underlying graph of an instance
of MAX2CSP. Barak et al. [36] showed that (i) the covariance between u and v over V2
gets close to zero by conditioning, and (ii) the covariance between v and v over E gets
close to the covariance between u and v over V2 by conditioning if G is expander-like.
Combining these two results, they show a PTAS for MAX2CSP when (' is expander-like.
This method can be also applied to dense graphs, but it is not clear how to generalize it to
metric graphs and KCSP.

Raghavendra and Tan [[195] used mutual information instead of covariance to measure
correlation between two variables and simplified the proof. They noticed that conditioning
is useful to deal with global constraints such as cardinality constraints since after condi-
tioning we can sample variables independently and the resulting solution will not break
global constraints much. With this idea, they gave a 0.85-approximation algorithm for
MAX-BISECTION. Though our method and analysis are similar to theirs, we use the inde-
pendence for obtaining PTASs for the dense and locally dense case as well as supporting
global constraints. Also, to handle constraints of larger arities, we use total correlation
instead of mutual information to measure correlation among variables.

Coja-Oghlan et al. [70] showed that, even if the instance is sparse, if it satisfies a certain
pseudo-random condition, then MAXECSP admits PTASs. If £ = 2, this results can be
seen as a special case of [195] because the pseudo-random condition would imply that the
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underlying graph is expander-like. Their result is incomparable to ours because it is not
clear how the pseudo-random condition and the locally dense condition.

4.1.5 Organization

In [Section 4.2] we introduce definitions and notions used in this paper. In [Section 4.3|
we show an algorithm that obtains an almost independent solution to the Sherali-Adams
LP relaxation. is devoted to show how to round the obtained solution to the
Sherali-Adams LP relaxation. We combine the two steps together in [Section 4.5 [Sec-|
{tion 4.6 and [Section 4.7| are devoted to prove auxiliary lemmas. We consider CSPs with
global cardinality constraints in [Section 4.8

4.2 Preliminaries

For an integer a > 1, [a] denotes the set {1,...,a}. ForasetY and 0 < k < |Y], (i)
denotes the family of sets X C Y with |X| = k. We usually use V' to denote the set of
variables in a problem, and use n = |V| to denote the number of variables. For an event
A, 1[A] denotes the corresponding indicator function.

Probability theoretic notions: We recall several notions from probability theory. For a
probability distribution & on €2, supp(p) denotes the support of p, i.e., supp(p) = {i €
Q| p(i) > 0}. For aset S, i ~ S means that we sample ¢ uniformly at random from S.

Let 1 and po be two probability distributions on a finite set 2. Then, the L, dis-
tance between them is defined as ||p0y — po|l1 = >, [|11(2) — pa(7)|| . The Kullback-

Leibler divergence between them is defined as drr (1 ||p2) = > ,cq p1 (i) log ﬁ . 8 and
the Kullback-Leibler divergence dy (1 ||pt2) are defined as follows. We provide the fol-

lowing fact without proof.
Lemma 4.2.1. Let py and py be two probability distributions on a finite set €). Then,

[ — palli < V/2dger(pa]|p2).

Information theoretic notions: We now recall some definitions from information the-
ory. For a random variable x, p, denotes the corresponding probability distribution. That
is, for any i, we have p, (i) = Pr[x = i].
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Let x be a random variable on a finite set €). The entropy of x is defined as H(x) =
— > icq Prlz = i]log Pr{z = 1.

Let x and y be jointly distributed variables on a finite set {2. The entropy of x condi-
tioned on y is defined as H(x | y) = E [H(x | y = 1)]. The mutual information of x

I~y

and y is defined as I(x;y) = dx (M) || e X Lby).
Letxy, ...,z (k > 2) be jointly distributed variables on a finite set 2. The mutual in-

formationof x+, ... xisdefinedas I (x1;...;@x,) = I(@1;...;xp1)—1(x1;.. ;281 |
xy.), where I(z1;. .. ;@1 | 1) = Einpg, [[(x15 .. ;Tp-1 | 24 = 1)]. The total correla-
tionof xy, ..., x is defined as C(xy, ..., Tx) = dxr(W(ar,...zp) |y X -+ X Hay).

We give two well-known facts in information theory below.

Lemma 4.2.2. Let x and y be two jointly distributed variables on a finite set (). Then
I(x;y) = H(x) — H(z | y).

Let xy, ..., xy be jointly distributed variables on a finite set ). Then

Iy m) = Y (=17 H(wmy,,...,¢).

(i1,0esi) ClK] 21

Lemma 4.2.3. Let x1, ..., x; be jointly distributed variables on a finite set §). Then

Clan,..a)= 3 @iz,

(il ..... it)g[k},tZZ

Constraint satisfaction problems: Let D be a nonempty finite domain and £ > 2 be
an integer. An instance T = (V,w, P) of kCSPconsists of a set V' of variables, a scope
distribution w over V¥, and a set of payoff functions P = {Ps : D° — [0,1] | S € V¥}.
An assignment for an instance Z = (V,w, P) is a mapping « : V' — D. The value of
the assignment, denoted val(Z, ) € [0, 1], is defined as val(Z, o) = SPrw[PS(oz|5)], where
alg is the projection of o to S. We define the optimum value of the instance Z to be
opt(Z) = max,{val(Z, a)}.

Let Z = (V,w, P) be an instance of CSP. A solution to the ¢-round Sherali-Adams
relaxation consists of a probability distribution g over D® for each set S C V of size at
most ¢. The objective function is the probability that « is in Pg, where S is sampled from

w and « is sampled from pg. Strictly speaking, we sample a tuple (vy, . . ., vx) from w, but
we regard it as the set {vy, ..., v, } when we use it as a subscript of p. In other words, pg
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and g are the same distribution for two tuples S and 7' if they are the same as sets. Also,
for every pair of sets S and 7" with |SUT'| < /, the corresponding probability distributions
s and p must be consistent on S N 7. Formally, the /-round Sherali-Adams relaxation
for a kCSPinstance Z = (V,w, P) (¢ > k) is written as follows.

maximize E E [Ps(a)]
S~w a~ps

subjectto  Pr [alsor = B] = Pr [alsar = 8] VS, T CV,|SUT| <(,8€ DT,
arps a~pr

It is not hard to see that the relaxation above can be written as a linear programming (see,
e.g., [191] for details). We define x, as the random variable sampled from the distribution
M{vy. We use valpp(Z, ) to denote the objective value of the LP solution p. The same
definition applies to the following subsections.

Assignment problems: The assignment problem differs from CSP in that we want to
maximize the objective function over the set of permutations. Similarly to CSP, for an
integer £ > 2, an instance of the degree-k assignment problem is given as Z = (V,w),
where V is the set of variables, w is a distribution over V* x V*. The scope distribution of
7 is the marginal distribution of w on the first & elements. An assignment for an instance
Z = (V,w) is a permutation 7 of V. The value of the assignment 7, denoted val(Z, r), is
defined as
k ‘ : _
val(Z,m) =n (UVVPi/l)"W Vi € [k] : w(u;) = wy],

where U = (uy,ug,...,u;) and W = (wy, wy, ..., wy). We define the optimum value of
7 to be opt(Z) = max,{val(Z,)}.

Though the definition of val(Z, 7) may look non-standard, it is just the objective func-
tion used in [17]] with a normalization factor that is multiplied to make the optimum (1)
when w is dense.

The ¢-round Sherali-Adams relaxation of an kAP instance Z = (V,w) (¢ > k) is as
follows.

maximize ~E  Pr [Vi € [k] : a(u;) = w]
(U,W)~w @~HU

subject to ﬁPr [Blsnr = a] = BPr Blsrr =a] VS, TCV,|SUT| <l,ac V5T
~HS ~HT

Y > psumleu{u—wh) = psla) YweV,SCV,[S| <L

acVSueV\s aeVs

The difference from the Sherali-Adams relaxation for CSP is that we have extra constraints
in the last line whose intended meaning is that each value 7 can be taken by at most one
variable.
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Density condition: We now introduce the notion of dense and locally dense distribu-
tions.

Let w be a probability distribution over a finite set 2. For A € (0, 1], we say w is

A-dense if for every a € €, it holds that A - w(a) < ﬁ

Let w be a probability distribution over V*. Let d;(v) = SPr [S; = v;] be the probability

that the i-th coordinate is v under w. For A € (0, 1], we say w is A-locally dense if for
every (vy,...,v) € VE, it holds that

1
A '(.U('Ul, s 7Uk) < W Z dl(vl)

1<i<k

Since d;(v) = Y.  w(S5), the RHS of the locally dense condition is equal to
SeVk:S;=v
> E [w(S5) | S; = v;]. Thus the locally dense condition says that no tuple (v1, . . ., vg)
1<i<k S~VE

is “wild” in that w(vy,...,v;) is at most constant times the sum over i of the average
probability mass of S with .S; = v;.

The notion of local density is introduced in [[75] to generalize the metric condition. To
see this, suppose w : V2 — R is a metric. Then, w is 1-locally dense since, for any u, v €
V, we have X(di(u) + da(v)) = 2 3 (w(u, w) + w(w,v)) > 3 w(u,v) > wlu,v).

n

It is immediate to verify the following lemma.

Lemma 4.2.4. Let w be a probability distribution over 21 X . If w is A-dense (resp.,

A-locally dense), then the marginal distribution wy of w on §2y is also A-dense (resp.,
A-locally dense).

4.3 Conditioning operations for Sherali-Adams LP hier-
archy

Recall that, a solution to the ¢-round SA relaxation consists of distributions over sets of
¢ variables. In this section, we show that, if the scope distribution is dense or locally
dense, then by conditioning a small number of variables, we can make variables almost
independent in these distributions. Once variables become almost independent, we can
round variables independently without losing the objective value much (see [Section 4.4)).

Let Z be an instance of kCSPor kAP with a variable set V. Fix ¢ and let p be a
solution to the ¢-round Sherali-Adams relaxation. For a variable set S = (vq,..., V),
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Cu(zs) denotes the total correlation C(x,,, ..., x,,) under the probability distribution
ps. We use the following notion to measure independence of variables.

Definition 4.3.1. Let 7 be an instance of kCSPor kAP with a scope distribution w. A
solution p to the (-round SA relaxation for T with { > Fk is r-independent with respect to
distribution w’ if

E [Cu(zs)] < &

S~w!

We say that p is k-independent if it is k-independent with respect to w.

In we explain how to condition variables. In [Section 4.3.2] and [Sec-|
tion 4.3.3] we show that the conditioning operation outputs x-independent LP solutions
for the dense case and the locally dense case, respectively.

4.3.1 Conditioning operations

We first describe the operation of conditioning one variable. Given a solution g to the
(-round SA relaxation with ¢ > 2, we sample a vertex u uniformly at random and then set
x, = i, where i is a value sampled from fi(,3. This operation gives a solution p' to the
(¢ — 1)-round SA relaxation: For each tuple (vq,...,v,_1) of £ — 1 variables, we define
“/{vl,...,vk_l}(ih G2y .y k—1) = Mo, op_u} (91,825 - . ., Gp—1, 7). Itis not hard to check that
p' is indeed a solution to the (¢ — 1)-round SA relaxation.

Our algorithm is given in|Algorithm 1} Given an solution g to the (¢ + ¢')-round SA

relaxation, it iteratively conditions variables. We will show in subsequent sections that, if
w is A-dense or A-locally dense, then outputs a k-independent LP solution
in ¢’ steps on average, where xk = %,gIDI. (If w is A-dense, k can be slightly smaller.)

We mention here the following simple fact.

Lemma 4.3.2. Let y' be the solution output by Algorithm 1| Then, Eval** (Z, ') =
val"" (T, ).

Proof. Notice that the algorithm respects the marginal distributions provided by the SA
relaxation during sampling the values to variables. Thus, the expected objective value is
preserved. [
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Algorithm 1 Conditioning operation of Sherali-Adams solutions

Input: A feasible solution p to the (¢ + ¢')-round SA relaxation for a CSP instance Z =

(V,w).
Output: An s-independent solution to the /-round SA relaxation, where kK = w
Sett = 1.

while the current LP solution is not x-independent do
Sample a variable u; € V' uniformly at random.
Sample a value a from its marginal distribution gy, after the first £ — 1 fixings, and
condition the LP solution by setting x,,, = a.
t=1t+ 1.

4.3.2 The dense case

We consider the dense case, that is, w is a uniform distribution.

Lemma 4.3.3. If w is uniform distribution over V*, there exists t < (' such that

3k1og | D
B B [Culws|a0)] < %80
U~V SVE 14

Proof. We consider the value

> E E [Culzs]|zv)).

1<izp UNVESVE

From|Lemma 4.2.3] this value can be decomposed as

> BBl 2 2 duen )
s (’“) S E B (s zo).

(T)
2<r<k ~VERSVT

1<t

where for a set R = (vy,...,v,), I,(xr) denotes the mutual information 1, (v1;...;v,).

To bound this value, we recall the definition of mutual information. For any t < ¢/,

E [[u(zr|zv)l= E [u(zr|zv)— E [lu(zr]|zv)
U~Vvt U~Vt U~Vittl
RVT R~VT1 R~VT1

45



Adding the equalities from ¢t = 0 to ¢/, we get

> JE. w@r|zo)] = E [(ep)] - E [lu(zr|zy)] <2"log|D],
0<t<Z’R VT RV %:“//fjll

where the last inequality holds from I,,(zg) < 2/%log|D| by [Lemma 4.2.2| Thus, we
have

S B E [Cles| )] <3 log|D],

o<i<er UV SNVk

and the lemma follows. [
The following corollary is immediate.
Corollary 4.3.4. If w is a A-dense distribution over V*. Then there exists t < (' such that

3¥log | D|
U~Vt Smow - AV

4.3.3 The locally dense case

We now consider the case that the scope distribution w is 1-locally dense.

Lemma 4.3.5. If w is a 1-locally dense distribution over V¥, then there exists t < {' such

that
k4*log k|D|
C < —
UPW s]i]w[ w(@s | zu)] < v
Proof. We consider the value
Y. E E[Cules|zy). 4.1)
1<t<t' U~VE S~w

From [Lemma 4.2.3| this value can be decomposed as

Z E E Z Z (xR | zv)

U~VE S~w
= Z Z E E [Ip(wR | mU)]?

1<t 2<r<k
r<k re(?)
~Vt R~
TCik2< T <k 1<e=e UV el
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where w|; denotes the marginal distribution of w on J.

Fix J C [k] with |J| = r > 2. Let w; be the marginal distribution of w on the i-th
coordinate. Let ; = w; x V"1 and Q) = w; x V"2, We first analyze [(xp) under Q;
instead of w .

From the definition, for any ¢ and ¢ < ¢/,

E I(lewU): E I(CER|CBU)— E ](SL‘R|£BU)
U~vt U~Vt U~Vitl
R~Q; RNQ; RNQQ

Adding the equalities fromt = 0to t = ¢/, we get

> E I@p|zy)= E I(xg)— E H(zg|zy) <2log|D.  (42)

~Vt ~Q /
o<t<e Fb, R0 UVt +1

R~
Now we turn to analyze I(x,,;- - ; &,,) under w| .
E I(zr|zy)= E Zw| I(xr | zy)
U~V
Rrwly R vr
1
< B X o 2 dld@aiia | 20)
U~V n
(V1 yeeeyvp ) VT 1<i<r

(by local density and
1
> Pr[S; = vill(@v;- - 0, | Zv)

= Z E I(zgr|zv).

1<i<r %N‘é

Thus from #&.2)),
Z E I(xgr | xy) Z 2"log|D| = r2"log|D|.
o<t<e/ wa 1<i<r
It follows that (#.1) < k4* log | D| and the lemma holds. O

The following corollary is immediate.
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Corollary 4.3.6. If w is a A-locally dense distribution over V¥, then there exists t < ('
such that

k4* log | D
B, B Cuas L) < =152

4.4 Rounding x-independent solutions

4.4.1 Constraint satisfaction problems

Lemma 4.4.1. Let 7 = (V,w, P) be a kCSPinstance over finite domain D. Let p be a k-
independent solution to the k-round Sherali-Adams LP relaxation. There is a randomized
polynomial time algorithm to find an assignment o : V. — D such that val(Z,«a) >

val'" (Z, u) — 3v/k.

Proof. For each v € V, let a(v) be independently sampled from puy,3. For each S € VE,

by the definition of total correlation, [Lemma 4.2.1] and the fact that Ps(3) € [0, 1] we
have

E Ps(B) - E}Ps(a|s)

Br~ps

Therefore by x-independence,

B ( B Psw)—gps(ms))’ < B 2/0f@s) <2,/ Clas) < 25

S~w \ Bpg S~w

We have proved that E,[val(Z, o)] > val*" (Z, u) — 2,/. Therefore we can sample an o
in expected polynomial time such that val(Z, o) > val'*(Z, u) — 3y/k. O
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4.4.2 Assignment problems

Let Z = (V,w) be a A-dense kAP instance. We introduce the following relaxation , and
let valy(Z) be its optimal value.

k

maximize n* E Lo, w;
(UW)~w i1
subjectto @, > 0 Yu,w e VE
Z Ty = 1 Yw eV
ueV
Z Ty =1 Yu e V.
weV

4.4.2.1 From r-independence to relaxation {

We first see that we can find a good solution to H using a solution to the Sherali-Adams
LP relaxation of a dense instance 7.

Lemma 4.4.2. Let 7 = (V,w) be a kAP instance such that w is A-dense. Let p be a
k-independent solution (with respect to the uniform distribution rather than w) to the k-
round Sherali-Adams LP relaxation of L. There is a polynomial-time algorithm, on input
W, to find a solution to H that certifies that valy (Z) > valip(Z, p) — 2¢/k/A.

Proof. Let @, ,, = p,(w) for all u,w € V. For each S = (uy,us,...,u;) € V¥, by the
definition of total correlation and we have

<2y/C(xs). (4.3)

k
IJ'S(T) - H L w;
i=1

<#’S<T) - H xui:“’i)

k
1
<— E ps(T) — Ty 0, (by density)
B (517 s v |50 11
1
<— 2+/C by (4.3)
—Ank SE/k (z5) (by )
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2
= Ank SE/k Cles) <n"- A (by k-independence)

]

The following variant of Lemma 4.4.2]is used when dealing with the locally dense case
later.

Lemma 4.4.3. Let 7 = (V,w) be a kAP instance such that w(uy, ..., ug, wy,...,w) =
W (up, .y ug) s W(wy, .. wy) where W is a A-dense distribution over V*. Let p be
a k-independent solution to the k-round Sherali-Adams LP relaxation of Z. There is a
polynomial-time algorithm, on input p, to find a solution to H that certifies that valy (Z) >

VaILp(I, [,L) — 2\/E/A

Proof. Let x,,,, = p,(w) for all w,w € V. Similar to the proof of Lemma 4.4.2} we have

)

(S T)=(t10 V1 500,0k )~

(by density of w")

k
M’S(T) - H Lo w;
1=1

1

S Ank SNEw/ 2 C<ms) (by @D)
2 2K

<= <n k.Y ¥

SR S]NE)M C(xs) <n A (by x-independence)

4.4.2.2 From relaxation 7 to an integral solution

At a first look, H is very close to the kAP problem itself. However, we cannot indepen-
dently sample 7(v) from each x, in H to get a solution to kAP, since there is chance that
7(v) = w(v'), rendering 7 not a permutation. Indeed, we show in that for
some kAP instance Z, there is a gap between valy (Z) and val(Z). However, our following
lemma shows that this gap cannot be very big for kAP instances Z = (V,w) when w is
A-dense. The proof is given later in[Section 4.6
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Lemma 4.4.4. Let 7 = (V,w) be a kAP instance such that w is A-dense. Given a solution
x to relaxation H, let valy(Z,x) be the value of the solution. There is a randomized

polynomial-time algorithm to compute a permutation m such that val(Z, ) > valy(Z, x)—
7k?Z log n

Avn
In[Section 4.7 we prove the following variant of

Lemma 4.4.5. Let T = (V,w) be a kAP instance such that w(uy, ..., ug, wy, ..., W) =

Wug, .. ug) - W (wy, ..., wy), where &' is A'-locally dense and w" is A-dense. Given

a solution x to the relaxation H, let valy/(Z,x) be the value of the solution. There is a
randomized polynomial-time algorithm to compute a permutation 7 such that val(Z, ) >

7k logn
valy(Z,x) — AN T

4.4.3 The rounding lemmas

Combining [Lemma 4.4.2| and [Lemma 4.4.4] and [Lemma 4.4.3| and [Lemma 4.4.5| we get
the following main rounding lemmas for this subsection.

Lemma 4.4.6. Let T = (V,w) be a kAP instance such that w is A-dense. Let p be a
k-independent solution (with respect to the uniform distribution rather than w) to the k-
round Sherali-Adams LP relaxation for L. There is a polynomial-time algorithm, on input
W, to find a permutation 7 such that val(Z, ) > valpp(Z, p) — %E _ Tklogn

Avn
Lemma 4.4.7. Let 7T = (V,w) be a kAP instance such that w(uy, ..., ug, Wy, ..., W) =
W(ug, .. ug) - W (wr, ..., wg) where W' is A'-locally dense and W" is A-dense. Let p

be a k-independent solution to the k-round Sherali-Adams LP relaxation of L. There is
a randomized polynomial-time algorithm, on input u, to find a permutation m such that

val(Z,m) > valup(Z, p) — 5° — BEen.

4.5 Putting things together

The following theorem gives PTASs for dense and locally dense MAX-CSP.

Theorem 4.5.1. Let T = (V,w, P) be a kCSPinstance over finite domain D such that

w is A-dense or A-locally dense. For any ¢ > 0, let { = w. The additive
integrality gaps of the ({+ k)-round Sherali-Adams LP relaxation is at most €; and there is
a randomized rounding algorithm producing a solution whose value is at least opt(Z) — €,

in expected n°Y time.
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Proof. Let p be a solution to the (¢ + k)-round Sherali Adams LP relaxation. Let the
random variable (p|x;) be the solution after conditioning on the variables in U. By
|Corollary 4.3.4|and [Corollary 4.3.6f we know that there exists ¢ < ¢ such that

[k24Flog |D| €
C < C <g /==
UPVt S]f?w w(Es|zy) < UPVt S]gw w(@slzy) < Al 3

Together with|[Lemma 4.3.2, we have

UEVt (vaILp(I,u|a:U) -3 SE CM(wS]wU)> >valp(Z, ) — €.

We enumerate all the possible ways of conditioning, and find out a solution g’ to the (k +
¢ — t)-round Sherali-Adams LP relaxation such that valpp(Z, pt') — 3\/Eg~w Cpr(s) >

valpp(Z, p)—e. Since p' is always a Eg~,, C (2 s)-independent solution, by|[Lemma 4.4.1}
given i/, we can find an assignment with value at least valy,p(Z, pt) — € in randomized poly-
nomial time. u

Now we prove that there is a quasi-polynomial-time approximation scheme for dense
MAX-AP.

Theorem 4.5.2. Let 7T = (V,w) be a kAP instance such that w is A-dense. For any ¢ > 0,
let 0 = 1801 o Gdditive integrality gaps of the (¢ + k)-round Sherali-Adams LP

e2A2
. . 7k2 1 . . . . . .
relaxation is at most € + A\;%", and there is a randomized rounding algorithm producing
. . 2 . .
a solution whose value is at least opt(Z) — € — 723%", in expected n°Y) time.

Proof. Let p be a solution to the (¢+k)-round Sherali Adams LP relaxation. By|[Lemma 4.3.3|
we know that there exists ¢ < ¢ such that

k4klogn €A
C < C <YW/ — = —.
By B Culaslo) <[ BB Culwslan) < (/7750 =

Together with we have

2
E (vale(z, plzy) — Z\/ E c“(msm)) > valpp(Z, ) — €.
U~V S~V

We enumerate all the possible ways of conditioning, and find out a solution g’ to the (k +
¢ — t)-round Sherali-Adams LP relaxation such that valyp(Z, p') — 21/ Egy+Cyy (zs) >

valLp(Z, p) — €. By|[Lemma 4.4.6] given p/, we can find a permutation with value at least

valip(Z, ) — € — %. O
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Using |Corollary 4.3.6| and [Lemma 4.4.7 instead of [Lemma 4.3.3| and [Lemma 4.4.6|
the same argument shows that there is a quasi-polynomial-time approximation scheme for
locally dense MAX-AP.

Theorem 4.5.3. Let T = (V,w) be a kAP instance such that w(uy, . .., Ug, W1, ..., Wg) =
Wug, ..., ug) - W (w, ..., w) where ' is A'-locally dense and w" is A-dense. For any
e >0, let { = %. The additive integrality gaps of the ({ + k)-round Sherali-

7k2logn . . . . .
AR and there is a randomized rounding algorithm
7k2logn

producing a solution whose value is at least opt(Z) — € — X x; NG in expected n°Y time.

Adams LP relaxation is at most € +

4.6 Proof of Lemma 4.4.4

Observe that a solution x to the relaxation H corresponds to a doubly stochastic matrix.
Now let us decompose « into a distribution of permutations D = {m : V' — V'} such that
for any u,w € V, we have Pr, p [7(u) = w| = @, . Let valy(Z, D) = valy(Z, x) be
the value of relaxation ‘H on « for instance Z. Our goal is to “merge” the permutations
in D into one permutation while not losing much in the objective value. The following
lemma proves this for the special case when D is supported on only two permutations.

Lemma 4.6.1. Let D be the distribution over m, and 7y such that my is chosen with prob-
ability p and my is chosen with probability (1 — p). There exists a distribution D' over
permutations such that for any k > 2 and any kAP instance T = (V,w) such that w is
A-dense , we have

2k>
WPD/ val(Z, )] > valy(Z,D) — A

Moreover, D' can be sampled in polynomial time.

Proof. Let us assume w.l.o.g. that V' = [n], my = id (i.e. m(i) = ¢ for all i € [n]). For
any set A = {a; 1 a1 < az < --- < aja = n} C [n], let us define 74 be the permutation
over [n] sothat m4(i) = a;_1 + 1if i = a, for some ¢ € [|A|] and 74 (i) = i + 1 otherwise
(assuming ap = 0). We can also assume w.l.o.g. that there exists A C [n] such that
o = Ta. See We can add at most y/n elements into A to get A’ C [n] such
that there is no set of \/n consecutive integers that does not intersect A’. It is easy to show
that 74 and 74/ differ at most 2/n places. Let D4 be the probability distribution that
chooses 7 with probability p and w4 with probability (1 — p). For any k and any kAP
instance Z = (V,w) such that w is A-dense, we have

Valq.[(I, D) - vaIH(I, DA/)
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Figure 4.1: Permutations 7, and 72 over [5] shown as mappings from [5] to [5].

Solid arrow represents 7 and dashed arrows represent 7,. For any permutation 71, we can
move vertices in the right side (and relabeling them accordingly) so that the resulting m;
is the identity permutation. Then for any permutation 75, we can move pairs of vertices
(and relabeling them accordingly) so that 7; remains the identity permutation whereas the
cycles formed by 7 and 75 are drawn disjointly. In such a case, 75 satisfies the condition
in the body text.

L ) ( Pr [W(UJ = wi] — Pr [7T<uz) = wl])

(UW)~w Pl w~D Pt w~D s
k
<n® B 1[Fi€ k] ma(w) # malug)] - Pr [m(u;) = wy)
(UW)~w e n~D
n* i
<—. E 1[3i € [k] : mar(w;) # maluy)] - Pr [7(u;) = wy), 4.4)
A (U,W)~V 2k paley w~D
where the last inequality is by the density of w.
Since
k k
n® E Pr [7(w;) = wy] H WP:%[W(U1> w| =1, 4.5)

~VVk w~D
W~V i=1 =1 w;~V
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we have

2k

< % . Uljxl}k [32 - [k)] . 7TA/(’LLZ‘) ?é WA(Ui)] < A—\/ﬁ

Now we define the distribution D’. Let us assume that the elements in A’ are a} < a} <
< ai ) =1 let a;, = 0O for convenience. To draw a permutation 7 ~ D', we sample
|A’| ii.d. 0/1 bits by, by, ..., b/, each of which has mean p. For each 4, we find out the
unique t € [|A'|] sothata;_; < i < aj;letn(i) = m (i) =iif b, = 0; let w(i) = wa(4)

otherwise.

For any k and any A-dense kAP instance Z = (V,w), we have

valy(Z,Dy) — E val(Z,n)
w~D’

k
- B ( Pr [m(u;) =w;] — Pr [Vi € [k] : m(u;) = wz])

w~D g w~D’

k
=n* E Pr [m(u;) = w;]
(UW)~w ey m~D 41
||
— Pr (Vi € [k],a;_; < < a;:7(u;) = w]

w~D!
t=1

<n* E 1[3t€[|A]: 3 morethan oneis.t. aj_; < u; < ay)
(UW)~w
k
Pr [’/T(Ul) = U)Z]

i1 TP
nk
<y E 1 [3t € [|A']] - 3 more than one i s.t. a;_; < u; < aj]
(U W)~V 2
k
PDr [7(u;) = wy] (by density)
=1 A
:% UE‘% [3t € [|A']] : 3 more than one i s.t. a;_; < u; < aj] (by @.3))

1 (k) (a; —ay_, ) | (k) (a; - a2_1> 1 k>
<. : Z L) <o . Z A e

AN GmpN o IR E T AN Vi
The lemma is proved by combining (4.6) and (.7).
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of| Let D be supported on 7y, 7a, . . . , T, €ach 7; is chosen with probability
p;. We can assume that m < n? by preserving only the n? permutations with the largest
probabilities and proper normalization, which would cause a loss of at most n~! in the
objective value valy(Z, D). Now we show that for any such distribution, we can find a
distribution & that is supported on (m — 1) permutations, such that

2k?

valy(Z, &) > valy(Z,D) — (p +p2)A—\/ﬁ.

(4.8)

In other words, since 7; and 7 are arbitrary, we are able to “merge” any two permutations
m; and 7; in D by paying a loss of (p; +pj) AV in the objective value. We repeatedly merge
the two permutations with the smallest probability mass in the drstrrbutlon until there is

only one permutation left, during this process we lose at most [log m} f < 6"321;’%" in

objective value. Together with the n~! loss at the beginning of the proof, we lose at most
7k logn

Avn for sufficiently large n.
In order to show (4.8)), let us define a distribution € of distributions of permutations
as follows. Let F to be the distribution of permutations that chooses 7, with probability

pll_’ﬁm and 7y with the remaining probability. Apply [Lemma 4.6.1| on F to get F'. A

distribution & from & is sampled by first sampling a permutation 7 from F’, and returning
the distribution that puts probability mass (p; +p2) on 7 and p; on ; foralli : 3 <i < m.
For every u,w € V, let v, = Y s pr1[m(u) = w] < 1. We have

k

E valy(Z,€) = E E Pr [m(u;) = wy]
E~E E~E (UW)~w 522y ™€

k
= E E [[(m+p)1r(w) = w] + V)
TN F! (U )~

- Z > (ﬂP}" H<p1 " pz)l[w<Ui) B wl]) H,yui’wi

i€eQ

=> B |ITww | i+m)? E (Ele uz—wz]>, (4.9)
ixad GQ

(Us (Uo,Wg)
Clk Q@ Q Q:WQ
Q []r\«w(aa) ZEQ NL«)‘(UQ,W@)

where U, is the restriction of vector U over coordinates in A, w(a,p) 1s the marginal
distribution of w over A in the first £ coordinates and B in the last k£ coordinates, and
w|(Ua, Wp) is the distribution w conditioned on that coordinates in A are assigned U and
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coordinates in B are assigned W. Let Zy w:; be the |Q[-AP instance (V,w|(Ug, Wg)).
We know that w|(Ug, Wg) is A« n2@l ‘wg.g) (Ug, Wg)-dense. Therefore for every Q # (),

by we have

(UQEWQ) <WP}‘/ H 1[7T(UZ) = ULJ) = WPf/ vaI(IU@WE, 7T)

~l(Ug W) i€Q
>Va|7.[(IU7,Wf, f) —
e Awgg (Ug Wo)vn
. E (pll[ﬂl (Ul) = wz] +p21[7rg(ui) = wz]) B 2]{2’”72‘@'
(U Wa) i p1+p2 Awg ) (Ug Wa)vn'
Therefore we have
4.9) > H%z wi E H (p11[m1(w;) = w;] + p2lime(u;) = wyl)
= ”@@ €Q ~eo| (U W)
> .m0 ol e
- ’Yul w; pl + D2 :
(Q Q)
D (me» - wA)
A\
2k?
7y Wq A
o7ci ( W) \icq v
2k?
>valy(Z, D) —

(p1 +p2)A—\/ﬁ'

In all, we have proved that E. g valy(Z,E) > valy(Z,D) — (p1 + pQ)T Since £ can
be sampled in polynomial time, there is a randomized polynomial-time algorithm to find
out a & satisfying (@.8). O
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4.7 Proof of Lemma 4.4.5

We say a distribution w’ over V¥ is A’-well spread if for every i,j € [k] such thati # j,
and for every disjoint partition V = V; UV, U --- U V,, we have

/ V/
A Pr [t eft]:u€Vyandu; € Vy] < maxte—mtl.

(U1 yeeeyug )~ n

Claim 4.7.1. A A’-locally dense distribution W' is (A /k)-well spread.

Proof. W.l.o.g. we assume that 7 = 1 and 7 = 2. For every Z C V, we have

Pr [3t' €[t]: u; € Vy andu; € Vy|

Y Y dwewsy B Zidlu)

t'eft] ui,u2€Vy €lt] u1,u2€Vy
U3 yeney upeV U3 yeeey up eV

. Z1L1€Vt1 dl (ul) Z’LL2€V,5/ d2
o Z Al/pk—1 + Z Alnk—1
t'e(t]

uQEVt/ U1€Vt/

uU3,..., up €V U3,.., U EV
k
N S
( A/nk—l
1=3 u1,u2€Vy

U3 ey Ui 1, Uip 1 yee e U EV

) mathe[t] H/t/’

An +k-2)

A, mathe[t] “/;/’2 < kmaXt/E[t] |‘/t’|
- A'n '

n2

]

We will prove a slightly stronger statement than that of in the sense that
we prove the lemma for every w such that w = ' - w” where w’ is A’-well spread and w”
is A-dense.

The proof goes along the lines of the proof of We decompose z into
a distribution of permutations D = {7 : V. — V} such that for any u,w € V, we
have Pr,.p [1(u) = w] = x,,,. We first prove following lemma, which is an analogy of

Lemma 4.7.2. Let D be the distribution over m, and 7y such that w, is chosen with prob-
ability p and my is chosen with probability (1 — p). There exists a distribution D' over
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permutations and a distribution V over the disjoint partitions {(V;U- - -UV;)} where each
Vi has at most 2+/n elements, such that for any k > 2 and any kAP instance T = (V,w)
such that w = w' - W’ where W" is A-dense, we have

2
E_[val(Z.m)] = val(Z,D) — 5 \’;ﬁ
1
N Z E Z(u Pr /[uiEVt/ and u; € Vy.

1<icj<k (V1D UVE)~Y t'elt]

Moreover, D' can be sampled in polynomial time.

Proof. Let us assume w.l.o.g. that V' = [n], m; = id (i.e. m, (i) = i for all i € [n]). For
any set A = {a; : ay < ag < --- < aja) = n} C [n], let us define 74 be the permutation
over [n] so that m4(i) = a;_1 + 1 if i = a, for some ¢ € [|A|] and 74 (i) = i + 1 otherwise
(assuming ap = 0). We can also assume w.l.o.g. that there exists A C [n] such that
To = TA.

Now we define the random set variable A’ : A C A C V as follows. We start from
A" = A, and for each i € [\/n], we uniformly sample an element a from ((i — 1)y/n, iy/n]
and let A" + A’ U {a}. In this way, we know that there is no set of 2/n consecutive
integers that does not intersect A’. It is easy to show that for every v € V, Pra/[ma(v) #

WA/(U)] S \/iﬁ

Let D4 be the probability distribution that chooses 7 with probability p and 7 4, with
probability (1 — p). For any k and any kAP instance Z = (V,w) such that w is A-dense,
we have

vaIH(I, D) — EvaIH(I, DA’)
A/

=nk E ( Pr [7T(’LLZ> = wz] - Pr [W(UZ) = wl])

(UW)~w ity w~D paiey m~D g0
k
<n” E E1[3i€[k]:ma(w) # malu)] - Pr [7(u;) = wy]
Uni/ W Al +da~p
n* y
<N B ELEE K] ma(w) # malus)] - VB HWN%[W(W) =w],  (4.10)

where the last inequality is by the density of w”. By {.5]), we have

g%- E Pr3ic [k mau) £ ma(u)] < — @.11)

Un~w! A A\/ﬁ
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For every A’ C [n], we define the distribution D’;,. Let us assume that the elements
in A" are ) < ay < ... < ajy = n;let ag = 0 for convenience. To draw a permutation
7 ~ D'y, we sample |A’| ii.d. 0/1 bits by, by, ..., b4, each of which has mean p. For
each i, we find out the unique ¢t € [|A'|] so that a}_;, < i < aj; let w(i) = m (i) = @ if
by = 0; let (i) = ma (i) otherwise.

Now we define the distribution D’. To draw a permutation m ~ D', we first sample a
random set A’, and then draw a permutation from D’,,.

For any k and any kAP instance Z = (V,w) such that w = w’-w” where w” is A-dense,
we have

EVBlH(I,DA/)— E Val(I,ﬂ')
A’ w~D!

:nk (U’W)NWE ( Pr [W(Uz) - wl] — Pr [\V/Z S [/{7] (uz) = wl]>

7D g1 n~D'
=1 A’

w~D 41
i=1 A

=nf E E( Pr [m(u;) = wy]

||
— Pr Vi€ [k],a;_; < u; <aj:m(u;) = w]

/
11 "~ P

<n* E E1[3t€[|A|]: 3more than oneis.t. a;_, < u; < aj]

(U,W )~ AY
k
Pr |7n(u;) = w;

[Ty ftw) =]
nk 12 - !/ /
K ,E 1 [3t € [|A]] : 3 more than one i s.t. a;_; < u; < aj)

k
E PDr [7(u;) = wy] (by density)

W~VE im1 T~

1
<3 E E1 [3t € [JA']] - 3 more than one i s.t. a;_; < u; < aj] (by @3))

1

> E Z oy < wiu; < ayl. (4.12)

1<z<]<k’ te[]A’H

The lemma is proved by combining (@.11)) and (@4.12)). O

Now we are ready to prove
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of | Let D be supported on 71, 7, . . . , T, €ach 7; is chosen with probability
pi. We can assume that m < n? by preserving only the n? permutations with the largest
probabilities and proper normalization, which would cause a loss of at most n~! in the
objective value valy (Z, D). Now we show that for any such distribution, we can find a
distribution £ that is supported on (m — 1) permutations, such that

2k?

valy(Z,€) > valy(Z,D) — (p +P2)m-

(4.13)
In other words, since 7; and 75 are arbitrary, we are able to “merge” any two permutations
m; and 7; in D by paying a loss of (p; + p;) rar—r X A/ in the objective value. We repeatedly
merge the two permutations with the smallest probablhty mass in the dlStI‘lbuthn untll
there is only one permutation left, during this process we lose at most [log m} f <

6k2logn
AN /n
lose at most

in objective value. Together with the n~! loss at the beginning of the proof, we
7k%logn
NV

In order to show (@.13), let us define a distribution & of distributions of permutations
as follows. Let F to be the distribution of permutations that chooses m; with probability
—PL_ and 7y with the remaining probability. Apply on F to get F'. A

P1+p2 B
distribution & from & is sampled by first sampling a permutation 7 from ', and returning

the distribution that puts probability mass (p; +ps) on 7 and p; on 7; foralli : 3 < i < m.
For every u,w € V, let v, = >, s pel[m(u) = w] < 1. We have

for sufficiently large n.

k

E valy(Z,§)= E E Pr [7(u;) = wi]
E~E EnE (UW)rw - ™€

ocpy (U i€Q i€Q
=2 B D | erem) B (Ele m(u;) —wz]>, (4.14)
El Q> Q ViXad
QClH N“’@,g) i€Q ~w|(Ug,Wg) €Q

where U, is the restriction of vector U over coordinates in A, w’j is the marginal distri-
bution of w” over the coordinates in A, and w(a,p) 1s the marginal distribution of w over
A in the first £ coordinates and B in the last k coordinates. Let Lygw, be the |Q|-AP
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instance (V,w|(Ug, Wg)). We know that w|(Ug, W) = (W'|Ug) - (w"|Wg), and w"|W5
is A - nlol. w%(WQ)—dense. Therefore for every @ # (), by [Lemma 4.7.2, we have

E <,,P]:/ H 1[m(u;) = wz]> = ,TPI/ val(IU@Wa7 )

(Ug,.Wq) i
~w|(U§,W§) EQ
>valy(Zv-wey F) — —————
9 3 Pr [u € Vyandu; € Vy]
- E r u; € Vy and u; € Vy
" - T T— J
AW@(WQ) l,j;Q (V1U...UVt)NV t’e[t] UQN“J IUQ
i#]
- E (pllm () = wi] + pol[ma(us) = wﬂ) %l
Uo Vo) o P14 D2 Awt(Wa)v/n
9 S Pr [u; € Vy and u; € V]
— E r|u; € Vpand u; € Vil
Aw%(W@) i’@fQ (ViU..UVi)~V T U’ [Ug
i#]
Therefore we have
@14
Z Z E nyuz w; E (pl]-[ﬂ—l(ul) - wl] +p21[7r2(u7«) - wl])
Qc[k/‘} (U67W§) 0 (UQ’ Q) i€Q
=M oG V€ ~w|(UgWo)
2kn 14l
- Z E Hryui,wi (pl +p2)|QI ’ " -
ococ Vo) \ ;5 Aug(Wa)vn
@.Q)
— Z (U—EW—) H’Yui,wi (7 +p2)|Q|
0£QC (k] fo{@,g) €Q
1Ql
n
T Z E Pr (i, uj € Vil
AwZ(Wg) i“jf-Q (ViU..uVh) = S?Ua
1#]

- R <Zpt1[7Tt(Ui) = wz])

(UW)~w
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- Z UE, H%zwz (p1 + p2 ‘Q|A Z v v Vzl[uiauje‘/t’]
0£QCIK] 1y NNU‘J/Q i€Q 1V UV) telt]

z#]
1 2]{: k,? 2]{32
>valy(Z,D) — (p1 + p2)— (\/— A’\/_> > valy(Z,D) — (p +p2)—AA’\/ﬁ'

(by well-spreadness of w' and the maximum size of |V;|)

In all, we have proved that E; s valy(Z, &) > valy(Z,D) — (p1 + pz)%ﬁ. Since £ can
be sampled in polynomial time, there is a randomized polynomial-time algorithm to find

out a & satisfying (4.13). O

4.8 Bisection MAXECSP

In this section, we consider the bisection MAX-CSP as a notable example of MAX-CSP
with globally cardinality constraints.

yFix a finite domain D and a kCSPinstance Z over D. A global cardinality constraint
is a linear constraint on the numbers of variables that are assigned to the values in D.
For simplicity and illustration purpose, here we only consider the bisection constraint —
i.e., assuming D = {0, 1}, the number of variables that take value 1 is exactly n/2 (for
even integers n). For a bisection kCSPinstance Z = (V,w, P), we define its optimal value
to be

t(Z) = (Z
°p ( ) a:|{U€V:g%f?))i1}|:n/2{va ( ,CY)},

where the definition of val(Z, o) remains the same as in the ordinary kCSPcase.

The ¢-round Sherali-Adams relaxation for a bisection kCSPinstance Z = (V,w, P)
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(¢ > k) is written as follows.

maximize E E [Ps(a)]

Sr~w a~pg

subject to agﬁs[abw =[] = QE’};T [a|snr = f]
VS, T CV,|SuT|<¢3e D7
n
Z Pr |als = fand a(v) =1] = = - pus(5)

aN”’SU{v 2

VS CV,S8 <t pe{0,1}°

where the last constraint corresponds to the bisection constraint.

We now turn to how to round x-independent solutions. The following lemma is similar
tolLemma 4.4.1

Lemma4.8.1. Let T = (V,w, P) be a bisection kCSPinstance. Let p be an k-independent
solution (with respect to both uniform distribution and w, 0 < k < 1) to the k-round
Sherali-Adams LP relaxation. There is a randomized polynomial time algorithm to find an
assignment o = V. — {0, 1} such that val(Z, o) > val**(Z, u) — 3ks'/* and |{v € V :

alv) =1} =n/2

Proof. We sample « in the same way as we did in the proof of and we see
that E, [val(Z, )] > valpp(Z) — 24/k. Also observe that

2
n n
|50 -3| < E(Z“@)—a)
veV veV
n2 n?
Z E}[a(vl (v2)] — nZE Z E[Of(”l)a@?)] -1
1,026V veV v1,v2€V
n? 1/4
Z [Bv1) = B(v2) =1+ vk — - =/,
- UQEV IJ’{UI v}

where the last inequality is because of x-independence with respect to uniform distribu-
tion, the definition of total correlation, and the last equality is because of
Sherali-Adams constraints.

In all, we have

«

E(vaIIa

Za —E|> > val'" (T, p) — 2v/k — kk/?

veV
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> val"P(Z, u) — 2ks!/4.

We can sample an « in expected polynomial time so that

E

a

val(Z, o) —

Y av) - gu > valpp(Z) — 3kr'/4.

veV

By greedily rearranging |Evev[a(v)] — %|-fracti0n of the entries in o, we get a bisection
assignment o/ such that val(Z, o) > val"* (T, ) — 3kx!/%. O

Finally as a counterpart to we show the following.

Theorem 4.8.2. Let T = (V,w, P) be a bisection kCSPinstance over domain {0, 1} such

that w is A-dense or A-locally dense. For any ¢ > 0, let { = %}W. The additive
integrality gaps of the ({+ k)-round Sherali-Adams LP relaxation is at most €; and there is
a randomized rounding algorithm producing a solution whose value is at least opt(Z) — e,

in expected n°Y time.

Proof. Let p be a solution to the (¢ + k)-round Sherali Adams LP relaxation. Similar as in
the proof of [Theorem 4.5.1} |Corollary 4.3.4{and [Corollary 4.3.6] we know that there exists
t < ¢ such that

B /B, Culeslz) + B Culasla)

U~V? S~Vk

Si‘/ E ( E Cu($s|$U)+SE Cu(ws|mU))

U~VE \ SaVk
21k
<</2_k4 log | D| < €
- Al — 3k?

Therefore, together with we have

E (vaILp(I,MmU) — 3k (il/s]i\)/k Culzs|lzy) + ¢ SE C“(a?5|a?U)>>

U~V?
Z Vale(I, [J,) — €.

We enumerate all the possible ways of conditioning, and find out a solution g’ to the
(k + ¢ — t)-round Sherali-Adams LP relaxation such that

valip(Z, u') — 3k (4 E Cu(zs)+ ¢ SE O;u@s)) >valp(Z, ) — €.
S~V ~w
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Since p' is always k-independent with respect to both uniform distribution and w for k =

Esvt Cp(xs) + Esww Cw(xs) , by Lemma 4.8.1] given p', we can find an assigment

with value at least valyp(Z, i) — € in randomized polynomial time. O

4.9 A gap instance for relaxation H

In this section, we show a gap instance for the relaxation . Consider the following 2-AP
instance Z([5], w). Let us define w; ;4 = a7 A;; By,q, Where

01100 01100
10001 10100
A=|1 000 1|, and B=|1 1 0 0 0
00 00O 000O0T1
01100 00010

If we view A and B as the adjacency matrices of two 5-vertex graphs, val(Z, ) is the
number of edges in A that are mapped to an edge in B by 7, multiplied by §—g Since A is
a 4-cycle with one isolated vertex, and B is a 3-cycle plus an edge, at most 2 edges in A

can be mapped to B. Therefore, opt(Z) = 2.

On the other hand, let us consider the following distribution D of permutations, where
D is supported on 7; and 7y with equal probability (1/2). 7 is the identity permutation;
mo(1) = (i mod 5) + 1 for all i € [5]. We have

val(Z, D)
Y Y By () = porm(i) =) 5 (1l () = g orma(s) = g)

225
_220 S opt(T).
125 = Pt
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Chapter 5

Lasserre integrality gaps for
DENSEASUBGRAPH

5.1 Introduction

As we defined at the beginning of this thesis, the DENSEXSUBGRAPH problem takes as
input a graph G(V, E') on n vertices and a parameter k, and asks for a subgraph of G on at
most k vertices having the maximum number of edges.

While it is a fundamental graph optimization problem and arises in several applications
(community detection in social networks, identifying protein families and molecular com-
plexes in protein-protein interaction networks, etc), there is a huge gap between the best
approximation algorithm and the known inapproximability results. The current best ap-
proximation algorithm due to [41] gives O(n'/4*+<)-factor approximation algorithm which
runs in time n°0/¢) for any constant ¢ > 0. On the inapproximability side, [88] initially
showed a small constant factor inapproximability for DENSEAXSUBGRAPH using the ran-
dom 3-SAT assumption. [[137] used quasi-random PCPs to rule out a PTAS. More recently,
[193} [7] used more non-standard assumptions to rule out any constant factor approxima-
tion algorithms.

While only constant factor approximations have been ruled out, it is commonly be-
lieved that DENSEASUBGRAPH is much harder to approximate even on average (for a nat-
ural distribution on hard instances). Recently, average-case hardness assumptions based
on the hardness of “planted” versions of DENSEASUBGRAPH were used for public key
cryptography [12] and in showing that financial derivates can be fraudulently priced with-
out detection [[15]. Given the interest in DENSEASUBGRAPH from both the algorithms
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and the complexity point of view, developing a better understanding of the problem is an
important challenge for the field.

5.1.1 Our contributions

In this chapter, we study the limitation of the most powerful Lasserre SDP relaxation
hierarchy for DENSEXSUBGRAPH. We show an integrality gap of polynomial ratio (n¢,
for small enough constant €) for almost linear (n°) levels of the Lasserre relaxation. If
we only aim at an integrality gap for polynomial (n¢) levels of the Lasserre relaxation, the
ratio of the gap can be as large as n%/°3~9(9)_ Informally, we prove

Theorem 5.1.1. [Informal version of{Theorem 5.3.6|and|Theorem 5.3.7|] For every € > 0,
there is a lower bound of n*/°*~< on the integrality gap of level-n™©) Parrilo-Lasserre SDP
relaxation hierarchy for the DENSEESUBGRAPH problem; there is also a lower bound of
n¢ on the integrality gap of level-n'~°') Parrilo-Lasserre SDP relaxation hierarchy.

As we mentioned in the introduction part of this thesis, our integrality gaps are among
the few known cases where the integrality gap ratio is much bigger than the best known
NP-hardness inapproximability bounds. In the absence of inapproximability results for
DENSEASUBGRAPH, our results show that beating a factor of n*(!) is a barrier for even
the most powerful SDPs, and in fact even beating the best known n'/* factor is a barrier
for current techniques.

5.2 Preliminaries

5.2.1 Notations

We introduce some notation which will be used throughout this chapter. G = (V, E) refers
to a graph which is an instance of the DENSEASUBGRAPH problem on n vertices, and &
refers to the size of the subgraph we are required to output. For an induced subgraph
H C @G, we denote by d(H) the average degree (or density of H). For a vertex v in
subgraph H, we will denote by 'y (v) the set of neighbors of v in H (the suffix will be
dropped when H = G).

The phrase “with high probability”” will mean: with probability 1 — zﬁ, for any poly-
nomial p(n). It will be clear from the context that there are constants which depend on the
degree of p.
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5.2.2 The natural and min degree integer programmings for DENSEAXSUBGRAPH

The natural integer programming for DENSEASUBGRAPH has variables {x;} to denote if
vertex ¢ belongs to the solution, and edge variables {x;; } ; j)e () to denote if both 7, j are
in the subgraph.

For our integrality gaps, we will also consider to start with a different integer program-
ming (DAS-IP2) which is equivalent upto a factor of 2 (see [41]). Intuitively, it tries to
find a k-subgraph H such that the minimum degree dy is maximized. An LP hierarchy
obtained from this min. degree IP (DAS-1P2) was in fact used by [41] to obtain their ap-
proximation algorithm. (While the program as stated is not linear, we guess the degree d
and consider the feasibility linear program that is obtained.)

Natural IP (D£S-IP1) Min degree IP (D£S-1P2)

Maximize d

Maximize Z T, s.t. sz <k,
(i,5)€E(G) 9%
s.t. in <k VieV Z xix; > dw;
eV JET ()
VieV ux;€ {0, 1} Vi,jeV Tij = Tj;

VieV 11316{0,1}

5.2.3 The Lasserre hierarchy for DENSEASUBGRAPH

As in [66]], the r-level Lasserre SDP for DENSEAXSUBGRAPH for the natural IP (DkS-IP1)
introduces a vector Uy for each subset S C V with |S| < 7.
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Lasserre hierarchy (r levels) for DENSELSUBGRAPH:

S U’

(u,v)eE
such that
(Us,,Usg,) > 0 for all Sy, .S;
(Ug,,Us,) = (Us,,Usg,) when S; U Sy = S3U Sy

STUW|* <k

veV

1U|I” =1

The intended solution sets Ugs = Uy if every vertex in .S belongs to the densest k-
subgraph, and Us = 0 otherwise. The vector lengths ||Ug||> correspond to valid LP
values x g for the Sherali-Adams relaxation presented above.

The Lasserre SDP for the min degree IP (DAS-IP2) tries to find the k-subgraph of
largest induced minimum degree d. This can be captured by the SDP constraint

VueV, D Ul >d- U (5.1)

vel'(u)

We will show in [Section 5.3.3.1| that our integrality gaps also hold for the Lasserre hier-
archy defined by this SDP. We refer to the SDP with constraint as the Min degree
Lasserre SDP .

5.3 The integrality gap

In this section, we show a gap instance with arbitrary large constant ratio for linear-round
Lasserre relaxation, and a gap instance with n¢ ratio for n'~?(9)-round Lasserre relaxation

(Theorem 5.3.6). We also aim at maximizing the ratio of a polynomial-round Lasserre gap
instance, getting a ratio of 2(n%/°3=¢) (Theorem 5.3.7).

Our construction is based on a variant of Tulsiani’s gap instance for kCSP [220] — we
extend the parameter range of Tulsiani’s instance. Then we convert the KCSP instance to
a constraint-variable graph and duplicate the variable vertices, which is our gap instance
for DENSEASUBGRAPH. Note that the gap for kCSP problem is indeed a set of random
instances. The vector solution from Lasserre gap for kKCSP will help us exhibit a good
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Lasserre vector solution for DENSEXSUBGRAPH. We finally use the structure of random
instances of kCSP to show the soundness holds with high probability.

Now, let us proceed to the first step, the gap instance for kKCSP.

5.3.1 Lasserre gap for £CSP from Tulsiani

We start by defining the KCSP problem.

Definition 5.3.1. Let C' C Ff be a q-ary linear code of block length K.

1. An instance ® of kCSP(C) is a set of constraints Cy,Cy, - - - , C,, where each con-
straint C; is over a K-tuple T, = (x;,, %y, - ,%; ), and is of the form (z;, +
B\ 2s, + 0 - ay, + 0 € C for some b € Fi.

2. A random instance of kCSP(C) is sampled by choosing each constraint C; in-
dependently, where we sample K variables without replacement from [n| to get
T; = (i, Tiy, -+, Tiye) and bD is chosen from FE uniformly.

The following theorem is an extension of the main theorem in [220], showing that
polynomial-round Lasserre relaxation cannot refute random £CSP with high probability.

Theorem 5.3.2. If C' is the dual code of a distance 20 > 3 code (in terms of number
of coordinates, not fractional distance), for every 10 < K < n'/? ifn"! < n <
1/(108- (BK*+01)1/0=1)) for some k > 0, then for large enough n, a random instance ®
of kCSP(C') over m = [n constraints and n variables, with probability 1 — o(1), admits
perfect solution for the SDP relaxation obtained by nn /16 rounds of the Lasserre hierar-
chy, i.e. there are vectors Vig ) for all S C [n] with |S| < nn/16 and all o : S — F,,
such that

e the value of the solution is perfect: 33" >° 1. .p Ci(a) | V1, I1? = m;

<‘/(517a1)7 ‘/E52,az)> > Ofor all Sh SZ? aq, gy
(Visian) Viss,a0)) = 0 if a1 (S1 N Sz) # aa(S1 N Sy);
<‘/(S17041)7 ‘/(52,az)> = <‘/(S3,a3)7 WS4,a4)>fOI’ all 51U Sy = S3U S and o o aig =

Q3 O Olyy

Voo | = Land s ||Vigygisip ||* = Lfor alli € [n]
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Note that[Theorem 5.3.2|extends the original theorem of [220] to the regime where K
might be superconstant (even poly(n)). The proof of [Theorem 5.3.2|follows the proof in
Tulsiani’s paper, with the following changes.

Recall that Tulsiani showed that, if the constraint-variable graph of a kKCSP(C) in-
stance has very high left-expansion, then the Lasserre SDP admits perfect solution for it.
Formally, the following lemma is (implicitly) shown in [220]].

Lemma 5.3.3 ([220]). Given a kCSP(C') instance, if every set of constraints of cardinality
s < r involves more than (K — 0)s variables (where 26 is the distance of the dual code
of C), and if 46 < K, then there is a perfect solution for the SDP relaxation obtained by
r /16 rounds of the Lasserre hierarchy.

Hence, we only need to prove the following lemma which shows that the constraint-
variable graph still has very high left-expansion, even when a constraint might involve
superconstant many variables (i.e. the left degree might be superconstant).

Lemma 5.3.4. Given (3,1, K as in|Theorem 5.3.2} with probability 1 — o(1), for all 2 <

s < mn, every set of s constraints involves more than (K — §)s variables.

A similar lemma can be found in [220] (Lemma A.1), which only deals with constant
K. We need a more refined argument for superconstant A, which is in[Section 5.3.4

5.3.2 The gap instance for DENSEASUBGRAPH

The gap instance is reduced from the gap instance for kCSP in|[Theorem 5.3.2] Let C be
the dual code of a [K, K — t,20], code as used in [Theorem 5.3.2] where K is the block
length, (K — t) is the dimension, and 2§ > 3 is the distance of the code. Such a code has
size |C| = ¢!, and is very sparse for small enough ¢. For 1000 < ¢ and K > ¢, we let
B = (40¢'"1n ¢)/ K, and do the following reduction.

Given a kCSP(C) instance ¢ with m = [n constraints and n variables. Let Go =
(Le, Re, Eg) be the bipartite graph with m|C| left vertices and ng right vertices. For
every constraint C; and every partial assignment to variables in the corresponding tuple 7;
which satisfies the constraint C;, we introduce a left vertex. For every variable x; and its
corresponding assignment, we introduce a right vertex. Formally,

Ly = {(Ci,a)li€m],a: T, - F,Ci(a) =1},
Re = A{(z;,)|j € [n],a: {x;} = Fy}.
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We connect a left vertex (C;, ) and right vertex (z;, @) when z; € T; and ¢’ is consistent
with o, i.e.

Ey = {{(Ci ), (z;,d)}[(Ci,a) € Lo, x; € T, o' () = ax;)}.

Now we define the final graph G, = (Le, Ry, EY) in which we want to find a dense
k-subgraph where k = 2m. We take (3 copies of the right vertices in Rg to get R},. To get
E}, we connect a left vertex u € Lg and aright vertex v € Ry, if u is connected to v’s cor-
responding vertex in Rg in Eg. The graph G, has N = m|C| + fng = O(ng**?Inq/K)
vertices.

In our analysis of the reduction, we need a g-ary linear code C that has a small con-
stant distance (but no less than 3), small block length (but more than ¢), and very high
dimension. Thus, we instantiate the code C with Generalized BCH codes given by the
following.

Lemma 5.3.5 (Generalized BCH Codes). For every prime tower q, and integer 20 > 3,
there are q-ary linear codes of block length K = ¢* — 1, dimension (K — 46 + 3), and
distance at least 20.

We include a simple proof of as follows.

Proof. Let «y be a primitive element of IF 2. Let D = 26 for notational ease. We construct
the following code

C={(cr,c0,-+ ) €FTYe(1) = e(y) = ¢(7?) = - = e(yP72) =0,
where ¢(X) = ;X + X2 + 3 X% + -+ 4 cp XU

We first show that the distance of C is at least D. Since C is a linear code, we only
need to show that every non-zero codeword has weight at least D.

We show the contrapositive statement : the only codeword of weight at most D — 1 is
0. For every codeword of weight at most D — 1, suppose the non-zero entries are in the
set {¢iy, Ciys Cigy -+ 4 Cip_, }- We have

Ciy + Ciy + Cis + o+ Cip_1 =0
’Yil Ciy + ’yiz Ciy + ’7i3 Cig + + ’yiDilchq =0
e, + Ve, + Y, A+ VP, =0
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Note that the coefficients form a Vandermonde matrix (which has full rank). Therefore we
have ¢;, = ¢, = ¢, =--- =¢;,_, =0, 1.e. the codeword is 0.

Now we show that the dimension of C' is at least (K — 2D + 3). Note that each
constraint ¢(y') = 0(1 < i < D — 2) can be implemented by 2 linear constraints in
F, (since v* € F ), while the constraint ¢(1) = 0 is indeed a linear constraint in F,.
Therefore, we need at most 2(D — 2) + 1 = 2D — 3 linear constraints for C’, 1.e. the
dimension of C'is at least (K — 2D + 3).

Finally, if the dimension of C'is more than (K —2D+3), we can take a linear subspace
of C of dimension (K — 2D + 3), while the distance of the subspace code is no less than
the distance of C. O

5.3.3 Analysis

We get a family of gap instances G parameterized by ¢ > 1000 and 20 > 3 (using
[Lemma 5.3.5). We obtain our two main results of this section by picking appropriate
parameters for code C' as follows. To get lasserre integrality gaps for N'=9() levels , we
show the following by setting the distance 26 = 3.

Theorem 5.3.6. For every 1000 < q < N€ (where € is an absolute small constant), there
is a gap instance of ratio Q(q) for N/q°Y-level Lasserre SDP. The same construction
also works for the min degree Lasserre SDP, when q = Q(logn) and g < N°.

We now aim at getting a gap instance of ratio N¢ for polynomial-round Lasserre SDP,
where € is maximized. By setting ¢ = n” for some small constant v > 0, the distance 26 =
4, and optimizing the other parameters, we obtain the following (refer to section
for details)

Theorem 5.3.7. For small enough x > 0, there is a gap instance of ratio N*/%3=9%) for
the N"-round Min degree Lasserre SDP.

The two theorems follow because of [Theorem 5.3.2] [Lemma 5.3.8| [Lemma 5.3.9|(com-
pleteness) and [Lemma 5.3.10| (soundness). In the completeness case, we will use our r-
level Lasserre solution for KCSP to show that the Lasserre SDP after R = r/ K levels of
the hierarchy has value at least m K. In the soundness case, we show that with probabil-
ity 1 — o(1), the graph G, does not have any 2m-subgraph of value more than 17/¢ times
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the SDP value (Lemma 5.3.10). Therefore, the graph G, is a gap instance of ratio €2(q)
for R-round Lasserre SDP. We proceed by first proving these lemmas.

5.3.3.1 Completeness

Lemma 5.3.8. If the kCSP(C) instance ® admits perfect solution for r-round Lasserre
SDP relaxation, then the v / K -round Lasserre SDP relaxation for the DENSEXSUBGRAPH in-
stance G’y has a solution of value fmK.

Proof. For any set S = Lg U R, suppose the left vertices included in S are
(Cila 051)7 (C’i27 a2>7 ) (Oirl ’ a7’1)7

and the right vertices included in S are
(le, O/l)a (xjw a/2)7 ) (xer’a;g)’
where 1 + 75 < r/K. Let
§'=T,UT,U---UTi, U{z; } Uz} U U{a;, }

We have |S’| < Ky + ro < r. If all the partial assignments «;’s and o/;’s are consistent to
each other (i.e. there are not two of them assigning the same variable to different values),
we can define

/ / /
OO 0Oy 0

a=0a100a0" - ry

1

andlet Ug = Vg ,, or we let Ug = 0.

We can check that all the Lasserre constraints are satisfied.

e For two sets 57, 5o, either at least one of the vectors Ug,, Ug, is O (therefore their
inner-product is 0), or Us, = Vg ,,Us, = Vg o, for some S, Sy, a1, and
<U517 U52> = <Vsi7a1’ VS§7C!2> > 0.

e Forany 51, 9, 53, 94 such that S;US; = S3U9,, either the set of partial assignments
in §1 U Sy = S3 U S, are consistent to each other, in which case we have Ug, s, =
Us,us, = Vs where S is the union of all the variables included in S; U Sy and
« is the concatenation of the partial assignments in S; U Ss; or we have Ug, s, =
Us,us, = 0.
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e The “(fractional) number of chosen vertices”

o uwl’ = Y el Y Ueal

vELyURY, (Ci,a)ELg (xj,0)ER]

—Z > Gl [[Ugcsanll” +BZ Yo Ul
i= 1aT—>Fq J=1 a{z;}-F,

—Z > ) [Vinal’ +BZ Yo IViewl
i=1 a:T;—F, J=1 a{z;}—F,

=m + fn = 2m,

and [|Ty |* = || Vio[|” = 1.

Now, we calculate the value of the solution

Y el =8 ¥ 10wl =5 Y Y [iemeaon|

(u,v)EE] (u,v)EES 1=1 aT;—Fq,Ci(a)=1x;€T;

D SR DI I AW )
=1

i=1 a:Ti *)]Fq ,Cl‘ (a):l

]

If we add the constraint|(5.1)} we can still get a good SDP solution for the Min degree
Lasserre SDP with high probability, as long as ¢ is superconstant.

Lemma 5.3.9. For ¢ = Q(logn), with probability 1 — o(1), this vector solution also
satisfies the added constraint|(5.1)\with d = fK /2, i.e., for each vertex u, we have

S U P = BK/2 - U

vel (u)

Proof. For each left vertex (C;, ), we have

2
> Ucwal’ =8 |[Ucaeawn| =8 D [V = 8K [[Ugc.anll’:

vel'((Cy,a)) z;€T; z; €T

For each right vertex (z;, o), we have

S U@l =Y > U e coan I’

vel((zj,a')) 13375 a:T;—Fq,Ci(a)=1,0(x;)=a'(x;)
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=Y >, [Ucron |’

T3z a:T;—Fq,Ci(a)=1,a(x;)=a'(x;)

= > > [LerErsit

uTidz; Ty —Fg,a(x;)=a'(x;)

2
)

where the last equality is because we know that Uy, )y = 0 when Cj(a) # 1. By the
property of Lasserre vectors, we know that for each i € [m],

> [Uceon |’ = |Utayan]

a:T;—Fq,a(z;)=a (z;)

2
)

therefore

>, Uy n]” = > [Uapan ||

vel((z;,0/)) ©:T;3;

For ¢ = Q(log n), the expected number of constraints containing x; is 5K = Q((logn)"*?) =
Q(logn), by our choice of 5. Therefore, by Chernoff bound and union bound, with prob-
ability 1 — o(1), for all z;, there are at least J//2 constraints containing x;, and we have

Yo U] = BE/2 Uy an)]

vel((zj,a'))

2
)

for every x; and . Il

5.3.3.2 Soundness

Now, we show that random instances of kCSP give rise to graphs G, whose 2m-sized
subgraphs have density O(SK/q). Note that the large alphabet size ¢ allows us to get a
much larger gap than we would starting from random AND instances [88]]. This allows us
some slack in the size of the subgraphs we need to argue about.

For C' the dual of a [K, K — t,20], code, we prove the following soundness lemma.
Lemma 5.3.10. When 3 > (40¢"™%1nq)/K, for a random kCSP(C') instance ®, with
probability 1 — o(1), any subgraph of G, obtained by choosing 2m left vertices and 2m

right vertices contains at most 176mK /q edges, and therefore any 2m-subgraph of G
contains at most 178mK /q edges.

Note that G, was constructed by taking (3 copies of the right bipartition and replicating
the edges. To prove [Lemma 5.3.10, we only need to prove the following lemma.
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Lemma 5.3.11. Suppose that ¢ > 1000, K > ¢*/2,t < 10. When 3 > (40¢'"%1nq)/K,
for arandom kCSP(C) instance ®, with probability 1—o(1), any subgraph of G obtained
by choosing 2m left vertices and 2n right vertices contains at most 17mK /q edges.

Proof of|Lemma 5.3.10| from|Lemma 5.3.11} We only need to prove once there is a 2m X
2m subgraph of G with ¢ edges, there is a 2m x 2n subgraph of G with at least ¢/
edges. Fix 2m left vertices in G, to maximize the number of edges in the subgraph,
we need to select the 2m right vertices with most edges connected to the chosen 2m left
vertices. Since any two right vertices G, corresponding to the same right vertex in Gg
have the same set of neighbors, there is an densest 2m x 2m subgraph H' of G that, for
any two such vertices, chooses either both or neither of them. Now we define an subgraph
H of G4 that contains the same 2m left vertices. It contains a right vertex if any copy of
the vertex is contained in H'. H contains 2m/5 = 2n vertices, and it is easy to see that
there are (at least) ¢/ edges in H. L]

We proceed by fixing a set of 2n vertices R on the right. follows from
the following claim by a standard union bound over all possible choices of R.

Claim 5.3.12. Recall that Gy = (Lg, Re, Es). Suppose that ¢ > 1000, K > ¢*/2,t <
10. Fix a subset R C Rg (note that R is the same for all the instances ® of n variables),
|R| = 2n, the probability (over choice of ®) that there does not exist a subset L C Lg
of size 2m such that the number of edges in the induced subgraph by L U R is more than
17mK/q, is at least 1 — exp(—mK /(10¢'+?)).

Proof of[Lemma 5.3.11) from[Claim 3.3.12] Since there are only (I") < exp(2n(Ing+ 1))
choices of R, by a union bound, with probability at least

1 —exp(2n(lng + 1)) - exp(—mK/(10¢"?)) = 1 — exp(2n(lnq + 1) — BnK/(10¢"2)),

there is no 2m x 2n subgraph of G4 containing more than 17m K /q edges. The probability
becomes 1 — o(1) when 8 = (40¢"™%1nq)/K. O

Proof of| First, we show that with high probability, a constraint C; is “poorly
satisfied”. That is, none of the left vertices corresponding to a constraint C; has more than

Q(K/q) neighbors in R — this number is roughly 1/¢ times the corresponding value in
completeness case. We prove this in the following two steps.

Step 1. Fix a subset R C Rg, |R| = 2n, for each variable z;, let deg(x;) be the number of
vertices in R that corresponding to zj, i.e. let deg(x;) = |R N {(z;, a)|a : {z;} — F,}|.
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For a subset of variables T C {x1, x3, -+, 2, }, let deg(T') = 3_, .y deg(z;). We call T
good if the average degree of variables in 7" is not more than 4, i.e. deg(T) < 4|T).

For a random T with |[T| = K, note that the expected degree E[deg(T)] = 2K.
Therefore, by Hoeffding’s inequalities for sampling without replacement (Theorem 1 and
Theorem 4 in [119]), we have

Pr[T is not good] = Pr[deg(T") > 4K] < exp(—1In(4/e) - 2K/q) < exp(—K/(2q)).

Step 2. Again, fix R C Re, T C {1, x9,- -+ ,2,}, for a codeword o on coordinates in 7',
ie. a: T — g, letagry(a, R) = [{(z;, e, )|z; € T} N R|. For a constraint Cj, say it is
poorly satisfied if for all a : T' — [, such that C;(«) = 1, we have agr (o, R) < 8K/q.

Recall that to sample a random constraint C;, we first sample a random K-tuple T,
and a random shifting function b, Note that for a fixed o : T — F,, and a fixed
T; that is good, when we take a random shifting function »® : T, — F,, we have
Ey).1,r, (207, (@ — b, R)] = deg(T;)/q = 4K/q, therefore, by standard Chernoff
bound, for a fixed codeword a € (), the probability that & makes C; not poorly satisfied is
bounded from above by

Eg[agrn(a — b, R) > 8K/q] < exp(—1In(4/e) - 4K /q) < exp(—K/q).

Since there are |C| = ¢' < ¢'° codewords, by a union bound, for K > ¢?/2 and ¢ > 1000,
we have

Pr[C; is not poorly satisfied|T; is good] < ¢'° - exp(—K/q) < exp(—K/(2q)).
In all, we have

Pr[C; is poorly satisfied] > Pr[C; is poorly satisfied|T; is good] - Pr[T is good|
> (1 —exp(—K/q))(1 — exp(=K/(2q))) > 1 — exp(—K/(3q)).

Now, again, by standard Chernoff bound, we have

Pr[|{C;|C; is not poorly satisfied}| > m/(q - |C])] < (e - |C| - q - exp(—K/(3¢)))™ 1D
<(e-q"q- exp(—K/(?)q)))m/(q'lCD < exp(—K/(10¢))™ @I = exp(—mK /(10¢"2)).

By the calculation above we know that with probability at least 1 —exp(—mK/(10¢'2)),
there are at most m /(g - |C|) constraints that are not poorly satisfied.

79



For each left vertex (C;, o) € Lg, if C; is poorly satisfied, we know there are at most
8K /q edges from (C;, ) to R. If C; is not poorly satisfied, there are at most K edges to
R¢ — this upperbound also applies to R.

Therefore, with probability at least 1 —exp(—mK/(10¢""2)), any set of 2m left vertices
has at most 2m - 8K /q+ m/(q - |C]) - |C] - K < 17mK/q edges connected to R. O

We now complete the proofs of the main theorems in this section.

5.3.3.3 Proof of Theorem 35.3.6)

By combining[Theorem 5.3.2] [Lemma 5.3.8| [Lemma 5.3.9|(completeness), and[Lemma 5.3.10]
(soundness) we see that with probability 1 —o(1), the graph G, provides a §(g) integrality
for the number of levels R given by

n N
=4 <K(5K25+0-75)1/(5—1)) =10 (q2t+2 Ing - (6K25+0-75)1/(5—1))
—Q N
N K (26-0.25)/(5-1) g (2t42)+(t+2)/ (=D poly log ¢

) . (recall that 3 = (40¢""*Inq)/K)

Recall that K = ¢> — 1. By setting K = ¢*> — 1 and 20 = 3, we verify that the theorem
holds. [

5.3.3.4 Proof of Theorem 5.3.7|

Let ¢ = n?, since N = O(ng*?Ing/K) = O(ng*1Inq), ratio of the gap due to
[Lemma 5.3.8 and [Lemma 5.3.10is

Q(q) = QN AF2re)y — Q( N/ UFE=6rtel))) — (note that t = 45 — 3)

This means that
B y o 1+0(1)
“TI1 (8 —6)7+o(l) 8-6 (1+(8 —6)y+o0(1))(8 —6)

Note that when 20 > 3 is fixed, € is maximized when -y is maximized.

The number of rounds (due to[Theorem 5.3.2and [Lemma 5.3.8)) is

N
R=Q ( (20—0.25)/(6—1) ,(2t+2)+(t+2)/(5—1) )
K - q poly log q
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0 N
127(25-0.25)/(5-1) . 1y 7((85—4)+(46—1)/(5—1))Fo(1)
by K=0(¢*),q=n",t =405 — 3)

I
2

N
nY(80+4+6.5/(6—1))+o(1)

1 2(854+446.5/(5—1))+0(1)
= (N T+o(1)+~(85—6) >

For very small x > 0, to get a gap instance for N*(*)-round Lasserre, we need
- Y85 +4+6.5/(6 — 1)) + o(1) > Qn)
14+ 0o(1) + (8 —6)
=1+0(1)+7(80 —6) — (v(8 +4+6.5/(6 — 1)) +0o(1)) > Q(k)
=1 —75(10 = 6.5(6 — 1)) > Q(k)

< 1—Q(k)
T=10-6506-1)
Lety = NJ:%/((?*D’ we have
. 1 - 1+o0(1)
8 —6 (14 (85 —6)y+o0o(1))(85 —6)
1 14 0(1)
89 —6 (14 (85 — 6)grssm + o(1))(85 — 6)
1 1
— _ — O(R).
_ 5—
80 -6 (1+ 1o+(§.5/(66)71))(85 —6)
When 26 = 4, we get the maximized value € = 2/53 — O(k). O

5.3.4 Expansion for random £CSP instances

In this section, we prove [Lemma 5.3.4] restated as follows.

Lemma 5.3.4| (restated). Given (3,7, K as in|Theorem 5.3.2) with probability 1 — o(1),

forall 2 < s < nn, every set of s constraints involves more than (K — §)s variables.

Proof. Fix 2 < s < nn, let us upperbound the probability that there is a set of s constraints

containing at most (K — &)s variables. Since there are (

Bn

S

) such sets, the probability is at
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most

(Bn) Pr|the first s constraints contain at most (K — 0)s variables|
s

(K—=9)s
= (B n) Z Prlthe first s constraints contain exactly i variables]
s

=1

Fix a set 7" of i variables, let p(s, i) be the number of s-tuples (71,75, --- ,7Ts) where for
each 1 < j < s, T} is aset of K variables, such that U;<;<,7; = T'. We have

S

Pr|the first s constraints contain exactly i variables] = (:L) - p(i, 8) / <‘Z) :

To upperbound p(i,s), we view the way to enumerating valid (73, 7Ts,--- ,T}) as, to
choose a multiset of K's variables (each one from 7') so that each element in 7" appears
at least once in the multiset, then view each element in the multiset as a distinct element,
and distribute these K's elements to s sets, in a balanced way. Note that in this way, we
are able to enumerate all the valid s-tuples (although some of them might be enumerated

more than once). Since there are at most ([is:ll) < (KZS) valid multisets, we have

)(Ks)!/(K!)S.

plis) < (K.S

4

Therefore, we have

<,6n> Pr|the first s constraints contain at most (K — 0)s variables|
s

_s (K=9)s

:<Bsn>(Ks)!~(K!)s(;) Zl (ZL) (lis>

Note that when K?s < dn and i < (K — §)s, we have 1 < nKs/(n + Ks) (since
i < Ks(1-6/K) < Ks/(1+d/K) =nKs/(n+on/K) < nKs/(n+ Ks)), and
therefore
() _=iKs—i)
n Ks\ ;
(") G2 i

therefore the function (’Z) (

(<= (n—i)(Ks—1i) >i* < nKs > (n+ Ks)i),

Ks

%

) is increasing when ¢ < (K — 0)s, therefore

(in) (Ks)! - (K1)~ (;) - (2)5 (le) (Iis)
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<y o) ) ()
(o) e () (5)

for K < n'/2, we use the fact that () > (n — K)X/K! > n¥/3/((K/e)¥ - (5VK)) =
(en/K)X /(15/K) (since by Stirling’s formula, we have K! < 5v/K (K /e)¥), and again
use the fact that v27 K (K /e)X < K! < 5V/K(K/e)¥, we bound the expression above
by

() e (o)) e ()™ ()
(6 (S i )
15el+555‘5_1K25)8

\V/2mnd—1H9

<5(Ks)™ - (

For2 < s < In?n, since n"~' < 1/(10%-(BK20+0-75)1/(0=1)) 'we have 2 K49+15 /n20-1) <

n~ 20Dk we have
156140 3501 26\ 156146 3¢5 —1 26 2
5(K8)1'5 . ( be 65 ) S 5(K8)1.5 X < e 65 )
V2mnd—1§9 V2mnd—149

5. 15e!t0s071
Lo —(6—-1)k
= V2m§on20-1k < Oln )

For In’n < s < nn, since n < 1/(10% - (BK2H0)/0-D) we get n < 1/(108 -
(BK)1/0-1) and further we have BK®n%~1 < §°/(100 - 15¢*° /+/27) for all § > 5/4.
Therefore,

1561+5/38671K26

s 5—1 s 5—1 KS)(1.5/1n2 )\’
Kg)ls . < 5(K 55 S <5. (2 (
5(Ks) ( V2mnd—149 ) < 5(Ks) (100(7]71)5_1) =9 ( 100(nn)o—1

2 S
<5. (m) (by s < nnand Ks < n?)

Now, we upperbound probability that there exists a set of constraints of size s < nn

83



involving at most (K — §)s variables by

nm s 15€1+6ﬁ86_1K26+0’5 s
Z; 5K s)0 i
In?n s n s
1561+5ﬁ35—1K2é+0A5 n 15el+5535_1K25+0'5
_ 1.5 1.5
- Z 5(Ks)™ - ( nd—159 ) T Z 5(Ks)™ - ( nd—159 )
s=2 s=In2n+1
In®n

O(n="/2) + f: 5. (1/50)° = o1).

=2 s=InZ2 n+1

IN

V)
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Chapter 6

Lasserre integrality gaps for
BALANCEDSEPARATOR and
UNIFORMSPARSESTCUT

6.1 Introduction

Recall the problems BALANCEDSEPARATOR and UNIFORMSPARSESTCUT are defined
previously by [Definition 2.1.1| and [Definition 2.1.2] For readers’ convenience, we restate
the definition as follows.

Definition 6.1.1. Given an undirected graph G = (V,E) and 0 < 7 < 0.5, the goal
of the T vs 1 — 7 BALANCEDSEPARATOR problem is to find a set A C V such that
T|V| < |A| < (1 — 7)|V|, while edges(A, V' \ A) is minimized. Here edges(A, B) is the
number of edges in E that cross the cut (A, B).

The goal of the UNIFORMSPARSESTCUT problem is to find a set ) T A C V such
that the sparsity

edges(A,V \ A)
AV A

is minimized.

Despite extensive research, there are still huge gaps between the known approxima-
tion algorithms and inapproximability results for these problems. The best algorithms,
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based on semidefinite relaxations (SDPs) with triangle inequalities, give a O(vy/log n) ap-
proximation to both problems [21]. On the inapproximability side, a Polynomial Time
Approximation Scheme (PTAS) is ruled out for both problems assuming 3-SAT does not
have randomized subexponential-time algorithms [[11]. In this chapter, our focus is on the
UNIFORMSPARSESTCUT problem; the general SPARSESTCUT problem has been shown
to not admit a constant-factor approximation algorithm under the Unique Games Conjec-
ture [64, 144, [136]].

It is known that the SDP used in [21]] cannot give a constant factor approximation for
UNIFORMSPARSESTCUT [[79]]. Integrality gaps are also known for stronger SDPs: super-
constant factor integrality gaps for both BALANCEDSEPARATOR and UNIFORMSPARS-
ESTCUT are known for the Sherali-Adams+SDP hierarchy for a super-constant number
of rounds [192].

However, if we turn to the stronger Lasserre SDP hierarchy, for both BALANCED-
SEPARATOR and UNIFORMSPARSESTCUT, integrality gaps were not known even for a
small constant number of rounds (before this thesis). It was not (unconditionally) ruled
out, for example, that 1/¢°() rounds of the hierarchy could give a (1 + ¢)-approximation
algorithm, thereby giving a PTAS. On the algorithmic side, [[110] recently showed that for
these problems, SDPs using O(r/¢?) rounds of the Lasserre hierarchy have an integrality
gap at most (1 + ¢€)/ min{1, A, }. Here )\, is the r-th smallest eigenvalue of the normalized
Laplacian of the graph. This result implies an approximation scheme for these problems
with runtime parameterized by the graph spectrum.

6.1.1 Our contributions

In this chapter, we study integrality gaps for the Lasserre SDP relaxations for BALANCED-
SEPARATOR and UNIFORMSPARSESTCUT. As mentioned before, APX-hardness is not
known for these two problems, even assuming the Unique Games Conjecture. (Supercon-
stant hardness results are known based on a strong intractability assumption concerning the
Small Set Expansion problem [[194].) In contrast, we show that linear-round Lasserre SDP
has an integrality gap bounded away from 1, and thus fails to give a factor a-approximation
for some absolute constant o > 1. Specifically, we prove the following two theorems.

Theorem 6.1.2 (Informal version of[Theorem 6.3.1). For 0.45 < 7 < 0.5, there are linear-
round Lasserre gap instances for the T vs (1 — 7) BALANCEDSEPARATOR problem, such
that the integral optimal solution is at least (1 + €(7)) times the SDP solution, where
(1) > 0 is a constant dependent on .
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Theorem 6.1.3 (Informal version of [Theorem 6.4.1). There are linear-round Lasserre
gap instances for the UNIFORMSPARSESTCUT problem, such that the integral optimal
solution is at least (1 + €) times the SDP solution, for some constant € > 0.

6.1.2 Our techniques

All of our gap results are based on Schoenebeck’s ingenious Lasserre integrality gap for 3-
XOR [204]. For BALANCEDSEPARATOR and UNIFORMSPARSESTCUT, we use the ideas
in [11] to build gadget reductions and combine them with Schoenebeck’s gap instance.
[11] designed gadget reductions from Khot’s quasi-random PCP [[137] in order to show
APX-Hardness of the two problems. If we view the Lasserre hierarchy as a computational
model (as suggested in [220]), we can view Schoenebeck’s construction as playing the
role of a quasi-random PCP in the Lasserre model. Our gadget reductions, therefore, bear
some resemblance to the ones in [11], though the analysis is different due to different
random structures of the PCPs. We feel our reductions are slightly simpler than the ones
in [[11], although we need some additional tricks to make the reductions have only linear
blowup. This latter feature is needed in order to get Lasserre SDP gaps for a linear number
of rounds. We are also able to make the gap instance graphs have only constant degree,
while the reductions in [11] give graphs with unbounded degree.

Also, unlike 3-XOR, for balanced separator there is a global linear constraint (stipu-
lating the balance of the cut), and our Lasserre solution must also satisfy a lifted form of
this constraint [158]. We make a general observation that such constraints can be easily
lifted to the Lasserre hierarchy when the vectors in our construction satisfy a related lin-
ear constraint. This observation applies to constraints given by any polynomials, and to
our knowledge, was not made before. It simplifies the task of constructing legal Lasserre
vectors in such cases.

6.2 Preliminaries on Lasserre SDPs for BALANCEDSEPA-
RATOR and UNIFORMSPARSESTCUT

In this section, we begin with a general description of semidefinite programming relax-
ations from the Lasserre hierarchy, followed by a useful observation about constructing
feasible solutions for such a SDP. We then discuss the specific SDP relaxations for our
problems of interest. Finally, we recall Schoenebeck’s Lasserre integrality gaps [204] in a
form convenient for our later use.
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6.2.1 Useful theorems about the Lasserre hierarchy

Consider a binary programming problem with polynomial objective function P and a sin-
gle constraint expressed as a polynomial ():

Minimize/Maximize ZTG(["]) P(D) [Ler @;
subject to ZTG(["]) Q) [Ljerz; =0, (6.1)
z; € {0,1} for all i € [n].

It is easy to see that this captures all problems we consider in this chapter: BALANCED-
SEPARATOR (Section 6.2.2.1)) and UNIFORMSPARSESTCUT (Section 6.2.2.2)).

We now define the Lasserre hierarchy semidefinite program relaxation for the above
integer program. It is easily seen that the below is a relaxation by taking U 4 = 41 and
Ya = /Q(z) U 4 where z € {0,1}" is a feasible solution to (6.1), x4 = [, , 7, and I
is any fixed unit vector.

Proposition 6.2.1. For any positive integer v > d, v rounds of Lasserre Hierarchy relax-
ation [[158] of[(6.1)]is given by the following semidefinite programming formulation:

Minimize/Maximize ) . P(T) HUTHz
subjectto  ||Uy|*> = 1,
(U, Up) = ||U aunl? forall A, Bwith |AU B| < 2r,
2se (i) Q(S)(Us,Uaup) = (Ya,Ya),
(Ya,Y3) = |[Yaunl? forall A, B with |AU B| < 2(r — d).
UA, Yp € RY.
(6.2)

. (] .
Proof. Giveny € R, et M(y) € Sym((@)) be the moment matrix whose rows and
columns correspond to subsets of size < r. The entry at row .S and column 7" of M(y)

is given by ysur. For any multilinear polynomial P of degree-d, let P x y € R(Q[:]*d) be
the vector whose entry corresponding to subset S is given by > . Prysur. The Lasserre
Hierarchy relaxation [158]] of is given by:

Minimize/Maximize ), P(T)yr
subjectto 1y = 1,
M(y) = 0,
M(Q *y) = 0.

(6.3)
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Proof of |(6.2)| = |(6.3)l Given feasible solution for let yg = ||US||2 and
zg £ ||Ys||?. We have yp = L and Y, P(T)yr = >, P(T)||Us|*. Observe that ys,r =
IUsurl|? = (Ug,Ur) therefore M(y) = 0. With a similar reasoning, we also have
M(z) = 0. Finally, for any S:

Q*y)s =Y _ QMysur = Y _ QTN Ur,Us) = ||Vs|* = zs,

which implies z = @) * y. Hence y is a feasible solution for|(6.3)

Proof of |(6.3) = [(6.2)] Let y be a feasible solution for |(6.3)l Define z £ @Q * y.
Since M(y) = 0 (resp. M(z) = 0), there exists a matrix U = [Uglg (resp. Y = [Ys]s)
such that M(y) = U U (resp. M(2) = YTY). It is easy to see that (Us, Ur) = ysur
and (Ys, Yr) = zsur. Therefore:

o > P(OTU2|? =37 P(T)yr.

o [Tyl =yo=1.

e (Us,Ur) = ysur = [[Usurl? (similar for Y).

e Forany S, ", Q(T)({Ur,Us) = Y1 Q(T)ysur = (Q *y)s = zs = ||Vs]*.

Therefore (U, Y) is a feasible solution for|(6.2) with same objective value, completing our
proof. L

Note that a straightforward verification of last two constraints requires the construction
of vectors Y in addition to U 4. Below we give an easier way to verify these last two con-
straints without having to construct Y,’s. This greatly simplifies our task of constructing
Lasserre vectors for the lifting of global balance constraints.

<

(6.2)| if there exists a non-negative real 5 > 0 such that

Theorem 6.2.2. Given vectors Uy forall T € ( [Z]T) satisfying the first two constraints of

> QSUs=4-Ty (6.4)

se(La)

then these vectors form (part of) a feasible solution to
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Proof. Consider the following vectors. For each A with |[A] < r,let Yy = Vo U 4. By
construction, these vectors satisfy the (Y4, Y5) = ||Yaug||? constraints since (U 4, U ) =
|U augl/?. Now we verify the other constraint:

> Q(S)<U57UAUB>:< > Q(S)US7UAUB>
se(La)

= <5U@aﬁAUB> = 5<UA7UB> = <YA,YB>-
O

6.2.2 Lasserre SDP for graph partitioning problems

In light of [Theorem 6.2.2] to show good solutions for the Lasserre SDP for our problems
of interest, we only need to show good solutions for the following SDPs.

6.2.2.1 BALANCEDSEPARATOR

The standard integer programming formulation of BALANCEDSEPARATOR is shown in
the left part of [Figure 6.1l The r round SDP relaxation ¥; (shown in the right part of
Figure 6.1]) has a vector U s for each subset S C V' with |S| < r. In an integral solution,
the intended value of ﬁ{u} 1S xuﬁ@ for some fixed unit vector ﬁ@, and that of Ug is

<HueS xu)U@

6.2.2.2 UNIFORMSPARSESTCUT

The UNIFORMSPARSESTCUT problem asks to minimize the value of the quadratic integer

program shown in the left part of over all 7 € {1/n,2/n,...,|n/2]|}. The
corresponding SDP relaxation W5 is to minimize the value of the SDP shown in the right

part of [Figure 6.2fover all 7 € {1/n,2/n,...,|[n/2]}.

Remark Prior to this thesis, known lower bounds [79, [130] on the integrality gap of
UNIFORMSPARSESTCUT problem used a weaker relaxation, where the last two equality

constraints in W, of are replaced by the following instead:

DT -TwlPP =1

u<v
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IP SDP Relaxation ¥y

Minimize Y ([T — O’

(u,v)EE
Minimize Z (14 — 1,)? s.t <ES”ESQ> = O_for alSl, 52
(uw)EE <US17 U52> = <US37 U54>
s.t. T’V’<qu_ 1_7_“/‘ f0r31151U52253US4
= |12
o -

« €40,1} YueV - P
T {0,1} U ZU{’U} — V[T,

forsomer <7 <1-—71

Figure 6.1: IP and SDP relaxations for BALANCEDSEPARATOR.

We can solve ¥, by first enumerating over all 7’ € {1/n,2/n,...,1}N[r,1 — 7] and then
choosing 7 which minimizes the objective function. Note that the resulting relaxation is
stronger than usual Lasserre Hierarchy relaxation.

with the objective function being simply >, , < Uy — Ul

6.2.3 Lasserre Gaps for 3-XOR from Schoenebeck

We start by defining the 3-XOR problem.

Definition 6.2.3. An instance ® of 3-XOR is a set of constraints C,Cs, - -- ,C,, where
each constraint C; is over 3 distinct variables x;,, x;,, and x;,, and is of the form x;, ®
Ty, B iy = b; for some b; € {0, 1}.

A random instance of 3-XOR is sampled by choosing each constraint C; uniform
independently from the set of possible constraints.

We will make use of the following fundamental result of Schoenebeck.

Theorem 6.2.4 ([204]]). For every large enough constant 3 > 1, there exists n > 0, such
that with probability 1 — o(1), a random 3-XOR instance ® over m = [n constraints and
n variables cannot be refuted by the SDP relaxation obtained by nn rounds of the Lasserre
hierarchy, i.e. there are vectors W g o) for all | S| < nn and all a : S — {0, 1}, such that

91



1P SDP Relaxation o

. . . 1 TT T7
Minimize Z m HU{u} - U{v}||2

(u,v)EE

. 1 2 R —
Minimize W v GE(SUu — xv) S.t. <ESl y ESQ) Z O_for 3.151, SQ
’ <US17 USQ) = <U537 US4>
s.t. qu :T’V’ for all 51USQ 253US4
u — 112
z, € {0,1} YueV HU@H =1

> Upy =7VIU,

Figure 6.2: IP and SDP relaxations for UNIFORMSPARSESTCUT.

We can solve ¥, by first enumerating over all 7 € {1/n,2/n,...,(n — 1)/n} and then
choosing 7 which minimizes the objective function. Note that the resulting relaxation is
stronger than usual Lasserre Hierarchy relaxation.

(i) the value of the solution is perfect: y ;" | > Wi, iy i, 00) ||2 =
m;

(”) <W(S1,Oé1)7 W(Sz,a2)> Z Ofor all Sh SQa aq, Oy

(lll) <W(S1,a1)7 W(Sz,a2)> =0 l:fOél(Sl N SQ) 7& 042(51 N SQ);

(iv) (Wisi,a1), Wissa0)) = (Wissas)s Wiss,aq)) for all S;USy; = S3US, and a0y =
a3 o ay. Here, when a1(S1 N Sy) = ao(S1 N Sy), ay o ay is naturally defined as
the mapping from Sy N Sy to {0, 1} such that its restriction to S, equals oy and its
restriction to Sy equals ay. We make similar definition for oz o ay.

(v) ZQ:SH{OJ} H"V(S,Q)H2 = 1forall S.

a:a(ziy )Ba(zi,)Da(ziy)=b;

Note that indeed we have for every S, > o, (0.1} Wisa)y = Wigp. This is because
2 K
Wi = 1and

<( > W(s,a)),W(@,w>>= ST Wi Wop) = Y [[Weal =1

a:S—{0,1} a:S—{0,1} o:S—{0,1}

Observation 6.2.5. In the construction of the vectors W satisfy the fol-
lowing property. For any constraint C; over set of variables S;, the vectors corresponding
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to all satisfying partial assignments of S; sums up to Wy:

> Wis,a) = W
a:5;—{0,1}AC;(a)=1

6.3 Gaps for BALANCEDSEPARATOR

In this section, we prove We state the theorem in detail as follows.

Theorem 6.3.1. For large enough constants 3, M, for all 0.45 < 7 < 0.5, and for in-
finitely many positive integer N'’s, there is an N-vertex instance Hgo for the T vs. (1 — 1)
BALANCEDSEPARATOR problem, such that the optimal solution is at least 4(37 —7%) /5 —
O(1/+/B + 1/M) times the best solution of the Q(N)-round Lasserre SDP relaxation.
Moreover, the solution for Lasserre SDP relaxation is a fractional (0.5 — O(1/M)) vs.
(0.5 4+ O(1/M)) balanced separator.

The rest of this section is dedicated to the proof of [Theorem 6.3.1l In [Section 6.3.1]
we will describe how to get a BALANCEDSEPARATOR instance from a 3-XOR instance.
Then, we will show that when the 3-XOR instance is random, the corresponding BAL-
ANCEDSEPARATOR instance is a desired gap instance. This is done by showing there is an
SDP solution with good objective value (completeness part,|Lemma 6.3.2|in|Section 6.3.2))
while the instance in fact has not great integral solution (soundness part, in
[Section 6.3.3). The completeness part relies [Theorem 6.2.4]— we use the 3-XOR vectors
(which exist for random instances by the theorem) to construct BALANCEDSEPARATOR
vectors. In the soundness part, we first prove two pseudorandom structural properties ex-
hibited in the random 3-XOR instances (Lemma 6.3.3)), and then prove that any 3-XOR
with these two properties leads to a BALANCEDSEPARATOR instance with bad integral
optimum by our construction. Finally, in|Section 6.3.4] we slightly twist our gap instance
in order to make its vertex degree bounded.

6.3.1 Reduction

Given a 3-XOR instance ® with m = [(n constraints and n variables, we build a graph
He = (Vs,Ep) for BALANCEDSEPARATOR as follows.

He consists of an almost bipartite graph He = (Lo, Re, Fo) (obtained by replacing
each right vertex of a bipartite graph by a clique), an expander Z,, and edges between Lg
and Z,.
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The left side Lg of Hg contains 4m = 4n vertices, each corresponds to a pair of a
constraint and a satisfying partial assignment for the constraint, i.e.

Lo = {(Cy,a)|a: {xiy, xiy, vy} — {0, 1}, Ci(a) = 1}.

The right side Rg of Hg contains 2n cliques, each is of size M /3, and corresponds to one
of the 2n literals, i.e.
Ra = Ujaife;3013Cw; ),
where
Cla;a) = (75,0, t)[1 <t < M}

Call (z;, o, 1) the representative vertex of C(,, ). Besides the clique edges, we connect a
left vertex (C;, ) and a right representative vertex (z;, o/, 1) if z; is accessed by C; and
o’ is consistent with «, i.e.

E‘P = {Clique edges} U {{(027 a>> (13]', 0/7 1)}|xj S {xiuxiw xis}v a(xj) = O/(Ij)}'

Now we have finished the definition of Hg. To get Hg, we add an O(M )-regular expander
Z, of size m = fn and edge expansion M. (L.e. the degree of each vertex in Z, is O(M),
and each subset T' C Z,. (|T'| < |Z,|/2) has at least |T'| - M edges connecting to Z,. \ T". For
more discuss on the definitions and applications of expander graphs, please refer to, e.g. ,
[121]].) We connect each vertex in Lg to two different vertices in Z,., so that each vertex in
Z, has the same number of neighbors in Lg (this number should be 45n - 2/(6n) = 8). In
other words, if we view each vertex in L4 as an undirected edge between its two neighbors
in Z,, the graph should be a regular graph.

The whole construction is shown in Our construction is very similar to
the one in [11], but there are some technical differences. Instead of having cliques in R,
[L1]] has clusters of vertices with no edges connecting them. Also, in our construction, the
vertices in Lg are connected to the representative vertices in Rg only, while in [[11], all
the vertices in the right clusters could be connected to the left side. The most important
difference is that in our way, the cliques are of constant size, while the clusters in [11] has
superconstantly many vertices. This means that our reduction blows up the instance size
only by a constant factor, therefore we are able to get linear round Lasserre gap.

Observe that there are | Lo | + |Ro| + | Z,:| = 4m +2Mm + m = (2M + 5)m vertices
in Hcp.

In the following two subsections, we will prove the completeness lemma (Lemma 6.3.2]
which states that there is an SDP solution with a good objective value) and the soundness
lemma (Lemma 6.3.4] which states that every integral solution has a bad objective value).
Combining the two lemmas, we prove our main integrality gap theorem for BALANCED-
SEPARATOR as follows.
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Ly Ro

representative vertex
N

the clique C(g; «)

Figure 6.3: The reduction for BALANCEDSEPARATOR.

Note that the incident edges are drawn for only one of the vertices in Ly, while others can
be drawn similarly.

of[Theorem 6.3.1|from|Lemma 6.3.2|and|Lemma 6.3.4) Let 3, M be large enough constants.
Let ® be a random 3-XOR instance over m = (3n constraints and n variables.

By [Theorem 6.2.4] we know that, with probability 1 — o(1), ® admits a perfect solution
for Q(n)-round Lasserre SDP relaxation. Therefore, by with probability
1 — o(1), 2(n)-round SDP relaxation ¥; with parameter 7 = 0.5 — O(1/M) for the
BALANCEDSEPARATOR instance Hg has a solution of value 5m. On the other hand, by

Lemma 6.3.4] with probability 1—o(1), for 7 > 1/3, every 7 vs. (1—7) balanced separator
has at least 4m (37 — 7 — O(1/+/8) — O(1/M)) edges in the cut.

Therefore, with probability 1 — o(1), when 7 > 1/3, the ratio between the optimal
integral solution (to H4) and the optimal €2(n)-round ¥, solution is at least 4(37 —73) /5 —
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O(1/+/B + 1/M). This ratio is greater than 1.007 when 7 > 0.45 and /3 and M are large
enough. By our observation in [Section 6.2.2.1] this gap also holds for the Lasserre SDP
relaxation. [

Let A be the maximum number of occurrences of any variable in ®. By our construc-
tion, the graph has degree ©(M + A). When = O(1), we have A = ©(logn/loglogn)
with probability 1 — o(1) (see, e.g. [96]). This means that our graph does not have the
desired constant-degree property. However, since there are few edges incident to vertices
with superconstant degree, we can simply remove all these edges to get a constant-degree
graph, while the completeness and soundness are still preserved. We will discuss this in

more details in

6.3.2 Completeness : good SDP solution

Lemma 6.3.2 (Completeness). If the 3-XOR instance ® admits perfect solution for r-
round Lasserre SDP relaxation, then the r/3-round SDP relaxation V', (in
with parameter T = 0.5 — O(1/M) for the BALANCEDSEPARATOR instance He has a
solution of value 5m.

Proof. We define a set of vectors (i.e. a solution to W;) using the vectors given in

as follows.

For each set S C Lo U Ry U Z, with [S| < /3, we define the vector Us as follows.
IfSNZ. #0,letUg = 0. If SN Z, = (), suppose that S N Lg contains

(Ci17a1)7 (Ci27a2)7 ) (Cir17arl)7

S N Rg contains

(Ijl ) O/lv tl)? (*Tjw O/27 t2)7 ) (ijQ ) O‘;Qa trz)y
we have r; + 1 = |S|. Let S’ be the set of variables accessed by C;,, - - - C;, together with
Tjy, -+, xj,. Note that [S'| < 3r + 1y < 3|S| < r. If there is no contradiction among

the partial assignments «;’s and o/’s (i.e. there are not two of them assigning the same
variable to different values), we can define

/

/ /
Q= Q1020 -0 OCXIO()[2O---OO[T2,

1
andlet Ug = W s «), Otherwise we let Us=0.

‘We first check that the first 3 constraints in relaxation W, are satisfied.
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e For two sets 57, .9,, either at least one of the vectors ﬁsl , U52 is O (therefore their
inner-product is 0), or Us, = Wy ,,,Us, = Wy o, for some Sj, 55, ay, o and
<US17 U52> = <W517a17 W5§7a2> > 0.

e Forany 51, 55, 55, .5, such that S1US,; = S3U9,, either the set of partial assignments
in S;US,; = S5US, are consistent with each other, in which case we have U g, 5, =
U53U54 = Wy, where S is the union of all the variables included in S; U S; and
« is the concatenation of the partial assignments in S; U Sy; or we have Ug,ys, =
Us,us, = 0.

o |Us|* = [|[Wip)

=1

Now we check that the balance condition (the last constraint in relaxation W) is satis-
fied. We will prove that

Zﬁ{’u} = (M + 1)mUj.

Since there are (2M + 5)m vertices in Hg, this shows that the solution is feasible for ¢4

with 7 = 0.5 — O(1/M). Using , we see that - o er, Uiciay = 20, Up =
mUy. Similarly

n BM n
> Tiwan =2, > D Uwany =BM-> > Ugway

(zj,00t)ERs J=1 a:{z;}—{0,1} t=1 J=1 a:{z;}—{0,1}

=BMn -Uy = MmUy.

Thus
Y TUw= > Uwm= Y Uiceant Y. Ugwany = M+1)mUy.
veV vELsURaUZ) (Ci,0)ELg (Ij,a,t)€R<1>

Now, we calculate the value of the solution

S Tw-Twl’

(u,v) qu>

m 3
- Z Z Z HU{(CI'M)} - U{(:viz,a‘{wiz},l)}

=1 a{z; ,@iy,xig }—{0,1},Ci(a)=1 z=1

£y 3 > [Tcoon — T’

i=1 a:{wi; ,xiy,2i5 }={0,1},Ci()=1 veZr:((C,a)v)E€s

2
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+> ) S T enn — Uimaepl + Y. [T} — Ugaay|

J=1 a:{z;}—{0,1} z1,22€[M ] v1,02€Zr

5 B ) B
2 (Z HU{@M} - U{<wiz»auxiz},l>}H +2 HU{@,@)}HQ)
z=1

1 a{zi ,wig,xig }—{0,1},Ci ()=

3
2
> (Z |Wites g bo = Wisanca |
z=1

U a{miy ,;@ig,2i5 }—{0,1},Ci () =1

Ms

.
Il

pnqg

+zHWHW%}@)H?)

m 3 9
Z Z < Z (H W({wiz}zal{ziz}) H - || W({‘Tll #Tig iz 1) ||2>
z=1

=1 a{zi ,@ip,wig }—{0,1},C ()=

+ 2 H W({x’q 7xi2’zi3}7a) H2 )

m 3 2
— Z Z Z HW({mz}mmz})

=1 a:{wi ,xiy,2i5 }—{0,1},Ci(a)=1 z=1

Z > ||W<{xi17%,xi3}7a> I

a{zy,Tiy,2ig }—+{0,1},Ci(a)=

m 3
=222 (Wi oo I+ Wi o ) =

=6m — m = bm.

6.3.3 Soundness : bound for integral solutions

Let £ = {(zj,a)|a: {z;} — {0,1}} be the set of 2n literals. For each literal (z;, o) € L,
let deg((x;, ) be the number of left vertices that connect to the literal’s representative
vertex (z;, v, 1). Fora set of literals £’ C L, let deg(L') = >, o)epr deg((z;, @)). Also,
given a subset L' C L, for left vertex (C;, ), say (C}, «) is contained in L' if all the three
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literals corresponding to the three neighbors of (C;, a) in Hg are contained in L', i.e.
{(xi1> Az, )7 ($i2> Q|z;, )7 (‘Ti:w Oz, )} cr.

We first prove the following lemma regarding the structure of H¢, defined by a random
3-XOR instance P.

Lemma 6.3.3. Over the choice of random 3-XOR instance ®, with probability 1 — o(1),
the following statements hold.

e Foreach L' C L,

L'| > n/3, we have deg(L') > 6m - |L'|/n(1 — 20//5).

o Foreach L' C L, |L'| > n/3, the number of left vertices in Lg contained in L' is at
mostm - |L'[*/(2n?) - (1 4+ 100/+/D).

Proof. Fix aliteral (x;, ), arandom constraint C; accesses x; with probability 3/n. Once
C; accesses x;, there are 2 vertices out of the 4 left vertices corresponding to C; adjacent to
(x;, ). Therefore, in expectation, there are 6/n edges from the left vertices corresponding
to C; to (z;, ). By linearity of expectation, for fixed £’ C L, there are 6|L'|/n edges from
the left vertices corresponding to a random constraint C; to £’ in expectation.

Now for each Cj, let the random variable X; be the number of representative vertices in
L' that is connected to left vertices corresponding to C;. By definition we have deg(L') =
>, X;. Since each left vertex corresponding to C; has 3 neighbors on the right side, and
there are 4 of such left vertices, we know that X; € [0, 12]. In the previous paragraph we
have concluded that E[X;] = 6|L'|/n for all i = 1,2,...,m. It is also easy to see that
Xi, Xo, ..., X, are independent random variables.

Now assuming that |£'| > n /3, we use Hoeffding’s inequality for the random variables
Xy, Xo, ..., X, and get

Prdeg(£) < 6m - |£'|/n(1 —20/+/B)] = Pr [Z X; <6m-|L'/n(1 - 20/\/E)]

S\ 2
<exp | — v = exp (—200- (u) n) <exp(—22n) < 274,

m - 122 n

Since there are at most 22" such £’s, by a union bound, with probability at least 1 — 272",

the first statement holds.
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For the second statement, fix an £’ C L, let ay, a1, a, be the number of variables that
have 0, 1,2 corresponding literals in £’, respectively. Note that aqg + a; + a; = n and
a; +2as = |L'| Now, for a random constraint C;, we are interested in the expected number
of the four corresponding left vertices (C;, «) that are contained in £'. Note that once C;
accesses a variable that corresponds to ag, none of the four corresponding left vertices are
contained in £’. Now let us condition on the case that, out of the 3 variables accessed by
C;, t variables have two literals in £’ and the other (3 — ¢) variables have one literal in £'.
Observe that in expectation (which is over the random choice of C; while conditioned on
t), there are 2!~ left vertices corresponding to C; contained in £’

In all, the expected number of the left vertices corresponding to C); that are contained

in £ is
3 ai az 3

(?’%J-Qt 10 Z( ) (ay/n)**(ay/n)" - 281 (forn > 3)

= noe
10 3 10 3 3
=(1+ ?)(al +2a2)*/(2n?) = (1 + ) IL']°/(2n?).

For each C;, let the random variable X; be the number of left vertices corresponding to C;
that are contained in £'. By the discuss above, we know that E[X;] < (1+22)-|£']3/(2n3).
Now we are interested in the probability that the total number of left vertices contained in
L' (e ", X;) is big. Since X;’s are always bounded by [0, 4], by standard Chernoff
bound, we have

Pr ZX >m-[L')(20) - (1+100/1/5)

=Pr Zm:Xi >m- <1+ %) L'/ (2n7) - M
=1

I 14+ 10/n
& 10 100/+/B — 10
S
Lim1
<exp (—i m- (1 + 10) 1L/ (2n?) - (105(/1\:_31_0/17?)/;1)2> (for large enough /3)
<exp (—i.m.\ﬁ’ﬁ/( ) (80/?\)/3)2> (forn > \/B>> D
L7 1 800
<exp (—n : %) (since |£'| > n/3)
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<2—4n

Since there are at most 22" such £’s, by a union bound, with probability at least 1 — 272",
the second statement holds. [

Now, we are ready to prove the soundness lemma.

Lemma 6.3.4 (Soundness). For 7 > 1/3, with probability 1 — o(1), the T vs. (1 — T)
balanced separator has at least 4m (31 — 73 — O(1/+/B) — O(1/M)) edges in the cut.

Proof. We are going to prove that, once the two conditions in[Lemma 6.3.3]hold, we have
the desired upper bound for 7 vs. (1 — 7) balanced separator. Let us assume that there is a
balanced separator (A’, B') such that edges(A’, B') < 4m(31 — 73) < 12m, we will show
that edges(A4’, B') > 4m(37 — 3 — O(1/y/B) — O(1/M)).

Based on (A’, B’) we build another cut (A, B) such that ANZ, = A'NZ, and ANRgy =
A’ N Rg. For each left vertex in Lg, it has 5 edges going to Z,. and Re. We assign
the vertex to A if it has less than 3 edges going to B’ N (Z,. U Rg), and assign it to B
otherwise. Note that edges(A, B) < edges(A’, B'), therefore we only need to show that
edges(A, B) > m(121 — 73 — O(1/+/B) — O(1/M)). Since Lg contains only O(1/M)
fraction of the total vertices, (A, B) is still (1 —O(1/M)) vs. (1 —7+O(1/M)) balanced.

Since edges(A, B) < 12m, for large enough constant M, we have the following two
statements.

1) One of AN Z, and B N Z, has at most 100/M - | Z,| = 100m /M vertices.

2) Let Chaa = {(2;, @) : the clique C(,, o) is broken by (A, B)}, then |Cpaa| < 20n/M.

If 1) does not hold, then we see there are at least (100/M) - |Z,| - M = 100m edges in Z,
cut by (4, B), by the expansion property. If 2) does not hold, for each clique C',, ) that
is broken by (A, B), at least (M — 1) edges of the clique are in the cut. In all, there are
atleast (M — 1) - 20n/M > 12n = 12m edges in the cut.

Now, by 1), assume w.l.0.g. that ANZ, is the smaller side — having at most 100/M - | Z, |
vertices, and let £’ be the set of literals (x;, ) such that its representative vertex (z;, o, 1)
isin A.

To get a lower bound for |£'|, note that
Al < (€] + [Coaal) - MB +1Z,] + |Lo| = |L] - MB + O(1)m. (6.5)
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Also, since (A, B) is a balanced separator, we have |A| > (7 — O(1/M)) - 2Mm. Hence,
by (6.3), we have |L'| > (7 — O(1/M)) - 2n.
Let Ly.q C Lg be the set of left vertices such that at least one of the two neighbors in

Z, falls into A N Z,. By the regularity of the graph where Z, is the set of vertices and Lg
is the set of edges, we know that | Ly.q| < 8- 100/M - |Z.| < O(m/M).

Now let us get a lower bound on edges(A, B). First, we have edges(A, B) > edges(A\
Lbad7 B \ Lbad)- Let L:P = Lq> \ Lbad’ we have

edges(A \ Lyada, B \ Lbad)
=edges(AN(Ly URs U Z,), BN (Ly U Re U Z,))
> edges(AN Ly, BN Z,) + edges(AN Re, BN L)
=edges(AN Ly, BN Z,) + edges(AN Ry, Ly) — edges(AN Rp, AN Ly)
> edges(AN Ly, BN Z,) + edges(AN Re, L) — |Lpag| - 3 — edges(AN Re, AN Ly).

Consider a left vertex (C;, a) € L. We claim that it is contained in £’ if and only if
(C;, ) € A. This is because if it is contained in £', then we have (C;, a) € A because 3
out of 5 edges incident to (C;, a) go to A side (the three variable representative vertices).
If (C;, «v) is not contained in £', we have at least 3 out of the 5 edges going to B side (the
two edges to B N Z, and at least one of the variable representative vertices), and therefore
we have (C;, a) € B. By this claim, we know the following two facts.

e |AN Lj|is small. Since T > 1/3, we have |£'| > (2/3 — O(1/M))n > n/3, and
by the second property of [Lemma 6.3.3] we have |[AN Ly | <m - |[L/|2/(2n3) - (1 +
100/+/3).

e We have edges(ANLYy, BNZ,) = 2|ANLY| and edges(ANLY, ANRg) = 3|ANLY|.

For edges(ANRg, L), we know that this is exactly deg(L’). Again, since 7 > 1/3, by
the first property of [Lemma 6.3.3} we know this value is lower-bounded by 6m - |L'| /n(1—
20/+/B).-

In all, we have

edges(A, B)
> edges(AN Ly, BN Z,)+ edges(AN Rg, Lo) — |Lpaa| - 3 — edges(AN Re, AN LY)
=2|AN Ly| + deg(L') — | Lpaa| - 3 — 3|AN Ly
> deg(L") — |[AN Lg| — O(m/M)
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> 6m - |£']/n(1 —20/+/B) —m - |L)?/(2n®) - (1 + 100/+/B) — O(m/M)
—m (127 47 — (2407 + 4007%)/\/B — 1/M)) (lety = |£|/(2n))
24m<37—7 —0(1/\/B) — 1/M>

The last step follows because (i) 3 — v monotonically increases when ~ € [0, 1], and (ii)
v = (1 — O(1/M)). O

6.3.4 Constant-degree integrality gap instance

In this subsection, we slightly modify the graph H4 obtained in the previous subsections
to get an integrality gap instance with constant degree.

Observe that in He, when M and [ are constants, the only vertices whose degree
might be superconstant are the representative vertices in Rg. Now consider the edges
connecting vertices in L¢ and representative vertices: there are 12m of them, each of them
corresponds to a combination of constraint C}, satisfying assignment «, and one of the
variables in the constraint. Let F, be the set of these edges.

For two edges e, e € L, let the random variable Yy, .,1 = 1 if they share the same
representative vertex, and let Y, .,; = 0 otherwise. Finally let Y = 261762 B, Yier,e}-
By the simple second moment method, we know that with probability 1 — o(1), we have
Y < 10005 — 10005,

For every edge e € Ey, if ), eE\{c} Yicey > BM, we remove e from the graph. In
this way, we get a new graph, namely . We claim the following properties about #7,.

1. The maximum degree of H}, is O(SM). This is because the maximum degree of
vertices other than representative vertices in Hq is O(8M), and after the edge re-
moval process described above, the representative vertices have degree O(5M).

2. The number of edges removed is at most 2Y/(SM ), and therefore 2000m /M with
probability 1 — o(1). This is because whenever an edge is removed, we charge S M
to Y. Since each edge in Y can be charge at most twice, there are at most 2Y/(8M)
edges to be removed.

3. The SDP solution in [Lemma 6.3.2] is still feasible and has objective value at most
5m (since we removed edges) with probability 1 — o(1).

4. The soundness lemma [Lemma 6.3.4] still holds since we removed only O(m/M)
edges.
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Therefore, we claim that g is an integrality gap instance for [Theorem 6.3.1| with
constant degree.

6.4 Gaps for UNIFORMSPARSESTCUT

In this section, we provide the full analysis of the gap instance for UNIFORMSPARSEST-
CuUT. We first describe our construction of the gap instance for UNIFORMSPARSESTCUT
as follows.

We modify the gap instance we got for BALANCEDSEPARATOR to get an instance for
the linear round Lasserre relaxation of UNIFORMSPARSESTCUT. The reduction converts
the gap instance for BALANCEDSEPARATOR to the gap instance for UNIFORMSPARSES-
TCUT in an almost black box style. In the BALANCEDSEPARATOR problem, we have the
hard constraint that the cut is 7-balanced. In the reduction from BALANCEDSEPARATOR
to UNIFORMSPARSESTCUT, we need to use the sparsity objective to enforce this con-
straint. We do it as follows. Recall that given a 3-XOR instance @, the corresponding gap
instance for BALANCEDSEPARATOR consists of vertex set Le U Rg U Z,. and edge set Ep.
To get a gap instance for UNIFORMSPARSESTCUT, we add two more O (M )-regular ex-
panders (with edge expansion 10% - M) D; and D, of size 1000Mm (where M is the same
parameter defined in the previous sections). Now, let the edge set £, contain the edges in
Es, in the expanders D; and D,., and the following edges : for each vertex v € LoURsUZ,,
introduce 2 new edges incident to it, one to a vertex in D; (say, v;) and the other one to a
vertex in D, (say, v,). We arrange these edges (between Ly U Ry U Z,. and Dy, D,) in a
way so that each vertex in D; (or D,) has at most one neighbor in Lg U Rg U Z,. — this can
be done because |Lg| + |Re| + |Z:| = (2M + 5)m < 1000Mm = |D;| = | D,|.

Using the instance described above, we will prove our main integrality gap theorem
(Theorem 6.1.3)) for UNIFORMSPARSESTCUT. We state the full theorem as follows.

Theorem 6.4.1. For large enough constant 3, M (where [ is the same parameter as
in previous sections), and infinitely many positive integer N'’s, there is an N-vertex in-
stance for UNIFORMSPARSESTCUT problem, such that the optimal solution is at least
(14 1/(100M)) times worse than the optimal solution of the Q(N )-round Lasserre SDP.

Theorem 6.4.1|is directly implied by the following completeness lemma (Lemma 6.4.2)
and soundness lemma (Lemma 6.4.3).

Lemma 6.4.2 (Completeness). The value of relaxation Vs (in is at most
(2M + 10)m/((1001M + 1)m)?
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forT = (1001M + 1)/(2002M + 5).

Proof. Given the SDP solution {Ug }s/c LoURsUZ,,|S'|<r/3 in the completeness case of
BALANCEDSEPARATOR, we extend it to the SDP solution {U s }sc 1., UreUZ,UD;U D,,|S|<r/3
for UNIFORMSPARSESTCUT by “putting D); and D, one per side”. That is, for each
SCLeURyUZ,UD,UD, with |S| <r/3,1et S’ =S5SN(Le URgp U Z,). Now we let
Ug=0if SN D, #0,andlet Ug = Uy otherwise.

We first check that {U s} sc 1.oUrsUz,0D10D,.5|<r/3 1S @ feasible SDP solution. We only
check that the balance constraint (the last constraint in relaxation ®,) is met.

We are going to prove prove that

Z U{u} = (1001M + 1)mﬁ@.

u€LeUReUZ,UD;UD,
From the proof of Lemma 6.3.2] we know that

Z U{u} = (M + 1)mUy,

u€ELpURpUZ,

together with the fact that

Yu € DZ,U{u} = U@, Yu € DT,U{U} =0,
we get the desired equality.

Now we calculate the value of the solution. First, we calculate the following value.

S Uw-Twl = Y, [0w-Tul'+ Y |Uw-Uwl

(u,v)e€l (u,v)EES (u,v)eEL\Ea
=sm+ > (U ~Tw| + . Uy~ Tyl
u,vED; u,ED,
+ Y (ITw-Twll + 0w -Tell’).
u€LeURsUZ,

Note that 3, v, [Ty = Tt I” + Swen.

Uty — Ugy||” = 0.and

> (10w =Tl + 10w - T

2)
u€LeURaUZ,
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2 — — — —
—2(U uy, Uuyy) — 20Uy, U{vr}>>

)

(by property of Lasserre vectors)

= Y ClOwl + 0wl + [T,

u€ELsURpUZy

- Y ClOwl’+1+0-2|Tuul’ - 2(Tuwm

u€ELsURpUZy

= Y 1=|Ls|+|Re| +|Z| = (2M +5)m.

u€ELsURpUZ,

Thus, we have

S U - U = @M +10)m.

(u,w)eEl

Since 7 < 1/2, the value of the solution is at most

1 — = |2
T.UFUZ UD UD > U = Uyl = M + 10)m/((1001M + 1)m)>.
T T (u,w)eEl

]

Lemma 6.4.3 (Soundness). For large enough M, the sparsity of the sparsest cut is at least
v=(1+1/(100M)) - (2M + 10)m /(1001 Mm)>

Proof. Let Dj be the smaller part among D; NS and D; N S, and D}’ be the larger part.
Also, let D! be the smaller part among D, N S and D, N S and D! be the larger part. Let
(T, T) be the cut restricted to Ly U Re U Z, (the BALANCEDSEPARATOR instance), i.e.
letT=5SN(Le URsU Z,)and T = SN (Ly U Ry U Z,.).

1

First, we show that to get a cut of sparsity better than v, |D;| < 157 - | D1, and the
same is true for D, (by the same argument). This is because if |Dj| > 15157 - |Dif, by
the expansion property, there are at least 10*M - |Dj| > 1000Mm edges in the cut. Since
the graph has |Lo| + |Re| + | Z,| + |Di| + | D, | = (2002M + 5)m vertices, therefore the

sparsity of the cut is at least

1000Mm . 500Mm
2+ ((2002M + 5)m)? = (1001Mm)?

>

for M > 1/25.
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Second, we show that D; and D!, should be on opposite sides of any cut of sparsity
better than ~. Suppose not, let S be the side of the cut which D] and D!, are on. Recall that
T =5SN(LeURgpU Z,.). We have

edges(S, S) > edges(T, D] U D!) + edges(D;, D}') + edges(D.., D).

Note that edges(T, D/UD!) > 2|T|—|D;|—|D..| as each vertex in D;, D, is connected to at
most one vertex in 7". Also, by the expansion property, edges(D;, D}') +edges(D.., D) >
1000M (| Dj| + | D.|). Now, we have
edges(S, S) > 2|T| — (|Dj| + | Dy ) + 1000M (| D] + | D, )
— (|| + | D)l + D) + (10000 — 3)(|1D}| + |DL]) = 2(T| + |D}| + |DL]) = 2IS].

Therefore, the sparsity of the cut

edges(S, S) S 2l 2 2

_ — = — >
ISIIS]  — |SIIS]  |S] — (2002M + 5)m

> 7.

Third, we show that if the cut (S, S) has sparsity better than -, then the cut (7', 7T)
defined above is a 0.49 vs 0.51 balanced cut, i.e. |T|/(|Ls| + |Ra| + |Z,|) € [0.49,0.51].
Supposing (7', T) is not 0.49 vs 0.51 balanced, i.e. ||| — |T'|| > 0.02 - (2M + 5)m, we
have

-1000Mm

S| =S|l = |IT| = |T|| - |Dj| — |D;] = 0.02- (2M + 5)m —
151 = 111 2 1] = |71] = |Djl = D] 2 0.02 - (2M + 5)m — w=o
> (0.04M — 2)m > 0.01Mm,
for large enough M. Therefore, (S, S) is not 0.5 — 1075 vs 0.5 + 10~ balanced. Thus,
|S|1S] < ((2002M 4+ 5)m)? - (0.5 — 107°)(0.5 + 107%) < (1001 Mm)* - (1 — 107 '3).

Since D} and D are on opposite sides of (S, S), we know that edges(S, S) > (2M +
5)m — |Dj| — |D.L| > (2M + 5)m - (1 — 1/M), and therefore the sparsity of the cut

edges(S,S)  (2M +5)m

15 (oot (L /AN +107E).

This value is greater than v when M > 10%.

Finally, since (7, T )is a 0.49 Vs 0.51 balanced cut, by [Lemma 6.3.4] we know that
with probability 1 — o(1), edges(T,T) > (5.4 — O(1/v/B) — O(1/M)))m. Therefore

edges(S, S)
[S115]
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 edges(7, T)+ (2M + 5)m — |Dj| — | DL|
- 2+ ((2002M + 5)m)?

(54— O(1/V/B) — O(1/M)))m + (2M + 5)m — L5 — K55

T+ ((2002M + 5)m)?

_(2M +10.2 - O(1/v/B) — O(1/M))m
B 1. ((2002M + 5)m)?
_(2M +10.2 — O(1/VB) = 0@1/M))m
- (1001 Mm)?

(2M 4+ 10.1)m
~ (1001Mm)?
(2M +10)m
(1001 Mm)?
(2M +10)m
(1001 M m)?

>

(1—1/(200M))

(1 —=1/(200M)) (for large enough 3 and M)

v

(14 1/(30M))(1 —1/(200M)) (for large enough M)

Y

(14 1/(100M)) = .
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Chapter 7

Lasserre integrality gaps for
ROBUSTGISO

7.1 Introduction

The GRAPHISOMORPHISM problem is one of the most intriguing and notorious problems
in computational complexity theory (we will also refer to it as GISO for short); we refer
to [149, 30, 24, [148, 169] for surveys. It was famously referred to as a “disease” over 35
years ago [199] and maintains its infectious status to this day. Together with FACTOR-
ING, it is one of the very rare problems in NP which is not known to be in P but which
is believed to not be NP-hard [29] 49, 205]] (according to standard complexity-theoretic
assumptions). Both problems also admit an algorithm with running time “subexponential”
(or “moderately exponential”) in the natural witness size. In the case of GRAPHISOMOR-
PHISM on n-vertex graphs, the natural witness size is log,(n!) = ©(nlogn), but the best
known algorithm due to Luks solves the problem in time 20(vV"1°g7) [33],

In the same breath we might mention the problems GAPSVP 5 (approximating the
shortest vector in an n-dimensional lattice to factor \/n) and UNIQUEGAMES, (the Unique
Games problem proposed by Khot [[136]]). The former is not NP-hard subject to standard
complexity-theoretic assumptions [95, 4], though we don’t know any subexponential-time
algorithm. The latter has a subexponential-time algorithm [16l]; whether it is NP-hard or
in P (or neither) is hotly contested. The potential hardness of FACTORING and GAPSVP
— even under certain average-case distributions — is well enough entrenched that many
cryptographic protocols are based on it. (The same is true of random 3-XOR with noise,
more on which later.) On the other hand, for GRAPHISOMORPHISM and UNIQUEGAMES,
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we do not know any way of generating “hard-seeming instances”; indeed, some experts
have speculated that GRAPHISOMORPHISM may be in P, or at least have a 2P°¥1°e(")_time
algorithm.

In this chapter we investigate hardness results for the GISO problem. Since GISO may
well be in P, let us discuss what this may mean. One direction would be to show that
GIso is hard for small complexity classes. This has been pursued most successfully by
Torén [217], who has shown that GISO is hard for the class DET. This is essentially the
class of problems equivalent to computing the determinant; it contains #L and is contained
in TC'. It is not known whether GISO is P-hard.

7.1.1 Our contributions

In this chapter, however, we are concerned with hardness results well above P. Our main
contribution is that solving GISO via the Lasserre/SOS hierarchy requires 2™ time (i.e.,
Q2(n) rounds/degree). This generalizes the result of Cai, Fiirer, and Immerman [55] show-
ing that the frequently effective o(n)-dimensional Weisfeiler-Lehman algorithm fails to
solve GISO; it also gives even more evidence that any subexponential-time algorithm for
GISso requires algebraic, non-local techniques.

Another result among our contributions is concerned with the problem of robust graph
isomorphism, ROBUSTGISO. Recall from the introduction part of this the is that Ro-
BUSTGISO is the following problem: given two graphs which are almost isomorphic, find
an “almost-isomorphism”. ROBUSTGISO is strictly harder than GISO and the fact that
it concerns “isomorphisms with noise” seems to rule out all algebraic techniques. We
show that ROBUSTGISO is at least as hard as random 3-XOR with noise; hence ROBUST-
GISO has no polynomial-time algorithm assuming the well-known R3XOR Hypothesis
of Feige [88]. In fact, it’s possible that the R3XOR problem requires 27"~ time, which
would mean that ROBUSTGISO is much harder than GISo itself.

7.1.2 SOS/Lasserre gaps

The most well-known heuristic for GRAPHISOMORPHISM (and the basis of most practical
algorithms — e.g., “nauty” [171]) is the Weisfeiler—Lehman (WL) algorithm [222] and its
“higher dimensional” generalizations. To describe the basic algorithm we need the notion
of a colored graph. This is simply a graph, together with a function mapping the vertices to
a finite set of colors; equivalently, a graph with its vertices partitioned into *“color classes”.
Isomorphisms involving colored graphs are always assumed to preserve colors. Let GG be

110



a colored graph on the n-vertex set V. A color refinement step refers to the following
procedure: for each v € V, one determines the multiset C', of colors in the neighborhood
of v; then one recolors each v with color C,. Now the basic WL algorithm, when given
graphs GG and H, repeatedly applies refinement to each of them until the colorings stabilize.
(Initially, the graphs are treated as having just one color class.) At the end, if G and H
have the same number of vertices of each color the WL algorithm outputs that they are
“maybe isomorphic”’; otherwise, it (correctly) outputs that they are “not isomorphic”.

Note that after the initial refinement step, a graph’s vertices are colored according to
their degree. Thus two d-regular graphs are always reported as “maybe isomorphic” by
the basic WL algorithm. On the other hand, the heuristic is powerful enough to work
correctly for all trees and for almost all n-vertex graphs in the Erd6s—Rényi G(n,1/2)
model [31} 32]. (We say the heuristic “works correctly” on a graph G if the stabilized
coloring for G is distinct from the stabilized coloring of any graph not isomorphic to G.)
To overcome WL’s failure for regular graphs, several researchers independently introduced
the “k-dimensional generalization” WL (see [222,55]] for discussion). Briefly, in the WL*
heuristic, each k-tuple of vertices has a color, and color refinement involves looking at all
“neighbors” of each k-tuple of vertices (v1, ..., vy) (where the neighbors are all tuples of
the form (vy, ..., v;_1, U, Vi1, - - -, V), where {u;, v;} is an edge). The WL heuristic can
be performed in time n*+°() and is thus a polynomial-time algorithm for any constant k.

The WL* heuristic is very powerful. For example, it is known to work correctly in
polynomial time for all graphs which exclude a fixed minor [102], a class which includes
all graphs of bounded treewidth or bounded genus. Spielman’s 20('"*)_time graph isomor-
phism algorithm [213] for strongly regular graphs is achieved by WL* with k = O(n!/3).
The WL* algorithm with & = O(y/n) is also a key component in the 2°(V"1°8™)_time GIs0O
algorithm [33]]. Throughout the *80s there was some speculation that GISO might be solv-
able on all graphs by running the WL* algorithm with k = O(logn) or even k = O(1).
However this was disproved in the notable work of Cai, Fiirer, and Immerman [55]], which
showed the existence of nonisomorphic n-vertex graphs G and H which are not distin-
guished by WL unless k = Q(n)[]

The GRAPHISOMORPHISM problem can be thought of as kind of constraint satisfac-
tion problem (CSP), and readers familiar with LP/SDP hierarchies for CSPs might see an
analogy between k-dimensional WL and level-£ LP/SDP relaxations. A very interesting
recent work of Atserias and Maneva [27] (see also [[103]) shows that this is more than

!'Actually, G and H are colored graphs in [55]’s construction, with each color class having size at most 4.
It is often stated that the colors can be replaced by gadgets while keeping the number of vertices O(n). We
do not find this to be immediately obvious. However it does follow from the asymmetry of random graphs,
as we will see later in this chapter.
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just an analogy — it shows that the power of WLF is precisely sandwiched between that
of the kth and (k + 1)st level of the canonical Sherali-Adams LP hierarchy [207]. (In
fact, it had long been known [196] that WL! is equivalent in power to the basic LP relax-
ation of GIS0.) This gives a very satisfactory connection between standard techniques in
optimization algorithms and the best known non-algebraic/local techniques for GISO.

This connection raises the question of whether stronger LP/SDP hierarchies might
prove more powerful than WLF in the context of GISO. The strongest such hierarchy
known is the “SOS (sum-of-squares) hierarchy” due to Lasserre [156] and Parrilo [185].
Very recent work [34, 184} [133] (part of which included in this thesis) in the field of
CSP approximability has shown that O(1) levels of the SOS hierarchy can succeed where
w(1) levels of weaker SDP hierarchies fail; in particular, this holds for the hardest known
instances of UNIQUEGAMES, [34]. This raises the question of whether there might be a
subexponential-time algorithm based SOS which solves GRAPHISOMORPHISM.

We answer this question negatively. Our first main result is that a variant of the
Cai-Fiirer-Immerman instances also fools €2(n) levels of the SOS hierarchy. In fact, we
achieve a ‘“constant factor Lasserre gap with perfect completeness”. To explain this, recall
the definition of a-isomorphism from [Definition 2.1.5|which we restate as follows.

Definition 7.1.1 (Re-statement of [Definition 2.1.5). Let G' and H be nonempty n-vertex
graphs. For 0 < < 1, we say that a bijection 7 : V(G) — V(H) is an a-isomorphism
if

[{(u,v) € B(G) : (n(u), n(v)) € E(H)} _
max{|E(G)], | E(H)[} -

In this case we say that G and H are a-isomorphic.

Observe that this definition is symmetric in G and H. The two graphs are isomorphic
if and only if they are 1-isomorphic. We will almost always consider the case that G' and
H have the same number of edges. We prove:

Theorem 7.1.2. For infinitely many n, there exist pairs of n-vertex, O(n)-edge graphs G
and H such that:

e G and H are not (1 — 10~')-isomorphic,

o any SOS refutation of the statement “G and H are isomorphic 'E] requires degree €)(n).

>When naturally encoded.

112



A word on our techniques. The essence of the Cai—Filirer-Immerman construction is
to take a 3-regular expander graph and replace each vertex by a certain 10-vertex gadget
(originally appearing in [123] and also sometimes called a “Fiirer gadget”). This gad-
get is closely related to 3-variable equations modulo 2 (as observed by several authors,
e.g. [217]); indeed, it may be described as the “label-extended graph” of the 3-XOR
constraint. The reader may therefore recognize the [55] WL* lower bound as stemming
from the difficulty of refuting unsatisfiable, expanding 3-XOR CSP instances by “local”
means. This should make our [Theorem 7.1.2|look plausible in light of the Grigoriev [99]
and Schoenebeck [[204]] SOS/Lasserre lower bounds.

Nevertheless, obtaining [Theorem 7.1.2]is not automatic. For one, we still lack a com-
plete theory of reductions within the SOS hierarchy (though see [220]]). Second, the pair
of graphs constructed by [S35] only differ by one edge. More tricky is the issue of removing
the “colors” from the [S5] construction. We do not see an easy gadget-based way of doing
this without sacrificing on the {2(n) degree. To handle this we have to: a) modify the [55]
construction somewhat to make the two graphs differ by a constant fraction; b) prove that
random (hyper)graphs are “robustly asymmetric” — i.e., “far from having nontrivial au-
tomorphisms”; c¢) use the robust asymmetry property to remove the “colors”. The result
in b), described below in[Section 7.1.4] qualitatively generalizes work of Erd6s and Rényi
[81] and may be of independent interest.

Comparison to the work by Snook et al. In an independent work, Schoenebeck, Co-
denotti, and Snook [211] have shown a conclusion similar to our [Theorem 7.1.2] Their
main result is that there are expander graphs G and H which are not isomorphic, but
any SOS refutation of the statement “G and H are isomorphic” requires degree 2(n).
As in our work, their proof combines the Cai—Fiirer-Immerman construction with the
Schoenebeck [204] SOS/Lasserre lower bounds.

7.1.3 Robust graph isomorphism

Our second main result concerns the ROBUSTGISO problem. Recall the definition of
ROBUSTGISO from which we restate as follows.

Definition 7.1.3 (Re-statement of [Definition 2.2.7). We say an algorithm A solves the
ROBUSTGISO problem if there is a function r : [0,1] — [0, 1] satisfying r(e) — 0 as
e — 07 such that whenever A is given any pair of graphs which are (1 — €)-isomorphic, A
outputs a (1 — r(€))-isomorphism between them[]

3We could also consider the easier task of distinguishing pairs which are (1 — €)-isomorphic from pairs
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To understand the motivation of this definition, we might imagine an algorithm trying
to recover an isomorphism between GG and H, where H is formed by permuting the vertices
of G and then introducing a small amount of noise — say, adding and deleting an ¢ fraction
of edges. Thinking of GISO as a CSP, we are concerned with finding “almost-satisfying”
solutions on “almost-satisfiable” instances. For example, suppose we are given graphs G
and H which are promised to be (1 — ¢)-isomorphic. Can we efficiently find a (1 — 2¢)-
isomorphism? A (1 — /e¢)-isomorphism? A (1 — m)—isomorphism? Therefore the
notion of ROBUSTGISO naturally comes in.

Remark 7.1.1. In particular, A in|Definition 7.1.3|must solve the GISO problem, because
given isomorphic graphs with at most m edges we can always take ¢ > 0 small enough so
that r(e) < 1/m.

The analogous problem of robust satisfaction algorithms for CSPs over constant-size
domains was introduced by Zwick [228]] and has proved to be very interesting. Guruswami
and Zhou [113]] conjectured that the CSPs which have efficient robust algorithms (subject
to P # NP) are precisely those of “bounded width” — roughly speaking, those that do not
encode equations over abelian groups. This conjecture was recently confirmed by Barto
and Kozik [38], following partial progress in [153}72]].

The graph isomorphism seems to share some of the flavor of “unbounded width” CSPs
such as 3-XOR; these CSPs have the property that special algebraic methods (namely,
Gaussian elimination) are available on satisfiable instances, but these methods break down
once there is a small amount of noise. Indeed, the 20(vnlogn) _time algorithm for GISo
is a somewhat peculiar mix of group theory and “local methods” (namely, Weisfeiler—
Lehman). Generalizing from GISO to ROBUSTGISO seems like it might rule out applica-
bility of group-theoretic methods, thereby making the problem much harder. Our second
main theorem in a sense confirms this. Roughly speaking, it shows that ROBUSTGISO is
hard assuming it is hard to distinguish random 3-XOR instances from random instances
with a planted solution and slight noise:

Theorem 7.1.4. Assume Feige’s R3XOR Hypothesis [88]. Then there is no polynomial-
time algorithm for ROBUSTGISO. More precisely, there exists ¢y > 0, such that suppose
there exists € > 0 and a t(n)-time algorithm which can distinguish (1 — €)-isomorphic
n-vertex, m-edge graph pairs from pairs which are not even (1 — €,)-isomorphic (where
m = O(n)). Then there is a universal constant A € Z* and a t(O(n))-time algorithm
which outputs “typical” for almost all n-variable, An-constraint instances of the 3-XOR
problem, yet which never outputs “typical” on instances which are (1 — ©(¢))-satisfiable.

which are not (1 — r(¢))-isomorphic. In fact, our hardness result will hold even for this easier problem.
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Here we refer to:

Feige’s R3XOR Hypothesis. For every fixed ¢ > 0, A € Z*, there is no polynomial
time algorithm which on almost all 3-XOR instances with n variables and m = An
constraints outputs “typical”, but which never outputs “typical” on instances which an
assignment satisfying at least (1 — €)m constraints.

Remark 7.1.2. The reader may think of the output “typical” as a certification that the
3-XOR instance has no (1 — €)-satisfying solution. Note that with high probability the
random 3-XOR instance will not even have a .51-satisfying solution. Feige originally
stated his hypothesis for the random 3SAT problem rather than the random 3XOR problem,
but he showed the conjectures are equivalent. See also the work of Alekhnovich [5].

Feige’s R3XOR Hypothesis is a fairly well-believed conjecture. The variation in
which the XOR constraints may involve any number of variables (not just 3) is called
LPN (Learning Parities with Noise) and is believed to be hard even with any m = poly(n)
constraints. The further variation which has linear equations modulo a large prime rather
than modulo 2 is called LWE (Learning With Errors) and forms the basis for a large body
of cryptography. (See [200] for more on LPN and LWE.) The fastest known algorithm
for solving Feige’s R3XOR problem seems to be the 2°(*/1°8™)_time algorithm of Blum,
Kalai, and Wasserman [44]. Thus it’s plausible that ROBUSTGISO requires 27" " time,
which would make it a much more difficulty problem than GISo.

We close by mentioning some related literature on approximate graph isomorphism.
The problem of finding a vertex permutation which maximizes the number of edge over-
laps (or minimizes the number of edge/nonedge overlaps) was perhaps first discussed by
Arora, Frieze, and Kaplan [17]. They gave an additive quasi-PTAS in the case of dense
graphs (m = (n?)) (as we previously discussed in . Arvind et al. [25] recently
defined and studied several variants of the approximate graph isomorphism problem. Some
of their results concern the case in which G and H have noticeably different numbers of
edges and one isn’t “punished” for uncovered edges in . This kind of variant is more
like approximate subgraph isomorphism, and is much harder. (E.g., when G is a k-clique
and H is a general graph the problem is roughly equivalent to the notorious DENSEST-
kSUBGRAPH problem.) The result of theirs which is most relevant to the present work
involves hardness of finding approximate isomorphisms in colored graphs. In particular,
Arvind eta al. prove the following:

Theorem 7.1.5. ([25|].) There is a linear-time reduction from 2XOR (modulo 2) in-
stances I to pairs of colored graphs G, H such that G and H are a-isomorphic if and
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only if T has a solution satisfying at least an a-fraction of constraints. In particular
it is NP-hard to approximate «-isomorphism for colored graphs to a factor exceeding

11

13 and UNIQUEGAMES-hard to approximate it to a factor exceeding .878 (by results

of [219,1116], [141,|174)] respectively).

In particular, the theorem holds for colored graphs in which each color class contains
at most 4 vertices. However, we do not see any way of eliminating the colors and getting
the analogous inapproximability results for the usual GISO problem without using gadgets
that would destroy the constant-factor gap.

7.1.4 Robust asymmetry of random graphs

One of our main technical contributions is showing that random graphs are “robustly asym-
metric”. In doing so, we generalize the concept of an asymmetric graph, which is a graph
whose only automorphism is the trivial identity automorphism. A line of research (see,
e.g., [81, 47, 1172, [145]) has shown that several distributions of random graphs produce
asymmetric graphs with high probability. In their well-known G(n, p) model, Erd6s and
Rényi [81]] proved that for 122 < p <1 — IHT”, G(n, p) is asymmetric with high probabil-
ity. If we instead consider a uniformly random d-regular n-vertex graph, the sequence of
works [47,172,145] shows that we get an asymmetric graph with high probability for any
3 < d < n — 4. In this work we will work with a third variant, the G,, ,,, model, in which a
graph is chosen uniformly at random from all simple graphs with n vertices and m edges.

Given a graph GG and a permutation 7 over V' (G), we call 7 an c-automorphism if the
application of 7 on (G preserves at least an « fraction of the edges. A graph G is (5,7)-
asymmetric if any ~y-automorphism 7 has more than a fraction of (1 — ) fixed points.
Intuitively, when 5 = 1/n, v = 0, the property is exactly the asymmetry property; when
and vy become larger, the property requires that any permutation that is far from identity is
far from an automorphism for the graph. We encourage the reader to refer to [Section 7.2
for the precise definitions.

In this chapter, we show the following robust asymmetric property of G,, ..
Theorem 7.1.6. For large enough n, suppose that m = cn, where 10* < ¢ < n/10'°, Let

B = max{e~*/, L}. With probability (1 — n=*%), for all § such that §* < < 1, Gy is
(8, B/240)-asymmetric.

A couple of comments are in order. First, an exp(—O(c)) lower bound on [ is neces-
sary. This is because there are at least |exp(—O(c)) - n| isolated vertices in G, ,,, with
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high probability. The permutations which only permute these isolated vertices are 1-
automorphisms. Therefore, with high probability, G,, ,,, is not (exp(—w(c)), 0)-asymmetric.
Second, it is possible to extend our theorem to the G(n, p) model by showing that there
exists a constant C' > 0, such that for % <p< %, with high probability, G(n,p) is
(83, 8/240)-asymmetric for all # > max{exp(—£2%), L }. Third, when ¢ > 6Inn (or, when
p > % in the G(n, p) model), we can let 5 = % and obtain that G,, ,,, (G(n, p), respec-
tively) is asymmetric with high probability — a result in the flavor of [81]. Finally, we do
not work hard to optimize the constants in the theorem statement; we believe a more care-
ful analysis would bring them down to more civilized numbers, but it is still interesting to

explore the limits of these constants.

Now we briefly explain our proof techniques. Let us consider the case where c is a big
constant and 5 = 1, so that we only need to worry about the permutations without fixed
points. We would like to show that, for every such permutation 7,

1
GE{,m [Tisa go-automorphism for G] <« E

and therefore we can union bound over all such possible permutations. In order to do
this, from all (}}) possible edges, we construct ((n?) disjoint pairs of edges (e, ¢’), which
we will refer to as “bins”, such that w(e) = ¢/. We call a bin “half-full” if exactly
one edge in the pair is selected in G. It is easy to see that whenever there are more
than % half-full bins, 7 cannot be a 2T}‘O—automorphism. At this point, we would like
for Prg [#half—full bins < 17”70} < % and this is easy to show. Unfortunately, this
method does not work when § = % To see why, let 7 be a permutation with 7 fixed
points. The probability that every edge in GG has fixed points of 7 for its endpoints is
roughly 272™ = 279" Therefore we have Prq|[r is an automorphism for G| > 2=,
and this is not enough for the application of union bound (since there are more than
(n/2)! = 2%Unlesn) guch permutations). A possible fix to this problem is: we first show
that with high probability (1 — n=<(), for every 7 with 5 fixed points, there are many
edges of G with at least one end point not fixed by 7; then, conditioned on this event, we
show the probability that a fixed 7 is not a ﬁ-automorphism is small enough for the union
bound method. The actual proof is more involved, and it is also technically challenging to

work with ¢ as large as Q(n), and 3 as small as =.

Finally, for our application to the GRAPHISOMORPHISM problem, we need to extend

to hypergraphs. More details on robust asymmetry of random hypergraphs
can be found in
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7.1.5 Organization
In we introduce the notations and the SOS/Lasserre hierarchy. In

we describe a reduction from 3-XOR to GISO. The completeness and soundness lemmas
for reduction are proved in [Section 7.4] and [Section 7.5| respectively. In we
prove robust asymmetry property for random graphs and random hypergraphs.

Proofs of the main theorems. [Theorem 7.1.2|follows from[Theorem 7.2.2|[Lemma 7.4.2|

and [Lemma 7.5.1] by choosing ¢ = 10°. [Theorem 7.1.4| follows from [Lemma 7.4.1] and
Lemma 7.5.1} by choosing ¢ = max{10°, A}.

7.2 Preliminaries

We will be working with undirected graphs and hypergraphs, both of which will be denoted
by G = (V, E). Here, an undirected edge e € F is a set of 2 vertices {i, j} for graphs
and a set of k vertices {i1, 72, ..., 4} for k-uniform hypergraphs. When G is an directed
graph, we use (i, j) to denote a directed edge. We also use the notation V' (G) to denote
the vertex set of G, and E(G) to denote the edge set of G.

For any two undirected graphs (or hypergraphs) G = (V(G), E(G))and H = (V(H), E(H))
with the same number of vertices, and for any bijection 7 : V(G) — V(H), let
{e € E(G) :m(e) € E(H)}|
Glso(G,H;7) = :
max{|E(G), E(H)|}

where 7 (e) is the edge obtained by applying 7 on each vertex incident to e. Let

Glso(G,H)=  max Glso(G, H;m).
mV(G)—=V (H)

We say that an edge e € E(G) is satisfied by 7 if w(e) € E(H). We call 7 an a-
isomorphism for G and H if GIso(G, H;m) > «, and we say G and H are a-isomorphic
if GIso(G,H) > a.

For any permutation 7 : V(G) — V(G), let
AUT(G;m) = GIso(G,G; ).

We say that 7 is an a-automorphism for G if AUT(G; ) > a.

Given a permutation 7 over the set 1/, an element i € V is a fixed point of 7 if 7(i) = 1.
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Definition 7.2.1. A graph (possibly hypergraph) G is ((,~)-asymmetric if, for any per-
mutation  on the vertex set of G that has at most (1 — [3) fraction of the vertices as fixed
points, we have AUT(G; ) <1 — .

We extend the G, ,, random graph model to hypergraphs as follows. Let QY(L]"})n be the

uniform distribution over all ((52) simple k-uniform hypergraphs with n vertices and m
edges.

A 3-XOR instance C is a collection of equations C, Cs, ..., C,, over the variable set
X. Each equation Cj is of the form z, 4z, +x;, = b where x; , z,, x;, are the variables
from X, b € Z,. Given an assignment 7 : X — Zs, let val(C; 7) be the fraction of
equations in C satisfied by 7. Let val(C) = max,.y_,z, val(C; 7).

7.2.1 SOS/Lasserre hierarchy

One way to formulate the SOS/Lasserre hierarchy is via the pseudo-expectation view. We
briefly recall the formulation as follows. More discussion about this view can be found in
(34].

We consider the feasibility of a system over n variables (x1,z,...,x,) € R™ with
the following constraints: Pj(x) = 0 fori = 1,2,...,mp and Q;(x) > 0 for j =
1,2,...,mq, where all the P;, ); polynomials are of degree at most d. For r > d, the
degree-r SOS/Lasserre hierarchy finds a pseudo-expectation operator E[-] defined on the
space of real polynomials of degree at most r over intermediates x, xs, . . ., ,, such that

e Elap + Bq] = aE[p] + BE]q] for all real numbers «, 5 and all polynomials p and ¢
of degree at most 7;

e E[p?] > 0 for all polynomials p of degree at most /2;

e E[P,-¢q] =0foralli = 1,2,...,mp and all polynomials ¢ such that P, - ¢ is of
degree at most r;

e E[Q;-p?] >0foralli=1,2,...,mg and all polynomials p such that Q; - p? is of
degree at most r.

We call any operator E[-] a normalized linear operator if it has the first two properties
listed above.
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SOS/Lasserre hierarchy for 3-XOR. Let C be a 3-XOR instance on variable set X.
The degree-r SOS/Lasserre hierarchy for the natural integer programming for (the satis-
fiability of) C is to find a normalized linear pseudo-expectation operator E[] defined on
the space of polynomials of degree at most r over the indeterminates (A[z — al)zex acz,
associated to C, such that

1. E[(A[lz — a]?> — A[z + a]) - q] = 0forall 2 € X, a € Zy, and polynomials ¢;

2. E[(Alx — 0]+ Alz — 1] — 1) - ¢ = 0 for all z € X and polynomials g;

3. E[(Zac satisfyingC"A[x1 = Oéc'(l'l)]A[{EQ = ac(l‘g)]A[[Bg = ac(xg)] - 1) ’ Q] =0
for each C' € C involving variables x1, zo, x3 and all polynomials ¢;

4. E[p?] > 0 for all polynomials p.

We say there is degree-r SOS refutation for the satisfiability of C if the pseudo-expectation
operator with properties listed above does not exist.

SOS/Lasserre hierarchy for GIso. Let G = (V(G), E(G)) and H = (V(H), E(H))
be two graphs such that |V (G)| = |V (E)|, |E(G)| = |E(H)|. The degree-r SOS/Lasserre
hierarchy for the natural integer programming the isomorphism problem between G and
H is to find a normalized linear pseudo-expectation operator E[] on the space of real
polynomials of degree at most 7 over the indeterminates (II[u — v])uev()vev(m) such
that:

a B[([u — v]2—M[u ~ v])-q] = 0forallu € V(G),v € V(H), and polynomials g;
b E[(Zer(H)H[U — v] — 1) -¢q] = 0 forall w € V(G) and polynomials ¢; and

similarly, E[(3_,cy (g Hlu — v] — 1) - ¢] = 0 forall v € V(H) and polynomials ¢;

C EKZ{U,U’}EE(G) Zv,v’:{v,v’}eE(H) H[U/ — U]H[Ul — /U/} — |E(G)|) . p2] Z 0 for all
polynomials p;

d E[p?] > 0 for all polynomials p.

We say there is degree-r SOS refutation for the isomorphism between G and H if the
pseudo-expectation operator with properties listed above does not exist.

Remark 7.2.1. It is equivalent to replace (c}) by “ENJ[(ZM/:{M/}GE(H) Hu — o]y —
V'] —=1)-q] =0forall (u,v') € E(G) and all polynomials q”.
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7.2.2 Random 3-XOR

A random 3-XOR instance with n variables and m equations is sampled by choosing
m unordered 3-tuples of variables from all possible (73‘) ones, and making each 3-tuple
(xj,,2;,,xj,) into a 3-XOR constraint z;, + z;, + =;, = b with an independent random

b e Zy.

Theorem 7.2.2. [204] For every constant ¢ > 1, there is exists n > 0 such that with
probability 1 — o(1), the satisfiability of a random 3-XOR instanc with n variables and
cn equations cannot be refuted by degree-(nn) SOS/Lasserre hierarchy.

7.3 Reduction from 3-XOR to GISO

We define a slight variant of the basic gadget from [S5]:

Definition 7.3.1. Let C be a 3-XOR constraint involving variables x1, xs, x3. The asso-
ciated gadget graph G consists of: 6 “variable vertices” with names “x; — a” for each
i € [3], a € Zy; and, 4 “constraint vertices” with names “xi — ay,Ts — ag,x3 —> az”
for each partial assignment which satisfies the constraint C. Regarding edges, each pair
of variable vertices x; — 0, x; — 1 is connected by an edge; the four constraint vertices
are connected by a clique; and, each constraint vertex o is connected to the three variable
vertices it is consistent with.

Now we describe how an entire instance of 3-XOR is encoded by a graph:

Definition 7.3.2. Let C be a collection of 3-XOR constraints over variable set X. We
define the associated graph G¢ as follows: For each constraint C' € C, the graph G
contains a copy of the gadget graph G . However we identity all of the variable vertices
T +— aacross x € X, a € Zy as well as the variable edges (v — 0,z + 1). The
constraint vertices associated to C, on the other hand, are left as-is, and will be named
ac. We denote the set of vertices {x +— 0,z — 1} by V, for every variable x, denote the
set of vertices corresponding to C' by V¢ for every variable C.

Remark 7.3.1. IfC is a 3-XOR instance with n vertices and m constraints then the graph
Gec has N = 4m + 2n vertices and M = 18m + n edges.

Finally, we introduce the following notation:

4The random 3-XOR distribution used in [204] is slightly different, but the theorem still holds for our
distribution.
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Notation 7.3.1. Let C' be a 3-XOR constraint involving variables x;, x;, xi. We write C
for its homogeneous version, x; + x; + x, = 0. Given a collection of 3-XOR constraints

CwewriteC={C :C €C}.

The reduction. Given a collection of 3-XOR constraints C, the corresponding GISO
instance i (Ge, Ge).

7.4 Completeness

Lemma 7.4.1 (Completeness). If C is a 3-XOR instance such that val(C) > 1 — ¢, then
GIso(Ge,Ge) > 1 —2¢/3.

Proof. Let T be an assignment to the variables in C such that val(Z;7) > 1 — e. Now we
define a bijection 7 from the vertices in G¢ to the ones in G¢ as follows.

For each variable vertex x; — b, let 7(z; — b) = x; — b+ 7(z;). For any equation
vertex ag,, if C; is not satisfied by 7, map it to an arbitrary vertex in V. If C; is satisfied
by 7, let us suppose that C; : z;, + z;, + xj, = b, let &’ be an assignment such that
o (zj,) = a(z;,) + 7(x;,) forall t € {1,2,3}. Observe that

O/('le)—i_a/(wjz)_'_O/(x]’s) = (a(le)+a<wj2)+05($j3))+(7-($j1)+T($J’2>+T(xj3)) =b+b=0.
Therefore oy, is a vertex in Gig. We let 7 map a; to ag,.

It is straightforward to check that all the edges between equation vertices and between
variable vertices are satisfied. Now we consider an edge between a equation vertex and a
variable vertex, namely between ac, and z; — b where x; is an variable in equation Cj
and a(x;) = b. We show that the edge is satisfied by = whenever C; is satisfied by 7. Let
o and ' be such that 7(ac,) = ag,, 7(x; +— b) = z; — b'". Observe that

o (2) = afwy) + 7(x;) = b+ 7(x;) =V,
and this implies that there is an edge between oy, and z; — b'.

We see that the only edges in G'¢ which might not be satisfied by 7 are the ones between
equation vertices and variable vertices where the corresponding equation vertex is not
satisfied by 7. For each equation not satisfied, there are at most 12 such edges. Therefore
there are at most 12em edges not satisfied. We have

M — 12em 2

Glso(Ge,Ge) > Glso(Ge,Geym) > — >1-— 3 O
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7.4.1 SOS completeness

Lemma 7.4.2 (SOS completeness). Let C be a 3-XOR instance on variable set X and
suppose that every SOS refutation of C requires degree exceeding r. Then every SOS
refutation of the statement “G¢ and G¢ are isomorphic” requires degree exceeding /3.

Proof. Since C cannot be refuted in degree r, there is a pseudo-expectation operator Ec|[]
defined on the space of real polynomials of degree at most r over the indeterminates
(Alx — a])zex.acz, associated to C. This E¢[-] is normalized, linear, and satisfies:

i Ec[(Alx — a]> — Alz + a])-¢] =0forall z € X, a € Z,, and polynomials ¢;
ii Ee[(A[z — 0]+ Az + 1] —1)-¢] = 0forall z € X and polynomials ¢;

it Ee[(Xa, sastying ¢ A1 = ac(@1)]Alzz = ac(w2)]Alrs = ac(ws)] = 1) - ¢] = 0
for each C € C involving variables x4, x5, 3 and all polynomials g;

iv Ec[p?] > 0 for all polynomials p.

Our task is to define a normalized linear pseudo-expectation operator Eg [-] on the space
of real polynomials of degree at most /3 over the indeterminates (I[u > v])uev(ce)vev(ce)
such that:

I Eg[(H[u +— v]> —u = v])-q] = 0forall u € V(Ge), v € V(Ge), and
polynomials g;

I Eg[(ZUEV(Gc) fu — v] — 1) - q] = 0 for all u € V(G¢) and polynomials ¢; and

similarly, Eg (2uev(ge) 1w = v]=1)-¢] = Oforallv € V(Ge¢) and polynomials ¢

11 Eg[(Z{uju’}EE(GC) Zv,v’:{v,v’}eE(G’g) H[U = U]H[’U,/ = U/] - M) ’ p2] > 0 for all
polynomials p;

IV Eg[p?] > 0 for all polynomials p.

Here M denotes the number of edges in G¢ (and also in G¢).

The idea is to formally define each indeterminate II[u — v] as a certain degree-3 mul-
tilinear polynomial of the indeterminates A[z +— a]. Then Eg[-] is automatically defined
in terms of Ec[-] for all polynomials of degree at most /3. The natural definition is as
follows:
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1. Letz € X and a € Zy. We define [1[(x +— a) — (x +— b)] = Az — (a — b)].

2. Let C € C, let ac = (21 — aq,x9 — ag,x3 — ag) be constraint vertex in G
corresponding to C, and let Bc = (1 + by, 29 — by, x3 — b3) be a constraint
vertex in G¢ corresponding to C'. We define II[ac — (¢ to be the following degree-
3 monomial:

A[ZL’l — (CLl — bl)]A[CL’Q — ((12 — bg)]A[Ig — (a3 — bg)]
3. All other indeterminates II[u — v] are formally defined to be 0.

It is clear that Eg[-] is normalized and linear by the same property of E¢[]. It remains
to show that the induced pseudo-expectation operator Eg|-] satisfies (I)—(TV) using the fact
that E¢|-] satisfies ()—(iv). Most of these are easy; for example, the implication (iv)) =
is immediate. Almost as easy is that (i) = () and that (i), = (M). We illustrate
some of these implications, leaving the rest to the reader. For example, let’s verify () for
indeterminates of type II[ac — [¢|. For brevity we’ll write [ljac — [c] as A1 A As.
Now for any polynomial g over the IT’s,

Eg[(Hac — Bc)* — Mac — Bcl) - g

= Eg[(A2A2A2 — A1 Ay As) - (] (for some polynomial ¢’ over the A’s)
= Egl(A} — A1) A343 - ¢] + Eg[A1 (A3 — A2) A3 - ¢] + Eg[A1 Ay(A3 — A3) - ¢]
=0 (by @.)

And let’s verify (TI) when w is a variable vertex x — a:

Ec ( > H[(xl—>a)l—>v]—1> ~q]
UEV(GQ)
=Ec[(A[r = a—0+ Az a—1]—1)-q] (all other II’s are 0)
=0 (by (i)
The main effort is to establish (III). In fact we will show
Ec 3 Mu = v)lu' = o] = 1] -p*| =0 (7.1)
v {v'}eE(Ge)

for all edges {u,u'} € E(G¢) and all p, whence follows by summing. We will omit
the (easy) verification of this for the edges (z — 0,z — 1). Instead we will first verify
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that holds for a typical clique edge associated to constraint C, say (ac, ag), on
variables x1, x5, z3. Only the indeterminates of corresponding constraints, say Il[ac —
B¢, are nonzero. Writing A;[a— 5] = Ax; — ac(x;) — Be(x;)] for brevity (and similarly
with primes), the quantity in is

Ec [( > Ayl = BlAs[a — BlAsla — BlAia’ — Bl A’ — B Asld — B - 1) .p/ﬂ

Be.Be
satisfying C'
~ e [((z Ao — B Agla — BlAsla — B)) (X Asle! — B) Ao — B)Aslel — B]) — 1) .pﬂ.
Bc 'BIQ

(7.2)

Now for fixed ac, as S¢ ranges over all satisfying assignments to C', the assignment
ac — e ranges over all satisfying assignments to C'. The analogous statement holds also
for .. It’s now straightforward to see that the vanishing of (7.2)) follows from (iii).

Our final task is to verify (7.1]) also for edges between variable vertices and constraint
vertices. Fix a typical such edge, say one connecting x; — a; to a. (We’ll use the same
notation as before for a; in particular, note that we must have cve (1) = a1.) Now in this

case, the quantity in ((7.1) is

B( T Al o 0 5o Ao Ao A1) 7]

beZo,
Bc satisfying C

= Be[ (3 Al = ) (S Ao = o= flsla = 8) = 1) 7. @)

CcEZL2

Again, the fact that (7.3]) vanishes now easily follows from (i), (iii)). O

7.5 Soundness

In this section, we prove the following soundness lemma.

Lemma 7.5.1 (Soundness). LetC = {C4,Cy, . .., C,, } be a random 3-XOR instance with
n variables and m = cn equations where ¢ > 10*0. With probability 1 — o(1), we have

GISO(Gc, GQ) <1l——.

Before proving [Lemma 7.5.1] we first introduce the following definition.

125



Definition 7.5.2. A graph (possibly hypergraph) G is (¢, D)-degree bounded if the average
degree of every set of € fraction of vertices is at most D.

Claim 7.5.3. Suppose ¢ > 3. A random 3-uniform hypergraph H drawn from g}f’)n where
m = cn, is (1/c,100c)-degree bounded with probability 1 — o(1).

Claim 7.5.4. Given an (e, D)-degree bounded graph G with n vertices, every set of fn
vertices has at most (€ + [3) Dn edges incident to them.

Lemma 7.5.1|is directed implied by the following two lemmas.

Lemma 7.5.5. Let H = ([n], E = {e;}) be a 3-uniform hypergraph with n vertices and
m = cn hyperedges. the constraint graph of a 3-XOR instance with n variables and
m = cn equations. Suppose H is (¢,100c)-degree bounded and (3, ~y)-asymmetric, where
v > 200e. Let C = {C1,Cs,...,C,} be an arbitrary 3-XOR with n variables and m
constraints based on H. (In other words, each hyperedge e; of H connects the indices of
the 3 variables used by C;.) If we set

i 1 v €
d:=46(c,¢6,8,7) —mln{2—00,4—8,@},

when Gl1so(Ge,Ge) > 1 — 0, we have val(C) > .9 — 100(e + 5).

Lemma 7.5.6. If C is a random 3-XOR instance with n variables and m > 10000n
equations, then with probability 1 — o(1), we have val(C) < .51.

Proof of|Lemma 7.5.1} Sete = %, v = @, = &200. Combining|Claim 7.5.3|, ILemma 7.5.6|,
and [Theorem 7.6.9, we know that with probability (1 — o(1)), all of the following hold:

1. H is (€, 100c)-degree bounded,

2. His (f,~)-asymmetric, and
3. val(C) < .51.

Given that these hold, assume for sake of contradiction that GIso(Ge,Ge) > 1 — 5.
Then because G satisfies [[tem I} and [Item 2| [Lemma 7.5.5|implies that
1 48000
val(C) > .9 — 100 (— + ) > .8,

C C

where the last step follows because ¢ > 10'°. However, this contradicts Therefore,
Gls0(Ge,Ge) < 1 — 5o with probability 1 — o(1). O
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The proof of is standard.

Proof of[Lemma 7.5.6] Fix an assignment to the n variables. The probability that the
assignment satisfies at least .51m equations of a random 3-XOR instance is at most
exp(—.02% - .5m/2) = exp(—.0001m) by the Chernoff bound. Since there are only 2"
assignments, the probability that no assignment satisfies more than .5m equations is at
least 1 — exp(—.0001m) - 2" =1 — o(1) when m > 10000n. O

The rest of the section is devoted to the proof of

Proof of [Lemma 7.5.5] Let 7 be a bijection mapping the vertices in G¢ to the vertices in
G such that GIso(Ge,Ge;m) > 1 — 0. We first prove that for most i’s, 7 maps the set

Ve, to V¢, for some ', and for most j’s, 7 maps most V., to Vx; for some j’. Formally, let
Abe the set of 4 € [m] such that 7(V{,) = V¢, for some 7', and let B be the set of j € [n]
such that w(V,;) = V;, for some j'. We show that

Claim 7.5.7. |A| > (1 — 196)m,

B| > (1 —95¢H)n.

Now we are able to define a permutation o on the variables in C (as well as C since the
set of variables is shared). We let o to be an arbitrary permutation so that for each j € B,
we have o(j) = j' where 7(V;) =V, ,. Now we show that o is an almost automorphism
for the constraint graph (i.e. the hypergraph H = ([n], E)).

Claim 7.5.8. AUT(H; ) > (1 — 100e — 248)m.

By our setting of J, we have 246 < /2. Since we also assume that 100e < /2, we
have AUT(G;0) > (1 — «)m, and therefore we know that ¢ has at least (1 — )n fixed
points.

Now we are ready to define an assignment 7 : {x;} — Z, which certifies that val(Z) >
.9. For each j which is not a fixed point of o, define 7(x;) arbitrarily. For each j being a
fixed point of o, we know that (V,) = V,,. We let 7(z;) = b where 7(z; — 0) = z;
b. We conclude the proof by showing the following claim.

Claim 7.5.9. val(C;7) > .9 — 100(e + 3).
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7.5.1 Proof of the claims

Proof of[Claim 7.5.7] Observe that the only 4-cliques in G¢ are V¢, (i' € [m]). Therefore,
if 7(Ve,) # Ve, for every i’, we know that at least one of the edges in the clique V¢, is not
satisfied. Therefore we have m — |A| < §M (recall that M = 18m + n is the number of
edges in G¢), i.e. |[A| >m —0M > (1 —190)m.

We now know that at least (1 — 195)m - 4 equation vertices in G¢ are mapped from
equation vertices in G¢. Therefore there are at most 4m — (1 —190)m-4 = 765m equation
vertices in G¢ being mapped from variable vertices in G¢. In other words, m maps at least
2n — 760m = (2 — 76¢d)n variable vertices to variable vertices. Let B’ be the set of
J’s such that both vertices in V,,; is mapped to a variable vertex. We have B’ 2 B and
|B'| > (2 = 76cd)n —n = (1 — 76¢d)n. For each j € B\ B, we know that the edge
in V,, is not satisfied. Therefore |B’\ B| < M. Therefore, |B| = |B'| — |B'\ B| >
(1 —=76¢c0)n — M > (1 —95¢o)n. O

Proof of [Claim 7.5.8] Let E’ be the set of hyperedges in £/ whose vertices are all in B.
Since G is (€, 100c)-degree bounded, and by our setting of parameters 95¢d < €, by
we know that |E’| > m — 100cen = (1 — 100€)m. Now let us consider the
hyperedges in E” = E'N A. (Also observe that |E”| > (1 —100e — 190)m.) We claim that
most of the hyperedges in E” are satisfied by o. For every hyperedge e¢; = {j1, j2, j3} €
E" that is not satisfied, we know that {c(j1),0(j2),0(j3s)} € T. Since i € E” C A, let ¢
be the equation index such that 7(Ve,) = Ve,. Since {0(j1),0(j2),0(j3)} & E, we have
ex # {0(j1),0(j2), 0(js)}. Let us assume w.l.o.g. that o(j,) ¢ ey. Then there is no edge
between VQ and de(m in G¢. Therefore the 4 edges between V-, and V:Ej1 in G¢ are not
satisfied.

We have proved that whenever there is an hyperedge in £” not satisfied by o, there are
at least 4 edges in G¢ not satisfied by 7. Since 7 satisfies (1 — §)M edges, there are at
most 0 M /4 hyperedges in E” not satisfied by o. Therefore, we have

AUT(H;0) > |E"| = §M/4 > (1 — 100e — 195 — 56)m = (1 — 100¢ — 248)m. O

Proof of [Claim 7.5.9) Let E’ be the set of hyperedges in £ whose vertices are all fixed
points of o. Since o has at least (1 — 5)n fixed points, and H is (¢, 100c)-degree bounded,
by [Claim 7.5.4] we know that |E’| > m — (e + ) - 100cn = (1 — 100(e + 3))m. Now
consider any e; € FE’, if all the edges incident to Vi, are satisfied, let £” contain i. Since
there are at most M < 19dm edges not satisfied, we know that |E”| > |E’| — 190m >
(1 — 100(e + B) — 196)m. We claim that for all e; € E”, the equation C; is satisfied.
Therefore we have val(Z;7) > 1—100(e + 8) — 19§ > .9 — 100(e + 3), since § < 1/200.
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Now we show that C; is satisfied by 7 when e¢; € E”. Using similar argument in the
proof of [Claim 7.5.8] one can show that when e; = {j1, j2, j3} € E”, we have (V) =
Ve, Also we have w(V,, ) = V,, forallt € {1,2,3}, by the definition of E". Let
H be the induced subgraph Ge [VC (Ute{m,g}\/a:ﬁ)] let J be the induced subgraph
Gel[Ve, U (Useqi2,3Vz,, )]- We use the following claim to conclude the proof.

Claim 7.5.10. If  (after projected on the suitable vertices) is an isomorphism between J
and J, C; is satisfied by T.

]

It remains to prove We first claim the following property about our
construction L(-).

Claim 7.5.11. Let C be a 3-XOR instance, let C : x; + xj, + x;, = b be an equation
from C. For any by, by, bs € Zs, and any vertex ., the parity of the number of neighbors
OfOéC n {ZEjl — thL’jQ — bg,CL’j3 — b3} is b+ bl + bg + bg .

Now we are ready to prove

Proof of [Claim 7.5.10, Suppose the equation C; is z;, +xj,+x;, = b. Consider o, € V¢,
let ap,, = m(ag;). By the construction of G¢ and G¢, we know that o(z;,) + a(z;,) +
a(zj,) = b, and o/ (z;,) + o/ (x;,) + o/ (2;,) = 0. Now let the set A = {x;, > 0,1,
0,z;, — 0}. By we know that the parity of the number of neighbors of
ac, in Ais b+ 0+ 0+ 0 = b. Therefore, by isomorphism, the parity of the number of
neighbors of aC in 7(A) is also b. On the other hand, by the definition of 7, we know that
m(A) = {aj = 7(2),) 25 = T(5), 255 = T %3 Bymagam we know
that the parity of the number of neighbors of a, in 7T(A> is0+7(xj,) +7(x),) + 7(x),).
Therefore, we have that 7(x;,) + 7(x;,) + 7(x;,) = b, i.e. C; is satisfied by 7. O

7.6 Random graphs are robustly asymmetric

In this section we prove

We first set up some definitions. For any graph G = (V, E), let w be a permutation
over the vertices in V', we write id(7) as the number of fixed points in the permutations,
that is, id(7) = [{v € V : 7w(v) = v}|. We define A(G,7(G)) = {e:e € E,n(e) &
E} U{e:e & E,7(e) € E}. Note that AUT(G; ) = |E| — 3| A(G, n(Q))].
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For any permutation 7 over the vertex set I/, we define a directed graph G, = ( (‘2/) JEn),

and (e1, ;) € E, if and only if ey = 7(ey). Since each e = {u,v} € (g) has in-degree
and out-degree exactly 1, we can divide G, into disjoint unions of directed cycles. We call
each directed cycle a bin, and the size of the bin is the number of elements in the cycle.

Fact 7.6.1. For any size-1 bins, there are only two situations:

e ¢ = {u,v} where u and v are both fixed points of m. We call these bins type-1 size-1
bins. The number of type-1 size-1 bins is at most (ldgr)).

o ¢ = {u,v} where n(u) = v and w(v) = u. We call these classes type-2 size-1 bins.

id(7)

The number of type-2 size-1 bins is at most WT for any permutation T.

Now let us consider G ~ G, ,,, where m = cn. Let Z = (g) be the number of possible
edges from which we choose m edges. We first prove the following lemma.

Lemma 7.6.2. Let A be the event that for any permutation m such that id(m) = (1 — )n,
the number of the edges in G that fall into the bins of size > 2 is at least $m /60 and at
most 237 /10°. Whenever 3 > exp(—c/6), we have

Pr [A]=1-n"*W,
G’\‘gn,m

By a union bound over all the 5 : 3 > 3* (where there are at most n of them), we get
the following corollary.

Corollary 7.6.3. Let B be the event that for every > [3*, any permutation 7 such that
id(m) = (1 — )n, the number of the edges in G that fall into the bins of size > 2 is at
least fm /60 at at most 237 /10°. We have

Pr [B]=1-n"*W,
GNgn,'m

Before we prove we need the following lemma.

Lemma 7.6.4. Let G ~ G, .. Suppose that 3 > [3*. With probability 1 — n=*WY), for any
T CV, |T| = PBn, the number of edges incident to T is at least least cfin/40.

Now we prove this lemma.

For any vertex v € V/, its expected degree in G, ,, is 2c. We would like to prove that
the probability that the degree is at most ¢/10 is very low. Indeed, we claim a more general
statement.
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Claim 7.6.5. Let W be a set of w possible edges from (‘2/), where |(n —1)/2] <w <n,

b < ¢/10] < exp(—¢/2).

Observe that when IV is the set of possible edges incident to v, [Claim 7.6.5| says that
Prldeg(v) < ¢/10] < exp(—c¢/3).

For each possible edge e, we define a random variable X, as the indicator variable for
the event that e is selected as an edge in G. would be a direct application of
Chernoff bound if the X, variables were independent. However, the following claim states
that Chernoff bound still holds since the variables are negatively associated. (Please refer
to e.g. [126] for the definition of negatively associated random variables.)

Claim 7.6.6. The Z variables X. are negatively associated.

Proof. Since {X.} follows the permutation distribution over m 1’s and (Z — m) 0’s, by
Theorem 2.11 in [126]], the claim holds. L]

Proof of[Claim 7.6.5] Since E[X.] = 2¢/(n — 1) for every e, we have E[|E N W|] =
Y eew E[Xc] = 2¢|W|/(n — 1) > c. The claim follows by Chernoff bound for negatively

associated variables. ]

Similarly we show that
Claim 7.6.7. Let W be a set of possible edges, when ¢ < n/10%°,

P E > 109] < — 1010,
o P B QW] W]/107] < exp(—3W|/10°)

Proof. Since E[X.| = 2¢/(n — 1) for every e, we have E[|[ENW|] = >, E[X.] =
2¢|W|/(n — 1) < 3|W|/10'. The claim follows by Chernoff bound for negatively asso-
ciated variables. [

Now we are ready to prove [Lemma 7.6.4

Proof of| Suppose the vertices of the random graph G ~ G,, ,,, are numbered

from 1 ton. Let X; = Zjﬂﬁflm] Xe—{i,(j=1) mod n+1}- By|Claim 7.6.5| we know that

Pr[X; < ¢/10] < exp(—c/2).
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Since the random variables {X;} are sums of disjoint sets of negatively associated
random variables X.’s, we know that the X;’s are also negatively associated. Let U be the
set of vertices ¢ such that X; < ¢/10. We have E[|U|] < n - exp(—c¢/2). Using Chernoff
bound for negatively associated random variables, we have

Pr [lU! > %5711 < exp (—é : (Eﬂ)ﬁ(/le] - 1>2E[|UH>
~er (=5 (g =) (5 -=1))

Using 5 > exp(—c¢/6) and ¢ > 10, we have Sn/2 — E[|U]] > n/4. Therefore,

Pr {|U| > %Bn} < exp (—% (g exp(c/2) — 1> >
1
3

< exp (—% (% -exp(c/3) — 1) i ) < exp (_

where the second and fourth inequalities are because of 5 > exp(—c/6), and the third
inequality is because of exp(c¢/3)/2 — 1 > exp(c/6)/4 for ¢ > 10.
—w(1)

exp(e/6) -

()

VAN »-J>I>—l

Therefore, with probability 1 — n , there are at most 5n /2 vertices with degree at
most ¢/10 (since deg(i) > X; for every vertex ¢). When this happens, for any 7' C V,
|T| = B - n, there are at least (|T'| — fn/2) vertices in T’ with degree at least ¢/10, the sum
of degrees of vertices in 7 is at least (|7'| — fn/2) - ¢/10 = ¢fn/20 , which means the
number of edges incident to any vertex in 7" is at least ¢/5n/40. ]

Proof of[Lemma 7.6.2) By [Lemma 7.6.4, we know that with probability (1 — n=()), the

number of edges in G that is incident to T is at least ¢/5n/40, for every T C V and
|T'| = n. Therefore, for any 7 with id(7) = (1 — 5)n, let T* be the non-fixed points of
7. We have |T*| = fn. As the number of edges in size-1 bins which are incident to 7 is
at most |1*|/2 = [n/2, the number of selected edges that in bins of size > 2 is at least
¢fn/40 — Bn/2 > Bm/60, when ¢ > 100.

We also need to show that with probability (1 —n~“()), the number of selected edges
in bins of size > 2 (denote this number by random variable X) is at most 23*Z/10°. For
every 7 such that id(7) = (1 — 8)n, let W be the set of possible edges whose end vertices
are not both fixed point of 7. We have |W| = Z — (1*26 )”), therefore 57 < W < 287 (for
large enough n) and X < |[E N W|. By we have Pr[|[ENW| > |[W|[/10°] <
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exp(—3|W]/10") < exp(—3 - 8Z/10'%). Therefore Pr[X > 287/10°] < exp(—3 -
BZ/10') < n=«") We conclude the proof by taking a union bound over ( ) < n’
ways of choosing non-fixed points for 7. ]
Lemma 7.6.8. Conditioned on event B, for 10* < ¢ < n/107, 8y > B*, with probability

(1 —n™'7), G is (Bo, Bo/240)-asymmetric.

Proof. For any permutation 7, we define a set of more fine-grained bins. We start with the
bins we defined before, and split the bins of size > 4 into bins of size 2 and at most one bin

of size 3 as follows. Suppose the original bin contains {e1, e, ..., e}, where 7(e;) = €41
and 7(e;) = ey, [ > 4, the we have new bins which contains {e1, e}, ..., {e;_1, ¢} if [ is
even, and {61, 62}, ey {61_4, €l_3}, {61_2, €1—1, 61} if [ is odd.

For each bin of size 2 and size 3, if all the edges are in G, we call it a full bin; if
none of them are in GG, we call it an empty bin; otherwise, we call it a half-full bin. Fix a
permutation 7, let s, be the number of half-full bins. For each half-full bin, it contributes
at least one to A (G, w(QG)), therefore s, < |A(G,7(Q))| = 2(m—AUT(G, m)). We have

Pr[G is (5o, So/240)-asymmetric| 5]

= Pr[Vr:id(7) < (1 — Bo)n, AUT(G,7) < (1 — By/240)m|B]
> Pr[Vr s id(m) < (1 — Bo)n, sz > Bom/120|85].

Now we turn to show that
Pr[Vr :id(7) < (1 — Bo)n, 57 > Bom/120|B) > 1 —n~'7.
To show this, we only have to prove for every 3 where 5 > [,
Pr[Vr :id(7) = (1 — B)n, s, > Bm/120|B] > 1 —n~'®, (7.4)

and take a union bound over (at most n possible) 3’s.

Fix 8 : f > [y and fix a permutation 7 such that id(7) = (1 — 3)n. Let C, be the event
that B happens and there are ¢ edges in G fall into the bins of size 2 and 3. Since B is a
disjoint union of C; for all ¢ : 3m /60 < t < 237/10%, we have

Prls, < fm/120|B] = > Pr[s; < fm/120|C] - Pr[C,|B].
t=Lm/60
We will prove that
-1
Pr[s, < fm/120|C;] = (<5nn> (ﬁn)') n 8 (7.5)
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and by taking a union bound over all ( 6’;) (6n)! possible 7’s, we prove (7.4).

Let v = 3/120. Let L be the number of possible edges in bins of size 2 and 3. We
have L = Z — ((1*25)") — 2% > Bn?/4 (for large enough n). Together with t < 232/10°,
we have t < 4L/10° < L/10%. Let B be the number of bins of size 2 and 3. Fix ¢ such
that Sm/60 < t < L/10%. Conditioned on C;, the (f) ways to select these ¢ edges are
uniformly distributed. Now we compute the number of ways such that there are at most
2ym half-full bins. Suppose that there are 7 half-full bins (for i < 2ym < ¢/2). There
are (? ) ways to choose these bins. There are at most ( ( t_% /2) ways to choose the full bins
(since t/2 < L/2-10% < B/2). For each half-full bin, there are at most 6 ways to choose
the edges in the bin. Therefore,

/BN /B\/L\" . L% /t\' o ot
P = < 6 . <6 -———| =] =6'L" 2 —. (7.
rlon "Ct]—6(z')(—t;><t) =0 (L) R )

Since 7! > (i/e)’, we have

t+i tt
2

")
tti

Using i(t —4) 7" > () * , we have

. = : 7
D < 6(3¢) % (%) < (480)* (%) s(%) | 718)

Since fm/60 < t < L/10%, and (107¢/L)"* is monotonically decreasing when t <
L/(107¢), we have

73) < 1075m %< 107ﬂcn %< 108¢ %< 100 40,8n< 1 308n
— =\ 60L — \608n2/4 =\, <({— < |- :

where the second last inequality is because 10* < ¢ < n /107 and (10%¢/n)?"/249 is mono-

tonically decreasing in this range, and the last inequality is for large enough n. Observing
that () (8n)! < n*"™and 8 > B* > 1/n, we proved that

Prlsy = i[C/] < ((5nn) (ﬁn)!) ")

By taking a union bound over all (at most n? many) i’s such that i < 2vym, we prove

(7.5). O

e
o

[Theorem 7.1.6|is proved by combining |Corollary 7.6.3| [Lemma 7.6.8| and taking a
union bound over all possible 5 = 3, (where there are at most n of them).
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7.6.1 Generalization to hypergraphs

In this subsection, we generalize [Theorem 7.1.6|to random £-uniform hypergraphs for any
constant k > 3.

Theorem 7.6.9. For any constant k, there exists constant ky, such that for m = cn where
ki < ¢ < (7)/K3, n large enough, if we set 8* = max{exp(—c/6), 1/n}, with probability
(1 —n=1), forall B : B* < B < 1, a random graph H from the distribution g,San is
(B, 8/240)-asymmetric. For k = 3, k3 = 10* suffices.

The proof of [Theorem 7.6.9] mostly follows the lines of the proof of [Theorem 7.1.6
But we need some small modifications. For simplicity, we only prove the theorem for
= 3. For higher %k, we encourage the readers to check by themselves.

Now we work with £ = 3. For any permutation 7 over the vertex set V', we define a
directed graph G%¥ = ((%), Ex). and (ey,e2) € E, if and only if e, = m(e;). Since each
e € (%) has in-degree and out-degree exactly 1, we can divide G%) into disjoint unions of
directed cycles. Similarly as in the ordinary graph case, we call each directed cycle a bin,

and the size of the bin is the number of elements in the cycle. Let Z3 = (g)

Fact 7.6.10. For any size-1 bins, there are only three situations:

e ¢ = {u,v,w} where u, v and w are all fixed points of m. We call these bins type-1

size-1 bins.The number of type-1 size-1 bins is at most (idéﬂ)).

e ¢ = {u,v,w} where one of them is a fixed point of w and the other two map to each
other under w. We call these classes type-2 size-1 bins. The number of type-2 size-1
bins is at most id(7) - %d(ﬂ) = O(n?) for any permutation 7.

e ¢ = {u,v,w} where m(u) = v and 7(v) = w and w(w) = u. We call these
classes type-3 size-1 bins. The number of type-3 size-1 bins is at most %d(ﬁ) for

any permutation T.

The following lemma is an analogue of

Lemma 7.6.11. For any fixed 3 where 3 > [3*, let D' be the event that for any permutation
7 such that id(m) = (1 — 8)n, the number of the hyperedges in H that fall into the bins of
size > 2 is at least $m /60 and at most 2373/10°. We have

Pr [D]=1-n*W.
HHD),
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By a union bound over all the 8 : > [3* (there are at most n of them), we get the
following corollary.

Corollary 7.6.12. Let D be the event that for every 3 > (3%, any permutation T such that
id(m) = (1 — B)n, the number of the hyperedges in H that fall into the bins of size > 2 is
at least 3m /60 at at most 2375/10°. We have:

Pr [D]=1-n"*W,
HHE),

The proof of [Lemma 7.6.11|is similar to that of except that now we also

need to take care of type-2 size-1 bins.

Lemma 7.6.13. With probability 1 —n*"), for any permutation 7 withid(7) < (1— *)n,
the number of selected hyperedges in type-2 size-1 bins is at most cf3n/1000.

Proof. We first prove that for every 5 > 3%, with probability 1 — n~*(), for every permu-
tation 7 with id(7) = (1 — )n, the number of selected hyperedges in type-2 size-1 bins
is at most ¢f4n/1000. By a union bound over all possible 5’s (where there are at most n of
them), we get the desired statement.

For any fixed permutation 7 with id(7) = (1 — )n, the number of type-2 size-1 bins
is at most (1 — 8)nBn/2 < Bn?/2. For each possible hyperedge e, we define the random
variable X, as the indicator variable for the event that e is selected as an hyperedge in H.
Note that E[X.] = cn/Zs < [5. Define random variable X = Y7 . oo i Xe as the
number of selected hyperedges in type-2 size-1 bins, by linearity of expectation,

n? Tc
E[X] < % g < 4eb.
On the other hand, we can also show that all these random variables are negative asso-
ciated, therefore through Chernoff bound for negative associated random variables, we
have

P{() [X > Ben/1000] < exp(—1/3 - (n/250 — 1)2 - 4c - B) < exp(—cBn?/10°)
H~GE),

By a union bound over at most ( ;n) (Bn)! < n?P" such permutations, the probability
that there exists 7 with id(7) = (1 — )n such that the number of type-2 size-1 bins is
more than cfn, is at most

exp(—cfn?/10°)-n?" = exp(—cBn?/(10°)+28nlogn) < exp(—cAn?/(10°)) < n=vW).
U
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The following lemma is an analogue of [Lemma 7.6.4] and the proof is almost identical.

Lemma 7.6.14. Let H ~ g,?’)n Suppose that 3 > B*. With probability 1 —n=*W), for any
T CV, |T| = Bn, the number of hyperedges incident to T is at least least cf3n/40.

Proof of[Lemma 7.6.11) We only establish the lower bound (5m/60). The proof for upper
bound is almost identical to that in[Lemma 7.6.2]

Let 7" be the set of non-fixed points of 7, then |T'| = fn. By Lemma 7.6.14, we know
that with probability (1 —n~“()), there are at least c3n/40 hyperedges incident to 7' — all

these edges are either in bins of size > 2, or edges in size-1 bins of type-2 or type-3. By

Lemma 7.6.13, we know that with probability 1 —n*(") the number of selected hyperedges
that fall into type-2 size-1 bins is at most ¢Sn/1000. Finally we recall that there are at most

n—i;i(ﬂ) = [3n/3 type-3 size-1 bins.

Therefore, with probability (1 — n~“(1), the number of selected hyperedges that fall
into bins of size > 2 is at least ¢/fn/40 — fn/3 — ¢fn /1000 > ¢fn/60. O

Finally we state the following analogue of (whose proof is also almost
identical).

Lemma 7.6.15. Conditioned on event D, for 10* < ¢ < n/107, B > 5%, with probability
(1—n"'7), H ~ G\, is (B, 8/240)-asymmetric.

The k = 3 case in[Theorem 7.6.9| follows from |Corollary 7.6.12| and [Lemma 7.6.15|
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Part 11

A proof complexity view of the
Parrilo—Lasserre hierarchy and the
success of Lasserre on hard instances for
weaker hierarchies
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Chapter 8

Introduction and SOS preliminaries

8.1 Introduction

In a typical constraint satisfaction problem (CSP) we are given a set of variables V' to
be assigned values from some finite domain €2 (often {0, 1}); we are also given a set of
local constraints specifying how various small groups of variables should be assigned. The
task is to find an assignment to the variables which minimizes the number of unsatisfied
constraints. Sometimes there may also be inviolable global constraints; for example, that
no domain element is assigned to too many variables. A canonical example is the 1/3
vs. 2/3 BALANCEDSEPARATOR problem as we defined earlier in this thesis: given is a
graph (V, E)) with n vertices which must be partitioned into two “balanced” parts, each
of cardinality at least n/3; the goal is to minimize the number of edges crossing the cut.
Thoughout this chapter, we will also call this problem BALANCEDSEPARATOR.

For such problems, certifying that there is a good solution is in NP; for example, given
a graph we can efficiently prove that it has a balanced cut of size at most o simply by
exhibiting the cut. But what about the opposite problem, certifying that every balanced
cut has size at least 3?7 Since this problem is coNP-complete it is unlikely that there
are efficient certifications for every instance; however there may be efficient certifications
for specific instances or classes of instances. For example, if we consider a linear pro-
gramming relaxation of a given BALANCEDSEPARATOR instance and then exhibit a dual
solution of value (3, this constitutes a proof that every balanced cut in the instance has size
at least 5.

The question is also interesting for problems in P, especially when the complexity
of the proof system is taken into account. For example, given an unsatisfiable instance
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Az = b of the 3Lin2 CSP (meaning the equations are over [F, and each involves at most 3
variables), there is always an easy-to-verify proof of unsatisfiability: a vector y such that
y'A=0buty'b # 0. However finding such a proof requires a rather specialized algo-
rithm, Gaussian Elimination. By contrast, unsatisfiable instances of the 2Lin2 CSP have
simple proofs of unsatisfiability (an unsatisfiable “cycle” of variables) which can be found
by a very generic “local consistency” algorithm. Indeed, one can view this algorithm as
searching for all constant-width Resolution proofs of unsatisfiability; the same algorithm
works for any “bounded-width CSP” [26]].

Positivstellensatz proofs. In this chapter we consider a certain strong proof system for
CSPs. It belongs to the well-studied class of algebraic proof systems, in which local
constraints are represented by polynomial equations. To handle global constraints we also
allow for polynomial inequalities; this is also natural in the context of the linear programs
and semidefinite programs used by optimization algorithms. To give an example, suppose
we have a BALANCEDSEPARATOR instance (V, E') with V' = [n]. We introduce a real
variable X; for each ¢« € V. Now to say that the optimum value of the instance is larger
than S is precisely equivalent to saying the following system of polynomial equations and
inequalities (each of degree at most 2) is infeasible:

A—{Xf—XiWe[n}}U{i)Xizn/?), i:Xi§2n/3}U{ > (XX <8}

(i,9)EE

Here the first set of equations enforces X; € {0,1}, encoding a cut. The second set of
inequalities enforces that the cut is balanced. The final inequality states that at most
edges cross the cut. Now what would constitute a proof that A has no real solutions;
i.e., that the BALANCEDSEPARATOR value exceeds 3? One certificate would be a formal
identity in the polynomial ring R[ X7, ..., X,,] of the following form:

—1=) Pr(XP=X)HU-(3 Xi=n/3)+U"(20/3=3 X+ V(= 3 (Xi=X;)*)+W,
P i=1 i=1 (i,4)€E
1 (8.1)
where Py,..., P, € R[Xy,...,X,] and where U, U’", VW € R[Xy,...,X,] are each
sums of squares (SOS), meaning of the form Q? + Q3 + - - - + Q2 for some Q1,...,Q,, €
R[X3, ..., X,]. Such an identity would indeed imply that A is infeasible, since substitut-
ing any solution of A into would give a nonnegative right-hand side.

In fact, a certain refinement [187] of the Positivstellensatz of Krivine [151] and Sten-
gle [215] guarantees that if A is infeasible then there is always a proof of the form (8.1). A
generic “SOS proof system” based on the Positivstellensatz was introduced around 1999
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by Grigoriev and Vorobjov [101]. As with most algebraic proof systems it can be difficult
to place an a priori upper bound on the degree of the polynomials needed for a proof; if we
insist on a fixed degree bound d then the proof system becomes incomplete. On the other
hand this incomplete system has the advantage of being efficiently automatizable, meaning
that if a proof exists it can be found in time poly(n?). The algorithm uses semidefinite pro-
gramming and follows from the work of Shor [210], Nesterov [177], Lasserre [156} [157]]

and Parrilo [[185]]. See[Section 8.1.1|for more details.

The power of SOS. Most of the previous relevant work focused on showing SOS-degree
(equivalently, Lasserre-round) lower bounds. However, in this thesis, we bring to light the
importance of SOS degree upper bounds for the study CSP approximability. We consider
the strong integrality gap instances known for the notorious UNIQUEGAMESCSP [192,
142,,135]] and will (essentially) show that degree-8 SOS proofs can certify that the instances
have value close to 0. Thus the generic poly(n)-time “level-4 Lasserre SDP” algorithm
refutes their having large optimal value. This is despite the fact that the instances still
have value near 1 after ©(loglog n)'/* rounds of the rather powerful Sherali-Adams SDP
hierarchy [192].

We will also further explore the relevance of SOS proof complexity to the algorith-
mic theory of CSP approximation. Specifically, we show that the Devanur—Khot-Saket—
Vishnoi [79] instances of BALANCEDSEPARATOR can have their optimal value well-
certified by a degree-4 SOS proof. We also investigate the problem of SOS proofs for
the Khot—Vishnoi (KV) [[144]] instances of MAXCUT.

8.1.1 History

We review here some of what is known about SOS proofs and SDP hierarchies; for a much
more thorough discussion we recommend the monograph by Laurent [162].

Throughout this work we write X = (Xj,...,X,,) for a sequence of indeterminates,
with the number n being clear from context. We say that the real multivariate polynomial
u € R[X] is sum of squares (SOS) if u = s + --- + s2, for some sy,...,5s, € R[X].
Any SOS polynomial is nonnegative on all of R"; however, as Hilbert [[117] showed in
1888 there exist nonnegative polynomials which are not SOS. The first explicit exam-
ple, X?X2(X? + X2 — 3) + 1, was given by Motzkin in the mid-’60s. Hilbert’s 17th
Problem [[118] asks whether every nonnegative polynomial ¢ is the quotient of SOS poly-
nomials; this was solved affirmatively by Artin [23].

Artin’s result also follows from the Positivstellensatz, first proved (essentially) by Kriv-
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ine [[151] and then later independently by Stengle [215]]. Interestingly, Stengle’s motivation
was the duality theory of linear programming. We state a special case appearing in [45]:

Positivstellensatz. Let A be a finite set of real multivariate polynomial equations and
inequalities,

A:{pl:Oap2:oa'-'7pm:0}u{q1207QQ207"'7(]M’20}7

with each p;,q; € R[X]. Then A is infeasible if and only if there exist polynomials
T1,...,Tm and SOS polynomials (wy) jcpm in R[X] such that

m

—1=> rpi+ Y. w]]w (8.2)
]

i=1 JClm]  jed

One interesting further special case occurs when A contains only equations, not in-
equalities. In this case the Positivstellensatz says that py, ..., p,, have no common real
roots if and only if the ideal they generate contains 1 + u for some SOS . This special
case arises whenever one wants to show that a CSP (with no global constraints) is not per-
fectly satisfiable. (As noted by Shor [209], one can actually reduce to this case in general
by replacing ¢ > 0 with ¢ — Y? = 0, where Y is a new indeterminate; indeed, by further
substitutions of new indeterminates one can reduce to the case where all equations are
quadratic.)

Proof complexity. Extending the Nullstellensatz proof system of Beame, Impagliazzo,
Krajicek, Pitassi, and Pudlék [39], Grigoriev and Vorobjov [101]] proposed in 1999 the nat-
ural propositional proof system based on the Positivstellensatz. The complexity measure
is degree: i.e., max; j{rip;, u;s[[;c;q;} in 8.2). This is a static proof system, meaning
that one simply exhibits the refutation @]) Grigoriev and Vorobjov showed that refuting
the single equation

(1—XoX1) >4+ (X? = Xo)? + (X2 - Xa)2 -+ (X2 - X,)2+X2=0

requires a proof of degree at least 2"~!. Relying on some ideas from the work of Buss,
Grigoriev, Impagliazzo, and Pitassi [54], Grigoriev showed in 1999 [97, 99] that refuting
any unsatisfiable system of Fy-linear equations requires degree at least /2, where D is

!Grigoriev and Vorobjov also proposed a certain dynamic version of the proof system, analogous to

Polynomial Calculus [68]]. Indeed, [164] had earlier proposed a dynamic proof system based on Positivstel-
lensatz. We do not discuss dynamic proof systems further in this paper.
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the least width needed to give a Resolution refutation. As a consequence he showed that
degree €)(n) is necessary to prove Tseitin tautologies on n-vertex regular expander graphs
and to prove that the graph K, has no perfect matching when 7 is odd. Grigoriev also
subsequently [98] showed that the “r-Knapsack tautology” requires a proof of degree n+ 1
for any real 7 € (5 — %, 5+ %), this is the infeasibility of the system

{X12:Xl,-..,XZ:Xn7X1+"'+Xn:T}’

for r a non-integer. For more on algebraic proof complexity with inequalities, see e.g. [100].

Optimization. We now discuss algorithmic issues. Let v € R[z] be a real n-variate
polynomial of degree d. A most basic optimization problem is to determine inf,cgn u(x).
Roughly speaking, this is equivalent (by binary search) to the problem of deciding whether
u(x) > «; further, there is no loss of generality in assuming v = 0. Unfortunately, the
problem of deciding whether « > 0 is NP-hard as soon as d > 4. In 1987, Shor [210]
pioneered the idea of replacing the condition v > 0 with the stronger condition that w is
SOS, and noted that this can be tested in poly(n?) by solving an SDP feasibility problem.
(Here we ignore the issue of precision in solving SDPs; see for more details.)
Shor made the connection to Hilbert’s 17th Problem but not to Positivstellensatz.

Beginning in 2000, Parrilo [185] and Lasserre [[156,157]] independently published sev-
eral works taking the idea further. Parrilo emphasized the viewpoint of Positivstellensatz
as a refutation system for polynomial inequalities, while Lasserre focused significant at-
tention on the dual SDP “problem of moments”. Both proposed using poly(n?)-time SDPs
to search for degree-d Positivstellensatz refutations, for larger and larger d.

Lasserre also proposed using certain variant forms of Positivstellensatz. For example,
if one 1s optimizing a polynomial on a compact semialgebraic set K then one can use SDP
optimization directly (as opposed to using binary search and feasibility testing), thanks
to a version of the Positivstellensatz due to Schmiidgen [203)]. Furthermore, Putinar [187]]
showed that if K is explicitly compact (‘“Archimedean”) — say, one of its defining inequal-
itiesis >, , X? < B — then the Positivstellensatz certificates (8.2) only require u;’s with
|J] < 1. (Both [203,[187] contained a bug, fixed in [223].) On one hand, in practice there
is rarely any harm in adding an inequality ) ;" | X? < B with large B; on the other hand,
eliminating the u;’s with |.J| > 1 may cause the refutation degree to increase. In any case,
Lasserre focused on the polynomial optimization problem

inf{p(z) |r e K}, K={xe€R"|q(x)>0,...,qn(x) >0}, (8.3)
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and proposed a hierarchy of SDP relaxations for increasing d,

inf{L(p) | L : R[X]4s — Ris alinear map, L(1) = 1, and L(u), L(ug;) > 0 for all SOS u},
(8.4)

where R[X ]|, denotes the ring R[X] restricted to polynomials of degree at most d. This is

a relaxation because one can take L to be the evaluation map p — p(z*) for any optimal

solution z*. We refer to (8.4) as the degree-d Lasserre moment SDP; when d is even

it is also known as the level-d/2 (or sometimes d/2 — 1) Lasserre hierarchy SDP. The

semidefinite dual of (8.4) is

sup{f | p—f = uotuiq1+- - -+t g for some SOS wuy, . .., u,, withdeg(uyg), deg(u;q;) < d},

(8.5)
which we refer to as the degree-d Lasserre SOS SDP. (One can also allow for polyno-
mial equalities in the description of /K, either by replacing them with pairs of inequalities,
extending the SDP formulations as in (8.2)), or by factoring out by the ideal they gener-
ate [161]].) Assuming K is explicitly compact, Lasserre [157] showed that the SOS SDP’s
value tends to the optimal value as the degree increases. If furthermore /i has a nonempty
interior then there is no duality gap between (8.4) and (8.5). Generally K has empty in-
terior for discrete optimization problems (e.g., if it includes the constraints X? = X;);
however, the duality gap issue is algorithmically irrelevant since the Ellipsoid Algorithm
can’t distinguish an empty interior from a small interior anyway. This issue is discussed
briefly in[Section 8.2

Prior optimization results. We conclude by mentioning some known positive and neg-
ative results for the Lasserre moment SDP relaxation. Around 2001, Laurent [[160] con-
sidered the Lasserre hierarchy for MAXCUT with negative edge weights allowed (i.e.,
the 2Lin2 CSP). She showed that degree-2 Lasserre optimally solves all instances whose
underlying graph is a tree, and conversely that there are non-tree instances which degree-
2 Lasserre does not solve optimally. She similarly characterized the underlying graphs
which degree-4 Lasserre solves optimally: the /K5-minor-free graphs. Around 2002, Lau-
rent [159] showed that when 7 is odd, the degree-(n — 1) moment SDP relaxation for the
MAXCUT problem on K, still has value ’1—2 (whereas the optimum value is ”24_ ); i.e., the
("7“1 t Jevel of the Lasserre hierarchy is required to obtain the optimal solution. Around
2005, Cheung [65]] considered the Knapsack problem and showed that in the optimization
problem

if r = r(n) € (0,1) is sufficiently small then the Lasserre moment SDP does not find
the optimal solution (namely, 1) until the degree is “maximal”, namely 2n + 2. In 2008,
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Schoenbeck essentially rediscovered Grigoriev’s result on [F-linear equations from the
moment side, showing that there are n-variable 3Lin2 instance of value 1 + 0,(1) for
which the degree-(2(n) Lasserre moment relaxation still has value 1. Building on this
work, Tulsiani [220] showed degree-{2(n) integrality gap instances matching the known
NP-hardness factors for a number of CSPs. Guruswami, Sinop, and Zhou [112]] showed a
degree-C)(n) integrality gap instance for the BALANCEDSEPARATOR problem with factor
a > 1, even though this level of NP-hardness is not known. They also showed a degree-
Q(n) integrality gap instance for the MAXCUT problem with factor 1. Around 2010,
Karlin, Mathieu, and Nguyen [[131] showed that the degree-2t Lasserre moment relaxation
achieves approximation ratio 1 — % for the general Knapsack problem.

8.1.2 Our contributions and organization of this part

In this part, we study the power of the O(1)-degree SOS SDP hierarchy for several central
combinatorial optimization problems.

UNIQUEGAMES. We first study the O(1)-degree SOS SDP hierarchy for the UNIQUEGAMES
instances considered in the literature (i.e. in [[192, 154, [142], obtained by composing the
“quotient noisy cube” instance of [144] with the long-code alphabet reduction of [141]).

In [Chapter 9| we prove the following theorem.

Theorem 8.1.1 (Pre-statement of[Theorem 9.0.8). Let G be an n-variable UNIQUEGAMES
instance with label-size q of the type considered in [|192| |54, |I42]] obtained by compos-
ing the “quotient noisy cube” instance of [144)] with the long-code alphabet reduction
of [141)] so that the best assignment to G’s variables satisfies at most an € fraction of the
constraints. When ¢ is sufficiently small and n is sufficiently large, there is a degree-8 SOS
refutation for the statement that the best assignment to G’s variables satisfy at least 1/100
fraction of the constraints.

Thus just the level-4 Lasserre SDP hierarchy (essentially) solves the the UNIQUEGAMES
instances.

We also investigate whether the O(1)-degree SOS SDP hierarchy can solve known
integrality gap instances of problems that are essentially harder than UNIQUEGAMES.
We focus on two such problems: BALANCEDSEPARATOR and MAXCUT.
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BALANCEDSEPARATOR. Building on work of Khot—Vishnoi [144] and Krauthgamer—
Rabani [150], Devanur, Khot, Saket, and Vishnoi (DKSV) [79] gave a family of n-vertex
BALANCEDSEPARATOR instances in which the optimal balanced separator cuts an Q(loilﬁ)
fraction of the edges, but for which the SDP with triangle inequalities has value O(lo;n ).
This is a factor-©(log log n) integrality gap. Raghavendra and Steurer [192]] show that a
factor-(log log n)*") gap persists for these instances even for (loglog n)*") rounds of the
“LH SDP hierarchy”. The key to analyzing the optimum value of their instances is the
KKL Theorem [129] from analysis of boolean functions. In this work we give a degree-4

SOS proof of the KKL Theorem. In turn, this is used in|Chapter 10|to show the following:

Theorem 8.1.2 (Pre-statement of [Theorem 10.3.3)). The degree-4 SOS relaxation for the
DKSV BALANCEDSEPARATOR instances has value Q('2228m),

logn

Thus just the level-2 Lasserre SDP hierarchy (essentially) solves the DSKV BALANCED-
SEPARATOR instances.

MAXCuT. Khot and -Vishnoi [144] gave integrality gap instances for the MAXCUT
problem, by composing their UNIQUEGAMES instances with the Khot—Kindler—Mossel—
O’Donnell [141] MAXCUT reduction. When this reduction is executed with parame-
ter p € (—1,0), one obtains n-vertex MAXCUT instances with optimal value at most
(arccos p)/ + 0,(1), but for which the SDP with triangle inequalities has value  — 1p —
on(1). In particular, for p = py ~ —.689, this is a factor-.878 integrality gap (worst pos-
sible, by the Goemans—Williamson algorithm [94]). Khot and Saket [154]] subsequently
showed that this gap persists even for (log log log n)(!) rounds of the Sherali—~Adams SDP
hierarchy. The key to analyzing the optimum value of the KV MAXCUT instances is the
Majority Is Stablest Theorem from [174)]. This theorem is in turn based on an Invariance
Principle for nonlinear forms of random variables, together with a Gaussian isoperimetric
theorem of Borell [50]. We are able to “SOS-ize” Kindler—O’Donnell’s recent new proof
of the latter [[147] (it essentially only needs the triangle inequality); however we do not
know how to prove the former for non-polynomial functionals. Thus we currently do not
know how to give an SOS proof of the Majority Is Stablest Theorem.

We turn then to a weaker version of Majority Is Stablest known as the % Theorem”,
proved in [140]. This proof relies on just the Central Limit Theorem (more precisely, the
Berry—Esseen Theorem). We are able to give an SOS proof of the CLT Theorem, although
not with a fixed constant degree bound. Rather, we are able to prove it up to an additive
error of § using an SOS proof of degree O(1/?). Using this, as well as the SOS analysis
of the KV UNIQUEGAMES instances, we are able to show the following in [Chapter 11
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Theorem 8.1.3. There exists a universal constant C € N such that the degree-C SOS
relaxation for the KV MAXCUT instances (with parameter py ~ —.689) is within a fac-
tor 952 (> .878) of the optimum value. For general p, the relaxation is within a factor of
931 of the optimum.

A guide to the SOS proofs. Since even conceptually simple SOS proofs can sometimes
look a little complicated, we give here a brief guide to our SOS proofs. Both of our
results rely on the hypercontractive inequality for {—1, 1}" due to [48]]. We give the SOS
proofs for various hypercontractive inequalities in For the simplest (2, 4)-
hypercontractive inequality (Theorem 8.4.3), the only trick is that to evade the use of
Cauchy—-Schwarz in the standard proofs one needs to move to a “two-function” version
of the inequality. We also need SOS proofs of a few other forms of the hypercontractive
inequality. Though the notation is heavy, the proofs are essentially straightforward. On the
other hand, we remark that we currently do not have an SOS proof of the 2 — 2k version
of the inequality with sharp constant for any integer £ > 2.

For the UNIQUEGAMES instances, we will first use hypercontractivity to prove the
basic “quotient noisy cube” instances by Khot and Vishnoi [[144]] does not have great so-
lution. The bulk of the remaining technical work is in lifting the soundness proof of the
KKMO gadget. On a high level this proof involves the following components: (1) The
invariance principle of [174], saying that low influence functions cannot distinguish be-
tween the cube and the sphere; this allows us to argue that functions that perform well
on the gadget must have an influential variable (an analog of the “Majority Is Stablest”
theorem), and (2) the influence decoding procedure of [141] that maps these influential
functions on each local gadget into a good global assignment for the original “quotient
noisy cube” instance. The invariance principle poses a special challenge, since the proof
of [[174] uses so called “bump” functions which are not at all low-degree polynomials. We
use a weaker invariance principle, only showing that the 4 norm of a low influence func-
tion remains the same between two probability spaces that agree on the first 2 moments.
Please refer to for a more detailed description.

In KKL, hypercontractivity is used to prove the “Small-Set Expansion (SSE) in the
Noisy Hypercube” theorem. The usual proof of this is very short, but presents a couple
of challenges for SOS proofs. One challenge is the use of Holder’s inequality with expo-
nents 4, %. We are able to get around the fractional powers with a couple of tricks, one
which is the following: if one needs to SOS-prove, say, p < ,/q for some nonnegative
polynomial ¢, instead prove that p < 5 + i - q for all real € > 0. The other challenge
is that the standard proof of the SSE Theorem involves division by a polynomial quantity,
something we don’t see how to do with SOS proofs. Still, we manage to give a short
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SOS-proof of a weaker version of the SSE Theorem which is good enough for our pur-
poses. Finally, to obtain the BALANCEDSEPARATOR result, the last step is to SOS-prove
the KKL Theorem. Even the statement of the theorem involves logarithms, which does
not look SOS-friendly. We get around this with a variant of the square-root trick just
mentioned.

Moving to our proof of the % Theorem, as stated, we need an SOS-proof of the Central
Limit Theorem (with error bounds). Alternately phrased, we need an Invariance Theorem
for linear forms of polynomials, specifically with the absolute-value functional. Although
this functional is not polynomial, we can replace the required statement with something
that is: namely, when a4, . . ., a,, are indeterminates assumed to satisfy a% + -+ ai =1,
we want to upper-bound

2
. <. /Z
ww{_1,1}n[f(w)(alwl + -t apxy,)] < \/;+ e,

where e is an error term involving >, a}, which is small when all @;’s are small. Our SOS
proof of this is somewhat technically difficult. To proceed, we upper-bound the absolute-
value functional to within ¢ by a polynomial () of high degree; using real approximation
theory, O(1/6?) suffices. Then we prove an Invariance Theorem for linear forms with
a high-degree functional; this is feasible for linear forms (but not higher-degree ones)
because of their subgaussian tails. Unlike in the usual proof of the Berry—Esseen Theorem,
we need the hypercontractive inequality for high norms here.

8.2 The SOS proof system and the SDP hierarchy for op-
timization

In this section we give formal details of the Positivstellensatz proof system of Grigoriev—
Vorobjov and the associated hierarchy of SDP algorithms due to Lasserre and Parrilo. For
brevity we refer to these as “SOS proofs and hierarchies”.

Definition 8.2.1. Let X = (X,..., X,,) be indeterminates, let q1, ..., Gm,T1,- - T €
R[X], and let

A={1>0,...,¢n >0} U{r; =0,... 7 =0}.
Given p € R[X] we say that A SOS-proves p > 0 with degree k, written
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whenever

dvi, ..., Uy and SOS ug, uy, . . . , Uy, such that

p= uo—i—Z uiQi+Z v;T;, with deg(uy), deg(u;q;), deg(vjry) < kVi € [m],j € [m/].
i=1 =1

(Recall we say that w € R[X] is SOS if w = s3 + - - - + s? for some s; € R[X].)
We say that A has a degree-k SOS refutation if

A Fp —12>0.
Finally, when A = () we will sometimes use the shorthand
l_k p Z Oa

which simply means that p is SOS and deg(p) < k.

Our notation here is suggestive of a dynamic proof system, and indeed it can be helpful
to think of SOS proofs this way. For example, adding deductions is not a problem:

Fact 8.2.2. If
A Fr p>0, A ko P >0,

then
AUA I_max(k,k/) p+ p/ > 0.

However using transitivity or multiplying together two deductions leads to a worse
degree bound when applied generically:

Fact 8.2.3. Suppose that
A Fo o 1>0,...,¢>0
(meaning A by g, > 0 for each i € [{]). Further suppose that
{,>0,....,¢>0} Fx p>0.

Then
A l_k—‘rk:’ P Z 0.
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Fact824. Let A={q1 >0,...,¢, >0}, A ={¢}, >0,...,¢, >0} If
A Fp p=>0, A by P >0,

then
AUA/U(AAI) l_kJrk/ pp’20,

where A - A" denotes {q; - q; > 0 :i € [m], j € [m]}.

Notice that in the above fact we had to explicitly include product inequalities into the
hypotheses. This is because in general we do not have {¢ > 0,¢' > 0} F ¢¢’ > 0. For
example:

Proposition 8.2.5. In R[Y, Z], for every k € N,
{Y>0,Z2>0} WA YZ>O0.
Indeed, for all real 5 > 0,
{Y>0,Z2>0} Wt YZ>-0.
Proof. Suppose to the contrary that
YZ 4+ =u+Yus + Zus (8.6)

for some SOS uy,us,us € R[Y, Z]. We think of the right-hand side of as being in
R[Z][Y]. Let k; be the degree of Y in u; for j = 1,2,3; note that &, k3 are even and
ks is odd. Suppose first that max{ky, k2, k3} = ki. Then we must in fact have k3 = k;
in order to cancel the Y* term in the RHS of (8.6). But in fact such a cancelation is
impossible because the coefficient on Y*! in u; will be an even-degree polynomial in Z,
but the coefficient on Y*3 in u3 will be an odd-degree polynomial in Z. The remaining
possibility is that k; > ki, k3. In this case we must have &y = 1, or else the degree of Y
on the RHS of (8.6) will exceed 1. Thus u;, us, us depend only on Z; but then (8.6) forces
us = Z, contradicting the fact that uy is SOS. O

For more simple examples of the weakness of SOS proofs, see [[170, Chap. 2.7]. Here
is another one: we cannot directly prove Y+ > 1 = Y2 > 1.

Proposition 8.2.6. In R[Y], for every k € N,

Yi>1 W, Y2>1.
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Proof. Suppose to the contrary that one can write
Y2-1l=u+o(Y*-1) (8.7)

with u, v € R[Y] being SOS. One cannot have v = 0 because Y2 — 1 is not SOS (consider
that 02 — 1 is negative). Therefore the highest-degree term in v is of the form c¢Y '/ for some
real ¢ > 0 and some integer j. This gives a term cY > on the right-hand side of
which must be canceled by u. This is impossible if deg(u) = 2j + 4 because the leading
coefficient on u will be positive too. So deg(u) > 2j + 4, but then its highest-degree term
remains uncanceled on the right-hand side of (8.7). O

On the other hand, one can easily SOS-prove Y* < 1 = Y2 < 1; see [Fact 8.3.3
Furthermore, one can Y4 > 1 = Y2 > 1 by contradiction:

Proposition 8.2.7. In R[Y'], for any ¢ > 0 we have
Y*>1,Y*<1—¢ Fy —-12>0.
Proof. We leave the case of € > 1 to the reader. Otherwise, write ¢ = 1 — € € (0, 1); then

1= e+ V) (- Y + L (Y - 1)

1—c?

and both = (¢ + Y?) and = are SOS. O

c? 1—c?

These observations reveal that when fixing the degree of SOS proofs, the SDP sim-

plifications explored by Lasserre (see can be damaging: it may help to
multiply together constraint inequalities, and direct optimization can be worse than binary

searching for refutations. Thus we propose that for optimizations problems, one should
generically use the SDP hierarchy proposed by Parrilo. Le., for

inf{p(x) |z € K}, K={xeR"|q(x)>0,...,qn(x) >0},

one should assume that K is “explicitly compact” (say, contains the inequality X? + - - - +
X2 < 2r°(")y and then use binary search to (approximately) find the largest 3 for which

{00, - @i, > 0 deg(qiqiy -+ - q5,) <d}U{p< B} Fqa —12>0. (8.8)
This can be carried out in poly(n?, m) time using the Ellipsoid Algorithm [

*Determining (8-8) amounts to checking if a matrix of variables can be PSD while satisfying some
equalities. One relaxes the equalities to two-sided inequalities with some small tolerance § = 2~ Poly(n),
allowing one to run Ellipsoid. If Ellipsoid returns a feasible solution it can be made truly PSD at the expense
of adding slightly more slack in the equalities. By virtue of the compactness, this can adjusted to give a valid
SOS proof of —1 4+ ¢" > 0.
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8.3 A few simple SOS preliminaries

A well-known basic fact (following from the Fundamental Theorem of Algebra) is that
every nonnegative univariate polynomial is SOS:

Fact 8.3.1. Suppose p € R[X}] is a univariate real polynomial such that p(t) > 0 for all
real t. Then p is SOS; i.e., Fgeg(p) P = 0.

The following related result is credited in [[162] to Fekete and Markov—Lukacs, with
reference also to [|170]:

Fact 8.3.2. Suppose p € R|Y| is a univariate real polynomial of degree k such that p(t) >
O forall reala <t <.

If k is odd then
Y>a, b>Y +F. p>0.

If k is even then
G-Y)(Y ~-a)>0 k. p>0.
We now give some additional simple SOS proofs:

Fact833. Y2 <1k, Y <1,V > —1.

Proof. The first follows from 1 — Y = £(1 — Y)? 4+ 1(1 — Y'?). The second follows by
replacing Y by —Y. 0
Fact834. {Y <1,V > -1} Y2 <1

Proof 1-Y?=1(1+Y)*(1-Y)+i(1-Y)*(1+Y). O

Fact83.5. f AR, Y? <Y (k>2), then A, Y < 1.

Proof. Since1-Y =Y —Y?+(1-Y)? and there is a degree-k SOS proof for Y —Y? > 0
(assuming A), we have a degree-k SOS proof for 1 — Y > 0 assuming A. [

We will need an SOS proof of the fact that Y, Z € {—1,1} = Y22 € {-1,0,1}:

Fact83.6. Y2 = 1,72 = 1+, (X52) = (552)3

Proof. (¥52) = (552) = (32 = 1Y)(Y* = 1) + (

Z =3y (22 - 1). u

1
8 8
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Fact 8.3.7. Suppose that A+, Y > —1,Y < landthat B+, Z > W,Z > —W. Then
AUBV o Z>YW.

Proof. Z—YW =XZ -W)1+Y)+3(Z+W)1-Y). O

Fact 8.3.8. Suppose that AV, Y' >Y and Bty Z' > Z. Further suppose A’ -1, Y' >0
and B' =y Z > 0. Then AUBUA UB' bpaxiye ey Y'Z' 2 Y Z.

Proof. This follows fromY'Z' —YZ =Y (Z' - Z)+ Z(Y' =Y. O

We now move to Holder-type inequalities.

Fact83.9. -, YZ <1v2 4172
Proof. Y2+ 172 -YZ =3(Y — 7). O

More generally, by replacing Y with €'/2Y and Z with e /27, we obtain:
Fact 8.3.10. -, Y7 < %YQ + iZ2f0r any real € > (.

We would also like Young’s inequality for conjugate Holder exponents (%, 4), but stat-
ing it needs a trick:

Fact 8.3.11. +, Y37 < 3y* 4 174

Proof. 3Y* 4+ 124 Y37 = Y2 4 ly Z 4 122)(v — 7)?

= QYL +2(Y - 2P =YY - 2P+ 4 - 2% O

i

By replacing Y with €'/4Y and Z with ¢=3/*Z, we obtain:
Fact8.3.12. -, Y3Z < %Y‘l + ﬁZ‘l for any real € > (.
Fact 8.3.13. {Y2 <Y}, YZ < %Y + 5 7* for any real € > 0.
Proof. Since we have the assumption Y? <Y, it suffices to prove that

{(Y2<Y}H YZ< %Y +£Y2 4+ ﬁZ‘*.

This is true because
TYHY? 4 520 -YZ = (VY = 5 2243 Y (22— e +5 (Y =Y?) (-2~ Ve)*.
O
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Fact8.3.14. If ALY > 0and At Y < Z, then A by, Y? < Z2,

Proof. We can deduce A - Z > 0 and therefore A by, Z +Y > 0 using[Fact 8.2.2] The
result now follows from |Fact 8.2.4|applied to Z? — Y2 = (Z +Y)(Z - Y. O

Fact 8.3.15. H, avgicn (X7 > (anie[n] [Xi])?.

Proof. avg;c, [X7] — (avgep[Xi])? = ave, e [3(Xi — X5)7). u

8.4 SOS proofs of hypercontractivity

In the remainder of the work we will use some standard notions from analysis of Boolean
functions; see, e.g., [181]. All of our main results will require SOS proofs of the well-
known hypercontractivity theorems on {—1,1}", first proved by Bonami [48]. To state
them, recall that any function f : {—1,1}" — R can be viewed as a multilinear polyno-

mial, R
=Y f&[[e wheref(S)= B [f@)[Ix]  69)

~{=1,1m »
SCln) icS e~{-Ll i€s

Then for p € R, the linear operator T, is defined by mapping the above function to

= > pFS) I

SC[n| €S8
Now the p = 2, ¢ > 2 cases of hypercontractivity can be stated as follows:

Theorem 8.4.1. Ler f : {—1,1}" — R. Then for any real q > 2,

) q 21a/2
BT @S B @)

Theorem 8.4.2. Let f : {—1,1}" — R have degree at most k. Then for any real q > 2,

[f@)| < (@-DW* B [f(=)]"

mN{ 1 1}n :I:N{—l,l}n

Note that [Theorem 8.4.2| follows immediately from [Theorem 8.4.1| in case f is ho-
mogeneous of degree k. It is also known that [Theorem 8.4.1| and [Theorem 8.4.2| (even
its homogeneous version) are “equivalent”, in the sense that one can be derived from the
other using various analytic tricks.
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As mentioned, we would ideally like to give SOS proofs of these theorems. In order to
even state the theorems as polynomial inequalities it is required that ¢ be an even integer.
For example, when ¢ = 4 we may try to SOS-prove

(T__f@)T< B [fl@)]

x~{—1,1}" q-1 z~{—-1,1}"

The meaning of this is that the 2" Fourier coefficients of f are the indeterminates; i.e., we

~ ~ -~

work over the ring R[f(0), f({1}), ..., f([n])] and would like to show that

E [f@'- E [T

z~{-1,1}" z~{—1,1}" q—1
is a sum of squares of polynomials over the indeterminates f(S ). Sometimes we will
instead use the 2" indeterminates “f(z)” for z € {—1, 1}" — note that this is completely

~

equivalent because the f(z)’s are homogeneous linear forms in the f(.5)’s and vice versa;
see (8.9)).

When ¢ is an even integer it is well known that [Theorem 8.4.2| has a much simpler,
“almost combinatorial” proof. For example, Bonami’s original paper proved the homo-
geneous version of [lheorem 8.4.2| for even integer ¢ using nothing more “analytic” than
absolute values and Cauchy—Schwarz. (Her proof even obtains a slightly sharper constant
than (q — 1)(@?* ) The inductive proof of [Theorem 8.4.2|for ¢ = 4 presented in [174] is
simpler still, using only Cauchy—Schwarz. It is not hard to check that these remarks also
apply to({Theorem 8.4.1

Nevertheless, it’s not completely trivial to obtain SOS proofs of[Theorem 8.4.1jandTheorem 8.4.2]
when ¢ is an even integer, simply because the Cauchy—Schwarz inequality, E[fg] <
VE[f?]\/E[¢?], has square-roots in it. The natural substitute is the inequality E[fg] <
SE[f?] + 5 E[¢?] (see|Fact 8.3.9). However fitting this into the known proof of, say, the
q = 4 case of [Theorem 8.4.2| seems to require an extra trick: moving to a “two-function”
version of the statement.

Theorem 8.4.3. (SOS proof of the two-function, ¢ = 4 version of|Theorem 8.4.2])

Let n, ki, ks € N. For each j = 1,2 and each S C |n| of cardinality at most k;,
introduce an indeterminate f;(S). For x € {—1,1}", let f;(x) denote ) ¢ f;(S) [ [,cq -
Then

4 E [filz)f@)?’]<3"™. E [i@@)?] E _[f@)]]

z~{—1,1}" z~{—1,1}" z~{—1,1}"
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However, we choose to omit the proof of [Theorem 8.4.3] but give an SOS proof of
the ¢ = 4 case of [Theorem 8.4.1] using the “two-function” idea, which will imply
We will need a more general statement which allows for some of the +1 random
variables to be replaced by Gaussians; this idea is also from [174].

Theorem 8.4.4. (SOS proof of the two-function, q¢ = 4 version of [Theorem 8.4.1})

Letn € N. Foreach j = 1,2 and each S C [n], introduce an indeterminate E(S)
For each z = (z1, ..., 2,) € R", let

ZOEDINC] | EREREOED BEALIATE | £

SC[n] i€s SCln] ieS

these are homogeneous linear polynomials in the indeterminates. Let z = (21, . .., z,) be
a random vector in which the components z; are independent and satisfy E|z;| = E[2}] =

0, E[z?] = 1, E[z}] < 9. (For example, Rademachers and standard Gaussians qualify.)
Then

Fi BIT o A(2)? - (T fa(2)] < BLA () BLA(2))

In particular,
F BT A(2)') < BIAGPE,

Just as [Theorem 8.4.2| follows immediately from [Theorem 8.4.1 [Theorem 8.4.3|also
follows immediately from T'heorem 8.4.4).

Proof of [Theorem 8.4.4, The proof of the theorem is by induction on n. For n = 0 we
need to show F4 f1(0)?f2(0)* < f1(0)?f2(0)?, which is trivial. For general n > 1 and
(z1,...,2n) € R™ we can express f;(z1,...,2,) = 2,d;(2") + €;(2’), where 2’ € R"!
denotes (21, .., 2n-1),

di()=>"F(S) I =

San i€S\{n}
e;()) =Y f;(9) I1 =
S#n €S

Now

E [(Tofi(2)" (T f(2))]

x~{-1,1}n V3
1 !/ / 2 1 / / 2
= E {(%zn . T%dl(z )+ T%el(z )) (%zn : T%dg(z )+ T%eQ(z )) }
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B[ (32200 + Frz(Td)(Ter) + (Ter)?) (§22(Tdo)? + Fiz(Tdo) (Tea) + (Tea)?)]

where we introduced the shorthand (Td;) for T 5 dj(2’) (and similarly for e;). We con-
3

tinue by expanding the product and using linearity of expectation, E[z,| = E[z}] = 0,
E[22] = 1; thus the above equals

VB[4 BI(Tdh)°(Td)?) + L BI(TA(Tes)?) + 3 B(Tda)?(Ter)?] + El(Te)*(Tes)?
+ 3 El(Td))(Tez) - (Tda) (Ter)].

Using [Fact 8.3.9 we have
g E[(Tdy)(Tez) - (Tdy)(Ter)] < %E[(le)z(T@)g] +3 lz@[(sz)z(Tel)g]-

By our assumption E[z2] < 9 wehave b4 5 E[z1] Eo/[(Td1)*(Td2)?] < E.(Td1)?(Tdy)?;
here we are using the fact that E/[(Td;)?(Tds)?] is SOS| Thus we have shown
m1 ElTLf(2) (T fo(2))]
< BI(Td))*(Tda)?] + El(Td))*(Tes)?] + BI(Tdy)2(Ter)?] + Bl(Ter)*(Td, ).

We use induction on each of the four terms above and deduce

a4 E}[(T%fl(z))z : (T%fﬂz)ﬂ
< Bl (=) Blda(<)?) + Eldy (<)) Blea(=))
+ E[dz(zl)Q] Elei(2')?] + E)[el(z’)Z] Elea(2')’]

= B2 + ()] Bl (#) + er(2)]
But it is easily verified that E. [f;(2)?] = E/[d;(2")? +¢;(2")?], completing the induction.
L

From this we can deduce [I'heorem 8.4.3| with the more general class of random vari-
ables.

3When 2’ is a discrete random vector this is obvious. In the general case, note that the coefficients of
the polynomial in question are finite mixed moments of z’. By Carathéodory’s convex hull theorem we can
match any finite number of moments of z’ using some discrete random vector z”, thereby reducing SOS-
verification to the discrete case. We will use this observation in the sequel without additional comment.
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Corollary 8.4.5. [Theorem 8.4.3|also holds with the more general type of random vector z
from|[Theorem 8.4.4|in place of x ~ {—1, 1}™

Proof. Begin by defining

S|~ .
V3UIi(s) i ls| < k;
for j = 1,2, and then applying[Theorem 8.4.4]to g1, g». This yields
F B2 A(P) < ETGA()) BT sh(:))

~ 0 if 15| > k;,
g;(S) :{ ’

By a standard computation we have

kj
E[Tﬁfj(zf] = 3-W, where W= fi(S), j=12
i=0 |S|=i
We also have E,[f;(2)%] = S W=, Thus to complete the proof it remains to show
k:l k2

-y <§: 3. W1:z> <f: 3. W;l’) < (Z gk, W1:Z> <Z gkz . W;l’>
i=0 v=0 /

i= =0
But after distributing out both products, this is immediate from
-, 3i+i’ . lez . WQ:z’ < 3k1+k2 . lez . WQZZ/

foreach 0 < i < k1,0 <" < k. O

We would also like to have an SOS proof of [Theorem 8.4.2| for even integers ¢ > 4.
We content ourselves with the following slightly weaker result, the proof of which follows
easily from Corollary 8.4.5}

Theorem 8.4.6. (SOS proof of a weakened version of the two-function, even integer q case
of |[Theorem 8.4.6)

Let n,r, ki, ko, ..., kar € N. For each j € [2"] and each S C |n| of cardinality at
most kj, introduce an indeterminate f;(S). Let fi(z),. .., for(2) and random vector z be

as in Then

l_2r+1 E

Hfj(z)2

27‘
< 3r(k1+“'+k2r) . HE[fJ(Z)Q]
j=17
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Proof. The proof is by induction on 7. The r = 0 case is trivial. For > 1, define

2T71

Fl(z):Hfj(z), B(z)= ] k.

j=2r—141

Note these are degree-2"! in the indeterminates. Further, one may express

Fi(z)= > [ ][]z

TC[n] ieT
|T|<ki4+kyr—1

~

where f(T') denotes a degree-2"~! polynomial in the indeterminates, and similarly for F5.
Thus we may apply [Corollary 8.4.5/to F} and F5 and deduce

H fi(2)°

N
E| [ £k ¢10

j=2r—141

|_2r+1 E

27"
Hfj(z)2] < gttt g
j=1 *

By induction we have

2T—1 T 2r—1
o B[] 52| <3000 TRl ()
z j=1 | J=1 z

2" 2"
S B ] 2| < e T B(f()7,

j=2r=141 j=2r—141

and all four expressions above are SOS of degree 2". Combining these via[Fact 8.3.8]yields

27‘71 or
e EN[6@2) R T A
i=1 j=2r-141
27‘71 or
<Ntttk TT R[] [ Elf(2)7,
Jj=1 * j=2r—141 o
which taken together with completes the induction. O

Corollary 8.4.7. (SOS proof of a weakened version of the even integer q case of
Fem 878
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Let n,k € N. For each S C [n] of cardinality at most k, introduce an indeterminate
f(S). Let f(z) and random vector z be as in (Theorem 8.4.4| Then for any even integer

q=2,
lo —q)k
o B [f(2)7] < V3R g g (2)702,
Proof. Take r = [logyq| — 1, fi = -+ = fop2 = [, fgj21 = -+ = for = 1in
[Theorem 8.4.6 O
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Chapter 9

Analysis of the UNIQUEGAMES instances

In this section we prove the following theorem.

Theorem 9.0.8. Ler G be an n-variable UNIQUEGAMES instance with label-size q of the
type considered in [192] 154, 142)] obtained by composing the “quotient noisy cube” in-
stance of [|144|] with the long-code alphabet reduction of [I41] so that the best assignment
to G’s variables satisfies at most an € fraction of the constraints. When ¢ is sufficiently
small and n is sufficiently large, there is a degree-8 SOS refutation for the statement that
the best assignment to G’s variables satisfy at least 1/100 fraction of the constraints.

The more formal version of [Theorem 9.0.8lis [Theorem 9.4.1|later in this section. Now
we give an overview of the proof.

The proof is very technical, as it is obtained by taking the already rather technical
proofs of soundness for these instances, and “lifting” each step into the SOS hierarchy, a
procedure that causes additional difficulties. The high level structure of all integrality gap
instances constructed in the literature was the following: start with a basic integrality gap
instance of UNIQUEGAMES where the Basic SDP outputs 1 — o(1) but the true optimum is
o(1), the alphabet size of G is (necessarily) N = w(1). Then, apply an alphabet-reduction
gadget (such as the long code, or in the recent work [35] the so called “short code™) to
transform G into an instance G with some constant alphabet size q. The soundness proof
of the gadget guarantees that the true optimum of G is small, while the analysis of previous
works managed to “lift” the completeness proofs, and argue that the instance GG survives a
number of rounds that tends to infinity as e tends to zero, where (1 — €) is the completeness
value in the gap constructions, and exact tradeoff between number of rounds and e depends
on the paper and hierarchy.

The fact that the basic instance G has small integral value can be shown by appealing to
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hypercontractivity of low-degree polynomials, and hence can be “lifted” to the SOS world
using tools developed in This part of the proof is presented in [Section 9.3

The bulk of the remaining technical work is in lifting the soundness proof of the gadget.
On a high level this proof involves the following components: (1) The invariance principle
of [174], saying that low influence functions cannot distinguish between the cube and the
sphere (related proofs presented in[Section 9.1)); this allows us to argue that functions that
perform well on the gadget must have an influential variable (related proofs presented in
Section 9.2)), and (2) the influence decoding procedure of [141]] that maps these influential
functions on each local gadget into a good global assignment for the original instance G

(related proofs presented in[Section 9.4).

The invariance principle poses a special challenge, since the proof of [174] uses so
called “bump” functions which are not at all low-degree polynomials We use a weaker
invariance principle, only showing that the 4 norm of a low influence function remains
the same between two probability spaces that agree on the first 2 moments. Unlike the
usual invariance principle, we do not move between Bernoulli variables and Gaussian
space, but rather between two different distributions on the discrete cube. It turns out that
for the purposes of these UNIQUEGAMES integrality gaps, the above suffices. The lifted
invariance principle is proven via a “hybrid” argument similar to the argument of [174],
where hypercontractivity of low-degree polynomials again plays an important role.

The soundness analysis of [[141] is obtained by replacing each local function with an
average over its neighbors, and then choosing a random influential coordinate from the
new local function as an assignment for the original UNIQUEGAMES instance. We follow
the same approach. It turns out that by making appropriate modification to the analysis, it
can be lifted to complete the proof of the theorem.

9.1 An invariance principle for the fourth moment

In this section, we will be interested in f(x) that is a multilinear polynomial over the
doubly-indexed set of indeterminates {; ; }ie(n jen With degree at most £, i.e., f(z) can

be written in the form of )
fla)=" > fla),,

aeNN |a|<e

where z, = [\, %, and |/, the degree of «, is defined to be |{i € [N] : oy > 0}|.

'A similar, though not identical, challenge arises in [35] where they need to extend the invariance prin-
ciple to the “short code” setting. However, their solution does not seem to apply in our case, and we use a
different approach.
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We will use the following definition introduced in [[174]].

Definition 9.1.1 (Definition 3.1 from [174]). We call a collection of finitely many or-
thonormal random variables, one of which is the constant 1, an orthonormal ensemble.
We will write a typical sequence of n orthonormal ensembles as X = (X1, X,..., X N),
where X; = {X,0 = 1, X,,,..., Xim, }. We call a sequence of orthonormal ensembles
X independent if the ensembles are independent families of random variables.

In this section, we are only interested in independent sequences of orthonormal ensem-
bles, and we will call these sequences of ensembles for brevity.

Let ¢ = 2! for some ¢t € N. Let z; be a random variable uniformly distributed over

{1}, and let z = (21, 29, ..., zy) be the random variable uniformly distributed over
{1}

Let X = (X1, Xy,..., Xy)beasequence of ensembles such that X'; = { X, o, X, , ..
and X ; = x;(z;), where {xo =1, x1, ..., X1} is the set of characters for {+1}".

O Xi,qfl}

LetY = (V1,Ys,...,Yn) beasequence of ensembles such that Y, = {Y; 0, Y;1,...,Y; ;1}

where Y; o = 1 and Y} ; is an independent uniform sample from {£1} for j > 0.
Now we are ready to state our invariance principle for the fourth moment of f.

Theorem 9.1.2. Let f(«) be the indeterminates. Define Inf;(f) = D ;>0 f(a)% For
every constant 3 > 0, we have

{Zf(a)2 < 1} FEf(X) <SEf)'+8-¢" + (1 + %) > Infi(f)

1E€[N]

Proof. Let Z9 = (Xy,..., X, Yis1,...,Yn) fori = 0,1,2,...,N. Also for each
i=1,2,....N,let

Ezf(x) = Z f(a)xaa

;=0
and
D)= 3 fla)ra.
a:a; >0
Forall: =1,2,..., N, we have the following polynomial identities,

Ef(Z0) — g f(Z0-D)
=E Eif(Z(i)) + Dif(Z(i))]4 - E [Eif(z(i—l)) + Dif(z(i—l)) 4
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=E [ES(Z0)D (21" + DA(Z0)] - B [BS (DD () 4 D2

where in the second identity we use the fact that the first two moments of X; and ); match.

Now, for every constant 3 > 0, we use |[Fact 8.3.10] and the simple fact that 4
—ED;f(Z2%Y)* <0, and get

HEF(Z0) - B F(Z)
<B | JESEOPDAE0? + (14 55 ) Dis(20) ]

E EEJ(ZUU)QDJ(Z“U)Q + %Dif(z(il))‘*] NCRY

We view E; f(Z ('i)) as a multilinear polynomial over {1} inputs with degree at most
t¢, and view D, f(Z (’)) as a multilinear polynomial over the same set of inputs with degree

at most t¢. Therefore, by hypercontractivity inequality (Theorem 8.4.3), we have

S EE (207D, 1(29) < 9 (BRS(29)) (EDif(29)?)
= 9" (EE:f(X)?) (ED;f(X)%) = 9" (EE:f(X)*) Inf,;(f), (9.2)

where the first equality is because the first two moments of Z* match those of X', and
the second one is by the definition of Inf;(f). Similarly, we have

FEES(ZC)?Df(Z) <o (BES(ZI2) (ED(20)?)
= 9" (EE:f(X)?) (ED:if(X)%) = 9 (EE:f (X)) Infi(f). (9.3)

We also view D, f(Z)* as a multilinear polynomial over {41} inputs with degree at

most ¢{. Using [Theorem 8.4.3] we get
L ED(Z0) < 0 (BDA(ZOP) = (EDA(X)) = ME (). 04

Again, the first equality is because the first two moments of Z @ match those of X, while
the second equality is by the definition of Inf;( f). Similarly, we have

F EDf(Z20-D) < gt (ED f(zt= 1)) = (ED,f(X)?)" = (Inf;(f))>.  (9.5)
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Now we incorporate (9.2] , and (9.5)) into (9.1)), and get
S ES(ZY) -Ef(ZU) <59 (BES(X)?) Infy(f) + (1 + %) (Inf; ()"

Therefore, for every constant 3, > 0,

{Zf } FEf(ZO) —Ef(ZUY) < -9 Infi(f) + (1 + %) (Inf;(f))*.
9.6)
Now we sum up (9.6) overall i = 1,2, ..., N, and get

{Zf } B f(X) B D) < 590 Y Infz-(f)+(1 ¥ %) S (Tnf ()

i€[N] i€[N]

<ot o (145) ¥ @< s+ (1+5) Xt

i€[N] i€[N]

The following corollary will be useful.

Corollary 9.1.3. Let f(a) be the indeterminates. Define Inf;(f) = > ;50 f(a)% For
every constant 3 > 0, we have

1
{Z fla } B <Y (BAX)Y) + 80+ (1 + E) > Infi(f)
Proof. Since f(Y) is a multilinear polynomial over {+1} inputs with degree at most ¢, by
hypercontractivity inequality (Theorem 8.4.3), we have
S ESY) <9 (BFD))".
We apply this together with the polynomial identity (E f()2)” = (E f(X)2)” (since the

first two moments of X and Y match) to [Theorem 9.1.2) and get the desired conclusion.
O
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9.2 Analysis of the dictatorship test gadget for UNIQUEGAMES
in the SOS proof system

In this section, we are going to prove the following theorem (Theorem 9.2.1) in the SOS
proof system. The theorem can be viewed as an analog of the “Majority Is Stablest”
theorem in [174)], and serves the same purpose — to show that any function with no
influential coordinates succeeds with very small probability in the dictatorship test for
UNIQUEGAMES.

Let ¢ = t* for some ¢ € N throughout this section.

Theorem 9.2.1. Let the entries in f(x) where x € Zflv be indeterminates. Let T, be the
operator on | : Zf;’ — Rsuch that T, f(x) = Ey~,« f(y), where y ~, & means each y;
independently takes the value x; with probability p, and takes a uniform random value in

ZLq with probability (1 — p). Define (f,T,f) = Ezery f(2)T,f().
For all constants 0,7 € [0, 1] and B > 0, we have

{f(z)> < f(z) :Vo,Ef <6}t

1 . )
(f; Trr f) §61+'0”+51~1+E 6~q'“°g6+( > > In p=02l8 S
1€[N]

Proof. For every constant A : 0 < A < 1, let P~ be the operator so that P, f is the
projection of f on to the eigenspace of T, _, with eigenvalue greater than \. The following
SOS statement is easy to deduce.

Fo (f, Tion f) < (f.Porf) + AE [~ 9.7)

On the other hand, by [Fact 8.3.13| we know that for every constant € > (0, we have

(F@P < f@) Vo b (FPf) S CEF 4 5 BPf)' . O8)

Observe that both f and P~ f can be written in the multilinear forms of

= fla Hxal ;)

aeNN =1

SVIEEED SR O) | P!

aeNN |al< lnlnA 3
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where {xo = 1, X1, ..., Xq_1} is the set of characters for {£1}'. Also, f(a) can be written
as linear combinations of the indeterminates f(z); and {f(z)*> < f(x) : Vo, E f <0}

Ef?<1l(whené<1l,and{Ef*<1}ky >, P/>A\f(a)2 < 1. Therefore, let

2. 1
=2
R

which upper bounds the degree of P~ f, by |Corollary 9.1.3| for every constant 5 > 0,

{f@)? < fla) Vo Bf <8} 9 (B(Porf)?) + 8¢ + (1+ ) > Inff(f)%

i€[N]
(9.9)
where Inf5(f) = 3=, ., f()? is the low-degree influence of f. Since
F (B < (B
and
{f(x)’ < flx):Vz}  Ef*<EF, (9.10)

together with (9.8) and (9.9)), we get for all constants ¢, 3 > 0,
{f(@) < f(z): Vo, B f <6}k
3e 9@ 5¢
GPosy < Xmrr Lmpr e L L ( ) " Inf(f

1€[N]

052 .
30 90 B +i< )ZI £L0F)2 (9.11)

4 4e3 4e3 4e3
1€[N]

We combine (9.11)), (9.10), and (9.7)), and get
{f(2)* < f(2) Vo, Ef <6} by
052
(T < a0 20 v +—< ) S (2 ©.12)

4e3 4e3 4e3
1€[N]

Now we set A = §°!7 (and therefore ¢ = .021og 1), and € = §'. We have 32 + 95332
611, Therefore, (9.12)) implies

IN
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{f@) < J@): Ve Bf <6}y
(f, Ty f) < 6501 4 gl 4 45% 8. qllosd 4 (1 n %) Z Inff'ozlog%(ff

1€[N]

for every constant 3 > 0. U

9.3 The KV UNIQUEGAMES instance and its SOS analysis

Let us recall the UNIQUEGAMES problem with label-size N € NT. Given is a regu-
lar weighted graph G = (V, ) (self-loops allowed) with weights summing to 1. Also,
given for each edge (u,v) is a permutation 7, : [N] — [N]. We write (u,v,7) ~ &
to denote that edge (u,v) with pumutation @ = m,, is chosen with probability equal
to its edge weight. The goal is to give a labeling F' : V — [N] so as to maximize
Pr(yvm~e[m(F(u)) = F(v)]. The natural polynomial optimization formulation has an
indeterminate X, ; for each u € V,i € [k]:

N N
max E Xu,in,ﬂ'(i)] = E [Z Xui- E [pr(i)]]
1

(u,v,m)~E Li= ueV Li=1 (v,m)~u

st. X2, =Xu; VueVie[N]

N
Z Xu,i =1 Yuce V,
=1

where we write (v, ) ~ wu in place of (u,v,m) ~ &|,—, for brevity. Thus the degree-d
SOS SDP hierarchy will use binary search to compute the smallest S for which

N
(X7, =Xui:VueV,ie[NJU{Y Xyi=1:VueV}
=1

U{ E [% Xui- E [Xv,ﬂ'(i)ﬂ > 5} Fa —120. (9.13)

uelV Li—1 V,7T)~U

The Khot—Vishnoi UNIQUEGAMES instance is defined as follows. Fix k¥ € N. Let
F = {{£1}* — {£1}} be the family of Boolean functions on {£1}*. Consider the
following equivalence relation = on F'. For any two Boolean functions f, g € F, we say
[ = g if and only if there is an S C [k] such that f = gxs where x5(i) = [];cq z:- Now
this relation partitions F into equivalence classes Py, P, ..., P,,. We denote by [P;] an
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arbitrary representative in P;. For each f € F, let P(f) be the P; which contains f. Now
we are ready to describe the UNIQUEGAMES instance G = (V, £) with parameter n > 0.
The vertex set V is simply the set of equivalence classes. The label set is [IN]. For each
vertex P;, we decide an arbitrary one-to-one correspondence between the elements in P;
and [N] so that the permutations 7r can be described as mappings between the elements in
P; and P;. We define the edge set together with the weight distribution (P;, P;, w) ~ £
as follows,

e choose f as an uniform random function in 7, and let P; = P(f);

e choose g ~1_, f,i.e. we obtain g by flipping each entry of f independently with
probability 2n. Let P; = P(g);

e finally, since P; = {fxs : VS C [k]} and P; = {gxs : VS C [k]}, we define
7w :P; — Pjasw(fxs) = gxs forevery S C [k].

We are going to show degree-4 SOS proofs to the statement that the UNIQUEGAMES
instance G defined as above does not have great solution. In fact we are going to show
something stronger than (9.13)), in the sense that we only assume Xqii < Xy, and Eyey Eigv) Xui <
1/N, and we will give an SOS proof instead of an SOS refutation. We prove

Theorem 9.3.1. Given G = (V, ) as the instance described above, for every constant
5 € (0,1), we have

(X2, <X,;:YueV,ie[NJU{E E Xu; <03}y

u€V i€[N]

N
E Z Xu,z' : E [X'v,ﬂ'(i)] S N - (')*l—l—Q(n)'

ueV =1 (v,m)~u

Therefore, when § = 1/N, we have

(X2, < Xyi:VueV,ie[NJU{E E Xu;<+}Fs
7 u€V i€[N]

N
E Z Xu,z' : E [X'U,Tr(i)] S NﬁQ(n)-

ueV Li—1 (v,7)~u
Proof. We first perform some notational manipulations in order to make the representation

easier. Observe that each pair (u,7) € V x [N] is uniquely mapped to a function f € F.
Therefore, we will talk about X (f) : f € F instead of X,,; : (u,i) € V x [N]. Given
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uw € Vandi € [N] (therefore f € F),let g € F be the function corresponding to (v, 7 (7))
where (v, ) ~ u. Observe that g in fact follows the distribution g ~;_,, f, and therefore

N
E > Xui+ E [Xexp)ll=N__E X(f)X(g) 9.14)
ueV [i=1 (v,m)~u FEF.g~1nf

if we assign X (f) according to X, ;.

Therefore, to prove the theorem, it suffices to show that

{X(f)? <X(f):VfeFru{ B X (f) <6} Fa (X, T, X) <6790 (9.15)

where T _, is the operator so that T, _, X (f) = Eg~,_,; X (g) and we define (X, T,_, X) =
Efcr X(f)T1-y X(f).
The rest of the proof is to prove (9.13)). For every d € N, it is easy to show that

Fo (X, T1-y X) < (X, Pop_paX) + (1 — n)dfng( )2 (9.16)

where P> (;_,)a is the operator so that P> _,y« X is the projection of X on to the span of
the characters y g where |S| < d. Now we apply [Fact 8.3.13|to |(9.16)| and have that for
every constant € > 0, we have

3e 1 4 d 2
F4 (X, T, X) < 1 fle*ij(f) + 15 f]g]__(Pz(lfn)dX(f)) +(1—n) f]éij(f) :
9.17)

Observe that P _,)a X (f) is a multilinear polynomial of f(z) with degree at most d.
Therefore, by hypercontractivity inequality (Theorem 8.4.3) we have

3 94
S (XT,X) < T B X(F) +

2
EXE) 1 (B Py XAP) + 0= B X5

(9.18)
With some simple SOS facts, (9.18]) implies

{X(f)?<X(f):VfeFru {fng(f) <6} by

3e 9452
X, T X)<6|=+0—n)*)+—
Gt X) <0 () + 5
forevery e > 0 and d € N.

We choose d = Pnu/a)" and ¢ = N~ to establish (9.13). O

In81
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Corollary 9.3.2. Given G = (V, &) as the instance in|Theorem 9.3.1| for every constant
0 € (0,1), we have

(X2, <X :YueV,ie[NJU{E E X,; <0} Fy

u€V i€[N]
N 2
E Z ( E [X'v,ﬂ'(z)]> S N - 51-}—9(7}).
ueV ;=1 \(v,m)~u

Proof. The proof of this corollary is almost the same as that of [Theorem 9.3.1] The only
difference is that in[(9.14)] instead we observe that

N 2 2
z( E [Xv,ﬂz-)]) ] _NE ( B X(g)) ,
i=1 \(v,m)~u feF \g~1-nf

and in we turn to prove

E

uey

XU <X(): Ve FYU{ B X(F) < 3} Fs
(T, X, T1oy X) = (X, Ty X) < 610

instead.

In the rest of the proof, we use (1 — 1)? whenever (1 — 1) occurs, and reach the same
conclusion.

[]

9.4 Influence decoding and putting everything together

Now let us recall that the UNIQUEGAMES instances we are interested in [Theorem 9.0.§]|
are obtained by composing the KKMO “noise stability” reduction from [141] with the KV
integrality gap instances analyzed in the previous section. Let us fix an UNIQUEGAMES
instance G = (V, £) with label-size N (in this section, we are interested in the KV inte-
grality gap instance presented in the previous section with parameter 17). The KKMO re-
duction, parameterized by -y € [0, 1], creates a new UNIQUEGAMES instance G = (V, E)
with label-size ¢. In the vertex set V/, there is a vertex w, , for each u € V and each
T € Zflv . For each ¢ € Z, let 0.(x) = = + c. The probability distribution £ on edges and
permutations is given as follows.
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e draw u € V uniformly;

e independently draw (u, v, 1) and (u, v9, 7o) from the marginal of £ which is first
vertex u;

e draw x € Zf]\’ uniformly;

e draw y ~;_, x, i.e. each y,; independently becomes x; with probability 1 — ~ and
a uniform random element from Z, with probability v;

e pick arandom element ¢ € Z;

e output the edge (W, zom, ; Wy, (y—c)om, ) together with o, as the permutation.

Here x o 7 is defined to be the string in Z) such that (x o 7); = 2,(;) for all i € [N]; and
y — cis the string in Z such that (y — ¢); = y; — c for all i € [N].

In this section we will prove the following theorem using the tools developed in the
previous sections. The theorem directly implies [Theorem 9.0.8| (when ¢ is sufficiently
large and log N > (log q)?/n).

Theorem 9.4.1. For eachu € V,z € Zév , @ € Ly, let féa) (x) be the indeterminate which
is intended to be the indicate variable for the event that w, , takes the label a. Let

A= {fé“)(mf = f9):YueV,ze Zév,a € Zy}U Z floz)y=1:VueV,ze Zév

a€Zq

We have

Atgval(f) = “E E Zf xom) [ ((y — ¢) o my)

u€y (vy,m)~u mGZN cEZq
(v2,m2)~u Yoy @ oLy

< g~ 4 ¢Ollega) y—02(m)

Proof. Foreachu € V,z € L, a € Zg, let () = Ecez, ) (2 — o); let B () =

Ewm)ou fo (z 0 71). Let T1,7 be the operator such that T\_,h(z) = Ey~, . h(y)
when A is a function defined over Zév . The following polynomial identity is easy to verify.

val(f) = Y E (AP, T1_,h{Y).

1%
a€Zq ue
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Therefore, to prove the theorem, we only need to show that for every a € Z,,

Ak, E)V<h§f>, Ty h{l)) < g1 700) 4 gOosa) y =020, (9.19)
Now fix an arbitrary a € Z,, by the definition of / (and using [Fact 8.3.15)) we have
VueV,zeZl, Aby M (2)* < h{(2), (9.20)
and
VueV, Ak, E h9(x) = t (9.21)
zelLy q

Therefore, by [Theorem 9.2.1|, for every u € V and every constant 3 > 0, we haveE|

1 1 1
Aby (hfL“), Tl_vhff“)> < ¢ +20) T E B q.llogq T (1 + B) Z Infismlogq(h(ua))2

1€[N]

9.22)

Therefore, for every constant 3 > 0,

Al B (b, T b))

uey

1 1

1 o “
< g T g ﬁ'q'mg”(”‘) E Y InfrP " (ni0)* ) L (9.23)

6 uey i€V

Since (for every ¢ € N)

Inf='(h{) = ) B (@) = > <E f@(aow)),

) ~
a:la|<l,a;>0 aila|<la; >0 (v;m)~u

by we have

Fo Infige(hq(ﬁ)) < Z E Ji(,a)(og o 7r)2 = E Infifi)(fz(;a))- (9.24)
oo <l,0>0 (v,m)~u (v,)~u

2This would require degree 6 if we apply [Fact 8.2.3|directly. However, if carefully examining the details,
one can see that degree-4 SOS proof suffices.
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Therefore,

2
FE Y InfEOese(po) < Z GV( E Inf o (fy )>) (9.25)
} ’LL

uey
€[N

On the other hand, for every i € [N],v € V, we have the following proof (whose proof
will be deferred to the end of this section).

Claim 9.4.2. A b, Inf=02189( fla)2 < pf=02lead( fla)y

Since 1 Ha)
E E Inf§.02logq fla) _ E Nva) 27
Ropn i f'v N ]g ’a’f (04)
a:|a|<.021log g

We also have

Fo E E Inf< O210gqf @) < —02 logg E Ef@

x)%. 9.26
veV i€[N] N veV @ ( ) ( )

It’s easy to deduce that 5 fi”(2)? < fi*(z) (forallv € V,z € ZY). Therefore, |(9.26)
implies

osq T .02lo P .021o
2 B B I < S8 B EJY(@) = = E EESY(@).
vEV i€[N] veV x veV x a
(9.27)
Therefore,
<.02logq f(a) _ 02 log ¢
AFy E E Inf; fo < ———. (9.28)

vEV ic[N] —  Ng

Claim 9.4.2] (9.28), [Corollary 9.3.2] and [Fact 8.2.3|imply

AF mesosa fy ) <y (021ogg T dogg 9.29
8 Z E E n (i) (fv ) = BN >~ NQ(n)q ( . )

Now, we put (9.23)), (9.23), and (9.29)) together, and get (for every 5 > 0)

1 1 1 lo
Abg E (WY, Ty ) < m+ (5 g8+ (14—3) 54 ) (9.30)

uey 4q3 N
We establish (9.19) by choosing 5 = N7 where ¢ > 0 is a constant depending on the
coefficient hidden in the () notation in (9.30). O
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9.4.1 Proof of

It remains to prove

Proof of | By fact[Fact 8.3.5] we know that
A fi(@) <1,

and hence
Aty fi9(2)? <1,

forallu e V,z € Zfl\’, ¢ € Z4. Therefore, by [Fact 8.3.15, we have
Ak fi9(x) <1 (9.31)

forall x € Zflv.

§.02 logq(j’?(a) )

Since Inf v ) = Za:ai>07|a|§.02 log q figa) (Q)2, we have

Ay Infr P d(fl) < 37 f(a)? = B f19(2)2.

Together with (9.31)), we have

Ay Inf=02189(fla)y < 1. (9.32)

On the other hand, since Inf ig.oz lqu’( fv(a)) is a sum of squared linear forms, we can multi-
ply Inf=021°89( £ on the both sides of (9.32), and get

()

Ak, Infigomogq(féa))z < Inf?.02logQ(f~5a)),

which is the desired statement. OJ

9.5 Refuting Instances based on Short Code

In this section, we consider the UNIQUEGAMES instances obtained by composing the KV
UNIQUEGAMES integrality gap instances with the “short code” gadget reduction con-
structed in [35]].

The following analog of [Theorem 9.0.8| holds.
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Theorem 9.5.1. Let G be an n-variable UNIQUEGAMES instance with label-size q ob-
tained by composing the KV “quotient noisy cube” UNIQUEGAMES integrality gap in-
stances with the “short code” gadget reduction constructed in [35] so that the best as-
signment to G’s variables satisfies at most an € fraction of the constraints. When € is
sufficiently small and n is sufficiently large, there is a degree-8 SOS refutation for the
statement that the best assignment to G’s variables satisfy at least 1/100 fraction of the
constraints.

The proof of is almost literally the same as the proof of

In the following, we sketch the main arguments why the proof doesn’t have to change.
First, several of the results of the previous sections apply to general graphs and instances
of UNIQUEGAMES. In particular, the proofs in does not need to change. The

proofs in[0.2] will still go through assuming the invariance principle result (in

for the type of graphs we are interested in; and the proofs in apply to gen-
eral gadget-composed instances of unique games assuming a ‘“Majority Is Stablest” result

for the gadget. In fact, the only parts that require further justification are the invariance
principle (the proofs in[Section 9.1)) and hypercontractivity bound (Theorem 8.4.3). Both
the invariance principle and the hypercontractivity bound are about the fourth moment
of a low-degree Fourier polynomial (whose coefficients are fictitious random variables).
For the construction of [35)], we need to argue about the fourth moment with respect to
a different distribution over inputs. (Instead of the uniform distribution, [35] considers a
distribution over inputs related to the Reed—Muller code.) However, this distribution hap-
pens to be k-wise independent for k/4 larger than the degree of our Fourier polynomial.
Hence, as a degree-4 polynomial in Fourier coefficients, the fourth moment with respect
to the [35]-input distribution is the same as with respect to the uniform distribution, which
considered here.
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Chapter 10

SOS proofs of SSE in the Noisy

Hypercube, KKL, and the analysis of
the DKSV BALANCEDSEPARATOR
instances

In this chapter, we given an SOS proof for the KKL theorem, and use this to show that
degree-4 SOS proofs certify the lower bound for the optimal value of the DKSV BAL-
ANCEDSEPARATOR instances up to only a constant factor.

10.1 An SOS proof of small-set expansion in the noisy hy-
percube

The following well-known theorem concerning small-set expansion (SSE) in the hyper-
cube is due to Kahn, Kalai, and Linial [129]]:

Noisy Hypercube SSE Theorem. Let f : {—1,1}" — {—1,0,1}. Then for any 0 < p <
I,
Stab,[f] < B[f*/"*7),

where Stab,[f] denotes (f, T,f) = |T ;5 f|l5.

Proof.
Stab,[f] = [T s f13 < 1Ry, = B[P/ = B[220,

179



where the inequality is hypercontractivity (the Holder dual of [Theorem 8.4.1)). [l

We remark on two special cases:
Stab. [f] < B[’ Stab 1 [f] < BI/*P™* < B[fH7.
3
We do not know how to obtain a low-degree SOS proof of either inequality. Nevertheless,

we come close in the following theorem. We remark that its proof is very similar to the

one in[Section 9.3

Theorem 10.1.1. (SOS proof of a weakened special case of the Noisy Hypercube SSE
Theorem.)

Letn € N, and for each v € {—1,1}" let f(x) be an indeterminate. Then for any real
e >0,

{f(z) = f(@)*:¥a} Fu Stabo [f] <Elf(2)"] (¥ + 15 Elf(@)7]) -

Remark 10.1.1. From this we can deduce that if f : {—1,1}" — {—1,0, 1} is an ordinary
function then Stab%[f] < E[f(x)?]>/4, by taking e = B[f (x)?]'/*.
3

Proof. From|Fact 8.3.12|(and the trivial fact Y = Y3 -, Yp? = Y'*) we may easily deduce
Y=Y tk, YZ<32y*4+ LZY
Since Stab%[f] = Ew[f(:n)T%f(ac)] we may therefore obtain
3 3
{(a) = f@) e} by Staby [f] < S B[] + HEIT,, f@)]

The result now follows from [Theorem 8.4.4] O

10.2 The KKL Theorem

With the Noisy Hypercube SSE Theorem in hand, we can now give an SOS proof of the
famed KKL Theorem [129], the key ingredient in the analysis of the DKSV BALANCED-
SEPARATOR instances.
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Theorem 10.2.1. (SOS proof of the KKL Theorem.)

Let n € N, and for each x € {—1,1}" let f(x) be an indeterminate. Let T be an
indeterminate. Then for any reals ¢ > 0, K > 2,

@ =1 vadu{Inf[f) < 7vie )} by Varlf] < (B (% + &) + £ ) 11/

Remark 10.2.1. From this we can deduce that if f : {—1,1}" — {—1,1} is an ordinary
function and T < § is a positive real such that Inf;[f] < 7 for all i, then I[f] > $logy(2)-
Var(f]. This follows by taking ¢ = "/* and K = logy(2).

Proof. We may apply [Theorem 10.1.1|to each of the derivative “functions”

x(i»—>1) _ x(i»—>—1)
gy = LGS

(These are actually sets of indeterminates, each of which is a homogeneous linear form
in the indeterminates f(z).) We can obtain the hypothesis D; f(z) = D, f(z)? from the

hypotheses f(z)* =1 Vlam Fact 8.3.6, We deduce
{f()? =1:va} F4 Stabo [Dif] < E[Dif()’] (F + 55 EDif(2)°])
& D (HFTS)? < Infi[f] (% + & Infi[f])

S3i

for each 7 € [n]. Further, since Inf;[f] is SOS and of degree 2 we have
Inf;[f] <7ty Inf[f]- (& — 5Inf[f]) > 0.

Adding the previous two deductions yields

(P =1 VaUItl) < 7oV ) b () T(S) < Il (% +
S3i

for each . Now adding over all i € [n] gives

P =1:vay Uil <rviell) b SIS RS < (% +
SCln]

Moreover, since s(ig)s_1 > K(L)E-

. 7
and s > K), it follows that

o s%;] ISI(\/%)\S|—1f(S)2 > \/;Ii,l Var|f] — ﬁI[f].

' —s(J5)" " holds for all s € [n] (consider s < K
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By combining the previous two deductions and doing some rearranging, we obtain

K—1
(f(x)?=1:V2)U{Inf;[f] < 7:¥ie [n]} Fy Var[f] < (ﬁT (3 + ) + %) 11,
as claimed. ]

We can now easily deduce (an SOS proof of) the fact that if f : {—1,1}* — {—1,1}
has constant variance and all its influences equal then its total influence is 2(logn). For
the application to BALANCEDSEPARATOR, we will in fact need a slightly more technical
statement:

Corollary 10.2.2. (SOS proof of KKL for equal-influence functions.)

Let n > 81 be an integer and for each x € {—1,1}" let f(x) be an indeterminate.
Define

A={f(x)* =1:Vo}U{Inf;[f] <7:Viec[n]}
U {Inf;[f] = Inf;[f] : Vi,j € [n]} U{Var[f] > 3} U{I[f] < & Inn}.
Then A+, —1 > 0.

In fact, the result holds even if we change the equal-influences assumption {Inf;[f] =
Inf;[f] : Vi, j € [n]} to the weaker pair of assumptions {Inf;[f] = Inf;[f] : Vi,j <n/2}
and {Inf;[f] = Inf;/[f] : V', j' > n/2} (assume n even).

Proof. We will prove the “in fact” statement, assuming n is even. (The reader will see
why the original statement is also true when 7 is odd.) Define IV[f] = 3, , Inf;[f]

and 1?[f] = > isnso Infi[f], so I[f] = IM[f] +I?)[f]. Note that
{Inf;[f] = Inf;[f] : Vi,j <n/2} +u Inf,[f] = 2I0[f]

for each i < n/2, and similarly for i > n/2. Since IV [f], I?)[f] are themselves SOS and
of degree 2, we get

{Inf,[f] = Inf[f] : Vi, j < n/2&Vij >n/2} +,  Infi[f) < 2104 21(f] = 21[f]

for each ¢ € [n]. (Note that with the basic equal-influences assumption we can obtain
the even stronger conclusion Inf,[f] = LI[f] for each i € [n].) We can now employ
[Theorem 10.2.1} replacing T by 2I[f]. Using also Var[f] > 2, we obtain that for any
realse > 0, K > 2,

ANQA < st} b 3 (B (% + 50000 + ) 107)
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Select K = logy(9n'/?) and € = n~/® to obtain

1/8

A{If] < tn} b, 2< <1g’29—n/> CRARE TRl pa—— (;nl/z)) 1f]
= 2log97(81n)1[.ﬂ + WQ(SMI[.}C]Z‘ (10.1)

We now employ I[f] < 2 Inn. Since I[f] is SOS and of degree 2 we also have
I[f] < slnn by If < 4
Substituting this into (I0.1)) yields

A k4 %S Linn 4+

1
2 10.%'9(81”) 20 n1/2logy(81n)

whence A+, —1 > 0. ]

10.3 Analysis of the DKSV BALANCEDSEPARATOR instances

We recall the BALANCEDSEPARATOR problem Given is an undirected multigraph G' =

(V,E). Itis required to find a cut S C V with § < ‘|‘5/'|| < 2 50 as to minimize E?EF) The

natural polynomial optimization formulation has an 1ndeterm1nate f(z) for each vertex
xeV:

2
: E ’ €T 7f

Thus as discussed in the degree-4 SOS SDP hierarchy will use binary search
to compute the largest 3 for which

(flz) =1 :Ver}U{(V > f(z ))2 < %}U{% 3 <f(:c);f(y)>2 SB}

zeV
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The DKSV instances. We now recall the DKSV BALANCEDSEPARATOR instances [79].
The instances G = (V,E) = (Vn, Ex) are parameterized by primes N. Let F =
{—1,1}¥ x{—1,1}", thought of as the 2 N-dimensional hypercube graph. Let o act on el-

ements  (x,y) € F by cyclic rotation of both  halves:
o(z,y) = (TN, T1, ..., TN_1, YN, Y1, - --,Yn_1). The elements 0,02, ... oV = id form a
group acting on JF, partitioning it into orbits Oy, ..., O,,; 4 of these orbits have cardinal-

ity 1 and the remaining (22" —4) /N have cardinality N. A cardinality-N orbit O is called
“nearly orthogonal” if for all distinct (x,y), (',3) € O it holds that |{(z,y), (z/,¢))]| <
8v/N log N. Presuming that N is sufficiently large, [79] shows that the number n of nearly
orthogonal orbits satisfies (1 —4/N?)m < n < m. (This implies N = ©(logn).) For ty-
pographic simplicity the nearly orthogonal orbits are assumed to be { Oy, . . ., O, }, and this
set is taken to be the vertex set V. We write L. C F for the “leftover” elements contained in
orbits O,, 11, ...,O,,; writing € = 2'% we have € = O(1/N?). The edges E in G are given
by the usual hypercube edges in F. More precisely, any pair O, O’ € V have either N or 0
edges between them, according to whether or not there exist (z,y) € O, (2/,y') € O at
Hamming distance 1 in . There are no self-loops in G because of the near orthogonality
property. The set of edges £ is in one-to-one correspondence with a subset of (almost all
the) hypercube edges in F; specifically, all those not incident on L. The authors of [79]
use the KKL Theorem to prove:

Theorem 10.3.1. The DKSV BALANCEDSEPARATOR instances have optimum value Q(loilﬁ).
(Although we haven’t formally verified it, it’s very likely that the optimum value of
these instances is also O(%)’ at least for infinitely many N. The reason is that
there is a o-invariant function f : F — {—1,1} of constant variance and total influ-
ence Q(log N); namely, f(x,y) = 1if z € {—1,1}" contains a “run” (with wraparound)

of length |log, N — log, loglog N |.)
On the other hand, the main result of [79] is the following:

Theorem 10.3.2. The standard SDP relaxation with triangle inequalities for the DKSV

BALANCEDSEPARATOR instances has value O(j5,).

We show here that this factor ©(loglogn) gap is eliminated when the degree-4 SOS
relaxation is used.

Theorem 10.3.3. The degree-4 SOS relaxation for the DKSV BALANCEDSEPARATOR

: log |
instances has value (=3 %% ).

Proof. We need to show
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2
2 _1. 1 1 1 O)fO’ loglogn
{f(0) _1.VOeV}U{(nO§€ij(O)) <3} OZ ( ) SC—igi}

F,—1>0 (10.2)

for some constant ¢ > 0 (and N sufficiently large).

Introduce indeterminates g(z) for all z € F = {—1,1}¥ x {~1,1}¥. By [Corol]
lTary 10.2.2]it is possible to write

TEF
+ > wi(Infig] — Inf;lg]) + ui(Varlg] — 3) + ua(35 In(2N) —T[g]), (10.3)
1<i<j<N
N41<i<j<2N

where ug, u1, us are SOS (in the variables g(x)) and all summands have degree at most 4.
Now substitute into this identity g(z) = f(O) for each z € O € V, and also substitute
g(x) = 1 for each x € F which is not contained in any O € V. We now consider what
happens to each term in (10.3).

First, we notice that the degree of each term cannot increase. The polynomial 1y (now
over indeterminates f(O)) remains SOS. The next term, ), _»v.(g(z)* — 1), becomes of
the form 3~ v, (f(O)? — 1) for some polynomials vg,. We claim that each summand
w;;(Inf;[g] —Inf;[g]) in the next term drops out entirely. This is because when g is viewed
as mapping from F to the set of homogeneous degree-1 polynomials in the f(O)’s, it is
invariant under the action of o, by construction. From this it follows that Inf;[g] = Inf;[g]
formally as polynomials forall 1 <: < j7< Nand N +1<:<j <2N.

Next we come to the term u; (Var[g] — 2). We have

—

Varlg] — 2 = E [9(z)’] — 2 — E [g(z)]*.

xeF xEF

Y

Even after our substitution, Eqec[g(x)?] — 2 will provably equal ; under the assumption
{f(0)?> =1:VY0O € V}, so it remains to focus on

B fo(@) = (e+ (1= 9% X /(0 >)2

xeF eV

Recalling that 5 (Y + Z)% < 2Y?2 + 272, we deduce

N3
P

(%Zf(O))QS% e (ert-0i T so >)2s28+2<1—e>2~

oev oeVv

185



(for N sufficiently large, since e = O(1/N?)), as needed.

Finally we come to the term us(55 In(2N) — I[g]). Let ¢’ denote the fraction of hy-
percube edges in F which are incident on L; note that ¢ < 2¢ = O(1/N?). After our
substitution, we have

25 (2N) —I[g] = 5 In(2N) — 2N) B {(g(w)_g(y)ﬂ

edge(w7y)
in F
2
0)—f(©O
= 5 I2N) = 2N)(1 =€)y D (w) (),
(0,0)€eE

(10.4)

where () is the average of a number of terms, some of which are (15*)? = 0 and some of
which are of the form

(H92) = 14 3((00 = 1) = 1(J(0) + 1

2
The above shows that { f(0)? =1:VO € V} F, (%) < 1. Hence

{f(0)2 —1:Y0O e V} U {ﬁ Z (f(O)—Qf(O’)>2 < Cloilg(;)in}

(0,0NeE
Fo (@04) > & In(2N) — (2N)(1 — €) - clEen _ ¢/,

logn

which is nonnegative for ¢ sufficiently small, since N = ©O(logn) and ¢ = O(1/N?).
Thus we have verified (10.2). [
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Chapter 11

SOS proofs of the CLT, the % Theorem,
and the analysis of the KV MAXCUT
instances

In this chapter, we give an SOS proof for the % theorem, and use this to show that constant-
degree SOS proofs certify a better upper bound on the optimal value of the KV MAXCUT
instances (than the upper bound given by the Goemans-Williamson algorithm).

11.1 Aninvariance theorem for polynomials of linear forms

Theorem 11.1.1. (SOS proof of an Invariance Theorem for polynomials of linear forms.)

Let ay, .. .,a, be indeterminates. For any real vector z = (21, . .., zy), let {(z) denote
the homogeneous linear polynomial {(z) = a1z1 + - - - + anz,. Then for any even integer
k > 4 we have

4 tad <1 by g;[g((;)k] — KONt < El(x)Y] < g}[ﬁ(G)k],

where G = (G4, ...,G,) ~N(0,1)" and x ~ {—1, 1}" is uniform.

Remark 11.1.1. It is easy to see that Ez[{(x)*] = Eg[l(G)*] formally as polynomials
fork =0,1,2,3, and any odd integer k > 3.
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Proof. For each integer 0 < ¢ < n, define the polynomial

Pi = E[K(Gla T 7Gi7 Lit1," " 7wn>k]'
We will show for each 1 < ¢ < n that

The desired result then follows by summing over i. So fix 1 < ¢ < n and write ¢(z) =
U'(2') + a;z;, where 2’ = (z1,..., 21, 2i+1, 2,) and

'
NZ):a121+”'+ai—1zi—1+ai+1zi+1+---+anzn

does not depend on the indeterminate a;. Denoting Z’ = (G4,...,G;_1,Tit1,...,Ty)
we have

P- P =B B C2) 4G - (((2) )]

k/2

— Z (2/‘“]) ((25 — DI —1)a?’ ng[f’(z’)k—%] (11.2)

where we used E[G]] =

E[z!] = 0 for r odd and E[G}] = (r — )!, E[z}] = 1, for r

even. The above polynomial is evidently SOS, justifying the second inequality in (TT.T]).
As for the first inequality in (IT.1)), we have

a4 +at <1l by af <af (11.3)
foreach i € [n] and 2 < j < k/2 because
af —aP = (1 —ad?)(at +ab +ad+ - +a7?)

) <<1— 2a3>+za3) (a4 af a4 a7,
=1

ai+-+al <1 Fypegy EW(Z')’H’T < kO%) g[ﬁl(zlf]mﬁ'
— KOW(2 4. 4 )R < OW

(11.4)
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by |Corollary 8.4.7] the second inequality’s SOS proof being
L= (Z )7 =1+ (X a) + (T ap)® + (T ap)’ + -+ (Cad) 7

Combining (11.3)) and (IT.4) via[Fact 8.2.4]
a2+ +ai <1l by afj ]Zﬂ/[fl(zl)kdj] < k9Wa}.

(2

Using this in (11.2), along with (2’“]) (27 — )1 = 1) < kO®) for each j, yields the first
inequality in (11.1]), completing the proof. U

11.2  An SOS proof of the 2 Theorem

We require the below technical lemma giving a polynomial approximator to the absolute-
value function. The proof uses some standard methods in approximation theory and is
deferred to [Section 11.4i

Lemma 11.2.1. For any sufficiently small parameter 6 > 0, there exists a univariate, real,
even polynomial P(t) = Q(t*) of degree at most O(1/6?) such that:

1. P(t) > |t| forallt € R;
2. E[P(og)] < \/g co+6< (%02 + %) + 0 forall 0 < o < 1, where g ~ N(0,1);
3. Each coefficient of P is at most 2°'? in absolute value.

It is not hard to show that among degree-2 polynomials P(t) with P(t) > |t|, the
lowest possible value of E[P(g)] is 1, achieved by P(t) = 5 + 3t*. Interestingly, this is
also the lowest possible value even when degree-4 is allowed:

Theorem 11.2.2. Suppose P(t) is a univariate real polynomial of degree at most 4 satis-
fying P(t) > |t| for all real t. Then Eg.n(0,1)[P(g)] > 1.

Proof. Replacing P(t) by 3(P(t) + P(—t)) if necessary, we may assume P(t) is even;
i.e., P(t) = a+ bt? + ct* for some real a, b, c. For any M > 0 we have

Lx (P(0)>0) + =35 (P(1)>1) +  gEme X (P(M) > M)

M2 M2-1
= 5 x(a>0) + ¥ x(atbte>1) + galye X (e+ M2+ Mic> M)

= a+b+3ch—M(++l).

This completes the proof because E[P(g)] = a+b+3c and M may be arbitrarily large. [
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Remark 11.2.1. Once we allow degree 6 it is possible to obtain a bound strictly smaller
than 1. For example, P(t) = .333+.815t* —.136t*+.01t® > |¢| pointwise, and E[P(g)] =
.89.

The following “% Theorem”, due to [[141], is essentially the special case of the Majority
Is Stablest Theorem in which p — 0. We reproduce the proof.

~

Theorem 11.2.3. Let f : {—1,1}" — [—1, 1] and assume |f(i)| < € for all i € [n]. Then
Z?:1 f(Z)Z < % + O<E)-

Proof. Let(: {—1,1}" — Rbe {(z) = 37, f(i)z; and let 0 = /3", f(i)2. Then
= E [J@l@) <EBl@)<c E [gl+00c =0 ([ - O<e>) ,
z~{—1,1}" x g~N(0,1)
the inequality being Berry—Esseen. The result follows after dividing by ¢ and squaring.
]

Theorem 11.2.4. (SOS proof of the Berry—Esseen Theorem with { functional.)

Let ay, ..., a, be indeterminates, and for each x € {—1,1}", let f(x) be an indeter-
minate. Let

A={f(x)> -1, f(z) <1:Va}U{al+---+a <1}

Then for any small real 6 > 0,

n

A |_5(1/52) E [f(w)(alxl 4o+ anwn)] S b+ 5 + 25(1/52) Z a?)

xz~{-1,1}" -
=1

where we may choose either
b:\/g or  b=3(ai+--+al)+ L

Proof. For each z € {—1,1}", let {(x) denote a,x; + - - - + a,x,, a homogeneous linear

polynomial in the indeterminates a;. Let P(t) = Q(t*) = 3. cxt" be the univariate
k=0,24,....d

real polynomial in [Lemma 11.2.1[, where d = deg(P) < O(1/62). Since P(t) > =t for
all real ¢, [Fact 8.3.1|tells us that -, P(t) > £t in R[t]. Using and substituting

= {(x) we deduce

{f() 2 -1, f(z) <1} Fan  fl2)l(z) < P(l(x)).
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Averaging over x yields

{f(x) 2 =1, f(z) <1:Vep  Fop Elf(@) (@@ + - 4 anzn)] < E[P((())]
= Y E[cké(m)k]. (11.5)

k=0,24,....d

For each even 0 < k < d, regardless of the sign of ¢, [Theorem 11.1.1|implies that

ai+-tay <1 b Elogl(x)] < Blal(G)] + e KOP) " al
=1

Summing this over k, using ), k| kO < 9@, and combining with (TT.3)) yields

xr

A by E[f(x)(axi 4 +apx,)] < g[P(@(G))] + d°@ Zn:a;*. (11.6)

Let o2 be shorthand for } " | a?. Note that if we treat a,, . . . , a,, as arbitrary real numbers,
we have
E[P((G)]= E [Plog]= E [Q(°g"), (11.7)
G gNN(Ovl) gNN(Ovl)

by the rotational symmetry of multivariate Gaussians. Since the left and right sides are
polynomials in ay, . . ., a,, it follows that (11.7) also holds as a formal polynomial identity
over the indeterminates a;, . . ., a,. Now temporarily view o2 as an indeterminate. From

Lemma 11.2.1| we have that Egx0,1)[@(0°¢?)] is upper-bounded by both \/g + 4 and

%JQ + % + 0 for all real numbers 0 < 0> < 1. Thus from|Fact 8.3.2| we have the following
univariate SOS proof(s):

1

(1=0%)0>>0 Fgp E [Q(o%g”)] < ﬂ+ 5, 307+ —+6
g~N(0,1) s

(note that @ has even degree). Letting 0 = Y7 | a? again, we deduce that for either

choice of b,

(1 R ia?) (i a?) >0 ki B Q%" <b+6

i=1 i=1 g~N(0,1)
& ai+--+ay <1 Hy E[P(g(G))]SbjL‘S’
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using (I1.7) and the fact that Y ;" | af is already SOS. Combining this with (TT.6) yields

n

A Fa EBlf@) (@@ + -+ agx,)] <0+ 6+ d9DD af,

v i—1
as needed. O
Corollary 11.2.5. (SOS proof of the 2 Theorem.)

~

For each v € {—1,1}", let f(x) be an indeterminate. Define f(S) as usual and write

~ ~

f(@) = f({i}) for short. Let
A={f(x) > -1, f(x) < 1:Vzx}.

Then for each small real § > 0,

A Foay8) f(@)?

IN

2 464+ 200 N Fli)
=1

AV{FaP <T:viehly Foue L F@P<Z45+20009.n

Proof. We wish to apply |Theorem 11.2.4| with a; = f(i) for each i € [n]. A standard
proof shows that

Y f82=_E_ [f(x)]

z~{—1,1}"
SCln]
and hence, using
Ry Y f2 <L (11.8)
i=1

We may therefore employ [Theorem 11.2.4{(with §/2 instead of ) to obtain

A "6(1/52)

{—E1 1}n[f(w)(ﬂ1)w1 +oot fn)®a)] < 3 (i)2+ 1+ § + 200/

But
z~{—1,1}"
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is a polynomial identity so we deduce
A Foumy D TOP<3) F@P+ 5 +5+2000 % f)!
i=1 i=1

=1
o 3P <5425
i=1 i=1

-~

completing the first part of the proof. Now adding the assumptions f(7)? < 7 easily yields
AU{fEP<rviem}t R Y JO<rY )<t
i=1 i=1

using again. The proof is complete. O

11.3 Analysis of the KV MAXCUT instances

We recall the MAXCUT problem: Given is an undirected weighted graph G on vertex
set V' in which the nonnegative edge weights sum to 1. We write (x,y) ~ E to denote
that (x, y) is arandom edge chosen with probability equal to the edge weight. It is required
to finda cut S C V so as to maximize Pr(, ,)p[T € S,y € S or vice versa]. The natural
polynomial optimization formulation has an indeterminate f(z) for each vertex = € V:

max B [5-3f(x)f(y)]
(. y)~E

s.t. f(x)>=1 VzeV.

Thus as discussed in [Section 8.2} the degree-d SOS SDP hierarchy will use binary search
to compute the smallest § for which

(@ =1:veeViu{ B [-if@f@)z8} 0 -120

(zy)~E

UNIQUEGAMES. The Khot—Vishoi (KV) instances of MAXCUT [144]] are given by com-
posing the KKMO “noise stability” reduction from [141] with the KV integrality gap in-
stances for UNIQUEGAMES (UG). Our SOS proof of the % Theorem gives us a “black-
box” analysis of the KKMO reduction which can essentially be “plugged in” to a suf-
ficiently strong SOS analysis of UG instances. Let us now recall the UNIQUEGAMES
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problem with label-size k& € N*. Given is a regular weighted graph G = (V, &) (self-loops
allowed) with weights summing to 1. Also, given for each edge (u,v) is a permutation
Tuw : |k] — [k]. We write (u,v,7) ~ £ to denote that edge (u,v) with permutation
T = Tue 18 chosen with probability equal to its edge weight. The goal is to give a labeling
F 'V — [k] so as to maximize Pry y x)~c|[m(F(u)) = F(v)]. The natural polynomial
optimization formulation has an indeterminate X, ; for each u € V,i € [k

k k
max E ZXu,z’X'v,w(i)] = B [ZXu,i- E [vau)]]

(u,v,m)~E Li=1 ueV Li—1 (v,m)~u

st. X2, =X,; YueVielk]

k
Z Xu,i =1 Yuce V,
=1
where we write (v, ) ~ u in place of (u, v, ) ~ &|y—, for brevity. Thus the degree-d
SOS SDP hierarchy will use binary search to compute the smallest 3 for which

k
(X2, =X :VueVieklJu{dX X,i=1:YueV}
i=1

B[S % B Pewol] 25} 120

ueV -1 (v,m)~u

In [Section 9.3] we have shown that the degree-4 moment SDP proves that the KV
family of UG instances has a very low optimum value. In fact we have shown something
stronger; one only needs the hypotheses X, < X,; and (avg,; X,;)* < 1/k* Let us
make a somewhat more general definition which applies to SOS-refutations of any UG
instances:

Definition 11.3.1. Given a UG instance G = (V, E) with label-size k, we say there is a
degree-d SOS refutation that the fractional assignment optimum is at least 3 if

{Xu;>0:VueViclklfUu{d X, <1:VueV}

1
{E[SX B Kl 28} +0 -120

ueV Li—1 ’ (v,m)~u

The above definition is slightly more demanding than the most natural one, in which
the hypotheses Xii = X, are granted. As mentioned, in Section 9.3| we have estab-
lished something noticeably stronger anyway: the following theorem is a restatement of

Theorem 9.3.1k

194



Theorem 11.3.2. Let G = G(N,n) = (V, &) be the Khot—Vishnoi instance of UNIQUEGAMES
parameterized by N (a power of 2) and 1) € (0, 1), which has 2~ /N vertices, label-size N,
and optimum value at most N ~". Then there is a degree-4 SOS refutation that its fractional
assignment optimum is at least N .

We now recall the KKMO [141]] reduction from UG to MAXCUT, which is parame-
terized by p € (—1,0). Given a UG instance G with label-size IV, the reduction creates a
vertex set V with a vertex w,, , for each u € V and each z € {—1,1}". The probability
distribution £ on edges for the MAXCUT instance is given as follows:

draw u ~ V;

independently draw (w, v, 7r;) and (u, ve, 75) from the marginal of £ which has
first vertex u;

e draw “p-correlated strings” (x, y) from {—1,1}";

output the edge (Way, zorm s Wy, yorrs )-

KKMO make the following easy observation:

Proposition 11.3.3. Consider any cut V. — {—1,1} in the above-described MAXCUT
instance (V, E); specifically, let us write it as a collection of functions f, : {—1,1}" —
{—1,1}, one for each v € V. Then the value of this cut is

L~ 1 E [Stab, g,
where g, : {—1,1}N — [=1,1] is defined by g,(z) = E [fo(x 0 )]

(u,0,7)~E |l u=u

As mentioned, the KV MAXCUT instances are formed by composing the KKMO re-
duction with the KV UG instances. Khot and Vishnoi show that for any fixed n € (0, 1),
the optimum value of the resulting MAXCUT instance is at most (arccos p)/m + on(1).
Further, using “Majority cuts” it’s easy to show (using, e.g. [179, Theorem 3.4.2]) that the
optimum values is at least (arccos p)/m — on(1).

The main result of this section is the following:

Theorem 11.3.4. Fix any small €,0 > 0. Let G = (V, &) be a UG instance with label-size
N for which there is a degree-d SOS proof (d > 2) that its fractional assignment optimum
is at most €. Let G = (V, E) be the MAXCUT instance resulting from applying the KKMO
reduction with parameter p € (—1,0) to G. Then there is a degree d + O(1/6%) SOS
refutation of the claim that the optimum value of G is at least % — %p — (% — %)pg’ +0+
. 90(1/8%)
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Together with [Iheorem 11.3.2{this implies:

Corollary 11.3.5. Fix any small 6 > 0. Let G = (V, ) be a Khot-Vishnoi UG instance
with label-size N and noise parameter 1. Let G = (V, E) be the MAXCUT instance
resulting from applying the KKMO reduction with parameter p € (—1,0) to G. Then there
is a degree O(1/6%) SOS refutation of the claim that the optimum value of G is at least
11y (1 1y g4 900/ . N-90),

Corollary 11.3.6. Consider the KV MAXCUT instances with parameter py ~ —.689. The
degree-O(1) SOS SDP certifies they have value at most 779, which is within a factor .952
of the optimum. For general p, the degree-O(1) SOS SDP certifies a value for the KV
MAXCUT instances which is within a factor .931 of the optimum, where

931~ min —ecosp)/

10 3 = 2p— (3= 2P

Before proving [Theorem 11.3.4] we prove a lemma which gives an alternative way
to refute a UG instance having a good solution: roughly, for most vertices v € V), its
neighbors cannot agree well on what v’s label should be.

Lemma 11.3.7. Let G = (V, &) be a UG instance with label-size N and suppose there is
a degree-d SOS refutation that its fractional assignment optimum is at least €. Then also

Au{ E livf ((vE [Xv,,,(i)])z] > 46} F, —1>0,

u~V =1 )~V

where

N
i=1

Proof. Given the indeterminates X, ;, define for each u € V and ¢ € [IN] the homogeneous
linear forms

Yu,i = Xu,i + % E [X’U,Tf(i)]‘

(v,7)~u

N |=

We will apply the assumption regarding the degree-d SOS refutation for G to the Y, ;’s.
Certainly we have

N
A b Y20 Y, <1
7j=1
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for every u € V, i € [N]. Indeed, it’s not hard to check that to complete the proof we need
only verify

A F E E)Yu,r E [Yv,wu)]] >3 B Eﬁ(( E [Xv,wu)])g}-

u~V |i=1 (v,7)~u i=1 Mv,m)~v

But this follows from

]3 |:Z Yu,i . E [Yv77r(z)]:|

(v,m)~u

:%g[zxu,i- E [Yv,w<i>]]+%]f[z E [Xorp]- E [Yw@]}

(v,m)~u i (v,m)~u (v,)~u

“ip[Er B )

(v,m)~u

B[S B ol B ol +E [ B el
(where we do not even need the assumptions Zfil Xy < 1. [

We now give the proof of [Theorem 11.3.4]

Proof. Tt is not hard to deduce the following result from [Corollary 11.2.5}

Corollary 11.3.8. In the setting of |Corollary 11.2.5] for any p € (—1,0) we have

A Fgauey Stab[fl>2-p+(1-2)-p° -5 - 200/ Zf(i)4-
=1

It is also easy to check using[Fact 8.3.3| that
(@’ =1:voeViee {-L1}"} ko gf2) 2 ~Lg() <1

forallv € V, z € {—1,1}". Thus using the above corollary and |Proposition 11.3.3|we
obtain

{folz)?=1:YweV,x e {-1,1}"}
~ 5 N o
Souy 53 ByIStabll < 5~ ko~ (G~ 1)t + 64270 B [0

(11.9)
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Now we bound the error term 20(1/9%) . Euv[> | Gu(i)"] as follows. Using the poly-
nomial identity g, (i) = By m)ul fo(7(i))] together with |[Fact 8.3.14{and [Fact 8.3.15| we
have

F. E [ﬁg:,w] < E [fj( E [ﬁ,(w(i))Q])z]. (11.10)

u~V Li—q u~V =1 \(v,m)~u
On the other hand, it is easy to check that for all i € [N] and v € V), we have
~ N
{fo(x)?=1:Ve e {-1,1}"} ko f,(1)2 >0, 3 f,(i)? < 1. (11.11)
i=1
Since there is a degree-d refutation for G ha\Qng a fractional assignment of value at least
e, implementing [Lemma 11.3.7|with X, ; = f,(i)?, we have
~ N
{fu(i)* 2 0: Ve e Vi€ [NJU{Y fu(i)’ <1:Vz €V}
i=1
N N 2
U { E {Z( E fv(n(z’))Q) } > 46} Fops  —1>0. (1112)
(

u~V |i=1 \(v,w)~u

By [Fact 8.2.3] (I1.11)) and (T1.12)) give

P =1:voeV,ze (-1 U] B, [%((E ﬁ,<ﬂ(¢))2>2} > 4}

i=1 )~

Fara —12>0. (11.13)

Combining (TT.13)) and (TT.10), we get

{folz)?=1:YveV,ze{-1,1}"}u { Ev[fj g;(z')4] > 46} a2 —12>0.
u~VY Li=1
(11.14)

Finally, combining (I11.14) and (11.9), we get

{folx)?=1:YoeV,ze{-1,1}"}

) 2
U{3—3 E [Stab,[gu]] > 5—1p—(G-2)p"+0+2°0} by 50  —120. O
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11.4 An approximator for the absolute-value function

Here we restate and prove|Lemma 11.2.1] A key tool will be the polynomial approximator
to the sgn function constructed in [80]].

ILemma 11.2.1} For any sufficiently small parameter 0 > 0, there exists a univariate, real,
even polynomial P(t) = Q(t*) of degree at most O(1/6?) such that:

1. P(t) > |t|forallt € R;
2. E[P(og)] < \/g co+6 < (%(72 + %) + 0 forall0 < o <1, where g ~ N(0,1);
3. Each coefficient of P is at most 2°0\3°8(")) in absolute value.

Proof. We will use the following result from [80, Theorem 3.10]:

Theorem 11.4.1. For every 0 < ¢ < .1 there is an odd integer d = d(¢) = ©(log?(1/€)/e)
and a univariate polynomial p(t) of degree d satisfying:

e p(t) € [sgn(t) — e, sgn(t) + €| forall |t| € [e,1];
o p(t) € [—1—¢€1+¢€|forall|t| <e
e p(t) is monotonically increasing on the intervals (—oo, —1] and [1, +00).

We can assume without loss of generality that p(t) is odd since the odd part of p(t)
(i.e. (p(t) — p(—t))/2) also satisfies the properties in|[Theorem 11.4.1]

Given p(t) as in[Theorem 11.4.1] define

clog®(1/e)
\/E

and ¢ > 1 is a universal constant to be chosen later. The polynomial p,(t) has the following
properties:

po(t) = (1 + 2¢)p(t/M), where M =

e po(t) € [1,1+4e] whent € [Me, M|, po(t) € [—(1+4e€), —1] whent € [—M, —Me]|;
e po(t) € [—(1+4e),1+ 4| forall |t| < Me;

e po(t) > 1whent > M, py(t) < 1whent < —M.
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Finally, define
¢
P(t) = / po(z)dx + 2Me.
0

an even polynomial of degree d + 1. We will show that the following hold assuming c is
taken sufficiently large and then ¢ is sufficiently small:

(a) P(t) > |t|forallt € R;
(b) E[P(0g)] < (/2 0+ O(Me) forall 0 < o < 1;
(¢) Each coefficient of P is at most 2°(%) in absolute value.

The proof is then completed by taking € = §2 /polylog(1/4).

Properties ((a)) follows easily from the definition of P(t). It also follows easily from
the definition that |P(t)] < 1+ O(Me) < 2 for all |[t| < 1. Tt is a standard fact in
approximation theory (see, e.g., [208,[176]]) that if P is a degree d+1 polynomial satisfying
|P(t)| < bforall |t| < 1 then each coefficient of P(t) is at most, say, b(4e)t! = 20(4) in
magnitude. This verifies ((c))). It remains to establish property ((5)). For this we have

E[P(og)] = E[P(0g) - {|og| < M}] + E[P(0g) - 1{|og| > M}] (11.15)

Regarding the first term in (T1.15]) we use that for |[t| < M we have |py(t)| < 1+ 4¢ and
hence
P(t) < (1 +4e)|t| + 2Me = |t| + O(Me) V|t| < M. (11.16)

Thus
E[P(og) - H{|og| < M}] < Ellog| - 1{|og| < M}| + O(Me)
< Bllogll + O(Me) = \/2 - o + O(Me).

To complete the verification of (b)) it therefore suffices to bound the second term in (IT.13])
by O(Me). In fact we will show

E[P(og) - 1{|og| > M}] < Me. (11.17)
Using evenness of P and the fact that it is evidently increasing on [M, co0) we have
E[P(cg)-1{|og| > M}] = 2E[P(cg)-1{cg > M}] < 2E[P(g)-1{g > M}]. (11.18)

We upper-bound P’s value on large inputs using a well-known fact from approximation
theory (and a corollary of the theorem in §33 of [169]):
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Fact 11.4.2. Let q(t) be a polynomial of degree at most k satisfying |q(t)| < b for all
|t| < 1. Then |q(t)| < b|3t|* for all |t| > 1.

Applying this fact to p(t) we obtain p(t) < (1 + ¢)(3t)? for all t > 1, whence py(t) <
2(3t/M)? for all t > M, whence

t
P(t) = / po(x)dz + 2Me < O(M) +t - 2(3t/M)? < O(1) - (3t/M)*!
0
for all t > M (we also used M = o(2%)). Thus

([LT8) < O(2)™ - Elg™ - 1{g > M}] < O(&)H1 - O(dM)* exp(—M?/2)
< 2p01y10g(1/e)/6 exp(—M2/2) _ 2polylog(1/e)/e eXp(—02 IOgQC(l/E)/2€) < Me

if we choose c to be a large enough universal constant. This completes the justification
of (11.17) and the overall proof. O]
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Part 111

Robust algorithms
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Chapter 12

Robust satisfiability algorithms for
width 1 CSPs

12.1 Introduction

Constraint satisfaction problems (CSPs) constitute a broad and important subclass of al-
gorithmic tasks. One approach to studying the complexity of CSPs centers around the
Feder—Vardi Dichotomy Conjecture [86] and the use of algebra [[1235] to classify all CSP
decision problems. Another approach to the study of CSPs involves quantifying the extent
to which natural CSPs can be approximately solved [[127]; this approach has been char-
acterized by more “analytic” methods. Recently there has been interest in melding the
two approaches (see, e.g., [155) [128, [113]); the present work takes another step in this
direction.

Almost-satisfiable instances. The algebraic approach to CSPs is mainly concerned with
what we’ll call the decision problem for CSPs: given an instance, is it completely satis-
fiable? The Dichotomy Conjecture states that for every CSP this task is either in P or is
NP-hard; the Algebraic Dichotomy Conjecture of Bulatov, Jeavons, and Krokhin [53] re-
fines this by conjecturing a precise algebraic characterization of the tractable CSP decision
problems. However when it comes to approximability, not all tractable CSPs are “equally
tractable”. E.g., for Max-Cut, not only can one efficiently find a completely satisfying
assignment when one exists, the Goemans—Williamson algorithm [94] efficiently finds an
almost-satisfying assignment whenever an almost-satisfying assignment exists. (Specifi-
cally, it finds a (1 — O(y/€))-satisfying assignment whenever a (1 — ¢)-satisfying assign-
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ment exists.) Contrast this with the kLin(mod 2) problem, £ > 3: again, one can efficiently
find a completely satisfying assignment whenever one exists; however Hastad [116] has
shown that finding even a somewhat-satisfying assignment whenever an almost-satisfying
assignment exists is NP-hard. (Specifically, Ve > 0 it is hard to find a (1/2 + €)-satisfying
assignment when a (1 — €)-satisfying assignment exists.)

Prior work on robust decidability. In 1997, Zwick [228] initiated the study of the
following very natural problem: which CSPs are efficiently robustly decidable? By this we
mean that the algorithm should find (1 — o.(1))-satisfying assignments whenever (1 — €)-
satisfying assignments exist (formal definitions are given in [Section 12.2). Zwick gave
a linear programming (LP)-based algorithm for finding (1 — O(1/log(1/¢)))-satisfying
assignments for Horn-£Sat (for any fixed k); he also gave a semidefinite programming
(SDP)-based algorithm for finding (1 — O(e!/?))-satisfying assignments for 2Sat (since
improved to 1 — O(¢'/?) [60]).  Later, Khot [136] gave an SDP-based algorithm for
finding (1 — O(e'/?))-satisfying assignments for the notorious Unique-Games problem
over domains D with |D| = O(1) (since improved to 1 — O("/?) [S9])[] On the other
hand, the only tractable CSPs for which the robust decision problem seems to be NP-hard
are the ones that can encode linear equations over groups.

Bounded width. If we wish to classify the CSPs which are efficiently robustly decid-
able, we seek a property that is shared by Horn-£Sat, 2Sat, and Unique-Games but not by
3Lin(mod p). From the algebraic viewpoint on CSPs there is a very obvious candidate: the
former CSPs have bounded width while the latter does not. Briefly, a CSP is said to have
bounded width if unsatisfiable instances can always be “refuted” in a proof system that
only allows for constant-sized partial assignments to be kept “in memory” (again, more
formal definitions are in[Section 12.2)). Recent independent works of Barto—Kozik [37] and
Bulatov [52] have connected this notion to algebra by showing that bounded-width CSPs
coincide with those which cannot encode linear equations over groups. Thus by Hastad’s
work we know that any CSP which is efficiently robustly decidable must have bounded
width (assuming P # NP). As mentioned at the beginning of this thesis, the Guruswami—
Zhou Conjecture [113]] states that the converse also holds: every bounded-width CSP has
an efficient robust decision algorithm.

"We emphasize that in this chapter, we always treat the domain size |D| as a fixed constant, with € — 0
independently.
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Linear and semidefinite programming. Essentially the only known way to produce
CSP approximation algorithms is through the use of LPs and SDPs. Indeed, recent work
of Raghavendra [189] shows that if one believes Khot’s Unique Games Conjecture [136]],
then a CSP II is efficiently robustly decidable if and only if the basic SDP relaxation
robustly decides it. However understanding and solving SDPs can be difficult, and as
Zwick’s Horn-£Sat algorithm illustrates, sometimes only the power of linear programming
is needed for robust decision algorithms.

12.1.1 Our contributions
As a step towards the Guruswami—Zhou Conjecture, we show that a special case of the

bounded width CSPs are robustly decidable by the basic linear programming relaxation.
Somewhat informally stated, our main theorem is the following:

Theorem 12.1.1 (Informal version of [Theorem 12.3.1). Let 11 be any (finitely presented)
CSP. Then the basic LP relaxation robustly decides 11 if I1 has width 1.

(Formal definitions of the terms in this theorem are given in[Section 12.2])

In slightly more details, our proof of [Theorem 12.1.1| gives an efficient deterministic
“LP-rounding” algorithm for actually finding the required almost-satisfying assignments.
Quantitatively, it finds (1 — O(1/log(1/¢)))-satisfying assignments for (1 — €)-satisfiable
instances, matching the performance of Zwick’s Horn-kSat algorithm. As we describe
below, this is best possible. Our rounding algorithm is also simpler than Zwick’s.

Independently and concurrently, Dalmau and Krokhin have also shown that width 1
CSPs have efficient robust decision algorithms. Their proof is different from ours; it is by
a black-box reduction to Zwick’s Horn-Sat algorithm.

The quantitative dependence on c. As mentioned, our LP-based algorithm for width-1
CSPs finds (1 — O(1/log(1/e€)))-satisfying assignments to (1 — €)-satisfiable instances.
One might hope for a better (say, polynomial) dependence on € here. Unfortunately, this
is not possible. Zwick [228]] already showed that for Horn-3Sat there are “gap instances”
where the basic LP has value 1—e but the optimum value is only 1—(1/1og(1/¢)). Indeed
Guruswami and Zhou [113]] extended this by showing there are equally bad gap instances
for the basic SDP relaxation of Horn-3Sat. Assuming the Unique Games Conjecture,
Raghavendra’s work [189] in turn implies that no polynomial-time algorithm can find
(1 —o(1/log(1/e)))-satisfying assignments to (1 — €)-satisfiable instances. On a positive
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note, in Section [12.3.1| we show that for the special case of width-1 CSPs called “lattice
CSPs”, the basic LP relaxation can be used to find (1 — O(e))-satisfying assignments to
(1 — ¢)-satisfiable instances.

12.2 Preliminaries

12.2.1 CSP preliminaries

Definitions. Let D be a nonempty finite domain of values, and let [' be a nonempty
finite set of relations over D, each of positive finite arity. We write such a k-ary relation as
R : D¥ — {0,1}. An instance T of the constraint satisfaction problem C'SP(T') consists
of a set V' of n variables, along with a list of m constraints. Each constraint C' is a pair
(S, R), where S is a tuple of some k variables (the scope of the constraint), and R is a
k-ary relation in the set . We say that Z' is a sub-instance of T if contains just a subset
of the variables and constraints in Z; it is induced by the variable set V' C V' if it includes
all constraints in Z involving just the variables in V’. An assignment for an instance of
CSP(T) is any mapping « : V' — D. The assignment satisfies a constraint C' = (.S, R)
if R(a(S)) = 1 (where « operates on S; component-wise). The value of the assignment,
valz(a) € [0,1], is the fraction of constraints it satisfies. We define the optimum value
of the instance Z to be opt(Z) = max,{valz(a)}. We say the instance is satisfiable if
opt(Z) = 1.

CSP width. An important parameter of a C'SP(I") problem is its width. This notion,
dating back to Feder and Vardi [86], can be given many equivalent definitions (in terms of,
e.g., pebble games, Datalog, logic, tree-width, proof complexity...). Roughly speaking,
CSP(T') has width £ if unsatisfiable instances of C'SP(I") can always be refuted while
only keeping £ partial assignments “in memory”. More formally, given an instance Z of
CSP(T), consider the following (k, £) pebble game with 1 < k < { integers: Alice begins
by placing each of ¢ pebbles on variables in V. Bob must respond with a partial assignment
to the pebbled variables which satisfies all constraints in which they participate. On each
subsequent turn, Alice may move ¢ — k of the pebbles to different vertices. Bob must
respond with a partial assignment to the newly pebbled variables which again satisfies
all constraints in which the pebbled variables participate, and which is consistent with
the assignment to the £ unmoved pebbles from the previous turn. If ever Bob cannot
respond, Alice wins the game; if Bob can always play forever, he wins the game. If 7 is a
satisfiable instance then Bob can always win regardless of £ and /; on the other hand, if 7
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is unsatisfiable, then Alice may or may not be able to win. We say that C'S P(I") has width
(k, 0) if Alice can win the (k, /) pebble game on all unsatisfiable instances; and, we say
that C'SP(I") has width k if it has width (k, ¢) for some finite /. In particular, we say that
CSP(T') has bounded width if it has width k for some finite £. Bounded width CSPs can
be solved in polynomial time using a simple enumeration over Bob’s possible strategies.
As examples, Horn-kSat has width 1, 2-Colorability has width 2 (but not width 1), and
3Lin(mod 2) does not have bounded width.

Tree duality and width 1. It is well known [86] that the CSPs of width 1 can be precisely
characterized as those which have tree duality. We say that C'S P(I") has tree duality if for
every unsatisfiable instance Z there is a unsatisfiable “tree” instance 7 which “witnesses”
this. By “witness” we mean that there is a homomorphism from 7T to Z; i.e., a map from
T’s variables into Z’s variables which preserves all relations. The definition of a “tree”
instance is the natural one in case all relations in I" have arity 2; in general, we must make
more careful definitions. We define a walk in instance Z of C'SP(I") to be a sequence
Ty, Cl = (Sl, Rl), tl, Uy, Lo, Cg = (SQ, Rg), tg, Uy ..y Lot where each Z; 1S a variable
in Z, each C; is a constraint in Z, the indices ¢; and u; are distinct, and (5;);, = w;,
(Si)u; = wiy1 forall i € [¢]. We say the walk proceeds from starting point x; to endpoint
xg. We say the walk is non-backtracking if for every i € [¢] either C; differs from C;; or
u; # t;11. We say that Z is connected if there is a walk from x to y for all pairs of distinct
variables x and y in Z. Finally, we say that 7 is a tree if it is connected and it does not
contain any non-backtracking walk with the same starting point and endpoint.

12.2.2 Algorithmic preliminaries

Approximation algorithms. For real numbers 0 < s < ¢ < 1, we say an algorithm
(¢, s)-approximates C'S P(I") if it outputs an assignment with value at least s on any input
instance with value at least c. For ¢ = s = 1 we simply say that the algorithm decides
C'SP(T); this means the algorithm always finds a satisfying assignment given a satisfiable
instance. We say that an algorithm robustly decides C'SP(T") if there is an error function
r: [0,1] — [0,1] with r(¢) — 0 as € — 0 such that the algorithm (1 — €,1 — r(¢))-
approximates C'S P(T") for all € € [0, 1]. In particular, the algorithm must decide C'SP(T").

The basic integer program. For any instance Z of C'SP(T") there is an equivalent
canonical 0-1 integer program we denote by IP(Z). It has variables p,(j) foreach v € V,
Jj € D, as well as variables g¢, (/) for each arity-k constraint C; = (.S;, R;) and tuple
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J € D¥i. The interpretation of p,(j) = 1 is that variable v is assigned value j; the inter-
pretation of g¢, (J) = 1 is that the k;-tuple of variables .S; is assigned the k;-tuple of values
J. More formally, IP(Z) is the following:

maximize %i Z qc,(J)

i=1 J:R;(J)=1
subject to: Y " p,(j) =1 forallv € V, (12.1)
Jj€D
Z qc,(J) =pu(j)  forall C; and ¢ such that (S;); =v. (12.2)
JeDki:Jy=j

The optimum value of IP(Z) is precisely opt(Z). Note that the size of this integer pro-
gramming formulation is poly(n, m) (as we are assuming that D and I" are of constant
size).

The basic linear program. If we relax IP(Z) by having the variables take values in the
range [0, 1] rather than {0, 1}, we obtain the basic linear programming relaxation which
we denote by LP(Z). An optimal solution of LP(Z) can be computed in poly(n,m) time;
the optimal value, which we denote by opt™" (Z), always satisfies opt(Z) < opt'*(Z) < 1.
We interpret any feasible solution to LP(Z) as follows: For each v € V/, the quantities
po(j) form a discrete probability distribution on D (because of (12.1))), denoted p,. For
each k;-ary constraint C; = (5;, R;), the quantities ¢, (/) form a probability distribution
on D¥, denoted q¢,. Furthermore (because of (12.2))), the marginals of the g, distributions
are “consistent” with the p, distributions, in the sense that whenever (.S;); = v it holds that
Prjge. [Je = j] = pu(j) for all j € D. Finally, the objective value to be optimized in
LP(Z)is

m

lt? ({p} fae ) = = 3 Pr [Ri(J) = 1]

J~gc,
i—_ G

the optimum value of this over all feasible solutions is opt™"'(Z).
12.2.3 Algebraic preliminaries

Polymorphisms. The Dichotomy Conjecture of Feder and Vardi [86]] asserts that for
each I, the problem of deciding C'S P(I") is either in P or is NP-complete. The most suc-
cessful approach towards this conjecture has been the algebraic one initiated by Jeavons
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and coauthors [[125]] in which the problem is studied through the polymorphisms of I'. We
say f : D — D isan {-ary polymorphism for the k-ary relation Rif R(f(x!),..., f(z*)) =
1 whenever R(z},...,x¥) = 1forall i € [(] (here each 27 is a tuple in D). We say that
f is a polymorphism for I' if it is a polymorphism for each relation in I'. We say that I'
is a core, if all of its 1-ary polymorphisms are bijections (at a high level, this means that
there are no superfluous values in D for C'SP(I")). Finally, we call a polymorphism f
idempotent, if f(j,...,7) = jforall j € D.

Polymorphisms and width. Recently, independent works of Barto—Kozik [37] and Bu-
latov [52] managed to characterize bounded-width CSPs in terms of their polymorphisms.
Specifically, they showed that C'SP(I") has bounded width (for I" a core) if and only if
' has an (-ary weak near-unanimity (WNU) polymorphism for all ¢ > 3. Here a poly-
morphism f is said to be WNU if it is idempotent and has the following symmetry:
flzyz,... x,y) = f(z,...,z,y,x) =+ = f(z,y,z,...,2) = f(y,x,2,..., ).

Much earlier, Dalmau and Pearson [/3]] gave a straightforward characterization the
class of width-1 CSPs in terms of their polymorphisms. Specifically, they showed that
CSP(T) has width 1 if and only if T" is preserved by a set operation g : P(D) — D. This
means that f : D — D defined by f(x1,...,2¢) = g({z1,...,2¢}) is a polymorphism
for all £ > 1. Note that all these polymorphisms are symmetric, meaning invariant under
all permutations of the inputs. We will use a simple lemma about width-1 CSPs which first
requires a definition.

Definition 12.2.1. Let J be a subset of a cartesian product By X --- X By of nonempty
sets. We say J is subdirect, written J Cg By X - -+ X By, if for each i € [k| the projection
of J to the i’th coordinate is all of B;.

Lemma 12.2.2. Say g is a set operation for CSP(I'), R is an arity-k relation in I, and
By, ..., Br C D. Assume thereisa J Cg By X --- X By all of whose members satisfy R.
Then R(g(B1),...,9(By)) = 1.

Proof. For each t € [k] and j € B, select some J*/ € J whose ’th coordinate is j..
Think of the ¢ = " | B;| > 1 tuples J*’ as column vectors, and adjoin them in some order
to form a k x ¢ matrix X. Let 2 be the ™ row of X. It is clear that the set of values
appearing in 7! is precisely B;. Thus if f is the /-ary polymorphism defined by g, we have
f(x') = g(By). But since f is a polymorphism and each J*/ satisfies R, it follows that

R(g(By),...,9(By)) = 1. O

211



12.3 Width 1 implies robust decidability by LP

The following theorem shows that a simple rounding algorithm for the basic linear pro-
gram robustly decides any width-1 CSP.

Theorem 12.3.1. Let I' be a finite set of relations over the finite domain D, each relation
having arity at most K. Assume that CSP(I') has width 1. Then there is a poly(n,m)-
time algorithm for C'S P (') which when given an input T withval** (I) = 1— e outputs an
assignment o : V — D withvalz(a) > 1—O(K?|D|log(2|D|))/log(1/¢). (In particular,
valz(a) = 1ifval®™* () = 1.)

Proof. The first step of the algorithm is to solve the LP relaxation of the instance, deter-
mining an optimal solution {p, : v € V'}, {q¢, : i € [m]} which obtains val'*(Z) = 1 —e.
For technical reasons we will now assume without loss of generality that K > 2 and that

1

27poly(n,m) < < )
== 42D[EED

(12.3)

The assumption (12.3) is also without loss of generality. We may assume the upper bound
by adjusting the constant in the O(-) of our theorem. As for the lower bound, since linear
programming is in polynomial time, ¢ will be either 0 or at least 27P°¥("™) In the former
case, we replace ¢ with a sufficiently small 2°(™) so that the theorem’s claimed lower
bound on valz(«) exceeds 1 — 1/m; then valz(a) > 1 — 1/m implies valz(a) = 1 as
required when val*"' (7) = 1.

For a particular constraint C;, let €; = >~ ;.5 ;_odc;(J). Since val'®(Z) > 1 — ¢
we have avg{e;} < e. The next step is to “give up” on any constraint having €; > +/e.
By Markov’s inequality the fraction of such constraints is at most /¢, which is negligible

compared to the O(1/log(1/¢€)) error guarantee of our algorithm. For notational simplic-
ity, we now assume that ¢; < /e for all i € [m).

We now come to the main part of the algorithm. Since C'SP(I") has width 1, it has
a set operation g : P(D) — D. We first describe a simple randomized “LP-rounding”
algorithm based on g:

1. Letr = (2|D|)% ! and let b = |log, (1/2+/€)|. We have b > 1 by (12.3).
2. Choose § € {r~t,r=2 ... 7=} uniformly at random. Note that 7~° > 2./e.

3. Output the assignment « : V' — D defined by a(v) = g(suppy(p,)), where
supp (pu) denotes {j € D : p,(j) = 0}.
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We will show for each constraint C; = (.S;, R;) that
Pr[R;i(a(S;)) = 0] < K|D|/b. (12.4)

It follows from linearity of expectation that the expected fraction of constraints not satis-
fied by « is at most K'|D|/b = O(K?|D|log(2|D]))/log(1/¢). This would complete the
proof, except for the fact that we have given a randomized algorithm. However we can
easily make the algorithm deterministic and efficient by trying all choices for # (of which
there are at most b < poly(n, m) by (12.3))) and selecting the best resulting assignment.

We now give the analysis justifying (12.4)) for each fixed constraint C; = (S;, R;). For
simplicity we henceforth write C' = C;, S = 5;, R = R, and suppose that R has arity
k < K. Let us say that a choice of 0 is bad if it falls into the interval (pg, (j)/r, ps, ()] for
some ¢t € [k] and j € D. For each choice of ¢ and j there is at most one bad choice of 6
for the associated interval; hence the overall probability 6 is bad is at most K| D|/b. Thus
it suffices to show that whenever 6 is not bad, C' is satisfied by a.

For each ¢t € [k] let B; = suppy(ps,); these sets are nonempty because § < r~1 <
|D|7. Also, let J = {J € By x -+ x By : R(j) = 1}. By Lemma[12.2.2] to show that C
is satisfied by «, we only need to show that J Cg By X - -+ X B, —i.e., that for all ¢t € [k]
and all j € B, there exists a tuple J € J such that J; = j. We show this is true for ¢t = k
and the statement for other values of ¢ follows in the same way. For any j € By, we have
0 < pg, (j) by the definition of B;. Since 6 is not bad, we know that 6 ¢ (ps, (j)/7, s, (7)]-
Therefore we have 6 < pg, (j)/r. Now since all but at most ¢; < /e of the probability
mass in g¢ is on assignments satisfying R, we conclude

Z QC(‘]laj)ZpSk(j)_\/EZpSk(j)/Q'

J'eDk—L:R(J 5)=1

Here we used 21/¢ < r° < 6 < pg, (j). Now the pigeonhole principle implies there exists
some J' € D* ! with R(J,j) = 1 and qc(J,5) > ps,(5)/(2|D[F) > ps, (j)/r. By
consistency of marginals this certainly implies pg,, (Jy) > ps,(7)/r > 0 forallt’ € [k—1].
Now for all ¢’ € [k — 1] we know that Jg, € By. Therefore, if we let J = (.J, j) we have
that J € J and J, = j. ’ O

12.3.1 Lattice CSPs: better quantitative dependence on ¢
As discussed at the end of Section|12.1.1} one cannot hope to improve the approximation

guarantee of 1 — O(1/log(1/€)) given by our LP-rounding algorithm, even in the case of
Horn-3Sat. On the other hand, for Horn-2Sat it is known [135] that on (1 — €)-satisfiable
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instances one can efficiently find (1 — O(¢))-satisfying assignments (indeed, (1 — 2¢)-
satisfying [[113]). One might ask what the algebraic difference is between Horn-2Sat and
Horn-3Sat. A notable difference is that the former is a lattice CSP.

Subclasses of width-1: lattice and semilattice CSPs. A broad natural subclass of the
width-1 CSPs is the class of semilattice CSPs. These are CSPs which have a semilattice
polymorphism, meaning a binary polymorphism A which is associative, commutative, and
idempotent. Horn-Sat CSPs are not just width-1 but are in fact semilattice; thus we cannot
hope for improved dependence on e even for semilattice CSPS

An even further subclass is that of lattice CSPs. These are CSPs whose relations are
preserved by two semilattice operations A and V which additionally satisfy the “absorp-
tion” identity: V(z, A(x,y)) = A(z,V(x,y)) = z. Note that V and A extend naturally
to polymorphisms of every arity. Good examples of lattice CSPs are “lattice retraction
problems”. Here there is a fixed lattice poset L; the CSP’s domain is L and its constraints
are the poset constraint “<” along with all unary constraints “=,” fora € L.

Robust decidability for lattice CSPs. In this subsection we prove a variant of our The-
orem|12.3.1|which shows an efficient LP-based algorithm for finding (1 —O(¢))-satisfying
assignments to (1 — e)-satisfiable lattice CSP instances.

We first describe the characterization of lattice CSPs we need. Carvalho, Dalmau, and
Krokhin [58] have observed that if C'S P(I") has lattice polymorphisms then it is preserved
by what they call an absorptive block-symmetric operation. This is an operation f which
takes as input tuples (of any positive length) of nonempty subsets of D, outputs an element
of D, and has the following properties:

e (Block-symmetry.) f(By,..., By) only depends on
{Bi,.... By}

e (Absorption.) If B D B then f(B, By,...,By) = f(Bi,..., By).

e (Preservation.) Let R be an arity-% relation I" and let (B} )f;lf be nonempty subsets
of D. Assume that for each i € [(] there is a J; Cr B} x .-+ x B all of whose

members satisfy R. Then R(f(B},..., B}),..., f(BY,...,Bf))) = 1.

>There are CSPs which are width-1 but not semilattice; e.g., the CSP over domain {a,b, ¢, d} with all
unary relations and also the binary relations (a, b), (b, a), (¢,a), (¢, b), (¢, d), (d, ¢), and (d, d).
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Indeed, the operation f is simply f (B, ..., By) = V{AB; : i € [{]}.

We now show:

Theorem 12.3.2. Let I' be a finite set of relations over the finite domain D, each relation
having arity at most K. Assume that CSP(I") has lattice polymorphisms. Then there is
a poly(n, m)-time algorithm for C'SP(T') which when given an input T with val** () =
1 — € outputs an assignment o : V — D with valz(a) > 1 — O(K2P)e.

Proof. As in Theorem|[12.3.1] the first step of the algorithm is to solve the LP relaxation of
the instance, determining an optimal solution {p, : v € V'}, {q¢, : i € [m]} which obtains
val'*(Z) = 1 — €. Since CSP(T) has lattice polymorphisms, it has some absorptive
block-symmetric operation f. We next describe a randomized LP-rounding algorithm:

1. Setr = (2K2PIm)~" and choose
0e{1/r,2/r,3/r,..., 1} uniformly at random.

2. For each v € V, define B, = {B C D : p,(B) > 6}, a nonempty family of
nonempty sets. (Here we introduce the notation p,(B) = >, 5 Pu(b).)

3. Output the assignment « : V' — D defined by a(v) = f(B,).

We will show for each constraint C; = (.S;, R;) that
Pr[R;(a(S;)) = 0] < K2Pl(¢; + 1/r) = K2Ple; + 1/2m, (12.5)

where €, = > . ;o dc,(J) as in the previous proof. It then follows from linearity of
expectation that the expected fraction of constraints not satisfied by « is at most
K2Plavg{e;} 4+ 1/2m = K2/Ple + 1/2m. We can therefore efficiently deterministically
find an o with value at least 1 — K2/Ple — 1/2m by trying all O(m) possible values for
6. This is sufficient to prove the theorem: if e < (2/2/Plm)~! then o’s value exceeds
1—1/m and hence is in fact 1; if ¢ > (2K2/PIm)~! then the O(-) in the theorem statement
covers the loss of 1/2m.

We now give the analysis justifying (12.5)) for each fixed constraint C; = (S;, R;). For
simplicity we henceforth write C' = C;, S = 5;, R = R, and suppose that R has arity
k < K. Tt suffices to show that R(a(S)) = 1 holds assuming

0¢ (pst(B),pSt(B) + Gi] Vit € [k], VB C D. (12.6)

The reason is that the probability of (T12.6) not holding is at most K2P!(e; + 1/r). Note
that with assumption (12.6), whenever we have pg,(B) > 6 — ¢; it follows that in fact
ps,(B) > 0 and thus B € Beg,.
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Claim 12.3.3. For all t € [k] and B € Bg,, there exist By, ..., By with B,, € Bg, such
that: a) By C B; b) there exists J Cg By X -++ X B with R(J) = 1forall J € J.

Proof. Suppose B € Bg,, so ps,(B) > 0. Letting J' = {J € D* : J, € B}, it follows
from consistency of marginals that go(J’) > 6. Thus if 7 is the subset of 7’ for which
R holds, it follows that ¢o(J) > 0 — ¢;. For u € [k], we define B, = {J, : J € J}.
Certainly B; C B, and by consistency of marginals we obtain from qo(J) > 6 — ¢; that
ps, (By) > 0 — ¢; for each u € [k]. Thus it follows from assumption (12.6) that B,, € Bg,
for each u, completing the proof of the claim. [

For each choice of ¢ € [k] and B € Bg,, take the (names of the) sets By, ..., By, given
by the above claim and arrange them in a height-k column. Adjoin all of these columns to
form a k x ¢ matrix M, where ¢ = Zle |Bs,|. The matrix M has the following properties:
(i) each entry in row u is a set in B, ; (ii) for each set B € Bg,, some subset of it appears in
the u™ row of M (iii) for each column (By, ..., By) of M thereisa J Cg By X - -+ X By,
all of whose members satisfy R.

Suppose we now apply the absorptive block-symmetric operation f to the rows of M,
with the u row producing j, € D. By (iii), R(ji,...,jx) = 1. Thus the justification
of is complete if we can show j, = f(Bs,) = a(S,). But this follows from (i), (ii),
and the absorptive property of f. [
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Chapter 13

An algorithm for
ROBUSTMAXBISECTION

13.1 Introduction

In the MAXCUT problem, we are given a graph and the goal is to partition the vertices
into two parts so that a maximum number of edges cross the cut. As one of the most basic
problems in the class of constraint satisfaction problems, the study of MAXCUT has been
highly influential in advancing the subject of approximability of optimization problems,
from both the algorithmic and hardness sides. The celebrated Goemans-Williamson (GW)
algorithm for MAXCUT [94] was the starting point for the immense and highly successful
body of work on semidefinite programming (SDP) based approximation algorithms. This
algorithm guarantees finding a cut whose value (i.e., fraction of edges crossing it) is at
least 0.878 times the value of the maximum cut. On graphs that are “almost-bipartite” and
admit a partition such that most edges cross the cut, the algorithm performs much better
— in particular, if there is a cut such that a fraction (1 — €) of edges cross the cut, then the
algorithm finds a partition cutting at least a fraction 1 — O(+/¢€) of edges. (All through the
discussion in the paper, think of € as a very small positive constant.)

On the hardness side, the best known NP-hardness result shows hardness of approxi-
mating MAXCUT within a factor greater than 16/17 [116}[219]. Much stronger and in fact
tight inapproximability results are now known conditioned on the Unique Games Conjec-
ture of Khot [136]. In fact, one of the original motivations and applications for the formu-
lation of the UGC in [136] was to show that finding a cut of value larger than 1 — o(1/e)
in a graph with Max-Cut value (1 — €) (i.e., improving upon the above-mentioned perfor-
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mance guarantee of the GW algorithm substantially) is likely to be hard. This result was
strengthened in [141] to the optimal 1 — O(4/€) bound, and this paper also showed that
the 0.878 approximation factor is the best possible under the UGC. (These results relied,
in addition to the UGC, on the Majority is Stablest conjecture, which was proved shortly
afterwards in [[174]].)

There are many other works on MAXCUT, including algorithms that improve on the
GW algorithm for certain ranges of the optimum value and integrality gap constructions
showing limitations of the SDP based approach. This long line of work on MAXCUT cul-
minated in the paper [183]] which obtained the precise integrality gap and approximation
threshold curve as a function of the optimum cut value.

Maximum Bisection. Let us consider a closely related problem called MAXBISECTION,
which is MAXCUT with a global “balanced cut” condition. In the MAXBISECTION prob-
lem, given as input a graph with an even number of vertices, the goal is to partition the
vertices into two equal parts while maximizing the fraction of cut edges. Despite the
close relation to MAXCUT, the global constraint in MAXBISECTION changes its char-
acter substantially, and the known algorithms for approximating MAXBISECTION have
weaker guarantees. While MAXCUT has a factor 0.878 approximation algorithm [94], the
best known approximation factor for MAXBISECTION equals 0.7027 [91ﬂ improving on
previous bounds of 0.6514 [93]], 0.699 [226], and 0.7016 [[115].

In terms of inapproximability results, it is known that MAXBISECTION cannot be ap-
proximated to a factor larger than 15/16 unless NP C () _ TIME(2"") [120]. Note that
this hardness factor is slightly better than the inapproximability factor of 16/17 known
for MAXCUT [116, 219]. A simple approximation preserving reduction from MAXCUT
shows that MAXBISECTION is no easier to approximate than MAXCUT (the reduction is
simply to take two disjoint copies of the MAXCUT instance). Therefore, the factor 0.878
Unique-Games hardness for MAXCUT [141]] also applies for MAXBISECTION. Further,
given a graph that has a bisection cutting 1 — € of the edges, it is Unique-Games hard to
find a bisection (or even any partition in fact) cutting 1 — O(1/€) of the edges.

An intriguing question is whether MAXBISECTION is in fact harder to approximate
than MAXCUT (so the global condition really changes the complexity of the problem), or
whether there are algorithms for MAXBISECTION that match (or at least approach) what

At the time when this chapter was published. This ratio was later improved by [193] and subsequently
[28]], as we will mention soon.
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is known for MAXCUTE] None of the previously known algorithrnf] for MAXBISEC-
TION [93] 226, 115} 91]] are guaranteed to find a bisection cutting most of the edges even
when the graph has a near-perfect bisection cutting (1 — ¢) of the edges (in particular, they
may not even cut 75% of the edges). These algorithms are based on rounding a vector
solution of a semidefinite programming relaxation into a cut (for example by a random
hyperplane cut) and then balancing the cut by moving low-degree vertices from the larger
side to the smaller side. After the first step, most of the edges are cut, but the latter re-
balancing step results in a significant loss in the number of edges cut. In fact, as we will
illustrate with a simple example in the standard SDP for MAXBISECTION
has a large integrality gap: the SDP optimum could be 1 whereas every bisection might
only cut less than 0.95 fraction of the edges.

Thus an interesting “qualitative” question is one can one efficiently find an almost-
complete bisection when promised that one exists. Formally, we ask the following ques-
tion.

Question 13.1.1. Is there a polynomial time algorithm that given a graph G = (V E)
with a MAXBISECTION solution of value (1 — €), finds a bisection of value (1 — g(¢)),
where g(€) — 0 ase — 0?

Indeed, this question motivates the problem of ROBUSTMAXBISECTION defined pre-
viously in|Definition 2.2.6| We restate the definition here for reader’s convenience.

Definition 13.1.2 (ROBUSTMAXBISECTION, re-statement of [Definition 2.2.6). We say
that an algorithm A solves the ROBUSTMAXBISECTION problem if there exists a function
r 10,1 — [0,1] satisfying r(e) — 0 as € — 0T such that whenever A is given an
undirected graph G with MAXBISECTION optimum at least 1 — €, A outputs a bisection
with (1 — r(€)) of the edges across the bisection.

Note that without the bisection constraint, we can achieve g(¢) = O(y/€), and when
¢ = 0, we can find a bisection cutting all the edges (see the first paragraph of
for details). Thus this question highlights the role of both the global constraint and the
“noise” (i.e., € fraction of edges need to be removed to make the input graph bipartite) on
the complexity of the problem.

ZNote that for the problem of minimizing the number of edges cut, the global condition does make a big
difference: MINCUT is polynomial-time solvable whereas MINBISECTION is NP-hard.
3 Also by the time when this chapter was published.
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13.1.1 Our contributions

In this chapter, we answer the above question in the affirmative, by proving the following
theorem.

Theorem 13.1.3. There is a randomized polynomial-time algorithm such that for every
€ > 0, given an edge-weighted graph G with a MAXBISECTION solution ofvalueﬂ (1—e),
finds a MAXBISECTION of value (1 — O(+/elog(1/¢))).

We remark that for regular graphs any cut with most of the edges crossing it must be
near-balanced, and hence we can solve MAXBISECTION by simply reducing to MAXCUT.
Thus the interesting instances for our algorithm are non-regular graphs.

Our algorithms are not restricted to finding exact bisections. If the graph has a (-
balanced cut (which means the two sides have a fraction 5 and 1 — 3 of the vertices) of
value (1 — ¢), then the algorithm can find a 3-balanced cut of value 1 — O(e'/?log(1/¢)).

Our results are not aimed at improving the general approximation ratio for MAXBI-
SECTION which remains at ~ 0.7027 [91]. More generally, our work highlights the chal-
lenge of understanding the complexity of solving constraint satisfaction problems with
global constraints. Algorithmically, the challenge is to ensure that the global constraint
is met without hurting the number of satisfied constraints. From the hardness side, the
Unique Games based reductions which have led to a complete understanding of the ap-
proximation threshold of CSPs [189]] are unable to exploit the global constraint to yield
stronger hardness results.

13.1.2 Later development

Soon after our work was published, Raghavendra and Tan [[195] also studied the RoO-
BUSTMAXBISECTION problem, improving our algorithm and giving an algorithm that
finds a MAXBISECTION of value (1 — O(y/€)) when there is a MAXBISECTION of value
(1 — €). As mentioned earlier, as a function of ¢, this approximation is best possible as-
suming the Unique Games Conjecture. However, one thing not very satisfactory about
the Raghavendra—Tan algorithm is that their algorithm runs in time n'/ <*® Which is not
completely polynomial in n when € is subconstant (say, m). It is an interesting open
question whether the same approximation guarantee can be obtained in poly(n) time for
every e.

4The value of a cut in an edge-weighted graph is defined as the weight of the edges crossing the cut
divided by the total weight of all edges.
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Using the same technique, Raghavendra and Tan [1935] also gave an algorithm substan-
tially improving the approximation ratio of MAXBISECTION to ~ .852. This approxima-
tion ratio was later improved by [28] to ~ .8776. It remains an interesting question how
much this can be improved and whether one approach (or even match) the 0.878 factor
possible for MAXCUT.

13.2 Method overview

13.2.1 Integrality gap

We begin by describing why the standard SDP for MAXBISECTION has a large gap.
Given a graph G = (V, E), this SDP, which is the basis of all previous algorithms for
MAXBISECTION starting with that of Frieze and Jerrum [93]], solves for unit vectors v;
for each vertex ¢ € V subject to ) .v; = 0, while maximizing the objective function
Ee=(ij)er 1llvi — v;]|*.

This SDP could have a value of 1 and yet the graph may not have any bisection of
value more than 0.95 (in particular the optimum is bounded away from 1), as the following
example shows. Take G to be the union of three disjoint copies of Ky, ,, (the complete
2m X m bipartite graph) for some even m. It can be seen that every bisection fails to
cut at least m?/2 edges, and thus has value at most 11/12. On the other hand, the SDP
has a solution of value 1. Let w = €2™/3 be the primitive cube root of unity. In the two-
dimensional complex plane, we assign the vector/complex number w'~! (resp. —w'™!) to
all vertices in the larger part (resp. smaller part) of the i™ copy of Ky, fori = 1,2,3.
These vectors sum up to 0 and for each edge, the vectors associated with its endpoints are
antipodal.

For all CSPs, a tight connection between integrality gaps (for a certain “canonical”
SDP) and inapproximability results is now established [189]. The above gap instance sug-
gests that the picture is more subtle for CSPs with global constraints — in this work we
give an algorithm that does much better than the integrality gap for the “basic”” SDP. Could
a stronger SDP relaxation capture the complexity of approximating CSPs with global con-
straints such as MAXBISECTION? It is worth remarking that we do not know whether an
integrality gap instance of the above form (i.e., 1 — ¢ SDP optimum vs. say 0.9 MAXBI-
SECTION value) exists even for the basic SDP augmented with triangle inequalities.
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13.2.2 Notations

Suppose we are given a graph G = (V| FE)). We use the following notation: E(U) =
{(u,v) € E : u,v € U} denotes the set of edges within a set of vertices U, edges(Us, Us) =
{(u,v) € E : u € Up,v € Uy} denotes the set of edges between two sets of vertices U
and Us, and G[U] denotes the subgraph of GG induced by the set U.

Definition 13.2.1 (Value and bias of cuts). For a cut (S,V '\ S) of a graph G = (V, E),
w (i.e., the fraction of edges which cross the cut) if G is
unweighted, and W if G is edge-weighted with weight function w : E — R=°
(where for ' C E, w(F) =) .pw(e))

We define the bias 5 € [0, 1] of a cut (S,V '\ S) to be § = ﬁ S| =V\ S

that the cut (S,V \ S) is B-biased. (Note that a 0-biased cut is a bisection.)

we define its value to be

, and we say

Recall that the normalized Laplacian of GG is a matrix L5 whose rows and columns
correspond to vertices of G that is defined as follows

1, ifu=wvandd, #0,
Lo(u,v) = —1/v/dud,, if (u,v) € E,
0, otherwise,

where d,, is the degree of the vertex u. Let Ao(L) be the second smallest eigenvalue of
L. We abuse the notation by letting Ao(G) = A\o(Lg). We define the volume of a set
U CVasvol(U) =volg(U) = > iy du-

We will use the following version of Cheeger’s inequality.

Theorem 13.2.2 (Cheeger’s inequality for non-regular graphs [67]]). For every graph G =

(V.E),
X2(G)/2 < 0(G) < /2X0(G),

where ¢(QG) is the expansion of G,

B ledges(S, V' \ 9)|
o(G) = Isngl\r/l min(vol(S), vol(V \ S))

Moreover, we can efficiently find a set A C V such that vol(A) < vol(V')/2 and |edges(A, V'\

A)|/ vol(A) < \/2X5(G).

For any two disjoint sets X, Y C V, let uncut(X,Y) = |[E(X) + E(Y)|/|E(X UY)|
be the fraction of edges of G[X U Y] that do not cross the cut (X,Y). We say that a cut
(X,Y) of V is perfect if uncut(X,Y’) = 0.
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13.2.3 Our approach

In this section, we give a brief overview of our algorithm. It is instructive to consider
first the case when G has a perfect bisection cut. In this case, (G is a bipartite graph. If
G has only one connected component, each part of this component has the same number
of vertices, so this is the desired bisection. Now assume that GG has several connected
components. Then each connected component C' of G is a bipartite graph with two parts
X and Y. Since all edges are cut in the optimal solution, X must lie on one side of the
optimal cut and Y on the other. So in order to find a perfect bisection (X, Y"), for every
connected component C' we need to either (i) add X to X and Y to Y or (ii) add X to
Y and Y to X so that | X| = |Y| = |V|/2. We can do that using dynamic programming.

Our algorithm for almost satisfiable instances proceeds in a similar way. Assume that
the optimal bisection cuts a (1 — ¢) fraction of edges.

1. In a preprocessing step, we use the algorithm of Goemans and Williamson [94]] to
find an approximate maximum cut in G. A fraction 1 — O(y/€) of edges cross this
cut. We remove all uncut edges and obtain a bipartite graph. We denote the parts of
this graph by A and B. (Of course, in general |A| # |B|.)

2. Then we recursively partition G into pieces W7, ..., W, using Cheeger’s Inequality
(see [Lemma 13.3.1). Every piece is either a sufficiently small subgraph, which
contains at most an e fraction of all vertices, or is a spectral expander, with Ay > €2/3.
There are very few edges between different pieces, so we can ignore them later. In
this step, we obtain a collection of induced subgraphs G[W1], ..., G[W;] with very
few edges going between different subgraphs.

3. Now our goal is to find an “almost perfect” cut in every G[W;] , then combine these
cuts and get a bisection of GG. Note that every G[W;] is bipartite and therefore has a
perfect cut (since G is bipartite after the preprocessing step). However, we cannot
restrict our attention only to this perfect cut since the optimal solution (S, 7") can
cut G[W;] in another proportion. Instead, we prepare a list WV, of “candidate cuts”
for each G[IV;] that cut W; in different proportions. One of them is close to the cut
(W; NS, W; N'T) (the restriction of the optimal cut to W}).

4. If G[W;] is an expander, we find a candidate cut that cuts G[W;] in a given proportion
by moving vertices from one side of the perfect cut (W; N A, W; N B) to the other,
greedily (see|Lemma 13.4.1]and [Lemma 13.4.2)).

5. If G[W}] is small, we find a candidate cut that cuts G[I¥;] in a given proportion using
semi-definite programming (see [Lemma 13.4.3|and [Corollary 13.4.4). We solve an
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SDP relaxation similar to the Goemans—Williamson relaxation [94] with “/3-triangle
inequalities”, and then find a cut by using hyperplane or threshold rounding.

In fact, the cut that we find can be more unbalanced than (W; NS, W;NT) but this is
not a problem since the set I¥; is small. Note however that if a cut of another piece
W; is very unbalanced than we might need to find a cut of W; that is unbalanced
in the other direction. So it is important that the candidate cut of IV, is at least as
unbalanced as (W; N S, W; N T).

6. Finally, we combine candidate cuts of subgraphs G[IV;] into one balanced cut of the
graph G, in the optimal way, using dynamic programming (see [Lemma 13.5.T].

13.2.4 Organization

The rest of the chapter is devoted to the full description and proof of the algorithm. In
we partition the graph into expanders and small pieces, after proper pre-
processing. In we produce a list of candidate cuts for each expander and
small piece, by different methods. In [Section 13.5] we show how to choose one candi-
date cut for each part. In we put everything together to finish the proof of
Theorem 13.1.3]

13.3 Preprocessing and partitioning graph G

In this section, we present the preprocessing and partitioning steps of our algorithms. We
will assume that we know the value of the optimal solution opt = 1 — €, (with a high
precision). If we do not, we can run the algorithm for many different values of € and output
the best of the bisection cuts we find.

13.3.1 Preprocessing: Making G bipartite and unweighted

In this section, we show that we can assume that the graph G is bipartite, with parts A and
B, unweighted, and that |E| < O(|V|/€é2,,)-

opt
First, we “sparsify” the edge-weighted graph G = (V| E), and make the graph un-
weighted: we sample O(e5z|V'|) edges (according to the weight distribution) with replace-
ment from G, then with high probability, every cut has the same cost in the original graph
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as in the new graph, up to an additive error €, (by Chernoff’s bound). So we assume that
|E] < O(eoml V1)

We apply the algorithm of Goemans and Williamson to G and find a partitioning of G
into two pieces A and B so that only an O(, /é,pr) fraction of edges lies within A or within
B.

13.3.2 Partitioning

In this section, we describe how we partition GG into pieces.

Lemma 13.3.1. Given a graph G = (V, E), and parameters § € (0,1) and A € (0,1)
such that |E| = O(|V'|/6%), we can find a partitioning of V into disjoint sets Uy, ..., U,
(“small sets”), and V1, ..., V, (“expander graphs”):

v=JuulJv.
? J
in polynomial time, so that

1. |U;| <6|V| foreach 1 < i < p;
2. (G[Vi]) > X foreach 1 < i < gq;
3.3 BU)+ 35 [E(V))] = (1 - O(VAlog(1/6)))|El.

Proof. We start with a trivial partitioning {1} of  and then iteratively refine it. Initially,
all sets in the partitioning are “active”; once a set satisfies conditions 1 or 2 of the lemma,
we permanently mark it as “passive” and stop subdividing it. We proceed until all sets are
passive. Specifically, we mark a set .S as passive in two cases. First, if |\S| < §|V/| then we
add S to the family of sets U;. Second, if \o(G[S]) > A then we add S to the family of
sets V.

We subdivide every active .S into smaller pieces by applying the following easy corol-
lary of Cheeger’s inequality (Theorem 13.2.2) to H = G[S].

Corollary 13.3.2. Given a graph H = (S, E(H)) and a threshold X\ > 0, we can find, in
polynomial time, a partition Sy, Ss, - -+ , S of S such that

1. |E(S;)| < |E(S)]/2 or \y(H[S;]) > A, foreach 1 < i < t.
2. 3, ledges(Si, S;)| < VBAE(H)|.
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3. each graph H|[S;] is connected.

Proof. If M\y(H) > X then we just output a trivial partition {S}. Otherwise, we apply
[Theorem 13.2.2to H; = H, find a set S s.t. volg, (S1) < volg, (S)/2 and |edges(S1, S\
S1)|/ voly, (S1) < \/2/\2(H1) < v/2X. Then we remove S; from H;, obtain a graph H,
and iteratively apply this procedure to H,. We stop when either Ao (H;) > A or |E(H;)| <
[E(S)]/2.

We verify that the obtained partitioning Sy, . . ., S; of S satisfies the first condition. For
eachi € {1,...,t—1}, wehave |E(S;)| < voly,(S;)/2 < voly,(V(H,))/4 = E(H,;)/2 <
|E(H)|/2. Our stopping criterion guarantees that S; satisfies the first condition. We verify
the second condition.

t—1

Z ledges(S;, S;)| = Z ledges(S;, V(H;) \ S;)|

i<j i=1

< tz V2XAvoly, (S;) < V2Avoly(S) = 2V2)\| E(H)|.

Finally, if for some i, H[S;] is not connected, we replace S; in the partitioning with the
connected components of H[.S;]. O

By the definition, sets U; and V; satisfy properties 1 and 2. It remains to verify that
p q
S IEWU)+ ) IE(V;)] > (1= O0(V\log(1/6)))|E|.
i=1 j=1

We first prove that the number of iterations is O(log(1/4)). Note that if S is an active
set and 7 is its parent then |E(S)| < |E(T)|/2. Set V contains O(|V'|/6?) edges. Every
active set S contains at least |V| /2 edges, since |E(S)| > |S| — 1 > 6|V|/2 (we use that
G[9] is connected). Therefore, the number of iterations is O(log, ((|V|/62)/ (6|V|/2))) =
O(log 1/6).

We finally observe that when we subdivide a set .S, we cut O(v/A|E(S)|) edges. At
each iteration, since all active sets are disjoint, we cut at most O(v/A| E|) edges. Therefore,
the total number of edges cut in all iterations is O(v/Alog(1/8))|E|. O
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13.4 Finding cuts in sets U; and V;

In the previous section, we showed how to partition the graph G into the union of “small
graphs” G|U;] and expander graphs G[V;]. We now show how to find good “candidate
cuts” in each of these graphs.

13.4.1 Candidate cutsin V

In this section, first we prove that there is essentially only one almost perfect maximum

cut in an expander graph (Lemma 13.4.T)). That implies that every almost perfect cut in
the graph G[V;] should be close to the perfect cut (V; N A, V; N B). Using that we construct

a list of good candidate cuts (Lemma 13.4.2). One of these cuts is close to the restriction
of the optimal cut to subgraph G[V}].

Lemma 13.4.1. Suppose we are given a graph H = (V| E) and two cuts (S1,T1) and
(Sa, T3) of G, each of value at least (1 — §). Then

min{VOlH(51ASQ),VOIH(S:[ATQ)} S 45|E|/>\2(H)
Proof. Let

X = SlASQ = (Sl N Tg) U (SQ N Tl);
Y == SlATQ - (Sl N T1> U (SQ N TQ)

Note that V' = X UY". There are at most 26| E/| edges between X and Y/, since
edges(X,Y) C E(S1)UE(Sy) U E(Ty) U (Ty),

[B(S) U B(Ty)| < 5|B| and | E(S2) U E(T3)] < 6],
On the other hand, by Cheeger’s inequality (Theorem 13.2.2), we have

ledges(X,Y)]
min(vol (X, voly (7)) = 2(H)/2:

Therefore,

40| E|
Ao (H)

min(voly (X)), voly(Y)) < 2ledges(X,Y)|/A2(H) <
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Consider one of the sets V;. Let H = G[V;]. Denote A; = V;N Aand B; = V; N B.
We sort all vertices in A; and B; w.r.t. their degrees in H. Now we are ready to define
the family of candidates cuts (Xo, Yp), ..., (X}, Y}y;) for G[Vi]. For each j, we define
(X;,Y;) as follows.

7=

o If j < |A,| then X consists of j vertices of A; with highest degrees, and Y consists
of the remaining vertices of H (i.e. Y; contains all vertices of B; as well as |4;| — j
lowest degree vertices of A;).

o If j > | A;| then Y consists of |V;| — j vertices of B; with highest degrees, and X
consists of the remaining vertices of H.

Clearly, |X;| = j and |Y;| = |V;| — j. Let (S, T) be the restriction of the optimal bisection
of G to H. We will show that one of the cuts (X}, Y;) is not much worse than (S,7"). By
Lemma 13.4.1|applied to cuts (A4;, B;) and (S5, T") (note that uncut(A;, B;) = 0),

4 -uncut(S,T)|E(H)|

i 1y (AN 15 (A,NAT)) <
min{voly (A;AS), voly(A;AT)} < ()

Assume without loss of generality that voly (A;AS) < 4E(H)/X2(H) (otherwise,
rename sets X and Y). We show that voly (A;AX|g) < voly(A;AS). Consider the case
|A;| > |S|. Note that by the definition of X|g/, the set X|g| has the largest volume among
all subsets of A; of size at most |.S|. Correspondingly, A; \ X|g| has the smallest volume
among all subsets of A; of size at least | A;| — |S|. Finally, note that |A; \ S| > |A4;| — |5].
Therefore,

voly (A;AXg)) = volg(A; \ Xjs)) < volg(A; \ S) < volg(A;AS).
The case when | 4;| < |S] is similar. We conclude that
voly (A;AXg) < 4-uncut(S,T)|Eg|/ X (H).
Therefore, the size of the cut (X|g|, Y|g)) is at least

|E(H)| — voly (AAX5) > (1 L “I;‘;(l;)s : T)) \E(H)|.

We have thus proved the following lemma.

Lemma 13.4.2. There is a polynomial time algorithm that given a graph H = G([V}])
finds a family of cuts V; = {(X1,Y1),..., (X, Yv;)} such that for every cut (S,T) of
H there exists a cut (X,Y) € V; with | X | = min(|S|, |T|) and
4 - uncut(S,T)

Ao(H)

uncut(X,Y) <
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13.4.2 Candidate cuts in U;

In this section, we show how to find candidate cuts for the small parts, i.e., the induced
subgraphs G[U;].

Lemma 13.4.3. Suppose we are given a graph H = (U, E) and two parameters 0 < 6 <
1/2 and 0 < A < 1. Then in polynomial time we can find a cut (X,Y') such that for every
cut (S,T) in H, with |S| < 0|U|, we have

1. uncut(X,Y) < O(y/uncut(S, T) 4+ uncut(S,T)/A).

2. |X| <60+ A)]U|

Proof. Let (S, T) be the maximum cut among all cuts with |S| < ¢|U]| (of course, our al-
gorithm does not know (.5, 7")). Let ey = uncut(.S, 7). We may assume that our algorithm
knows the value of e (with high precision) — as otherwise, we can run our algorithm on
different values of € and output the best of the cuts the algorithm finds.

We write the following SDP program. For every vertex ¢ € U, we introduce a unit
vector v;. Additionally, we introduce a special unit vector .

1
Maximize ] Z(vo, v;)

iU
1
Subject to 1E] Z v + ;]2 < enr
(3,5)EE
lvs]|? = 1 Vi e VU {0}
v; + v|? o
|(vi+vj,v0>|§M Vi,j e V.
The “intended solution” to this SDP is v; = vg if i« € T'and v; = —vg if i € S (vector v is

an arbitrary unit vector). Clearly, this solution satisfies all SDP constraints. In particular, it

satisfies the last constraint (“an £3-triangle inequality”) since the left hand side is positive
[[vit,|>

5 = 2. The value of this solution is

only when v; = vj, then |[(v; + vj,v0)| =
(IT1=1SP/IU] = 1 —26.

We solve the SDP and find the optimal SDP solution {v;}. Note that ) ., (vo, v;) >
(1—20)|U|.

Let A’ = 2A/3. Choose r € [A’,2A’] uniformly at random. Define a partition of U
into sets 7y, 0 < k < 1/A’, as follows: let Z, = {i : kA" +r < |{vy,v;)| < (k+1)A'+r}
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fork > 1and Zy = {i : —A" —r < (vg,v;) < A’ +r}. We bound the probability that the
endpoints of an edge (7, j) belong to different sets Z;. Note that if no point from the set
{£(kA"+ 1) : k > 1} lies between |(v;, vo)| and |(v;, vo)| then ¢ and j belong to the same
set Z. The distance between |(v;, vo)| and |(v;,vo)| is at most |(v; + v;, vo)|. Therefore,
the probability (over r) that i and j belong to different sets Zj, is at most |(v; +v;, vo)|/A’.
So the expected number of cut edges is at most

2|Ee
— Z [(v; + v;, v0) I_QA, D v+l < |A|,H. (13.1)

(z j)EE (i,j)eE

Foreach k > 1,let Z;' = {i € Zy | (v;,v0) > 0} and Z,, = {i € Zj, | {v;,v0) < 0}.
We use hyperplane rounding of Goemans and Williamson [94] to divide Z; into two sets
Zy and Z; . We are ready to define sets X and Y. For each k, we add vertices from the
smaller of the two sets Z ,j and 7, to X, and vertices from the larger of them to Y.

Now we bound uncut(X,Y’). Note that

uncut(X,Y)| < ) ledges(Zy, Z)| + Y _(1E(Z)] + |E(Z;))-

k<l k>0

We have already shown that ), _, [edges(Z;, Z;)| is less than 2¢x|E|/A" in expectation.
If (i,j) € E(Z;) or (i,7) € E(Z;) for k > 1 then |{v; + vj,vg)| > A'. Therefore,

S B+ 1B < ZalE - Sl

k>1

Finally, note that when we divide Z, the fraction of edges of F/(Z) that do not cross the
random hyperplane is O(,/€) (in expectation) where

1 2 2 €u-|El
€= =5 v +v5]|° < v; + v,
0 4|E(Zo>’ (ijj);:}:(zo) || J || 4|E (l]z);E || J || | ( )|
Thus,
E(|E(Z)| + [E(Z)Ir] < 0 (VenlEI/E(Z0) ) |E(Zo)] < O(/em)|E.

Combining the above upper bounds, we conclude that
Euncut(X,Y)] <O (EKH + \/€H> .
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Finally, we estimate the size of the set X. Note that if v; € Z; then |(v;, vo) —kA'| < 3A/,
if v; € Z; then [(v;, vo) + kA'| < 3A". Therefore, ), (vi,v0) < k(|ZF — 12, A +
3A'|Zy|, which implies

S R(1ZF =127 ) A = (vi,vo) — BA|U| > (1— 20 — 3A)|U .
k

icU
Therefore,
Yi-1xI=> [z -1zl = Y. (401-1%)
k k| Z} -2, |>0
> Y w1z - 1% )
k| ZF -2, >0
> S R(ZH - 12, ) A = (126 —30)|U]
k
implying | X| < (6 + 3A’/2)|U| = (6 + A)|U|. O

We apply this algorithm to every graph G[U;] and every 6 = k/|U;|, 0 < k < |U;|/2,
and obtain a list of candidate cuts. We get the following corollary.

Corollary 13.4.4. There is a polynomial time algorithm that given a graph H = G([U;))
and a parameter A € (0, 1) finds a family of cuts U; such that for every cut (S,T) of H
there exists a cut (X,Y) € U; with | X| < min(|S|, |T|) + A|U;| and

uneut(X,Y) < 0 (m . %@T)) |

13.5 Combining candidate cuts

In this section, we show how to choose one candidate cut for each set U; and V.

For brevity, we denote W; = U, fori € {1,...,p}and W,,; =V, forj € {1,...,q}.
Similarly, W; = U; fori € {1,...,p}and W,;; = V,forj € {1,...,q} Then Wy,..., Wy,
is a partitioning of V/, and W; is a family of cuts of G[IV;].

We say that a cut (X,Y’) of G is a combination of candidate cuts from W if the
restriction of (X, Y") to each IW; belongs to W; (we identify cuts (S, 7") and (7, 5)).

231



Lemma 13.5.1. There exists a polynomial time algorithm that given a graph G = (V, E)
and a threshold ¢ € [0,1/2], sets W, and families of cuts W,, finds the maximum cut
among all combination cuts (X,Y) with | X|,|Y| € [(1/2 = )|V, (1/2 + {)|V]].

Proof. We solve the problem by dynamic programming. Denote H;, = G [Uf:1 W;]. For
everya € {1,...,p+q}andb e {1,...,|G[H,]|}, let Q[a, b] be the size of the maximum
cut among all combination cuts (X,Y") on H, with | X| = b (Q[a, b] equals —oco if there
are no such cuts). We loop over all value of a from 1 to p + ¢ and fill out the table () using
the following formula

b = - 1,b—|X dges(X,Y
Qa.bl = max . (Qla—1,0—[X[]+[edges(X, Y)[),
where we assume that Q[0,0] = 0, and Q[a,b] = —cc if a < 0and b < 0 and (a,b) #
(0,0).
Finally the algorithm outputs maximum among T'[p + ¢, [(1/2 — )|V[]],..., T[p +
¢, [ (1/2 4 ¢)|V'||], and the corresponding combination cut. O

Finally, we prove that there exists a good almost balanced combination cut.

Lemma 13.5.2. Let G = (V, E) be a graph. Let V = | J, U; U, V; be a partitioning of V
that satisfies conditions of and U; and V; be families of candidate cuts that
satisfy conditions of|Corollary 15.4.4|and|Lemma 15.4.2] respectively. Then there exists a
composition cut (X,Y") such that

|‘(‘ 1
’ ’ 5| = IIlaX( ,(S)

and

uncut(X,Y) <O (\/Xlog(l/cS) + \/uncut(Sopt, Topt) + uncut(Sept, Topt) (% + %)),

where (Sopt, Topt) s the optimal bisection of G.

Proof. Consider the optimal bisection cut (Sopt, Topt). We choose a candidate cut for every

set V;. By|[Lemma 13.4.2} for every V; there exists a cut (X;, Y;) € V; such that

uncut(X;, ;) < duncut(Sept N Vi, Topt N Vi) /A2(G[Vi]) < duncut(Sepe N Vi, Tope N Vi) /A,
(132)
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and | X;| = min(|Sopt N Vi|, [Topt N Vi]). We define sets X and YV as follows. For
each i, we add X; to XV if | X;| = |Sope N V|, and we add Y; to XV, otherwise (i.e. if
[Yi| = [Sopt N Vi]). Similarly, we add Y; to YV if |Y;| = |Tope N Vi, and we add X; to
YV, otherwise. Clearly, (X", Y") is a candidate cut of | J, V; and | XV| = |Sop N U, Vil
Assume without loss of generality that [ XV| > [YV].

Now we choose a candidate cut for every set U;. By [Corollary 13.4.4] for every U;
there exists a cut (X/,Y;) € U; such that

17 71

17 T

o i77L 3
uncut(X;, Y/) < O <\/uncut(50pt AU Tope 1 U + 22 HAU pt (] U>>,

(13.3)

and |X!| < min(|Sepe N Us|, [T N U;|) + AlU;|. We assume that X is the smaller of the
two sets X and Y.

We want to add one of the sets X/ and Y/ to X'V, and the other set to YV so that the
resulting cut (X, Y') is almost balanced. We set X = X" and Y = YV, Then consequently
for every ¢ from 1 to p, we add X/ to the larger of the sets X and Y, and add Y} to the
smaller of the two sets (recall that X is smaller than Y;'). We obtain a candidate cut (X, Y")
of G.

We show that || X|/|V] — 1/2| < max(A,d). Initially, |[X| = [XV] > [V| = [YV].
If at some point X becomes smaller than Y then after that || X| — |Y|| < 6|V] since
at every step ||X| — |Y|| does not change by more than |U;| < 6|V|. So in this case

||X|/|V| = 1/2| < 4. So let us assume that the set X always remains larger than Y. Then
we always add X/ to X and Y, to Y. We have

1X| = ‘XVUUX;

q p
< Sepe NV + > (min(|Sope N Ui, [Tope N Ts|) + A|U;)

j=1 =1

q p
< Sopt NV + D [Sope N Ui + A[V]

j=1 i=1

= |Sept| + A[V] = (1/2 + A)|V].
It remains to bound uncut(X,Y’). We have,

uncut(X,Y)|E| < Z ledges(U;, Uj)| + Z ledges(Vi, V)| + Z ledges(U;, V)|

1<i<j<p 1<i<j<q 1sigp
79
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+ Z uncut(X;, Y)|E(U;)| + Z uncut(X;, ;)| E(V;)] -

1<i<p 1<j<q

By|Lemma 13.3.1} the sum of the first three terms is at most O(v/Alog(1/6))|E|. From

(13.3), we get
> uncut(X], YY) | E(U;)]

1<i<p

p
<0(1) Z <\/uncut(50pt N Ui, Topt N U;) + uncut(Sepe N Us, Tope N UZ-)/A> |E(U;)|

=0(1) 3~ \/ (1B (Sops 1 U)| + | E (T N U1)) - V/IETE)
. |E(50pthi)| + |E(T0pthi>|
1) 2 X
b P uncut(Sept, Topt) - | E|
<O()| S Sos N 0| + (T N0 - | Y100 + 0 (2 Ter - 121)

uncut(Sept, Topt) > |B|

<0 <\/uncut(50pt, Topt) + A

From (13.2)), we get
Zuncut i V)| E(V;)

< Z 4 - uncut(Sepe NV}, Tope N V;)|E(V;)] < 4 - uncut(Sept; Lopt)
- A - A

1B

J

13.6 The bisection algorithm — proof of Theorem 13.1.3

First, we run the preprocessing step described in Then we use the algo-
rithm from [Lemma 13.3.1| with A\ = e?,éf and 0 = € to find a partition of V' into sets
Ui, ..., Up, V1, ..., Vy. We apply [Corollary 13.4.4 with A = | /éopt to all sets U;, and ob-

tain a list /; of candidate cuts for each set U;. Then we apply and obtain
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a list V; of candidate cuts for each set V. Finally, we find the optimal combination of

candidate cuts using [Lemma 13.5.1} Denote it by (X, Y’). By [Lemma 13.5.2) we get that

uncut(X,Y') is at most

€o

€o
;t + Kpt) < O(\3/ €opt 108(1/€opt)),

O (ﬁlogu/(S) + /ot +

and

X1 1‘ < max(A, ) = O(y/eamt).

Vi 2

By moving at most O(,/€)|V| vertices of the smallest degree from the larger size of
the cut to smaller part of the cut, we obtain a balanced cut. By doing so, we increase
the number of uncut edges by at most O(,/€qpt| E]). The obtained bisection cut cuts a
1 — O(/€opt 10g(1/€opt)) fraction of all edges.

It is easy to see that a slight modification of the algorithm leads to the following exten-

sion of [Theorem 13.1.3|

Theorem 13.6.1. There is a randomized polynomial time algorithm that given an edge-
weighted graph G with a [-biased cut of value (1 — ¢€) finds a [B-biased cut of value

(1 - O(Velog(1/€) +/e/(1 = B))).

Proof. We use the algorithm above, while changing DP algorithm used by
to find the best combination with bias 5 + ¢ (where t = O(,/€)). We modify the proof of

Lemmato show that there exists a 5 + ¢ cut of value 1 — O(y/€). As previously, we
first find sets X = XV and Y = YV with | XV| > |YV|. Now, however, if | X| — |V >
B|V| then we add X/ to X and Y/ and Y'; otherwise, we add X! to Y and Y and X. We
argue again that if at some point the difference || X| — [Y'|| becomes less than O(y/€|V]),
then after that || X| — |Y'|| = O(/€|V|), and therefore, we find a cut with bias 3+ O(v/e).
Otherwise, there are two possible cases: either we always have | X| — |Y| > 5|V, and
then we always add X/ to X and Y} to Y, or we always have | X| — |Y| > 5|V, and then
we always add X/ to Y and Y/ to X. Note, however, that in both cases || X | — Y| — |V|
decreases by |Y/| — | X!| > |[Sopt N Us| — |Tope N Us|| — 2A|U;| after each iteration. Thus
after all iterations, the value of || X | — |Y'| — B|V|| decreases by at least

p

2

—2A|Juil.
i=1 P

Taking into the account that | XV | — [YV| = |Sope N U,; Vil — |Tope N U, Vi|, we get the
following bound for the bias of the final combination cut (X,Y"),

|Sopt N Us| — |Topt N Uj|

— 2A|UZ| Z “Sopt N UU1| - ‘Topt N UUZ‘
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1X] = Y] - BV

S “Soptmuvé‘ - ‘Toptﬂu‘/;‘ _ﬂ‘v” - “SopthUi‘_"}ToptﬂUUi‘

+2A] Ui
< [1Sept] = [Tenel = BIVI| +241V| =24V

We get the exact ($-biased cut by moving at most O(+/€)|V| vertices of the smallest
degree from the larger size of the cut to smaller part of the cut. By doing so, we lose at
most O(1/€)|E|/(1 — [3) cut edges. Therefore the theorem follows. O
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Chapter 14

A robust isomorphism algorithm for
trees

14.1 Introduction

The graph isomorphism problem (GISO) is arguably one of the most famous computa-
tional problems on graphs: given two graphs G and H, we have to decide whether they
are isomorphic, i.e. there exists a bijection 7 : V(G) — V(H) such that there is an edge
(u,v) € E(G) if and only if there is an edge (7w (u), 7(v)) € E(H). Here we use V(G)
to denote the set of vertices in GG, and use F(G) to denote the set of edges in G. GISO
is one of the rare, intriguing problems in NP that is neither known to be polynomial-time
tractable nor NP-Complete. Resolving the complexity of GISO is one of major problems
in graph theory and it is still open despite many decades of effort.

Graph isomorphism algorithms are also very useful in practice to test for isomorphism
between any structures that can be encoded as graphs. A few examples of its applications
include: image analysis [82], isomorphisms of molecule (for chemistry) [[84,85]], and data
mining [197]]. In many settings, even when the two graphs are not completely isomorphic,
we are still interested in measuring how similar the two graphs are. The following opti-
mization problem which captures the similarity between the two given graphs was studied
in literature (e.g. 17, 25]).

Definition 14.1.1 (MAXGISO, rephrase of [Definition 2.1.6). For two graphs G and H
with the same number of vertices and a bijection w : V(G) — V(H), let val(G, H,7) =
H{(u,v) € E(G) | (m(u),n(v)) € E(H)}|. Let opt(G, H) = max,val(G, H,x). In the
maximum graph isomorphism problem (MAXGISO), the objective is to compute opt(G, H )
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for given two graphs G and H.

Observe that GISO is a special case of the above optimization variant since opt(G, H) =
max{|E(G)|,|E(H)|} if and only if G and H are isomorphic, and any 7 such thatval(G, H, ) =
max{|F(G)|,|E(H)|} is an isomorphism.

In most applications of GISO, we are interested in graphs which are almost isomorphic
to each other. We say that G and H are (1 — €)-isomorphic when val(G, H,7) = (1 —
¢)max{E(G), E(H)}. In fact, even graphs which are isomorphic to each other may get
perturbed slightly in practice, due to some small noise. This motivates us to introduce
the following definition of robust graph isomorphism algorithm, which certifies when two
graphs are (1 — €)-isomorphic when ¢ is very small.

Definition 14.1.2 (ROBUSTGISO, rephrase of [Definition 2.2.7). Given two graphs G and
H on n vertices, we say A is a robust graph isomorphism algorithm for G and H if there
exists a function f : [0,1] — [0, 1] satisfying lim._o+ f(€) = 0, such that A outputs
a bijection ™ : V(G) — V(H) with val(G, H,7m) > (1 — f(e)) max{|E(G)|,|E(H)|}
whenever opt(G, H) = (1 — ¢) max{|E(G)|, |E(H)|}, for any ¢ > 0.

A robust graph isomorphism algorithm is a graph isomorphism algorithm (when ¢ is
so small that f(e) < — 1 E(GI)M ol H)|}). Therefore, we currently do not expect an efficient
robust graph isomorphism algorithm given that a polynomial-time algorithm for GISO is
not yet known. However, GISO is known to be polynomial-time tractable for many special
cases such as trees [[134]], planar graphs [[122], graphs of bounded-degree [167]], and graphs
of bounded tree-width [46]. This leads to the following natural question:

Question 14.1.3. Can polynomial-time algorithms for graph isomorphism (on restricted
families of instances) be made robust?

14.1.1 Our contributionss and overview of the proofs

In this chapter, we present a robust isomorphism algorithm for trees. The well known
canonicalization approach for trees seems quite sensitive to the e-fraction of “noisy edges”.
Our algorithm is inspired by a property testing algorithm by Newman and Sohler [178]]
which implies a PTAS for MAXGISO on bounded-degree trees. In we first
show the following much weaker statement compared to Newman and Sohler’s theorem,
but with a simpler proof. E]

'The simple proof can be modified to give robust isomorphism algorithm for bounded-degree planar
graphs and graphs with bounded-width as well.
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Theorem 14.1.4. Given two n-vertex B-degree bounded forests G and H, suppose that
opt(G,H) > (1 — €)n. There is a polynomial-time algorithm to find a bijection o :
V(G) — V(H) such thatval(G, H,o) > (1 — 20v/ Be)n.

Then we reduce the general trees to bounded-degree trees, and prove that

Theorem 14.1.5. Given two n-vertex trees G and H such that opt(G,H) > (1 — €)n,

there is a polynomial-time algorithm to find a bijection o : V(G) — V(H) where
val(G, H,0) > (1 — 200€'/4)n.

To prove[T'heorem 14.1.5] by removing a tiny fraction of edges, we decompose the two
input trees into two collections of trees where each tree has at most one high-degree vertex.
We match the high-degree vertices using the maximum weight bipartite graph matching
algorithm with carefully designed weights. Then we use the algorithm in [Theorem 14.1.4|
to match up the low-degree vertices.

14.2 The algorithm

In this section, we prove [lheorem 14.1.5] which is restated as follows.

[Theorem 14.1.5| (restated). Given two n-vertex trees G and H such that opt(G, H) >
(1—€)n, there is a polynomial-time algorithm to find a bijection o : V(G) — V (H) where
val(G, H, ) > (1 — 200€"/*)n.

We prove [Theorem 14.1.5| by first proving [Theorem 14.1.4] which says that when G
and H are bounded-degree forests, there is a robust isomorphism algorithm for G and H.
Then, we reduce the general trees to bounded-degree trees.

|Theorem 14.1.4| (restated). Given two n-vertex B-degree bounded forests G and H,
suppose that opt(G, H) > (1 — €)n. There is a polynomial-time algorithm to find a
bijection o : V(G) — V(H) such that val(G, H,o) > (1 — 20V Be)n.

Proof sketch. Let k = [1/v/Be]|. There is a simple way to remove at most n/k edges
from G to obtain a forest G/, such that each tree in G’ has at most kB vertices. We do the

same decomposition for H to obtain a forest H'. Since we removed at most n/k edges
from both GG and H, we have

opt(G', H') > opt(G, H) — 2n/k > (1 — e — 2/k)n.
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Now the algorithm lets G = G’, H” = H'. The algorithm chooses a tree T; from G”
and a tree Ty from H” so that T is isomorphic to T, lets o map the vertices in T to
the vertices in Ty according to the isomorphism, and removes T¢; from G, Ty from H”.
The algorithm iterates this process until no such pair of trees can be found in G” and H”.
Finally the algorithm extends o to a bijection between vertex sets of G and H.

It is easy to see that, when the algorithm terminates, the total number of trees in G” is
at most 4(|E(G")| + |E(H')| — 20pt(G’, H')) < 8en (because |E(G")| < (1 —2/k)n and
|E(H")| < (1 —2/k)n). Since each tree has at most kB edges, o loses at most kB - 8en
edges. Therefore,

val(G, H,0) > val(G', H', o) > opt(G', H')—8kBen > (1—2/k—9kBe)n > (1—20V Be)n.
[

Now we introduce the following definition.

Definition 14.2.1. We call a tree T a B-tree if there is one vertex with degree at least B,
while other vertices have degree less than B. The vertex with highest degree is referred to
as the center of T. Let cdeg(T") be the degree of the center.

We will use [Theorem 14.1.4] to prove the following [Lemma 14.2.2] which says that
there is an robust isomorphism algorithm for forests of B-trees and degree bounded trees.

Lemma 14.2.2. Let G and H be two n-vertex forests of B-trees and (B — 1)-degree
bounded trees. Given that opt(G, H) > |E(G)|—en, there is a polynomial-time algorithm
to find a bijection o : V(G) — V(H) such that val(G, H,0) > opt(G, H) — 100B+/en.

We defer the proof of [Lemma 14.2.2] to the next subsection. Now we prove
Fem 1415 using [Cemma 14.2.2

Proof of[Theorem 14.1.5|from|Lemma 14.2.2| For any integer parameter B > 2, one can
remove at most 2n /B edges from G to get a forest of B-trees and (B — 1)-degree bounded
trees, namely G’. (To see this, simply root GG using an arbitrary vertex, and for each
vertex whose degree is no less than B, remove the edge to its parent.) We do the similar
decomposition for H to get H'. Since we removed at most n/B edges from both G and
H, we have opt(G', H') > opt(G,H) —4n/B > (1 — ¢ — 4/B)n. Also observe that
|E(G")| — opt(G', H") < |E(G)| — opt(G, H) < en.

Now we apply the algorithm in [Lemma 14.2.2{to G’ and H’ to get a bijection 0. We
have

val(G, H, o) > val(G', H', o) > opt(G', H') — 100B/en > (1 — ¢ — 4/ B — 100B+/€)n.
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If we take B = [e~'/4], the algorithm finds a bijection o such that val(G, H,0) >
(1 —200€"/*)n.

O

14.2.1 Robust isomorphism algorithm for B-trees

In this subsection, we prove [Lemma 14.2.2\ Let G consist of Gy, G, ..., G} and G where

G1,Gy, ..., G, are B-trees and G is a forest of (B — 1)-degree bounded trees; let H
consist of Hy, Hy,...,H, and H where H,, H,, ..., H, are B-trees and H 1is a forest of
(B — 1)-degree bounded trees.

For any two B-trees G; and H;, let E.(G;) and E.(H;) be the set of edges incident
to the centers of G; and H;. Now let C(G;, H;) be the minimum number of edges in
E.(G;) U E.(H;) one has to remove from G; and H;, so that the connected components
where the two centers are in are isomorphic and the isomorphism maps the center of GG; to
the center of H;. Also, let C..(G;, H;) be the set of edges removed from E.(G;) U E.(H;).
It is easy to see that both C(-, ) and C,(-, -) can be computed in polynomial-time.

The algorithm. The first step of the algorithm finds a (partial) matching between {G1, Go, . ..

and {H,, Hs, ..., H,}. We use two mappings

T {Gl,GQ,. . .,Gp} — {Hl,HQ,. . .,Hq,J_},and
T’ {Hl,HQ,...,Hq} — {Gl,GQ,...,Gp,J_}
to denote the (partial) matching. It is satisfied that 7(G;) = H; iff 7/(H;) = G,. The algo-

rithm uses the (polynomial-time) maximum weight bipartite graph matching algorithm to
find 7 and 7’ so that the following cost is minimized.

cost(7,7") = Z (cdeg(G;) — B+ 1)
Gim(Gi)=1

+ ) (cdeg(Hy)—B+1)+ > C(Gi,m(Gy).

Hjer! (Hj)=1 Gy (Gi)#£L

For each G}, let E/(G;) be an arbitrary subset of cardinality (cdeg(G;) — B+1) of E.(G;).
Define E/(H,) similarly for each H;. Let

E, = U  E(G,; U E'(H; U  C.(G;,7(Gy)),
07 Gir(Gi=L ol )UHJ-:T'(H]-):L ol ])UGi;T(Gi);AL (G, 7(Gi)
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we have |Ey| = cost(7, 7).

In the second step of the algorithm, we remove the edges in £ from G and H, call the
remaining graphs G’ and H' respectively. Observe that opt(G’, H') > opt(G, H) — | Ey| =
opt(G, H) — cost(r,7'). Both G’ and H' can be divided into two parts: G®, H(® and
G® H® G@ consists of the connected components where the centers of G;’s are in,
where 7(G;) # L. Similarly, H® consists of the connected components where the centers
of H;’s are in, where 7/(H;) # L. G® and H® are the remaining parts of G’ and H'.
Observe that G(* is isomorphic to H@, while G*) and H" are (B — 1)-degree bounded.

Finally, we use the algorithm in |Theorem 14.1 .4| to find an approximation to opt(G®), H®)),
Suppose that each of G, H®) has n(®) vertices. The algorithm finds a bijection ¢*) such
that

(b) — (b) H(®)
val(GO, H® 50 > (1 B 20\/B(n OPEZE)G , H ))) 0
n

> opt(G®, H®) — 203/ B(n® — opt(G®), HO))n®). (14.1)

Observe that since opt(G®), H®)) + |Ey| + |E(G@)| > opt(G, H) > (1 — €)n, we have

n® —opt(GY® H®) <n® —n 4 |E(GW)| + |Ey| + en < en + | Ey
= en + cost(r,7), (14.2)

where the last inequality is because |E(G(®)]| is less than the number of vertices in G(%,

which is n — n(®). Now we combine (14.1) and (14.2), getting

val(G® H® ¢®)) > opt(G®, H®)) — 20\/B(en + cost (7, 7'))n®
> opt(G®), H®) — 201/B(en + cost(r, 7))n. (14.3)

Let o(*) be the isomorphism between G(*) and H®. The algorithm lets o = ¢ Ug®
be the final solution.

Analysis. The analysis of the algorithm uses the following lemmas.
Lemma 14.2.3. cost(7,7') < 2(B + 1)en < 4Ben.

Lemma 14.24. Let G = Gy U Gy be a union of two graphs with disjoint vertex sets.
Similarly, let H = Hy U Hy. Suppose that Gy is isomorphic to Hy and |V (G)| = |V (H)
we have opt(G, H) = opt(G1, Hy) + |E(Gy)|.

1
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We prove both|Lemma 14.2.3|and|[Lemma 14.2.4|in the next subsection. [Lemma 14.2.4
is very intuitive: if G has a connected component Gy which is isomorphic to a connected
component H, in H, there must be an optimal solution for G and H which maps G to
H.

Now we proceed to analyze val(G, H, o) using these lemmas.

val(G, H,0) > val(GW, HY o@) val(G®, H® o)
> |B(G)| + opt(GY, H®)
— 204/ B(en + cost(7, 7'))n (by (14.3))
> |E(G@)] + opt(GY, H®) — 20Bv/5en (by [Cemma 14.2.3)
— opt(G', H') — 20BV5en (Cemma 14.2.4)
> opt(G, H) — 4Ben — 20BV/5en (by Lemma 14.2.3|again)
> opt(G, H) — 100B+/en. O

14.2.2 Proofs of Lemma 14.2.3 and [Lemma 14.2.4

Proof of[Lemma 14.2.3] Leto* : V(G) — V(H) be a bijection such that val(G, H, 0*) =
(1—6)71 We define 7* : {Gl, GQ, cey Gp} — {Hl, H,, ..., Hq, J_} and 7% : {Hl, H,, ..., Hq} —
{G1,Gs,...,G,, L} as follows.

e 7°(G;) = H; when o* maps the center of G; to the center of H;; 7*(G;) = L when
the center of G; is not mapped to the center of any /.

e 7%'(H;) = G, when ¢* maps the center of G; to the center of H;; 7*'(H;) = L
when none of the centers of G; is not mapped to the center of /.

Now we are going to upper bound cost(7*, 7*') and therefore prove the lemma.

For each G; where 1 < 7 < p, if the center of G; is not mapped by ¢* to the center of
any H, it must be mapped to a vertex whose degree is less than B. This means that at least
(cdeg(G;) — B + 1) edges incident to the center of G; are not mapped to H. Therefore,
we have

> (cdeg(Gi) = B+1) < en.
Gt (Gy)=1
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Since cdeg(G;)/(cdeg(G;) — B+ 1) < B, we have

D> cdeg(G;) < eBn (14.4)
Gt (Gy)=1L
Similarly, we have
Z cdeg(H,) < eBn. (14.5)
Hj:m*'(Hj)=1

Foreach1 <i < p,1 < j <gq,let Eg, be the set of the edges in (G; that are not mapped to
H; let E'y; be the set of the edges in H; that are not mapped to G. Now consider any pair
of G; and H; such that o* maps the center of GG; to the center of H,. Recall that C(G;, H,)
is the minimum number of edges in E.(G;) U E.(H;) one has to remove from G; and H;,
so that the connected components corresponding to the two centers are isomorphic. Also
recall that £,.(G;) and E.(H;) are the sets of edges incident to the centers of G; and H;
respectively.

For each edge e € Eg,, we remove the corresponding edge in E.(G;), i.e. the unique
edge on the unique path connecting e to the center of ;. Similarly, for each edge e € Fpg,,
we remove the corresponding edge in E.(H,), i.e. the unique edge on the unique path
connecting e to the center of ;. In total, at most | Eg,| + |E, | edges are removed.

We observe that, after removing the edges, the connected components corresponding
to the centers of G; and H; are isomorphic and the isomorphism maps the center of G; to
the center of H; : o* defines such an isomorphism.

To summarize, we have proved that C(G;, H;) < |Eg,| + |En,|. Therefore,

p q
Gy (Gy)#L Gim*(Gy)#L =1 7j=1
(14.6)

Now, summing up (14.4), (14.5), and (14.6), we get

cost(r,7") < cost(7*, 7*)

= Z cdeg(G;)+ Z cdeg(H,)+ Z C(Gy, 7(Gy)) < 2(B+1)en.

Gt (Gy)=1 Hj:m'(Hj)=1 Gt (Gy)#L

O
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Proof of Lemma(l4.2.4] 1t is straightforward to see that opt(G, H) > opt(Gy, Hy) +
|E(Gp)|. Now we prove that opt(G, H) < opt(G1, H1) + |E(Go)|.
Giveno : V(G) — V(H) such that val(G, H, o) = opt(G, H), we define the bijection
o' : V(Gy) — V(H,) as follows and prove that opt(G, H) < val(Gy, Hy,0") + | E(G))].
Let the bijection 7 : V(Gy) — V(H,) be the isomorphism between G and H. For

each v € V(G), use the following procedure to decide o'(v) : if o(v) € V(H;), then
return o(v); if o(v) € V(Hy), repeat this procedure with v < 77 (o (v)).

One can verify that the procedure above always terminates for all v € V(G), and that
o’ is indeed a bijection. It remains to show that val(Gy, Hy, o) > opt(G, H) — |E(G))].

For each edge (u,v) € E(G1) such that (o(u),o(v)) € E(H), let us write down u; =
o(u),us,us,...,u, = o'(u) and vy = o(v),vs,vs,...,v, = 0'(v) to be the sequence of
vertices in V' (H) visited by the procedure above when the input is u and v respectively.
We can assume w.l.o.g. that p < q.

Suppose that (o'(u),0'(v)) ¢ E(H;), we know that u, = o'(u) € V(H;) and
v, € V(Hp), and therefore (u,,v,) ¢ E(H). Let i be the smallest index such that

(uj,v;) € E(H). We have that ¢ > 2. Therefore (uz 1,vi—1) € E(Hp). Since 7 is
the isomorphism between G and Hy, we have that (77 (u;_1), 7 ' (v;_1)) € E(Gy). Also
note that (o(77 (u;_1)), o(77 (v;1))) = (us, v;) € E(H).

To summarize, for each (u,v) € E(G) such that (o(u),o(v)) € E(H) and (0'(u),0'(v)) &
FE(H,), we have set up a mapping f((u,v)) = (us,vs) = (77 (ui—1), 7 '(vi—1)) with the
property that (us,vs) € E(Gy) and (o(uy),o(vy)) ¢ E(H). By the fact that the procedure
to define o’(v) is reversible at any point, one can verify that f is injective. Therefore,

{(u,v) € BE(G1) : (0(u),0(v)) € E(H),(0'(u),0'(v)) & E(H1))}
< {(u,v) € E(Go) : (o(u),0(v)) & E(H)}|.
Therefore,

val(Gy, Hy,0') = |E(G1)| — [{(u,v) €
>|E(G)] = {(u,v) € E(G1) : (0'(u), 0
— {(w,v) € E(G1) : (o(u),a(v))

(Gl) (0'(u),0'(v)) & E(H1))}
v)) & E(H1)), (0(u),0(v)) € E(H)}|

Sm”‘@j
w5
R
-

2|E(G1)| = [{(u,v) € E(Go) : (o(u),0(v)) & E(H)}|-
{(u,v) € E(Gy) : (o(u),0(v)) & E(H)}|
=|E(G)| = |E(Go)| + [{(u,v) € E(Go) : (o(u),0(v)) € E(H)}]

o

— {(u,v) € E(GY) : (0(u),0(v)) & E(
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—val(G, H,0) — |E(G))]
=opt(G, H) — |E(Gy)|.
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Part 1V

Other approximation and hardness of
approximation results
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Chapter 15

Certifying the 2 — 4 norm of random
linear operators

15.1 Introduction

For a function f: €2 — R on a (finite) probability space (), the p-norm is defined as
1fll, = (Eq fp)l/p The p — ¢ norm ||Al|,—, of a linear operator A between vector
spaces of such functions is the smallest number ¢ > 0 such that [[Af||, < c||f]|, for all
functions f in the domain of A. We also define the p — ¢ norm of a subspace V' to be the
maximum of || f||, /[|f]l, for f € V; note that for p = 2 this is the same as the norm of
the projector operator into V.

In this chapter, we are interested in the case p < ¢ and we will call such p — ¢ norms
hypercontractive Roughly speaking, for p < ¢, a function f with large || f[|, compared
to || f]|,, can be thought of as “spiky” or somewhat sparse (i.e., much of the mass concen-
trated in small portion of the entries). Hence finding a function f in a linear subspace V'
maximizing || f||, /|| f[|, for some ¢ > 2 can be thought of as a geometric analogue of the
problem finding the shortest word in a linear code. This problem is equivalent to comput-
ing the 2 — ¢ norm of the projector P into V' (since ||Pf|, < ||f||,). Also when A is
a normalized adjacency matrix of a graph (or more generally a Markov operator), upper

"'We follow the convention to use expectation norms for functions (on probability spaces) and counting
norms, denoted as [[v||, = P /P for vectors v € R™. All normed spaces here will be finite
p 1=1 p
dimensional. We distinguish between expectation and counting norms to avoid recurrent normalization

factors.
2We use this name because a bound of the form || A||,—, < 1 for p < ¢ is often called a hypercontractive
inequality.
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bounds on the p — ¢ norm are known as mixed-norm, Nash or hypercontractive inequal-
ities and can be used to show rapid mixing of the corresponding random walk (e.g., see
the surveys [[104, 201]]). Such bounds also have many applications to theoretical computer
science, which are described in the survey [43].

However, very little is known about the complexity of computing these norms. This
is in contrast to the case of p — ¢ norms for p > ¢, where much more is known both in
terms of algorithms and lower bounds, see [214, 146, 42].

We study a natural semidefinite programming (SDP) relaxation for computing the 2 —
4 norm of a given linear operator which we call TensorSDP | While TensorSDP is very
unlikely to provide a poly-time constant-factor approximation for the 2 — 4 norm in
general (as shown in [34]), we do show that it provides such approximation on random
linear operators, as we describe below.

We show that TensorSDP certifies a constant upper bound on the ratio || A||2—4/ || A, .,
where A : R" — R™ is a random linear operator (e.g., obtained by a matrix with entries
chosen as i.i.d Bernoulli variables) and m > €(n?). In contrast, if m = o(n?) then this
ratio is w(1), and hence this result is almost tight in the sense of obtaining “good approx-
imation” in the sense mentioned above. We find this interesting, since random matrices
seem like natural instances; indeed for superficially similar problems such shortest code-
word, shortest lattice vector (or even the 1 — 2 norm), it seems hard to efficiently certify
bounds on random operators.

15.2 The TensorSDP algorithm

Observe that when the linear operator A is given in the form of A = Z;”Zl ejaJT, for every
x such that ||z||, = 1, we have

m

1 1 m
4 _ T N4 T o TN T T
| Az, = - E (ajz)" = - E E tr(a;a; ® a;a; )(zr @ xx®).

j=1 J=1 41 i2,i3,i4€[n]

Instead of maximizing the above quantity over all z2” @ z2”, we maximize over all the 4-
th moment matrices. This gives the following natural semidefinite program for estimating
the 2 — 4 norm of A.

3We use the name TensorSDP for this program since it will be a canonical relaxation of the polynomial

program max |, |, — (T, 2®*) where T is the 4-tensor such that (T', z¥*) = || Az||;. Indeed, it is identical to
the degree-2 Lasserre—Parrilo SDP relaxation.
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Algorithm 2 The TensorSDP algorithm for 2 — 4 norms.

Input: A linear operator A = Y7, e;a].

Output: An estimated value for ||A||3 .,
Find X = (X(i, i5),(is,ia) )i1inyis isc[n] OVET set of n? X n? real matrices to maximize

tr % i Z tr(a;a] ® a;al) | X

J=1 41,i2,i3,i4€[n]
such that
e X -0,
* Eijer) Xiij) i) = 1
® X(i1ia),(inia) = X(r(ir),m(ia)),(n(is),m(ia)) fOI all permutations 7 over [4].

Output the above quantity with the maximizer X.

15.3 Certifying the hypercontractivity of random opera-
tors

In this section we show that TensorSDP provides non-trivial approximation guarantees
on the 2 — 4 norms of random linear operators.

Let A=Y"" eial /\/n, where ¢; is the vector with a 1 in the "™ position, and each ;
is chosen i.i.d. from a distribution D on R". Three natural possibilities are

1. Dgigy: the uniform distribution over {—1,1}"
2. Dgaussian: a vector of n independent Gaussians with mean zero and variance 1

3. Dunie: a uniformly random (expectation-norm) unit vector on R".

Our arguments will apply to any of these cases, or even to more general nearly-unit vectors
with bounded sub-Gaussian moment (details below).

Before discussing the performance of TensorSDP, we will discuss how the 2 — 4-
norm of A behaves as a function of n and m. We can gain intuition by considering two
limits in the case of Dgayssian- If n = 1, then || Al|2—4 = ||al|4, for a random Gaussian vector
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a. For large m, ||a/|4 is likely to be close to 3'/4, which is the fourth moment of a mean-
zero unit-variance Gaussian. By Dvoretzky’s theorem [[186], this behavior can be shown
to extend to higher values of n. Indeed, there is a universal ¢ > 0 such that if n < c\/ﬁeQ,
then w.h.p. ||Al|24 < 3% + €. In this case, the maximum value of || Az||; looks roughly
the same as the average or the minimum value, and we also have || Az|, > (3% —¢) ||z|,
for all z € R"™. In the cases of Dy;y, and Dy, the situation is somewhat more complicated,
but for large n, their behavior becomes similar to the Gaussian case.

On the other hand a simple argument (see e.g. [34]) shows that ||A||o_4 > n'/2/m!/4
for any (not only random) m x n matrix with all +1/+/n entries. A nearly identical bound
applies for the case when the a; are arbitrary unit or near-unit vectors. Thus, in the regime
where n > w(y/m), we always have || A]|2_4 > w(1).

The following theorem shows that TensorSDP achieves approximately the correct
answer in both regimes.

Theorem 15.3.1. Let aq,...,a,, be drawn i.id. from a distribution D on R" with
D € {Dgaussians Dsigns Dunir}» and let A = 7" e;al /\/n. Then w.h.p. TensorSDP(A) <
3 4 cmax (=, %Q)for some constant ¢ > 0.

From [Theorem 15.3.1]and the fact that || A||3_,, < TensorSDP(A), we obtain:
Corollary 15.3.2. Let A be as in{Theorem 15.3.1) Then 3¢ > 0 such that w.h.p.

VA ifn < m
||A||2—>4 S nl/2 vm .
Co7a ifn>\/m

Before proving [Theorem 15.3.1} we introduce some more notation. This will in fact
imply that[Theorem 15.3.1|applies to a broader class of distributions. For a distribution D
on RY, define the ), norm || D|| s, to be the smallest C' > 0 such that

(15.1)

[(v.a)|P NP/
max E e ¢7 <2, (15.2)
vES(RN) a~D
or oo if no finite such C' exists. We depart from the normal convention by including a
factor of N?/2 in the definition, to match the scale of [2]. The 1/, norm (technically a
seminorm) is also called the sub-Gaussian norm of the distribution. One can verify that
for each of the above examples (sign, unit and Gaussian vectors), 2(D) < O(1).

We also require that D satisfies a boundedness condition with constant X > 1, defined
as

Pr mao]{ |ai|l, > K max(1, (m/N)"/4)| < e VN, (15.3)

1€|m -
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Similarly, K can be taken to be O(1) in each case that we consider.

We will require a following result of [, 2] about the convergence of sums of i.i.d
rank-one matrices.

Lemma 15.3.3 ([2]). Let D’ be a distribution on RY such that E,p vvl = I, || D'||y, <
Y and (15.3)) holds for D' with constant K. Let vy, . .., v, be drawn i.i.d. from D'. Then
with probability > 1 — 2 exp(—cm), we have

L=l <—=> o] <(1+e), (15.4)

=1

where ¢ = C(¢ + K)?max(N/m, /N/m) with ¢, C > 0 universal constants.

The N < m case (when the y/N/m term is applicable) was proven in Theorem 1 of
[2], and the N > m case (i.e. when the max is achieved by N/m) was proven in Theorem
2 of [2] (see also Theorem 3.13 of [L1]).

Proof of [Theorem 15.3.1] Define Ay» = = > a,a] ® a;al. For n? x n? real matrices
X,Y, define (X,Y) := trXTY/n® = E;jep X;;Y:;. Additionally define the convex
set X' to be the set of n? x n? real matrices X = (X(;, i), (i5,ia) )in,insissiscln] With X = 0,
Eijeinl X)) = 1 800 X o), (i5,64) = Xira) ina)):lina)sincay) TOT aNy permutation 7 €

S,. Finally, let hx(Y) := maxxcx (X, Y). It is straightforward to show that

TensorSDP(A) = h‘)((AQQ) = 1}12)){(()(, A272>. (155)

We note that if X were defined without the symmetry constraint, it would simply be the
convex hull of zz” for unit vectors z € R™ and TensorSDP(A) would simply be the

largest eigenvalue of A;,. However, we will later see that the symmetry constraint is
crucial to TensorSDP(A) being O(1).

Our strategy will be to analyze A, 5 by applying [Lemma 15.3.3|to the vectors v; :=
Y12(a; ® a;), where ¥ = Eaa! ® aal’, and ~'/? denotes the pseudo-inverse. First,
observe that, just as the 15 norm of the distribution over a; is constant, a similar calculation
can verify that the 1); norm of the distribution over a; ® a; is also constant. Next, we have
to argue that X ~'/2 does not increase the norm by too much.

To do so, we compute X for each distribution over a; that we have considered. Let
F' be the operator satisfying F(xr ® y) = y ® = for any z,y € R"; explicitly F' =
> eiel @ eje].
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Define

n

=) e®e (15.6)
i=1

A= Z eiel ® eel (15.7)
i=1

Direct calculations (omitted) can verify that the cases of random Gaussian vectors, random
unit vectors and random =1 vectors yield respectively

EGaussian =1+F+ (I)(I)T (158&)
n

Euni = ——=X aussian 15.8b

1 ( )

Esign = 2Gaussiam —2A (1580)

In each case, the smallest nonzero eigenvalue of ¥ is (1), so v; = Y1/ %(a; ® a;) has
11 < O(1) and satisfies the boundedness condition (15.3) with K’ < O(1).

Thus, we can apply|Lemma 15.3.3|(with N = rank 3 < n?and ¢ := cmax(n/y/m,n?/m))

and find that in each case w.h.p.

1 m
Agg = — E aial @aal 2 (1+e)X < (1+¢)(I+F+dd7) (15.9)
m
i=1

Since hx(Y) > 0 whenever Y = 0, we have hx(A22) < (1 + €)hx(X). Additionally,
ha(I + F + ®3T) < hy(I) + hx(F) + ha®®T), so we can bound each of three terms
separately. Observe that I and F' each have largest eigenvalue equal to 1, and so hx (1) < 1
and hy(F') < 1. (In fact, these are both equalities.)

However, the single nonzero eigenvalue of ®®7 is equal to n. Here we will need to

use the symmetry constraint on X'. Let X! be the matrix with entries X~ ., . . =
(4182),(#3,i4)

Xir i) (inin)- If X € X then X = X' Additionally, (X,Y) = (X", Y"). Thus
ha (D7) = ha((PR7)") < [[(PRT) |22 = 1.
This last equality follows from the fact that (P®7)' = F.
Putting together these ingredients, we obtain the proof of the theorem. 0
It may seem surprising that the factor of 3'/4 emerges even for matrices with, say, 41
entries. An intuitive justification for this is that even if the columns of A are not Gaussian

vectors, most linear combinations of them resemble Gaussians. The following Lemma
shows that this behavior begins as soon as n is w(1).
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Lemma 15.34. Let A = >, e;al [v/n with E; ||a;||3 > 1. Then ||Alla—s > (3/(1 +
2/n))V/4.

To see that the denominator cannot be improved in general, observe that whenn = 1 a
random sign matrix will have 2 — 4 norm equal to 1.

Proof. Choose x € R™ to be a random Gaussian vector such that E, ||z||3 = 1. Then
E|Az||i = EEn *(aj 2)* = n* EE(a;, 2)" = 3E ||ai|[3 > 3. (15.10)
The last equality comes from the fact that (a;, x) is a Gaussian random variable with mean

zero and variance ||a;||3/n. On the other hand, E, ||z||3 = 1 + 2/n. Thus, there must exist
an z for which || Az||1/||z||3 > 3/(1 + 2/n). O
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Chapter 16

Hardness of MAXI'-2-LIN and
MAXI'-3-LIN over integers

16.1 Introduction

In this chapter we consider one of the most fundamental algorithmic tasks: solving systems
of linear equations. Given a ring R, the MAXk-LIN(R) problem is defined as follows: An
input instance is a list of linear equations of the form a;x;, + --- + apx;, = b, where
ai,...,ax,b € R are constants and x;,, ..., x; are variables from the set {xy,...,x,}.
Each equation also comes with a nonnegative rational weight; it is assumed the weights
sum up to 1. The algorithmic task is to assign values from R to the variables so as to
maximize the total weight of satisfied equations. We say that an assignment is y-good if the
equations it satisfies have total weight at least v. We say that an algorithm achieves (c, s)-
approximation if, whenever the instance has a c-good solution, the algorithm is guaranteed
to find an s-good solution.

16.1.1 Prior work on MAX3-LIN(Z)

It is an old result of Arora—Babai—Stern—Sweedyk [13]] that for all 0 < ¢ < 1 there exists
e > 0and k € Z7 such that it is NP-hard to (e, d¢)-approximate MAXk-LIN(Q). Hastad’s
seminal work from 1997 [116] showed hardness even for very sparse, near-satisfiable in-
stances: specifically, he showed that for all constant €,§ > 0 and ¢ € N, it is NP-hard to
(1 —€,1/q + 0)-approximate MAX3-LIN(Z,). This is optimal in the sense that it is algo-
rithmically easy to (1, 1)-approximate or (c, 1/¢)-approximate MAX3-LIN(Z,). Hastad’s
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hardness result even holds for the special case of MAXI'-3-LIN(Z,), meaning that all
equations are of the form z;,, — x;, + z;, = b.

Hastad’s proof does not strictly generalize the ABSS [13] result on MAXk-LIN(Q)
because there is no obvious reduction from hardness over Z, to hardness over Q. In-
deed, it was not until much later, 2006, that NP-hardness of (1 — ¢, d)-approximating
MAXk-LIN(Q) was shown [92,[108]]. Finally, in 2007 Guruswami and Raghavendra [109]]
generalized all of [13] 92| [108] by showing NP-hardness of (1 — ¢, d)-approximating
MAXI'-3-LIN(Z). As we will see shortly, this easily implies the same hardness for MAXI'-3-LIN(Q)
and MAXI'-3-LIN(R). Indeed, it shows a kind of “bicriteria” hardness: given a MAXI'-3-LIN(Z)
instance with a (1 — €)-good solution over Z, it is NP-hard to find a J-good solution even
over R. Guruswami and Raghavendra’s proof followed that of Hastad’s to some extent, but
involved somewhat technically intricate derandomized Long Code testing, using Fourier
analysis with respect to a certain exponential distribution on Z*.

We would also like to mention the very recent work of Khot and Moshkovitz [[139].
Motivated by proving the Unique Games Conjecture, they showed a strong NP-hardness
result for a homogeneous variant of MAX3-LIN(R). Specifically, they considered the case
where all equations are of the form ayz;, + asx;, + azx;; = 0 with a1, as,a3 € [%, 2].
Very roughly speaking, they showed there is a universal 4 > 0 such that for all ¢ > 0 the
following problem is NP-hard: given an instance where there is a “Gaussian-distributed”
real assignment which is (1 — €)-good, find a Gaussian-distributed assignment in which
the weight of equations satisfied to within margin 6+/¢ is at least 1 — §. This result is

incomparable to the one in [109].

16.1.2 Prior work on MAX2-LIN

Following Hastad’s work there was five years of no progress on MAX2-LIN(R) for any
ring R. To circumvent this, in 2002 Khot [[136]] introduced the Unique Games (UG) Con-
jecture, which would prove to be very influential (and notorious!). Khot showed a strong
“UG-hardness” result for MAX2-LIN(Z,) (crediting the result essentially to Hastad), namely
that for all ¢ > 1/2 and sufficiently small € > 0 it is UG-hard to (1 —¢, 1 — €')-approximate
MAX2-LIN(Zs). This result is essentially optimal due to the Goemans—Williamson algo-
rithm [94].

In 2004, Khot—Kindler—-Mossel-O’Donnell [[141] (using [1735]) extended this work by
showing that for all ¢,6 > 0, there exists ¢ € N such that (1 — ¢, §)-approximating
MAXTI'-2-LIN(Z,) is UG-hard, and hence in fact UG-complete. Here I'-2-LIN means
that all equations are of the form x;, — z;, = b. KKMO gave a quantitative dependence as
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well: given ¢ and ¢ one can choose any § > gA;_(1/q) ~ (1/q)/?~9), where A;_(1/q)
is a certain correlated Gaussian quadrant probability.

The following natural question was left open by KKMO [141]:

Question 16.1.1. Is it true that for all €,0 > 0 it is UG-hard to (1 — ¢, §)-approximate
MAXI'-2-LIN(Z)?

The key technical tool used in the KKMO hardness result for MAX2-LIN(Z,), namely
the Majority Is Stablest Theorem [175]], has a bad dependence on the parameter gq. Thus
pushing ¢ to be “superconstantly” large seemed to pose a fundamental problem. The

question above is one of the open problems posed at the end of Raghavendra’s monumental
thesis [[190].

16.1.3 Our contributions

In this chapter we show that it is relatively easy to modify the proofs of the hardness results
known for MAXI'-2-LIN(Z,) and MAXI'-3-LIN(Z,) to obtain (1 — €, §)-approximation
hardness results for MAXI'-2-LIN(Z) and MAXI'-3-LIN(Z). (Here I'-3-LIN means that
all equations are of the form z;, + z;, — z;;, = b.) Thus we resolve the open question
about MAXI'-2-LIN(Z) and give a simpler proof of the Guruswami—Raghavendra [109]]
result. Our results also hold over R and over “superconstantly large” cyclic groups Z, (we
are not aware of previously known hardness results over Z, when ¢ is superconstant and
prime). The results also have an essentially optimal quantitative tradeoff between ¢, §, and
the magnitudes of the “right-hand side constants” b.

To state our two theorems, let us define B-BOUNDED-MAXI'-2-LIN and
B-BOUNDED-MAXI'-3-LIN to be the special cases of MAXI'-3-LIN and MAXI'-2-LIN
in which all right-hand side constants b are integers satisfying |b| < B. Given an instance
7 of MAXI'-k-LIN with integer constants b, we use the notation opty(Z) to denote the

maximum weight of equations that can be satisfied when the equations are evaluated over
R.

Theorem 16.1.2. For all constant ¢,v,x > 0 and constant ¢ € N, given a
q-BOUNDED-MAXI'-2-LIN instance L it is UG-hard to distinguish the following two
cases:

e (Completeness.) There is a (1 — € — 3)-good assignment over Z; i.e., opt,(Z) >
1—€e—3.
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e (Soundness.) There is no (qA\1-¢(1/q)+r)-good assignment over Zy; i.e., opty, (I) <
qu—e(l/Q) + K.

Note that gA;,_.(1/q) =~ (1/q)¥/(~9) is the same soundness proved by KKMO [141] for
MAXTI'-2-LIN(Z,).

Theorem 16.1.3. For all constant e,k > Oand q € N, given a -BOUNDED-MAXI'-3-LIN
instance I it is NP-hard to distinguish the following two cases:

e (Completeness.) There is a (1 — O(€))-good assignment over 7, i.e., opt;(Z) >
1—0O(e).

e (Soundness.) There is no (1/q + rk)-good assignment over Z,; i.e., opty (Z) <
1/q + k.

Note that opt,(Z) < opty, (Z) since we can convert a §-good assignment over Z to
a 0-good assignment over Z, by reducing the integer solution modulo g. Therefore our
hardness results are of the strongest “bicriteria” type: even when promised that there is
near-perfect solution over Z, it is hard for an algorithm to find a slightly good solution over
Zq. Indeed, by virtue of [Lemma 16.6.1|in [Section 16.6 by losing just a constant factor
in the soundness, we can show that it is also hard for an algorithm to find a slightly good
solution over any ring {R,Z,Z,+1, Zy19, ...} of the algorithm’s choosing. Our results
subsume and unify all aforementioned results on MAX3-LIN(Z,), MAX3-LIN(Z), and
MAX2-LIN(Z,), and also provide an optimal UG-hardness result for MAXI'-2-LIN(Z).

16.2 Preliminaries

16.2.1 Notations and Definitions

We write Z, for the integers modulo ¢, and we identify the elements with {0,1,...,q —
1} € Z. We sometimes write &, for addition of integers modulo ¢ and + for addition over
the integers. For two vectors z,y € Z", both x @©, y and x + y are coordinate-wise add.
We will also write A, for the set of probability distributions over Z,. We can identify A,
with the standard (¢ — 1)-dimensional simplex in R?. We also identify an element a € Z,
with a distribution in A, namely, the distribution that puts all of its probability mass on a.

Fix « € Zj, arandom variable y is (1 — €)-correlated to z, i.e. y ~1_ x, if y can be
get by rerandomizing each coordinate of = independently with probability e.
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We recall some standard definitions from the harmonic analysis of boolean functions
(see, e.g., [190]). We will be considering functions of the form f : Z;; — R. The set of all
functions f : Z7 — R forms an inner product space with inner product

(frg9)= E [f(z)-g(z)],

n
meq

where & ~ Z7 means that @ is uniform randomly chosen from Z. We also write || f||» =

(f, f) as usual.

The following Efron—Stein decomposition theorem is well-known; see [141].

Theorem 16.2.1. Any [ : Zj — R can be uniquely decomposed as a sum of functions
flz) =) (@),
SCn]

where
o f5(x) depends only on vg = (;,1 € 9),

e forevery S C [n], for every S' such that S\ S’ # \, and for every y € Z, it holds
that

E [f(z)|zs = ys] = 0.

n
wNZq

Definition 16.2.2 (Influences). For functions f : Zi — R, define the influence of the i-th
coordinate on f to be

Infi(f) = > I3,
$5i
where || f5|5 = Bo|f(x)?]. For functions [ : 21 — A, let

Inf;(f) = Z Inf;(f.),

CLGZm
where fo(z) = f(x)q, Vo € Zy.
Definition 16.2.3 (Noise operators). For functions f : Z; — R, define the noise operator
T_, to be

Loyf(z)= E [fy)].

Y~1—nx
For functions [ : 2§ — A, let Ty, be the noise operator so that (Ty_, f)a = Ty (fa), Va €
Z

q-
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Definition 16.2.4 (Noisy-influences). For functions f : Z;, — R and functions f : Z; —
A,,, define the (1 — n)-noisy-influence of the i-th coordinate of f to be

Inf{'"""(f) = Inf,(Ti_, ).

Fact 16.2.5. For functions [ : Zy — A, we have

> Inf{ 7 (f) < 1/n.

i€[n]

Proposition 16.2.6. Let f) ..., f) be a collection of functions Zyq — R™. Then

Infl(l_”) [avg {f(k)}] < avg {Infgl_”) [f(k)]} .

kelt] kelt]
Here for any ¢y, Co, ...c; € R (or R™), we use the notation avg(cy, ..., c;) to denote their
average:
Zle Ci
.
Both of[Fact 16.2.5|and [Proposition 16.2.6|are easy to verify by the definition of Noisy-

influences. The proofs of the facts can be found in, e.g., [180] and [181]].

Definition 16.2.7 (Noise stability). For functions [ : Z; — R, define its stability against
€ noise to be

Stab, . [f]= E [f(z)f(y)]

a:NZg7yN1—ew

One tool we need is the Majority Is Stablest Theorem from [175]. (We state here a
version using a small noisy-influences assumption rather than a small “low-degree influ-
ences’ assumption; see, e.g., Theorem 3.2 in [[190] for a sketch of the small modification
to [[175]] needed.)

Theorem 16.2.8. For every function f : Z{ — [0, 1] such that Infgl_") [f] < 7 for all
i € [n], Let p = E[f]. Then for any 0 < € < 1,

Stab,_[f] < Ai—c(p) +e(7,4,7).

Here if we fixn, q, (1,1, q) goes to 0 when T goes to 0.

In the above theorem, the quantity A; (i) is defined to be Pr[x, y < t] when (, y)
are joint standard Gaussians with covariance 1 — € and ¢ is defined by Pr[x < t] = p.
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16.3 Review of proofs of MAXI'-2-LIN(Z,) and MAXI'-3-LIN(Z,)
hardness

As mentioned, we prove [[heorem 16.1.2|and [Theorem 16.1.3|by fairly easy modifications
of the known hardness results for MAXI'-2-LIN(Z,) and MAXI'-3-LIN(Z,), due respec-
tively to Khot-Kindler-Mossel-O’Donnell [141] and Hastad [116]]. In this section, we
review several places in the two proofs that are related to our modifications. We also
assume the reader’s familiarity with these works.

16.3.1 MAXI-2-LIN

Let us begin with MAXT'-2-LIN. As shown in [141]], to prove UG-hardness of (1 — ¢,4)-
approximating MAXI'-2-LIN(Z,) for constant x and ¢, where 0 = qA;1_(1/q) + &, it
suffices to construct a “Dictator vs. Small Low-Degree-Influences Test” (or, Dictator Test
for short) for functions f : Zg — A, which uses I'-2-LIN constraints and has complete-
ness 1 — ¢, soundness . We recall the definition of Dictator Test as follows.

Generally speaking, a 1 — € vs. § Dictator Test for functions f : Zg — Zq 1s defined
by a distribution over ['-2-LIN constraints (over the entries of f). We say f passes the test
when a random constraint (from the distribution) is satisfied by f. At the completeness
side, all the L dictators (i.e., f(x) = z; for some i € L) pass the test with probability
at least 1 — €. At the soundness side, all functions with small noisy-influences (on all
coordinates) pass the test with probability at most 9. KKMO indeed needs to construct a
Dictator Test for functions of distributions, i.e., for f : ZqL — A,, where whenever the
test refers an entry f(x) for an element in Z,, it randomly samples an element from the
distribution f(z).

The Dictator Test used by KKMO is indeed a noise-stability test. Intuitively, dictator
functions have high noise stability, while functions far from dictators have low noise sta-
bility. Note that this intuition is true only for balanced functions, as constant functions are
far from dictators but very noise stable. Therefore, KKMO used the “folding” trick (which
was introduced in [116]]) to ensure that f outputs 1, 2, ..., g with the same probability.

16.3.2 MAXI'-3-LIN

Let us move on to MAXI'-3-LIN and our proof of [Theorem 16.1.3] Hastad essentially
showed that to prove NP-hardness of (1 — €,1/q + «)-approximating MAXI'-3-LIN(Z,)
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for constant ¢, it suffices to construct a “Matching-Dictator Test” on two functions for
fiZY — 24 g:Z) — Zyand 7 : L — K. The test is defined by a distribution over
x e LK. y € L, z € ZL with the check f(z) + g(y) — g(z) = ¢ mod ¢. Héstad’s Test
has the following completeness and soundness promises:

o If f(x) = ; and g(y) = y; such that 7(¢) = j, then f and g passes with probability
1—e

e If f and g passes the test with probability 1/q + k, then there is a randomized pro-
cedure that “decodes” f into a coordinate ¢ € L and g into a coordinate j € K such
that (i) = j with constant probability depending only on ¢, €, x and independent of
L, K, m. Also note that the decoding processes for f and g should be independent
from each other.

Hastad constructed the following test: choose x € Zf and y € Zé uniformly and
independently, define z € Z[ to be z = y @, (x o m), where (x o 7); := X(;), let 2’ be
(1 — e)-correlated to z, and test f(x) ®, g(y) = g(2'). Such a test does not work when
f = 0; thus Hastad introduced and used his method of folding (which was also used [141]])
to ensure that f outputs 1,2, ..., ¢ with equal probability.

16.4 Overview of our proofs

As mentioned, we obtain[T'heorem 16.1.2|and[Theorem 16.1.3|by modifying the KKMO [141]
and Hastad [116]] proofs. In this section we describe the idea of the modifications.

16.4.1 Active folding

The usual folding trick [116] enforces that f is balanced by replacing references to f(x1,...,x)
with references to f(z1 @, Tj+, 2 By Tj, ..., T By Tjx) By (—x;+) for some arbitrary

j* € [L]. (Le., the reduction only uses ¢“~! variables to represent f as opposed to q~.
Note that this makes the test’s constraints of the form f(z) &, b = f(z') &, V/, but this is

still of I'-2-LIN type. We call this trick static folding.

Let us explain the alternative to “static folding” which we call active folding. Active
folding is nothing more than building the folding directly into the test. We feel that this is
slightly more natural than static folding, and as we will see it proves to be more flexible.
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In the KKMO context of MAXI'-2-LIN(Z,), active folding means that the test additionally
chooses ¢, ¢’ ~ Z, uniformly and independently, and then it checks the I"-2-LIN constraint

f@®eg(c,...c)) @ (—c) = f(@' & (... ) & (=)
rather than f(x) = f(«’). To analyze the KKMO test with active folding, first note that
completeness does not change. As for the soundness analysis, given a function f : ZqL —
A, we introduce f : LY — A, defined by

f@)e= B [f(z@q (e, )azye] (16.1)

Then the probability f satisfies the test with active folding is precisely the probability
that f satisfies the f(x) = f(a’) test (in the sense of randomized functions), namely
Stabl,e[ﬂ. We can now proceed with the KKMO analysis; the key is that we still have
E[f;} = 1/q for all a € Z,. To see this, take () = ¢ in the following lemma:

Leglma 16.4.1. Let f : Zé — A, and suppose f: ZCLQ — A, is defined as in (16.1). Then
E[f.] = 1/qforall a € Z,.

Proof. We have B
Elf. = E Do (c,...,C))wm, el -
fl=, B, [fesale el
Write Z = @ @®q (¢, ..., ¢) € Zg. The distribution of Z | (¢ = ¢) is uniform on Z for
every c. In other words,  and ¢ are independent. Thus

(1/a) > [f(@)]

bEZ,

Elf.] = E |E [/@)as,c] | = E

c

=E[l/q=1/q. T

16.4.2 Modifying the KKMO proof

We now describe how to obtain{Theorem 16.1.2] Let us first ask: Why does the KKMO re-
duction (with active folding) not prove [Theorem 16.1.2|already? The soundness statement
of [Theorem 16.1.2] would hold since it is over Z,. The problem is in the completeness
statement: a dictator f : Zf — Z, f(x) = x; does not satisfy the the KKMO test with
probability close to 1. The reason is that folding may introduce wrap-around in Z.;. More
specifically (and ignoring the € noise), the KKMO test with active folding will check

(x; + e¢mod q) — ¢ = (x; + ¢ mod q) — ¢ (16.2)

over the integers, and this is only satisfied if both x; + ¢ and «x; + ¢’ wrap around, or neither
does: probability 1/2. (The situation with static folding is similar.)
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Sketch of a first fix. There is a simple way to somewhat fix the completeness: choose c
and ¢’ from a range smaller than {0, 1, ...,¢—1}. E.g., if we choose ¢ and ¢’ independently
and uniformly in {0, 1, ..., [¢/t]}, then we get wrap-around in x; + ¢ with probability at
most 1/¢. Hence the dictator f(z) = x; will satisfy the test (16.2) over Z with probability
at least 1 — 2/t, which we can make close to 1 by taking ¢ large. Now how does this
restricted folding affect the soundness analysis? If we redefine the folded function fap-
propriately, it is not hard to show that we will have E[f,] < (¢/q) for all a. We could then
proceed with the KKMO analysis applied to f and obtain soundness gA;_.(t/q). Choos-
ing, say, t = log ¢ would achieve a good completeness versus soundness tradeoff; roughly
1 — € versus O(1/q)/ 9.

A better fix. A slight twist on this idea actually gives the optimal completeness versus
soundness tradeoff. Instead of restricting the range of the folding, we simply enlarge the
domain of f. Specifically, let v > 0 be any small constant and define Q = [¢/v]|. To
prove [Theorem 16.1 .2| we run the KKMO reduction with functions f whose domain is ZCLQ.
We still active folding with ¢ € Z,. In other words, the test chooses x, ' to be (1 — ¢€)-
correlated strings in Zé, chooses ¢, ¢’ € Z, uniformly and independently, and outputs
the constraint f(x ©¢ (c,...,c)) —c = f(x' ©g (¢,...,c)) — . Note that this is a
¢-BOUNDED-I"-2-LIN constraint. As the ‘wrap-around” probability is ¢/@) < -, we have
completeness over Z of at least 1 — ¢ — «y. As for the soundness over Z,, we now need

to consider functions f : Zé — A,. If we introduce the folded function f : Zé — A,

as in (16.1)), the probability f passes the test over Z, is again Stab;_.[f], and we still
have E[f,] = 1/¢ by Hence the soundness analysis for Theorem 16.1.2]
becomes essentially identical to the soundness analysis for KKMO with active folding.
The only tiny difference is that we need to apply the Majority Is Stablest Theorem with
domain Zé rather than Zg. But () is still a constant since y and ¢ are; hence we obtain the
claimed 1 — € — y completeness over Z and gA;_.(1/q) soundness over Z,.

16.4.3 Modifying the Hastad proof

The modification to Hastad’s test needed to obtain[Theorem 16.1.3lis similar. If one carries
out Hastad’s proof using the Efron—Stein decomposition rather than harmonic analysis
over Z,, one sees that the soundness relies entirely on E[f,] = 1/¢ forall a € Z,. Thus we
only need to apply folding to f. Let us examine the Hastad ['-3-LIN test on f : Zf — Ly,
g: Zé — Zg¢, and m : L — K. We will use active folding on f, and for simplicity of
this discussion ignore the e-noise. The test chooses x ~ Zf and y ~ ZqL uniformly and
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Figure 16.1: Test 7 with parameters ¢, 7, g for functions on Zg

Choose x, ' ~ Zg to be a pair of (1 — €)-correlated random strings.

Choose ¢, ¢’ ~ [q] independently and uniformly.
p y y

Define * = « &¢ (c,c,...,c),and define ' = o' g (', ¢, ..., c).

Test the constraint f(x) —c = f(x') — .

independently, defines z € Z. by z = y &, (x o 7) (again, (z o 7); := @), chooses
¢ ~ Zg uniformly, and finally checks the I'-3-LIN constraint

fl®d,(c,...,c)) —c+gly) =g(2).

Again, if we simply use this reduction in an attempt to prove [Theorem 16.1.3} the sound-
ness is fine but the completeness over Z is a problem due to wrap-around. Indeed, there
are two possibilities for wrap-around here: in x; + ¢ and in y; + x,;. We mitigate
this with the same idea used for MAXI'-2-LIN. Given constants ¢ and ¢ we define con-
stants Q = [¢/e] and Q = [Q/€]. We enlarge f’s domain to Z¢; and g’s domain to Zg.
We continue to fold f using ¢ ~ Z,. Now the two possibilities for wrap-around occur
with probability at most € each and hence the completeness over Z is 1 — O(e). Defining
f Z§ — A as in (I6.1)), we again have E[f.] = 1/q for each a € Zg and can carry out
the (Efron-Stein-style) Hastad soundness analysis, obtaining soundness 1/q + ~ over Z,.

16.5 Dictator Test details

16.5.1 Dictator Test for MAXI'-2-LIN

Given constants €,v,x > 0 and ¢, K € Z*, let Q = [q/~]. We define the Dictator Test
7T for functions f with domain ZIQ( as in|Figure 16.1| Let valg( f) be the probability that f

passes the test, and let valgq (f) be the probability that f passes the test over Z,.

Theorem 16.5.1. There exists 7,1 > 0 such that T is a -BOUNDED-I'-2-LIN fest with
following properties:
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e (Completeness.) Each of the K dictators f : Zg — Zhasval) (f) >1—€e—.

e (Soundness.) Let f : Z§ — A, and define f e Z§ — Ag as in (T60). Suppose
that Infl(-l_n)[f] < 7 foralli € [K]. Then vaIFqu(f) < qMA1-(1/q) + K, where
Kk = k(1,Q,n) > 0 can be made arbitrarily small by taking T,m > 0 sufficiently
small.

[Theorem 16.5.1|together with the following lemma proves [Theorem 16.1.2]

Lemma 16.5.2. [Theorem 16.5.1|implies|Theorem 16.1.2)].

Lemma 16.5.2]is implicit from [141]], and is proved in[Section 16.7.1]

Proof of|[Theorem 16.5.1} For the Completeness case, we need to analyze for a fixed ¢ €
[ K] the probability that

(; Dge)—c= (x;dg ) — ¢ (16.3)

holds over Z. We have x; = x except with probability at most €, and x; < ) — g except
with probability at most ¢/Q) < ~. When both of these events occur, equation (16.3]) holds.
This proves the completeness.

As for the Soundness case, by [Lemma 16.4.1|we have 1, = E[f.] = 1/q for each a €

Z,. By assumption we have Infl(-l_”) (] < Infgl_") [f] < 7. Thus from |Theorem 16.2.8|

we obtain Stab;_.[f,] < A1_(1/q) + e(7,@Q, n) for each a. Summing this over a € Z,
yields

Stab,_[f] < qAi—(1/q) + q - e(7,Q, 7).

The proof is completed by taking k = ¢ - e(7,Q,n), since Stab;_[f] = valgq(f) by
unrolling definitions. U

16.5.2 Matching Dictator Test for MAXI'-3-LIN

Given constants €, k > 0and ¢, L, K € Z,let Q = [q/€]| and Q = [Q/€]. In|Figure 16.2}

we define the Matching Dictator Test ¢/ for function f with domain Zg , function g with

domain Zé, and projection 7 : L — K. Let val%(f, g) be the probability that f, g pass the
test, and let val%q (f,g) be the probability that f, g pass the test over Z,.

Theorem 16.5.3. U/ is a -BOUNDED-I'3-LIN test satisfying:
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Figure 16.2: Test U with parameters e, ¢ for f on Zg, gonZs m:L - K

Choose = ~ Z{, y ~ Zg uniformly and independently.

Define z € Z§ by z = y &g (T o 7).

Choose ¢ ~ Z, uniformly and define & € Z§ by & = @ (¢, c, ..., c).

Let &' € Z be (1 — €)-correlated to &, let y' € Zg be (1 — €)-correlated to
y, and let 2’ € Z§ be (1 — ¢)-correlated to z.

Test the constraint f(x') — ¢+ g(y') = g(Z').

e (Completeness.) If f : Z{§ — Z and g : Z§ — Z are matching dictators — i.e.,
f(x) = 2.y and g(y) = y; for some j € [L] — then val¥(f, g) > 1 — 5e.

e (Soundness.) Let f : L — Zg g : LE — Zq and define f: Z§ — Ay as
in (I6.1). Suppose that vaI%q (f,9) > 1/q+ K, then there is a randomized “decoding
procedure” D which decodes g to a coordinate D(g) € [L] and f to a coordinate
D(f) € [K] such that 7(D(g)) = D(f) with at least a constant probability ( =
C(q, €, k) independent of 7, L, K.

[Theorem 16.5.3|together with the following lemma proves [I'heorem 16.1.3|

Lemma 16.5.4. [Theorem 16.5.3|impliesTheorem 16.1.3|.

emma 16.5.4]is proved in[Section 16.7.

Proof of[Theorem 16.5.3] Define f : Zg — A, as in (I6.1). For the completeness case,
we need to analyze for a fixed j € [L] the probability that

holds over Z. Except with probability at most 3¢ we have all of

T ) = Tn(j) = Ta(j) Bq €,

Y =y, 2= 2j = Tr(j) Do Yj-
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Except with probability at most ¢/Q < e we have ;) < Q) — ¢, in which case T (j) Dgc
equals ;) + c. Except with probability at most @/ Q <ewehave y; < Q—(), in which
case T (j) Do Yj = Tx(j) + y;. Thus when all five events occur, equation (16.4)) indeed
holds over Z.

As for the soundness case, write [/ = Tl,ef and ¢’ = T1_.g, where we think of ¢ as
g: Zé — A,. By unrolling definitions we have

valz, (f.9) = D B fa(@)65(y)gie,(2)]

a,bEZq

Write y1, = E[f’()]. Thus p, = E[f.] = 1/, by We conclude that
valy (f.9) = > E[(fi(@) — 1a)gs(¥)9hep(2)] + (1/0) > Elgy(y)ghe,(2)].

a,b€Zq a,b€Zq

The second term above is

(1/9) Y Elgp(4)9uep(2)] = (1/q)E[(ZCJgé(y)) - (chgé(Z))] = (/g E[1-1] =1/q,

a,bEZq

since ¢’ is A,-valued. Thus to complete the proof it remains to show that if

> E(fi(®@) — 1a)9h(¥) o p(2)] (16.5)

a,bEZq
is at least £ > 0 then we can suitably decode fand g. Let us now apply the Efron—Stein

decomposition to f’ and ¢’ with respect to the uniform distributions on their domains.
Given S C [K], T C [L], for simplicity we write

Ff = f,as(m)a Gb =4 (y)7 HaT+b = g,Z@qb(z)-

Thus
@)=Y el X E)(X ) (X H)| =Y X EFGHY,
a,b€Zq P#£SC[K] TC[L] UClL] a,b€Zq P£SCIK]
T.UC[L]

Let us simplify the above. We have E[F GTHY,,] = E[F? - E[G{ HY,, | z]]. Note
that even if we condition on x, the marginals on y and z are uniform on ZL It follows
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from the properties of the Efron—Stein decomposition that E[GT HY, ' | ] is always 0 if

T # U. Thus
3= ) > EF'G/H],]
a,b€Zq D#£SC[K]
UC[L]

Similarly, conditioned on the U-coordinates of y and z, the coordinates of « outside 7 (U)
are independent and uniform on Zq. Hence E[F’GYHY,,] = 0if S ¢ =(U). We
conclude that

@)= > EBIFGHL)= Y Y EF"VGIHL,)
ab€Zy  U#AD a,bEZy U£D
0£SCr(U)

where we defined Fj, " = D pLsCn(U F Shifting the sum over a and b to the inside
we obtain

[3)=Y E| > FUG/HL,| <Y B

U0 a,bEZq U0

Y

V SENGY R [S(HY,,)?2

a,b a,b

having used Cauchy-Schwarz. We can think of, e.g., (Gg, cee Gg_l) as a vector in R?;
writing ||GY|| for the Euclidean length of this vector (and similarly for F' and H), the
right side above is precisely /g Yy B[[|[F="O|| - |G| - [HY|]]. Thus

(163) <y ) E[IF=|- |G| - [1H"|I] < va ) \/E[HFST“(”H?HGU!P] E[[|HY[],

U0 U0

using Cauchy-Schwarz again. Now F<"() depends only on « and GU depends only on
y; hence they are independent. Further, since y and z have the same distribution (though
they are not independent), the same is true of GV and HY. Hence

(163) < va ) +/ElIF="O|2 E[|GY|

U#D

<Va, [) EINF=@IENGY|? [> EIIGY|?.

U0 U#D

using Cauchy-Schwarz again. By (generalized) Parseval, >, E[|GY*] < >°, E[|GY|I’] =
E[|G|]?] < 1, since G takes values in A,. Thus we finally conclude

< V4 |Y ElIF=O|2E[|GY |7

U0
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= (¢ BT /=@ @) |2 E[|(Ti-c9)" (y)]].

U#0
If val%q( f,9) > 1/q + k, then we have r < (16.5)) and therefore

S E(T- )= (@) P E[(T1-9)” (0)]17] = £*/q. (16.6)
U0

We now define the decoding procedure. It works in a similar way as in Hastad’s
work [116], as follows. We sample a random set S C [K| according to distribution
E[|| f5()||?], and let D(f) € S uniformly (or an arbitrary element of [K] if S = ().
We also sample a random set T' C [L] according to distribution E[| g% (y)||?], and choose
D(g) € T uniformly (or an arbitrary element of [L] if T = ()). We have

Pr[(D(g)) = D(f)]

> Y EIP@FE @
T0#SCn(T)

2 Y EIF@IAEN @A - 0%,
T,0#SCn(T)

where in the last step we use the fact 1/[S] > 2¢(1 — ¢)?9l. Note that E[||f5(ac)||2](1 -
S = B|T,_f5(x)?) and Ellg” (1)I) > E[I(Ti_og)" (w)]]2, we have

Priz(D(g)) = D(f)]
>2¢ Y E[(T- /)@ EN(T-0)" @)

T0#SCr(T)
=2¢ > B[[(Tr- /)= (@) P E[[(Ti-c9)" (9)]]
>2er? /q,

where the second last step is by definition and orthogonality of (7}_.f)°* and (T}_f)
(S1 # S9), and the last step is by (16.06)). O

16.6 Reductions between MAXA-LIN(RR) problems

Lemma 16.6.1. Given a ¢-BOUNDED-MAXI'-k-LIN instance and positive integer m > q:
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e When k = 2, opt,(Z), optg(Z), optz,, (Z)<4- optz, (Z).

o When k = 3, opty(Z),optg(Z),0pt, (Z) < 8-opty ().

Proof. It is obvious that the opt;, is a lower bound for opt;, . It suffice then to show how
to convert a d-good assignment over Z,, and R to a (2(§)-good assignment over Z.

First we show the conversion from an assignment over R to Z. For case of k = 3, as
is noted in [[108], suppose one has an §-good real assignment to a system of equations of
the form z;, — x;, + x;, = b, b € Z. If one randomly rounds each variable up or down
to an integer, every formerly satisfied equation has probability at least 1/8 of remaining
satisﬁed[] Hence there must exist a 6 /8-good integer assignment. For the case of k = 2,
The reduction from MAXI'-2-LIN(Z) to MAXI'-2-LIN(R) is even easier and incurs no
loss: given a §-good real assignment, simply dropping the fractional parts yields a -good
integer assignment.

Next we show the conversion from assignment over Z,, to Z,. First let us consider
the case of k£ = 3. Suppose one has an d-good assignment A : x; — Z,, to a system of
equations of the form

Tiy — Ti, + 24 = b mod m.

Then we know that if A(z;,) — A(x;,) + A(zi,) = b mod m. Notice that [b] < ¢ < m,
we must have that A(z;,) — A(x;,) + A(xi,) € {b,b— m, b+ m} when the assignment is
evaluated over Z. If we define assignments A; (z;) = A(z;) —m and Ay(x;) = A(x;) +m
for every x;. Then it is easy to verify that the best assignment among A, A;, A, will give

a 0/3-good assignment. Essentially, every equation over Z,, satisfiable by A must also be
satisfiable by one of A, A;, A, over Z.

As for the case & = 2, we know that for a J-good assignment A over Z,,, we know that
if A(z;,) — A(x;,) = b mod m, then A(z;,) — A(zy,) € {b—m, b} when evaluated over
Z. Therefore, we can randomly set A’(x;) to be A(x;) — m or A(x;) . Then we know that
A’ is at least a §/4-good assignment over Z.

It is not too hard to see that the proof technique also works for m < ¢; in particu-
lar, a §-good assignment for -BOUNDED-MAXI'-k-LINon Z,, implies a Q(W)—good
assignment on Z,,.

"Tn the usual case when the hard instances also have “bipartite” structure, it is not hard to make the loss
only a factor of 2 rather than 8.
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16.7 From Dictator Tests to hardness of approximation

16.7.1 Proof of Lemma 16.5.2

We start by defining UNIQUEGAMES and the Unique Games Conjecture.

Definition 16.7.1 (UNIQUEGAMES). A UNIQUEGAMES instance L(G(U,V, E), ¥, {m.|e €
E}) is a constraint satisfaction problem defined as follows. G(U, V, E) is a bipartite graph
whose vertices represent variables and edges represent constraints. The goal is to assign
to each vertex a label from the set Y.. The constraint on an edge e = (u,v) € E, where
u € U,v € V, is described by a bijection 7, : ¥ — . A labeling o : U UV — X satisfies
the constraint on edge e = (u,v) if and only if (o (v)) = o(u). Let opt(U) denote the
maximum fraction of constraints that can be satisfied by any labeling:

opt(U) := - {e € E|L satisfies e}|.

L:[EILIJ%/?;E E
Conjecture 2 (Unique Games Conjecture [136]). For every v,0 > 0, there exists a con-
stant M = M (7, 6), such that given a UNIQUEGAMES instance L(G(U,V, E), ¥, {m.|e €
E}) with |$| = M, it is NP-hard to distinguish between these two cases :

e YES Case: opt(L) > 1 —~.

e NO Case: opt(L) < 6.

By standard reductions, we can assume the bipartite graph G(U,V, E) is left-regular in
the conjecture.

Now we are ready to prove |Lemma 16.5.2

Proof of[Lemma 16.5.2] Given a UNIQUEGAMES instance L(G(U,V, E), 3, {n.|e € E}),

and a Dictator Test 7 (¢,7, k,q, K = |X|) described in the lemma statement, we build a
q-BOUNDED-MAXI'-2-LIN instance Z as follows. The variable set consists of all the en-
tries of g, : [Q]* — Z,Vv € V, which are supposed Q-ary Long Codes of the labels for
v € V, where Q = ¢/~ is defined in the Dictator Test. The equations are placed by the
following random process, where the probability of a equation being placed corresponds
to its weight.

e Pick a random vertex u and two of its random neighbors of v, v € V, let m = ()
and 7' = Ty 0.
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e Run the Dictator Test 7 on an imaginary function f defined on [Q]*, suppose T
chooses to test f(x) — f(y) = b.

e Place the equation (g, o 7)(z) — (g o ©)(y) = b, where (g o )(x) := g(m(x)).

Completeness. Suppose opt(L) > 1 — v, and o is a labeling function satisfying 1 — ~
fraction of the constraints. Let g, be the Long Code for o(v), i.e. let g,(z) = 2, for each
x. According to the random process shown above, we pick a random equation in Z. With
probability at least 1 — 2+, both of the constraints on (u, v) and (u, v') are satisfied by o. In
this case, both g, o and g, o7’ are the Long Code for o(u), and g, om(z) — gy o' (y) = b
is satisfied with probability 1 — e —y by the property of 7. In all, at least 1 — e — 3~y fraction
(of weight) of the equations are satisfied.

Soundness. Suppose there is a set of functions g, : [Q]* — Z, satisfying more than
qM1_c(1/q) + & fraction (of weight) of the equations over Z,. Then there are at least /2
fraction of vertices u € U such that conditioned on w is picked in the first step of the
random process shown above, the equation is satisfied over Z, with probability more than
qM1-(1/q) + k/2. We call such u’s “good”. For each u, we define f, : [Q]® — A, to
be fu = avg,., v)e £19v © T }- Since the equations generated after picking u are indeed
a Dictator Test 7 running on f,, for good u’s, we have valgq(fu) > qghi_(1/q) + k/2.

Therefore, for each good u, there exists ¢ = 4,, € X, such that Inf 51_") [f;] > 7. Note that

-~ —_~——

Ju= avg {gv © 71-(u,v)}'
vi(u,v)EE

By [Proposition 16.2.6 we have

T<Inf§1‘">[ﬁ}=1nf§1‘">[ ave {gmam}] < avg {Inf g o0}
v:(u,v)EE vi(u,w)EE

Therefore, for at 7/2 fraction of neighbors v of w, there exists j = 7,.(¢), such that
Inf!'""(g,) > 7/2.

Let o(u) = i, if u is good. For each v € V, let Cand(v) = {i : Infl(l*") (go) > 7/2}.
By we have |Cand(v)| < 1/(7n). If Cand(v) # 0, let o(v) be a random
element in Cand(v). Now for a good u, there are 7/2 fraction of neighbors v of u such
that j = 7, (0(u)) € Cand(v), therefore the edge (u,v) is satisfied with probability
1/|Cand(v)| > 7n. It follows that o satisfies more than (x/2)(7/2)7n = kn7?/2 fraction
of the constraints in expectation. Therefore there is a labeling satisfying more than §' =
knT? /2 fraction of the constraints. []
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16.7.2 Proof of Lemma 16.5.4

We start by defining Label Cover Games and introducing its hardness.

Definition 16.7.2 (Label Cover Games). A Label Cover Game C(G(U,V, E), K], [L],{m.|e €
E}) is a constraint satisfaction problem defined as follows. G(U, V., E) is a bipartite graph
whose vertices represent variables and edges represent the constraints. The goal is to as-
sign to each vertex in U a label from the set [K| and to each vertex in V' a label from
the set [L]. The constraint on an edge ¢ = (u,v) € E is described by a “projection”

Te : [L] — [K]. The projection is onto. A labeling o : U — [K],0 : V — [L] satisfies
the constraint on edge e = (u,v) if and only if m.(c(v)) = o(u). Let opt(C) denote the
maximum fraction of constraints that can be satisfied by any labeling :

opt(C) := - |{e € FE|o satisfies e}|.

U:%l—a;ﬁ(] E
o:V—[L]
Theorem 16.7.3 (PCP Theorem + Raz’s Parallel Repetition Theorem [22, 20, [198]). There
exists an absolute constant c such that for every § > 0, given C(G(U,V, E), [K], [L], {m.|e €
E}), K = (1/5)¢, it is NP-hard to distinguish between:

e YES Case: opt(C) = 1.
e NO Case: opt(C) = 6.

Now we are ready to prove [Lemma 16.5.4

Proof of| Given a Label Cover Game instance C(G (U, V. E), [K], [L], {mc|e €

E}), and a Matching Dictator Test U (e, k, ¢, L, K') described in the lemma statement, we
build a -BOUNDED-MAXI'-3-LIN instance Z as follows. The variable set consists of all
the entries of f, : [Q]* — Z and g, : [Q]® — Z forallu € U,v € V. The equations
are the gathering of the Matching Dictator Tests ¢/ for f,, g, with projection 7, ,) for all
(u,v) € E. The weights of the equations are normalised by a factor 1/|E]|.

Completeness. Suppose opt(C) = 1, and o is a labeling function satisfying all the con-
straints. For allu € U,v € V, let f, and g, be the Long Codes for o(u), o(v) respectively,
i.e. let fu(2) = Zo(), 90(¥) = Yo(v). For each edge (u,v) € E, the Matching Dictator Test
U passes with probability at least 1 — €. Therefore, at least 1 — € fraction (of weight) of
the equations are satisfied.

Soundness. Suppose there is a set of functions f, : [Q]* — Z, g, : [Q]F — Z,
satisfying more than 1/q + « fraction (of weight) of the equations over Z,. By averaging
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argument, for at least /2 fraction of the edges, the corresponding Matching Dictator Test
passes with probability more than 1/q + /2. Call these edges “good edges”. For all
ue UweV,leto(u) = D(f,),o(v) = D(g,). For good edges e € E, the probability
that e is satisfied by o is at least ( = ((q, €, k). It follows that o satisfies more than (x/2
fraction of the constraints in expectation. Therefore there is a labeling satisfying more
than ¢’ = (x/2 fraction of the constraints.

[]

277



278



Chapter 17

Hardness of approximating almost
satisfiable MAXHORNS3-SAT

17.1 Introduction

Schaefer proved long ago that there are only three non-trivial classes of Boolean constraint
satisfaction problems (CSPs) for which satisfiability is polynomial time decidable [202].
These are LIN(2) (linear equations modulo 2), 2-SAT, and HORNSAT. The maximiza-
tion versions of these problems (where the goal is to find an assignment satisfying the
maximum number of constraints) are NP-Hard, and in fact APX-Hard, i.e., NP-Hard to
approximate within some constant factor bounded away from 1. An interesting special
case of the maximization version is the following problem of “finding almost-satisfying
assignments”: Given an instance which is (1 — €)-satisfiable (i.e., only € fraction of con-
straints need to be removed to make it satisfiable for some small constant €), can one
efficiently find an assignment satisfying most (say, 1 — f(e) — o(1) where f(¢) — 0 as
e = 0) of the constraints?

The problem of finding almost-satisfying assignments was first suggested and studied
in a beautiful paper by Zwick [227]. This problem seems well-motivated, as even if a
MAXCSP is APX-Hard in general, in certain practical situations instances might be close
to being satisfiable (for example, a small fraction of constraints might have been corrupted

IThroughout this chapter, constraints could have weights, and by a “fraction a of constraints” we mean
any subset of constraints whose total weight is a fraction « of the sum of the weights of all constraints. For
CSPs with no unary constraints, the approximability of the weighted and unweighted versions are known to
be the same [71]].
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by noise). An algorithm that is able to satisfy most of the constraints of such an instance
could be very useful.

As pointed out in [[135], Schaefer’s reductions together with the PCP theorem imply
that the previous goal is NP-Hard to achieve for any Boolean CSP for which the satisfia-
bility problem is NP-complete. Indeed, all but the above three tractable cases of Boolean
CSPs have a “gap at location 1,” which means that given a satisfiable instance it is NP-
Hard to find an assignment satisfying « fraction of the constraints for some constant o < 1.
This result has been extended to CSPs over arbitrary domains recently [[128]].

The natural question therefore is whether for the three tractable Boolean CSPs, LIN(2),
2-SAT, and HORNSAT, one can find almost-satisfying assignments in polynomial time.
Effectively, the question is whether there are “robust” satisfiability checking algorithms
that can handle a small number of inconsistent constraints and still produce a near-satisfying
assignment.

With respect to the feasibility of finding almost-satisfying assignments, LIN(2), 2-
SAT, and HORNSAT behave rather differently from each other. For LIN(2), Hastad in
his breakthrough paper [116] showed that for any €, > 0, finding a solution satisfying
1/2 + ¢ of the equations of a (1 — ¢)-satisfiable instance is NP-Hard. In fact, this result
holds even when each equation depends on only 3 variables. Since just picking a random
assignment satisfies 1/2 the constraints in expectation, this shows, in a very strong sense,
that there is no robust satisfiability algorithm for LIN(2).

In sharp contrast to this extreme hardness for linear equations, Zwick [227] proved
that for 2-SAT and HORNS AT, one can find almost-satisfying assignments in polynomial
time. For MAX2-SAT, Zwick gave a semidefinite programming (SDP) based algorithm
that finds a (1 — O(e'/?))-satisfying assignment (i.e., an assignment satisfying a fraction
(1 — O(€'/3)) of the constraints) given as input a (1 — ¢)-satisfiable instance. This algo-
rithm was later improved to one that finds a 1 — O(/e)-satisfying assignment by Charikar,
Makarychev, and Makarychev [62]. The 1 — O(4/€) bound is known to be best possible
under the Unique Games Conjecture (UGC) [[136, [141]]. In fact, this hardness result for
MAX2-SAT was the first application of the UGC and one of the main initial motivations
for its formulation by Khot [136].

For HORNS AT, Zwick gave a linear programming (LP) based algorithm to find an as-
signment satisfying (1 — O(loglog(1/€)/log(1/€))) of constraints of a (1 — €)-satisfiable
instance. Recall that an instance of HORNSAT is a CNF formula where each clause con-
sists of at most one unnegated literalEI Equiavlently, each clause is of the form z;, Z;, or

>The dual variant DUALHORNSAT is an instance of SAT where each clause has at most one negated
literal and it is also polynomial time solvable.
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i Nxo N\ ... N — Tk 41 for variables x;. For HORN3-SAT where each clause involves
at most three variables, the algorithm finds a (1 — O(1/log(1/¢)))-satisfying assignment.
Note that the fraction of unsatisfied constraints is exponentially worse for HORNS AT com-
pared to MAX2-SAT.

Horn-SAT is a fundamental problem in logic and artificial intelligence. Zwick’s ro-
bust Horn satisfiability algorithm shows the feasibility of solving instances where a small
number of constraints are faulty and raises the following natural question, which was also
explicitly raised in [227]]. Is this 1/log(1/e€) deficit inherent? Or could a more sophisti-
cated algorithm, say based on an SDP relaxation instead of the LP relaxation used in [227]],
improve the deficit to something smaller (such as €’ for some constant b as in the case of
the SDP based algorithm for MAX2-SAT)? It is known that for some absolute constant
¢ < 1, it is NP-Hard to find a (1 — €°)-satisfying assignment given a (1 — €)-satisfiable
instance of HORNSAT [[135]].

In this chapter, we address the above question and resolve it (conditioned on the UGC),
showing the 1/ log(1/¢) deficit to be inherent. We describe our results in more detail below
in[Section 17.2]

Remark 17.1.1. For (1 — €)-satisfiable instances of MAX2-SAT, even the hardness of
finding a (1 —w.(1)e)-satisfying assignment is not known without assuming the UGC (and
the UGC implies the optimal 1 — Q(+\/€) hardness bound). For HORNS AT, as mentioned
above, we know the NP-Hardness of finding a (1 — €°)-satisfying assignment for some
absolute constant ¢ < 1. Under the UGC, we are able to pin down the exact asymptotic
dependence on e.

17.2 Our contributions and previous work

We prove the following hardness result concerning finding almost-satisfying assignments
for HORNSAT (in fact for the arity 3 case where all clauses involve at most 3 variables).
In the sequel, we