
New Directions in Approximation Algorithms
and Hardness of Approximation

Yuan Zhou

CMU-CS-14-125

August 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Co-chair

Ryan O’Donnell, Co-chair
Anupam Gupta

R. Ravi
Sanjeev Arora (Princeton University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2014 Yuan Zhou

This research was sponsored by the National Science Foundation under grant numbers CCF-0915893, CCR-
0953155, CCF-1115525; US Israel Binational Science Foundation under grant number 2008293; Simons
Foundation under grant number 252545; and generous support from the Microsoft Corporation.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Approximation Algorithms, Hardness of Approximation, Combinatorial
Optimization, Convex Relaxation Hierarchies, Linear Programming, Semidefinite Pro-
gramming

DEDICATION

To my parents.

iv

Abstract

Combinatorial optimization encompasses a wide range of important com-
putational tasks such as UNIFORMSPARSESTCUT (also known as NORMAL-
IZEDCUT), MAXCUT, TRAVELINGSALESMANPROBLEM, and VERTEXCOVER.
Most combinatorial optimization problems are NP-hard to be solved opti-
mally. On one hand, a natural way to cope with this computational intractabil-
ity is via designing approximation algorithms to efficiently approximate the
optimal solutions with provable guarantees. On the other hand, given an NP-
hard optimization problem, we are also interested in the best possible approx-
imation guarantee that any polynomial-time algorithm could achieve, i.e. the
hardness of approximation of the problem. Both approximation algorithms
and hardness of approximation results contribute to understanding the approx-
imability of combinatorial optimization problems.

In the last two decades, the research frontier of approximation algorithm
design has been greatly advanced thanks to the convex optimization tech-
niques such as linear and semidefinite programming. However, the exact ap-
proximability for many problems remains mysterious but some common bar-
riers for progress revolving around a problem called Unique Games has been
identified. The limitations of convex relaxation techniques answer the ques-
tion that what is the best possible approximation guarantee to be achieved by
the state-of-the-art algorithmic design tools, and shed light on the real approx-
imability. Therefore, the study of the power of convex relaxations becomes a
valuable new research direction to get around the current barrier on hardness
proofs.

In this thesis, using constraint satisfaction problems, assignment prob-
lems, graph partitioning problems (BALANCEDSEPARATOR, UNIFORMSPARS-
ESTCUT, DENSEkSUBGRAPH), and graph isomorphism as examples, we ex-
plore both the effectiveness and limitations of the most powerful convex re-
laxation techniques – convex relaxation hierarchies. We also use a proof
complexity view of the convex relaxation hierarchies to analyze their per-
formance on constraint satisfaction problems, and show that the so-called
Parrilo–Lasserre semidefinite programming relaxation hierarchy succeeds on
all hard instances constructed in literature for UNIQUEGAMES, MAXCUT,
and BALANCEDSEPARATOR.

This thesis also contains a collection of approximation algorithms for al-
most satisfiable constraint satisfaction problems and MAXBISECTION, detec-
tion of almost isomorphic trees, and estimation of the 2 → 4 operator norm
of random linear operators. There are also a few (conditional) hardness of ap-
proximation results for almost satisfiable linear systems over integers, almost
satisfiable MAXHORN3-SAT, and detection of almost isomorphic graphs.

vi

Acknowledgments

It would not have been possible to complete this doctoral thesis without the help and
support of many people around me, to only some of whom it is possible to give particular
mention here.

Above all, I owe my deepest gratitude to my Ph.D. advisors Venkat Guruswami and
Ryan O’Donnell. When still in college, I read and was intrigued by a set of beautifully
scribed online lecture notes on the PCP theorem, approximation algorithms, and hardness
of approximation. A year later, I was fortunate enough to become a student of both of
the lecturers in that course. In fact, Venkat and Ryan are the best advisors I could have
asked for. I was always amazed by their brilliance, technical mastery, and wide knowledge
on almost everything. Venkat could always patiently go through every ridiculous ideas of
mine; and Ryan never failed to figure a new direction after we hitting thousands of dead-
ends. Over the years, I enjoyed all the discussions through which I learned a lot from their
techniques and research styles. For all these and the freedom in choosing research topics,
the career advices, and a lot more left out – Thank you Venkat and Ryan!

I am very grateful to my thesis committee: Venkatesan Guruswami, Ryan O’Donnell,
Sanjeev Arora, Anupam Gupta, and R. Ravi. Thank you for taking time from your busy
schedules to make my thesis defense.

Many thanks to each of my paper co-authors through my Ph.D. : Boaz Barak, Aditya
Bhaskara, Fernando Brandão, Moses Charikar, Xi Chen, Julia Chuzhoy, Parikshit Gopalan,
Venkatesan Guruswami, Aram Harrow, Zhiyi Huang, Manuel Kauers, Jonathan Kelner,
Gabor Kun, Jian Li, Yury Makarychev, Raghu Meka, Ryan O’Donnell, Prasad Raghaven-
dra, Omer Reingold, Ali Kemal Sinop, David Steurer, Suguru Tamaki, Li-Yang Tan, Mad-
hur Tulsiani, Salil Vadhan, Aravindan Vijayaraghavan, Lei Wang, John Wright, Cheng-
gang Wu, Yi Wu, Yu Wu, Yuichi Yoshida, and Jiawei Zhang. It was great joy working
with you; and this thesis would not be possible without your collaborations.

I had the rare opportunity to spend each of the four summers during graduate school
visiting a number of places. When still getting familiar with theoretical research in my first

vii

year, I had the pleasure of interning with Julia Chuzhoy and Yury Makarychev at Toyota
Technological Institute at Chicago, as well as visiting Pinyan Lu at Microsoft Research
Asia. In the following summers, I enjoyed collaborating with Boaz Barak at Microsoft
Research New England, Parikshit Gopalan at Microsoft Research Silicon Valley, and Yury
Makarychev and Madhur Tulsiani at Toyota Technological Institute at Chicago. During
winter breaks, I also enjoyed a couple of visits to Shengyu Zhang at the Chinese Univer-
sity at Hong Kong, Yitong Yin at Nanjing University, and Xiaoming Sun at the Chinese
Academy of Sciences. I am greatly indebted to all these institutions I have visited and the
numerous people who hosted me. I would also like to thank the support from the Simons
Graduate Fellowship in Theoretical Computer Science during the last two years.

I wish to thank my high school teacher Tao Jiang for introducing me to the world of
algorithmic programming contest. I am also greatly indebted to Professor Andrew Yao
and Elad Verbin at Tsinghua University and Wei Chen at Microsoft Research Asia who
further guided my interest to theoretical computer science.

Many thanks go to the theory group faculty members at CMU from whom I learned
a lot: Avrim Blum, Manuel Blum, Alan Frieze, Anupam Gupta, Gary Miller, and Danny
Sleator.

Also, special thanks to the friends I met in Pittsburgh and during my summer intern-
ships for making my Ph.D. life colorful: Parinya Chalermsook, Zhuo Chen, Ricky Chis,
Bin Fu, Edinah Gnang, Fan Guo, Favonia Hou, Jason Lee, Lei Li, Nan Li, Jian Peng,
Richard Peng, Julian Shun, Xiaorui Sun, Carol Wang, John Wright, Chenye Wu, Yi Wu,
Guangyu Xia, Guang Xiang, Lin Xiao, Ning Xie, Jia Xu, Kathy Zhang, Zeyuan Zhu,
Mengjie Zou.

Finally, it would be difficult for me to express the debt of gratitude that I owe my
parents Qihua Zhou and Hangli Wang, for their love and constant support.

viii

Contents

1 Introduction 1

1.1 The notion of approximation algorithms 3

1.1.1 Robust algorithms . 4

1.1.2 Hardness of approximation . 4

1.2 The relaxation and rounding framework for designing approximation al-
gorithms . 5

1.2.1 Convex relaxations . 5

1.2.2 Rounding schemes . 6

1.2.3 Integrality gaps and limitations of the relaxation 7

1.3 Linear and semidefinite programming relaxations, and methods of design-
ing them . 8

1.3.1 Relaxation hierarchies and the implication of their limitations . . 9

1.4 A brief overview of contributions . 10

2 Preliminaries 13

2.1 Problems studied in this thesis . 13

2.1.1 Constraint satisfaction problems 13

2.1.1.1 The UNIQUEGAMES problem 14

2.1.2 Graph partitioning problems . 14

2.1.3 Graph isomorphism and assignment problems 15

2.1.4 Dense and locally-dense instances 17

ix

2.2 Approximation and hardness of approximation 18

2.2.1 Robust algorithms . 19

2.3 The Unique Games Conjecture . 21

3 Summary of contributions and organization of this thesis 23

3.1 Overview of Part I: study of the LP/SDP relaxation hierarchies 23

3.1.1 Algorithmic results . 24

3.1.2 Integrality gaps . 25

3.2 Overview of Part II: using the Parrilo–Lasserre hierarchy to solve hard
instances for weaker hierarchies . 27

3.3 Overview of Part III: robust algorithms 29

3.4 Overview of Part IV: other approximation and hardness of approximation
results . 31

3.4.1 Approximating the 2→ 4 norm of random linear operators 31

3.4.2 Hardness of MAXΓ-2-LIN and MAXΓ-3-LIN over integers . . . 31

3.4.3 Hardness of approximating almost satisfiable MAXHORN3-SAT . 32

I Study of the LP/SDP relaxation hierarchies 33

4 Approximation schemes via Sherali-Adams hierarchy for dense constraint
satisfaction problems and assignment problems 35

4.1 Introduction . 35

4.1.1 Linear Programming (LP) relaxation and LP relaxation hierarchies 36

4.1.2 Our contributions . 37

4.1.3 Proof overview . 38

4.1.4 Comparison to previous works 39

4.1.5 Organization . 40

4.2 Preliminaries . 40

4.3 Conditioning operations for Sherali-Adams LP hierarchy 43

4.3.1 Conditioning operations . 44

x

4.3.2 The dense case . 45

4.3.3 The locally dense case . 46

4.4 Rounding κ-independent solutions . 48

4.4.1 Constraint satisfaction problems 48

4.4.2 Assignment problems . 49

4.4.2.1 From κ-independence to relaxationH 49

4.4.2.2 From relaxationH to an integral solution 50

4.4.3 The rounding lemmas . 51

4.5 Putting things together . 51

4.6 Proof of Lemma 4.4.4 . 53

4.7 Proof of Lemma 4.4.5 . 58

4.8 Bisection MAXkCSP . 63

4.9 A gap instance for relaxationH . 66

5 Lasserre integrality gaps for DENSEkSUBGRAPH 67

5.1 Introduction . 67

5.1.1 Our contributions . 68

5.2 Preliminaries . 68

5.2.1 Notations . 68

5.2.2 The natural and min degree integer programmings for DENSEkSUBGRAPH 69

5.2.3 The Lasserre hierarchy for DENSEkSUBGRAPH 69

5.3 The integrality gap . 70

5.3.1 Lasserre gap for kCSP from Tulsiani 71

5.3.2 The gap instance for DENSEkSUBGRAPH 72

5.3.3 Analysis . 74

5.3.3.1 Completeness . 75

5.3.3.2 Soundness . 77

5.3.3.3 Proof of Theorem 5.3.6 80

5.3.3.4 Proof of Theorem 5.3.7 80

xi

5.3.4 Expansion for random kCSP instances 81

6 Lasserre integrality gaps for BALANCEDSEPARATOR and UNIFORMSPARSES-
TCUT 85

6.1 Introduction . 85

6.1.1 Our contributions . 86

6.1.2 Our techniques . 87

6.2 Preliminaries on Lasserre SDPs for BALANCEDSEPARATOR and UNI-
FORMSPARSESTCUT . 87

6.2.1 Useful theorems about the Lasserre hierarchy 88

6.2.2 Lasserre SDP for graph partitioning problems 90

6.2.2.1 BALANCEDSEPARATOR 90

6.2.2.2 UNIFORMSPARSESTCUT 90

6.2.3 Lasserre Gaps for 3-XOR from Schoenebeck 91

6.3 Gaps for BALANCEDSEPARATOR . 93

6.3.1 Reduction . 93

6.3.2 Completeness : good SDP solution 96

6.3.3 Soundness : bound for integral solutions 98

6.3.4 Constant-degree integrality gap instance 103

6.4 Gaps for UNIFORMSPARSESTCUT . 104

7 Lasserre integrality gaps for ROBUSTGISO 109

7.1 Introduction . 109

7.1.1 Our contributions . 110

7.1.2 SOS/Lasserre gaps . 110

7.1.3 Robust graph isomorphism . 113

7.1.4 Robust asymmetry of random graphs 116

7.1.5 Organization . 118

7.2 Preliminaries . 118

7.2.1 SOS/Lasserre hierarchy . 119

xii

7.2.2 Random 3-XOR . 121

7.3 Reduction from 3-XOR to GISO . 121

7.4 Completeness . 122

7.4.1 SOS completeness . 123

7.5 Soundness . 125

7.5.1 Proof of the claims . 128

7.6 Random graphs are robustly asymmetric 129

7.6.1 Generalization to hypergraphs 135

II A proof complexity view of the Parrilo–Lasserre hierarchy and
the success of Lasserre on hard instances for weaker hierarchies 139

8 Introduction and SOS preliminaries 141

8.1 Introduction . 141

8.1.1 History . 143

8.1.2 Our contributions and organization of this part 147

8.2 The SOS proof system and the SDP hierarchy for optimization 150

8.3 A few simple SOS preliminaries . 154

8.4 SOS proofs of hypercontractivity . 156

9 Analysis of the UNIQUEGAMES instances 163

9.1 An invariance principle for the fourth moment 164

9.2 Analysis of the dictatorship test gadget for UNIQUEGAMES in the SOS
proof system . 168

9.3 The KV UNIQUEGAMES instance and its SOS analysis 170

9.4 Influence decoding and putting everything together 173

9.4.1 Proof of Claim 9.4.2 . 177

9.5 Refuting Instances based on Short Code 177

10 SOS proofs of SSE in the Noisy Hypercube, KKL, and the analysis of the

xiii

DKSV BALANCEDSEPARATOR instances 179

10.1 An SOS proof of small-set expansion in the noisy hypercube 179

10.2 The KKL Theorem . 180

10.3 Analysis of the DKSV BALANCEDSEPARATOR instances 183

11 SOS proofs of the CLT, the 2
π

Theorem, and the analysis of the KV MAXCUT

instances 187

11.1 An invariance theorem for polynomials of linear forms 187

11.2 An SOS proof of the 2
π

Theorem . 189

11.3 Analysis of the KV MAXCUT instances 193

11.4 An approximator for the absolute-value function 199

III Robust algorithms 203

12 Robust satisfiability algorithms for width 1 CSPs 205

12.1 Introduction . 205

12.1.1 Our contributions . 207

12.2 Preliminaries . 208

12.2.1 CSP preliminaries . 208

12.2.2 Algorithmic preliminaries . 209

12.2.3 Algebraic preliminaries . 210

12.3 Width 1 implies robust decidability by LP 212

12.3.1 Lattice CSPs: better quantitative dependence on ε 213

13 An algorithm for ROBUSTMAXBISECTION 217

13.1 Introduction . 217

13.1.1 Our contributions . 220

13.1.2 Later development . 220

13.2 Method overview . 221

xiv

13.2.1 Integrality gap . 221

13.2.2 Notations . 222

13.2.3 Our approach . 223

13.2.4 Organization . 224

13.3 Preprocessing and partitioning graph G 224

13.3.1 Preprocessing: Making G bipartite and unweighted 224

13.3.2 Partitioning . 225

13.4 Finding cuts in sets Ui and Vi . 227

13.4.1 Candidate cuts in Vi . 227

13.4.2 Candidate cuts in Ui . 229

13.5 Combining candidate cuts . 231

13.6 The bisection algorithm – proof of Theorem 13.1.3 234

14 A robust isomorphism algorithm for trees 237

14.1 Introduction . 237

14.1.1 Our contributionss and overview of the proofs 238

14.2 The algorithm . 239

14.2.1 Robust isomorphism algorithm for B-trees 241

14.2.2 Proofs of Lemma 14.2.3 and Lemma 14.2.4 243

IV Other approximation and hardness of approximation results 247

15 Certifying the 2→ 4 norm of random linear operators 249

15.1 Introduction . 249

15.2 The TensorSDP algorithm . 250

15.3 Certifying the hypercontractivity of random operators 251

16 Hardness of MAXΓ-2-LIN and MAXΓ-3-LIN over integers 257

16.1 Introduction . 257

xv

16.1.1 Prior work on MAX3-LIN(Z) 257

16.1.2 Prior work on MAX2-LIN . 258

16.1.3 Our contributions . 259

16.2 Preliminaries . 260

16.2.1 Notations and Definitions . 260

16.3 Review of proofs of MAXΓ-2-LIN(Zq) and MAXΓ-3-LIN(Zq) hardness . 263

16.3.1 MAXΓ-2-LIN . 263

16.3.2 MAXΓ-3-LIN . 263

16.4 Overview of our proofs . 264

16.4.1 Active folding . 264

16.4.2 Modifying the KKMO proof . 265

16.4.3 Modifying the Håstad proof . 266

16.5 Dictator Test details . 267

16.5.1 Dictator Test for MAXΓ-2-LIN 267

16.5.2 Matching Dictator Test for MAXΓ-3-LIN 268

16.6 Reductions between MAXk-LIN(R) problems 272

16.7 From Dictator Tests to hardness of approximation 274

16.7.1 Proof of Lemma 16.5.2 . 274

16.7.2 Proof of Lemma 16.5.4 . 276

17 Hardness of approximating almost satisfiable MAXHORN3-SAT 279

17.1 Introduction . 279

17.2 Our contributions and previous work . 281

17.3 Proof method . 282

17.3.1 The canonical SDP for Boolean CSPs and UG-Hardness 283

17.3.2 Overview of construction of SDP gaps 284

17.3.3 Overview of algorithmic results 285

17.4 Approximability of HORN3-SAT . 286

17.4.1 SDP gap and UG hardness for HORN3-SAT 286

xvi

17.4.1.1 Instance . 286

17.4.1.2 Construction of a good SDP solution 286

17.4.1.3 Proof of the Key Lemma 17.4.4 289

17.4.2 Algorithm for MINHORNDELETION and MAXHORN2-SAT . . . 292

17.4.2.1 LP Formulation . 293

17.4.2.2 Half-integrality and rounding 294

V Future directions 297

18 Open problems 299

Bibliography 301

xvii

xviii

List of Figures

4.1 Permutations π1 and π2 over [5] shown as mappings from [5] to [5]. 54

6.1 IP and SDP relaxations for BALANCEDSEPARATOR. 91

6.2 IP and SDP relaxations for UNIFORMSPARSESTCUT. 92

6.3 The reduction for BALANCEDSEPARATOR. 95

16.1 Test T with parameters ε, γ, q for functions on ZKQ 267

16.2 Test U with parameters ε, q for f on ZKQ , g on ZLQ, π : L→ K 269

xix

xx

List of Tables

3.1 Table of contributions on convex relaxation hierarchies 24

3.2 Table of contributions on other approximation algorithms and hardness of
approximation . 25

xxi

xxii

List of Algorithms

1 Conditioning operation of Sherali-Adams solutions 45
2 The TensorSDP algorithm for 2→ 4 norms. 251
3 Round any LP solution f = {yi} to a half-integral solution f ∗ such that

val(f ∗) ≤ val(f) . 295

xxiii

xxiv

Chapter 1

Introduction

Many important computational tasks can be modeled as combinatorial optimization prob-
lems, where the goal is to optimize a certain objective function on discrete variables subject
to some constraints. To give the readers a flavor of the optimization problems studied in
this thesis, we list a few examples as follows.

Problem 1 (the 1
3
-BALANCEDSEPARATOR problem). Given an undirected graph, parti-

tion the set of vertices into two parts so that each part contains at least 1
3

of the total
vertices and the number of edges across the partition is minimized.

There are many similar problems as BALANCEDSEPARATOR (such as MAXCUT, UNI-
FORMSPARSESTCUT), which consist of the class of graph partitioning problems, and arise
in many settings such as clustering, divide and conquer algorithms, VLSI layout, etc.
There are also many other well-studied optimization problems, including the following
examples.

Problem 2 (the TRAVELINGSALESMANPROBLEM problem). Given a list of cities and the
distances between each pair of cities, find out the shortest possible route (i.e. the one with
minimum total distance) that visits each city exactly once and returns to the origin city.

Problem 3 (the VERTEXCOVER problem). Given an undirected graph, find out the small-
est set of vertices (i.e. the one with minimum cardinality) such that each edge of the graph
is incident to at least one vertex of the set.

Problem 4 (solving overdetermined sparse linear systems). Given a system of linear equa-
tions over rational numbers, so that each equation contains at most 3 variables. If the lin-
ear system is consistent, it is easy to find a solution using Gaussian elimination. However,

1

suppose the system is not completely consistent, i.e. some of the equations are erroneous.
The natural optimization problem here is to find a solution that satisfies the maximum
number of equations.

The readers may refer to Section 2.1 where more combinatorial optimization problems
(which are also the problems studied in this thesis) are defined.

For many combinatorial optimization problems, it is computationally intractable (NP-
hard) to find the optimal solution. A popular and extensively studied way to deal with
this intractability is via designing approximation algorithms to efficiently approximate the
optimal solutions with provable guarantees. We will briefly introduce this notion in Sec-
tion 1.1. We will also discuss (in Section 1.1.2) the notion of hardness of approximation,
i.e. the limitation on approximation guarantee for polynomial-time algorithms. While it
is desirable to design an approximation algorithm and prove hardness of approximation
matching the approximation guarantee given by the algorithm, we are usually not able to
achieve this goal due to the limited techniques on both algorithmic analysis and hardness
proofs.

On the algorithmic side, convex relaxation hierarchies, which we will introduce in Sec-
tion 1.2 and Section 1.3, are the most powerful framework for designing approximation
algorithms. For many important combinatorial optimization problems, the state-of-the-
art approximation algorithms only use a small portion of the power of convex relaxation
hierarchies (as later discussed in the subsections). Therefore, the pursue of better approx-
imation algorithms greatly motivates the further study of convex relaxation hierarchies.

It is also worthwhile to explore the limitation of convex relaxation hierarchies, given
the lack of sharp hardness of approximation results for many important problems. As dis-
cussed in Section 1.3.1, although such type of results does not work against all polynomial-
time algorithms, they share a glimpse into the frontier of our approximation techniques,
and help us understand the complexity of approximating optimization problems where no
concrete NP-hardness is known. In the light of this, showing the limitation for the hierar-
chies can be viewed as a way of going beyond our limited NP-hardness results.

This thesis is a collection of results regarding the approximability and inapproxima-
bility of various combinatorial optimization problems, while a good portion of it is about
the effectiveness and limitations of convex relaxation hierarchies. In Section 1.4, we will
briefly talk about the results in the thesis to conclude this introductory section.

2

1.1 The notion of approximation algorithms

As we have seen, the class of combinatorial optimization problems encompasses many
important computational tasks. However, for most of these interesting optimization prob-
lems (and indeed all the example problems provided above), finding the optimal solution
is unfortunately computationally intractable (NP-hard).

One way to deal with this intractability is to use efficient algorithms to find approx-
imately optimal solutions with provable guarantees – we call these approximation algo-
rithms. For a maximization problem, we call an algorithm α-approximation algorithm
(α < 1) if the output value of the algorithm is at least α times the optimal value. Simi-
larly, for a minimization problem, an α-approximation algorithm (α > 1) guarantees to
output a solution with value at most α times the value of the optimal solution. Clearly,
for both maximization and minimization problems, when α gets closer to 1, we get better
approximation guarantee.

Sometimes we would love to talk about the approximation guarantee in a more precise
manner. Let us take following three scenarios in the MAXCUT problem (the problem
where we are given an undirected graph and the goal is to find a partition of the vertex set
so that the fraction of edges across the partition is maximize), for example –

1. given an instance where the optimal solution cuts all the edges, and we would like
to find a partition cutting all the edges (approximation ratio : 1);

2. given an instance where the optimal solution cuts .9999 fraction of the edges, and
we would like to find a partition cutting .99 fraction of the edges (approximation
ratio : ∼ .9901);

3. given an instance where the optimal solution cuts .80 fraction of the edges, and we
would like to find a partition cutting .77 fraction of the edges (approximation ratio :
.9625).

The first task is obviously easy (i.e. in P) since it is exactly to compute the bipartition
of a bipartite graph. For the second task, since the optimal solution cuts almost all the
edges, the input graph looks very close to a bipartite graph. It is conceivable that some
bipartite graph recognition algorithm might be able to deal with a tiny fraction of the
erroneous edges and output a quite good partition meeting the criteria in the task (and
indeed the Geomans-Williamson algorithm [94], which will be heavily mentioned in the
rest of this thesis, works in this way). For the third task, although the least quality of
approximation is demanded in terms of the ratio, the task itself is NP-hard by [219]. The

3

hardness may be attributed to the low value of the optimal solution. These examples
motivate the definition of the approximation quality according to the value of the optimal
solution. For the MAXCUT problem and 0 < s ≤ c ≤ 1, we say an algorithm is a (c, s)-
approximation algorithm if the algorithm outputs a partition cutting at least s fraction
of the edges whenever the optimal solution has value at least c. An α-approximation
algorithm is always a (c, αc)-approximation algorithm for all 0 < c ≤ 1. However, as we
see from the examples above, for some particular c, we can get a solution with value much
better than αc. Please refer to Section 2.2 for the precise definitions of the approximation
notions discussed here.

1.1.1 Robust algorithms

In the exemplary MAXCUT scenarios presented above, we had the intuition that if the task
of recovering the perfect solution (i.e. the partition that cuts all the edges) can be done in
polynomial time, then finding out an almost perfect solution if there is one might also be
easy. This intuition is correct for MAXCUT, but might not be the case for other problems.
However, the idea of generalizing an algorithm which works for perfect solutions to almost
perfect solution motivates the notion of robust algorithms.

At a high level, robust algorithms extremely well-approximate an almost perfect solu-
tion when such solutions exist. To make this description more precise, let us fix a maxi-
mization problem. Usually we can normalize the objective of the maximization problem so
that it always lies between [0, 1] and having objective value 1 means a perfect solution. (In
the MAXCUT example, one natural objective concerns about the number of edges across
the partition. However, we chose to rescale this objective and made it the fraction of the
desired edges.) We call an algorithm for the optimization problem robust, if there exists
a function r : [0, 1] → [0, 1] satisfying r(ε) → 0 as ε → 0+ such that whenever the input
instance has objective value (1 − ε), the algorithm outputs a solution with value at least
(1 − r(ε)). The readers may refer to Section 2.2.1 for more definitions and discuss on
robust algorithms.

1.1.2 Hardness of approximation

To complement algorithmic results for a problem, it is also interesting to study its hardness
of approximation, i.e. the limitation of polynomial-time algorithms in terms of the approx-
imation guarantee they can achieve. For a maximization problem, we say it is NP-hard to
α-approximate the problem if any polynomial-time algorithm with α approximation guar-

4

antee implies P = NP. We will also talk about hardness of approximation under other
complexity assumptions (such as the Unique Games Conjecture which will be introduced
in Section 2.3). We can define similar hardness of approximation notion for minimization
problems.

Ideally, for each problem of interest, we would like to have both an approximation
algorithm and hardness of approximation which implies that there is no algorithm with
better approximation guarantee, therefore identifying the approximation threshold of the
problem.

1.2 The relaxation and rounding framework for design-
ing approximation algorithms

Convex programming relaxations and rounding schemes are a standard tool to design ap-
proximation algorithms. A vast majority of known approximation algorithms are designed
using this approach with only a few exceptions (e.g. [14, 90]). A significant part of this the-
sis is devoted to exploring the effectiveness and limitations of convex relaxations. In this
section, we provide a rudimentary introduction to this powerful framework. We suggest
readers to refer to relevant chapters in [221] and surveys such as [66] for more information.

1.2.1 Convex relaxations

In combinatorial optimization problems, the solution space is discrete and usually we can
encode the solutions using variables those take value either 0 or 1. After such encoding,
it is often straightforward to formulate the optimization problem as an integer program.
However, it is NP-hard to exactly solve the integer program (as long as the original op-
timization problem is NP-hard). Such computational intractability stems from the non-
convexity (or the integrality) of the solution space. The idea here is to relax the integral
constraints to make the program tractable.

Specifically, we relax the condition that variables take values either 0 or 1 so that
variables can be real numbers or even vectors. For example, a simple relaxation would be
allow variables to take any real numbers in [0, 1] (instead of {0, 1} values). In this way, if
the objective function and other constraints in the integer program are linear, we relax it to
a tractable linear program. Other methods can be applied to deal with the integer programs
when the objective function or constraints are not linear.

Above we have just shown one simple approach of deriving linear programming re-

5

laxations, while there are also many other relaxation techniques such as semidefinite pro-
graming relaxations and relaxation hierarchies. The main idea for all these approaches is
to obtain a convex optimization problem by suitable relaxations so that the new problem
is computational tractable.

1.2.2 Rounding schemes

It is clear that any solution for the original optimization problem is also a feasible solution
for the convex relaxation (one may think about the linear programming relaxation exam-
ple to get the intuition). Therefore, if the original optimization problem is a maximization
problem, the optimum of the convex relaxation is always at least the optimum of the orig-
inal problem. Fix a convex relaxation R and a specific problem instance I, let opt(I) be
the value of the optimal solution to I; let optR(I) be the value of the optimal solution to
the convex relaxation of I. We have just derived that opt(I) ≤ optR(I).

However, not every solution for the convex relaxation has a corresponding solution in
the original problem. Therefore, when using convex relaxations to design approximation
algorithms, there is usually a rounding step to convert the relaxation solution to a feasible
solution of the original problem. We call this procedure “rounding” because in the linear
programming relaxation setting, the goal is often to “round” the fractional assignments to
the variables to integral values. However, when using other relaxation techniques such as
semidefinite programs, one may have to convert vector-valued variables to integral values.

Formally, a rounding scheme is an algorithm that takes the problem instance I and
the optimal solution x∗ to the convex relaxation R as input, and outputs a solution x to
the original problem. Let valR(I;x∗) = optR(I) be the objective value of x∗; and let
val(I;x) be the objective value of x. Now still assume that the original problem is a max-
imization problem (where the case of minimization problem can be similarly deduced). If
the rounding algorithm can be proved to always output an x such that

val(I;x) ≥ α · opt(I) (1.1)

for some α ∈ [0, 1], then we get an α-approximation algorithm by first solving the convex
relaxation and then performing the rounding scheme. However, directly proving (1.1) is
often quite difficult because computing opt(I) itself is NP-hard and we do not know much
about it. Alternatively we turn to prove

val(I;x) ≥ α · valR(I;x∗) (1.2)

which is usually easier and implies (1.1) since valR(I;x∗) = optR(I) ≥ opt(I).

6

1.2.3 Integrality gaps and limitations of the relaxation

As mentioned before, not every solution for the convex relaxation has a corresponding
solution in the original problem. Therefore, the relaxation optimum might be way “better”
than the optimum of the original problem.

We call I be the integrality gap instance with gap ratio opt(I)
optR(I)

. When this ratio is far
from 1, I is a hard instance for the relaxation.

We also define the integrality gap ratio of R be the worst ratio between opt(I) and
optR(I), i.e. for maximization problems, let

IG(R)
def
= inf

I

opt(I)

optR(I)
≤ 1.

Then we have
IG(R) · optR(I) ≤ opt(I) ≤ optR(I).

When IG(R) is close to 1 (from below), we see that the relaxation optimum is a good
estimation of the optimum of the original problem.

Similarly, for minimization problems, we let the integrality gap ratio of a specific re-
laxationR be

IG(R)
def
= sup

I

opt(I)

optR(I)
≥ 1,

and we have
optR(I) ≤ opt(I) ≤ IG(R) · optR(I).

The relaxation optimum well approximates the optimum of the original problem when
IG(R) is close to 1 from above.

Integrality gaps serve as a measure of the quality of the relaxation R. When the inte-
grality gap ofR is bad (i.e. far from 1), since we usually use (1.2) to prove the effectiveness
ofR-based approximation algorithms, we tend not to get a good approximation algorithm.
In this sense, designing the integrality gap instance with gap ratio far from 1 is a way to
show the limitation of the relaxation.

On the other hand, whenever we establish (1.2), we also know that the integrality gap
of relaxationR is no worse than α. This is also the usual way of proving the good quality
of the relaxation.

We summarize and extend the definitions made above as follows.

Definition 1.2.1. Fix an optimization problem Q and an LP/SDP relaxation R for Q. An
instance I of Q is said to be a (c, s)-integrality gap instance forR,

7

• (for maximization problems) if the optimal value of R(I) is at least c while val(I)
is less than s;

• (for minimization problems) if the optimal value ofR(I) is at most c while val(I) is
more than s.

We also say that I is an integrality gap instance with gap ratio c
s
.

Given such an instance I, we say that R has an integrality gap (c, s). The integrality
gap ratio of R (namely IG(R)) is the infimum of the gap ratios of all integrality gap
instances for maximization problems, and the supremum of the ratios for minimization
problems.

1.3 Linear and semidefinite programming relaxations, and
methods of designing them

A large number of approximation algorithms use a specific type of convex relaxation –
linear programming (LP). While linear programs can be solved in polynomial time using
interior point methods [6, 225, 224], the simplex method is used extensively in practice.
The “basic linear programming relaxation” (i.e. the one derived from the simple exem-
plary approach described in Section 1.2.1) already succeeds in efficiently approximating
problems such as VERTEXCOVER, SETCOVER, and a wide class of generalized covering
problems [152]. There are also ways to add more constraints (and variables if necessary) to
derive stronger linear programming relaxations for problems such as MULTICUT [57, 83],
SPARSESTCUT [163], and MULTIWAYCUT [56, 168, 51, 206].

Semidefinite programming (SDP) relaxations are another class of powerful convex
relaxations. In a semidefinite program, the variables are vector valued, while both the
constraints and the objective are linear in terms of the inner products of the variables.
Semidefinite programs can be solved in polynomial time using the interior point methods
[6, 225, 224]. More precisely, these algorithms output a solution with the value which
differs from the optimum by at most an additive error ε in time that is polynomial in the
program description size and log 1

ε
. Semidefinite programming relaxations proved to be

extremely successful in approximation algorithms design after being introduced by Goe-
mans and Williamson [94] in the context of the MAXCUT problem. 1 A few examples
on the semidefinite programming relaxation-based approximation algorithms include the

1Indeed, the classic work by Lovász [165], known as the Lovász Theta function today, is essentially a
semidefinite programming relaxation for the INDEPENDENTSET problem.

8

ones for constraint satisfaction problems [94, 89, 132, 227, 229, 3, 91, 59, 189], UNI-
FORMSPARSESTCUT [21], ordering problems [61], and discrete optimization problems
[63, 9].

1.3.1 Relaxation hierarchies and the implication of their limitations

In this thesis, we are mainly interested in LP/SDP-based algorithms when talking about
convex relaxations. When designing LP/SDP-based algorithms, one usually use the most
natural and simple LP/SDP relaxation of the integer programming formulation of the orig-
inal problem. We refer to these relaxations as basic LP/SDP relaxations. As we have
defined before, fix a combinatorial optimization problem and a convex relaxation, the in-
tegrality gap serves as a measure of the quality of the relaxation, which is a different
quantity from the hardness of approximation factor for the problem. However, for many
important problems, the integrality gaps of even the simplest basic LP/SDP relaxations
interestingly correspond the hardness of approximation results [189, 152, 168].

On the other hand, for some other problems, in order to strengthen the algorithmic
power, one can add additional constraints into the basic relaxation, so that the resulting
relaxation is tighter and gives better approximation guarantee. One notable example is the
work by Arora, Rao, and Vazirani [21] which added the so-called “`2

2-triangle inequalities”
to the basic SDP relaxation for UNIFORMSPARSESTCUT and improved the approximation
ratio from Θ(log n) to O(

√
log n) where n is the size of the input graph.

While analysis of the convex relaxations with such extra constraints are very problem
specific, there are several systematic ways to add additional constraints without even look-
ing at the problem. Such systematic sets of constraints include the ones defined by Lovász
and Schrijver [166], and Sherali and Adams [207] for LP, and the one defined by Parrilo
and Lasserre [185, 157] for SDP. There are also hierarchies with a mixture of linear and
semidefinite constraints, such as the Sherali-Adams+SDP relaxation hierarchy. In each of
these ways, we obtain a sequence of increasingly powerful relaxations, which we often
refer to as the hierarchy of convex relaxations. The relaxation at the r-th level (also called
round) in the hierarchy typically has nO(r) additional constraints (and auxiliary variables),
and can be solved in nO(r) time. Please refer to [66] for a more comprehensive introduction
and comparison of these relaxation hierarchies.

Among these relaxation hierarchies, the Parrilo–Lasserre SDP hierarchy is the most
powerful. Most of the known LP/SDP relaxation-based algorithms can be derived from
at most the 4th level of the hierarchy (including the Arora-Rao-Vazirani algorithm for
UNIFORMSPARSESTCUT). Given this, it is natural to study the limitations of the Parrilo–

9

Lasserre hierarchy for optimization problems where no concrete hardness of approxima-
tion result is proven. In this thesis, we will prove several new integrality gap results for
the Parrilo–Lasserre hierarchy for the problems where no concrete NP-hardness result is
known. Such results will help us understand the complexity of approximating those prob-
lems.

Prior to our work, several of the known results on strong integrality gap results for
many rounds of the Parrilo–Lasserre hierarchy, starting with the remarkable construction
by Grigoriev [97, 99] and Schoenebeck [204], apply in situations where a corresponding
NP-hardness result is already known. Thus they are not “prescriptive” of hardness. In
fact, besides the results introduced later in this thesis, we are aware of only the follow-
ing examples where a polynomial-round Lasserre integrality gap stronger than the cor-
responding NP-hardness result is known: MAXk-CSP and k-COLORING [220]. Indeed,
for all we know 4 rounds of the Parrilo–Lasserre hierarchy could improve the Goemans-
Williamson algorithm for MAXCUT, and therefore refute the famous Unique Games Con-
jecture [136, 141] (please refer to Section 2.3 for more on the conjecture).

A good portion of this thesis is devoted to the study of the power of the Parrilo–Lasserre
SDP hierarchy. We will be using a crucial view of the Parrilo–Lasserre SDP hierarchy as
the Sum-of-Squares algebraic proof system, and therefore also call the hierarchy as SOS
hierarchy. Depending on the context, we will use Parrilo–Lasserre, Lasserre, SOS, and
SOS/Lasserre interchangeably throughout the thesis.

1.4 A brief overview of contributions

A large part of this thesis is devoted to the study of the power the convex (LP and SDP) re-
laxation hierarchies – we explore both the effectiveness and limitations of this algorithmic
framework. The remaining part of the thesis consists of a collection of approximation al-
gorithms and hardness of approximation results, with an emphasis on the design of robust
algorithms.

In this section, we briefly introduce the results included in this thesis. A more detailed
list on these results can be found in Chapter 3.

In Part I, we start off by showing the effectiveness of the Sherali-Adams LP relaxation
hierarchy. Even given that the hierarchy does not use the power of semidefniteness, we
show that Sherali-Adams LP gives the state-of-the-art approximation guarantee for a large
class of problems including the dense (and locally dense) constraint satisfaction problems
and assignment problems.

10

Then we turn to study the limitations of the Parrilo–Lasserre hierarchy. We focus on the
problems such as DENSEkSUBGRAPH, BALANCEDSEPARATOR, and UNIFORMSPARS-
ESTCUT; and prove the Parrilo–Lasserre hierarchy integrality gaps which beats the known
NP-hardness of approximation results. As mentioned in Section 1.3, such type of results
are rare in literature and serve as an evidence that the problems are indeed hard to approx-
imate.

To motivate the contributions in Part II, we would like to mention another class of
combinatorial optimization problems, including UNIQUEGAMES and MAXCUT. These
problems seem to be significantly easier than DENSEkSUBGRAPH; however, the NP-
hardness of approximation and the algorithmic bounds still do not match. While it is a
general belief that DENSEkSUBGRAPH is indeed very hard to approximate, whether the
NP-hardness results for UNIQUEGAMES and MAXCUT can be improved (or even an evi-
dence for that) is of great interest in the field of approximations. Researchers have shown
Sherali-Adams+SDP integrality gaps for these problems, which serve as the best evidence
for the hardness of approximation. These integrality gap instances are the “hardest in-
stances” in literature in the sense that they are resistant to the strong relaxation hierarchy
(and perhaps the strongest excluding Parrilo–Lasserre). A natural question arise here is
whether these gap instances are also resistant to the Parrilo–Lasserre hierarchy. An affir-
mative answer to this question would further consolidate our best evidence.

In Part II, however, we show that these instances turn out to be easy for the Parrilo–
Lasserre hierarchy, giving a negative answer to the question. This result is obtained by
viewing the Parrilo–Lasserre hierarchy from a different perspective, namely as an alge-
braic proof system, instead of as a semidefinite programming. While this connection was
brought up by Parrilo [185] and Lasserre [156, 157] more than a decade ago, we first make
use of it in the setting of combinatorial optimization problems. Our results are the first
to separate the power of Parrilo–Lasserre from other hierarchies on UNIQUEGAMES and
MAXCUT and seriously question the possible optimality of the state-of-the-art algorithms
for the two problems. We also hope that our proof techniques help to extend our (limited)
understanding of the Parrilo–Lasserre hierarchy.

In the rest of this thesis, Part III consists of robust algorithms in different settings, such
as a special class of constraint satisfaction problems (the ones with width-1), MAXBISEC-
TION, and isomorphism detection for trees. Part IV is a collection of other approximation
algorithms and hardness of approximation results. Please refer to Chapter 3 for a more
detailed list of these results.

11

12

Chapter 2

Preliminaries

2.1 Problems studied in this thesis

In this section, we introduce the optimization problems studied in the thesis.

2.1.1 Constraint satisfaction problems

In a constraint satisfaction problem (CSP) with arity k and alphabet set Σ, there is a set V
of n variables, and a list ofm constraints, where each variable takes value from an finite set
of alphabet Σ, while each constraint involves exactly k variables (or at most k variables).
We also refer to this problem as kCSP.

We often talk about the special cases of a CSP where each constraint in the problem is
from one of the several prefixed forms. For example, when the alphabet set is {true, false},
we can define the following CSPs.

• In 2-SAT, each constraint is of one of the forms vi ∨ vj , v̄i ∨ vj , vi,∨v̄j , v̄i ∨ v̄j .

• In MAXCUT, each constraint is of one of the forms vi 6= vj .

• In 3-SAT, each constraint is of one of the forms vi∨vj ∨vk, vi∨vj ∨ v̄k, vi∨ v̄j ∨vk,
vi ∨ v̄j ∨ v̄k, v̄i ∨ vj ∨ vk, v̄i ∨ vj ∨ v̄k, v̄i ∨ v̄j ∨ vk, v̄i ∨ v̄j ∨ v̄k.

• In 2-LIN, each constraint is of one of the forms xi ⊕ xj , xi ⊕ xj .

• In 3-LIN, each constraint is of one of the forms xi ⊕ xj ⊕ xk, xi ⊕ xj ⊕ xk.

13

• In HORN3-SAT, each constraint is of one the the forms xi, x̄i, xi → xj, xi ∧ xj →
xk.

When the alphabet set becomes {0, 1, 2, . . . , q − 1}, the following CSPs are also often
used in this thesis.

• In 2-LIN(Zq), each constraint is of one of the forms xi ± xj = c mod q (for some
c ∈ {0, 1, 2, . . . , q − 1}).

• In 3-LIN(Zq), each constraint is of one of the forms xi ± xj ± xk = c mod q (for
some c ∈ {0, 1, 2, . . . , q − 1}).

• In Γ-2-LIN(Zq), each constraint is of one of the forms xi−xj = c mod q (for some
c ∈ {0, 1, 2, . . . , q − 1}).

• In Γ-3-LIN(Zq), each constraint is of one of the forms xi +xj−xk = c mod q (for
some c ∈ {0, 1, 2, . . . , q − 1}).

Given a CSP Γ, the natural optimization task, called “MAXΓ”, is to find an assignment
to the variables such that the total weight of the satisfied constraints is maximized, where
we assume that each constraint has a nonnegative weight, and the sum of all weights are
1. Fix a CSP instance I, we use val(I) to denote the value of the optimal solution. We say
that I is “satisfiable” if val(I) = 1.

2.1.1.1 The UNIQUEGAMES problem

The UNIQUEGAMES (UG for short) problem is a special binary CSP with domain size
q. For each constraint e, there is a bijection πe attached to it. The constraint e is satisfied
when the two corresponding variables xi and xj take values so that πe(xi) = xj . The
goal is to find an assignment to the variables so that the fraction of satisfied constraints is
maximized. The famous Unique Games Conjecture informally states that UG is very hard
to approximate, we will discuss a little more about the conjecture in Section 2.3.

2.1.2 Graph partitioning problems

Partitioning a graph into two (balanced) parts with few edges going across them is a fun-
damental optimization problem. Graph partitions or separators are widely used in many
applications (such as clustering, divide and conquer algorithms, VLSI layout, etc). In this
thesis, we will focus on the following prototypical objectives of graph partitioning.

14

Definition 2.1.1 (BALANCEDSEPARATOR). Given an undirected graph G = (V,E) and
0 < τ < .5, the goal of the τ vs. 1 − τ BALANCEDSEPARATOR problem is to find a set
A ⊆ V such that τ |V | ≤ |A| ≤ (1 − τ)|V |, while edges(A, V \ A) is minimized. Here
edges(A,B) is the number of edges in E that cross the cut (A,B).

Definition 2.1.2 (UNIFORMSPARSESTCUT). Given an undirected graph G = (V,E), the
goal of the UNIFORMSPARSESTCUT problem is to find a set ∅ (A (V such that the
sparsity

edges(A, V \ A)

|A||V \ A|
is minimized.

In some other cases, we are also interested in finding a partition that maximizes the
number of edges those cross the partition (such as MAXCUT). In addition, we define the
following problem which is MAXCUT plus a global cardinality constraint.

Definition 2.1.3 (MAXBISECTION). Given an undirected graph G = (V,E), the goal of
the MAXBISECTION problem is to find a set A ⊆ |V | such that |A| = 1

2
|V | (assume that

|V | is an even number), such that

edges(A, V \ A)

|E|

is maximized.

We may also use the density of the edges within a subset as the objective value (instead
of counting the number of edges across the partition). In the light of this, we define

Definition 2.1.4 (DENSEkSUBGRAPH). Given an undirected graph G = (V,E) and an
integer k, the goal of the DENSEkSUBGRAPH problem is to find a subset A ⊆ V such that
|A| = k and number of edges within A is maximized.

2.1.3 Graph isomorphism and assignment problems

The GRAPHISOMORPHISM problem is one of the most intriguing and notorious problems
in computational complexity (we will also refer to it as GISO for short); we refer to [149,
30, 24, 148, 69] for surveys. Together with FACTORING, it is one of the very rare problems
in NP which is not known to be in P but which is believed to be not NP-hard [29, 49, 205]
(according to standard complexity-theoretic assumptions).

15

The most well-known heuristic for GISO is the Weisfeiler-Lehman (WL) algorithm
[222] and its “higher dimensional” generalizations. These heuristics, given two graphs,
are always correct when the two graphs are isomorphic, but might misreport the noniso-
morphic pairs of graphs as being isomorphic. The “k-dimensional generalization” WLk

(see [222, 55] for discussion) runs in time nO(k) and is more and more powerful as k grows
larger (i.e. misreports less nonisomorphic pairs of graphs as being isomorphic). The WLk

heuristic is very powerful. For example, it is known to work correctly in polynomial time
for all graphs which exclude a fixed minor [102], a class which includes all graphs of
bounded tree width or bounded genus. Spielman’s 2Õ(n1/3)-time graph isomorphism al-
gorithm [212] for strongly regular graphs is achieved by WLk with k = Õ(n1/3). The
WLk algorithm with k = O(

√
n) is also a key component in the 2O(

√
n logn)-time GISO

algorithm [33]. Throughout the ’80s there was some speculation that GISO might be solv-
able on all graphs by running the WLk algorithm with k = O(log n) of even k = O(1).
However this was disproved in the notable work of Cai, Fr̈uer, and Immerman [55], which
showed the existence of pairs of nonisomorphic n-vertex graphs which are not distin-
guished by WLk unless k = Ω(n).

In this thesis proposal, we will study a potentially stronger algorithmic framework than
the WL algorithm, and also study the GISO problem from the approximation algorithms
prospect and using tools from approximation algorithms design. In order to do this, we
introduce several new definitions here.

Definition 2.1.5. Let G and H be nonempty n-vertex graphs. For 0 ≤ β ≤ 1, we say that
a permutation π : V (G)→ V (H) is an α-isomorphism if

|{(u, v) ∈ E(G) : (π(u), π(v)) ∈ E(H)}|
max{|E(G)|, |E(H)|}

≥ α,

where V (G) and V (H) are the vertex sets of G and H respectively, and E(G) and E(H)
are the edge sets of G and H respectively.

If there exists an α-isomorphism between G and H , we say that G and H are α-
isomorphic.

Observe that this definition is symmetric in G and H . The two graphs are isomorphic
if and only if they are 1-isomorphic. The classical GISO problem is to check whether the
two input graphs are 1-isomorphic. Now we introduce the following natural optimization
version of the problem.

Definition 2.1.6 (MAXGISO). Given two n-vertex graphs G and H , the MAXGISO prob-
lem is to find a permutation π : V (G)→ V (H) such that π is an α-isomorphism and α is
maximized.

16

The QUADRATICASSIGNMENTPROBLEM (QAP for short) is a natural generalization
of the MAXGISO problem. We now define the even more generalized problem kAP, where
the QAP problem is a special case when k = 2, as follows.

Definition 2.1.7 (kAP). For an integer k ≥ 2, an instance of the degree k assignment
problem (kAP) is given as I = (V, ω), where V is the set of variables, ω is a distribution
over V k × V k. The goal is find a permutation π of V such that the value of π, defined as

val(I, π) = nk Pr
(U,W)∼ω

[∀i ∈ {1, 2, 3, . . . , k} : π(ui) = wi] ,

is maximized. U = (u1, u2, . . . , uk) and W = (w1, w2, . . . , wk). We define the optimal
value of I to be val(I) = maxπ {val(I, π)}.

2.1.4 Dense and locally-dense instances

Given a CSP instance I with arity k and variable set V , let ω : V k → R be the weights
on the constraints. I.e. let ω(v1, v2, . . . , vk) be the weight on the constraint imposed on the
k-tuple (v1, v2, . . . , vk); let ω(v1, v2, . . . , vk) be 0 if there is no such constraint. Since we
assumed that the weights are nonnegative and sum up to 1, we can view ω as a probability
distribution on V k. We say the CSP instance I is ∆-dense if ω is ∆-dense; say I is ∆-
locally dense if ω is ∆-locally dense. We also say an instance is dense or locally-dense if
it is O(1)-dense or O(1)-locally dense. Here we define,

Definition 2.1.8 (dense and locally dense distributions). Let ω be a probability distribution
over a finite set Ω. For ∆ ∈ (0, 1], we say ω is ∆-dense if for every a ∈ Ω, it holds that
∆ · ω(a) ≤ 1

|Ω| .

Let ω be a probability distribution over V k. Let di(v) = Pr
S∼ω

[Si = vi] be the probability

that the i-th coordinate is v under ω. For ∆ ∈ (0, 1], we say ω is ∆-locally dense if for
every (v1, . . . , vk) ∈ V k, it holds that

∆ · ω(v1, . . . , vk) ≤
1

|V |k−1

∑
1≤i≤k

di(vi).

Since di(v) =
∑

S∈V k:Si=v

ω(S), the RHS of the locally dense condition is equal to∑
1≤i≤k

E
S∼V k

[ω(S) | Si = vi]. Thus the locally dense condition says that no tuple (v1, . . . , vk)

is “wild” in that ω(v1, . . . , vk) is at most constant times the sum over i of the average
probability mass of S with Si = vi.

17

The notion of local density is introduced in [75] to generalize the metric condition. To
see this, suppose ω : V 2 → R is a metric. Then, ω is 1-locally dense since, for any u, v ∈
V , we have 1

n
(d1(u) + d2(v)) = 1

n

∑
w(ω(u,w) + ω(w, v)) ≥ 1

n

∑
w ω(u, v) ≥ ω(u, v).

2.2 Approximation and hardness of approximation

In this section, we define the notions of approximation algorithms and hardness of approx-
imation.

Let us first fix a problem Q (which is usually computationally hard to calculate the
exact optimal objective solution). We suppose that the problem Q is a maximization prob-
lem throughout this subsection, while the definitions given can be naturally adapted to
minimization problems.

Fix an instance I from the problem Q. We denote the optimal objective value of the
problem to be val(I). Given an algorithm A for the problem G, we use valA(I) to denote
the value of the solution output by A on input G. Now we define the following measure of
the quality of A based on the approximation ratio.

Definition 2.2.1. We say that an algorithm A is an α-approximation algorithm (0 ≤ α ≤
1) for the problem Q if for every instance I from Q, we have

valA(I)

val(I)
≥ α.

We also introduce the definition of polynomial-time approximation scheme (PTAS)
where the algorithm gives arbitrarily (and constantly) good approximation to the problem
in polynomial time.

Definition 2.2.2. Fix an optimization problem Q, a PTAS is an algorithm which takes an
instance I of Q of size n and a parameter ε > 0, and in time T (ε, n), outputs a solution
that is (1− ε)-approximation to the optimal solution of the instance, where for every ε > 0
there exists a constant C = C(ε) such that T (ε, n) ≤ O(nC).

Similarly, a quasi-polynomial-time approximation scheme (quasi-PTAS) for Q is an
algorithm which takes an instance I of Q of size n and a parameter ε > 0, and in time
T ′(ε, n), outputs a solution that is (1 − ε)-approximation to the optimal solution of the
instance, where for every ε > 0 there exists a constant C ′ = C ′(ε) such that T (ε, n) ≤
2C(logn)O(1)

.

18

Sometimes we need a more refined definition than Definition 2.2.1. Take the problem
MAXCUT for example (please refer to Section 2.1.1 for the precise definition of MAX-
CUT). Currently the best known approximation algorithm for MAXCUT is by Goemans
and Williamson [94]; and by Definition 2.2.1, the Goemans-Williamson algorithm is an
αGW -approximation algorithm (where αGW ≈ .878). However, when the optimal solution
in a MAXCUT instance cuts almost all the edges (say (1 − ε) of the edges), Goemans-
Williamson algorithm guarantees to output a cut that cuts (1−O(

√
ε)) of the edges, while

we expect a .878-approximation algorithm to output a cut only cutting .878(1 − ε) of the
edges (which is much smaller than (1 − O(

√
ε)) when ε is small). Therefore, we need to

introduce the following refined notion of approximation to address this difference.

Definition 2.2.3. Fix c ≥ s ≥ 0, we say that an algorithm A is a (c, s)-approximation
algorithm for the problem Q if for every instance I from Q, when val(I) ≥ c, we have
valA(I) ≥ s.

By definition Definition 2.2.3, an α-approximation algorithm is a (c, αc)-approximation
algorithm for every c > 0. The Goemans-Williamson algorithm is an αGW -approximation
algorithm for MAXCUT in general; but it is also a (1 − ε, 1 − O(

√
ε))-approximation

algorithm.

Definition 2.2.3 motivates us to define the following decision problem for every opti-
mization problem Q.

Definition 2.2.4. Given an optimization problem Q, for every c ≥ s > 0, let the problem
(c, s)-gap-Q be the problem that given an instance I, to

• output YES when val(I) ≥ c;

• output NO when val(I) < s.

A simple observation is that fix the problem Q and the parameters c ≥ s > 0, if (c, s)-
gap-Q is NP-hard, then it is NP-hard to c

s
-approximate the problem Q. Therefore, a usual

strategy of proving hardness of approximation statement for an optimization problem Q is
to prove the hardness of (c, s)-gap-Q problem.

2.2.1 Robust algorithms

Robust algorithms are approximation algorithms concerned with the case that the prob-
lem has an “almost perfect” solution (e.g. when all the constraints are satisfied, when two

19

graphs are isomorphic, etc.). At a high level, instead of giving approximation ratio guar-
antee for general inputs, robust algorithms extremely well-approximate an almost perfect
solution when such solutions exist. Such algorithms can be viewed as a robust version of
the algorithms designed to find (exact) perfect solutions. One motivation to design robust
algorithms is that in practical situations (e.g. learning with noise), instances with perfect
solutions might be corrupted by a small amount of noise; an robust algorithm becomes
useful since it can still satisfy most of the constraints of the noisy instance.

The notion of robust algorithms was first explicitly introduced by Zwick [228] for
constraint satisfiability problems (CSPs), where he showed robust algorithms for several
CSPs including MAX2SAT and MAXHORNSAT. In this proposal, we will focus on the
robust algorithms for general CSPs, MAXBISECTION, and GRAPHISOMORPHISM. Now
we give the explicit definitions for these robust algorithms.

Definition 2.2.5 (ROBUSTSATISFIABILITY). Fix a CSP, we say that an algorithm A is
a robust satisfiability algorithm for the CSP if there exists a function r : [0, 1] → [0, 1]
satisfying r(ε)→ 0 as ε→ 0+ such that whenever A is given an instance I with val(I) ≥
1− ε, A outputs a solution satisfying (1− r(ε)) of the constraints.

By definition, the famous Goemans-Williamson [94] algorithm for MAXCUT is an ro-
bust satisfiability algorithm with r(ε) = O(

√
ε). Zwick [228] gave an robust satisfiability

algorithm for MAX2SAT with r(ε) = O(
√
ε), and an robust satisfiability algorithm for

MAXHORNSAT with r(ε) = O
(

log log(1/ε)
log(1/ε)

)
.

We also define the notion of robust algorithms for the following two problems which
will be studied in this thesis.

Definition 2.2.6 (ROBUSTMAXBISECTION). We say that an algorithm A solves the RO-
BUSTMAXBISECTION problem if there exists a function r : [0, 1] → [0, 1] satisfying
r(ε) → 0 as ε → 0+ such that whenever A is given an undirected graph G with MAXBI-
SECTION optimum at least 1− ε, A outputs a bisection with (1− r(ε)) of the edges across
the bisection.

Definition 2.2.7 (ROBUSTGISO). We say that an algorithm A solves the ROBUSTGISO

problem if there exists a function r : [0, 1] → [0, 1] satisfying r(ε) → 0 as ε → 0+ such
that whenever A is given a pair of graphs which are (1 − ε)-isomorphic, A outputs a
(1− r(ε))-isomorphism between them.

20

2.3 The Unique Games Conjecture

The Unique Games Conjecture states,

Conjecture 1 (Unique Games Conjecture [136]). For every constant ε > 0, there exists a
large enough q so that the (1− ε, ε)-gap-UG problem with domain size q is NP-hard.

The Unique Games Conjecture, soon after its initial proposal Khot [136], became a
central problem in approximation algorithms research. If the conjecture is true, it implies
optimal inapproximability results for many problems including the broad class of CSPs
[189], covering and packing problems [152], ordering CSPs [106] and MULTIWAYCUT

[168]. While numerous research has been conducted to investigate the correctness of
the conjecture (e.g. [136, 218, 144, 105, 59, 19, 16, 193]), the status of the conjecture
remains a major open question in the field, and there is no compelling opinion about its
truth. However, through these intensive studies of UG, many connections have emerged
between the conjecture, analysis, geometry and mathematical programming, leading to
many exciting advancements in both algorithm design and hardness of approximations.
The readers are encouraged to refer to [138] for more on the conjecture.

21

22

Chapter 3

Summary of contributions and
organization of this thesis

The technical part of this thesis consists of 4 parts.

Part I and Part II will discuss how to strengthen our current (possibly limited) under-
standing of convex relaxation hierarchies. Table 3.1 is a list of the relevant results.

Part III will be on the design (and impossibility of designing) robust algorithms. Part IV
will consist of a few other inapproximability results. Table 3.2 is a list of the relevant re-
sults.

Finally, the thesis will be concluded by Part V with a few future directions.

In the following 4 sections, we will give overviews of the 4 technical parts respectively.

3.1 Overview of Part I: study of the LP/SDP relaxation
hierarchies

As we mentioned before, the LP/SDP relaxation hierarchies are parameterized by an inte-
ger r – the level in the hierarchy. One challenge here is to understand the trade-off between
the approximation guarantee and the number of levels. In this subsection, we describe the
results related to this question. For some problems, we prove that a small number of levels
in the hierarchies effectively approximates the optimal solution; in other cases, we show
lower bounds for the hierarchies, i.e. a large number of levels is needed to obtain good
approximation.

23

Effectiveness of hierarchies Limitation of hierarchies

The Sherali-Adams LP relaxation
hierarchy for dense and locally-dense
instances (Theorem 3.1.1, Theo-
rem 3.1.2, and Theorem 3.1.3)

The Parrilo–Lasserre SDP relaxation
hierarchy for known UNIQUEGAMES,
BALANCEDSEPARATOR, and MAX-
CUT integrality gap instances (The-
orem 3.2.1, Theorem 3.2.2, and
Theorem 3.2.3)

Polynomial-round Parrilo-Lasserre
integrality gap instances for
DENSEkSUBGRAPH (Theorem 3.1.4)

Linear-round Parrilo-Lasserre integral-
ity gap instances for BALANCEDSEPA-
RATOR and UNIFORMSPARSESTCUT

(Theorem 3.1.5 and Theorem 3.1.6)

Linear Parrilo-Lasserre SDP does
not tell isomorphic graphs from
far-from-being-isomorphic graphs (The-
orem 3.1.7)

Table 3.1: Table of contributions on convex relaxation hierarchies

3.1.1 Algorithmic results

In Chapter 4, we study the algorithmic guarantee of the Sherali-Adams LP relaxation hi-
erarchy for dense and locally dense CSPs and assignment problems (APs). Prior to our
work, there was a long series of works (e.g. [74, 87, 18, 77, 17, 76, 75]), using vari-
ous techniques, such as sampling, regularity lemma, and tensor decomposition, to design
PTAS and quasi-PTAS for these instances.

We show that the Sherali-Adams LP relaxation hierarchy is a unified algorithmic
framework to obtain all the previously known results. In particular, we first show that

Theorem 3.1.1 (Pre-statement of Theorem 4.1.1). For any ε > 0, O(1
ε2

)-round Sherali-
Adams LP relaxation hierarchy gives (1 − ε)-approximation to dense or locally dense
MAXkCSP.

Then, we turn to dense and locally dense MAXkCSP with global cardinality con-
straints. For explanatory purposes, we only consider bisection constraint, i.e., the domain
is {0, 1} and the number of variables that are assigned to 0 should be equal to the number
of variables that are assigned to 1. We show that

Theorem 3.1.2 (Pre-statement of Theorem 4.8.2). For any ε > 0, O(1
ε2

)-round Sherali-
Adams LP relaxation hierarchy gives (1 − ε)-approximation to dense or locally dense

24

Approximation algorithms Hardness of approximation

Robust algorithm for width-1 constraint
satisfiability problems (Theorem 3.3.1)

An algorithm for ROBUSTMAXBISEC-
TION (Theorem 3.3.2)

A robust isomorphism algorithm for
trees (Theorem 3.3.4)

Approximating the 2 → 4 norm of ran-
dom linear operators (Theorem 3.4.1)

Hardness of ROBUSTGISO (Theo-
rem 3.3.3)

Hardness of MAXΓ-2-LIN and MAXΓ-
3-LIN over integers (Theorem 3.4.3)

Hardness of approximating almost
satisfiable MAXHORN3-SAT (Theo-
rem 3.4.4)

Table 3.2: Table of contributions on other approximation algorithms and hardness of ap-
proximation

bisection MAXkCSP.

Finally, we consider the dense MAXkAP problems, and show that

Theorem 3.1.3 (Pre-statement of Theorem 4.1.3). For any ε > 0, O(logn
ε2

)-round Sherali-
Adams LP relaxation hierarchy gives (1 − ε)-approximation to dense or locally dense
MAXkAP problems with n variables.

3.1.2 Integrality gaps

In Chapter 5, Chapter 6, and Chapter 7, we study several important combinatorial opti-
mization problems and show that the strongest known SDP hierarchy (i.e. the Parrilo–
Lasserre hierarchy) does not give good approximation for them. Given that there is no
concrete inapproximability result for these problems, and (as pointed out previously) that
our results are among the few ones proving Parrilo–Lasserre lower bounds beating known
NP-hardness results, our lower bound theorems can be viewed as strong evidence of the
inapproximability of these fundamental combinatorial optimization problems.

The DENSEkSUBGRAPH problem. The DENSEkSUBGRAPH problem is believed to
be very hard to approximate as the best known approximation algorithm due to [41]

25

gives O(n1/4+ε)-approximation in time nO(1/ε) for any constant ε > 0. On the inap-
proximability side, [88] initially showed that a small constant factor inapproximability
for DENSEkSUBGRAPH using the random 3-SAT assumption. [137] used quasi-random
PCPs to rule out a PTAS. More recently, [193, 7] used more non-standard assumptions to
rule out any constant factor approximation algorithms. In the work with Bhaskara et al.
[40], we showed the following integrality gap theorem.

Theorem 3.1.4 (Pre-statement of Theorem 5.1.1). For every ε > 0, there is a lower bound
of n2/53−ε on the integrality gap of level-nΩ(ε) Parrilo–Lasserre SDP relaxation hierarchy
for the DENSEkSUBGRAPH problem; there is also a lower bound of nε on the integrality
gap of level-n1−O(ε) Parrilo–Lasserre SDP relaxation hierarchy.

The BALANCEDSEPARATOR and UNIFORMSPARSESTCUT problems. For these two
problems, the best algorithms, based on semidefinite relaxations (SDPs) with triangle in-
equalities, give O(

√
log n)-approximation [21]. On the inapproximability side, a Poly-

nomial Time Approximation Scheme (PTAS) is ruled out for both problems assuming
3-SAT does not have randomized subexponential-time algorithms [10]. In the work with
Guruswami and Sinop [112], we showed the following integrality gaps for the two prob-
lems.

Theorem 3.1.5 (Pre-statement of Theorem 6.1.2). For 0.45 < τ < 0.5, there are linear-
round Parrilo–Lasserre SDP gap instances for the τ vs (1 − τ) BALANCEDSEPARATOR

problem, such that the integral optimal solution is at least (1 + ε(τ)) times the SDP solu-
tion, where ε(τ) > 0 is a constant dependent on τ .

Theorem 3.1.6 (Pre-statement of Theorem 6.1.3). There are linear-round Parrilo–Lasserre
SDP gap instances for the UNIFORMSPARSESTCUT problem, such that the integral opti-
mal solution is at least (1 + ε) times the SDP solution, for some constant ε > 0.

The GRAPHISOMORPHISM problem. A recent work of Atserias and Maneva [27] (see
also [103]) shows that the power of WLk algorithm is precisely sandwiched between the k-
th and (k+1)-st level of the canonical Sherali-Adams LP relaxation hierarchy of the GISO

problem. Given the power of WLk algorithm, this connection shows that LP relaxation
hierarchies are also useful for solving GISO. On the other hand, by the work of [55], we
also know that the Sherali-Adams LP relaxation hierarchy also needs linearly many levels
to fully solve GISO.

This raises the natural question whether stronger LP/SDP relaxation hierarchies might
prove more powerful than WLk in the context of GISO. In the work with O’Donnell et

26

al. [182], we study the Parrilo–Lasserre SDP relaxation hierarchy (which is the strongest
known hierarchy known in the literature as discussed before) for GISO and show that

Theorem 3.1.7 (Pre-statement of Theorem 7.1.2). For infinitely many n, there exists pairs
of n-vertex, O(n)-edge graphs G and H such that

• G and H are not (1− 10−14)-isomorphic;

• in order to tell that G and H are not 1-isomorphic (i.e. isomorphic), the Parrilo–
Lasserre SDP relaxation hierarchy needs Ω(n) levels.

This theorem says that the linear-level Parrilo–Lasserre hierarchy not only fails on
distinguishing nonisomorphic pairs of graphs, but also fails spectacularly – the hierarchy
cannot tell the two graphs are nonisomorphic even when they are different by a constant
fraction of the edges.

3.2 Overview of Part II: using the Parrilo–Lasserre hier-
archy to solve hard instances for weaker hierarchies

In Part II, we study the Parrilo–Lasserre SDP relaxation hierarchy when applied to the
known integrality gap instances (for other relaxation hierarchies such as Sherali-Adams+SDP)
in literature for several central combinatorial optimization problems, and will show that
these instances are no longer integrality gap instances for constant-level Parrilo–Lasserre
SDP relaxation hierarchy. In order to obtain such types of results, we will use a special and
novel view of the Parrilo–Lasserre SDP relaxation hierarchy, i.e. to view the hierarchy as
the so-called “sum-of-squares proof system” and to prove the success of the hierarchy (on
given instances) via giving a proof that the given instance does not have great objective
value in the sum-of-squares proof system. Using this connection, we hope to understand
more about the the power of Parrilo–Lasserre SDP relaxation hierarchy, and proof tech-
niques that might be helpful to construct integrality gaps for the Parrilo–Lasserre hierarchy.
In particular, we will present the following results along this line.

The UNIQUEGAMES problem. We begin with showing that a very small constant level
of the Parrilo–Lasserre SDP hierarchy suffices to solve the UNIQUEGAMES instances in
the literature.

27

Theorem 3.2.1 (Pre-statement of Theorem 9.0.8). For sufficiently small ε and large k,
and every n ∈ N, letW be an n-variable k-alphabet UNIQUEGAMES instance of the type
considered in [192, 154, 142] obtained by composing the “quotient noisy cube” instance
of [144] with the long-code alphabet reduction of [141] so that the best assignment to
W’s variables satisfies at most an ε fraction of the constraints. Then, there is a degree-8
SOS refutation for the statement that the best assignment toW’s variables satisfy at least
1/100 fraction of the constraints.

Thus just the level-4 Lasserre SDP hierarchy (essentially) solves the the UNIQUEGAMES

instances.

The BALANCEDSEPARATOR problem. Devanur et al [79] gave a family of n-vertex
BALANCEDSEPARATOR instances (which we will refer to as the DKSV instances) which
are integrality gap instances with ratio Θ(log log n) for the natural SDP relaxation with
triangle inequalities. Raghavendra and Steurer [188] showed that a factor-(log log n)Ω(1)

gap persists for these instances even for (log log n)Ω(1) rounds of the “LH+SDP relaxation
hierarchy”. In the work with O’Donnell [184], we show that

Theorem 3.2.2 (Corollary of Theorem 10.3.1 and Theorem 10.3.3). The level-2 Parrilo–
Lasserre SDP relaxation hierarchy for the BALANCEDSEPARATOR problem has integral-
ity gap at most O(1) for the DKSV instances.

The MAXCUT problem. Assuming the Unique Games Conjecture, Khot et al. [141]
showed that the Goemans-Williamson algorithm [94] for MAXCUT achieves the best
possible approximation factor, namely αGW ≈ .878 approximation. Khot and Vishnoi
[144] gave integrality gap instances of ratio αGW for the MAXCUT problem, by com-
posing their UNIQUEGAMES instances with the MAXCUT reduction in [141]. Khot and
Saket [154] subsequently showed that this gap persists even for level-(log log log n)Ω(1)

Sherali-Adams+SDP relaxation hierarchy. In the work with O’Donnell [184], we show
that constant level of the Parrilo–Lasserre SDP relaxation hierarchy gives better than αGW -
approximation to the integrality gap instances by Khot and Vishnoi. In particular, we prove
that

Theorem 3.2.3 (Pre-statement of Theorem 8.1.3). There exists a universal integer con-
stant C such for the level-C Parrilo–Lasserre SDP relaxation hierarchy, the Khot-Vishnoi
MAXCUT instance has integrality gap ratio at most 1/.952(< 1/αGW).

28

3.3 Overview of Part III: robust algorithms

In this subsection, we present several of our related results on robust algorithms.

Robust algorithms for satisfiability problems. As mentioned previously, Zwick [228]
showed robust algorithms for MAX2SAT and MAXHORNSAT. In sharp contrast, for other
problems such as MAX3LIN, although deciding whether an instance is satisfiable is in P,
there is no efficient robust algorithm unless P = NP [116]. A natural theoretical ques-
tion arising at this point is to characterize the class of CSPs that admit efficient robust
algorithms.

Towards answering this question, in a work with Guruswami [114], we conjectured that
the CSPs which have efficient robust algorithms (assuming P 6= NP) are precisely those of
“bounded width” – a notion frequently used in algebraic dichotomy theory where people
study the characterization of CSPs with exact satisfiability algorithms (we will refer to this
conjecture as Guruswami–Zhou Conjecture throughout this thesis). Roughly speaking,
bounded-width CSPs are the ones do not encode linear equations over abelian groups;
they also coincide with the CSPs solvable by the “k-consistency heuristic” algorithm in
artificial intelligence. If our conjecture is true, the natural basic SDP relaxation would be
the desired robust algorithm for every bounded-width CSP.

Towards proving the conjecture, in Chapter 12, we prove the following theorem.

Theorem 3.3.1 (Pre-statement of Theorem 12.1.1). If a CSP has “width-1”, there is a
polynomial-time robust satisfiability algorithm for the CSP; and the algorithm is based on
the natural LP relaxation of the problem.

The Guruswami–Zhou Conjecture was later fully confirmed by Barto and Kozik [38].

The ROBUSTMAXBISECTION problem. In Chapter 13, we will prove the first polynomial-
time algorithm for the ROBUSTMAXBISECTION problem. Our theorem is stated as fol-
lows.

Theorem 3.3.2 (Pre-statement of Theorem 13.1.3). There is a randomized polynomial-
time algorithm such that for every ε > 0, given an edge-weighted graphG with a MAXBI-
SECTION solution of value1 (1−ε), finds a MAXBISECTION of value (1−O (3

√
ε log(1/ε))).

1The value of a cut in an edge-weighted graph is defined as the weight of the edges crossing the cut
divided by the total weight of all edges.

29

Prior to our work ([107]), researchers from theoretical computer science and operations
research designed various algorithms for this problem [93, 226, 115, 91], but none of them
is guaranteed to find a bisection cutting most of the edges even when the graph has a near-
perfect bisection cutting (1 − ε) of the edges (in fact, they may not even cut 75% of the
edges).

The ROBUSTGISO problem. Although it is not known whether GISO has polynomial-
time algorithm, we show that assuming the so-called Feige’s R3XOR hypothesis [88],
there is no polynomial-time algorithm for ROBUSTGISO. In particular, we prove the fol-
lowing theorem.

Theorem 3.3.3 (Pre-statement of Theorem 7.1.4). Assume Feige’s R3XOR Hypothe-
sis [88]. Then there is no polynomial-time algorithm for ROBUSTGISO. More precisely,
there exists ε0 > 0, such that suppose there exists ε > 0 and a t(n)-time algorithm which
can distinguish (1 − ε)-isomorphic n-vertex, m-edge graph pairs from pairs which are
not even (1 − ε0)-isomorphic (where m = O(n)). Then there is a universal constant
∆ ∈ Z+ and a t(O(n))-time algorithm which outputs “typical” for almost all n-variable,
∆n-constraint instances of the 3-XOR problem, yet which never outputs “typical” on
instances which are (1−Θ(ε))-satisfiable.

Our proof uses a linear-size reduction from ROBUSTGISO to MAX3-LIN and uses
a hardness of approximation result for MAX3-LIN by Håstad [116]. Therefore, by the
efficient-construction of the PCP theorem [173], and assuming the ETH ([124], i.e. 3-SAT
does not have subexponential-time algorithms), there is no subexponential-time algorithm
for ROBUSTGISO. This is in contrast with the 2O(

√
n logn)-time algorithm for GISO due to

[33].

Despite the impossibility of constructing efficient ROBUSTGISO algorithm for general
graphs, we design a ROBUSTGISO algorithm for trees. In Chapter 14, we prove

Theorem 3.3.4 (Pre-statement of Theorem 14.1.5). Given two n-vertex trees T1 and T2,
there is a polynomial-time algorithm to find a

(
1−O

(
ε1/4
))

-isomorphism between them
whenever they are (1− ε)-isomorphic, for every ε > 0.

30

3.4 Overview of Part IV: other approximation and hard-
ness of approximation results

In this subsection, we describe several related hardness of approximation results obtained
by the author.

3.4.1 Approximating the 2→ 4 norm of random linear operators

For a function f : Ω → R on a (finite) probability space Ω, the p-norm is defined as
‖f‖p = (EΩ f

p)1/p. The p → q norm ‖A‖p→q of a linear operator A between vector
spaces of such functions is the smallest number c ≥ 0 such that ‖Af‖q ≤ c ‖f‖p for all
functions f in the domain of A.

In Chapter 15, we are interested in approximating ‖A‖2→4. We study a natural semidef-
inite programming (SDP) relaxation for computing the 2 → 4 norm of a given linear op-
erator which we call TensorSDP. While TensorSDP is very unlikely to provide a poly-
time constant-factor approximation for the 2 → 4 norm in general (as shown in [34]), we
do show that it provides such approximation on random linear operators, as we describe
below.

Theorem 3.4.1 (Informal version of Theorem 15.3.1). TensorSDP certifies a constant
upper bound on the ratio ‖A‖2→4/ ‖A‖2→2 where A : Rn → Rm is a random linear
operator (e.g., obtained by a matrix with entries chosen as i.i.d Bernoulli variables) and
m ≥ Ω(n2).

In contrast, if m = o(n2) then this ratio is ω(1), and hence this result is almost tight in
the sense of obtaining “good approximation” in the sense mentionen above.

3.4.2 Hardness of MAXΓ-2-LIN and MAXΓ-3-LIN over integers

To describe our contributions in Chapter 16, we first define the MAXΓ-2-LIN and MAXΓ-
3-LIN problems over Z as follows.

Definition 3.4.2. In a MAXΓ-2-LIN (Z) instance, there are n variables x1, x2, . . . , xn ∈
Z, and m equations where each equation is in the form xi−xj = c where c ∈ Z. The goal
is to find an assignment of the variables such as the fraction of the satisfied equations is
maximized.

31

In a MAXΓ-3-LIN (Z) instance, there are n variables x1, x2, . . . , xn ∈ Z, and m
equations where each equation is in the form xi + xj − xk = c where c ∈ Z. The goal
is to find an assignment of the variables such as the fraction of the satisfied equations is
maximized.

Observe that by definition MAXΓ-2-LIN (Z) and MAXΓ-3-LIN (Z) are not ordinary
CSPs since the domain size is not constant (even not finite).

In a seminal result by Håstad [116], it was proved that for every constant ε > 0, the
(1− ε, ε)-gap-MAXΓ-3-LIN (Zq) problem is NP-hard. Khot et al. [141] proved a similar
hardness of approximation result for the MAXΓ-2-LIN (Zq) problem. They proved that
for every constant ε, there exists q > 0 such that there is no polynomial-time algorithm for
the (1− ε, ε)-gap-MAXΓ-2-LIN (Zq) problem, assuming the Unique Games Conjecture.

Guruswami and Raghanvendra [109] later extended Håstad’s theorem to the MAX3-
LIN(Z) problem, proving that for every constant ε > 0, the (1− ε, ε)-gap-MAX3-LIN(Z)
problem is NP-hard.

We will give a simplified proof of Guruswami and Raghavendra’s result, and prove an
analogue of the theorem for MAXΓ-3-LIN (Z) assuming the Unique Games Conjecture.
In particular, we prove the following theorem.

Theorem 3.4.3. For every constant ε > 0, the (1− ε, ε)-gap-MAXΓ-3-LIN (Z) problem is
NP-hard. The proof of this theorem simplifies the proof of the similar result by Guruswami
and Raghavendra.

Assuming the Unique Games Conjecture, for every constant ε > 0, there is no polynomial-
time algorithm for the (1− ε, ε)-gap-MAXΓ-2-LIN (Z) problem.

3.4.3 Hardness of approximating almost satisfiable MAXHORN3-SAT

Zwick [228] gave an algorithm for the almost satisfiable MAXHORN3-SAT problem.
When the input instance is (1− ε)-satisfiable, Zwick’s algorithm finds an assignment sat-
isfying a

(
1−O

(
1

log(1/ε)

))
-fraction of the constraints.

In Chapter 17, we will prove that Zwick’s algorithm is essentially optimal assuming
the Unique Games Conjecture. In particular, we proved the following theorem.

Theorem 3.4.4 (Pre-statement of Theorem 17.2.1). Assuming the Unique Games Conjecture[136],
For some absolute constant C, for every ε > 0, given a (1 − ε)-satisfiable instance of
MAXHORN3-SAT, there is no polynomial-time algorithm to find an assignment satisfy-
ing more than a fraction of

(
1− C

log(1/ε)

)
of the constraints.

32

Part I

Study of the LP/SDP relaxation
hierarchies

33

Chapter 4

Approximation schemes via
Sherali-Adams hierarchy for dense
constraint satisfaction problems and
assignment problems

4.1 Introduction

Recall that in a maximum constraint satisfaction problem (MAX-CSP), given a variable
set V over the domain D and a set of constraints C over the variables in V , we want to
find an assignment α : V → D that maximizes the fraction of constraints satisfied by α.
MAX-CSP includes many fundamental problems such as MAX-CUT and MAX-SAT.

In general, MAX-CSP is NP-Hard, and it is even NP-Hard to approximate within a
constant factor [20]. However, de la Vega [74] showed that there is a polynomial-time
approximation scheme for MAX-CUT if the input graph is dense, i.e., it has Ω(n2) edges.
Here, a polynomial-time approximation scheme (PTAS) is an algorithm that, given ε > 0
as a parameter, gives a (1 − ε)-approximation to the optimal value, and runs in polyno-
mial time for any constant ε. MAXkCSP is a subproblem of MAX-CSP, in which each
constraint involves at most k variables, where k is a constant. Arora et al. [18] and Frieze
and Kannan [87] showed PTASs for dense MAXkCSP, i.e., the input instance has Ω(nk)
constraints. Now it is known that we can compute (1 − ε)-approximation to the optimal
value in time that depends only on k and ε [8].

There are two directions to generalize PTASs for dense MAXkCSP. The first one is

35

to generalize the notion of the density condition. We say that an instance of Max-2-CSP
is metric if the weights of the constraints form a metric. MAX-CUT [77] and MAX-
BISECTION [76] admit PTASs if the instance is metric. The notion of local density is
introduced to generalize the notion of metric to constraints over more than two variables.
If the instance is locally dense, MAXkCSP admits PTASs [75].

The second direction is to handle the maximum assignment problems (MAX-AP). In
this problem, given a variable set V and a set of constraints, we want to find a permutation
π of V to maximize the fraction of satisfied constraints. MAX-AP includes many funda-
mental problems such as MAXIMUMACYCLICSUBGRAPH, BETWEENNESS, MAXIMUM-
GRAPH ISOMORPHISM, DENSEkSUBGRAPH, and QUADRATICASSIGNMENTPROBLEM.
MAXkAP is a special case of MAX-AP, in which each constraint involves at most k vari-
ables (see Section 4.2 for the precise definition). We say that an instance of MAXkAP
is dense if it has Ω(nk) constraints. Arora et al. [17] showed a quasi-polynomial-time
approximation scheme for dense MAXkAP and PTASs for many special cases.

As we have seen, MAX-CSP and MAXkAP admit PTASs (or quasi-PTASs) in the
dense case and the locally dense case. However, the techniques to obtain them vary a lot.
For example, [18] is based on the idea of exhaustively trying all assignments for a small
number of variables and then solving the rest using the partial assignment. On the other
hand, [87] used a variant of Szemerédi’s regularity lemma [216]. To deal with the metric
case, [77] used the method of copying important variables, and [75] considered a variant
of singular value decomposition of tensors to deal with the locally dense case.

4.1.1 Linear Programming (LP) relaxation and LP relaxation hierar-
chies

Much about LP/SDP relaxations and their hierarchies are introduced at the beginning of
this thesis. Here we would like to emphasize that LP relaxation and its hierarchies have
found many connections to other known algorithmic frameworks, and to be a unified ap-
proach to solve several classes of problems. A few examples are listed as follows. Assum-
ing the Unique Games Conjecture, a canonical LP relaxation (also referred to as the Basic
LP) is shown to provide optimal approximation guarantee for CSPs with strict constraints
[152]. It is known to the author that constant-round Sherali-Adams LP relaxation decides
the satisfiability of bounded-width CSPs; Atserias and Maneva [27] recently showed that
the Sherali-Adams LP relaxation hierarchy for graph isomorphism interleaves with the lev-
els of pebble-game equivalence with counting (i.e. higher-dimensional Weisfeiler-Lehman
color refinement algorithm).

36

4.1.2 Our contributions

In this chapter, we present the Sherali-Adams LP relaxation hierarchy as a unified ap-
proach to dense and locally dense problems – we show that a small number of rounds of
the Sherali-Adams LP relaxation gives an approximation scheme to dense MAXkCSP and
all their variants studied in the previous works.

Our first main theorem deals with dense and locally dense MAXkCSP.

Theorem 4.1.1 (Informal version of Theorem 4.5.1). For any ε > 0, O(1
ε2

)-round Sherali-
Adams LP relaxation gives (1− ε)-approximation to dense or locally dense MAXkCSP.

Then, we turn to dense and locally dense MAXkCSP with global cardinality con-
straints. For explanatory purposes, we only consider bisection constraint, i.e., the domain
is {0, 1} and the number of variables that are assigned to 0 should be equal to the number
of variables that are assigned to 1. We show that

Theorem 4.1.2 (Informal version of Theorem 4.8.2). For any ε > 0, O(1
ε2

)-round Sherali-
Adams LP relaxation gives (1 − ε)-approximation to dense or locally dense bisection
MAXkCSP.

Finally, we consider the dense MAXkAP problems, and show that

Theorem 4.1.3 (Informal version of Theorem 4.5.2). For any ε > 0, O(logn
ε2

)-round
Sherali-Adams LP relaxation gives (1−ε)-approximation to dense or locally dense MAXkAP
problems with n variables.

In all the precise theorem statements, we actually show additive approximation guaran-
tee (i.e. the value of the rounded solution being at least the fractional optimal value minus
a constant error) instead of multiplicative approximation guarantee. However, since we
define the problems in a way that the optimal solution is Ω(1) (see Section 4.2 for the pre-
cise definition of the problems), an additive approximation scheme implies a multiplicative
approximation scheme.

New algorithmic guarantees. Let us define the problem
MAXIMUMk-HYPERGRAPHISOMORPHISM as follows. Given two weighted k-uniform
hypergraph G = (V, ω′) and H = (V, ω′′), where ω′, ω′′ : V k → [0, 1] are the weight
functions over all possible hyperedges. The goal is to find a permutation π over V so
that

∑
e∈V k ω

′(e)ω′′(π(e)) is maximized (where π(e) is the edge obtained by applying π
on each incident vertex of e). It is easy to see Theorem 4.1.3 implies that O(logn

ε2
)-round

37

Sherali-Adams LP relaxation gives (1 − ε)-approximation to
MAXIMUMk-HYPERGRAPHISOMORPHISM when both G and H are dense.

We are able to apply our analysis framework for the Sherali-Adams LP relaxation to
another special case of MAXIMUMk-HYPERGRAPHISOMORPHISM, getting the following
new algorithmic guarantee.

Theorem 4.1.4 (Informal version of Theorem 4.5.3). For any ε > 0, O(logn
ε2

)-round
Sherali-Adams LP relaxation gives (1 − ε) approximation to the
MAXIMUM k-HYPERGRAPHISOMORPHISM problem when one of the two graphs is lo-
cally dense and the other graph is dense, where n is the number of vertices in the hy-
pergraphs. Therefore, this special case of the problem admits a (1 − ε)-approximation
algorithm in time nO(logn

ε2
).

4.1.3 Proof overview

The first step of our algorithms is to condition on a set of random variables in a solution to
the Sherali-Adams LP relaxation. In the `-round Sherali-Adams LP relaxation (or the SA
relaxation for short), for each set of variables S of size at most `, we have a probability
distribution µS over assignments on S. First we solve (k+ `)-round SA relaxation, where
` is a parameter depending on the error parameter ε. Then, we randomly sample a set of
variables u1, . . . , u` and assign values to them by sampling values from µ{u1}, . . . ,µ{u`},
respectively. By this conditioning, we obtain a solution to k-round Sherali-Adams relax-
ation µ′ with the same LP value in expectation. An important fact here is that variables
become almost independent in the sense that, if we sample a k-tuple (v1, . . . , vk) accord-
ing to a dense (or locally dense) distribution (this distribution corresponds to the weights
of the constraints in kCSPand kAP instances), the distribution µ{v1,...,vk} and the product
distribution µ{v1} × · · · × µ{vk} are close in expectation.

The second step of our algorithms is to round the solution to the SA relaxation where
the variables are almost independent. For dense (or locally dense) kCSPand bisection
kCSP, the rounding algorithm just samples a value fromµ{v} and assigning it to v for each
variable v. It is relatively easy to show that the expected value of the sampled solution is
close to the LP value, and therefore gives a (1− ε)-approximation.

For kAP problems, however, such independent sampling method does not work – there
might be more than one variables assigned to the same value and we do not get a permuta-
tion when this happens. Instead, we view the marginal probability distributions on single
variables, µ{u}(w), as a doubly stochastic matrix. We view this doubly stochastic matrix
as a probability distribution of permutations. We iteratively choose two permutations in

38

the support of the distribution and merge them into a new permutation, until there is only
one permutation left in the support – which is the output of our rounding algorithm. The
operation of merging two permutations is interestingly similar to the merging operation
used in [17], although the purposes are different. See Section 4.4.2 for more details.

4.1.4 Comparison to previous works

We first compare the running time of our SA relaxation-based algorithms with the pre-
viously known counterparts. For MAXkCSP, the running time nO(1/ε2) of our method
matches the one of the method by [18]. For MAXkAP the running time nO(logn/ε2) of our
method matches the one of the method by [17]. [17] improved the running time to nO(1/ε2)

for various problems by reducing them to CSPs. We can use the same techniques to obtain
the same running time for these problems.

The number of rounds (O(1
ε2

)) in Theorem 4.1.1 improves the corresponding theorem
in [78] which showed that Õ(1

ε4
)-round SA relaxation gives (1−ε)-approximation to dense

MAX-CUT.

The idea of conditioning variables of a solution to LP/SDP hierarchies is used in [195,
36] to solve variants of MAX2CSP. LetG = (V,E) be the underlying graph of an instance
of MAX2CSP. Barak et al. [36] showed that (i) the covariance between u and v over V 2

gets close to zero by conditioning, and (ii) the covariance between u and v over E gets
close to the covariance between u and v over V 2 by conditioning if G is expander-like.
Combining these two results, they show a PTAS for MAX2CSP when G is expander-like.
This method can be also applied to dense graphs, but it is not clear how to generalize it to
metric graphs and kCSP.

Raghavendra and Tan [195] used mutual information instead of covariance to measure
correlation between two variables and simplified the proof. They noticed that conditioning
is useful to deal with global constraints such as cardinality constraints since after condi-
tioning we can sample variables independently and the resulting solution will not break
global constraints much. With this idea, they gave a 0.85-approximation algorithm for
MAX-BISECTION. Though our method and analysis are similar to theirs, we use the inde-
pendence for obtaining PTASs for the dense and locally dense case as well as supporting
global constraints. Also, to handle constraints of larger arities, we use total correlation
instead of mutual information to measure correlation among variables.

Coja-Oghlan et al. [70] showed that, even if the instance is sparse, if it satisfies a certain
pseudo-random condition, then MAXkCSP admits PTASs. If k = 2, this results can be
seen as a special case of [195] because the pseudo-random condition would imply that the

39

underlying graph is expander-like. Their result is incomparable to ours because it is not
clear how the pseudo-random condition and the locally dense condition.

4.1.5 Organization

In Section 4.2, we introduce definitions and notions used in this paper. In Section 4.3,
we show an algorithm that obtains an almost independent solution to the Sherali-Adams
LP relaxation. Section 4.4 is devoted to show how to round the obtained solution to the
Sherali-Adams LP relaxation. We combine the two steps together in Section 4.5. Sec-
tion 4.6 and Section 4.7 are devoted to prove auxiliary lemmas. We consider CSPs with
global cardinality constraints in Section 4.8.

4.2 Preliminaries

For an integer a ≥ 1, [a] denotes the set {1, . . . , a}. For a set Y and 0 ≤ k ≤ |Y |,
(
Y
k

)
denotes the family of sets X ⊆ Y with |X| = k. We usually use V to denote the set of
variables in a problem, and use n = |V | to denote the number of variables. For an event
A, 1[A] denotes the corresponding indicator function.

Probability theoretic notions: We recall several notions from probability theory. For a
probability distribution µ on Ω, supp(µ) denotes the support of µ, i.e., supp(µ) = {i ∈
Ω | µ(i) > 0}. For a set S, i ∼ S means that we sample i uniformly at random from S.

Let µ1 and µ2 be two probability distributions on a finite set Ω. Then, the L1 dis-
tance between them is defined as ‖µ1 − µ2‖1 =

∑
i∈Ω ‖µ1(i) − µ2(i)‖ . The Kullback-

Leibler divergence between them is defined as dKL(µ1‖µ2) =
∑

i∈Ωµ1(i) log µ1(i)
µ2(i)

. and
the Kullback-Leibler divergence dKL(µ1‖µ2) are defined as follows. We provide the fol-
lowing fact without proof.

Lemma 4.2.1. Let µ1 and µ2 be two probability distributions on a finite set Ω. Then,
‖µ1 − µ2‖1 ≤

√
2dKL(µ1‖µ2).

Information theoretic notions: We now recall some definitions from information the-
ory. For a random variable x, µx denotes the corresponding probability distribution. That
is, for any i, we have µx(i) = Pr[x = i].

40

Let x be a random variable on a finite set Ω. The entropy of x is defined as H(x) =
−
∑

i∈Ω Pr[x = i] log Pr[x = i].

Let x and y be jointly distributed variables on a finite set Ω. The entropy of x condi-
tioned on y is defined as H(x | y) = E

i∼µy
[H(x | y = i)]. The mutual information of x

and y is defined as I(x;y) = dKL(µ(x,y)‖µx × µy).

Let x1, . . . ,xk (k ≥ 2) be jointly distributed variables on a finite set Ω. The mutual in-
formation of x1, . . . ,xk is defined as I(x1; . . . ;xk) = I(x1; . . . ;xk−1)−I(x1; . . . ;xk−1 |
xk), where I(x1; . . . ;xk−1 | xk) = Ei∼µxk [I(x1; . . . ;xk−1 | xk = i)]. The total correla-
tion of x1, . . . ,xk is defined as C(x1, . . . ,xk) = dKL(µ(x1,...,xk)‖µx1 × · · · × µxk).

We give two well-known facts in information theory below.

Lemma 4.2.2. Let x and y be two jointly distributed variables on a finite set Ω. Then

I(x;y) = H(x)−H(x | y).

Let x1, . . . ,xk be jointly distributed variables on a finite set Ω. Then

I(x1; . . . ;xk) =
∑

(i1,...,it)⊆[k],t≥1

(−1)t−1H(xi1 , . . . ,xit).

Lemma 4.2.3. Let x1, . . . ,xk be jointly distributed variables on a finite set Ω. Then

C(x1, . . . ,xk) =
∑

(i1,...,it)⊆[k],t≥2

I(xi1 ; . . . ;xit).

Constraint satisfaction problems: Let D be a nonempty finite domain and k ≥ 2 be
an integer. An instance I = (V, ω, P) of kCSPconsists of a set V of variables, a scope
distribution ω over V k, and a set of payoff functions P = {PS : DS → [0, 1] | S ∈ V k}.
An assignment for an instance I = (V, ω, P) is a mapping α : V → D. The value of
the assignment, denoted val(I, α) ∈ [0, 1], is defined as val(I, α) = Pr

S∼ω
[PS(α|S)], where

α|S is the projection of α to S. We define the optimum value of the instance I to be
opt(I) = maxα{val(I, α)}.

Let I = (V, ω, P) be an instance of CSP. A solution to the `-round Sherali-Adams
relaxation consists of a probability distribution µS over DS for each set S ⊆ V of size at
most `. The objective function is the probability that α is in PS , where S is sampled from
ω and α is sampled from µS . Strictly speaking, we sample a tuple (v1, . . . , vk) from ω, but
we regard it as the set {v1, . . . , vk} when we use it as a subscript of µ. In other words, µS

41

and µT are the same distribution for two tuples S and T if they are the same as sets. Also,
for every pair of sets S and T with |S∪T | ≤ `, the corresponding probability distributions
µS and µT must be consistent on S ∩ T . Formally, the `-round Sherali-Adams relaxation
for a kCSPinstance I = (V, ω, P) (` ≥ k) is written as follows.

maximize E
S∼ω

E
α∼µS

[PS(α)]

subject to Pr
α∼µS

[α|S∩T = β] = Pr
α∼µT

[α|S∩T = β] ∀S, T ⊆ V, |S ∪ T | ≤ `, β ∈ DS∩T .

It is not hard to see that the relaxation above can be written as a linear programming (see,
e.g., [191] for details). We define xv as the random variable sampled from the distribution
µ{v}. We use valLP(I,µ) to denote the objective value of the LP solution µ. The same
definition applies to the following subsections.

Assignment problems: The assignment problem differs from CSP in that we want to
maximize the objective function over the set of permutations. Similarly to CSP, for an
integer k ≥ 2, an instance of the degree-k assignment problem is given as I = (V, ω),
where V is the set of variables, ω is a distribution over V k×V k. The scope distribution of
I is the marginal distribution of ω on the first k elements. An assignment for an instance
I = (V, ω) is a permutation π of V . The value of the assignment π, denoted val(I, π), is
defined as

val(I, π) = nk Pr
(U,W)∼ω

[∀i ∈ [k] : π(ui) = wi] ,

where U = (u1, u2, . . . , uk) and W = (w1, w2, . . . , wk). We define the optimum value of
I to be opt(I) = maxπ{val(I, π)}.

Though the definition of val(I, π) may look non-standard, it is just the objective func-
tion used in [17] with a normalization factor that is multiplied to make the optimum Ω(1)
when ω is dense.

The `-round Sherali-Adams relaxation of an kAP instance I = (V, ω) (` ≥ k) is as
follows.

maximize E
(U,W)∼ω

Pr
α∼µU

[∀i ∈ [k] : α(ui) = wi]

subject to Pr
β∼µS

[β|S∩T = α] = Pr
β∼µT

[β|S∩T = α] ∀S, T ⊆ V, |S ∪ T | ≤ `, α ∈ V S∩T∑
α∈V S

∑
u∈V \S

µS∪{u}(α ∪ {u→ w}) =
∑
α∈V S

µS(α) ∀w ∈ V, S ⊆ V, |S| < `.

The difference from the Sherali-Adams relaxation for CSP is that we have extra constraints
in the last line whose intended meaning is that each value i can be taken by at most one
variable.

42

Density condition: We now introduce the notion of dense and locally dense distribu-
tions.

Let ω be a probability distribution over a finite set Ω. For ∆ ∈ (0, 1], we say ω is
∆-dense if for every a ∈ Ω, it holds that ∆ · ω(a) ≤ 1

|Ω| .

Let ω be a probability distribution over V k. Let di(v) = Pr
S∼ω

[Si = vi] be the probability

that the i-th coordinate is v under ω. For ∆ ∈ (0, 1], we say ω is ∆-locally dense if for
every (v1, . . . , vk) ∈ V k, it holds that

∆ · ω(v1, . . . , vk) ≤
1

|V |k−1

∑
1≤i≤k

di(vi).

Since di(v) =
∑

S∈V k:Si=v

ω(S), the RHS of the locally dense condition is equal to∑
1≤i≤k

E
S∼V k

[ω(S) | Si = vi]. Thus the locally dense condition says that no tuple (v1, . . . , vk)

is “wild” in that ω(v1, . . . , vk) is at most constant times the sum over i of the average
probability mass of S with Si = vi.

The notion of local density is introduced in [75] to generalize the metric condition. To
see this, suppose ω : V 2 → R is a metric. Then, ω is 1-locally dense since, for any u, v ∈
V , we have 1

n
(d1(u) + d2(v)) = 1

n

∑
w(ω(u,w) + ω(w, v)) ≥ 1

n

∑
w ω(u, v) ≥ ω(u, v).

It is immediate to verify the following lemma.

Lemma 4.2.4. Let ω be a probability distribution over Ω1 × Ω2. If ω is ∆-dense (resp.,
∆-locally dense), then the marginal distribution ω1 of ω on Ω1 is also ∆-dense (resp.,
∆-locally dense).

4.3 Conditioning operations for Sherali-Adams LP hier-
archy

Recall that, a solution to the `-round SA relaxation consists of distributions over sets of
` variables. In this section, we show that, if the scope distribution is dense or locally
dense, then by conditioning a small number of variables, we can make variables almost
independent in these distributions. Once variables become almost independent, we can
round variables independently without losing the objective value much (see Section 4.4).

Let I be an instance of kCSPor kAP with a variable set V . Fix ` and let µ be a
solution to the `-round Sherali-Adams relaxation. For a variable set S = (v1, . . . , vk),

43

Cµ(xS) denotes the total correlation C(xv1 , . . . ,xvk) under the probability distribution
µS . We use the following notion to measure independence of variables.

Definition 4.3.1. Let I be an instance of kCSPor kAP with a scope distribution ω. A
solution µ to the `-round SA relaxation for I with ` ≥ k is κ-independent with respect to
distribution ω′ if

E
S∼ω′

[Cµ(xS)] ≤ κ.

We say that µ is κ-independent if it is κ-independent with respect to ω.

In Section 4.3.1, we explain how to condition variables. In Section 4.3.2 and Sec-
tion 4.3.3, we show that the conditioning operation outputs κ-independent LP solutions
for the dense case and the locally dense case, respectively.

4.3.1 Conditioning operations

We first describe the operation of conditioning one variable. Given a solution µ to the
`-round SA relaxation with ` ≥ 2, we sample a vertex u uniformly at random and then set
xu = i, where i is a value sampled from µ{u}. This operation gives a solution µ′ to the
(` − 1)-round SA relaxation: For each tuple (v1, . . . , v`−1) of ` − 1 variables, we define
µ′{v1,...,vk−1}(i1, i2, . . . , ik−1) = µ{v1,...,vk−1,u}(i1, i2, . . . , ik−1, i). It is not hard to check that
µ′ is indeed a solution to the (`− 1)-round SA relaxation.

Our algorithm is given in Algorithm 1. Given an solution µ to the (` + `′)-round SA
relaxation, it iteratively conditions variables. We will show in subsequent sections that, if
ω is ∆-dense or ∆-locally dense, then Algorithm 1 outputs a κ-independent LP solution
in `′ steps on average, where κ = k4k log |D|

`′
. (If ω is ∆-dense, κ can be slightly smaller.)

We mention here the following simple fact.

Lemma 4.3.2. Let µ′ be the solution output by Algorithm 1. Then, E valLP(I,µ′) =
valLP(I,µ).

Proof. Notice that the algorithm respects the marginal distributions provided by the SA
relaxation during sampling the values to variables. Thus, the expected objective value is
preserved.

44

Algorithm 1 Conditioning operation of Sherali-Adams solutions

Input: A feasible solution µ to the (` + `′)-round SA relaxation for a CSP instance I =
(V, ω).

Output: An κ-independent solution to the `-round SA relaxation, where κ = k4k log |D|
`′

Set t = 1.
while the current LP solution is not κ-independent do

Sample a variable ut ∈ V uniformly at random.
Sample a value a from its marginal distribution µ{ut} after the first t− 1 fixings, and
condition the LP solution by setting xut = a.
t = t+ 1.

4.3.2 The dense case

We consider the dense case, that is, ω is a uniform distribution.

Lemma 4.3.3. If ω is uniform distribution over V k, there exists t ≤ `′ such that

E
U∼V t

E
S∼V k

[Cµ(xS | xU)] ≤ 3k log |D|
`′

.

Proof. We consider the value∑
1≤t≤`′

E
U∼V t

E
S∼V k

[Cµ(xS | xU)].

From Lemma 4.2.3, this value can be decomposed as

∑
1≤t≤`′

E
U∼V t

E
S∼V k

 ∑
2≤r≤k

∑
R∈(Sr)

Iµ(xR | xU)


=
∑

2≤r≤k

(
k

r

) ∑
1≤t≤`′

E
U∼V t

E
R∼V r

[Iµ(xR | xU)] ,

where for a set R = (v1, . . . , vr), Iµ(xR) denotes the mutual information IµR(v1; . . . ; vr).

To bound this value, we recall the definition of mutual information. For any t ≤ `′,

E
U∼V t
R∼V r

[Iµ(xR | xU)] = E
U∼V t
R∼V r−1

[Iµ(xR | xU)]− E
U∼V t+1

R∼V r−1

[Iµ(xR | xU)].

45

Adding the equalities from t = 0 to `′, we get∑
0≤t≤`′

E
U∼V t
R∼V r

[Iµ(xR | xU)] = E
R∼V r−1

[I(xR)]− E
U∼V `′+1

R∼V r−1

[Iµ(xR | xU)] ≤ 2r log |D|,

where the last inequality holds from Iµ(xR) ≤ 2|R| log |D| by Lemma 4.2.2. Thus, we
have ∑

0≤t≤`′
E

U∼V t
E

S∼V k
[C(xS | xU)] ≤ 3k log |D|,

and the lemma follows.

The following corollary is immediate.

Corollary 4.3.4. If ω is a ∆-dense distribution over V k. Then there exists t ≤ `′ such that

E
U∼V t

E
S∼ω

[Cµ(xS | xU)] ≤ 3k log |D|
∆`′

.

4.3.3 The locally dense case

We now consider the case that the scope distribution ω is 1-locally dense.

Lemma 4.3.5. If ω is a 1-locally dense distribution over V k, then there exists t ≤ `′ such
that

E
U∼V t

E
S∼ω

[Cµ(xS | xU)] ≤ k4k log k|D|
`′

.

Proof. We consider the value ∑
1≤t≤`′

E
U∼V t

E
S∼ω

[Cµ(xS | xU)]. (4.1)

From Lemma 4.2.3, this value can be decomposed as

∑
1≤t≤`′

E
U∼V t

E
S∼ω

 ∑
2≤r≤k

∑
R∈(Sr)

Iµ(xR | xU)


=

∑
J⊆[k]:2≤|J |≤k

∑
1≤t≤`′

E
U∼V t

E
R∼ω|J

[Iµ(xR | xU)] ,

46

where ω|J denotes the marginal distribution of ω on J .

Fix J ⊆ [k] with |J | = r ≥ 2. Let ωi be the marginal distribution of ω on the i-th
coordinate. Let Ωi = ωi × V r−1 and Ω′i = ωi × V r−2. We first analyze I(xR) under Ωi

instead of ω|J .

From the definition, for any i and t ≤ `′,

E
U∼V t
R∼Ωi

I(xR | xU) = E
U∼V t
R∼Ω′i

I(xR | xU)− E
U∼V t+1

R∼Ω′i

I(xR | xU).

Adding the equalities from t = 0 to t = `′, we get∑
0≤t≤`′

E
U∼V t
R∼Ωi

I(xR | xU) = E
R∼Ω′i

I(xR)− E
U∼V `′+1

R∼Ω′i

H(xR | xU) ≤ 2r log |D|. (4.2)

Now we turn to analyze I(xv1 ; · · · ;xvr) under ω|J .

E
U∼V t
R∼ω|J

I(xR | xU) = E
U∼V t

∑
R∼V r

ω|J(R)I(xR | xU)

≤ E
U∼V t

∑
(v1,...,vr)∼V r

1

nr−1

∑
1≤i≤r

di(vi)I(xv1 ; · · · ;xvr | xU)

(by local density and Lemma 4.2.4)

=
∑

1≤i≤r
E

U∼V t

∑
(v1,...,vr)∼V r

1

nr−1
Pr
S∼ω

[Si = vi]I(xv1 ; · · · ;xvr | xU)

=
∑

1≤i≤r
E

U∼V t

∑
R∼V r

Ωi(R)I(xv1 ; · · · ;xvr | xU)

=
∑

1≤i≤r
E

U∼V t
R∼Ωi

I(xR | xU).

Thus from (4.2), ∑
0≤t≤`′

E
U∼V t
R∼ω|J

I(xR | xU) ≤
∑

1≤i≤r

2r log |D| = r2r log |D|.

It follows that (4.1) ≤ k4k log |D| and the lemma holds.

The following corollary is immediate.

47

Corollary 4.3.6. If ω is a ∆-locally dense distribution over V k, then there exists t ≤ `′

such that

E
U∼V t

E
S∼ω

[Cµ(xS | xU)] ≤ k4k log |D|
∆`′

.

4.4 Rounding κ-independent solutions

4.4.1 Constraint satisfaction problems

Lemma 4.4.1. Let I = (V, ω, P) be a kCSPinstance over finite domain D. Let µ be a κ-
independent solution to the k-round Sherali-Adams LP relaxation. There is a randomized
polynomial time algorithm to find an assignment α : V → D such that val(I, α) ≥
valLP(I,µ)− 3

√
κ.

Proof. For each v ∈ V , let α(v) be independently sampled from µ{v}. For each S ∈ V k,
by the definition of total correlation, Lemma 4.2.1, and the fact that PS(β) ∈ [0, 1] we
have ∣∣∣∣ E

β∼µS
PS(β)− E

α
PS(α|S)

∣∣∣∣ ≤ 2
√
C(xS).

Therefore by κ-independence,

∣∣∣∣ E
S∼ω

(
E

β∼µS
PS(β)− E

α
PS(α|S)

)∣∣∣∣ ≤ E
S∼ω

2
√
C(xS) ≤ 2

√
E
S∼ω

C(xS) ≤ 2
√
κ .

We have proved that Eα[val(I, α)] ≥ valLP(I,µ)− 2
√
κ. Therefore we can sample an α

in expected polynomial time such that val(I, α) ≥ valLP(I,µ)− 3
√
κ.

48

4.4.2 Assignment problems

Let I = (V, ω) be a ∆-dense kAP instance. We introduce the following relaxationH, and
let valH(I) be its optimal value.

maximize nk E
(U,W)∼ω

k∏
i=1

xui,wi

subject to xu,w ≥ 0 ∀u,w ∈ V k∑
u∈V

xu,w = 1 ∀w ∈ V∑
w∈V

xu,w = 1 ∀u ∈ V.

4.4.2.1 From κ-independence to relaxationH

We first see that we can find a good solution to H using a solution to the Sherali-Adams
LP relaxation of a dense instance I.

Lemma 4.4.2. Let I = (V, ω) be a kAP instance such that ω is ∆-dense. Let µ be a
κ-independent solution (with respect to the uniform distribution rather than ω) to the k-
round Sherali-Adams LP relaxation of I. There is a polynomial-time algorithm, on input
µ, to find a solution toH that certifies that valH(I) ≥ valLP(I,µ)− 2

√
κ/∆.

Proof. Let xu,w = µu(w) for all u,w ∈ V . For each S = (u1, u2, . . . , uk) ∈ V k, by the
definition of total correlation and Lemma 4.2.1 we have

∑
T=(w1,...,wk)

∣∣∣∣∣µS(T)−
k∏
i=1

xui,wi

∣∣∣∣∣ ≤ 2
√
C(xS). (4.3)

Therefore,∣∣∣∣∣ E
(S,T)=(u1,...uk,v1,...,vk)∼ω

(
µS(T)−

k∏
i=1

xui,wi

)∣∣∣∣∣
≤ 1

∆
E

(S,T)=(u1,...uk,v1,...,vk)∼V 2k

∣∣∣∣∣µS(T)−
k∏
i=1

xui,wi

∣∣∣∣∣ (by density)

≤ 1

∆nk
E

S∼V k
2
√
C(xS) (by (4.3))

49

≤ 2

∆nk

√
E

S∼V k
C(xS) ≤ n−k · 2

√
κ

∆
. (by κ-independence)

The following variant of Lemma 4.4.2 is used when dealing with the locally dense case
later.

Lemma 4.4.3. Let I = (V, ω) be a kAP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′′ is a ∆-dense distribution over V k. Let µ be
a κ-independent solution to the k-round Sherali-Adams LP relaxation of I. There is a
polynomial-time algorithm, on inputµ, to find a solution toH that certifies that valH(I) ≥
valLP(I,µ)− 2

√
κ/∆.

Proof. Let xu,w = µu(w) for all u,w ∈ V . Similar to the proof of Lemma 4.4.2, we have∣∣∣∣∣ E
(S,T)=(u1,...uk,v1,...,vk)∼ω

(
µS(T)−

k∏
i=1

xui,wi

)∣∣∣∣∣
≤ 1

∆
E

S=(u1,...uk)∼ω′
T=(v1,...,vk)∼V k

∣∣∣∣∣µS(T)−
k∏
i=1

xui,wi

∣∣∣∣∣ (by density of ω′′)

≤ 1

∆nk
E

S∼ω′
2
√
C(xS) (by (4.3))

≤ 2

∆nk

√
E

S∼ω′
C(xS) ≤ n−k · 2

√
κ

∆
. (by κ-independence)

4.4.2.2 From relaxationH to an integral solution

At a first look, H is very close to the kAP problem itself. However, we cannot indepen-
dently sample π(v) from each xv inH to get a solution to kAP, since there is chance that
π(v) = π(v′), rendering π not a permutation. Indeed, we show in Section 4.9 that for
some kAP instance I, there is a gap between valH(I) and val(I). However, our following
lemma shows that this gap cannot be very big for kAP instances I = (V, ω) when ω is
∆-dense. The proof is given later in Section 4.6.

50

Lemma 4.4.4. Let I = (V, ω) be a kAP instance such that ω is ∆-dense. Given a solution
x to relaxation H, let valH(I,x) be the value of the solution. There is a randomized
polynomial-time algorithm to compute a permutation π such that val(I, π) ≥ valH(I,x)−
7k2 logn

∆
√
n

.

In Section 4.7, we prove the following variant of Lemma 4.4.4.

Lemma 4.4.5. Let I = (V, ω) be a kAP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk), where ω′ is ∆′-locally dense and ω′′ is ∆-dense. Given
a solution x to the relaxation H, let valH(I,x) be the value of the solution. There is a
randomized polynomial-time algorithm to compute a permutation π such that val(I, π) ≥
valH(I,x)− 7k2 logn

∆∆′
√
n

.

4.4.3 The rounding lemmas

Combining Lemma 4.4.2 and Lemma 4.4.4, and Lemma 4.4.3 and Lemma 4.4.5, we get
the following main rounding lemmas for this subsection.

Lemma 4.4.6. Let I = (V, ω) be a kAP instance such that ω is ∆-dense. Let µ be a
κ-independent solution (with respect to the uniform distribution rather than ω) to the k-
round Sherali-Adams LP relaxation for I. There is a polynomial-time algorithm, on input
µ, to find a permutation π such that val(I, π) ≥ valLP(I,µ)− 2

√
κ

∆
− 7k2 logn

∆
√
n

.

Lemma 4.4.7. Let I = (V, ω) be a kAP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′ is ∆′-locally dense and ω′′ is ∆-dense. Let µ
be a κ-independent solution to the k-round Sherali-Adams LP relaxation of I. There is
a randomized polynomial-time algorithm, on input µ, to find a permutation π such that
val(I, π) ≥ valLP(I,µ)− 2

√
κ

∆
− 7k2 logn

∆∆′
√
n

.

4.5 Putting things together

The following theorem gives PTASs for dense and locally dense MAX-CSP.

Theorem 4.5.1. Let I = (V, ω, P) be a kCSPinstance over finite domain D such that
ω is ∆-dense or ∆-locally dense. For any ε > 0, let ` = 9k24k log |D|

ε2∆
. The additive

integrality gaps of the (`+k)-round Sherali-Adams LP relaxation is at most ε; and there is
a randomized rounding algorithm producing a solution whose value is at least opt(I)− ε,
in expected nO(`) time.

51

Proof. Let µ be a solution to the (` + k)-round Sherali Adams LP relaxation. Let the
random variable (µ|xU) be the solution after conditioning on the variables in U . By
Corollary 4.3.4 and Corollary 4.3.6, we know that there exists t ≤ ` such that

E
U∼V t

√
E
S∼ω

Cµ(xS|xU) ≤
√

E
U∼V t

E
S∼ω

Cµ(xS|xU) ≤
√
k24k log |D|

∆`
=
ε

3
.

Together with Lemma 4.3.2, we have

E
U∼V t

(
valLP(I,µ|xU)− 3

√
E
S∼ω

Cµ(xS|xU)

)
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′ to the (k +
` − t)-round Sherali-Adams LP relaxation such that valLP(I,µ′) − 3

√
ES∼ω Cµ′(xS) ≥

valLP(I,µ)−ε. Sinceµ′ is always a ES∼ω Cµ′(xS)-independent solution, by Lemma 4.4.1,
givenµ′, we can find an assignment with value at least valLP(I,µ)−ε in randomized poly-
nomial time.

Now we prove that there is a quasi-polynomial-time approximation scheme for dense
MAX-AP.

Theorem 4.5.2. Let I = (V, ω) be a kAP instance such that ω is ∆-dense. For any ε > 0,
let ` = 4k4k log |D|

ε2∆2 . The additive integrality gaps of the (` + k)-round Sherali-Adams LP
relaxation is at most ε+ 7k2 logn

∆
√
n

; and there is a randomized rounding algorithm producing

a solution whose value is at least opt(I)− ε− 7k2 logn
∆
√
n

, in expected nO(`) time.

Proof. Letµ be a solution to the (`+k)-round Sherali Adams LP relaxation. By Lemma 4.3.3,
we know that there exists t ≤ ` such that

E
U∼V t

√
E

S∼V k
Cµ(xS|xU) ≤

√
E

U∼V t
E

S∼V k
Cµ(xS|xU) ≤

√
k4k log n

`
=
ε∆

2
.

Together with Lemma 4.3.2, we have

E
U∼V t

(
valLP(I,µ|xU)− 2

∆

√
E

S∼V k
Cµ(xS|xU)

)
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′ to the (k +
`− t)-round Sherali-Adams LP relaxation such that valLP(I,µ′)− 2

√
ES∼V kCµ′(xS) ≥

valLP(I,µ)− ε. By Lemma 4.4.6, given µ′, we can find a permutation with value at least
valLP(I,µ)− ε− 7k2 logn

∆
√
n

.

52

Using Corollary 4.3.6 and Lemma 4.4.7 instead of Lemma 4.3.3 and Lemma 4.4.6,
the same argument shows that there is a quasi-polynomial-time approximation scheme for
locally dense MAX-AP.

Theorem 4.5.3. Let I = (V, ω) be a kAP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′ is ∆′-locally dense and ω′′ is ∆-dense. For any
ε > 0, let ` = 4k24k log |D|

ε2∆′∆2 . The additive integrality gaps of the (` + k)-round Sherali-
Adams LP relaxation is at most ε+ 7k2 logn

∆∆′
√
n

; and there is a randomized rounding algorithm

producing a solution whose value is at least opt(I)− ε− 7k2 logn
∆∆′
√
n

, in expected nO(`) time.

4.6 Proof of Lemma 4.4.4

Observe that a solution x to the relaxation H corresponds to a doubly stochastic matrix.
Now let us decompose x into a distribution of permutations D = {π : V → V } such that
for any u,w ∈ V , we have Prπ∼D [π(u) = w] = xu,w . Let valH(I,D) = valH(I,x) be
the value of relaxation H on x for instance I. Our goal is to “merge” the permutations
in D into one permutation while not losing much in the objective value. The following
lemma proves this for the special case when D is supported on only two permutations.

Lemma 4.6.1. Let D be the distribution over π1 and π2 such that π1 is chosen with prob-
ability p and π2 is chosen with probability (1 − p). There exists a distribution D′ over
permutations such that for any k ≥ 2 and any kAP instance I = (V, ω) such that ω is
∆-dense , we have

E
π∼D′

[val(I, π)] ≥ valH(I,D)− 2k2

∆
√
n
.

Moreover, D′ can be sampled in polynomial time.

Proof. Let us assume w.l.o.g. that V = [n], π1 = id (i.e. π1(i) = i for all i ∈ [n]). For
any set A = {ai : a1 < a2 < · · · < a|A| = n} ⊆ [n], let us define πA be the permutation
over [n] so that πA(i) = at−1 + 1 if i = at for some t ∈ [|A|] and πA(i) = i+ 1 otherwise
(assuming a0 = 0). We can also assume w.l.o.g. that there exists A ⊆ [n] such that
π2 = πA. See Figure 4.1. We can add at most

√
n elements into A to get A′ ⊆ [n] such

that there is no set of
√
n consecutive integers that does not intersect A′. It is easy to show

that πA and πA′ differ at most 2
√
n places. Let DA′ be the probability distribution that

chooses π1 with probability p and πA′ with probability (1 − p). For any k and any kAP
instance I = (V, ω) such that ω is ∆-dense, we have

valH(I,D)− valH(I,DA′)

53

1 1

2 2

3 3

4 4

5 5

Figure 4.1: Permutations π1 and π2 over [5] shown as mappings from [5] to [5].

Solid arrow represents π1 and dashed arrows represent π2. For any permutation π1, we can
move vertices in the right side (and relabeling them accordingly) so that the resulting π1

is the identity permutation. Then for any permutation π2, we can move pairs of vertices
(and relabeling them accordingly) so that π1 remains the identity permutation whereas the
cycles formed by π1 and π2 are drawn disjointly. In such a case, π2 satisfies the condition
in the body text.

=nk E
(U,W)∼ω

(
k∏
i=1

Pr
π∼D

[π(ui) = wi]−
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

)

≤nk E
(U,W)∼ω

1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·
k∏
i=1

Pr
π∼D

[π(ui) = wi]

≤n
k

∆
· E

(U,W)∼V 2k
1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·

k∏
i=1

Pr
π∼D

[π(ui) = wi], (4.4)

where the last inequality is by the density of ω.

Since

nk E
W∼V k

k∏
i=1

Pr
π∼D

[π(ui) = wi] =
k∏
i=1

∑
wi∼V

Pr
π∼D

[π(ui) = wi] = 1, (4.5)

54

we have

(4.4) ≤ 1

∆
· Pr
U∼V k

[∃i ∈ [k] : πA′(ui) 6= πA(ui)] ≤
2k

∆
√
n
. (4.6)

Now we define the distributionD′. Let us assume that the elements inA′ are a′1 < a′2 <
. . . < a′|A′| = n; let a′0 = 0 for convenience. To draw a permutation π ∼ D′, we sample
|A′| i.i.d. 0/1 bits b1, b2, . . . , b|A′|, each of which has mean p. For each i, we find out the
unique t ∈ [|A′|] so that a′t−1 < i ≤ a′t; let π(i) = π1(i) = i if bt = 0; let π(i) = πA′(i)
otherwise.

For any k and any ∆-dense kAP instance I = (V, ω), we have

valH(I,DA′)− E
π∼D′

val(I, π)

=nk E
(U,W)∼ω

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]− Pr
π∼D′

[∀i ∈ [k] : π(ui) = wi]

)

=nk E
(U,W)∼ω

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

−
|A′|∏
t=1

Pr
π∼D′

[∀i ∈ [k], a′t−1 < ui ≤ a′t : π(ui) = wi]


≤nk E

(U,W)∼ω
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·

k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

≤n
k

∆
E

(U,W)∼V 2k
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·

k∏
i=1

Pr
π∼DA′

[π(ui) = wi] (by density)

=
1

∆
Pr

U∼V k

[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
(by (4.5))

≤ 1

∆
·
(
k

2

)
·
∑
t∈[|A′|]

(
a′t − a′t−1

n

)2

≤ 1

∆
·
(
k

2

)
·
∑
t∈[|A′|]

(
a′t − a′t−1

n

)
· 1√

n
≤ k2

√
n
. (4.7)

The lemma is proved by combining (4.6) and (4.7).

55

of Lemma 4.4.4. Let D be supported on π1, π2, . . . , πm, each πi is chosen with probability
pi. We can assume that m ≤ n2 by preserving only the n2 permutations with the largest
probabilities and proper normalization, which would cause a loss of at most n−1 in the
objective value valH(I,D). Now we show that for any such distribution, we can find a
distribution E that is supported on (m− 1) permutations, such that

valH(I, E) ≥ valH(I,D)− (p1 + p2)
2k2

∆
√
n
. (4.8)

In other words, since π1 and π2 are arbitrary, we are able to “merge” any two permutations
πi and πj inD by paying a loss of (pi+pj)

2k2

∆
√
n

in the objective value. We repeatedly merge
the two permutations with the smallest probability mass in the distribution until there is
only one permutation left, during this process we lose at most dlogme 2k2

∆
√
n
≤ 6k2 logn

∆
√
n

in
objective value. Together with the n−1 loss at the beginning of the proof, we lose at most
7k2 logn

∆
√
n

for sufficiently large n.

In order to show (4.8), let us define a distribution Ẽ of distributions of permutations
as follows. Let F to be the distribution of permutations that chooses π1 with probability
p1

p1+p2
and π2 with the remaining probability. Apply Lemma 4.6.1 on F to get F ′. A

distribution E from Ẽ is sampled by first sampling a permutation π from F ′, and returning
the distribution that puts probability mass (p1 +p2) on π and pi on πi for all i : 3 ≤ i ≤ m.
For every u,w ∈ V , let γu,w =

∑m
t=3 pt1[πt(u) = w] ≤ 1. We have

E
E∼Ẽ

valH(I, E) = E
E∼Ẽ

E
(U,W)∼ω

k∏
i=1

Pr
π∼E

[π(ui) = wi]

= E
π∼F ′

E
(U,W)∼ω

k∏
i=1

((p1 + p2)1[π(ui) = wi] + γui,wi)

=
∑
Q⊆[k]

E
(U,W)∼ω

(
E

π∼F ′

∏
i∈Q

(p1 + p2)1[π(ui) = wi]

)∏
i∈Q

γui,wi


=
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| E
(UQ,WQ)
∼ω|(UQ,WQ)

(
E

π∼F ′

∏
i∈Q

1[π(ui) = wi]

)
, (4.9)

where UA is the restriction of vector U over coordinates in A, ω(A,B) is the marginal
distribution of ω over A in the first k coordinates and B in the last k coordinates, and
ω|(UA,WB) is the distribution ω conditioned on that coordinates in A are assigned U and

56

coordinates in B are assigned W . Let IUQ,WQ
be the |Q|-AP instance

(
V, ω|(UQ,WQ)

)
.

We know that ω|(UQ,WQ) is ∆ ·n2|Q| ·ω(Q,Q)(UQ,WQ)-dense. Therefore for everyQ 6= ∅,
by Lemma 4.6.1, we have

E
(UQ,WQ)
∼ω|(UQ,WQ)

(
E

π∼F ′

∏
i∈Q

1[π(ui) = wi]

)
= E

π∼F ′
val(IUQ,WQ

, π)

≥valH(IUQ,WQ
,F)− 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n

= E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(
p11[π1(ui) = wi] + p21[π2(ui) = wi]

p1 + p2

)
− 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n
.

Therefore we have

(4.9) ≥
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(p11[π1(ui) = wi] + p21[π2(ui) = wi])

−
∑
∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n

= E
(U,W)∼ω

(
m∑
t=1

pt1[πt(ui) = wi]

)

−
∑
∅6=Q⊆[k]

E
(UQ,WQ)

∼V Q×Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k2

∆
√
n

≥valH(I,D)− (p1 + p2)
2k2

∆
√
n
.

In all, we have proved that EE∼Ẽ valH(I, E) ≥ valH(I,D) − (p1 + p2) 2k2

∆
√
n

. Since Ẽ can
be sampled in polynomial time, there is a randomized polynomial-time algorithm to find
out a E satisfying (4.8).

57

4.7 Proof of Lemma 4.4.5

We say a distribution ω′ over V k is ∆′-well spread if for every i, j ∈ [k] such that i 6= j,
and for every disjoint partition V = V1 ∪ V2 ∪ · · · ∪ Vt, we have

∆′ · Pr
(u1,...,uk)∼ω′

[∃t′ ∈ [t] : ui ∈ Vt′ and uj ∈ Vt′] ≤
maxt′∈[t] |Vt′ |

n
.

Claim 4.7.1. A ∆′-locally dense distribution ω′ is (∆′/k)-well spread.

Proof. W.l.o.g. we assume that i = 1 and j = 2. For every Z ⊆ V , we have

Pr
(u1,...,uk)∼ω′

[∃t′ ∈ [t] : ui ∈ Vt′ and uj ∈ Vt′]

=
∑
t′∈[t]

∑
u1,u2∈Vt′
u3,...,uk∈V

ω′(u1, . . . , uk) ≤
∑
t′∈[t]

∑
u1,u2∈Vt′
u3,...,uk∈V

∑k
i=1 di(ui)

∆′nk−1

=
∑
t′∈[t]

(∑
u2∈Vt′

u3,...,uk∈V

∑
u1∈Vt′

d1(u1)

∆′nk−1
+

∑
u1∈Vt′

u3,...,uk∈V

∑
u2∈Vt′

d2(u2)

∆′nk−1

+
k∑
i=3

∑
u1,u2∈Vt′

u3,...,ui−1,ui+1,...,uk∈V

∑
ui∈V di(ui)

∆′nk−1

)

≤2 ·
maxt′∈[t] |Vt′ |

∆′n
+ (k − 2) ·

∆′maxt′∈[t] |Vt′|2

n2
≤
kmaxt′∈[t] |Vt′ |

∆′n
.

We will prove a slightly stronger statement than that of Lemma 4.4.5, in the sense that
we prove the lemma for every ω such that ω = ω′ · ω′′ where ω′ is ∆′-well spread and ω′′

is ∆-dense.

The proof goes along the lines of the proof of Lemma 4.4.4. We decompose x into
a distribution of permutations D = {π : V → V } such that for any u,w ∈ V , we
have Prπ∼D [π(u) = w] = xu,w. We first prove following lemma, which is an analogy of
Lemma 4.6.1.

Lemma 4.7.2. Let D be the distribution over π1 and π2 such that π1 is chosen with prob-
ability p and π2 is chosen with probability (1 − p). There exists a distribution D′ over

58

permutations and a distribution V over the disjoint partitions {(V1∪· · ·∪Vt)} where each
Vi has at most 2

√
n elements, such that for any k ≥ 2 and any kAP instance I = (V, ω)

such that ω = ω′ · ω′′ where ω′′ is ∆-dense, we have

E
π∼D′

[val(I, π)] ≥ valH(I,D)− 2k

∆
√
n

− 1

∆

∑
1≤i<j≤k

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
(u1,...,uk)∼ω′

[ui ∈ Vt′ and uj ∈ Vt′].

Moreover, D′ can be sampled in polynomial time.

Proof. Let us assume w.l.o.g. that V = [n], π1 = id (i.e. π1(i) = i for all i ∈ [n]). For
any set A = {ai : a1 < a2 < · · · < a|A| = n} ⊆ [n], let us define πA be the permutation
over [n] so that πA(i) = at−1 + 1 if i = at for some t ∈ [|A|] and πA(i) = i+ 1 otherwise
(assuming a0 = 0). We can also assume w.l.o.g. that there exists A ⊆ [n] such that
π2 = πA.

Now we define the random set variable A′ : A ⊆ A ⊆ V as follows. We start from
A′ = A, and for each i ∈ [

√
n], we uniformly sample an element a from ((i− 1)

√
n, i
√
n]

and let A′ ← A′ ∪ {a}. In this way, we know that there is no set of 2
√
n consecutive

integers that does not intersect A′. It is easy to show that for every v ∈ V , PrA′ [πA(v) 6=
πA′(v)] ≤ 2√

n
.

Let DA′ be the probability distribution that chooses π1 with probability p and πA′ with
probability (1 − p). For any k and any kAP instance I = (V, ω) such that ω is ∆-dense,
we have

valH(I,D)− E
A′
valH(I,DA′)

=nk E
(U,W)∼ω

(
k∏
i=1

Pr
π∼D

[π(ui) = wi]−
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

)

≤nk E
U∼ω′,W∼ω′′

E
A′
1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·

k∏
i=1

Pr
π∼D

[π(ui) = wi]

≤n
k

∆
· E
U∼ω′

E
A′
1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] · E

W∼V k

k∏
i=1

Pr
π∼D

[π(ui) = wi], (4.10)

where the last inequality is by the density of ω′′. By (4.5), we have

(4.10) ≤ 1

∆
· E
U∼ω′

Pr
A′

[∃i ∈ [k] : πA′(ui) 6= πA(ui)] ≤
2k

∆
√
n
. (4.11)

59

For every A′ ⊆ [n], we define the distribution D′A′ . Let us assume that the elements
in A′ are a′1 < a′2 < . . . < a′|A′| = n; let a′0 = 0 for convenience. To draw a permutation
π ∼ D′A′ , we sample |A′| i.i.d. 0/1 bits b1, b2, . . . , b|A′|, each of which has mean p. For
each i, we find out the unique t ∈ [|A′|] so that a′t−1 < i ≤ a′t; let π(i) = π1(i) = i if
bt = 0; let π(i) = πA′(i) otherwise.

Now we define the distribution D′. To draw a permutation π ∼ D′, we first sample a
random set A′, and then draw a permutation from D′A′ .

For any k and any kAP instance I = (V, ω) such that ω = ω′ ·ω′′ where ω′′ is ∆-dense,
we have

E
A′
valH(I,DA′)− E

π∼D′
val(I, π)

=nk E
(U,W)∼ω

E
A′

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]− Pr
π∼D′

A′
[∀i ∈ [k] : π(ui) = wi]

)

=nk E
(U,W)∼ω

E
A′

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

−
|A′|∏
t=1

Pr
π∼D′

A′
[∀i ∈ [k], a′t−1 < ui ≤ a′t : π(ui) = wi]


≤nk E

(U,W)∼ω
E
A′
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·

k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

≤n
k

∆
E

U∼ω′
E
A′
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
· E
W∼V k

k∏
i=1

Pr
π∼DA′

[π(ui) = wi] (by density)

≤ 1

∆
E

U∼ω′
E
A′
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
(by (4.5))

≤ 1

∆

∑
1≤i<j≤k

E
A′

∑
t∈[|A′|]

Pr
(u1,...,uk)∼ω′

[a′t−1 < ui, uj ≤ a′t]. (4.12)

The lemma is proved by combining (4.11) and (4.12).

Now we are ready to prove Lemma 4.4.5.

60

of Lemma 4.4.5. Let D be supported on π1, π2, . . . , πm, each πi is chosen with probability
pi. We can assume that m ≤ n2 by preserving only the n2 permutations with the largest
probabilities and proper normalization, which would cause a loss of at most n−1 in the
objective value valH(I,D). Now we show that for any such distribution, we can find a
distribution E that is supported on (m− 1) permutations, such that

valH(I, E) ≥ valH(I,D)− (p1 + p2)
2k2

∆∆′
√
n
. (4.13)

In other words, since π1 and π2 are arbitrary, we are able to “merge” any two permutations
πi and πj in D by paying a loss of (pi + pj)

2k2

∆∆′
√
n

in the objective value. We repeatedly
merge the two permutations with the smallest probability mass in the distribution until
there is only one permutation left, during this process we lose at most dlogme 2k2

∆
√
n
≤

6k2 logn
∆∆′
√
n

in objective value. Together with the n−1 loss at the beginning of the proof, we

lose at most 7k2 logn
∆∆′
√
n

for sufficiently large n.

In order to show (4.13), let us define a distribution Ẽ of distributions of permutations
as follows. Let F to be the distribution of permutations that chooses π1 with probability
p1

p1+p2
and π2 with the remaining probability. Apply Lemma 4.7.2 on F to get F ′. A

distribution E from Ẽ is sampled by first sampling a permutation π from F ′, and returning
the distribution that puts probability mass (p1 +p2) on π and pi on πi for all i : 3 ≤ i ≤ m.
For every u,w ∈ V , let γu,w =

∑m
t=3 pt1[πt(u) = w] ≤ 1. We have

E
E∼Ẽ

valH(I, E) = E
E∼Ẽ

E
(U,W)∼ω

k∏
i=1

Pr
π∼E

[π(ui) = wi]

= E
π∼F ′

E
(U,W)∼ω

k∏
i=1

((p1 + p2)1[π(ui) = wi] + γui,wi)

=
∑
Q⊆[k]

E
(U,W)∼ω

(
E

π∼F ′

∏
i∈Q

(p1 + p2)1[π(ui) = wi]

)∏
i∈Q

γui,wi


=
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| E
(UQ,WQ)
∼ω|(UQ,WQ)

(
E

π∼F ′

∏
i∈Q

1[π(ui) = wi]

)
, (4.14)

where UA is the restriction of vector U over coordinates in A, ω′′A is the marginal distri-
bution of ω′′ over the coordinates in A, and ω(A,B) is the marginal distribution of ω over
A in the first k coordinates and B in the last k coordinates. Let IUQ,WQ

be the |Q|-AP

61

instance
(
V, ω|(UQ,WQ)

)
. We know that ω|(UQ,WQ) = (ω′|UQ) · (ω′′|WQ), and ω′′|WQ

is ∆ · n|Q| · ω′′
Q

(WQ)-dense. Therefore for every Q 6= ∅, by Lemma 4.7.2, we have

E
(UQ,WQ)
∼ω|(UQ,WQ)

(
E

π∼F ′

∏
i∈Q

1[π(ui) = wi]

)
= E

π∼F ′
val(IUQ,WQ

, π)

≥valH(IUQ,WQ
,F)− 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

− n−|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
UQ∼ω′|UQ

[ui ∈ Vt′ and uj ∈ Vt′]

= E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(
p11[π1(ui) = wi] + p21[π2(ui) = wi]

p1 + p2

)
− 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

− n−|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
UQ∼ω′|UQ

[ui ∈ Vt′ and uj ∈ Vt′].

Therefore we have

(4.14)

≥
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(p11[π1(ui) = wi] + p21[π2(ui) = wi])

−
∑
∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

−
∑
∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q|

· n|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)
∼V

∑
t′∈[t]

Pr
UQ∼
ω′|UQ

[ui, uj ∈ Vt′]

= E
(U,W)∼ω

(
m∑
t=1

pt1[πt(ui) = wi]

)

62

−
∑
∅6=Q⊆[k]

E
UQ∼ω′

Q

WQ∼V
Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k

∆
√
n

−
∑
∅6=Q⊆[k]

E
U∼ω′

WQ∼V
Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q|
1

∆

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

1[ui, uj ∈ Vt′]

≥valH(I,D)− (p1 + p2)
1

∆

(
2k√
n

+
k2

∆′
√
n

)
≥ valH(I,D)− (p1 + p2)

2k2

∆∆′
√
n
.

(by well-spreadness of ω′ and the maximum size of |Vt|)

In all, we have proved that EE∼Ẽ valH(I, E) ≥ valH(I,D)− (p1 + p2) 2k2

∆∆′
√
n

. Since Ẽ can
be sampled in polynomial time, there is a randomized polynomial-time algorithm to find
out a E satisfying (4.13).

4.8 Bisection MAXkCSP

In this section, we consider the bisection MAX-CSP as a notable example of MAX-CSP
with globally cardinality constraints.

yFix a finite domain D and a kCSPinstance I over D. A global cardinality constraint
is a linear constraint on the numbers of variables that are assigned to the values in D.
For simplicity and illustration purpose, here we only consider the bisection constraint –
i.e., assuming D = {0, 1}, the number of variables that take value 1 is exactly n/2 (for
even integers n). For a bisection kCSPinstance I = (V, ω, P), we define its optimal value
to be

opt(I) = max
α:|{v∈V :α(v)=1}|=n/2

{val(I, α)},

where the definition of val(I, α) remains the same as in the ordinary kCSPcase.

The `-round Sherali-Adams relaxation for a bisection kCSPinstance I = (V, ω, P)

63

(` ≥ k) is written as follows.

maximize E
S∼ω

E
α∼µS

[PS(α)]

subject to Pr
α∼µS

[α|S∩T = β] = Pr
α∼µT

[α|S∩T = β]

∀S, T ⊆ V, |S ∪ T | ≤ `, β ∈ DS∩T∑
v∈V

Pr
α∼µS∪{v}

[α|S = β and α(v) = 1] =
n

2
· µS(β)

∀S ⊆ V, S < `, β ∈ {0, 1}S,

where the last constraint corresponds to the bisection constraint.

We now turn to how to round κ-independent solutions. The following lemma is similar
to Lemma 4.4.1.

Lemma 4.8.1. Let I = (V, ω, P) be a bisection kCSPinstance. Letµ be an κ-independent
solution (with respect to both uniform distribution and ω, 0 ≤ κ ≤ 1) to the k-round
Sherali-Adams LP relaxation. There is a randomized polynomial time algorithm to find an
assignment α : V → {0, 1} such that val(I, α) ≥ valLP(I,µ) − 3kκ1/4 and |{v ∈ V :
α(v) = 1}| = n/2.

Proof. We sample α in the same way as we did in the proof of Lemma 4.4.1, and we see
that Eα[val(I, α)] ≥ valLP(I)− 2

√
κ. Also observe that

E
α

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣ ≤
√√√√E

α

(∑
v∈V

α(v)− n

2

)2

=

√ ∑
v1,v2∈V

E
α

[α(v1)α(v2)]− n
∑
v∈V

E
α

[α(v)] +
n2

4
=

√ ∑
v1,v2∈V

E
α

[α(v1)α(v2)]− n2

4

≤
√ ∑

v1,v2∈V

Pr
β∼µ{v1,v2}

[β(v1) = β(v2) = 1] +
√
κ− n2

4
= κ1/4,

where the last inequality is because of κ-independence with respect to uniform distribu-
tion, the definition of total correlation, and Lemma 4.2.1; the last equality is because of
Sherali-Adams constraints.

In all, we have

E
α

(
val(I, α)− k

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣
)
≥ valLP(I,µ)− 2

√
κ− kκ1/4

64

≥ valLP(I,µ)− 2kκ1/4.

We can sample an α in expected polynomial time so that

E
α

[
val(I, α)−

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣
]
≥ valLP(I)− 3kκ1/4.

By greedily rearranging
∣∣Ev∈V [α(v)]− 1

2

∣∣-fraction of the entries in α, we get a bisection
assignment α′ such that val(I, α′) ≥ valLP(I,µ)− 3kκ1/4.

Finally as a counterpart to Theorem 4.5.1, we show the following.

Theorem 4.8.2. Let I = (V, ω, P) be a bisection kCSPinstance over domain {0, 1} such
that ω is ∆-dense or ∆-locally dense. For any ε > 0, let ` = 2·34k64k log |D|

ε4∆
. The additive

integrality gaps of the (`+k)-round Sherali-Adams LP relaxation is at most ε; and there is
a randomized rounding algorithm producing a solution whose value is at least opt(I)− ε,
in expected nO(`) time.

Proof. Let µ be a solution to the (`+k)-round Sherali Adams LP relaxation. Similar as in
the proof of Theorem 4.5.1, Corollary 4.3.4 and Corollary 4.3.6, we know that there exists
t ≤ ` such that

E
U∼V t

4

√
E

S∼V k
Cµ(xS|xU) + E

S∼ω
Cµ(xS|xU)

≤ 4

√
E

U∼V t

(
E

S∼V k
Cµ(xS|xU) + E

S∼ω
Cµ(xS|xU)

)
≤ 4

√
2 · k

24k log |D|
∆`

≤ ε

3k2
.

Therefore, together with Lemma 4.3.2, we have

E
U∼V t

(
valLP(I,µ|xU)− 3k

(
4

√
E

S∼V k
Cµ(xS|xU) + 4

√
E
S∼ω

Cµ(xS|xU)

))
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′ to the
(k + `− t)-round Sherali-Adams LP relaxation such that

valLP(I,µ′)− 3k

(
4

√
E

S∼V k
Cµ′(xS) + 4

√
E
S∼ω

Cµ′(xS)

)
≥ valLP(I,µ)− ε.

65

Since µ′ is always κ-independent with respect to both uniform distribution and ω for κ =

ES∼V k Cµ′(xS) + ES∼ω Cµ′(xS) , by Lemma 4.8.1, given µ′, we can find an assigment
with value at least valLP(I,µ)− ε in randomized polynomial time.

4.9 A gap instance for relaxationH

In this section, we show a gap instance for the relaxationH. Consider the following 2-AP
instance I([5], ω). Let us define ωi,j,p,q = 1

64
Ai,jBp,q, where

A =


0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0
0 1 1 0 0

 , and B =


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .
If we view A and B as the adjacency matrices of two 5-vertex graphs, val(I, π) is the
number of edges in A that are mapped to an edge in B by π, multiplied by 25

32
. Since A is

a 4-cycle with one isolated vertex, and B is a 3-cycle plus an edge, at most 2 edges in A
can be mapped to B. Therefore, opt(I) = 25

16
.

On the other hand, let us consider the following distribution D of permutations, where
D is supported on π1 and π2 with equal probability (1/2). π1 is the identity permutation;
π2(i) = (i mod 5) + 1 for all i ∈ [5]. We have

val(I,D)

=
25

64
·
∑
i,j

∑
p,q

Ai,jBp,q
1

2
(1[π1(i) = p or π2(i) = p]) · 1

2
(1[π1(j) = q or π2(j) = q])

=
225

128
> opt(I).

66

Chapter 5

Lasserre integrality gaps for
DENSEkSUBGRAPH

5.1 Introduction

As we defined at the beginning of this thesis, the DENSEkSUBGRAPH problem takes as
input a graph G(V,E) on n vertices and a parameter k, and asks for a subgraph of G on at
most k vertices having the maximum number of edges.

While it is a fundamental graph optimization problem and arises in several applications
(community detection in social networks, identifying protein families and molecular com-
plexes in protein-protein interaction networks, etc), there is a huge gap between the best
approximation algorithm and the known inapproximability results. The current best ap-
proximation algorithm due to [41] gives O(n1/4+ε)-factor approximation algorithm which
runs in time nO(1/ε) for any constant ε > 0. On the inapproximability side, [88] initially
showed a small constant factor inapproximability for DENSEkSUBGRAPH using the ran-
dom 3-SAT assumption. [137] used quasi-random PCPs to rule out a PTAS. More recently,
[193, 7] used more non-standard assumptions to rule out any constant factor approxima-
tion algorithms.

While only constant factor approximations have been ruled out, it is commonly be-
lieved that DENSEkSUBGRAPH is much harder to approximate even on average (for a nat-
ural distribution on hard instances). Recently, average-case hardness assumptions based
on the hardness of “planted” versions of DENSEkSUBGRAPH were used for public key
cryptography [12] and in showing that financial derivates can be fraudulently priced with-
out detection [15]. Given the interest in DENSEkSUBGRAPH from both the algorithms

67

and the complexity point of view, developing a better understanding of the problem is an
important challenge for the field.

5.1.1 Our contributions

In this chapter, we study the limitation of the most powerful Lasserre SDP relaxation
hierarchy for DENSEkSUBGRAPH. We show an integrality gap of polynomial ratio (nε,
for small enough constant ε) for almost linear (nO(ε)) levels of the Lasserre relaxation. If
we only aim at an integrality gap for polynomial (nε) levels of the Lasserre relaxation, the
ratio of the gap can be as large as n2/53−O(ε). Informally, we prove

Theorem 5.1.1. [Informal version of Theorem 5.3.6 and Theorem 5.3.7] For every ε > 0,
there is a lower bound of n2/53−ε on the integrality gap of level-nΩ(ε) Parrilo-Lasserre SDP
relaxation hierarchy for the DENSEkSUBGRAPH problem; there is also a lower bound of
nε on the integrality gap of level-n1−O(ε) Parrilo-Lasserre SDP relaxation hierarchy.

As we mentioned in the introduction part of this thesis, our integrality gaps are among
the few known cases where the integrality gap ratio is much bigger than the best known
NP-hardness inapproximability bounds. In the absence of inapproximability results for
DENSEkSUBGRAPH, our results show that beating a factor of nΩ(1) is a barrier for even
the most powerful SDPs, and in fact even beating the best known n1/4 factor is a barrier
for current techniques.

5.2 Preliminaries

5.2.1 Notations

We introduce some notation which will be used throughout this chapter. G = (V,E) refers
to a graph which is an instance of the DENSEkSUBGRAPH problem on n vertices, and k
refers to the size of the subgraph we are required to output. For an induced subgraph
H ⊆ G, we denote by d(H) the average degree (or density of H). For a vertex v in
subgraph H , we will denote by ΓH(v) the set of neighbors of v in H (the suffix will be
dropped when H = G).

The phrase “with high probability” will mean: with probability 1− 1
p(n)

, for any poly-
nomial p(n). It will be clear from the context that there are constants which depend on the
degree of p.

68

5.2.2 The natural and min degree integer programmings for DENSEkSUBGRAPH

The natural integer programming for DENSEkSUBGRAPH has variables {xi} to denote if
vertex i belongs to the solution, and edge variables {xij}(i,j)∈E(G) to denote if both i, j are
in the subgraph.

For our integrality gaps, we will also consider to start with a different integer program-
ming (DkS-IP2) which is equivalent upto a factor of 2 (see [41]). Intuitively, it tries to
find a k-subgraph H such that the minimum degree dH is maximized. An LP hierarchy
obtained from this min. degree IP (DkS-IP2) was in fact used by [41] to obtain their ap-
proximation algorithm. (While the program as stated is not linear, we guess the degree d
and consider the feasibility linear program that is obtained.)

Natural IP (DkS-IP1) Min degree IP (DkS-IP2)

Maximize
∑

(i,j)∈E(G)

xixj

s.t.
∑
i∈V

xi ≤ k

∀i ∈ V xi ∈ {0, 1}

Maximize d

s.t.
∑
i∈V

xi ≤ k,

∀i ∈ V
∑
j∈Γ(i)

xixj ≥ dxi

∀i, j ∈ V xij = xji

∀i ∈ V xi ∈ {0, 1}

5.2.3 The Lasserre hierarchy for DENSEkSUBGRAPH

As in [66], the r-level Lasserre SDP for DENSEkSUBGRAPH for the natural IP (DkS-IP1)
introduces a vector US for each subset S ⊆ V with |S| ≤ r.

69

Lasserre hierarchy (r levels) for DENSEkSUBGRAPH:∑
(u,v)∈E

∥∥U{u,v}∥∥2

such that
〈US1 ,US2〉 ≥ 0 for all S1, S2

〈US1 ,US2〉 = 〈US3 ,US4〉 when S1 ∪ S2 = S3 ∪ S4∑
v∈V

∥∥U{v}∥∥2 ≤ k

‖U∅‖2 = 1

The intended solution sets US = U∅ if every vertex in S belongs to the densest k-
subgraph, and US = 0 otherwise. The vector lengths ‖US‖2 correspond to valid LP
values xS for the Sherali-Adams relaxation presented above.

The Lasserre SDP for the min degree IP (DkS-IP2) tries to find the k-subgraph of
largest induced minimum degree d. This can be captured by the SDP constraint

∀u ∈ V,
∑
v∈Γ(u)

‖Uu,v‖2 ≥ d · ‖Uu‖2 (5.1)

We will show in Section 5.3.3.1 that our integrality gaps also hold for the Lasserre hier-
archy defined by this SDP. We refer to the SDP with constraint (5.1) as the Min degree
Lasserre SDP .

5.3 The integrality gap

In this section, we show a gap instance with arbitrary large constant ratio for linear-round
Lasserre relaxation, and a gap instance with nε ratio for n1−O(ε)-round Lasserre relaxation
(Theorem 5.3.6). We also aim at maximizing the ratio of a polynomial-round Lasserre gap
instance, getting a ratio of Ω(n2/53−ε) (Theorem 5.3.7).

Our construction is based on a variant of Tulsiani’s gap instance for kCSP [220] – we
extend the parameter range of Tulsiani’s instance. Then we convert the kCSP instance to
a constraint-variable graph and duplicate the variable vertices, which is our gap instance
for DENSEkSUBGRAPH. Note that the gap for kCSP problem is indeed a set of random
instances. The vector solution from Lasserre gap for kCSP will help us exhibit a good

70

Lasserre vector solution for DENSEkSUBGRAPH. We finally use the structure of random
instances of kCSP to show the soundness holds with high probability.

Now, let us proceed to the first step, the gap instance for kCSP.

5.3.1 Lasserre gap for kCSP from Tulsiani

We start by defining the kCSP problem.

Definition 5.3.1. Let C ⊆ FKq be a q-ary linear code of block length K.

1. An instance Φ of kCSP(C) is a set of constraints C1, C2, · · · , Cm where each con-
straint Ci is over a K-tuple Ti = (xi1 , xi2 , · · · , xiK), and is of the form (xi1 +

b
(i)
1 , xi2 + b

(i)
2 , · · · , xiK + b

(i)
K) ∈ C for some b(i) ∈ FKq .

2. A random instance of kCSP(C) is sampled by choosing each constraint Ci in-
dependently, where we sample K variables without replacement from [n] to get
Ti = (xi1 , xi2 , · · · , xiK) and b(i) is chosen from FKq uniformly.

The following theorem is an extension of the main theorem in [220], showing that
polynomial-round Lasserre relaxation cannot refute random kCSP with high probability.

Theorem 5.3.2. If C is the dual code of a distance 2δ ≥ 3 code (in terms of number
of coordinates, not fractional distance), for every 10 ≤ K < n1/2, if nκ−1 ≤ η ≤
1/(108 ·(βK2δ+0.75)1/(δ−1)) for some κ > 0, then for large enough n, a random instance Φ
of kCSP(C) over m = βn constraints and n variables, with probability 1− o(1), admits
perfect solution for the SDP relaxation obtained by ηn/16 rounds of the Lasserre hierar-
chy, i.e. there are vectors V(S,α) for all S ⊆ [n] with |S| ≤ ηn/16 and all α : S → Fq,
such that

• the value of the solution is perfect:
∑m

i=1

∑
α:Ti→Fq Ci(α) ‖VTi,α‖

2 = m;

• 〈V(S1,α1),V(S2,α2)〉 ≥ 0 for all S1, S2, α1, α2;

• 〈V(S1,α1),V(S2,α2)〉 = 0 if α1(S1 ∩ S2) 6= α2(S1 ∩ S2);

• 〈V(S1,α1),V(S2,α2)〉 = 〈V(S3,α3),V(S4,α4)〉 for all S1 ∪ S2 = S3 ∪ S4 and α1 ◦ α2 =
α3 ◦ α4;

•
∥∥V(∅,∅)

∥∥2
= 1 and

∑
j∈Fq

∥∥V({i},{i→j})
∥∥2

= 1 for all i ∈ [n].

71

Note that Theorem 5.3.2 extends the original theorem of [220] to the regime where K
might be superconstant (even poly(n)). The proof of Theorem 5.3.2 follows the proof in
Tulsiani’s paper, with the following changes.

Recall that Tulsiani showed that, if the constraint-variable graph of a kCSP(C) in-
stance has very high left-expansion, then the Lasserre SDP admits perfect solution for it.
Formally, the following lemma is (implicitly) shown in [220].

Lemma 5.3.3 ([220]). Given a kCSP(C) instance, if every set of constraints of cardinality
s ≤ r involves more than (K − δ)s variables (where 2δ is the distance of the dual code
of C), and if 4δ ≤ K, then there is a perfect solution for the SDP relaxation obtained by
r/16 rounds of the Lasserre hierarchy.

Hence, we only need to prove the following lemma which shows that the constraint-
variable graph still has very high left-expansion, even when a constraint might involve
superconstant many variables (i.e. the left degree might be superconstant).

Lemma 5.3.4. Given β, η,K as in Theorem 5.3.2, with probability 1 − o(1), for all 2 ≤
s ≤ ηn, every set of s constraints involves more than (K − δ)s variables.

A similar lemma can be found in [220] (Lemma A.1), which only deals with constant
K. We need a more refined argument for superconstant K, which is in Section 5.3.4.

5.3.2 The gap instance for DENSEkSUBGRAPH

The gap instance is reduced from the gap instance for kCSP in Theorem 5.3.2. Let C be
the dual code of a [K,K − t, 2δ]q code as used in Theorem 5.3.2, where K is the block
length, (K − t) is the dimension, and 2δ ≥ 3 is the distance of the code. Such a code has
size |C| = qt, and is very sparse for small enough t. For 1000 < q and K > q2, we let
β = (40qt+2 ln q)/K, and do the following reduction.

Given a kCSP(C) instance Φ with m = βn constraints and n variables. Let GΦ =
(LΦ, RΦ, EΦ) be the bipartite graph with m|C| left vertices and nq right vertices. For
every constraint Ci and every partial assignment to variables in the corresponding tuple Ti
which satisfies the constraint Ci, we introduce a left vertex. For every variable xi and its
corresponding assignment, we introduce a right vertex. Formally,

LΦ = {(Ci, α)|i ∈ [m], α : Ti → Fq, Ci(α) = 1},
RΦ = {(xj, α)|j ∈ [n], α : {xj} → Fq}.

72

We connect a left vertex (Ci, α) and right vertex (xj, α
′) when xj ∈ Ti and α′ is consistent

with α, i.e.

EΦ = {{(Ci, α), (xj, α
′)}|(Ci, α) ∈ LΦ, xj ∈ Ti, α′(xj) = α(xj)}.

Now we define the final graph G′Φ = (LΦ, R
′
Φ, E

′
Φ) in which we want to find a dense

k-subgraph where k = 2m. We take β copies of the right vertices in RΦ to get R′Φ. To get
E ′Φ, we connect a left vertex u ∈ LΦ and a right vertex v ∈ R′Φ if u is connected to v’s cor-
responding vertex in RΦ in EΦ. The graph G′Φ has N = m|C|+ βnq = O(nq2t+2 ln q/K)
vertices.

In our analysis of the reduction, we need a q-ary linear code C that has a small con-
stant distance (but no less than 3), small block length (but more than q), and very high
dimension. Thus, we instantiate the code C with Generalized BCH codes given by the
following.

Lemma 5.3.5 (Generalized BCH Codes). For every prime tower q, and integer 2δ ≥ 3,
there are q-ary linear codes of block length K = q2 − 1, dimension (K − 4δ + 3), and
distance at least 2δ.

We include a simple proof of Lemma 5.3.5 as follows.

Proof. Let γ be a primitive element of Fq2 . Let D = 2δ for notational ease. We construct
the following code

C̃ = {(c1, c2, · · · , cq2−1) ∈ Fq2−1
q |c(1) = c(γ) = c(γ2) = · · · = c(γD−2) = 0,

where c(X) = c1X + c2X
2 + c3X

3 + · · ·+ cq2−1X
q2−1}.

We first show that the distance of C̃ is at least D. Since C̃ is a linear code, we only
need to show that every non-zero codeword has weight at least D.

We show the contrapositive statement : the only codeword of weight at most D − 1 is
0. For every codeword of weight at most D − 1, suppose the non-zero entries are in the
set {ci1 , ci2 , ci3 , · · · , ciD−1

}. We have

ci1 + ci2 + ci3 + · · · + ciD−1
=0

γi1ci1 + γi2ci2 + γi3ci3 + · · · + γiD−1ciD−1
=0

γ2i1ci1 + γ2i2ci2 + γ2i3ci3 + · · · + γ2iD−1ciD−1
=0

...

73

γ(D−2)i1ci1 + γ(D−2)i2ci2 + γ(D−2)i3ci3 + · · · + γ(D−2)iD−1ciD−1
=0

Note that the coefficients form a Vandermonde matrix (which has full rank). Therefore we
have ci1 = ci2 = ci3 = · · · = ciD−1

= 0, i.e. the codeword is 0.

Now we show that the dimension of C̃ is at least (K − 2D + 3). Note that each
constraint c(γi) = 0(1 ≤ i ≤ D − 2) can be implemented by 2 linear constraints in
Fq (since γi ∈ Fq2), while the constraint c(1) = 0 is indeed a linear constraint in Fq.
Therefore, we need at most 2(D − 2) + 1 = 2D − 3 linear constraints for C̃, i.e. the
dimension of C̃ is at least (K − 2D + 3).

Finally, if the dimension of C̃ is more than (K−2D+3), we can take a linear subspace
of C̃ of dimension (K − 2D + 3), while the distance of the subspace code is no less than
the distance of C̃.

5.3.3 Analysis

We get a family of gap instances G′Φ parameterized by q > 1000 and 2δ ≥ 3 (using
Lemma 5.3.5). We obtain our two main results of this section by picking appropriate
parameters for code C as follows. To get lasserre integrality gaps for N1−O(ε) levels , we
show the following by setting the distance 2δ = 3.

Theorem 5.3.6. For every 1000 < q < N ε (where ε is an absolute small constant), there
is a gap instance of ratio Ω(q) for N/qO(1)-level Lasserre SDP. The same construction
also works for the min degree Lasserre SDP, when q = Ω(log n) and q < N ε.

We now aim at getting a gap instance of ratio N ε for polynomial-round Lasserre SDP,
where ε is maximized. By setting q = nγ for some small constant γ > 0, the distance 2δ =
4, and optimizing the other parameters, we obtain the following (refer to section 5.3.3.4
for details)

Theorem 5.3.7. For small enough κ > 0, there is a gap instance of ratio N2/53−O(κ) for
the Nκ-round Min degree Lasserre SDP.

The two theorems follow because of Theorem 5.3.2, Lemma 5.3.8, Lemma 5.3.9 (com-
pleteness) and Lemma 5.3.10 (soundness). In the completeness case, we will use our r-
level Lasserre solution for kCSP to show that the Lasserre SDP after R = r/K levels of
the hierarchy has value at least βmK. In the soundness case, we show that with probabil-
ity 1− o(1), the graph G′Φ does not have any 2m-subgraph of value more than 17/q times

74

the SDP value (Lemma 5.3.10). Therefore, the graph G′Φ is a gap instance of ratio Ω(q)
for R-round Lasserre SDP. We proceed by first proving these lemmas.

5.3.3.1 Completeness

Lemma 5.3.8. If the kCSP(C) instance Φ admits perfect solution for r-round Lasserre
SDP relaxation, then the r/K-round Lasserre SDP relaxation for the DENSEkSUBGRAPH in-
stance G′Φ has a solution of value βmK.

Proof. For any set S = LΦ ∪R′Φ, suppose the left vertices included in S are

(Ci1 , α1), (Ci2 , α2), · · · , (Cir1 , αr1),

and the right vertices included in S are

(xj1 , α
′
1), (xj2 , α

′
2), · · · , (xjr2 , α

′
r2

),

where r1 + r2 ≤ r/K. Let

S ′ = Ti1 ∪ Ti2 ∪ · · · ∪ Tir1 ∪ {xj1} ∪ {xj2} ∪ · · · ∪ {xjr2}.

We have |S ′| ≤ Kr1 + r2 ≤ r. If all the partial assignments αi’s and α′i’s are consistent to
each other (i.e. there are not two of them assigning the same variable to different values),
we can define

α = α1 ◦ α2 ◦ · · ·αr1 ◦ α′1 ◦ α′2 ◦ · · ·α′r2 ,

and let US = VS′,α, or we let US = 0.

We can check that all the Lasserre constraints are satisfied.

• For two sets S1, S2, either at least one of the vectors US1 ,US2 is 0 (therefore their
inner-product is 0), or US1 = VS′1,α1

,US2 = VS′2,α2
for some S ′1, S

′
2, α1, α2 and

〈US1 ,US2〉 = 〈VS′1,α1
,VS′2,α2

〉 ≥ 0.

• For any S1, S2, S3, S4 such that S1∪S2 = S3∪S4, either the set of partial assignments
in S1 ∪ S2 = S3 ∪ S4 are consistent to each other, in which case we have US1∪S2 =
US3∪S4 = VS,α where S is the union of all the variables included in S1 ∪ S2 and
α is the concatenation of the partial assignments in S1 ∪ S2; or we have US1∪S2 =
US3∪S4 = 0.

75

• The “(fractional) number of chosen vertices”∑
v∈LΦ∪R′Φ

∥∥U{v}∥∥2
=

∑
(Ci,α)∈LΦ

∥∥U{(Ci,α)}
∥∥2

+
∑

(xj ,α)∈R′Φ

∥∥U{xj ,α}∥∥2

=
m∑
i=1

∑
α:Ti→Fq

Ci(α)
∥∥U{(Ci,α)}

∥∥2
+ β

n∑
j=1

∑
α:{xj}→Fq

∥∥U{(xj ,α)}
∥∥2

=
m∑
i=1

∑
α:Ti→Fq

Ci(α)
∥∥V(Ti,α)

∥∥2
+ β

n∑
j=1

∑
α:{xj}→Fq

∥∥V({xj},α)

∥∥2

=m+ βn = 2m,

and ‖U∅‖2 =
∥∥V(∅,∅)

∥∥2
= 1.

Now, we calculate the value of the solution∑
(u,v)∈E′Φ

∥∥U{u,v}∥∥2
= β

∑
(u,v)∈EΦ

∥∥U{u,v}∥∥2
= β

m∑
i=1

∑
α:Ti→Fq ,Ci(α)=1

∑
xj∈Ti

∥∥∥U{(Ci,α),(xj ,α|{xj})}

∥∥∥2

=β
m∑
i=1

∑
α:Ti→Fq ,Ci(α)=1

K
∥∥V(Ti,α)

∥∥2
= β

m∑
i=1

K = βmK.

If we add the constraint (5.1), we can still get a good SDP solution for the Min degree
Lasserre SDP with high probability, as long as q is superconstant.

Lemma 5.3.9. For q = Ω(log n), with probability 1 − o(1), this vector solution also
satisfies the added constraint (5.1) with d = βK/2, i.e., for each vertex u, we have∑

v∈Γ(u)

∥∥U{u,v}∥∥2 ≥ βK/2 · ‖Uu‖2 .

Proof. For each left vertex (Ci, α), we have∑
v∈Γ((Ci,α))

∥∥U{(Ci,α),v}
∥∥2

= β
∑
xj∈Ti

∥∥∥U{(Ci,α),(xj ,α|{xj})}

∥∥∥2

= β
∑
xj∈Ti

∥∥U{(Ci,α)}
∥∥2

= βK
∥∥U{(Ci,α)}

∥∥2
.

For each right vertex (xj, α
′), we have∑

v∈Γ((xj ,α′))

∥∥U{(xj ,α′),v}∥∥2
=
∑
i:Ti3xj

∑
α:Ti→Fq ,Ci(α)=1,α(xj)=α′(xj)

∥∥U{(xj ,α′),(Ci,α)}
∥∥2

76

=
∑
i:Ti3xj

∑
α:Ti→Fq ,Ci(α)=1,α(xj)=α′(xj)

∥∥U{(Ci,α)}
∥∥2

=
∑
i:Ti3xj

∑
α:Ti→Fq ,α(xj)=α′(xj)

∥∥U{(Ci,α)}
∥∥2
,

where the last equality is because we know that U{(Ci,α)} = 0 when Ci(α) 6= 1. By the
property of Lasserre vectors, we know that for each i ∈ [m],∑

α:Ti→Fq ,α(xj)=α′(xj)

∥∥U{(Ci,α)}
∥∥2

=
∥∥U{(xj ,α′)}∥∥2

,

therefore ∑
v∈Γ((xj ,α′))

∥∥U{(xj ,α′),v}∥∥2
=
∑
i:Ti3xj

∥∥U{(xj ,α′)}∥∥2
.

For q = Ω(log n), the expected number of constraints containing xj is βK = Ω((log n)t+2) =
Ω(log n), by our choice of β. Therefore, by Chernoff bound and union bound, with prob-
ability 1− o(1), for all xj , there are at least βK/2 constraints containing xj , and we have∑

v∈Γ((xj ,α′))

∥∥U{(xj ,α′),v}∥∥2 ≥ βK/2 ·
∥∥U{(xj ,α′)}∥∥2

,

for every xj and α′.

5.3.3.2 Soundness

Now, we show that random instances of kCSP give rise to graphs G′φ whose 2m-sized
subgraphs have density O(βK/q). Note that the large alphabet size q allows us to get a
much larger gap than we would starting from random AND instances [88]. This allows us
some slack in the size of the subgraphs we need to argue about.

For C the dual of a [K,K − t, 2δ]q code, we prove the following soundness lemma.

Lemma 5.3.10. When β ≥ (40qt+2 ln q)/K, for a random kCSP(C) instance Φ, with
probability 1 − o(1), any subgraph of G′Φ obtained by choosing 2m left vertices and 2m
right vertices contains at most 17βmK/q edges, and therefore any 2m-subgraph of G′Φ
contains at most 17βmK/q edges.

Note thatG′φ was constructed by taking β copies of the right bipartition and replicating
the edges. To prove Lemma 5.3.10, we only need to prove the following lemma.

77

Lemma 5.3.11. Suppose that q > 1000, K > q2/2, t ≤ 10. When β ≥ (40qt+2 ln q)/K,
for a random kCSP(C) instance Φ, with probability 1−o(1), any subgraph ofGΦ obtained
by choosing 2m left vertices and 2n right vertices contains at most 17mK/q edges.

Proof of Lemma 5.3.10 from Lemma 5.3.11. We only need to prove once there is a 2m ×
2m subgraph of G′Φ with t edges, there is a 2m × 2n subgraph of GΦ with at least t/β
edges. Fix 2m left vertices in G′Φ, to maximize the number of edges in the subgraph,
we need to select the 2m right vertices with most edges connected to the chosen 2m left
vertices. Since any two right vertices G′Φ corresponding to the same right vertex in GΦ

have the same set of neighbors, there is an densest 2m× 2m subgraph H ′ of G′Φ that, for
any two such vertices, chooses either both or neither of them. Now we define an subgraph
H of GΦ that contains the same 2m left vertices. It contains a right vertex if any copy of
the vertex is contained in H ′. H contains 2m/β = 2n vertices, and it is easy to see that
there are (at least) t/β edges in H .

We proceed by fixing a set of 2n vertices R on the right. Lemma 5.3.11 follows from
the following claim by a standard union bound over all possible choices of R.

Claim 5.3.12. Recall that GΦ = (LΦ, RΦ, EΦ). Suppose that q > 1000, K > q2/2, t ≤
10. Fix a subset R ⊆ RΦ (note that RΦ is the same for all the instances Φ of n variables),
|R| = 2n, the probability (over choice of Φ) that there does not exist a subset L ⊆ LΦ

of size 2m such that the number of edges in the induced subgraph by L ∪ R is more than
17mK/q, is at least 1− exp(−mK/(10qt+2)).

Proof of Lemma 5.3.11 from Claim 5.3.12. Since there are only
(
qn
2n

)
≤ exp(2n(ln q+ 1))

choices of R, by a union bound, with probability at least

1− exp(2n(ln q + 1)) · exp(−mK/(10qt+2)) = 1− exp(2n(ln q + 1)− βnK/(10qt+2)),

there is no 2m×2n subgraph ofGΦ containing more than 17mK/q edges. The probability
becomes 1− o(1) when β = (40qt+2 ln q)/K.

Proof of Claim 5.3.12. First, we show that with high probability, a constraint Ci is “poorly
satisfied”. That is, none of the left vertices corresponding to a constraint Ci has more than
Ω(K/q) neighbors in R – this number is roughly 1/q times the corresponding value in
completeness case. We prove this in the following two steps.

Step 1. Fix a subset R ⊆ RΦ, |R| = 2n, for each variable xj , let deg(xj) be the number of
vertices in R that corresponding to xj , i.e. let deg(xj) = |R ∩ {(xj, α)|α : {xj} → Fq}|.

78

For a subset of variables T ⊆ {x1, x2, · · · , xn}, let deg(T) =
∑

xj∈T deg(xj). We call T
good if the average degree of variables in T is not more than 4, i.e. deg(T) ≤ 4|T |.

For a random T with |T | = K, note that the expected degree E[deg(T)] = 2K.
Therefore, by Hoeffding’s inequalities for sampling without replacement (Theorem 1 and
Theorem 4 in [119]), we have

Pr[T is not good] = Pr[deg(T) > 4K] < exp(− ln(4/e) · 2K/q) < exp(−K/(2q)).

Step 2. Again, fix R ⊆ RΦ, T ⊆ {x1, x2, · · · , xn}, for a codeword α on coordinates in T ,
i.e. α : T → Fq, let agrT (α,R) = |{(xj, α|xj)|xj ∈ T} ∩ R|. For a constraint Ci, say it is
poorly satisfied if for all α : T → Fq such that Ci(α) = 1, we have agrTi(α,R) ≤ 8K/q.

Recall that to sample a random constraint Ci, we first sample a random K-tuple Ti,
and a random shifting function b(i). Note that for a fixed α : T → Fq, and a fixed
Ti that is good, when we take a random shifting function b(i) : Ti → Fq, we have
Eb(i):Ti→Fq [agrTi(α − b(i), R)] = deg(Ti)/q = 4K/q, therefore, by standard Chernoff
bound, for a fixed codeword α ∈ C, the probability that α makes Ci not poorly satisfied is
bounded from above by

Pr
b(i)

[agrTi(α− b
(i), R) > 8K/q] < exp(− ln(4/e) · 4K/q) < exp(−K/q).

Since there are |C| = qt ≤ q10 codewords, by a union bound, for K > q2/2 and q > 1000,
we have

Pr[Ci is not poorly satisfied|Ti is good] < q10 · exp(−K/q) < exp(−K/(2q)).

In all, we have

Pr[Ci is poorly satisfied] ≥Pr[Ci is poorly satisfied|Ti is good] · Pr[T is good]

> (1− exp(−K/q))(1− exp(−K/(2q))) > 1− exp(−K/(3q)).

Now, again, by standard Chernoff bound, we have

Pr[|{Ci|Ci is not poorly satisfied}| > m/(q · |C|)] < (e · |C| · q · exp(−K/(3q)))m/(q·|C|)

≤
(
e · q10 · q · exp(−K/(3q))

)m/(q·|C|)
< exp(−K/(10q))m/(q·|C|) = exp(−mK/(10qt+2)).

By the calculation above we know that with probability at least 1−exp(−mK/(10qt+2)),
there are at most m/(q · |C|) constraints that are not poorly satisfied.

79

For each left vertex (Ci, α) ∈ LΦ, if Ci is poorly satisfied, we know there are at most
8K/q edges from (Ci, α) to R. If Ci is not poorly satisfied, there are at most K edges to
RΦ – this upperbound also applies to R.

Therefore, with probability at least 1−exp(−mK/(10qt+2)), any set of 2m left vertices
has at most 2m · 8K/q +m/(q · |C|) · |C| ·K ≤ 17mK/q edges connected to R.

We now complete the proofs of the main theorems in this section.

5.3.3.3 Proof of Theorem 5.3.6

By combining Theorem 5.3.2, Lemma 5.3.8, Lemma 5.3.9 (completeness), and Lemma 5.3.10
(soundness) we see that with probability 1−o(1), the graphG′Φ provides a Ω(q) integrality
for the number of levels R given by

R = Ω

(
n

K(βK2δ+0.75)1/(δ−1)

)
= Ω

(
N

q2t+2 ln q · (βK2δ+0.75)1/(δ−1)

)
= Ω

(
N

K(2δ−0.25)/(δ−1)q(2t+2)+(t+2)/(δ−1)poly log q

)
. (recall that β = (40qt+2 ln q)/K)

Recall that K = q2− 1. By setting K = q2− 1 and 2δ = 3, we verify that the theorem
holds.

5.3.3.4 Proof of Theorem 5.3.7

Let q = nγ , since N = O(nq2t+2 ln q/K) = O(nq2t ln q), ratio of the gap due to
Lemma 5.3.8 and Lemma 5.3.10 is

Ω(q) = Ω(Nγ/(1+2tγ+o(1))) = Ω(Nγ/(1+(8δ−6)γ+o(1))). (note that t = 4δ − 3)

This means that

ε =
γ

1 + (8δ − 6)γ + o(1)
=

1

8δ − 6
− 1 + o(1)

(1 + (8δ − 6)γ + o(1))(8δ − 6)
.

Note that when 2δ ≥ 3 is fixed, ε is maximized when γ is maximized.

The number of rounds (due to Theorem 5.3.2 and Lemma 5.3.8) is

R = Ω

(
N

K(2δ−0.25)/(δ−1)q(2t+2)+(t+2)/(δ−1)poly log q

)
80

= Ω

(
N

n2γ(2δ−0.25)/(δ−1) · nγ((8δ−4)+(4δ−1)/(δ−1))+o(1)

)
(by K = Θ(q2), q = nγ , t = 4δ − 3)

= Ω

(
N

nγ(8δ+4+6.5/(δ−1))+o(1)

)
= Ω

(
N1− γ(8δ+4+6.5/(δ−1))+o(1)

1+o(1)+γ(8δ−6)

)
For very small κ > 0, to get a gap instance for NΩ(κ)-round Lasserre, we need

1− γ(8δ + 4 + 6.5/(δ − 1)) + o(1)

1 + o(1) + γ(8δ − 6)
≥ Ω(κ)

⇒1 + o(1) + γ(8δ − 6)− (γ(8δ + 4 + 6.5/(δ − 1)) + o(1)) ≥ Ω(κ)

⇒1− γ(10− 6.5(δ − 1)) ≥ Ω(κ)

⇒γ ≤ 1− Ω(κ)

10− 6.5(δ − 1)

Let γ = 1−O(κ)
10+6.5/(δ−1)

, we have

ε =
1

8δ − 6
− 1 + o(1)

(1 + (8δ − 6)γ + o(1))(8δ − 6)

=
1

8δ − 6
− 1 + o(1)

(1 + (8δ − 6) 1−O(κ)
10+6.5/(δ−1)

+ o(1))(8δ − 6)

=
1

8δ − 6
− 1

(1 + (8δ−6)
10+6.5/(δ−1)

)(8δ − 6)
−O(κ).

When 2δ = 4, we get the maximized value ε = 2/53−O(κ).

5.3.4 Expansion for random kCSP instances

In this section, we prove Lemma 5.3.4, restated as follows.

Lemma 5.3.4 (restated). Given β, η,K as in Theorem 5.3.2, with probability 1 − o(1),
for all 2 ≤ s ≤ ηn, every set of s constraints involves more than (K − δ)s variables.

Proof. Fix 2 ≤ s ≤ ηn, let us upperbound the probability that there is a set of s constraints
containing at most (K − δ)s variables. Since there are

(
βn
s

)
such sets, the probability is at

81

most (
βn

s

)
Pr[the first s constraints contain at most (K − δ)s variables]

=

(
βn

s

) (K−δ)s∑
i=1

Pr[the first s constraints contain exactly i variables]

Fix a set T of i variables, let p(s, i) be the number of s-tuples (T1, T2, · · · , Ts) where for
each 1 ≤ j ≤ s, Tj is a set of K variables, such that ∪1≤j≤sTj = T . We have

Pr[the first s constraints contain exactly i variables] =

(
n

i

)
· p(i, s)

/(
n

K

)s
.

To upperbound p(i, s), we view the way to enumerating valid (T1, T2, · · · , Ts) as, to
choose a multiset of Ks variables (each one from T) so that each element in T appears
at least once in the multiset, then view each element in the multiset as a distinct element,
and distribute these Ks elements to s sets, in a balanced way. Note that in this way, we
are able to enumerate all the valid s-tuples (although some of them might be enumerated
more than once). Since there are at most

(
Ks−1
i−1

)
<
(
Ks
i

)
valid multisets, we have

p(i, s) ≤
(
Ks

i

)
(Ks)!/(K!)s.

Therefore, we have(
βn

s

)
Pr[the first s constraints contain at most (K − δ)s variables]

=

(
βn

s

)
(Ks)! · (K!)−s

(
n

K

)−s (K−δ)s∑
i=1

(
n

i

)(
Ks

i

)
,

Note that when K2s < δn and i ≤ (K − δ)s, we have i < nKs/(n + Ks) (since
i ≤ Ks(1 − δ/K) ≤ Ks/(1 + δ/K) = nKs/(n + δn/K) < nKs/(n + Ks)), and
therefore(

n
i

)(
Ks
i

)(
n
i−1

)(
Ks
i−1

) =
(n− i)(Ks− i)

i2
> 1 (⇐ (n− i)(Ks− i) > i2 ⇐ nKs > (n+Ks)i),

therefore the function
(
n
i

)(
Ks
i

)
is increasing when i ≤ (K − δ)s, therefore(

βn

s

)
(Ks)! · (K!)−s

(
n

K

)−s (K−δ)s∑
i=1

(
n

i

)(
Ks

i

)

82

≤
(
βn

s

)
(Ks)! · (K!)−s

(
n

K

)−s
·Ks ·

(
n

(K − δ)s

)(
Ks

(K − δ)s

)
=

(
βn

s

)
(Ks)! · (K!)−s

(
n

K

)−s
·Ks ·

(
n

(K − δ)s

)(
Ks

δs

)
.

for K ≤ n1/2, we use the fact that
(
n
K

)
≥ (n −K)K/K! ≥ nK/3/((K/e)K · (5

√
K)) =

(en/K)K/(15
√
K) (since by Stirling’s formula, we have K! ≤ 5

√
K(K/e)K), and again

use the fact that
√

2πK(K/e)K ≤ K! ≤ 5
√
K(K/e)K , we bound the expression above

by(
eβn

s

)s
5
√
Ks(Ks/e)Ks

(
√

2πK(K/e)K)s
·

(
15
√
K

(
K

en

)K)s

·Ks ·
(

en

(K − δ)s

)(K−δ)s(
eK

δ

)δs
≤5(Ks)1.5 ·

(
15eβsδ−1KK+δ

√
2πnδ−1(K − δ)K−δδδ

)s
≤5(Ks)1.5 ·

(
15e1+δβsδ−1K2δ

√
2πnδ−1δδ

)s

For 2 ≤ s ≤ ln2 n, since nκ−1 ≤ 1/(108·(βK2δ+0.75)1/(δ−1)), we have β2K4δ+1.5/n2(δ−1) ≤
n−(2δ−1)κ, we have

5(Ks)1.5 ·
(

15e1+δβsδ−1K2δ

√
2πnδ−1δδ

)s
≤ 5(Ks)1.5 ·

(
15e1+δβsδ−1K2δ

√
2πnδ−1δδ

)2

≤ 5 · 15e1+δsδ−1

√
2πδδn2(δ−1)κ

≤ O(n−(δ−1)κ).

For ln2 n < s ≤ ηn, since η ≤ 1/(108 · (βK2δ+0.75)1/(δ−1)), we get η ≤ 1/(108 ·
(βK2δ)1/(δ−1)), and further we have βK2δηδ−1 ≤ δδ/(100 · 15e1+δ/

√
2π) for all δ > 5/4.

Therefore,

5(Ks)1.5 ·
(

15e1+δβsδ−1K2δ

√
2πnδ−1δδ

)s
≤ 5(Ks)1.5

(
sδ−1

100(ηn)δ−1

)s
≤ 5 ·

(
sδ−1(Ks)(1.5/ ln2 n)

100(ηn)δ−1

)s

≤5 ·
(

2

100

)s
(by s ≤ ηn and Ks ≤ n2)

Now, we upperbound probability that there exists a set of constraints of size s ≤ ηn

83

involving at most (K − δ)s variables by

ηn∑
s=2

5(Ks)1.5 ·
(

15e1+δβsδ−1K2δ+0.5

nδ−1δδ

)s

=
ln2 n∑
s=2

5(Ks)1.5 ·
(

15e1+δβsδ−1K2δ+0.5

nδ−1δδ

)s
+

ηn∑
s=ln2 n+1

5(Ks)1.5 ·
(

15e1+δβsδ−1K2δ+0.5

nδ−1δδ

)s

≤
ln2 n∑
s=2

O(n−κ/2) +

ηn∑
s=ln2 n+1

5 · (1/50)s = o(1).

84

Chapter 6

Lasserre integrality gaps for
BALANCEDSEPARATOR and
UNIFORMSPARSESTCUT

6.1 Introduction

Recall the problems BALANCEDSEPARATOR and UNIFORMSPARSESTCUT are defined
previously by Definition 2.1.1 and Definition 2.1.2. For readers’ convenience, we restate
the definition as follows.

Definition 6.1.1. Given an undirected graph G = (V,E) and 0 < τ < 0.5, the goal
of the τ vs 1 − τ BALANCEDSEPARATOR problem is to find a set A ⊆ V such that
τ |V | ≤ |A| ≤ (1 − τ)|V |, while edges(A, V \ A) is minimized. Here edges(A,B) is the
number of edges in E that cross the cut (A,B).

The goal of the UNIFORMSPARSESTCUT problem is to find a set ∅ (A (V such
that the sparsity

edges(A, V \ A)

|A||V \ A|

is minimized.

Despite extensive research, there are still huge gaps between the known approxima-
tion algorithms and inapproximability results for these problems. The best algorithms,

85

based on semidefinite relaxations (SDPs) with triangle inequalities, give a O(
√

log n) ap-
proximation to both problems [21]. On the inapproximability side, a Polynomial Time
Approximation Scheme (PTAS) is ruled out for both problems assuming 3-SAT does not
have randomized subexponential-time algorithms [11]. In this chapter, our focus is on the
UNIFORMSPARSESTCUT problem; the general SPARSESTCUT problem has been shown
to not admit a constant-factor approximation algorithm under the Unique Games Conjec-
ture [64, 144, 136].

It is known that the SDP used in [21] cannot give a constant factor approximation for
UNIFORMSPARSESTCUT [79]. Integrality gaps are also known for stronger SDPs: super-
constant factor integrality gaps for both BALANCEDSEPARATOR and UNIFORMSPARS-
ESTCUT are known for the Sherali-Adams+SDP hierarchy for a super-constant number
of rounds [192].

However, if we turn to the stronger Lasserre SDP hierarchy, for both BALANCED-
SEPARATOR and UNIFORMSPARSESTCUT, integrality gaps were not known even for a
small constant number of rounds (before this thesis). It was not (unconditionally) ruled
out, for example, that 1/εO(1) rounds of the hierarchy could give a (1 + ε)-approximation
algorithm, thereby giving a PTAS. On the algorithmic side, [110] recently showed that for
these problems, SDPs using O(r/ε2) rounds of the Lasserre hierarchy have an integrality
gap at most (1 + ε)/min{1, λr}. Here λr is the r-th smallest eigenvalue of the normalized
Laplacian of the graph. This result implies an approximation scheme for these problems
with runtime parameterized by the graph spectrum.

6.1.1 Our contributions

In this chapter, we study integrality gaps for the Lasserre SDP relaxations for BALANCED-
SEPARATOR and UNIFORMSPARSESTCUT. As mentioned before, APX-hardness is not
known for these two problems, even assuming the Unique Games Conjecture. (Supercon-
stant hardness results are known based on a strong intractability assumption concerning the
Small Set Expansion problem [194].) In contrast, we show that linear-round Lasserre SDP
has an integrality gap bounded away from 1, and thus fails to give a factor α-approximation
for some absolute constant α > 1. Specifically, we prove the following two theorems.

Theorem 6.1.2 (Informal version of Theorem 6.3.1). For 0.45 < τ < 0.5, there are linear-
round Lasserre gap instances for the τ vs (1− τ) BALANCEDSEPARATOR problem, such
that the integral optimal solution is at least (1 + ε(τ)) times the SDP solution, where
ε(τ) > 0 is a constant dependent on τ .

86

Theorem 6.1.3 (Informal version of Theorem 6.4.1). There are linear-round Lasserre
gap instances for the UNIFORMSPARSESTCUT problem, such that the integral optimal
solution is at least (1 + ε) times the SDP solution, for some constant ε > 0.

6.1.2 Our techniques

All of our gap results are based on Schoenebeck’s ingenious Lasserre integrality gap for 3-
XOR [204]. For BALANCEDSEPARATOR and UNIFORMSPARSESTCUT, we use the ideas
in [11] to build gadget reductions and combine them with Schoenebeck’s gap instance.
[11] designed gadget reductions from Khot’s quasi-random PCP [137] in order to show
APX-Hardness of the two problems. If we view the Lasserre hierarchy as a computational
model (as suggested in [220]), we can view Schoenebeck’s construction as playing the
role of a quasi-random PCP in the Lasserre model. Our gadget reductions, therefore, bear
some resemblance to the ones in [11], though the analysis is different due to different
random structures of the PCPs. We feel our reductions are slightly simpler than the ones
in [11], although we need some additional tricks to make the reductions have only linear
blowup. This latter feature is needed in order to get Lasserre SDP gaps for a linear number
of rounds. We are also able to make the gap instance graphs have only constant degree,
while the reductions in [11] give graphs with unbounded degree.

Also, unlike 3-XOR, for balanced separator there is a global linear constraint (stipu-
lating the balance of the cut), and our Lasserre solution must also satisfy a lifted form of
this constraint [158]. We make a general observation that such constraints can be easily
lifted to the Lasserre hierarchy when the vectors in our construction satisfy a related lin-
ear constraint. This observation applies to constraints given by any polynomials, and to
our knowledge, was not made before. It simplifies the task of constructing legal Lasserre
vectors in such cases.

6.2 Preliminaries on Lasserre SDPs for BALANCEDSEPA-
RATOR and UNIFORMSPARSESTCUT

In this section, we begin with a general description of semidefinite programming relax-
ations from the Lasserre hierarchy, followed by a useful observation about constructing
feasible solutions for such a SDP. We then discuss the specific SDP relaxations for our
problems of interest. Finally, we recall Schoenebeck’s Lasserre integrality gaps [204] in a
form convenient for our later use.

87

6.2.1 Useful theorems about the Lasserre hierarchy

Consider a binary programming problem with polynomial objective function P and a sin-
gle constraint expressed as a polynomial Q:

Minimize/Maximize
∑

T∈([n]
≤d)

P (T)
∏

j∈T xj

subject to
∑

T∈([n]
≤d)

Q(T)
∏

j∈T xj ≥ 0,

xi ∈ {0, 1} for all i ∈ [n].

(6.1)

It is easy to see that this captures all problems we consider in this chapter: BALANCED-
SEPARATOR (Section 6.2.2.1) and UNIFORMSPARSESTCUT (Section 6.2.2.2).

We now define the Lasserre hierarchy semidefinite program relaxation for the above
integer program. It is easily seen that the below is a relaxation by taking UA = xAI and
YA =

√
Q(x) UA where x ∈ {0, 1}n is a feasible solution to (6.1), xA =

∏
i∈A xi, and I

is any fixed unit vector.

Proposition 6.2.1. For any positive integer r ≥ d, r rounds of Lasserre Hierarchy relax-
ation [158] of (6.1) is given by the following semidefinite programming formulation:

Minimize/Maximize
∑

T P (T)
∥∥UT

∥∥2

subject to ‖U ∅‖2 = 1,
〈UA,UB〉 = ‖UA∪B‖2 for all A,B with |A ∪B| ≤ 2r,∑

S∈([n]
≤d)

Q(S)〈US,UA∪B〉 = 〈YA, YB〉,
〈YA, YB〉 = ‖YA∪B‖2 for all A,B with |A ∪B| ≤ 2(r − d).
UA, YB ∈ RΥ.

(6.2)

Proof. Given y ∈ R([n]
≤2r), let M(y) ∈ Sym(

(
[n]
≤r

)
) be the moment matrix whose rows and

columns correspond to subsets of size ≤ r. The entry at row S and column T of M(y)

is given by yS∪T . For any multilinear polynomial P of degree-d, let P ∗ y ∈ R([n]
≤2r−d) be

the vector whose entry corresponding to subset S is given by
∑

T PTyS∪T . The Lasserre
Hierarchy relaxation [158] of (6.1) is given by:

Minimize/Maximize
∑

T P (T)yT
subject to y∅ = 1,

M(y) � 0,
M(Q ∗ y) � 0.

(6.3)

88

Proof of (6.2) =⇒ (6.3). Given feasible solution for (6.2), let yS , ‖US‖2 and
zS , ‖YS‖2. We have y∅ = 1 and

∑
T P (T)yT =

∑
T P (T)‖US‖2. Observe that yS∪T =

‖US∪T‖2 = 〈US,UT 〉 therefore M(y) � 0. With a similar reasoning, we also have
M(z) � 0. Finally, for any S:

(Q ∗ y)S =
∑
T

Q(T)yS∪T =
∑
T

Q(T)〈UT ,US〉 = ‖YS‖2 = zS,

which implies z = Q ∗ y. Hence y is a feasible solution for (6.3).

Proof of (6.3) =⇒ (6.2). Let y be a feasible solution for (6.3). Define z , Q ∗ y.
Since M(y) � 0 (resp. M(z) � 0), there exists a matrix U = [US]S (resp. Y = [YS]S)
such that M(y) = U

T
U (resp. M(z) = Y TY). It is easy to see that 〈US,UT 〉 = yS∪T

and 〈YS, YT 〉 = zS∪T . Therefore:

•
∑

T P (T)‖UT‖2 =
∑

T P (T)yT .

• ‖U ∅‖2 = y∅ = 1.

• 〈US,UT 〉 = yS∪T = ‖US∪T‖2 (similar for Y).

• For any S,
∑

T Q(T)〈UT ,US〉 =
∑

T Q(T)yS∪T = (Q ∗ y)S = zS = ‖YS‖2.

Therefore (U , Y) is a feasible solution for (6.2) with same objective value, completing our
proof.

Note that a straightforward verification of last two constraints requires the construction
of vectors YA in addition toUA. Below we give an easier way to verify these last two con-
straints without having to construct YA’s. This greatly simplifies our task of constructing
Lasserre vectors for the lifting of global balance constraints.

Theorem 6.2.2. Given vectors UT for all T ∈
(

[n]
≤2r

)
satisfying the first two constraints of

(6.2), if there exists a non-negative real δ > 0 such that∑
S∈([n]

≤d)

Q(S)US = δ ·U ∅ (6.4)

then these vectors form (part of) a feasible solution to (6.2).

89

Proof. Consider the following vectors. For each A with |A| ≤ r, let YA =
√
δ · UA. By

construction, these vectors satisfy the 〈YA, YB〉 = ‖YA∪B‖2 constraints since 〈UA,UB〉 =
‖UA∪B‖2. Now we verify the other constraint:

∑
S∈([n]

≤d)

Q(S)〈US,UA∪B〉 =

〈 ∑
S∈([n]

≤d)

Q(S)US,UA∪B

〉

= 〈δU ∅,UA∪B〉 = δ〈UA,UB〉 = 〈YA, YB〉.

6.2.2 Lasserre SDP for graph partitioning problems

In light of Theorem 6.2.2, to show good solutions for the Lasserre SDP for our problems
of interest, we only need to show good solutions for the following SDPs.

6.2.2.1 BALANCEDSEPARATOR

The standard integer programming formulation of BALANCEDSEPARATOR is shown in
the left part of Figure 6.1. The r round SDP relaxation Ψ1 (shown in the right part of
Figure 6.1) has a vector US for each subset S ⊆ V with |S| ≤ r. In an integral solution,
the intended value of U {u} is xuU ∅ for some fixed unit vector U ∅, and that of US is(∏

u∈S xu

)
U ∅.

6.2.2.2 UNIFORMSPARSESTCUT

The UNIFORMSPARSESTCUT problem asks to minimize the value of the quadratic integer
program shown in the left part of Figure 6.2 over all τ ∈ {1/n, 2/n, . . . , bn/2c}. The
corresponding SDP relaxation Ψ2 is to minimize the value of the SDP shown in the right
part of Figure 6.2 over all τ ∈ {1/n, 2/n, . . . , bn/2c}.

Remark Prior to this thesis, known lower bounds [79, 130] on the integrality gap of
UNIFORMSPARSESTCUT problem used a weaker relaxation, where the last two equality
constraints in Ψ2 of Figure 6.2 are replaced by the following instead:∑

u<v

‖U {u} −U {v}‖2 = 1

90

IP SDP Relaxation Ψ1

Minimize
∑

(u,v)∈E

(xu − xv)2

s.t. τ |V | ≤
∑
u∈V

xu ≤ (1− τ)|V |

xu ∈ {0, 1} ∀u ∈ V

Minimize
∑

(u,v)∈E

∥∥U {u} −U {v}∥∥2

s.t. 〈US1 ,US2〉 ≥ 0 for all S1, S2

〈US1 ,US2〉 = 〈US3 ,US4〉
for all S1 ∪ S2 = S3 ∪ S4∥∥U ∅∥∥2

= 1∑
v

U {v} = τ ′|V |U ∅

for some τ ≤ τ ′ ≤ 1− τ

Figure 6.1: IP and SDP relaxations for BALANCEDSEPARATOR.

We can solve Ψ1 by first enumerating over all τ ′ ∈ {1/n, 2/n, . . . , 1}∩ [τ, 1− τ] and then
choosing τ which minimizes the objective function. Note that the resulting relaxation is
stronger than usual Lasserre Hierarchy relaxation.

with the objective function being simply
∑

(u,v)∈E ‖U {u} −U {v}‖2.

6.2.3 Lasserre Gaps for 3-XOR from Schoenebeck

We start by defining the 3-XOR problem.

Definition 6.2.3. An instance Φ of 3-XOR is a set of constraints C1, C2, · · · , Cm where
each constraint Ci is over 3 distinct variables xi1 , xi2 , and xi3 , and is of the form xi1 ⊕
xi2 ⊕ xi3 = bi for some bi ∈ {0, 1}.

A random instance of 3-XOR is sampled by choosing each constraint Ci uniform
independently from the set of possible constraints.

We will make use of the following fundamental result of Schoenebeck.

Theorem 6.2.4 ([204]). For every large enough constant β > 1, there exists η > 0, such
that with probability 1−o(1), a random 3-XOR instance Φ over m = βn constraints and
n variables cannot be refuted by the SDP relaxation obtained by ηn rounds of the Lasserre
hierarchy, i.e. there are vectorsW(S,α) for all |S| ≤ ηn and all α : S → {0, 1}, such that

91

IP SDP Relaxation Ψ2

Minimize
1

|V |2τ(1− τ)

∑
(u,v)∈E

(xu − xv)2

s.t.
∑
u

xu = τ |V |

xu ∈ {0, 1} ∀u ∈ V

Minimize
∑

(u,v)∈E

1

|V |2τ(1− τ)

∥∥U {u} −U {v}∥∥2

s.t. 〈US1 ,US2〉 ≥ 0 for all S1, S2

〈US1 ,US2〉 = 〈US3 ,US4〉
for all S1 ∪ S2 = S3 ∪ S4∥∥U ∅∥∥2

= 1∑
v

U {v} = τ |V |U ∅

Figure 6.2: IP and SDP relaxations for UNIFORMSPARSESTCUT.

We can solve Ψ2 by first enumerating over all τ ∈ {1/n, 2/n, . . . , (n − 1)/n} and then
choosing τ which minimizes the objective function. Note that the resulting relaxation is
stronger than usual Lasserre Hierarchy relaxation.

(i) the value of the solution is perfect:
∑m

i=1

∑
α:α(xi1)⊕α(xi2)⊕α(xi3)=bi

∥∥W({xi1 ,xi2 ,xi3},α)

∥∥2
=

m;

(ii) 〈W(S1,α1),W(S2,α2)〉 ≥ 0 for all S1, S2, α1, α2;

(iii) 〈W(S1,α1),W(S2,α2)〉 = 0 if α1(S1 ∩ S2) 6= α2(S1 ∩ S2);

(iv) 〈W(S1,α1),W(S2,α2)〉 = 〈W(S3,α3),W(S4,α4)〉 for all S1∪S2 = S3∪S4 and α1 ◦α2 =
α3 ◦ α4. Here, when α1(S1 ∩ S2) = α2(S1 ∩ S2), α1 ◦ α2 is naturally defined as
the mapping from S1 ∩ S2 to {0, 1} such that its restriction to S1 equals α1 and its
restriction to S2 equals α2. We make similar definition for α3 ◦ α4.

(v)
∑

α:S→{0,1}

∥∥W(S,α)

∥∥2
= 1 for all S.

Note that indeed we have for every S,
∑

α:S→{0,1}W(S,α) = W(∅,∅). This is because∥∥W(∅,∅)
∥∥2

= 1 and〈(∑
α:S→{0,1}

W(S,α)

)
,W(∅,∅)

〉
=

∑
α:S→{0,1}

〈W(S,α),W(∅,∅)〉 =
∑

α:S→{0,1}

∥∥W(S,α)

∥∥2
= 1.

Observation 6.2.5. In the construction of Theorem 6.2.4, the vectors W satisfy the fol-
lowing property. For any constraint Ci over set of variables Si, the vectors corresponding

92

to all satisfying partial assignments of Si sums up toW∅:∑
α:Si→{0,1}∧Ci(α)=1

W(Si,α) = W∅.

6.3 Gaps for BALANCEDSEPARATOR

In this section, we prove Theorem 6.1.2. We state the theorem in detail as follows.

Theorem 6.3.1. For large enough constants β,M , for all 0.45 < τ < 0.5, and for in-
finitely many positive integer N ’s, there is an N -vertex instance HΦ for the τ vs. (1 − τ)
BALANCEDSEPARATOR problem, such that the optimal solution is at least 4(3τ−τ 3)/5−
O(1/

√
β + 1/M) times the best solution of the Ω(N)-round Lasserre SDP relaxation.

Moreover, the solution for Lasserre SDP relaxation is a fractional (0.5 − O(1/M)) vs.
(0.5 +O(1/M)) balanced separator.

The rest of this section is dedicated to the proof of Theorem 6.3.1. In Section 6.3.1,
we will describe how to get a BALANCEDSEPARATOR instance from a 3-XOR instance.
Then, we will show that when the 3-XOR instance is random, the corresponding BAL-
ANCEDSEPARATOR instance is a desired gap instance. This is done by showing there is an
SDP solution with good objective value (completeness part, Lemma 6.3.2 in Section 6.3.2)
while the instance in fact has not great integral solution (soundness part, Lemma 6.3.4 in
Section 6.3.3). The completeness part relies Theorem 6.2.4 – we use the 3-XOR vectors
(which exist for random instances by the theorem) to construct BALANCEDSEPARATOR

vectors. In the soundness part, we first prove two pseudorandom structural properties ex-
hibited in the random 3-XOR instances (Lemma 6.3.3), and then prove that any 3-XOR
with these two properties leads to a BALANCEDSEPARATOR instance with bad integral
optimum by our construction. Finally, in Section 6.3.4, we slightly twist our gap instance
in order to make its vertex degree bounded.

6.3.1 Reduction

Given a 3-XOR instance Φ with m = βn constraints and n variables, we build a graph
HΦ = (VΦ, EΦ) for BALANCEDSEPARATOR as follows.

HΦ consists of an almost bipartite graph HΦ = (LΦ, RΦ, EΦ) (obtained by replacing
each right vertex of a bipartite graph by a clique), an expander Zr, and edges between LΦ

and Zr.

93

The left side LΦ of HΦ contains 4m = 4βn vertices, each corresponds to a pair of a
constraint and a satisfying partial assignment for the constraint, i.e.

LΦ = {(Ci, α)|α : {xi1 , xi2 , xi3} → {0, 1}, Ci(α) = 1}.

The right side RΦ of HΦ contains 2n cliques, each is of size Mβ, and corresponds to one
of the 2n literals, i.e.

RΦ = ∪j,α:{xj}→{0,1}C(xj ,α),

where
C(xj ,α) = {(xj, α, t)|1 ≤ t ≤Mβ}.

Call (xj, α, 1) the representative vertex of C(xj ,α). Besides the clique edges, we connect a
left vertex (Ci, α) and a right representative vertex (xj, α

′, 1) if xj is accessed by Ci and
α′ is consistent with α, i.e.

EΦ = {clique edges} ∪ {{(Ci, α), (xj, α
′, 1)}|xj ∈ {xi1 , xi2 , xi3}, α(xj) = α′(xj)}.

Now we have finished the definition ofHΦ. To getHΦ, we add anO(M)-regular expander
Zr of size m = βn and edge expansion M . (I.e. the degree of each vertex in Zr is O(M),
and each subset T ⊆ Zr (|T | ≤ |Zr|/2) has at least |T | ·M edges connecting to Zr \T . For
more discuss on the definitions and applications of expander graphs, please refer to, e.g. ,
[121].) We connect each vertex in LΦ to two different vertices in Zr, so that each vertex in
Zr has the same number of neighbors in LΦ (this number should be 4βn · 2/(βn) = 8). In
other words, if we view each vertex in LΦ as an undirected edge between its two neighbors
in Zr, the graph should be a regular graph.

The whole construction is shown in Figure 6.3. Our construction is very similar to
the one in [11], but there are some technical differences. Instead of having cliques in RΦ,
[11] has clusters of vertices with no edges connecting them. Also, in our construction, the
vertices in LΦ are connected to the representative vertices in RΦ only, while in [11], all
the vertices in the right clusters could be connected to the left side. The most important
difference is that in our way, the cliques are of constant size, while the clusters in [11] has
superconstantly many vertices. This means that our reduction blows up the instance size
only by a constant factor, therefore we are able to get linear round Lasserre gap.

Observe that there are |LΦ|+ |RΦ|+ |Zr| = 4m+ 2Mm+m = (2M + 5)m vertices
inHΦ.

In the following two subsections, we will prove the completeness lemma (Lemma 6.3.2,
which states that there is an SDP solution with a good objective value) and the soundness
lemma (Lemma 6.3.4, which states that every integral solution has a bad objective value).
Combining the two lemmas, we prove our main integrality gap theorem for BALANCED-
SEPARATOR as follows.

94

(Ci, α)

the clique C(xj ,α)

representative vertex

the vertices corresponding to Ci

LΦ RΦ

the expander Zr

Figure 6.3: The reduction for BALANCEDSEPARATOR.

Note that the incident edges are drawn for only one of the vertices in LΦ, while others can
be drawn similarly.

of Theorem 6.3.1 from Lemma 6.3.2 and Lemma 6.3.4. Let β,M be large enough constants.
Let Φ be a random 3-XOR instance over m = βn constraints and n variables.

By Theorem 6.2.4 we know that, with probability 1−o(1), Φ admits a perfect solution
for Ω(n)-round Lasserre SDP relaxation. Therefore, by Lemma 6.3.2, with probability
1 − o(1), Ω(n)-round SDP relaxation Ψ1 with parameter τ = 0.5 − O(1/M) for the
BALANCEDSEPARATOR instance HΦ has a solution of value 5m. On the other hand, by
Lemma 6.3.4, with probability 1−o(1), for τ > 1/3, every τ vs. (1−τ) balanced separator
has at least 4m(3τ − τ 3 −O(1/

√
β)−O(1/M)) edges in the cut.

Therefore, with probability 1 − o(1), when τ > 1/3, the ratio between the optimal
integral solution (toHΦ) and the optimal Ω(n)-round Ψ1 solution is at least 4(3τ−τ 3)/5−

95

O(1/
√
β + 1/M). This ratio is greater than 1.007 when τ > 0.45 and β and M are large

enough. By our observation in Section 6.2.2.1, this gap also holds for the Lasserre SDP
relaxation.

Let ∆ be the maximum number of occurrences of any variable in Φ. By our construc-
tion, the graph has degree Θ(M + ∆). When β = O(1), we have ∆ = Θ(log n/ log log n)
with probability 1 − o(1) (see, e.g. [96]). This means that our graph does not have the
desired constant-degree property. However, since there are few edges incident to vertices
with superconstant degree, we can simply remove all these edges to get a constant-degree
graph, while the completeness and soundness are still preserved. We will discuss this in
more details in Section 6.3.4.

6.3.2 Completeness : good SDP solution

Lemma 6.3.2 (Completeness). If the 3-XOR instance Φ admits perfect solution for r-
round Lasserre SDP relaxation, then the r/3-round SDP relaxation Ψ1 (in Figure 6.1)
with parameter τ = 0.5 − O(1/M) for the BALANCEDSEPARATOR instance HΦ has a
solution of value 5m.

Proof. We define a set of vectors (i.e. a solution to Ψ1) using the vectors given in Theo-
rem 6.2.4, as follows.

For each set S ⊆ LΦ ∪ RΦ ∪ Zr with |S| ≤ r/3, we define the vector US as follows.
If S ∩ Zr 6= ∅, let US = 0. If S ∩ Zr = ∅, suppose that S ∩ LΦ contains

(Ci1 , α1), (Ci2 , α2), · · · , (Cir1 , αr1),

S ∩RΦ contains

(xj1 , α
′
1, t1), (xj2 , α

′
2, t2), · · · , (xjr2 , α

′
r2
, tr2),

we have r1 + r2 = |S|. Let S ′ be the set of variables accessed by Ci1 , · · ·Ci2 together with
xj1 , · · · , xjr2 . Note that |S ′| ≤ 3r1 + r2 ≤ 3|S| ≤ r. If there is no contradiction among
the partial assignments αi’s and α′i’s (i.e. there are not two of them assigning the same
variable to different values), we can define

α = α1 ◦ α2 ◦ · · ·αr1 ◦ α′1 ◦ α′2 ◦ · · · ◦ α′r2 .

and let US = W(S′,α), otherwise we let US = 0.

We first check that the first 3 constraints in relaxation Ψ1 are satisfied.

96

• For two sets S1, S2, either at least one of the vectors US1 ,US2 is 0 (therefore their
inner-product is 0), or US1 = WS′1,α1

,US2 = WS′2,α2
for some S ′1, S

′
2, α1, α2 and

〈US1 ,US2〉 = 〈WS′1,α1
,WS′2,α2

〉 ≥ 0.

• For any S1, S2, S3, S4 such that S1∪S2 = S3∪S4, either the set of partial assignments
in S1∪S2 = S3∪S4 are consistent with each other, in which case we haveUS1∪S2 =
US3∪S4 = WS,α where S is the union of all the variables included in S1 ∪ S2 and
α is the concatenation of the partial assignments in S1 ∪ S2; or we have US1∪S2 =
US3∪S4 = 0.

• ‖U∅‖2 =
∥∥W(∅,∅)

∥∥2
= 1.

Now we check that the balance condition (the last constraint in relaxation Ψ1) is satis-
fied. We will prove that ∑

v

U {v} = (M + 1)mU ∅.

Since there are (2M + 5)m vertices in HΦ, this shows that the solution is feasible for Φ1

with τ = 0.5 − O(1/M). Using 6.2.5, we see that
∑

(Ci,α)∈LΦ
U {(Ci,α)} =

∑
Ci
U ∅ =

mU ∅. Similarly

∑
(xj ,α,t)∈RΦ

U {(xj ,α,t)} =
n∑
j=1

∑
α:{xj}→{0,1}

βM∑
t=1

U {(xj ,α,t)} = βM ·
n∑
j=1

∑
α:{xj}→{0,1}

U {(xj ,α,1)}

=βMn ·U ∅ = MmU ∅.

Thus∑
v∈V

U {v} =
∑

v∈LΦ∪RΦ∪Zr

U {v} =
∑

(Ci,α)∈LΦ

U {(Ci,α)}+
∑

(xj ,α,t)∈RΦ

U {(xj ,α,t)} = (M+1)mU ∅.

Now, we calculate the value of the solution∑
(u,v)∈EΦ

∥∥U {u} −U {v}∥∥2

=
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

3∑
z=1

∥∥∥U {(Ci,α)} −U {(xiz ,α|{xiz },1)}

∥∥∥2

+
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

∑
v∈Zr:((Ci,α),v)∈EΦ

∥∥U {(Ci,α)} −U {v}
∥∥2

97

+
n∑
j=1

∑
α:{xj}→{0,1}

∑
z1,z2∈[Mβ]

∥∥U {(xj ,α,z1)} −U {(xj ,α,z2)}
∥∥2

+
∑

v1,v2∈Zr

∥∥U {v1} −U {v2}
∥∥2

=
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

(
3∑
z=1

∥∥∥U {(Ci,α)} −U {(xiz ,α|{xiz },1)}

∥∥∥2

+ 2
∥∥U {(Ci,α)}

∥∥2

)

=
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

(
3∑
z=1

∥∥∥W({xi1 ,xi2 ,xi3},α) −W({xiz},α|{xiz })

∥∥∥2

+ 2
∥∥W({xi1 ,xi2 ,xi3},α)

∥∥2

)

=
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

(
3∑
z=1

(∥∥∥W({xiz},α|{xiz })

∥∥∥2

−
∥∥W({xi1 ,xi2 ,xi3},α)

∥∥2
)

+ 2
∥∥W({xi1 ,xi2 ,xi3},α)

∥∥2

)

=
m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

3∑
z=1

∥∥∥W({xiz},α|{xiz })

∥∥∥2

−

m∑
i=1

∑
α:{xi1 ,xi2 ,xi3}→{0,1},Ci(α)=1

∥∥W({xi1 ,xi2 ,xi3},α)

∥∥2

=
m∑
i=1

3∑
z=1

2
(∥∥W{xiz},{xiz→0}

∥∥2
+
∥∥W{xiz},{xiz→1}

∥∥2
)
−m

=6m−m = 5m.

6.3.3 Soundness : bound for integral solutions

Let L = {(xj, α)|α : {xj} → {0, 1}} be the set of 2n literals. For each literal (xj, α) ∈ L,
let deg((xj, α)) be the number of left vertices that connect to the literal’s representative
vertex (xj, α, 1). For a set of literals L′ ⊆ L, let deg(L′) =

∑
(xj ,α)∈L′ deg((xj, α)). Also,

given a subset L′ ⊆ L, for left vertex (Ci, α), say (Ci, α) is contained in L′ if all the three

98

literals corresponding to the three neighbors of (Ci, α) in HΦ are contained in L′, i.e.

{(xi1 , α|xi1), (xi2 , α|xi2), (xi3 , α|xi3)} ⊆ L′.

We first prove the following lemma regarding the structure ofHΦ, defined by a random
3-XOR instance Φ.

Lemma 6.3.3. Over the choice of random 3-XOR instance Φ, with probability 1− o(1),
the following statements hold.

• For each L′ ⊆ L, |L′| ≥ n/3, we have deg(L′) ≥ 6m · |L′|/n(1− 20/
√
β).

• For each L′ ⊆ L, |L′| ≥ n/3, the number of left vertices in LΦ contained in L′ is at
most m · |L′|3/(2n3) · (1 + 100/

√
β).

Proof. Fix a literal (xj, α), a random constraint Ci accesses xj with probability 3/n. Once
Ci accesses xj , there are 2 vertices out of the 4 left vertices corresponding to Ci adjacent to
(xj, α). Therefore, in expectation, there are 6/n edges from the left vertices corresponding
to Ci to (xj, α). By linearity of expectation, for fixed L′ ⊆ L, there are 6|L′|/n edges from
the left vertices corresponding to a random constraint Ci to L′ in expectation.

Now for eachCi, let the random variableXi be the number of representative vertices in
L′ that is connected to left vertices corresponding to Ci. By definition we have deg(L′) =∑m

i=1 Xi. Since each left vertex corresponding to Ci has 3 neighbors on the right side, and
there are 4 of such left vertices, we know that Xi ∈ [0, 12]. In the previous paragraph we
have concluded that E[Xi] = 6|L′|/n for all i = 1, 2, . . . ,m. It is also easy to see that
X1, X2, . . . , Xm are independent random variables.

Now assuming that |L′| ≥ n/3, we use Hoeffding’s inequality for the random variables
X1, X2, . . . , Xm, and get

Pr[deg(L′) < 6m · |L′|/n(1− 20/
√
β)] = Pr

[
n∑
i=1

Xi < 6m · |L′|/n(1− 20/
√
β)

]

≤ exp

−2 ·
(

20√
β
· 6m · |L

′|
n

)2

m · 122

 = exp

(
−200 ·

(
|L′|
n

)2

· n

)
≤ exp (−22n) ≤ 2−4n.

Since there are at most 22n such L′’s, by a union bound, with probability at least 1− 2−2n,
the first statement holds.

99

For the second statement, fix an L′ ⊆ L, let a0, a1, a2 be the number of variables that
have 0, 1, 2 corresponding literals in L′, respectively. Note that a0 + a1 + a2 = n and
a1 +2a2 = |L′| Now, for a random constraint Ci, we are interested in the expected number
of the four corresponding left vertices (Ci, α) that are contained in L′. Note that once Ci
accesses a variable that corresponds to a0, none of the four corresponding left vertices are
contained in L′. Now let us condition on the case that, out of the 3 variables accessed by
Ci, t variables have two literals in L′ and the other (3− t) variables have one literal in L′.
Observe that in expectation (which is over the random choice of Ci while conditioned on
t), there are 2t−1 left vertices corresponding to Ci contained in L′.

In all, the expected number of the left vertices corresponding to Ci that are contained
in L′ is

3∑
t=0

(
a1

3−t

)(
a2

t

)(
n
3

) · 2t−1 < (1 +
10

n
)

3∑
t=0

(
3

t

)
(a1/n)3−t(a2/n)t · 2t−1 (for n > 3)

= (1 +
10

n
)(a1 + 2a2)3/(2n3) = (1 +

10

n
) · |L′|3/(2n3).

For each Ci, let the random variable Xi be the number of left vertices corresponding to Ci
that are contained inL′. By the discuss above, we know that E[Xi] < (1+ 10

n
)·|L′|3/(2n3).

Now we are interested in the probability that the total number of left vertices contained in
L′ (i.e.

∑m
i=1 Xi) is big. Since Xi’s are always bounded by [0, 4], by standard Chernoff

bound, we have

Pr

[
m∑
i=1

Xi > m · |L′|3/(2n3) · (1 + 100/
√
β)

]

= Pr

[
m∑
i=1

Xi > m ·
(

1 +
10

n

)
· |L′|3/(2n3) · 1 + 100/

√
β

1 + 10/n

]

= Pr

[
m∑
i=1

Xi > m ·
(

1 +
10

n

)
· |L′|3/(2n3) ·

(
1 +

100/
√
β − 10/n

1 + 10/n

)]

≤ exp

(
−1

4
·m ·

(
1 +

10

n

)
· |L′|3/(2n3) · (100/

√
β − 10/n)2

3(1 + 10/n)2

)
(for large enough β)

≤ exp

(
−1

4
·m · |L′|3/(2n3) · (80/

√
β)2

3

)
(for n�

√
β � 1)

= exp

(
−βn · |L

′|3

n3
· 1

β
· 800

3

)
≤ exp

(
−n · 800

34

)
(since |L′| ≥ n/3)

100

≤2−4n.

Since there are at most 22n such L′’s, by a union bound, with probability at least 1− 2−2n,
the second statement holds.

Now, we are ready to prove the soundness lemma.

Lemma 6.3.4 (Soundness). For τ > 1/3, with probability 1 − o(1), the τ vs. (1 − τ)
balanced separator has at least 4m(3τ − τ 3 −O(1/

√
β)−O(1/M)) edges in the cut.

Proof. We are going to prove that, once the two conditions in Lemma 6.3.3 hold, we have
the desired upper bound for τ vs. (1− τ) balanced separator. Let us assume that there is a
balanced separator (A′, B′) such that edges(A′, B′) ≤ 4m(3τ − τ 3) ≤ 12m, we will show
that edges(A′, B′) ≥ 4m(3τ − τ 3 −O(1/

√
β)−O(1/M)).

Based on (A′, B′) we build another cut (A,B) such thatA∩Zr = A′∩Zr andA∩RΦ =
A′ ∩ RΦ. For each left vertex in LΦ, it has 5 edges going to Zr and RΦ. We assign
the vertex to A if it has less than 3 edges going to B′ ∩ (Zr ∪ RΦ), and assign it to B
otherwise. Note that edges(A,B) ≤ edges(A′, B′), therefore we only need to show that
edges(A,B) ≥ m(12τ − τ 3 − O(1/

√
β) − O(1/M)). Since LΦ contains only O(1/M)

fraction of the total vertices, (A,B) is still (τ −O(1/M)) vs. (1−τ +O(1/M)) balanced.

Since edges(A,B) ≤ 12m, for large enough constant M , we have the following two
statements.

1) One of A ∩ Zr and B ∩ Zr has at most 100/M · |Zr| = 100m/M vertices.

2) Let Cbad = {(xj, α) : the clique C(xj ,α) is broken by (A,B)}, then |Cbad| ≤ 20n/M .

If 1) does not hold, then we see there are at least (100/M) · |Zr| ·M = 100m edges in Zr
cut by (A,B), by the expansion property. If 2) does not hold, for each clique C(xj ,α) that
is broken by (A,B), at least (βM − 1) edges of the clique are in the cut. In all, there are
at least (βM − 1) · 20n/M > 12βn = 12m edges in the cut.

Now, by 1), assume w.l.o.g. thatA∩Zr is the smaller side – having at most 100/M ·|Zr|
vertices, and let L′ be the set of literals (xj, α) such that its representative vertex (xj, α, 1)
is in A.

To get a lower bound for |L′|, note that

|A| ≤ (|L′|+ |Cbad|) ·Mβ + |Zr|+ |LΦ| = |L′| ·Mβ +O(1)m. (6.5)

101

Also, since (A,B) is a balanced separator, we have |A| ≥ (τ −O(1/M)) · 2Mm. Hence,
by (6.5), we have |L′| ≥ (τ −O(1/M)) · 2n.

Let Lbad ⊆ LΦ be the set of left vertices such that at least one of the two neighbors in
Zr falls into A ∩ Zr. By the regularity of the graph where Zr is the set of vertices and LΦ

is the set of edges, we know that |Lbad| ≤ 8 · 100/M · |Zr| ≤ O(m/M).

Now let us get a lower bound on edges(A,B). First, we have edges(A,B) ≥ edges(A\
Lbad, B \ Lbad). Let L′Φ = LΦ \ Lbad, we have

edges(A \ Lbad, B \ Lbad)

= edges(A ∩ (L′Φ ∪RΦ ∪ Zr), B ∩ (L′Φ ∪RΦ ∪ Zr))
≥ edges(A ∩ L′Φ, B ∩ Zr) + edges(A ∩RΦ, B ∩ L′Φ)

= edges(A ∩ L′Φ, B ∩ Zr) + edges(A ∩RΦ, L
′
Φ)− edges(A ∩RΦ, A ∩ L′Φ)

≥ edges(A ∩ L′Φ, B ∩ Zr) + edges(A ∩RΦ, LΦ)− |Lbad| · 3− edges(A ∩RΦ, A ∩ L′Φ).

Consider a left vertex (Ci, α) ∈ L′Φ. We claim that it is contained in L′ if and only if
(Ci, α) ∈ A. This is because if it is contained in L′, then we have (Ci, α) ∈ A because 3
out of 5 edges incident to (Ci, α) go to A side (the three variable representative vertices).
If (Ci, α) is not contained in L′, we have at least 3 out of the 5 edges going to B side (the
two edges to B ∩Zr and at least one of the variable representative vertices), and therefore
we have (Ci, α) ∈ B. By this claim, we know the following two facts.

• |A ∩ L′Φ| is small. Since τ > 1/3, we have |L′| ≥ (2/3 − O(1/M))n > n/3, and
by the second property of Lemma 6.3.3, we have |A ∩ L′Φ| ≤ m · |L′|3/(2n3) · (1 +
100/
√
β).

• We have edges(A∩L′Φ, B∩Zr) = 2|A∩L′Φ| and edges(A∩L′Φ, A∩RΦ) = 3|A∩L′Φ|.

For edges(A∩RΦ, LΦ), we know that this is exactly deg(L′). Again, since τ > 1/3, by
the first property of Lemma 6.3.3, we know this value is lower-bounded by 6m · |L′|/n(1−
20/
√
β).

In all, we have

edges(A,B)

≥ edges(A ∩ L′Φ, B ∩ Zr) + edges(A ∩RΦ, LΦ)− |Lbad| · 3− edges(A ∩RΦ, A ∩ L′Φ)

= 2|A ∩ L′Φ|+ deg(L′)− |Lbad| · 3− 3|A ∩ L′Φ|
≥ deg(L′)− |A ∩ L′Φ| −O(m/M)

102

≥ 6m · |L′|/n(1− 20/
√
β)−m · |L′|3/(2n3) · (1 + 100/

√
β)−O(m/M)

= m
(

12γ − 4γ3 − (240γ + 400γ3)/
√
β −O(1/M)

)
(let γ = |L′|/(2n))

≥ 4m
(

3τ − τ 3 −O(1/
√
β)−O(1/M)

)
.

The last step follows because (i) 3γ− γ3 monotonically increases when γ ∈ [0, 1], and (ii)
γ ≥ (τ −O(1/M)).

6.3.4 Constant-degree integrality gap instance

In this subsection, we slightly modify the graph HΦ obtained in the previous subsections
to get an integrality gap instance with constant degree.

Observe that in HΦ, when M and β are constants, the only vertices whose degree
might be superconstant are the representative vertices in RΦ. Now consider the edges
connecting vertices in LΦ and representative vertices: there are 12m of them, each of them
corresponds to a combination of constraint Ci, satisfying assignment α, and one of the
variables in the constraint. Let Eb be the set of these edges.

For two edges e1, e2 ∈ Eb, let the random variable Y{e1,e2} = 1 if they share the same
representative vertex, and let Y{e1,e2} = 0 otherwise. Finally let Y =

∑
e1,e2∈Eb Y{e1,e2}.

By the simple second moment method, we know that with probability 1 − o(1), we have
Y ≤ 1000m2

n
= 1000β2n.

For every edge e ∈ Eb, if
∑

e′∈Eb\{e} Y{e,e′} > βM , we remove e from the graph. In
this way, we get a new graph, namelyH′Φ. We claim the following properties aboutH′Φ.

1. The maximum degree of H′Φ is O(βM). This is because the maximum degree of
vertices other than representative vertices in HΦ is O(βM), and after the edge re-
moval process described above, the representative vertices have degree O(βM).

2. The number of edges removed is at most 2Y/(βM), and therefore 2000m/M with
probability 1− o(1). This is because whenever an edge is removed, we charge βM
to Y . Since each edge in Y can be charge at most twice, there are at most 2Y/(βM)
edges to be removed.

3. The SDP solution in Lemma 6.3.2 is still feasible and has objective value at most
5m (since we removed edges) with probability 1− o(1).

4. The soundness lemma Lemma 6.3.4 still holds since we removed only O(m/M)
edges.

103

Therefore, we claim that H′Φ is an integrality gap instance for Theorem 6.3.1 with
constant degree.

6.4 Gaps for UNIFORMSPARSESTCUT

In this section, we provide the full analysis of the gap instance for UNIFORMSPARSEST-
CUT. We first describe our construction of the gap instance for UNIFORMSPARSESTCUT

as follows.

We modify the gap instance we got for BALANCEDSEPARATOR to get an instance for
the linear round Lasserre relaxation of UNIFORMSPARSESTCUT. The reduction converts
the gap instance for BALANCEDSEPARATOR to the gap instance for UNIFORMSPARSES-
TCUT in an almost black box style. In the BALANCEDSEPARATOR problem, we have the
hard constraint that the cut is τ -balanced. In the reduction from BALANCEDSEPARATOR

to UNIFORMSPARSESTCUT, we need to use the sparsity objective to enforce this con-
straint. We do it as follows. Recall that given a 3-XOR instance Φ, the corresponding gap
instance for BALANCEDSEPARATOR consists of vertex set LΦ ∪RΦ ∪Zr and edge set EΦ.
To get a gap instance for UNIFORMSPARSESTCUT, we add two more O(M)-regular ex-
panders (with edge expansion 104 ·M) Dl and Dr of size 1000Mm (where M is the same
parameter defined in the previous sections). Now, let the edge set E ′Φ contain the edges in
EΦ, in the expandersDl andDr, and the following edges : for each vertex v ∈ LΦ∪RΦ∪Zr,
introduce 2 new edges incident to it, one to a vertex in Dl (say, vl) and the other one to a
vertex in Dr (say, vr). We arrange these edges (between LΦ ∪ RΦ ∪ Zr and Dl, Dr) in a
way so that each vertex in Dl (or Dr) has at most one neighbor in LΦ ∪RΦ ∪Zr – this can
be done because |LΦ|+ |RΦ|+ |Zr| = (2M + 5)m < 1000Mm = |Dl| = |Dr|.

Using the instance described above, we will prove our main integrality gap theorem
(Theorem 6.1.3) for UNIFORMSPARSESTCUT. We state the full theorem as follows.

Theorem 6.4.1. For large enough constant β,M (where β is the same parameter as
in previous sections), and infinitely many positive integer N ’s, there is an N -vertex in-
stance for UNIFORMSPARSESTCUT problem, such that the optimal solution is at least
(1 + 1/(100M)) times worse than the optimal solution of the Ω(N)-round Lasserre SDP.

Theorem 6.4.1 is directly implied by the following completeness lemma (Lemma 6.4.2)
and soundness lemma (Lemma 6.4.3).

Lemma 6.4.2 (Completeness). The value of relaxation Ψ2 (in Figure 6.2) is at most

(2M + 10)m/((1001M + 1)m)2

104

for τ = (1001M + 1)/(2002M + 5).

Proof. Given the SDP solution {US′}S′⊆LΦ∪RΦ∪Zr,|S′|≤r/3 in the completeness case of
BALANCEDSEPARATOR, we extend it to the SDP solution {US}S⊆LΦ∪RΦ∪Zr∪Dl∪Dr,|S|≤r/3
for UNIFORMSPARSESTCUT by “putting Dl and Dr one per side”. That is, for each
S ⊆ LΦ ∪RΦ ∪ Zr ∪Dl ∪Dr with |S| ≤ r/3, let S ′ = S ∩ (LΦ ∪RΦ ∪ Zr). Now we let
US = 0 if S ∩Dr 6= ∅, and let US = US′ otherwise.

We first check that {US}S⊆LΦ∪RΦ∪Zr∪Dl∪Dr,|S|≤r/3 is a feasible SDP solution. We only
check that the balance constraint (the last constraint in relaxation Φ2) is met.

We are going to prove prove that∑
u∈LΦ∪RΦ∪Zr∪Dl∪Dr

U {u} = (1001M + 1)mU ∅.

From the proof of Lemma 6.3.2, we know that∑
u∈LΦ∪RΦ∪Zr

U {u} = (M + 1)mU ∅,

together with the fact that

∀u ∈ Dl,U {u} = U ∅, ∀u ∈ Dr,U {u} = 0,

we get the desired equality.

Now we calculate the value of the solution. First, we calculate the following value.

∑
(u,v)∈E ′Φ

∥∥U {u} −U {v}∥∥2
=

∑
(u,v)∈EΦ

∥∥U {u} −U {v}∥∥2
+

∑
(u,v)∈E ′Φ\EΦ

∥∥U {u} −U {v}∥∥2

=5m+
∑
u,v∈Dl

∥∥U {u} −U {v}∥∥2
+
∑

u,v∈Dr

∥∥U {u} −U {v}∥∥2

+
∑

u∈LΦ∪RΦ∪Zr

(∥∥U {u} −U {vl}∥∥2
+
∥∥U {u} −U {vr}∥∥2

)
,

Note that
∑

u,v∈Dl

∥∥U {u} −U {v}∥∥2
+
∑

u,v∈Dr

∥∥U {u} −U {v}∥∥2
= 0, and∑

u∈LΦ∪RΦ∪Zr

(∥∥U {u} −U {vl}∥∥2
+
∥∥U {u} −U {vr}∥∥2

)
105

=
∑

u∈LΦ∪RΦ∪Zr

(
2
∥∥U {u}∥∥2

+
∥∥U {vl}∥∥2

+
∥∥U {vr}∥∥2 − 2〈U {u},U {vl}〉 − 2〈U {u},U {vr}〉

)
=

∑
u∈LΦ∪RΦ∪Zr

(
2
∥∥U {u}∥∥2

+ 1 + 0− 2
∥∥U {u,vl}∥∥2 − 2

∥∥U {u,vr}∥∥2
)

(by property of Lasserre vectors)

=
∑

u∈LΦ∪RΦ∪Zr

1 = |LΦ|+ |RΦ|+ |Zr| = (2M + 5)m.

Thus, we have ∑
(u,v)∈E ′Φ

∥∥U {u} −U {v}∥∥2
= (2M + 10)m.

Since τ < 1/2, the value of the solution is at most

1

|LΦ ∪RΦ ∪ Zr ∪Dl ∪Dr|2τ 2

∑
(u,v)∈E ′Φ

∥∥U {u} −U {v}∥∥2
= (2M + 10)m/((1001M + 1)m)2.

Lemma 6.4.3 (Soundness). For large enoughM , the sparsity of the sparsest cut is at least
γ = (1 + 1/(100M)) · (2M + 10)m/(1001Mm)2.

Proof. Let D′l be the smaller part among Dl ∩ S and Dl ∩ S̄, and D′′l be the larger part.
Also, let D′r be the smaller part among Dr ∩ S and Dr ∩ S̄ and D′′r be the larger part. Let
(T, T̄) be the cut restricted to LΦ ∪ RΦ ∪ Zr (the BALANCEDSEPARATOR instance), i.e.
let T = S ∩ (LΦ ∪RΦ ∪ Zr) and T̄ = S̄ ∩ (LΦ ∪RΦ ∪ Zr).

First, we show that to get a cut of sparsity better than γ, |D′l| ≤ 1
104M

· |Dl|, and the
same is true for Dr (by the same argument). This is because if |D′l| > 1

104M
· |Dl|, by

the expansion property, there are at least 104M · |D′l| > 1000Mm edges in the cut. Since
the graph has |LΦ| + |RΦ| + |Zr| + |Dl| + |Dr| = (2002M + 5)m vertices, therefore the
sparsity of the cut is at least

1000Mm
1
4
· ((2002M + 5)m)2

>
500Mm

(1001Mm)2
> γ,

for M > 1/25.

106

Second, we show that D′l and D′r should be on opposite sides of any cut of sparsity
better than γ. Suppose not, let S be the side of the cut which D′l and D′r are on. Recall that
T = S ∩ (LΦ ∪RΦ ∪ Zr). We have

edges(S, S̄) ≥ edges(T,D′′l ∪D′′r) + edges(D′l, D
′′
l) + edges(D′r, D

′′
r).

Note that edges(T,D′′l ∪D′′r) ≥ 2|T |−|D′l|−|D′r| as each vertex inDl, Dr is connected to at
most one vertex in T . Also, by the expansion property, edges(D′l, D

′′
l) + edges(D′r, D

′′
r) ≥

1000M(|D′l|+ |D′r|). Now, we have

edges(S, S̄) ≥ 2|T | − (|D′l|+ |D′r|) + 1000M(|D′l|+ |D′r|)
= 2(|T |+ |D′l|+ |D′r|) + (1000M − 3)(|D′l|+ |D′r|) ≥ 2(|T |+ |D′l|+ |D′r|) = 2|S|.

Therefore, the sparsity of the cut

edges(S, S̄)

|S||S̄|
≥ 2|S|
|S||S̄|

=
2

|S̄|
≥ 2

(2002M + 5)m
> γ.

Third, we show that if the cut (S, S̄) has sparsity better than γ, then the cut (T, T̄)
defined above is a 0.49 vs 0.51 balanced cut, i.e. |T |/(|LΦ|+ |RΦ|+ |Zr|) ∈ [0.49, 0.51].
Supposing (T, T̄) is not 0.49 vs 0.51 balanced, i.e. ||T | − |T̄ || > 0.02 · (2M + 5)m, we
have

||S| − |S̄|| ≥ ||T | − |T̄ || − |D′l| − |D′r| ≥ 0.02 · (2M + 5)m− 2

1000M
· 1000Mm

≥ (0.04M − 2)m ≥ 0.01Mm,

for large enough M . Therefore, (S, S̄) is not 0.5− 10−6 vs 0.5 + 10−6 balanced. Thus,

|S||S̄| < ((2002M + 5)m)2 · (0.5− 10−6)(0.5 + 10−6) < (1001Mm)2 · (1− 10−12).

Since D′′l and D′′r are on opposite sides of (S, S̄), we know that edges(S, S̄) ≥ (2M +
5)m− |D′l| − |D′r| ≥ (2M + 5)m · (1− 1/M), and therefore the sparsity of the cut

edges(S, S̄)

|S||S̄|
>

(2M + 5)m

(1001Mm)2
· (1− 1/M)(1 + 10−12).

This value is greater than γ when M > 1020.

Finally, since (T, T̄) is a 0.49 vs 0.51 balanced cut, by Lemma 6.3.4, we know that
with probability 1− o(1), edges(T, T̄) > (5.4−O(1/

√
β)−O(1/M)))m. Therefore

edges(S, S̄)

|S||S̄|

107

≥edges(T, T̄) + (2M + 5)m− |D′l| − |D′r|
1
4
· ((2002M + 5)m)2

≥
(5.4−O(1/

√
β)−O(1/M)))m+ (2M + 5)m− 1000Mm

104M
− 1000Mm

104M
1
4
· ((2002M + 5)m)2

=
(2M + 10.2−O(1/

√
β)−O(1/M))m

1
4
· ((2002M + 5)m)2

≥(2M + 10.2−O(1/
√
β)−O(1/M))m

(1001Mm)2
· (1− 1/(200M))

≥(2M + 10.1)m

(1001Mm)2
· (1− 1/(200M)) (for large enough β and M)

≥(2M + 10)m

(1001Mm)2
· (1 + 1/(30M))(1− 1/(200M)) (for large enough M)

≥(2M + 10)m

(1001Mm)2
· (1 + 1/(100M)) = γ.

108

Chapter 7

Lasserre integrality gaps for
ROBUSTGISO

7.1 Introduction

The GRAPHISOMORPHISM problem is one of the most intriguing and notorious problems
in computational complexity theory (we will also refer to it as GISO for short); we refer
to [149, 30, 24, 148, 69] for surveys. It was famously referred to as a “disease” over 35
years ago [199] and maintains its infectious status to this day. Together with FACTOR-
ING, it is one of the very rare problems in NP which is not known to be in P but which
is believed to not be NP-hard [29, 49, 205] (according to standard complexity-theoretic
assumptions). Both problems also admit an algorithm with running time “subexponential”
(or “moderately exponential”) in the natural witness size. In the case of GRAPHISOMOR-
PHISM on n-vertex graphs, the natural witness size is log2(n!) = Θ(n log n), but the best
known algorithm due to Luks solves the problem in time 2O(

√
n logn) [33].

In the same breath we might mention the problems GAPSVP√n (approximating the
shortest vector in an n-dimensional lattice to factor

√
n) and UNIQUEGAMESε (the Unique

Games problem proposed by Khot [136]). The former is not NP-hard subject to standard
complexity-theoretic assumptions [95, 4], though we don’t know any subexponential-time
algorithm. The latter has a subexponential-time algorithm [16]; whether it is NP-hard or
in P (or neither) is hotly contested. The potential hardness of FACTORING and GAPSVP
— even under certain average-case distributions — is well enough entrenched that many
cryptographic protocols are based on it. (The same is true of random 3-XOR with noise,
more on which later.) On the other hand, for GRAPHISOMORPHISM and UNIQUEGAMESε

109

we do not know any way of generating “hard-seeming instances”; indeed, some experts
have speculated that GRAPHISOMORPHISM may be in P, or at least have a 2polylog(n)-time
algorithm.

In this chapter we investigate hardness results for the GISO problem. Since GISO may
well be in P, let us discuss what this may mean. One direction would be to show that
GISO is hard for small complexity classes. This has been pursued most successfully by
Torán [217], who has shown that GISO is hard for the class DET. This is essentially the
class of problems equivalent to computing the determinant; it contains #L and is contained
in TC1. It is not known whether GISO is P-hard.

7.1.1 Our contributions

In this chapter, however, we are concerned with hardness results well above P. Our main
contribution is that solving GISO via the Lasserre/SOS hierarchy requires 2Ω(n) time (i.e.,
Ω(n) rounds/degree). This generalizes the result of Cai, Fürer, and Immerman [55] show-
ing that the frequently effective o(n)-dimensional Weisfeiler–Lehman algorithm fails to
solve GISO; it also gives even more evidence that any subexponential-time algorithm for
GISO requires algebraic, non-local techniques.

Another result among our contributions is concerned with the problem of robust graph
isomorphism, ROBUSTGISO. Recall from the introduction part of this the is that RO-
BUSTGISO is the following problem: given two graphs which are almost isomorphic, find
an “almost-isomorphism”. ROBUSTGISO is strictly harder than GISO and the fact that
it concerns “isomorphisms with noise” seems to rule out all algebraic techniques. We
show that ROBUSTGISO is at least as hard as random 3-XOR with noise; hence ROBUST-
GISO has no polynomial-time algorithm assuming the well-known R3XOR Hypothesis
of Feige [88]. In fact, it’s possible that the R3XOR problem requires 2n

1−o(1) time, which
would mean that ROBUSTGISO is much harder than GISO itself.

7.1.2 SOS/Lasserre gaps

The most well-known heuristic for GRAPHISOMORPHISM (and the basis of most practical
algorithms — e.g., “nauty” [171]) is the Weisfeiler–Lehman (WL) algorithm [222] and its
“higher dimensional” generalizations. To describe the basic algorithm we need the notion
of a colored graph. This is simply a graph, together with a function mapping the vertices to
a finite set of colors; equivalently, a graph with its vertices partitioned into “color classes”.
Isomorphisms involving colored graphs are always assumed to preserve colors. Let G be

110

a colored graph on the n-vertex set V . A color refinement step refers to the following
procedure: for each v ∈ V , one determines the multiset Cv of colors in the neighborhood
of v; then one recolors each v with color Cv. Now the basic WL algorithm, when given
graphsG andH , repeatedly applies refinement to each of them until the colorings stabilize.
(Initially, the graphs are treated as having just one color class.) At the end, if G and H
have the same number of vertices of each color the WL algorithm outputs that they are
“maybe isomorphic”; otherwise, it (correctly) outputs that they are “not isomorphic”.

Note that after the initial refinement step, a graph’s vertices are colored according to
their degree. Thus two d-regular graphs are always reported as “maybe isomorphic” by
the basic WL algorithm. On the other hand, the heuristic is powerful enough to work
correctly for all trees and for almost all n-vertex graphs in the Erdős–Rényi G(n, 1/2)
model [31, 32]. (We say the heuristic “works correctly” on a graph G if the stabilized
coloring for G is distinct from the stabilized coloring of any graph not isomorphic to G.)
To overcome WL’s failure for regular graphs, several researchers independently introduced
the “k-dimensional generalization” WLk (see [222, 55] for discussion). Briefly, in the WLk

heuristic, each k-tuple of vertices has a color, and color refinement involves looking at all
“neighbors” of each k-tuple of vertices (v1, . . . , vk) (where the neighbors are all tuples of
the form (v1, . . . , vi−1, ui, vi+1, . . . , vk), where {ui, vi} is an edge). The WLk heuristic can
be performed in time nk+O(1) and is thus a polynomial-time algorithm for any constant k.

The WLk heuristic is very powerful. For example, it is known to work correctly in
polynomial time for all graphs which exclude a fixed minor [102], a class which includes
all graphs of bounded treewidth or bounded genus. Spielman’s 2Õ(n1/3)-time graph isomor-
phism algorithm [213] for strongly regular graphs is achieved by WLk with k = Õ(n1/3).
The WLk algorithm with k = O(

√
n) is also a key component in the 2O(

√
n logn)-time GISO

algorithm [33]. Throughout the ’80s there was some speculation that GISO might be solv-
able on all graphs by running the WLk algorithm with k = O(log n) or even k = O(1).
However this was disproved in the notable work of Cai, Fürer, and Immerman [55], which
showed the existence of nonisomorphic n-vertex graphs G and H which are not distin-
guished by WLk unless k = Ω(n).1

The GRAPHISOMORPHISM problem can be thought of as kind of constraint satisfac-
tion problem (CSP), and readers familiar with LP/SDP hierarchies for CSPs might see an
analogy between k-dimensional WL and level-k LP/SDP relaxations. A very interesting
recent work of Atserias and Maneva [27] (see also [103]) shows that this is more than

1Actually,G andH are colored graphs in [55]’s construction, with each color class having size at most 4.
It is often stated that the colors can be replaced by gadgets while keeping the number of vertices O(n). We
do not find this to be immediately obvious. However it does follow from the asymmetry of random graphs,
as we will see later in this chapter.

111

just an analogy — it shows that the power of WLk is precisely sandwiched between that
of the kth and (k + 1)st level of the canonical Sherali–Adams LP hierarchy [207]. (In
fact, it had long been known [196] that WL1 is equivalent in power to the basic LP relax-
ation of GISO.) This gives a very satisfactory connection between standard techniques in
optimization algorithms and the best known non-algebraic/local techniques for GISO.

This connection raises the question of whether stronger LP/SDP hierarchies might
prove more powerful than WLk in the context of GISO. The strongest such hierarchy
known is the “SOS (sum-of-squares) hierarchy” due to Lasserre [156] and Parrilo [185].
Very recent work [34, 184, 133] (part of which included in this thesis) in the field of
CSP approximability has shown that O(1) levels of the SOS hierarchy can succeed where
ω(1) levels of weaker SDP hierarchies fail; in particular, this holds for the hardest known
instances of UNIQUEGAMESε [34]. This raises the question of whether there might be a
subexponential-time algorithm based SOS which solves GRAPHISOMORPHISM.

We answer this question negatively. Our first main result is that a variant of the
Cai–Fürer–Immerman instances also fools Ω(n) levels of the SOS hierarchy. In fact, we
achieve a “constant factor Lasserre gap with perfect completeness”. To explain this, recall
the definition of α-isomorphism from Definition 2.1.5 which we restate as follows.

Definition 7.1.1 (Re-statement of Definition 2.1.5). Let G and H be nonempty n-vertex
graphs. For 0 ≤ β ≤ 1, we say that a bijection π : V (G) → V (H) is an α-isomorphism
if

|{(u, v) ∈ E(G) : (π(u), π(v)) ∈ E(H)}|
max{|E(G)|, |E(H)|}

≥ α.

In this case we say that G and H are α-isomorphic.

Observe that this definition is symmetric in G and H . The two graphs are isomorphic
if and only if they are 1-isomorphic. We will almost always consider the case that G and
H have the same number of edges. We prove:

Theorem 7.1.2. For infinitely many n, there exist pairs of n-vertex, O(n)-edge graphs G
and H such that:

• G and H are not (1− 10−14)-isomorphic;

• any SOS refutation of the statement “G andH are isomorphic”2 requires degree Ω(n).

2When naturally encoded.

112

A word on our techniques. The essence of the Cai–Fürer–Immerman construction is
to take a 3-regular expander graph and replace each vertex by a certain 10-vertex gadget
(originally appearing in [123] and also sometimes called a “Fürer gadget”). This gad-
get is closely related to 3-variable equations modulo 2 (as observed by several authors,
e.g. [217]); indeed, it may be described as the “label-extended graph” of the 3-XOR
constraint. The reader may therefore recognize the [55] WLk lower bound as stemming
from the difficulty of refuting unsatisfiable, expanding 3-XOR CSP instances by “local”
means. This should make our Theorem 7.1.2 look plausible in light of the Grigoriev [99]
and Schoenebeck [204] SOS/Lasserre lower bounds.

Nevertheless, obtaining Theorem 7.1.2 is not automatic. For one, we still lack a com-
plete theory of reductions within the SOS hierarchy (though see [220]). Second, the pair
of graphs constructed by [55] only differ by one edge. More tricky is the issue of removing
the “colors” from the [55] construction. We do not see an easy gadget-based way of doing
this without sacrificing on the Ω(n) degree. To handle this we have to: a) modify the [55]
construction somewhat to make the two graphs differ by a constant fraction; b) prove that
random (hyper)graphs are “robustly asymmetric” — i.e., “far from having nontrivial au-
tomorphisms”; c) use the robust asymmetry property to remove the “colors”. The result
in b), described below in Section 7.1.4, qualitatively generalizes work of Erdős and Rényi
[81] and may be of independent interest.

Comparison to the work by Snook et al. In an independent work, Schoenebeck, Co-
denotti, and Snook [211] have shown a conclusion similar to our Theorem 7.1.2. Their
main result is that there are expander graphs G and H which are not isomorphic, but
any SOS refutation of the statement “G and H are isomorphic” requires degree Ω(n).
As in our work, their proof combines the Cai–Fürer–Immerman construction with the
Schoenebeck [204] SOS/Lasserre lower bounds.

7.1.3 Robust graph isomorphism

Our second main result concerns the ROBUSTGISO problem. Recall the definition of
ROBUSTGISO from Definition 2.2.7 which we restate as follows.

Definition 7.1.3 (Re-statement of Definition 2.2.7). We say an algorithm A solves the
ROBUSTGISO problem if there is a function r : [0, 1] → [0, 1] satisfying r(ε) → 0 as
ε→ 0+ such that wheneverA is given any pair of graphs which are (1− ε)-isomorphic,A
outputs a (1− r(ε))-isomorphism between them.3

3We could also consider the easier task of distinguishing pairs which are (1 − ε)-isomorphic from pairs

113

To understand the motivation of this definition, we might imagine an algorithm trying
to recover an isomorphism betweenG andH , whereH is formed by permuting the vertices
ofG and then introducing a small amount of noise — say, adding and deleting an ε fraction
of edges. Thinking of GISO as a CSP, we are concerned with finding “almost-satisfying”
solutions on “almost-satisfiable” instances. For example, suppose we are given graphs G
and H which are promised to be (1 − ε)-isomorphic. Can we efficiently find a (1 − 2ε)-
isomorphism? A (1 −

√
ε)-isomorphism? A (1 − 1

log(1/ε)
)-isomorphism? Therefore the

notion of ROBUSTGISO naturally comes in.

Remark 7.1.1. In particular, A in Definition 7.1.3 must solve the GISO problem, because
given isomorphic graphs with at most m edges we can always take ε > 0 small enough so
that r(ε) < 1/m.

The analogous problem of robust satisfaction algorithms for CSPs over constant-size
domains was introduced by Zwick [228] and has proved to be very interesting. Guruswami
and Zhou [113] conjectured that the CSPs which have efficient robust algorithms (subject
to P 6= NP) are precisely those of “bounded width” — roughly speaking, those that do not
encode equations over abelian groups. This conjecture was recently confirmed by Barto
and Kozik [38], following partial progress in [153, 72].

The graph isomorphism seems to share some of the flavor of “unbounded width” CSPs
such as 3-XOR; these CSPs have the property that special algebraic methods (namely,
Gaussian elimination) are available on satisfiable instances, but these methods break down
once there is a small amount of noise. Indeed, the 2O(

√
n logn)-time algorithm for GISO

is a somewhat peculiar mix of group theory and “local methods” (namely, Weisfeiler–
Lehman). Generalizing from GISO to ROBUSTGISO seems like it might rule out applica-
bility of group-theoretic methods, thereby making the problem much harder. Our second
main theorem in a sense confirms this. Roughly speaking, it shows that ROBUSTGISO is
hard assuming it is hard to distinguish random 3-XOR instances from random instances
with a planted solution and slight noise:

Theorem 7.1.4. Assume Feige’s R3XOR Hypothesis [88]. Then there is no polynomial-
time algorithm for ROBUSTGISO. More precisely, there exists ε0 > 0, such that suppose
there exists ε > 0 and a t(n)-time algorithm which can distinguish (1 − ε)-isomorphic
n-vertex, m-edge graph pairs from pairs which are not even (1 − ε0)-isomorphic (where
m = O(n)). Then there is a universal constant ∆ ∈ Z+ and a t(O(n))-time algorithm
which outputs “typical” for almost all n-variable, ∆n-constraint instances of the 3-XOR
problem, yet which never outputs “typical” on instances which are (1−Θ(ε))-satisfiable.

which are not (1− r(ε))-isomorphic. In fact, our hardness result will hold even for this easier problem.

114

Here we refer to:

Feige’s R3XOR Hypothesis. For every fixed ε > 0, ∆ ∈ Z+, there is no polynomial
time algorithm which on almost all 3-XOR instances with n variables and m = ∆n
constraints outputs “typical”, but which never outputs “typical” on instances which an
assignment satisfying at least (1− ε)m constraints.

Remark 7.1.2. The reader may think of the output “typical” as a certification that the
3-XOR instance has no (1 − ε)-satisfying solution. Note that with high probability the
random 3-XOR instance will not even have a .51-satisfying solution. Feige originally
stated his hypothesis for the random 3SAT problem rather than the random 3XOR problem,
but he showed the conjectures are equivalent. See also the work of Alekhnovich [5].

Feige’s R3XOR Hypothesis is a fairly well-believed conjecture. The variation in
which the XOR constraints may involve any number of variables (not just 3) is called
LPN (Learning Parities with Noise) and is believed to be hard even with anym = poly(n)
constraints. The further variation which has linear equations modulo a large prime rather
than modulo 2 is called LWE (Learning With Errors) and forms the basis for a large body
of cryptography. (See [200] for more on LPN and LWE.) The fastest known algorithm
for solving Feige’s R3XOR problem seems to be the 2O(n/ logn)-time algorithm of Blum,
Kalai, and Wasserman [44]. Thus it’s plausible that ROBUSTGISO requires 2n

1−o(1) time,
which would make it a much more difficulty problem than GISO.

We close by mentioning some related literature on approximate graph isomorphism.
The problem of finding a vertex permutation which maximizes the number of edge over-
laps (or minimizes the number of edge/nonedge overlaps) was perhaps first discussed by
Arora, Frieze, and Kaplan [17]. They gave an additive quasi-PTAS in the case of dense
graphs (m = Ω(n2)) (as we previously discussed in Chapter 4). Arvind et al. [25] recently
defined and studied several variants of the approximate graph isomorphism problem. Some
of their results concern the case in which G and H have noticeably different numbers of
edges and one isn’t “punished” for uncovered edges in H . This kind of variant is more
like approximate subgraph isomorphism, and is much harder. (E.g., when G is a k-clique
and H is a general graph the problem is roughly equivalent to the notorious DENSEST-
kSUBGRAPH problem.) The result of theirs which is most relevant to the present work
involves hardness of finding approximate isomorphisms in colored graphs. In particular,
Arvind eta al. prove the following:

Theorem 7.1.5. ([25].) There is a linear-time reduction from 2XOR (modulo 2) in-
stances I to pairs of colored graphs G,H such that G and H are α-isomorphic if and

115

only if I has a solution satisfying at least an α-fraction of constraints. In particular
it is NP-hard to approximate α-isomorphism for colored graphs to a factor exceeding
11
12

and UNIQUEGAMES-hard to approximate it to a factor exceeding .878 (by results
of [219, 116], [141, 174] respectively).

In particular, the theorem holds for colored graphs in which each color class contains
at most 4 vertices. However, we do not see any way of eliminating the colors and getting
the analogous inapproximability results for the usual GISO problem without using gadgets
that would destroy the constant-factor gap.

7.1.4 Robust asymmetry of random graphs

One of our main technical contributions is showing that random graphs are “robustly asym-
metric”. In doing so, we generalize the concept of an asymmetric graph, which is a graph
whose only automorphism is the trivial identity automorphism. A line of research (see,
e.g., [81, 47, 172, 145]) has shown that several distributions of random graphs produce
asymmetric graphs with high probability. In their well-known G(n, p) model, Erdős and
Rényi [81] proved that for lnn

n
≤ p ≤ 1 − lnn

n
, G(n, p) is asymmetric with high probabil-

ity. If we instead consider a uniformly random d-regular n-vertex graph, the sequence of
works [47, 172, 145] shows that we get an asymmetric graph with high probability for any
3 ≤ d ≤ n− 4. In this work we will work with a third variant, the Gn,m model, in which a
graph is chosen uniformly at random from all simple graphs with n vertices and m edges.

Given a graph G and a permutation π over V (G), we call π an α-automorphism if the
application of π on G preserves at least an α fraction of the edges. A graph G is (β, γ)-
asymmetric if any γ-automorphism π has more than a fraction of (1 − β) fixed points.
Intuitively, when β = 1/n, γ = 0, the property is exactly the asymmetry property; when β
and γ become larger, the property requires that any permutation that is far from identity is
far from an automorphism for the graph. We encourage the reader to refer to Section 7.2
for the precise definitions.

In this chapter, we show the following robust asymmetric property of Gn,m.

Theorem 7.1.6. For large enough n, suppose that m = cn, where 104 ≤ c ≤ n/1010. Let
β∗ = max{e−c/6, 1

n
}. With probability (1− n−15), for all β such that β∗ ≤ β ≤ 1, Gn,m is

(β, β/240)-asymmetric.

A couple of comments are in order. First, an exp(−O(c)) lower bound on β is neces-
sary. This is because there are at least bexp(−O(c)) · nc isolated vertices in Gn,m with

116

high probability. The permutations which only permute these isolated vertices are 1-
automorphisms. Therefore, with high probability, Gn,m is not (exp(−ω(c)), 0)-asymmetric.
Second, it is possible to extend our theorem to the G(n, p) model by showing that there
exists a constant C > 0, such that for C

n
< p < 1

C
, with high probability, G(n, p) is

(β, β/240)-asymmetric for all β ≥ max{exp(−pn
C

), 1
n
}. Third, when c ≥ 6 lnn (or, when

p ≥ C lnn
n

in the G(n, p) model), we can let β = 1
n

and obtain that Gn,m (G(n, p), respec-
tively) is asymmetric with high probability – a result in the flavor of [81]. Finally, we do
not work hard to optimize the constants in the theorem statement; we believe a more care-
ful analysis would bring them down to more civilized numbers, but it is still interesting to
explore the limits of these constants.

Now we briefly explain our proof techniques. Let us consider the case where c is a big
constant and β = 1, so that we only need to worry about the permutations without fixed
points. We would like to show that, for every such permutation π,

Pr
G∼Gn,m

[π is a
1

240
-automorphism for G]� 1

n!
,

and therefore we can union bound over all such possible permutations. In order to do
this, from all

(
n
2

)
possible edges, we construct Ω(n2) disjoint pairs of edges (e, e′), which

we will refer to as “bins”, such that π(e) = e′. We call a bin “half-full” if exactly
one edge in the pair is selected in G. It is easy to see that whenever there are more
than m

120
half-full bins, π cannot be a 1

240
-automorphism. At this point, we would like

for PrG
[
#half-full bins < m

120

]
� 1

n!
, and this is easy to show. Unfortunately, this

method does not work when β = 1
2
. To see why, let π be a permutation with n

2
fixed

points. The probability that every edge in G has fixed points of π for its endpoints is
roughly 2−2m = 2−O(n). Therefore we have PrG[π is an automorphism for G] ≥ 2−O(n),
and this is not enough for the application of union bound (since there are more than
(n/2)! = 2Ω(n logn) such permutations). A possible fix to this problem is: we first show
that with high probability (1 − n−ω(1)), for every π with n

2
fixed points, there are many

edges of G with at least one end point not fixed by π; then, conditioned on this event, we
show the probability that a fixed π is not a 1

480
-automorphism is small enough for the union

bound method. The actual proof is more involved, and it is also technically challenging to
work with c as large as Ω(n), and β as small as 1

n
.

Finally, for our application to the GRAPHISOMORPHISM problem, we need to extend
Theorem 7.1.6 to hypergraphs. More details on robust asymmetry of random hypergraphs
can be found in Section 7.6.

117

7.1.5 Organization

In Section 7.2, we introduce the notations and the SOS/Lasserre hierarchy. In Section 7.3,
we describe a reduction from 3-XOR to GISO. The completeness and soundness lemmas
for reduction are proved in Section 7.4 and Section 7.5 respectively. In Section 7.6, we
prove robust asymmetry property for random graphs and random hypergraphs.

Proofs of the main theorems. Theorem 7.1.2 follows from Theorem 7.2.2, Lemma 7.4.2
and Lemma 7.5.1, by choosing c = 106. Theorem 7.1.4 follows from Lemma 7.4.1 and
Lemma 7.5.1, by choosing c = max{106,∆}.

7.2 Preliminaries

We will be working with undirected graphs and hypergraphs, both of which will be denoted
by G = (V,E). Here, an undirected edge e ∈ E is a set of 2 vertices {i, j} for graphs
and a set of k vertices {i1, i2, . . . , ik} for k-uniform hypergraphs. When G is an directed
graph, we use (i, j) to denote a directed edge. We also use the notation V (G) to denote
the vertex set of G, and E(G) to denote the edge set of G.

For any two undirected graphs (or hypergraphs)G = (V (G), E(G)) andH = (V (H), E(H))
with the same number of vertices, and for any bijection π : V (G)→ V (H), let

GIso(G,H; π) =
|{e ∈ E(G) : π(e) ∈ E(H)}|

max{|E(G), E(H)|}
,

where π(e) is the edge obtained by applying π on each vertex incident to e. Let

GIso(G,H) = max
π:V (G)→V (H)

GIso(G,H; π).

We say that an edge e ∈ E(G) is satisfied by π if π(e) ∈ E(H). We call π an α-
isomorphism for G and H if GIso(G,H; π) ≥ α, and we say G and H are α-isomorphic
if GIso(G,H) ≥ α.

For any permutation π : V (G)→ V (G), let

AUT(G; π) = GIso(G,G; π).

We say that π is an α-automorphism for G if AUT(G; π) ≥ α.

Given a permutation π over the set V , an element i ∈ V is a fixed point of π if π(i) = i.

118

Definition 7.2.1. A graph (possibly hypergraph) G is (β, γ)-asymmetric if, for any per-
mutation π on the vertex set of G that has at most (1− β) fraction of the vertices as fixed
points, we have AUT(G; π) < 1− γ.

We extend the Gn,m random graph model to hypergraphs as follows. Let G(k)
n,m be the

uniform distribution over all
((nk)
m

)
simple k-uniform hypergraphs with n vertices and m

edges.

A 3-XOR instance C is a collection of equations C1, C2, . . . , Cm over the variable set
X . Each equation Ci is of the form xj1 +xj2 +xj3 = b where xj1 , xj2 , xj3 are the variables
from X , b ∈ Z2. Given an assignment τ : X → Z2, let val(C; τ) be the fraction of
equations in C satisfied by τ . Let val(C) = maxτ :X→Z2 val(C; τ).

7.2.1 SOS/Lasserre hierarchy

One way to formulate the SOS/Lasserre hierarchy is via the pseudo-expectation view. We
briefly recall the formulation as follows. More discussion about this view can be found in
[34].

We consider the feasibility of a system over n variables (x1, x2, . . . , xn) ∈ Rn with
the following constraints: Pi(x) = 0 for i = 1, 2, . . . ,mP and Qi(x) ≥ 0 for j =
1, 2, . . . ,mQ, where all the Pi, Qi polynomials are of degree at most d. For r ≥ d, the
degree-r SOS/Lasserre hierarchy finds a pseudo-expectation operator Ẽ[·] defined on the
space of real polynomials of degree at most r over intermediates x1, x2, . . . , xn such that

• Ẽ[1] = 1;

• Ẽ[αp+ βq] = αẼ[p] + βẼ[q] for all real numbers α, β and all polynomials p and q
of degree at most r;

• Ẽ[p2] ≥ 0 for all polynomials p of degree at most r/2;

• Ẽ[Pi · q] = 0 for all i = 1, 2, . . . ,mP and all polynomials q such that Pi · q is of
degree at most r;

• Ẽ[Qi · p2] ≥ 0 for all i = 1, 2, . . . ,mQ and all polynomials p such that Qi · p2 is of
degree at most r.

We call any operator Ẽ[·] a normalized linear operator if it has the first two properties
listed above.

119

SOS/Lasserre hierarchy for 3-XOR. Let C be a 3-XOR instance on variable set X .
The degree-r SOS/Lasserre hierarchy for the natural integer programming for (the satis-
fiability of) C is to find a normalized linear pseudo-expectation operator Ẽ[·] defined on
the space of polynomials of degree at most r over the indeterminates (A[x 7→ a])x∈X ,a∈Z2

associated to C, such that

1. Ẽ[(A[x 7→ a]2 − A[x 7→ a]) · q] = 0 for all x ∈ X , a ∈ Z2, and polynomials q;

2. Ẽ[(A[x 7→ 0] + A[x 7→ 1]− 1) · q] = 0 for all x ∈ X and polynomials q;

3. Ẽ[(
∑

αC satisfying C A[x1 7→ αC(x1)]A[x2 7→ αC(x2)]A[x3 7→ αC(x3)] − 1) · q] = 0
for each C ∈ C involving variables x1, x2, x3 and all polynomials q;

4. Ẽ[p2] ≥ 0 for all polynomials p.

We say there is degree-r SOS refutation for the satisfiability of C if the pseudo-expectation
operator with properties listed above does not exist.

SOS/Lasserre hierarchy for GISO. Let G = (V (G), E(G)) and H = (V (H), E(H))
be two graphs such that |V (G)| = |V (E)|, |E(G)| = |E(H)|. The degree-r SOS/Lasserre
hierarchy for the natural integer programming the isomorphism problem between G and
H is to find a normalized linear pseudo-expectation operator Ẽ[·] on the space of real
polynomials of degree at most r over the indeterminates (Π[u 7→ v])u∈V (G),v∈V (H) such
that:

a Ẽ[(Π[u 7→ v]2−Π[u 7→ v])·q] = 0 for all u ∈ V (G), v ∈ V (H), and polynomials q;

b Ẽ[(
∑

v∈V (H) Π[u 7→ v] − 1) · q] = 0 for all u ∈ V (G) and polynomials q; and
similarly, Ẽ[(

∑
u∈V (G) Π[u 7→ v]− 1) · q] = 0 for all v ∈ V (H) and polynomials q;

c Ẽ[(
∑
{u,u′}∈E(G)

∑
v,v′:{v,v′}∈E(H) Π[u 7→ v]Π[u′ 7→ v′] − |E(G)|) · p2] ≥ 0 for all

polynomials p;

d Ẽ[p2] ≥ 0 for all polynomials p.

We say there is degree-r SOS refutation for the isomorphism between G and H if the
pseudo-expectation operator with properties listed above does not exist.

Remark 7.2.1. It is equivalent to replace (c) by “Ẽ[(
∑

v,v′:{v,v′}∈E(H) Π[u 7→ v]Π[u′ 7→
v′]− 1) · q] = 0 for all (u, u′) ∈ E(G) and all polynomials q”.

120

7.2.2 Random 3-XOR

A random 3-XOR instance with n variables and m equations is sampled by choosing
m unordered 3-tuples of variables from all possible

(
n
3

)
ones, and making each 3-tuple

(xj1 , xj2 , xj3) into a 3-XOR constraint xj1 + xj2 + xj3 = b with an independent random
b ∈ Z2.

Theorem 7.2.2. [204] For every constant c > 1, there is exists η > 0 such that with
probability 1− o(1), the satisfiability of a random 3-XOR instance4 with n variables and
cn equations cannot be refuted by degree-(ηn) SOS/Lasserre hierarchy.

7.3 Reduction from 3-XOR to GISO

We define a slight variant of the basic gadget from [55]:

Definition 7.3.1. Let C be a 3-XOR constraint involving variables x1, x2, x3. The asso-
ciated gadget graph GC consists of: 6 “variable vertices” with names “xi 7→ a” for each
i ∈ [3], a ∈ Z2; and, 4 “constraint vertices” with names “x1 7→ a1, x2 7→ a2, x3 7→ a3”
for each partial assignment which satisfies the constraint C. Regarding edges, each pair
of variable vertices xi 7→ 0, xi 7→ 1 is connected by an edge; the four constraint vertices
are connected by a clique; and, each constraint vertex α is connected to the three variable
vertices it is consistent with.

Now we describe how an entire instance of 3-XOR is encoded by a graph:

Definition 7.3.2. Let C be a collection of 3-XOR constraints over variable set X . We
define the associated graph GC as follows: For each constraint C ∈ C, the graph GC
contains a copy of the gadget graph GC . However we identify all of the variable vertices
x 7→ a across x ∈ X , a ∈ Z2 as well as the variable edges (x 7→ 0, x 7→ 1). The
constraint vertices associated to C, on the other hand, are left as-is, and will be named
αC . We denote the set of vertices {x 7→ 0, x 7→ 1} by Vx for every variable x, denote the
set of vertices corresponding to C by VC for every variable C.

Remark 7.3.1. If C is a 3-XOR instance with n vertices andm constraints then the graph
GC has N = 4m+ 2n vertices and M = 18m+ n edges.

Finally, we introduce the following notation:
4The random 3-XOR distribution used in [204] is slightly different, but the theorem still holds for our

distribution.

121

Notation 7.3.1. Let C be a 3-XOR constraint involving variables xi, xj, xk. We write C
for its homogeneous version, xi + xj + xk = 0. Given a collection of 3-XOR constraints
C we write C = {C : C ∈ C}.

The reduction. Given a collection of 3-XOR constraints C, the corresponding GISO

instance i (GC, GC).

7.4 Completeness

Lemma 7.4.1 (Completeness). If C is a 3-XOR instance such that val(C) ≥ 1 − ε, then
GIso(GC, GC) ≥ 1− 2ε/3.

Proof. Let τ be an assignment to the variables in C such that val(I; τ) ≥ 1 − ε. Now we
define a bijection π from the vertices in GC to the ones in GC as follows.

For each variable vertex xj 7→ b, let π(xj 7→ b) = xj 7→ b + τ(xj). For any equation
vertex αCi , if Ci is not satisfied by τ , map it to an arbitrary vertex in VCi . If Ci is satisfied
by τ , let us suppose that Ci : xj1 + xj2 + xj3 = b, let α′ be an assignment such that
α′(xjt) = α(xjt) + τ(xjt) for all t ∈ {1, 2, 3}. Observe that

α′(xj1)+α′(xj2)+α′(xj3) = (α(xj1)+α(xj2)+α(xj3))+(τ(xj1)+τ(xj2)+τ(xj3)) = b+b = 0.

Therefore α′Ci is a vertex in GC . We let π map αCi to α′Ci .

It is straightforward to check that all the edges between equation vertices and between
variable vertices are satisfied. Now we consider an edge between a equation vertex and a
variable vertex, namely between αCi and xj 7→ b where xj is an variable in equation Ci
and α(xj) = b. We show that the edge is satisfied by π whenever Ci is satisfied by τ . Let
α′ and b′ be such that π(αCi) = α′Ci , π(xj 7→ b) = xj 7→ b′. Observe that

α′(xj) = α(xj) + τ(xj) = b+ τ(xj) = b′,

and this implies that there is an edge between α′Ci and xj 7→ b′.

We see that the only edges inGC which might not be satisfied by π are the ones between
equation vertices and variable vertices where the corresponding equation vertex is not
satisfied by τ . For each equation not satisfied, there are at most 12 such edges. Therefore
there are at most 12εm edges not satisfied. We have

GIso(GC, GC) ≥ GIso(GC, GC; π) ≥ M − 12εm

M
≥ 1− 2

3
ε.

122

7.4.1 SOS completeness

Lemma 7.4.2 (SOS completeness). Let C be a 3-XOR instance on variable set X and
suppose that every SOS refutation of C requires degree exceeding r. Then every SOS
refutation of the statement “GC and GC are isomorphic” requires degree exceeding r/3.

Proof. Since C cannot be refuted in degree r, there is a pseudo-expectation operator ẼC[·]
defined on the space of real polynomials of degree at most r over the indeterminates
(A[x 7→ a])x∈X ,a∈Z2 associated to C. This ẼC[·] is normalized, linear, and satisfies:

i ẼC[(A[x 7→ a]2 − A[x 7→ a]) · q] = 0 for all x ∈ X , a ∈ Z2, and polynomials q;

ii ẼC[(A[x 7→ 0] + A[x 7→ 1]− 1) · q] = 0 for all x ∈ X and polynomials q;

iii ẼC[(
∑

αC satisfying C A[x1 7→ αC(x1)]A[x2 7→ αC(x2)]A[x3 7→ αC(x3)] − 1) · q] = 0
for each C ∈ C involving variables x1, x2, x3 and all polynomials q;

iv ẼC[p
2] ≥ 0 for all polynomials p.

Our task is to define a normalized linear pseudo-expectation operator ẼG[·] on the space
of real polynomials of degree at most r/3 over the indeterminates (Π[u 7→ v])u∈V (GC),v∈V (GC)

such that:

I ẼG[(Π[u 7→ v]2 − Π[u 7→ v]) · q] = 0 for all u ∈ V (GC), v ∈ V (GC), and
polynomials q;

II ẼG[(
∑

v∈V (GC) Π[u 7→ v] − 1) · q] = 0 for all u ∈ V (GC) and polynomials q; and
similarly, ẼG[(

∑
u∈V (GC) Π[u 7→ v]−1)·q] = 0 for all v ∈ V (GC) and polynomials q;

III ẼG[(
∑
{u,u′}∈E(GC)

∑
v,v′:{v,v′}∈E(GC) Π[u 7→ v]Π[u′ 7→ v′] − M) · p2] ≥ 0 for all

polynomials p;

IV ẼG[p
2] ≥ 0 for all polynomials p.

Here M denotes the number of edges in GC (and also in GC).

The idea is to formally define each indeterminate Π[u 7→ v] as a certain degree-3 mul-
tilinear polynomial of the indeterminates A[x 7→ a]. Then ẼG[·] is automatically defined
in terms of ẼC[·] for all polynomials of degree at most r/3. The natural definition is as
follows:

123

1. Let x ∈ X and a ∈ Z2. We define Π[(x 7→ a) 7→ (x 7→ b)] = A[x 7→ (a− b)].

2. Let C ∈ C, let αC = (x1 7→ a1, x2 7→ a2, x3 7→ a3) be constraint vertex in GC
corresponding to C, and let βC = (x1 7→ b1, x2 7→ b2, x3 7→ b3) be a constraint
vertex inGC corresponding toC. We define Π[αC 7→ βC] to be the following degree-
3 monomial:

A[x1 7→ (a1 − b1)]A[x2 7→ (a2 − b2)]A[x3 7→ (a3 − b3)].

3. All other indeterminates Π[u 7→ v] are formally defined to be 0.

It is clear that ẼG[·] is normalized and linear by the same property of ẼC[·]. It remains
to show that the induced pseudo-expectation operator ẼG[·] satisfies (I)–(IV) using the fact
that ẼC[·] satisfies (i)–(iv). Most of these are easy; for example, the implication (iv)⇒ (IV)
is immediate. Almost as easy is that (i) ⇒ (I) and that (i), (ii) ⇒ (II). We illustrate
some of these implications, leaving the rest to the reader. For example, let’s verify (I) for
indeterminates of type Π[αC 7→ βC]. For brevity we’ll write Π[αC 7→ βC] as A1A2A3.
Now for any polynomial q over the Π’s,

ẼG[(Π[αC 7→ βC]2 − Π[αC 7→ βC]) · q]
= ẼG[(A

2
1A

2
2A

2
3 − A1A2A3) · q′] (for some polynomial q′ over the A’s)

= ẼG[(A
2
1 − A1)A2

2A
2
3 · q′] + ẼG[A1(A2

2 − A2)A2
3 · q′] + ẼG[A1A2(A2

3 − A3) · q′]
= 0 (by (i).)

And let’s verify (II) when u is a variable vertex x 7→ a:

ẼC

[(∑
v∈V (GC)

Π[(x 7→ a) 7→ v]− 1

)
· q

]
= ẼC[(A[x 7→ a− 0] + A[x 7→ a− 1]− 1) · q′] (all other Π’s are 0)
= 0. (by (ii))

The main effort is to establish (III). In fact we will show

ẼC

[(∑
v,v′:{v,v′}∈E(GC)

Π[u 7→ v]Π[u′ 7→ v′]− 1

)
· p2

]
= 0 (7.1)

for all edges {u, u′} ∈ E(GC) and all p, whence (III) follows by summing. We will omit
the (easy) verification of this for the edges (x 7→ 0, x 7→ 1). Instead we will first verify

124

that (7.1) holds for a typical clique edge associated to constraint C, say (αC , α
′
C), on

variables x1, x2, x3. Only the indeterminates of corresponding constraints, say Π[αC 7→
βC], are nonzero. WritingAi[α−β] = A[xi 7→ αC(xi)−βC(xi)] for brevity (and similarly
with primes), the quantity in (7.1) is

ẼC

[(∑
βC ,β

′
C

satisfying C

A1[α− β]A2[α− β]A3[α− β]A1[α′ − β′]A2[α′ − β′]A3[α′ − β′]− 1
)
· p′2

]

= ẼC

[((∑
βC

A1[α− β]A2[α− β]A3[α− β]
)(∑

β′C

A1[α′ − β′]A2[α′ − β′]A3[α′ − β′]
)
− 1
)
· p′2

]
.

(7.2)

Now for fixed αC , as βC ranges over all satisfying assignments to C, the assignment
αC − βC ranges over all satisfying assignments to C. The analogous statement holds also
for α′C . It’s now straightforward to see that the vanishing of (7.2) follows from (iii).

Our final task is to verify (7.1) also for edges between variable vertices and constraint
vertices. Fix a typical such edge, say one connecting x1 7→ a1 to αC . (We’ll use the same
notation as before for αC ; in particular, note that we must have αC(x1) = a1.) Now in this
case, the quantity in (7.1) is

ẼC

[(∑
b∈Z2,

βC satisfying C

A[x1 7→ (a1 − b)]A1[α− β]A2[α− β]A3[α− β]− 1
)
· p′2

]

= ẼC

[((∑
c∈Z2

A[x1 7→ c]
)(∑

βC

A1[α− β]A2[α− β]A3[α− β]
)
− 1
)
· p′2

]
. (7.3)

Again, the fact that (7.3) vanishes now easily follows from (ii), (iii).

7.5 Soundness

In this section, we prove the following soundness lemma.

Lemma 7.5.1 (Soundness). Let C = {C1, C2, . . . , Cm} be a random 3-XOR instance with
n variables and m = cn equations where c ≥ 1010. With probability 1− o(1), we have

GIso(GC , GC) < 1− 1

95c2
.

Before proving Lemma 7.5.1, we first introduce the following definition.

125

Definition 7.5.2. A graph (possibly hypergraph)G is (ε,D)-degree bounded if the average
degree of every set of ε fraction of vertices is at most D.

Claim 7.5.3. Suppose c ≥ 3. A random 3-uniform hypergraph H drawn from G(3)
n,m, where

m = cn, is (1/c, 100c)-degree bounded with probability 1− o(1).

Claim 7.5.4. Given an (ε,D)-degree bounded graph G with n vertices, every set of βn
vertices has at most (ε+ β)Dn edges incident to them.

Lemma 7.5.1 is directed implied by the following two lemmas.

Lemma 7.5.5. Let H = ([n], E = {ei}) be a 3-uniform hypergraph with n vertices and
m = cn hyperedges. the constraint graph of a 3-XOR instance with n variables and
m = cn equations. Suppose H is (ε, 100c)-degree bounded and (β, γ)-asymmetric, where
γ ≥ 200ε. Let C = {C1, C2, . . . , Cm} be an arbitrary 3-XOR with n variables and m
constraints based on H . (In other words, each hyperedge ei of H connects the indices of
the 3 variables used by Ci.) If we set

δ := δ(c, ε, β, γ) = min

{
1

200
,
γ

48
,
ε

95c

}
,

when GIso(GC , GC) ≥ 1− δ, we have val(C) ≥ .9− 100(ε+ β).

Lemma 7.5.6. If C is a random 3-XOR instance with n variables and m ≥ 10000n
equations, then with probability 1− o(1), we have val(C) < .51.

Proof of Lemma 7.5.1. Set ε = 1
c
, γ = 200

c
, β = 48000

c
. Combining Claim 7.5.3, Lemma 7.5.6,

and Theorem 7.6.9, we know that with probability (1− o(1)), all of the following hold:

1. H is (ε, 100c)-degree bounded,

2. H is (β, γ)-asymmetric, and

3. val(C) < .51.

Given that these hold, assume for sake of contradiction that GIso(GC, GC) ≥ 1 − 1
95c2

.
Then because G satisfies Item 1 and Item 2, Lemma 7.5.5 implies that

val(C) ≥ .9− 100

(
1

c
+

48000

c

)
≥ .8,

where the last step follows because c ≥ 1010. However, this contradicts Item 3. Therefore,
GIso(GC, GC) < 1− 1

95c2
with probability 1− o(1).

126

The proof of Lemma 7.5.6 is standard.

Proof of Lemma 7.5.6. Fix an assignment to the n variables. The probability that the
assignment satisfies at least .51m equations of a random 3-XOR instance is at most
exp(−.022 · .5m/2) = exp(−.0001m) by the Chernoff bound. Since there are only 2n

assignments, the probability that no assignment satisfies more than .5m equations is at
least 1− exp(−.0001m) · 2n = 1− o(1) when m ≥ 10000n.

The rest of the section is devoted to the proof of Lemma 7.5.5.

Proof of Lemma 7.5.5. Let π be a bijection mapping the vertices in GC to the vertices in
GC such that GIso(GC, GC; π) ≥ 1 − δ. We first prove that for most i’s, π maps the set
VCi to VCi′ for some i′, and for most j’s, π maps most Vxj to Vx′j for some j′. Formally, let
A be the set of i ∈ [m] such that π(VCi) = VCi′ for some i′, and let B be the set of j ∈ [n]

such that π(Vxj) = Vxj′ for some j′. We show that

Claim 7.5.7. |A| ≥ (1− 19δ)m, |B| ≥ (1− 95cδ)n.

Now we are able to define a permutation σ on the variables in C (as well as C since the
set of variables is shared). We let σ to be an arbitrary permutation so that for each j ∈ B,
we have σ(j) = j′ where π(Vxj) = Vxj′ . Now we show that σ is an almost automorphism
for the constraint graph (i.e. the hypergraph H = ([n], E)).

Claim 7.5.8. AUT(H;σ) ≥ (1− 100ε− 24δ)m.

By our setting of δ, we have 24δ < γ/2. Since we also assume that 100ε < γ/2, we
have AUT(G;σ) ≥ (1 − γ)m, and therefore we know that σ has at least (1 − β)n fixed
points.

Now we are ready to define an assignment τ : {xj} → Z2 which certifies that val(I) ≥
.9. For each j which is not a fixed point of σ, define τ(xj) arbitrarily. For each j being a
fixed point of σ, we know that π(Vxj) = Vxj . We let τ(xj) = b where π(xj 7→ 0) = xj 7→
b. We conclude the proof by showing the following claim.

Claim 7.5.9. val(C; τ) ≥ .9− 100(ε+ β).

127

7.5.1 Proof of the claims

Proof of Claim 7.5.7. Observe that the only 4-cliques inGC are VCi′ (i′ ∈ [m]). Therefore,
if π(VCi) 6= VCi′ for every i′, we know that at least one of the edges in the clique VCi is not
satisfied. Therefore we have m − |A| ≤ δM (recall that M = 18m + n is the number of
edges in GC), i.e. |A| ≥ m− δM ≥ (1− 19δ)m.

We now know that at least (1 − 19δ)m · 4 equation vertices in GC are mapped from
equation vertices inGC . Therefore there are at most 4m−(1−19δ)m ·4 = 76δm equation
vertices in GC being mapped from variable vertices in GC . In other words, π maps at least
2n − 76δm = (2 − 76cδ)n variable vertices to variable vertices. Let B′ be the set of
j’s such that both vertices in Vxj is mapped to a variable vertex. We have B′ ⊇ B and
|B′| ≥ (2 − 76cδ)n − n = (1 − 76cδ)n. For each j ∈ B′ \ B, we know that the edge
in Vxj is not satisfied. Therefore |B′ \ B| ≤ δM . Therefore, |B| = |B′| − |B′ \ B| ≥
(1− 76cδ)n− δM ≥ (1− 95cδ)n.

Proof of Claim 7.5.8. Let E ′ be the set of hyperedges in E whose vertices are all in B.
Since G is (ε, 100c)-degree bounded, and by our setting of parameters 95cδ < ε, by
Claim 7.5.4, we know that |E ′| ≥ m − 100cεn = (1 − 100ε)m. Now let us consider the
hyperedges in E ′′ = E ′∩A. (Also observe that |E ′′| ≥ (1−100ε−19δ)m.) We claim that
most of the hyperedges in E ′′ are satisfied by σ. For every hyperedge ei = {j1, j2, j3} ∈
E ′′ that is not satisfied, we know that {σ(j1), σ(j2), σ(j3)} 6∈ T . Since i ∈ E ′′ ⊆ A, let i′

be the equation index such that π(VCi) = VCi′ . Since {σ(j1), σ(j2), σ(j3)} 6∈ E, we have
ei′ 6= {σ(j1), σ(j2), σ(j3)}. Let us assume w.l.o.g. that σ(j1) 6∈ ei′ . Then there is no edge
between VCi′ and Vxσ(j1)

in GC . Therefore the 4 edges between VCi and Vxj1 in GC are not
satisfied.

We have proved that whenever there is an hyperedge in E ′′ not satisfied by σ, there are
at least 4 edges in GC not satisfied by π. Since π satisfies (1 − δ)M edges, there are at
most δM/4 hyperedges in E ′′ not satisfied by σ. Therefore, we have

AUT(H;σ) ≥ |E ′′| − δM/4 ≥ (1− 100ε− 19δ − 5δ)m = (1− 100ε− 24δ)m.

Proof of Claim 7.5.9. Let E ′ be the set of hyperedges in E whose vertices are all fixed
points of σ. Since σ has at least (1− β)n fixed points, and H is (ε, 100c)-degree bounded,
by Claim 7.5.4, we know that |E ′| ≥ m − (ε + β) · 100cn = (1 − 100(ε + β))m. Now
consider any ei ∈ E ′, if all the edges incident to VCi are satisfied, let E ′′ contain i. Since
there are at most δM ≤ 19δm edges not satisfied, we know that |E ′′| ≥ |E ′| − 19δm ≥
(1 − 100(ε + β) − 19δ)m. We claim that for all ei ∈ E ′′, the equation Ci is satisfied.
Therefore we have val(I; τ) ≥ 1− 100(ε+ β)− 19δ ≥ .9− 100(ε+ β), since δ < 1/200.

128

Now we show that Ci is satisfied by τ when ei ∈ E ′′. Using similar argument in the
proof of Claim 7.5.8, one can show that when ei = {j1, j2, j3} ∈ E ′′, we have π(VCi) =
VCi . Also we have π(Vxjt) = Vxjt for all t ∈ {1, 2, 3}, by the definition of E ′′. Let
H be the induced subgraph GC[VCi ∪ (∪t∈{1,2,3}V xjt)], let J be the induced subgraph
GC[VCi ∪ (∪t∈{1,2,3}Vxjt)]. We use the following claim to conclude the proof.

Claim 7.5.10. If π (after projected on the suitable vertices) is an isomorphism between J
and J , Ci is satisfied by τ .

It remains to prove Claim 7.5.10. We first claim the following property about our
construction L(·).

Claim 7.5.11. Let C be a 3-XOR instance, let C : xj1 + xj2 + xj3 = b be an equation
from C. For any b1, b2, b3 ∈ Z2, and any vertex αC , the parity of the number of neighbors
of αC in {xj1 7→ b1, xj2 7→ b2, xj3 7→ b3} is b+ b1 + b2 + b3 .

Now we are ready to prove Claim 7.5.10.

Proof of Claim 7.5.10. Suppose the equationCi is xj1+xj2+xj3 = b. Consider αCi ∈ VCi ,
let α′Ci = π(αCi). By the construction of GC and GC , we know that α(xj1) + α(xj2) +

α(xj3) = b, and α′(xj1) + α′(xj2) + α′(xj3) = 0. Now let the set A = {xj1 7→ 0, xj2 7→
0, xj3 7→ 0}. By Claim 7.5.11, we know that the parity of the number of neighbors of
αCi in A is b + 0 + 0 + 0 = b. Therefore, by isomorphism, the parity of the number of
neighbors of α′Ci in π(A) is also b. On the other hand, by the definition of τ , we know that
π(A) = {xj1 7→ τ(xj1), xj2 7→ τ(xj2), xj3 7→ τ(xj3)}. By Claim 7.5.11 again, we know
that the parity of the number of neighbors of α′Ci in π(A) is 0 + τ(xj1) + τ(xj2) + τ(xj3).
Therefore, we have that τ(xj1) + τ(xj2) + τ(xj3) = b, i.e. Ci is satisfied by τ .

7.6 Random graphs are robustly asymmetric

In this section we prove Theorem 7.1.6.

We first set up some definitions. For any graph G = (V,E), let π be a permutation
over the vertices in V , we write id(π) as the number of fixed points in the permutations,
that is, id(π) = |{v ∈ V : π(v) = v}|. We define 4(G, π(G)) = {e : e ∈ E, π(e) 6∈
E}
⋃
{e : e 6∈ E, π(e) ∈ E}. Note that AUT(G; π) = |E| − 1

2
|4(G, π(G))|.

129

For any permutation π over the vertex set V , we define a directed graphGπ = (
(
V
2

)
, Eπ),

and (e1, e2) ∈ Eπ if and only if e2 = π(e1). Since each e = {u, v} ∈
(
V
2

)
has in-degree

and out-degree exactly 1, we can divide Gπ into disjoint unions of directed cycles. We call
each directed cycle a bin, and the size of the bin is the number of elements in the cycle.

Fact 7.6.1. For any size-1 bins, there are only two situations:

• e = {u, v} where u and v are both fixed points of π. We call these bins type-1 size-1
bins. The number of type-1 size-1 bins is at most

(
id(π)

2

)
.

• e = {u, v} where π(u) = v and π(v) = u. We call these classes type-2 size-1 bins.
The number of type-2 size-1 bins is at most n−id(π)

2
for any permutation π.

Now let us consider G ∼ Gn,m where m = cn. Let Z =
(
n
2

)
be the number of possible

edges from which we choose m edges. We first prove the following lemma.

Lemma 7.6.2. Let A be the event that for any permutation π such that id(π) = (1− β)n,
the number of the edges in G that fall into the bins of size ≥ 2 is at least βm/60 and at
most 2βZ/109. Whenever β ≥ exp(−c/6), we have

Pr
G∼Gn,m

[A] = 1− n−ω(1).

By a union bound over all the β : β ≥ β∗ (where there are at most n of them), we get
the following corollary.

Corollary 7.6.3. Let B be the event that for every β ≥ β∗, any permutation π such that
id(π) = (1 − β)n, the number of the edges in G that fall into the bins of size ≥ 2 is at
least βm/60 at at most 2βZ/109. We have

Pr
G∼Gn,m

[B] = 1− n−ω(1).

Before we prove Lemma 7.6.2, we need the following lemma.

Lemma 7.6.4. Let G ∼ Gn,m. Suppose that β ≥ β∗. With probability 1− n−ω(1), for any
T ⊆ V , |T | = βn, the number of edges incident to T is at least least cβn/40.

Now we prove this lemma.

For any vertex v ∈ V , its expected degree in Gn,m is 2c. We would like to prove that
the probability that the degree is at most c/10 is very low. Indeed, we claim a more general
statement.

130

Claim 7.6.5. Let W be a set of w possible edges from
(
V
2

)
, where b(n− 1)/2c ≤ w ≤ n,

Pr
G=(V,E)∼Gn,m

[|E ∩W | ≤ c/10] ≤ exp(−c/2).

Observe that when W is the set of possible edges incident to v, Claim 7.6.5 says that
Pr[deg(v) ≤ c/10] ≤ exp(−c/3).

For each possible edge e, we define a random variable Xe as the indicator variable for
the event that e is selected as an edge in G. Claim 7.6.5 would be a direct application of
Chernoff bound if theXe variables were independent. However, the following claim states
that Chernoff bound still holds since the variables are negatively associated. (Please refer
to e.g. [126] for the definition of negatively associated random variables.)

Claim 7.6.6. The Z variables Xe are negatively associated.

Proof. Since {Xe} follows the permutation distribution over m 1’s and (Z −m) 0’s, by
Theorem 2.11 in [126], the claim holds.

Proof of Claim 7.6.5. Since E[Xe] = 2c/(n − 1) for every e, we have E[|E ∩ W |] =∑
e∈W E[Xe] = 2c|W |/(n− 1) ≥ c. The claim follows by Chernoff bound for negatively

associated variables.

Similarly we show that

Claim 7.6.7. Let W be a set of possible edges, when c ≤ n/1010,

Pr
G=(V,E)∼Gn,m

[|E ∩W | ≥ |W |/109] ≤ exp(−3|W |/1010).

Proof. Since E[Xe] = 2c/(n − 1) for every e, we have E[|E ∩W |] =
∑

e∈W E[Xe] =
2c|W |/(n − 1) < 3|W |/1010. The claim follows by Chernoff bound for negatively asso-
ciated variables.

Now we are ready to prove Lemma 7.6.4.

Proof of Lemma 7.6.4. Suppose the vertices of the random graph G ∼ Gn,m are numbered
from 1 to n. Let Xi =

∑i+[(n−1)/2]
j=i+1 Xe={i,(j−1) mod n+1}. By Claim 7.6.5, we know that

Pr[Xi ≤ c/10] ≤ exp(−c/2).

131

Since the random variables {Xi} are sums of disjoint sets of negatively associated
random variables Xe’s, we know that the Xi’s are also negatively associated. Let U be the
set of vertices i such that Xi ≤ c/10. We have E[|U |] ≤ n · exp(−c/2). Using Chernoff
bound for negatively associated random variables, we have

Pr

[
|U | ≥ 1

2
βn

]
≤ exp

(
−1

3
·
(
βn/2

E[|U |]
− 1

)2

E[|U |]

)

= exp

(
−1

3
·
(
βn/2

E[|U |]
− 1

)(
βn

2
− E[|U |]

))
.

Using β ≥ exp(−c/6) and c ≥ 10, we have βn/2− E[|U]] ≥ βn/4. Therefore,

Pr

[
|U | ≥ 1

2
βn

]
≤ exp

(
−1

3

(
β

2
· exp(c/2)− 1

)
· βn

4

)
≤ exp

(
−1

3

(
1

2
· exp(c/3)− 1

)
· βn

4

)
≤ exp

(
−1

3
· 1

4
· exp(c/6) · βn

4

)
≤ exp

(
− n

48

)
= n−ω(1),

where the second and fourth inequalities are because of β ≥ exp(−c/6), and the third
inequality is because of exp(c/3)/2− 1 ≥ exp(c/6)/4 for c ≥ 10.

Therefore, with probability 1− n−ω(1), there are at most βn/2 vertices with degree at
most c/10 (since deg(i) ≥ Xi for every vertex i). When this happens, for any T ⊆ V ,
|T | = β ·n, there are at least (|T | −βn/2) vertices in T with degree at least c/10, the sum
of degrees of vertices in T is at least (|T | − βn/2) · c/10 = cβn/20 , which means the
number of edges incident to any vertex in T is at least cβn/40.

Proof of Lemma 7.6.2. By Lemma 7.6.4, we know that with probability (1− n−ω(1)), the
number of edges in G that is incident to T is at least cβn/40, for every T ⊆ V and
|T | = βn. Therefore, for any π with id(π) = (1 − β)n, let T ∗ be the non-fixed points of
π. We have |T ∗| = βn. As the number of edges in size-1 bins which are incident to T is
at most |T ∗|/2 = βn/2, the number of selected edges that in bins of size ≥ 2 is at least
cβn/40− βn/2 ≥ βm/60, when c ≥ 100.

We also need to show that with probability (1− n−ω(1)), the number of selected edges
in bins of size ≥ 2 (denote this number by random variable X) is at most 2β∗Z/109. For
every π such that id(π) = (1− β)n, let W be the set of possible edges whose end vertices
are not both fixed point of π. We have |W | = Z−

(
(1−β)n

2

)
, therefore βZ ≤ W ≤ 2βZ (for

large enough n) and X ≤ |E ∩W |. By Claim 7.6.7 we have Pr[|E ∩W | ≥ |W |/109] ≤

132

exp(−3|W |/1010) ≤ exp(−3 · βZ/1010). Therefore Pr[X ≥ 2βZ/109] ≤ exp(−3 ·
βZ/1010) ≤ n−ω(βn). We conclude the proof by taking a union bound over

(
n
βn

)
< nβn

ways of choosing non-fixed points for π.

Lemma 7.6.8. Conditioned on event B, for 104 ≤ c ≤ n/107, β0 ≥ β∗, with probability
(1− n−17), G is (β0, β0/240)-asymmetric.

Proof. For any permutation π, we define a set of more fine-grained bins. We start with the
bins we defined before, and split the bins of size≥ 4 into bins of size 2 and at most one bin
of size 3 as follows. Suppose the original bin contains {e1, e2, . . . , el}, where π(ei) = ei+1

and π(el) = e1, l ≥ 4, the we have new bins which contains {e1, e2}, . . . , {el−1, el} if l is
even, and {e1, e2}, . . . , {el−4, el−3}, {el−2, el−1, el} if l is odd.

For each bin of size 2 and size 3, if all the edges are in G, we call it a full bin; if
none of them are in G, we call it an empty bin; otherwise, we call it a half-full bin. Fix a
permutation π, let sπ be the number of half-full bins. For each half-full bin, it contributes
at least one to4(G, π(G)), therefore sπ ≤ |4(G, π(G))| = 2(m−AUT(G, π)). We have

Pr[G is (β0, β0/240)-asymmetric|B]

= Pr[∀π : id(π) ≤ (1− β0)n,AUT(G, π) ≤ (1− β0/240)m|B]

≥ Pr[∀π : id(π) ≤ (1− β0)n, sπ ≥ β0m/120|B].

Now we turn to show that

Pr[∀π : id(π) ≤ (1− β0)n, sπ ≥ β0m/120|B] ≥ 1− n−17.

To show this, we only have to prove for every β where β ≥ β0,

Pr[∀π : id(π) = (1− β)n, sπ ≥ βm/120|B] ≥ 1− n−18, (7.4)

and take a union bound over (at most n possible) β’s.

Fix β : β ≥ β0 and fix a permutation π such that id(π) = (1−β)n. Let Ct be the event
that B happens and there are t edges in G fall into the bins of size 2 and 3. Since B is a
disjoint union of Ct for all t : βm/60 ≤ t ≤ 2βZ/109, we have

Pr[sπ ≤ βm/120|B] =
m∑

t=βm/60

Pr[sπ ≤ βm/120|Ct] · Pr[Ct|B].

We will prove that

Pr[sπ ≤ βm/120|Ct] =

((
n

βn

)
(βn)!

)−1

· n−18, (7.5)

133

and by taking a union bound over all
(
n
βn

)
(βn)! possible π’s, we prove (7.4).

Let γ = β/120. Let L be the number of possible edges in bins of size 2 and 3. We
have L = Z −

(
(1−β)n

2

)
− βn

2
≥ βn2/4 (for large enough n). Together with t ≤ 2βZ/109,

we have t ≤ 4L/109 ≤ L/108. Let B be the number of bins of size 2 and 3. Fix t such
that βm/60 ≤ t ≤ L/108. Conditioned on Ct, the

(
L
t

)
ways to select these t edges are

uniformly distributed. Now we compute the number of ways such that there are at most
2γm half-full bins. Suppose that there are i half-full bins (for i ≤ 2γm ≤ t/2). There
are
(
B
i

)
ways to choose these bins. There are at most

(
B

(t−i)/2

)
ways to choose the full bins

(since t/2 < L/2 · 108 < B/2). For each half-full bin, there are at most 6 ways to choose
the edges in the bin. Therefore,

Pr[sπ = i|Ct] ≤ 6i
(
B

i

)(
B
t−i
2

)(
L

t

)−1

≤ 6i · L
t+i
2

i!
(
t−i
2

)
!

(
t

L

)t
= 6iL−

t−i
2

tt

i!
(
t−i
2

)
!
. (7.6)

Since i! ≥ (i/e)i, we have

(7.6) ≤ 6iL−
t−i
2 e

t+i
2

tt

ii
(
t−i
2

) t−i
2

≤ 6iL−
t−i
2 (2e)

t+i
2

tt

ii(t− i) t−i2

. (7.7)

Using ii(t− i) t−i2 ≥
(
t
4

) t+i
2 , we have

(7.7) ≤ 6i(8e)
t+i
2

(
t

L

) t−i
2

≤ (48e)
3t
4

(
t

L

) t
4

≤
(

107t

L

) t
4

. (7.8)

Since βm/60 ≤ t ≤ L/108, and (107t/L)t/4 is monotonically decreasing when t <
L/(107e), we have

(7.8) ≤
(

107βm

60L

)βm
240

≤
(

107βcn

60βn2/4

)βcn
240

≤
(

106c

n

)βcn
240

≤
(

1010

n

)40βn

≤
(

1

n

)30βn

,

where the second last inequality is because 104 ≤ c ≤ n/107 and (106c/n)βcn/240 is mono-
tonically decreasing in this range, and the last inequality is for large enough n. Observing
that

(
n
βn

)
(βn)! ≤ n2βn and β ≥ β∗ ≥ 1/n, we proved that

Pr[sπ = i|Ct] ≤
((

n

βn

)
(βn)!

)−1

· n−20.

By taking a union bound over all (at most n2 many) i’s such that i ≤ 2γm, we prove
(7.5).

Theorem 7.1.6 is proved by combining Corollary 7.6.3, Lemma 7.6.8, and taking a
union bound over all possible β = β0 (where there are at most n of them).

134

7.6.1 Generalization to hypergraphs

In this subsection, we generalize Theorem 7.1.6 to random k-uniform hypergraphs for any
constant k ≥ 3.

Theorem 7.6.9. For any constant k, there exists constant κk, such that for m = cn where
κk ≤ c ≤

(
n
k

)
/κ3

k, n large enough, if we set β∗ = max{exp(−c/6), 1/n}, with probability
(1 − n−15), for all β : β∗ ≤ β ≤ 1, a random graph H from the distribution G(k)

n,m is
(β, β/240)-asymmetric. For k = 3, κ3 = 104 suffices.

The proof of Theorem 7.6.9 mostly follows the lines of the proof of Theorem 7.1.6.
But we need some small modifications. For simplicity, we only prove the theorem for
k = 3. For higher k, we encourage the readers to check by themselves.

Now we work with k = 3. For any permutation π over the vertex set V , we define a
directed graph G(3)

π = (
(
V
3

)
, Eπ), and (e1, e2) ∈ Eπ if and only if e2 = π(e1). Since each

e ∈
(
V
3

)
has in-degree and out-degree exactly 1, we can divide G(3)

π into disjoint unions of
directed cycles. Similarly as in the ordinary graph case, we call each directed cycle a bin,
and the size of the bin is the number of elements in the cycle. Let Z3 =

(
n
3

)
.

Fact 7.6.10. For any size-1 bins, there are only three situations:

• e = {u, v, w} where u, v and w are all fixed points of π. We call these bins type-1
size-1 bins.The number of type-1 size-1 bins is at most

(
id(π)

3

)
.

• e = {u, v, w} where one of them is a fixed point of π and the other two map to each
other under π. We call these classes type-2 size-1 bins. The number of type-2 size-1
bins is at most id(π) · n−id(π)

2
= O(n2) for any permutation π.

• e = {u, v, w} where π(u) = v and π(v) = w and π(w) = u. We call these
classes type-3 size-1 bins. The number of type-3 size-1 bins is at most n−id(π)

3
for

any permutation π.

The following lemma is an analogue of Lemma 7.6.2.

Lemma 7.6.11. For any fixed β where β ≥ β∗, letD′ be the event that for any permutation
π such that id(π) = (1− β)n, the number of the hyperedges in H that fall into the bins of
size ≥ 2 is at least βm/60 and at most 2βZ3/109. We have

Pr
H∼H(3)

n,m

[D′] = 1− n−ω(1).

135

By a union bound over all the β : β ≥ β∗ (there are at most n of them), we get the
following corollary.

Corollary 7.6.12. Let D be the event that for every β ≥ β∗, any permutation π such that
id(π) = (1− β)n, the number of the hyperedges in H that fall into the bins of size ≥ 2 is
at least βm/60 at at most 2βZ3/109. We have:

Pr
H∼H(3)

n,m

[D] = 1− n−ω(1).

The proof of Lemma 7.6.11 is similar to that of Lemma 7.6.2, except that now we also
need to take care of type-2 size-1 bins.

Lemma 7.6.13. With probability 1−nω(1), for any permutation π with id(π) ≤ (1−β∗)n,
the number of selected hyperedges in type-2 size-1 bins is at most cβn/1000.

Proof. We first prove that for every β ≥ β∗, with probability 1− n−ω(1), for every permu-
tation π with id(π) = (1 − β)n, the number of selected hyperedges in type-2 size-1 bins
is at most cβn/1000. By a union bound over all possible β’s (where there are at most n of
them), we get the desired statement.

For any fixed permutation π with id(π) = (1− β)n, the number of type-2 size-1 bins
is at most (1− β)nβn/2 ≤ βn2/2. For each possible hyperedge e, we define the random
variable Xe as the indicator variable for the event that e is selected as an hyperedge in H .
Note that E[Xe] = cn/Z3 ≤ 7c

n2 . Define random variable X =
∑

e in type-2 size-1 bin Xe as the
number of selected hyperedges in type-2 size-1 bins, by linearity of expectation,

E[X] ≤ βn2

2
· 7c

n2
< 4cβ.

On the other hand, we can also show that all these random variables are negative asso-
ciated, therefore through Chernoff bound for negative associated random variables, we
have

Pr
H∼G(3)

n,m

[X ≥ βcn/1000] ≤ exp(−1/3 · (n/250− 1)2 · 4c · β) ≤ exp(−cβn2/105)

By a union bound over at most
(
n
βn

)
(βn)! ≤ n2βn such permutations, the probability

that there exists π with id(π) = (1 − β)n such that the number of type-2 size-1 bins is
more than cβn, is at most

exp(−cβn2/105)·n2βn = exp(−cβn2/(105)+2βn log n) ≤ exp(−cβn2/(106)) ≤ n−ω(1).

136

The following lemma is an analogue of Lemma 7.6.4, and the proof is almost identical.

Lemma 7.6.14. Let H ∼ G(3)
n,m. Suppose that β ≥ β∗. With probability 1−n−ω(1), for any

T ⊆ V , |T | = βn, the number of hyperedges incident to T is at least least cβn/40.

Proof of Lemma 7.6.11. We only establish the lower bound (βm/60). The proof for upper
bound is almost identical to that in Lemma 7.6.2.

Let T be the set of non-fixed points of π, then |T | = βn. By Lemma 7.6.14, we know
that with probability (1− n−ω(1)), there are at least cβn/40 hyperedges incident to T – all
these edges are either in bins of size ≥ 2, or edges in size-1 bins of type-2 or type-3. By
Lemma 7.6.13, we know that with probability 1−nω(1) the number of selected hyperedges
that fall into type-2 size-1 bins is at most cβn/1000. Finally we recall that there are at most
n−id(π)

3
= βn/3 type-3 size-1 bins.

Therefore, with probability (1 − n−ω(1), the number of selected hyperedges that fall
into bins of size ≥ 2 is at least cβn/40− βn/3− cβn/1000 ≥ cβn/60.

Finally we state the following analogue of Lemma 7.6.8 (whose proof is also almost
identical).

Lemma 7.6.15. Conditioned on event D, for 104 ≤ c ≤ n/107, β ≥ β∗, with probability
(1− n−17), H ∼ G(3)

n,m is (β, β/240)-asymmetric.

The k = 3 case in Theorem 7.6.9 follows from Corollary 7.6.12 and Lemma 7.6.15.

137

138

Part II

A proof complexity view of the
Parrilo–Lasserre hierarchy and the

success of Lasserre on hard instances for
weaker hierarchies

139

Chapter 8

Introduction and SOS preliminaries

8.1 Introduction

In a typical constraint satisfaction problem (CSP) we are given a set of variables V to
be assigned values from some finite domain Ω (often {0, 1}); we are also given a set of
local constraints specifying how various small groups of variables should be assigned. The
task is to find an assignment to the variables which minimizes the number of unsatisfied
constraints. Sometimes there may also be inviolable global constraints; for example, that
no domain element is assigned to too many variables. A canonical example is the 1/3
vs. 2/3 BALANCEDSEPARATOR problem as we defined earlier in this thesis: given is a
graph (V,E) with n vertices which must be partitioned into two “balanced” parts, each
of cardinality at least n/3; the goal is to minimize the number of edges crossing the cut.
Thoughout this chapter, we will also call this problem BALANCEDSEPARATOR.

For such problems, certifying that there is a good solution is in NP; for example, given
a graph we can efficiently prove that it has a balanced cut of size at most α simply by
exhibiting the cut. But what about the opposite problem, certifying that every balanced
cut has size at least β? Since this problem is coNP-complete it is unlikely that there
are efficient certifications for every instance; however there may be efficient certifications
for specific instances or classes of instances. For example, if we consider a linear pro-
gramming relaxation of a given BALANCEDSEPARATOR instance and then exhibit a dual
solution of value β, this constitutes a proof that every balanced cut in the instance has size
at least β.

The question is also interesting for problems in P, especially when the complexity
of the proof system is taken into account. For example, given an unsatisfiable instance

141

Ax = b of the 3Lin2 CSP (meaning the equations are over F2 and each involves at most 3
variables), there is always an easy-to-verify proof of unsatisfiability: a vector y such that
y>A = 0 but y>b 6= 0. However finding such a proof requires a rather specialized algo-
rithm, Gaussian Elimination. By contrast, unsatisfiable instances of the 2Lin2 CSP have
simple proofs of unsatisfiability (an unsatisfiable “cycle” of variables) which can be found
by a very generic “local consistency” algorithm. Indeed, one can view this algorithm as
searching for all constant-width Resolution proofs of unsatisfiability; the same algorithm
works for any “bounded-width CSP” [26].

Positivstellensatz proofs. In this chapter we consider a certain strong proof system for
CSPs. It belongs to the well-studied class of algebraic proof systems, in which local
constraints are represented by polynomial equations. To handle global constraints we also
allow for polynomial inequalities; this is also natural in the context of the linear programs
and semidefinite programs used by optimization algorithms. To give an example, suppose
we have a BALANCEDSEPARATOR instance (V,E) with V = [n]. We introduce a real
variable Xi for each i ∈ V . Now to say that the optimum value of the instance is larger
than β is precisely equivalent to saying the following system of polynomial equations and
inequalities (each of degree at most 2) is infeasible:

A =
{
X2
i = Xi ∀i ∈ [n]

}
∪
{ n∑
i=1

Xi ≥ n/3,
n∑
i=1

Xi ≤ 2n/3
}
∪
{ ∑

(i,j)∈E
(Xi−Xj)

2 ≤ β
}
.

Here the first set of equations enforces Xi ∈ {0, 1}, encoding a cut. The second set of
inequalities enforces that the cut is balanced. The final inequality states that at most β
edges cross the cut. Now what would constitute a proof that A has no real solutions;
i.e., that the BALANCEDSEPARATOR value exceeds β? One certificate would be a formal
identity in the polynomial ring R[X1, . . . , Xn] of the following form:

−1 =
n∑
i=1

Pi·(X2
i−Xi)+U ·(

n∑
i=1

Xi−n/3)+U ′·(2n/3−
n∑
i=1

Xi)+V ·(β−
∑

(i,j)∈E
(Xi−Xj)

2)+W,

(8.1)
where P1, . . . , Pn ∈ R[X1, . . . , Xn] and where U,U ′, V,W ∈ R[X1, . . . , Xn] are each
sums of squares (SOS), meaning of the form Q2

1 +Q2
2 + · · ·+Q2

m for some Q1, . . . , Qm ∈
R[X1, . . . , Xn]. Such an identity would indeed imply that A is infeasible, since substitut-
ing any solution of A into (8.1) would give a nonnegative right-hand side.

In fact, a certain refinement [187] of the Positivstellensatz of Krivine [151] and Sten-
gle [215] guarantees that if A is infeasible then there is always a proof of the form (8.1). A
generic “SOS proof system” based on the Positivstellensatz was introduced around 1999

142

by Grigoriev and Vorobjov [101]. As with most algebraic proof systems it can be difficult
to place an a priori upper bound on the degree of the polynomials needed for a proof; if we
insist on a fixed degree bound d then the proof system becomes incomplete. On the other
hand this incomplete system has the advantage of being efficiently automatizable, meaning
that if a proof exists it can be found in time poly(nd). The algorithm uses semidefinite pro-
gramming and follows from the work of Shor [210], Nesterov [177], Lasserre [156, 157]
and Parrilo [185]. See Section 8.1.1 for more details.

The power of SOS. Most of the previous relevant work focused on showing SOS-degree
(equivalently, Lasserre-round) lower bounds. However, in this thesis, we bring to light the
importance of SOS degree upper bounds for the study CSP approximability. We consider
the strong integrality gap instances known for the notorious UNIQUEGAMESCSP [192,
142, 35] and will (essentially) show that degree-8 SOS proofs can certify that the instances
have value close to 0. Thus the generic poly(n)-time “level-4 Lasserre SDP” algorithm
refutes their having large optimal value. This is despite the fact that the instances still
have value near 1 after Θ(log log n)1/4 rounds of the rather powerful Sherali–Adams SDP
hierarchy [192].

We will also further explore the relevance of SOS proof complexity to the algorith-
mic theory of CSP approximation. Specifically, we show that the Devanur–Khot-Saket–
Vishnoi [79] instances of BALANCEDSEPARATOR can have their optimal value well-
certified by a degree-4 SOS proof. We also investigate the problem of SOS proofs for
the Khot–Vishnoi (KV) [144] instances of MAXCUT.

8.1.1 History

We review here some of what is known about SOS proofs and SDP hierarchies; for a much
more thorough discussion we recommend the monograph by Laurent [162].

Throughout this work we write X = (X1, . . . , Xn) for a sequence of indeterminates,
with the number n being clear from context. We say that the real multivariate polynomial
u ∈ R[X] is sum of squares (SOS) if u = s2

1 + · · · + s2
m for some s1, . . . , sm ∈ R[X].

Any SOS polynomial is nonnegative on all of Rn; however, as Hilbert [117] showed in
1888 there exist nonnegative polynomials which are not SOS. The first explicit exam-
ple, X2

1X
2
2 (X2

1 + X2
2 − 3) + 1, was given by Motzkin in the mid-’60s. Hilbert’s 17th

Problem [118] asks whether every nonnegative polynomial q is the quotient of SOS poly-
nomials; this was solved affirmatively by Artin [23].

Artin’s result also follows from the Positivstellensatz, first proved (essentially) by Kriv-

143

ine [151] and then later independently by Stengle [215]. Interestingly, Stengle’s motivation
was the duality theory of linear programming. We state a special case appearing in [45]:

Positivstellensatz. Let A be a finite set of real multivariate polynomial equations and
inequalities,

A = {p1 = 0, p2 = 0, . . . , pm = 0} ∪ {q1 ≥ 0, q2 ≥ 0, . . . , qm′ ≥ 0},

with each pi, qj ∈ R[X]. Then A is infeasible if and only if there exist polynomials
r1, . . . , rm and SOS polynomials (uJ)J⊆[m′] in R[X] such that

− 1 =
m∑
i=1

ripi +
∑
J⊆[m′]

uJ
∏
j∈J

qj. (8.2)

One interesting further special case occurs when A contains only equations, not in-
equalities. In this case the Positivstellensatz says that p1, . . . , pm have no common real
roots if and only if the ideal they generate contains 1 + u for some SOS u. This special
case arises whenever one wants to show that a CSP (with no global constraints) is not per-
fectly satisfiable. (As noted by Shor [209], one can actually reduce to this case in general
by replacing q ≥ 0 with q − Y 2 = 0, where Y is a new indeterminate; indeed, by further
substitutions of new indeterminates one can reduce to the case where all equations are
quadratic.)

Proof complexity. Extending the Nullstellensatz proof system of Beame, Impagliazzo,
Krajı́ček, Pitassi, and Pudlák [39], Grigoriev and Vorobjov [101] proposed in 1999 the nat-
ural propositional proof system based on the Positivstellensatz. The complexity measure
is degree: i.e., maxi,J{ripi, uJ

∏
j∈J qj} in (8.2). This is a static proof system, meaning

that one simply exhibits the refutation (8.2).1 Grigoriev and Vorobjov showed that refuting
the single equation

(1−X0X1)2 + (X2
1 −X2)2 + (X2

2 −X3)2 + · · ·+ (X2
n−1 −Xn)2 +X2

n = 0

requires a proof of degree at least 2n−1. Relying on some ideas from the work of Buss,
Grigoriev, Impagliazzo, and Pitassi [54], Grigoriev showed in 1999 [97, 99] that refuting
any unsatisfiable system of F2-linear equations requires degree at least D/2, where D is

1Grigoriev and Vorobjov also proposed a certain dynamic version of the proof system, analogous to
Polynomial Calculus [68]. Indeed, [164] had earlier proposed a dynamic proof system based on Positivstel-
lensatz. We do not discuss dynamic proof systems further in this paper.

144

the least width needed to give a Resolution refutation. As a consequence he showed that
degree Ω(n) is necessary to prove Tseitin tautologies on n-vertex regular expander graphs
and to prove that the graph Kn has no perfect matching when n is odd. Grigoriev also
subsequently [98] showed that the “r-Knapsack tautology” requires a proof of degree n+1
for any real r ∈ (n

2
− 1

2
, n

2
+ 1

2
); this is the infeasibility of the system

{X2
1 = X1, . . . , X

2
n = Xn, X1 + · · ·+Xn = r},

for r a non-integer. For more on algebraic proof complexity with inequalities, see e.g. [100].

Optimization. We now discuss algorithmic issues. Let u ∈ R[x] be a real n-variate
polynomial of degree d. A most basic optimization problem is to determine infx∈Rn u(x).
Roughly speaking, this is equivalent (by binary search) to the problem of deciding whether
u(x) ≥ α; further, there is no loss of generality in assuming α = 0. Unfortunately, the
problem of deciding whether u ≥ 0 is NP-hard as soon as d ≥ 4. In 1987, Shor [210]
pioneered the idea of replacing the condition u ≥ 0 with the stronger condition that u is
SOS, and noted that this can be tested in poly(nd) by solving an SDP feasibility problem.
(Here we ignore the issue of precision in solving SDPs; see Section 8.2 for more details.)
Shor made the connection to Hilbert’s 17th Problem but not to Positivstellensatz.

Beginning in 2000, Parrilo [185] and Lasserre [156, 157] independently published sev-
eral works taking the idea further. Parrilo emphasized the viewpoint of Positivstellensatz
as a refutation system for polynomial inequalities, while Lasserre focused significant at-
tention on the dual SDP “problem of moments”. Both proposed using poly(nd)-time SDPs
to search for degree-d Positivstellensatz refutations, for larger and larger d.

Lasserre also proposed using certain variant forms of Positivstellensatz. For example,
if one is optimizing a polynomial on a compact semialgebraic set K then one can use SDP
optimization directly (as opposed to using binary search and feasibility testing), thanks
to a version of the Positivstellensatz due to Schmüdgen [203]. Furthermore, Putinar [187]
showed that ifK is explicitly compact (“Archimedean”) — say, one of its defining inequal-
ities is

∑n
i=1X

2
i ≤ B — then the Positivstellensatz certificates (8.2) only require uJ ’s with

|J | ≤ 1. (Both [203, 187] contained a bug, fixed in [223].) On one hand, in practice there
is rarely any harm in adding an inequality

∑n
i=1X

2
i ≤ B with large B; on the other hand,

eliminating the uJ ’s with |J | > 1 may cause the refutation degree to increase. In any case,
Lasserre focused on the polynomial optimization problem

inf{p(x) | x ∈ K}, K = {x ∈ Rn | q1(x) ≥ 0, . . . , qm(x) ≥ 0}, (8.3)

145

and proposed a hierarchy of SDP relaxations for increasing d,

inf{L(p) | L : R[X]d → R is a linear map, L(1) = 1, and L(u), L(uqi) ≥ 0 for all SOS u},
(8.4)

where R[X]d denotes the ring R[X] restricted to polynomials of degree at most d. This is
a relaxation because one can take L to be the evaluation map p 7→ p(x∗) for any optimal
solution x∗. We refer to (8.4) as the degree-d Lasserre moment SDP; when d is even
it is also known as the level-d/2 (or sometimes d/2 − 1) Lasserre hierarchy SDP. The
semidefinite dual of (8.4) is

sup{β | p−β = u0+u1q1+· · ·+umqm for some SOS u0, . . . , um with deg(u0), deg(uiqi) ≤ d},
(8.5)

which we refer to as the degree-d Lasserre SOS SDP. (One can also allow for polyno-
mial equalities in the description of K, either by replacing them with pairs of inequalities,
extending the SDP formulations as in (8.2), or by factoring out by the ideal they gener-
ate [161].) Assuming K is explicitly compact, Lasserre [157] showed that the SOS SDP’s
value tends to the optimal value as the degree increases. If furthermore K has a nonempty
interior then there is no duality gap between (8.4) and (8.5). Generally K has empty in-
terior for discrete optimization problems (e.g., if it includes the constraints X2

i = Xi);
however, the duality gap issue is algorithmically irrelevant since the Ellipsoid Algorithm
can’t distinguish an empty interior from a small interior anyway. This issue is discussed
briefly in Section 8.2.

Prior optimization results. We conclude by mentioning some known positive and neg-
ative results for the Lasserre moment SDP relaxation. Around 2001, Laurent [160] con-
sidered the Lasserre hierarchy for MAXCUT with negative edge weights allowed (i.e.,
the 2Lin2 CSP). She showed that degree-2 Lasserre optimally solves all instances whose
underlying graph is a tree, and conversely that there are non-tree instances which degree-
2 Lasserre does not solve optimally. She similarly characterized the underlying graphs
which degree-4 Lasserre solves optimally: the K5-minor-free graphs. Around 2002, Lau-
rent [159] showed that when n is odd, the degree-(n− 1) moment SDP relaxation for the
MAXCUT problem on Kn still has value n2

4
(whereas the optimum value is n2−1

4
); i.e., the

dn+1
2
eth level of the Lasserre hierarchy is required to obtain the optimal solution. Around

2005, Cheung [65] considered the Knapsack problem and showed that in the optimization
problem

inf{X1 + · · ·+Xn | X2
i = Xi ∀i, X1 + · · ·+Xn ≥ r},

if r = r(n) ∈ (0, 1) is sufficiently small then the Lasserre moment SDP does not find
the optimal solution (namely, 1) until the degree is “maximal”, namely 2n + 2. In 2008,

146

Schoenbeck essentially rediscovered Grigoriev’s result on F2-linear equations from the
moment side, showing that there are n-variable 3Lin2 instance of value 1

2
+ on(1) for

which the degree-Ω(n) Lasserre moment relaxation still has value 1. Building on this
work, Tulsiani [220] showed degree-Ω(n) integrality gap instances matching the known
NP-hardness factors for a number of CSPs. Guruswami, Sinop, and Zhou [112] showed a
degree-Ω(n) integrality gap instance for the BALANCEDSEPARATOR problem with factor
α > 1, even though this level of NP-hardness is not known. They also showed a degree-
Ω(n) integrality gap instance for the MAXCUT problem with factor 17

18
. Around 2010,

Karlin, Mathieu, and Nguyen [131] showed that the degree-2t Lasserre moment relaxation
achieves approximation ratio 1− 1

t
for the general Knapsack problem.

8.1.2 Our contributions and organization of this part

In this part, we study the power of the O(1)-degree SOS SDP hierarchy for several central
combinatorial optimization problems.

UNIQUEGAMES. We first study theO(1)-degree SOS SDP hierarchy for the UNIQUEGAMES

instances considered in the literature (i.e. in [192, 154, 142], obtained by composing the
“quotient noisy cube” instance of [144] with the long-code alphabet reduction of [141]).
In Chapter 9, we prove the following theorem.

Theorem 8.1.1 (Pre-statement of Theorem 9.0.8). LetG be an n-variable UNIQUEGAMES

instance with label-size q of the type considered in [192, 154, 142] obtained by compos-
ing the “quotient noisy cube” instance of [144] with the long-code alphabet reduction
of [141] so that the best assignment to G’s variables satisfies at most an ε fraction of the
constraints. When ε is sufficiently small and n is sufficiently large, there is a degree-8 SOS
refutation for the statement that the best assignment to G’s variables satisfy at least 1/100
fraction of the constraints.

Thus just the level-4 Lasserre SDP hierarchy (essentially) solves the the UNIQUEGAMES

instances.

We also investigate whether the O(1)-degree SOS SDP hierarchy can solve known
integrality gap instances of problems that are essentially harder than UNIQUEGAMES.
We focus on two such problems: BALANCEDSEPARATOR and MAXCUT.

147

BALANCEDSEPARATOR. Building on work of Khot–Vishnoi [144] and Krauthgamer–
Rabani [150], Devanur, Khot, Saket, and Vishnoi (DKSV) [79] gave a family of n-vertex
BALANCEDSEPARATOR instances in which the optimal balanced separator cuts an Ω(log logn

logn
)

fraction of the edges, but for which the SDP with triangle inequalities has value O(1
logn

).
This is a factor-Θ(log log n) integrality gap. Raghavendra and Steurer [192] show that a
factor-(log log n)Ω(1) gap persists for these instances even for (log log n)Ω(1) rounds of the
“LH SDP hierarchy”. The key to analyzing the optimum value of their instances is the
KKL Theorem [129] from analysis of boolean functions. In this work we give a degree-4
SOS proof of the KKL Theorem. In turn, this is used in Chapter 10 to show the following:

Theorem 8.1.2 (Pre-statement of Theorem 10.3.3). The degree-4 SOS relaxation for the
DKSV BALANCEDSEPARATOR instances has value Ω(log logn

logn
).

Thus just the level-2 Lasserre SDP hierarchy (essentially) solves the DSKV BALANCED-
SEPARATOR instances.

MAXCUT. Khot and -Vishnoi [144] gave integrality gap instances for the MAXCUT

problem, by composing their UNIQUEGAMES instances with the Khot–Kindler–Mossel–
O’Donnell [141] MAXCUT reduction. When this reduction is executed with parame-
ter ρ ∈ (−1, 0), one obtains n-vertex MAXCUT instances with optimal value at most
(arccos ρ)/π+ on(1), but for which the SDP with triangle inequalities has value 1

2
− 1

2
ρ−

on(1). In particular, for ρ = ρ0 ≈ −.689, this is a factor-.878 integrality gap (worst pos-
sible, by the Goemans–Williamson algorithm [94]). Khot and Saket [154] subsequently
showed that this gap persists even for (log log log n)Ω(1) rounds of the Sherali–Adams SDP
hierarchy. The key to analyzing the optimum value of the KV MAXCUT instances is the
Majority Is Stablest Theorem from [174]. This theorem is in turn based on an Invariance
Principle for nonlinear forms of random variables, together with a Gaussian isoperimetric
theorem of Borell [50]. We are able to “SOS-ize” Kindler–O’Donnell’s recent new proof
of the latter [147] (it essentially only needs the triangle inequality); however we do not
know how to prove the former for non-polynomial functionals. Thus we currently do not
know how to give an SOS proof of the Majority Is Stablest Theorem.

We turn then to a weaker version of Majority Is Stablest known as the “ 2
π

Theorem”,
proved in [140]. This proof relies on just the Central Limit Theorem (more precisely, the
Berry–Esseen Theorem). We are able to give an SOS proof of the CLT Theorem, although
not with a fixed constant degree bound. Rather, we are able to prove it up to an additive
error of δ using an SOS proof of degree Õ(1/δ2). Using this, as well as the SOS analysis
of the KV UNIQUEGAMES instances, we are able to show the following in Chapter 11:

148

Theorem 8.1.3. There exists a universal constant C ∈ N+ such that the degree-C SOS
relaxation for the KV MAXCUT instances (with parameter ρ0 ≈ −.689) is within a fac-
tor .952 (> .878) of the optimum value. For general ρ, the relaxation is within a factor of
.931 of the optimum.

A guide to the SOS proofs. Since even conceptually simple SOS proofs can sometimes
look a little complicated, we give here a brief guide to our SOS proofs. Both of our
results rely on the hypercontractive inequality for {−1, 1}n due to [48]. We give the SOS
proofs for various hypercontractive inequalities in Section 8.4. For the simplest (2, 4)-
hypercontractive inequality (Theorem 8.4.3), the only trick is that to evade the use of
Cauchy–Schwarz in the standard proofs one needs to move to a “two-function” version
of the inequality. We also need SOS proofs of a few other forms of the hypercontractive
inequality. Though the notation is heavy, the proofs are essentially straightforward. On the
other hand, we remark that we currently do not have an SOS proof of the 2→ 2k version
of the inequality with sharp constant for any integer k > 2.

For the UNIQUEGAMES instances, we will first use hypercontractivity to prove the
basic “quotient noisy cube” instances by Khot and Vishnoi [144] does not have great so-
lution. The bulk of the remaining technical work is in lifting the soundness proof of the
KKMO gadget. On a high level this proof involves the following components: (1) The
invariance principle of [174], saying that low influence functions cannot distinguish be-
tween the cube and the sphere; this allows us to argue that functions that perform well
on the gadget must have an influential variable (an analog of the “Majority Is Stablest”
theorem), and (2) the influence decoding procedure of [141] that maps these influential
functions on each local gadget into a good global assignment for the original “quotient
noisy cube” instance. The invariance principle poses a special challenge, since the proof
of [174] uses so called “bump” functions which are not at all low-degree polynomials. We
use a weaker invariance principle, only showing that the 4 norm of a low influence func-
tion remains the same between two probability spaces that agree on the first 2 moments.
Please refer to Chapter 9 for a more detailed description.

In KKL, hypercontractivity is used to prove the “Small-Set Expansion (SSE) in the
Noisy Hypercube” theorem. The usual proof of this is very short, but presents a couple
of challenges for SOS proofs. One challenge is the use of Hölder’s inequality with expo-
nents 4, 4

3
. We are able to get around the fractional powers with a couple of tricks, one

which is the following: if one needs to SOS-prove, say, p ≤ √q for some nonnegative
polynomial q, instead prove that p ≤ ε

2
+ 1

2ε
· q for all real ε > 0. The other challenge

is that the standard proof of the SSE Theorem involves division by a polynomial quantity,
something we don’t see how to do with SOS proofs. Still, we manage to give a short

149

SOS-proof of a weaker version of the SSE Theorem which is good enough for our pur-
poses. Finally, to obtain the BALANCEDSEPARATOR result, the last step is to SOS-prove
the KKL Theorem. Even the statement of the theorem involves logarithms, which does
not look SOS-friendly. We get around this with a variant of the square-root trick just
mentioned.

Moving to our proof of the 2
π

Theorem, as stated, we need an SOS-proof of the Central
Limit Theorem (with error bounds). Alternately phrased, we need an Invariance Theorem
for linear forms of polynomials, specifically with the absolute-value functional. Although
this functional is not polynomial, we can replace the required statement with something
that is: namely, when a1, . . . , an are indeterminates assumed to satisfy a2

1 + · · ·+ a2
n = 1,

we want to upper-bound

E
x∼{−1,1}n

[f(x)(a1x1 + · · ·+ anxn)] ≤
√

2

π
+ e,

where e is an error term involving
∑

i a
4
i , which is small when all ai’s are small. Our SOS

proof of this is somewhat technically difficult. To proceed, we upper-bound the absolute-
value functional to within δ by a polynomial Q of high degree; using real approximation
theory, Õ(1/δ2) suffices. Then we prove an Invariance Theorem for linear forms with
a high-degree functional; this is feasible for linear forms (but not higher-degree ones)
because of their subgaussian tails. Unlike in the usual proof of the Berry–Esseen Theorem,
we need the hypercontractive inequality for high norms here.

8.2 The SOS proof system and the SDP hierarchy for op-
timization

In this section we give formal details of the Positivstellensatz proof system of Grigoriev–
Vorobjov and the associated hierarchy of SDP algorithms due to Lasserre and Parrilo. For
brevity we refer to these as “SOS proofs and hierarchies”.

Definition 8.2.1. Let X = (X1, . . . , Xn) be indeterminates, let q1, . . . , qm, r1, . . . , rm′ ∈
R[X], and let

A = {q1 ≥ 0, . . . , qm ≥ 0} ∪ {r1 = 0, . . . , rm′ = 0}.

Given p ∈ R[X] we say that A SOS-proves p ≥ 0 with degree k, written

A `k p ≥ 0,

150

whenever

∃v1, . . . , vm′ and SOS u0, u1, . . . , um such that

p = u0+
m∑
i=1

uiqi+
m′∑
j=1

vjrj, with deg(u0), deg(uiqi), deg(vjrj) ≤ k ∀i ∈ [m], j ∈ [m′].

(Recall we say that w ∈ R[X] is SOS if w = s2
1 + · · ·+ s2

t for some si ∈ R[X].)

We say that A has a degree-k SOS refutation if

A `k −1 ≥ 0.

Finally, when A = ∅ we will sometimes use the shorthand

`k p ≥ 0,

which simply means that p is SOS and deg(p) ≤ k.

Our notation here is suggestive of a dynamic proof system, and indeed it can be helpful
to think of SOS proofs this way. For example, adding deductions is not a problem:

Fact 8.2.2. If
A `k p ≥ 0, A′ `k′ p′ ≥ 0,

then
A ∪ A′ `max(k,k′) p+ p′ ≥ 0.

However using transitivity or multiplying together two deductions leads to a worse
degree bound when applied generically:

Fact 8.2.3. Suppose that

A `k q′1 ≥ 0, . . . , q′` ≥ 0

(meaning A `k q′i ≥ 0 for each i ∈ [`]). Further suppose that

{q′1 ≥ 0, . . . , q′` ≥ 0} `k′ p ≥ 0.

Then
A `k+k′ p ≥ 0.

151

Fact 8.2.4. Let A = {q1 ≥ 0, . . . , qm ≥ 0}, A′ = {q′1 ≥ 0, . . . , q′m′ ≥ 0}. If

A `k p ≥ 0, A′ `k′ p′ ≥ 0,

then
A ∪ A′ ∪ (A · A′) `k+k′ p · p′ ≥ 0,

where A · A′ denotes {qi · q′j ≥ 0 : i ∈ [m], j ∈ [m′]}.

Notice that in the above fact we had to explicitly include product inequalities into the
hypotheses. This is because in general we do not have {q ≥ 0, q′ ≥ 0} ` qq′ ≥ 0. For
example:

Proposition 8.2.5. In R[Y, Z], for every k ∈ N ,

{Y ≥ 0, Z ≥ 0} 6`k Y Z ≥ 0.

Indeed, for all real β ≥ 0,

{Y ≥ 0, Z ≥ 0} 6`k Y Z ≥ −β.

Proof. Suppose to the contrary that

Y Z + β = u1 + Y u2 + Zu3 (8.6)

for some SOS u1, u2, u3 ∈ R[Y, Z]. We think of the right-hand side of (8.6) as being in
R[Z][Y]. Let kj be the degree of Y in uj for j = 1, 2, 3; note that k1, k3 are even and
k2 is odd. Suppose first that max{k1, k2, k3} = k1. Then we must in fact have k3 = k1

in order to cancel the Y k1 term in the RHS of (8.6). But in fact such a cancelation is
impossible because the coefficient on Y k1 in u1 will be an even-degree polynomial in Z,
but the coefficient on Y k3 in u3 will be an odd-degree polynomial in Z. The remaining
possibility is that k2 > k1, k3. In this case we must have k2 = 1, or else the degree of Y
on the RHS of (8.6) will exceed 1. Thus u1, u2, u3 depend only on Z; but then (8.6) forces
u2 = Z, contradicting the fact that u2 is SOS.

For more simple examples of the weakness of SOS proofs, see [170, Chap. 2.7]. Here
is another one: we cannot directly prove Y 4 ≥ 1⇒ Y 2 ≥ 1.

Proposition 8.2.6. In R[Y], for every k ∈ N ,

Y 4 ≥ 1 6`k Y 2 ≥ 1.

152

Proof. Suppose to the contrary that one can write

Y 2 − 1 = u+ v(Y 4 − 1) (8.7)

with u, v ∈ R[Y] being SOS. One cannot have v = 0 because Y 2− 1 is not SOS (consider
that 02−1 is negative). Therefore the highest-degree term in v is of the form cY 2j for some
real c > 0 and some integer j. This gives a term cY 2j+4 on the right-hand side of (8.7)
which must be canceled by u. This is impossible if deg(u) = 2j + 4 because the leading
coefficient on u will be positive too. So deg(u) > 2j + 4, but then its highest-degree term
remains uncanceled on the right-hand side of (8.7).

On the other hand, one can easily SOS-prove Y 4 ≤ 1 ⇒ Y 2 ≤ 1; see Fact 8.3.3.
Furthermore, one can Y 4 ≥ 1⇒ Y 2 ≥ 1 by contradiction:

Proposition 8.2.7. In R[Y], for any ε > 0 we have

{Y 4 ≥ 1, Y 2 ≤ 1− ε} `4 −1 ≥ 0.

Proof. We leave the case of ε ≥ 1 to the reader. Otherwise, write c = 1− ε ∈ (0, 1); then

−1 = 1
1−c2 (c+ Y 2)(c− Y 2) + 1

1−c2 (Y 4 − 1)

and both 1
1−c2 (c+ Y 2) and 1

1−c2 are SOS.

These observations reveal that when fixing the degree of SOS proofs, the SDP sim-
plifications explored by Lasserre (see Section 8.1.1) can be damaging: it may help to
multiply together constraint inequalities, and direct optimization can be worse than binary
searching for refutations. Thus we propose that for optimizations problems, one should
generically use the SDP hierarchy proposed by Parrilo. I.e., for

inf{p(x) | x ∈ K}, K = {x ∈ Rn | q1(x) ≥ 0, . . . , qm(x) ≥ 0},

one should assume that K is “explicitly compact” (say, contains the inequality X2
1 + · · ·+

X2
n ≤ 2poly(n)) and then use binary search to (approximately) find the largest β for which

{qi1qi2 · · · qit ≥ 0 : deg(qi1qi2 · · · · · qit) ≤ d} ∪ {p ≤ β} `d −1 ≥ 0. (8.8)

This can be carried out in poly(nd,m) time using the Ellipsoid Algorithm.2

2Determining (8.8) amounts to checking if a matrix of variables can be PSD while satisfying some
equalities. One relaxes the equalities to two-sided inequalities with some small tolerance δ = 2−poly(n),
allowing one to run Ellipsoid. If Ellipsoid returns a feasible solution it can be made truly PSD at the expense
of adding slightly more slack in the equalities. By virtue of the compactness, this can adjusted to give a valid
SOS proof of −1 + δ′ ≥ 0.

153

8.3 A few simple SOS preliminaries

A well-known basic fact (following from the Fundamental Theorem of Algebra) is that
every nonnegative univariate polynomial is SOS:

Fact 8.3.1. Suppose p ∈ R[X1] is a univariate real polynomial such that p(t) ≥ 0 for all
real t. Then p is SOS; i.e., `deg(p) p ≥ 0.

The following related result is credited in [162] to Fekete and Markov–Lukács, with
reference also to [170]:

Fact 8.3.2. Suppose p ∈ R[Y] is a univariate real polynomial of degree k such that p(t) ≥
0 for all real a ≤ t ≤ b.

If k is odd then
Y ≥ a, b ≥ Y `k p ≥ 0.

If k is even then
(b− Y)(Y − a) ≥ 0 `k p ≥ 0.

We now give some additional simple SOS proofs:

Fact 8.3.3. Y 2 ≤ 1 `2 Y ≤ 1, Y ≥ −1.

Proof. The first follows from 1 − Y = 1
2
(1 − Y)2 + 1

2
(1 − Y 2). The second follows by

replacing Y by −Y .

Fact 8.3.4. {Y ≤ 1, Y ≥ −1} `3 Y
2 ≤ 1.

Proof. 1− Y 2 = 1
2
(1 + Y)2(1− Y) + 1

2
(1− Y)2(1 + Y).

Fact 8.3.5. If A `k Y 2 ≤ Y (k ≥ 2), then A `k Y ≤ 1.

Proof. Since 1−Y = Y −Y 2+(1−Y)2 and there is a degree-k SOS proof for Y −Y 2 ≥ 0
(assuming A), we have a degree-k SOS proof for 1− Y ≥ 0 assuming A.

We will need an SOS proof of the fact that Y, Z ∈ {−1, 1} ⇒ Y−Z
2
∈ {−1, 0, 1}:

Fact 8.3.6. Y 2 = 1, Z2 = 1 `3 (Y−Z
2

) = (Y−Z
2

)3.

Proof. (Y−Z
2

)− (Y−Z
2

)3 = (3
8
Z − 1

8
Y)(Y 2 − 1) + (1

8
Z − 3

8
Y)(Z2 − 1).

154

Fact 8.3.7. Suppose that A `k Y ≥ −1, Y ≤ 1 and that B `` Z ≥ W,Z ≥ −W . Then
A ∪B `k+` Z ≥ YW .

Proof. Z − YW = 1
2
(Z −W)(1 + Y) + 1

2
(Z +W)(1− Y).

Fact 8.3.8. Suppose that A `k Y ′ ≥ Y and B `` Z ′ ≥ Z. Further suppose A′ `k′ Y ′ ≥ 0
and B′ ``′ Z ≥ 0. Then A ∪B ∪ A′ ∪B′ `max{k+`′,k′+`} Y

′Z ′ ≥ Y Z.

Proof. This follows from Y ′Z ′ − Y Z = Y ′(Z ′ − Z) + Z(Y ′ − Y).

We now move to Hölder-type inequalities.

Fact 8.3.9. `2 Y Z ≤ 1
2
Y 2 + 1

2
Z2.

Proof. 1
2
Y 2 + 1

2
Z2 − Y Z = 1

2
(Y − Z)2.

More generally, by replacing Y with ε1/2Y and Z with ε−1/2Z, we obtain:

Fact 8.3.10. `2 Y Z ≤ ε
2
Y 2 + 1

2ε
Z2 for any real ε > 0.

We would also like Young’s inequality for conjugate Hölder exponents (4
3
, 4), but stat-

ing it needs a trick:

Fact 8.3.11. `4 Y
3Z ≤ 3

4
Y 4 + 1

4
Z4.

Proof. 3
4
Y 4 + 1

4
Z4 − Y 3Z = (3

4
Y 2 + 1

2
Y Z + 1

4
Z2)(Y − Z)2

= (1
2
Y 2 + 1

4
(Y + Z)2)(Y − Z)2 = 1

2
Y 2(Y − Z)2 + 1

4
(Y 2 − Z2)2.

By replacing Y with ε1/4Y and Z with ε−3/4Z, we obtain:

Fact 8.3.12. `4 Y
3Z ≤ 3ε

4
Y 4 + 1

4ε3
Z4 for any real ε > 0.

Fact 8.3.13. {Y 2 ≤ Y } `4 Y Z ≤ 3ε
4
Y + 1

4ε3
Z4 for any real ε > 0.

Proof. Since we have the assumption Y 2 ≤ Y , it suffices to prove that

{Y 2 ≤ Y } `4 Y Z ≤ 2ε
4
Y + ε

4
Y 2 + 1

4ε3
Z4.

This is true because
3ε
4
Y + ε

4
Y 2+ 1

4ε3
Z4−Y Z = 1

4
(
√
εY − 1√

ε3
Z2)2+ 1

2
Y 2(1√

ε
Z−
√
ε)2+ 1

2
(Y −Y 2)(1√

ε
Z−
√
ε)2.

155

Fact 8.3.14. If A `k Y ≥ 0 and A `k Y ≤ Z, then A `2k Y
2 ≤ Z2.

Proof. We can deduce A `k Z ≥ 0 and therefore A `k Z + Y ≥ 0 using Fact 8.2.2. The
result now follows from Fact 8.2.4 applied to Z2 − Y 2 = (Z + Y)(Z − Y).

Fact 8.3.15. `2 avgi∈[n][X
2
i] ≥ (avgi∈[n][Xi])

2.

Proof. avgi∈[n][X
2
i]− (avgi∈[n][Xi])

2 = avgi,j∈[n][
1
2
(Xi −Xj)

2].

8.4 SOS proofs of hypercontractivity

In the remainder of the work we will use some standard notions from analysis of Boolean
functions; see, e.g., [181]. All of our main results will require SOS proofs of the well-
known hypercontractivity theorems on {−1, 1}n, first proved by Bonami [48]. To state
them, recall that any function f : {−1, 1}n → R can be viewed as a multilinear polyno-
mial,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi, where f̂(S) = E
x∼{−1,1}n

[f(x)
∏
i∈S
xi]. (8.9)

Then for ρ ∈ R, the linear operator Tρ is defined by mapping the above function to

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)
∏
i∈S

xi.

Now the p = 2, q ≥ 2 cases of hypercontractivity can be stated as follows:

Theorem 8.4.1. Let f : {−1, 1}n → R. Then for any real q ≥ 2,

E
x∼{−1,1}n

[|T 1√
q−1
f(x)|q] ≤ E

x∼{−1,1}n
[f(x)2]q/2.

Theorem 8.4.2. Let f : {−1, 1}n → R have degree at most k. Then for any real q ≥ 2,

E
x∼{−1,1}n

[|f(x)|q] ≤ (q − 1)(q/2)k · E
x∼{−1,1}n

[f(x)2]q/2.

Note that Theorem 8.4.2 follows immediately from Theorem 8.4.1 in case f is ho-
mogeneous of degree k. It is also known that Theorem 8.4.1 and Theorem 8.4.2 (even
its homogeneous version) are “equivalent”, in the sense that one can be derived from the
other using various analytic tricks.

156

As mentioned, we would ideally like to give SOS proofs of these theorems. In order to
even state the theorems as polynomial inequalities it is required that q be an even integer.
For example, when q = 4 we may try to SOS-prove

E
x∼{−1,1}n

[(T 1√
q−1
f(x))4] ≤ E

x∼{−1,1}n
[f(x)2]2.

The meaning of this is that the 2n Fourier coefficients of f are the indeterminates; i.e., we
work over the ring R[f̂(∅), f̂({1}), . . . , f̂([n])] and would like to show that

E
x∼{−1,1}n

[f(x)2]2 − E
x∼{−1,1}n

[(T 1√
q−1
f(x))4]

is a sum of squares of polynomials over the indeterminates f̂(S). Sometimes we will
instead use the 2n indeterminates “f(x)” for x ∈ {−1, 1}n — note that this is completely
equivalent because the f(x)’s are homogeneous linear forms in the f̂(S)’s and vice versa;
see (8.9).

When q is an even integer it is well known that Theorem 8.4.2 has a much simpler,
“almost combinatorial” proof. For example, Bonami’s original paper proved the homo-
geneous version of Theorem 8.4.2 for even integer q using nothing more “analytic” than
absolute values and Cauchy–Schwarz. (Her proof even obtains a slightly sharper constant
than (q − 1)(q/2)k.) The inductive proof of Theorem 8.4.2 for q = 4 presented in [174] is
simpler still, using only Cauchy–Schwarz. It is not hard to check that these remarks also
apply to Theorem 8.4.1.

Nevertheless, it’s not completely trivial to obtain SOS proofs of Theorem 8.4.1 andTheorem 8.4.2
when q is an even integer, simply because the Cauchy–Schwarz inequality, E[fg] ≤√

E[f 2]
√

E[g2], has square-roots in it. The natural substitute is the inequality E[fg] ≤
1
2 E[f 2] + 1

2 E[g2] (see Fact 8.3.9). However fitting this into the known proof of, say, the
q = 4 case of Theorem 8.4.2 seems to require an extra trick: moving to a “two-function”
version of the statement.

Theorem 8.4.3. (SOS proof of the two-function, q = 4 version of Theorem 8.4.2.)

Let n, k1, k2 ∈ N. For each j = 1, 2 and each S ⊆ [n] of cardinality at most kj ,
introduce an indeterminate f̂j(S). For x ∈ {−1, 1}n, let fj(x) denote

∑
S f̂j(S)

∏
i∈S xi.

Then

`4 E
x∼{−1,1}n

[f1(x)2f2(x)2] ≤ 3k1+k2 · E
x∼{−1,1}n

[f1(x)2] · E
x∼{−1,1}n

[f2(x)2].

157

However, we choose to omit the proof of Theorem 8.4.3, but give an SOS proof of
the q = 4 case of Theorem 8.4.1 using the “two-function” idea, which will imply Theo-
rem 8.4.3. We will need a more general statement which allows for some of the±1 random
variables to be replaced by Gaussians; this idea is also from [174].

Theorem 8.4.4. (SOS proof of the two-function, q = 4 version of Theorem 8.4.1.)

Let n ∈ N. For each j = 1, 2 and each S ⊆ [n], introduce an indeterminate f̂j(S).
For each z = (z1, . . . , zn) ∈ Rn, let

fj(z) =
∑
S⊆[n]

f̂j(S)
∏
i∈S

zi, T 1√
3
fj(z) =

∑
S⊆[n]

(1√
3
)|S|f̂j(S)

∏
i∈S

zi;

these are homogeneous linear polynomials in the indeterminates. Let z = (z1, . . . ,zn) be
a random vector in which the components zi are independent and satisfy E[zi] = E[z3

i] =
0, E[z2

i] = 1, E[z4
i] ≤ 9. (For example, Rademachers and standard Gaussians qualify.)

Then
`4 E

z
[(T 1√

3
f1(z))2 · (T 1√

3
f2(z))2] ≤ E

z
[f1(z)2] · E

z
[f2(z)2].

In particular,
`4 E

z
[(T 1√

3
f1(z))4] ≤ E

z
[f1(z)2]2.

Just as Theorem 8.4.2 follows immediately from Theorem 8.4.1. Theorem 8.4.3 also
follows immediately from Theorem 8.4.4).

Proof of Theorem 8.4.4. The proof of the theorem is by induction on n. For n = 0 we
need to show `4 f̂1(∅)2f̂2(∅)2 ≤ f̂1(∅)2f̂2(∅)2, which is trivial. For general n ≥ 1 and
(z1, . . . , zn) ∈ Rn we can express fj(z1, . . . , zn) = zndj(z

′) + ej(z
′), where z′ ∈ Rn−1

denotes (z1, . . . , zn−1),

dj(z
′) =

∑
S3n

f̂j(S)
∏

i∈S\{n}
zi,

ej(z
′) =

∑
S 63n

f̂j(S)
∏
i∈S

zi.

Now

E
x∼{−1,1}n

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

= E
z

[(
1√
3
zn · T 1√

3
d1(z′) + T 1√

3
e1(z′)

)2 (
1√
3
zn · T 1√

3
d2(z′) + T 1√

3
e2(z′)

)2
]

158

= E
z

[(
1
3
z2
n(Td1)2 + 2√

3
zn(Td1)(Te1) + (Te1)2

)(
1
3
z2
n(Td2)2 + 2√

3
zn(Td2)(Te2) + (Te2)2

)]
,

where we introduced the shorthand (Tdj) for T 1√
3
dj(z

′) (and similarly for ej). We con-

tinue by expanding the product and using linearity of expectation, E[zn] = E[z3
n] = 0,

E[z2
n] = 1; thus the above equals

1
9 E[z4

n]E
z′

[(Td1)2(Td2)2] + 1
3 E
z′

[(Td1)2(Te2)2] + 1
3 E
z′

[(Td2)2(Te1)2] +E
z′

[(Te1)2(Te2)2]

+ 4
3 E
z′

[(Td1)(Te2) · (Td2)(Te1)].

Using Fact 8.3.9 we have

`4
4
3 E
z′

[(Td1)(Te2) · (Td2)(Te1)] ≤ 2
3 E
z′

[(Td1)2(Te2)2] + 2
3 E
z′

[(Td2)2(Te1)2].

By our assumption E[z2
n] ≤ 9 we have `4

1
9 E[z4

n]Ez′ [(Td1)2(Td2)2] ≤ Ez′ [(Td1)2(Td2)2];
here we are using the fact that Ez′ [(Td1)2(Td2)2] is SOS.3 Thus we have shown

`4 E
z

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

≤ E
z′

[(Td1)2(Td2)2] + E
z′

[(Td1)2(Te2)2] + E
z′

[(Td2)2(Te1)2] + E
z′

[(Te1)2(Tde)
2].

We use induction on each of the four terms above and deduce

`4 E
z

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

≤ E
z′

[d1(z′)2]E
z′

[d2(z′)2] + E
z′

[d1(z′)2]E
z′

[e2(z′)2]

+ E
z′

[d2(z′)2]E
z′

[e1(z′)2] + E
z′

[e1(z′)2]E
z′

[e2(z′)2]

= E
z′

[d1(z′)2 + e1(z′)2] · E
z′

[d1(z′)2 + e1(z′)2]

But it is easily verified that Ez[fj(z)2] = Ez′ [dj(z
′)2 +ej(z

′)2], completing the induction.

From this we can deduce Theorem 8.4.3 with the more general class of random vari-
ables.

3When z′ is a discrete random vector this is obvious. In the general case, note that the coefficients of
the polynomial in question are finite mixed moments of z′. By Carathéodory’s convex hull theorem we can
match any finite number of moments of z′ using some discrete random vector z′′, thereby reducing SOS-
verification to the discrete case. We will use this observation in the sequel without additional comment.

159

Corollary 8.4.5. Theorem 8.4.3 also holds with the more general type of random vector z
from Theorem 8.4.4 in place of x ∼ {−1, 1}n.

Proof. Begin by defining

ĝj(S) =

{
0 if |S| > kj ,√

3
|S|
f̂j(S) if |S| ≤ kj

for j = 1, 2, and then applying Theorem 8.4.4 to g1, g2. This yields

`4 E
z

[f1(z)2f2(z)2] ≤ E
z

[T√3f1(z)2] · E
z

[T√3f2(z)2].

By a standard computation we have

E
z

[T√3fj(z)2] =

kj∑
i=0

3i ·W=i
j , where W=i

j =
∑
|S|=i

f̂j(S)2, j = 1, 2.

We also have Ez[fj(z)2] =
∑kj

i=0 W
=i
j . Thus to complete the proof it remains to show

`4

(k1∑
i=0

3i ·W=i
1

)(k2∑
i′=0

3i
′ ·W=i′

2

)
≤
(k1∑
i=0

3k1 ·W=i
1

)(k2∑
i′=0

3k2 ·W=i′

2

)
.

But after distributing out both products, this is immediate from

`4 3i+i
′ ·W=i

1 ·W=i′

2 ≤ 3k1+k2 ·W=i
1 ·W=i′

2

for each 0 ≤ i ≤ k1, 0 ≤ i′ ≤ k2.

We would also like to have an SOS proof of Theorem 8.4.2 for even integers q > 4.
We content ourselves with the following slightly weaker result, the proof of which follows
easily from Corollary 8.4.5:

Theorem 8.4.6. (SOS proof of a weakened version of the two-function, even integer q case
of Theorem 8.4.6.)

Let n, r, k1, k2, . . . , k2r ∈ N. For each j ∈ [2r] and each S ⊆ [n] of cardinality at
most kj , introduce an indeterminate f̂j(S). Let f1(z), . . . , f2r(z) and random vector z be
as in Theorem 8.4.4. Then

`2r+1 E
z

[
2r∏
j=1

fj(z)2

]
≤ 3r(k1+···+k2r) ·

2r∏
j=1

E
z

[fj(z)2].

160

Proof. The proof is by induction on r. The r = 0 case is trivial. For r ≥ 1, define

F1(z) =
2r−1∏
j=1

fj(z), F2(z) =
2r∏

j=2r−1+1

fj(z).

Note these are degree-2r−1 in the indeterminates. Further, one may express

F1(z) =
∑
T⊆[n]

|T |≤k1+···+k2r−1

f̂(T)
∏
i∈T

zi,

where f̂(T) denotes a degree-2r−1 polynomial in the indeterminates, and similarly for F2.
Thus we may apply Corollary 8.4.5 to F1 and F2 and deduce

`2r+1 E
z

[
2r∏
j=1

fj(z)2

]
≤ 3k1+···+k2r · E

z

[
2r−1∏
j=1

fj(z)2

]
· E
z

 2r∏
j=2r−1+1

fj(z)2

 . (8.10)

By induction we have

`2r E
z

[
2r−1∏
j=1

fj(z)2

]
≤ 3(r−1)(k1+···+k2r−1) ·

2r−1∏
j=1

E
z

[fj(z)2],

`2r E
z

 2r∏
j=2r−1+1

fj(z)2

 ≤ 3(r−1)(k2r−1+1+···+k2r) ·
2r∏

j=2r−1+1

E
z

[fj(z)2],

and all four expressions above are SOS of degree 2r. Combining these via Fact 8.3.8 yields

`2r+1 E
z

[
2r−1∏
j=1

fj(x)2

]
· E
z

 2r∏
j=2r−1+1

fj(x)2


≤ 3(r−1)(k1+···+k2r) ·

2r−1∏
j=1

E
z

[fj(z)2] ·
2r∏

j=2r−1+1

E
z

[fj(z)2],

which taken together with (8.10) completes the induction.

Corollary 8.4.7. (SOS proof of a weakened version of the even integer q case of Theo-
rem 8.4.6.)

161

Let n, k ∈ N. For each S ⊆ [n] of cardinality at most k, introduce an indeterminate
f̂(S). Let f(z) and random vector z be as in Theorem 8.4.4. Then for any even integer
q ≥ 2,

`2dlog2 qe E
z

[f(z)q] ≤
√

3
(qdlog2 qe−q)k · E

z
[fj(z)2]q/2.

Proof. Take r = dlog2 qe − 1, f1 = · · · = fq/2 = f , fq/2+1 = · · · = f2r = 1 in
Theorem 8.4.6.

162

Chapter 9

Analysis of the UNIQUEGAMES instances

In this section we prove the following theorem.

Theorem 9.0.8. Let G be an n-variable UNIQUEGAMES instance with label-size q of the
type considered in [192, 154, 142] obtained by composing the “quotient noisy cube” in-
stance of [144] with the long-code alphabet reduction of [141] so that the best assignment
to G’s variables satisfies at most an ε fraction of the constraints. When ε is sufficiently
small and n is sufficiently large, there is a degree-8 SOS refutation for the statement that
the best assignment to G’s variables satisfy at least 1/100 fraction of the constraints.

The more formal version of Theorem 9.0.8 is Theorem 9.4.1 later in this section. Now
we give an overview of the proof.

The proof is very technical, as it is obtained by taking the already rather technical
proofs of soundness for these instances, and “lifting” each step into the SOS hierarchy, a
procedure that causes additional difficulties. The high level structure of all integrality gap
instances constructed in the literature was the following: start with a basic integrality gap
instance of UNIQUEGAMES where the Basic SDP outputs 1−o(1) but the true optimum is
o(1), the alphabet size of G is (necessarily) N = ω(1). Then, apply an alphabet-reduction
gadget (such as the long code, or in the recent work [35] the so called “short code”) to
transform G into an instance G with some constant alphabet size q. The soundness proof
of the gadget guarantees that the true optimum ofG is small, while the analysis of previous
works managed to “lift” the completeness proofs, and argue that the instance G survives a
number of rounds that tends to infinity as ε tends to zero, where (1−ε) is the completeness
value in the gap constructions, and exact tradeoff between number of rounds and ε depends
on the paper and hierarchy.

The fact that the basic instance G has small integral value can be shown by appealing to

163

hypercontractivity of low-degree polynomials, and hence can be “lifted” to the SOS world
using tools developed in Section 8.4. This part of the proof is presented in Section 9.3.
The bulk of the remaining technical work is in lifting the soundness proof of the gadget.
On a high level this proof involves the following components: (1) The invariance principle
of [174], saying that low influence functions cannot distinguish between the cube and the
sphere (related proofs presented in Section 9.1); this allows us to argue that functions that
perform well on the gadget must have an influential variable (related proofs presented in
Section 9.2), and (2) the influence decoding procedure of [141] that maps these influential
functions on each local gadget into a good global assignment for the original instance G
(related proofs presented in Section 9.4).

The invariance principle poses a special challenge, since the proof of [174] uses so
called “bump” functions which are not at all low-degree polynomials.1 We use a weaker
invariance principle, only showing that the 4 norm of a low influence function remains
the same between two probability spaces that agree on the first 2 moments. Unlike the
usual invariance principle, we do not move between Bernoulli variables and Gaussian
space, but rather between two different distributions on the discrete cube. It turns out that
for the purposes of these UNIQUEGAMES integrality gaps, the above suffices. The lifted
invariance principle is proven via a “hybrid” argument similar to the argument of [174],
where hypercontractivity of low-degree polynomials again plays an important role.

The soundness analysis of [141] is obtained by replacing each local function with an
average over its neighbors, and then choosing a random influential coordinate from the
new local function as an assignment for the original UNIQUEGAMES instance. We follow
the same approach. It turns out that by making appropriate modification to the analysis, it
can be lifted to complete the proof of the theorem.

9.1 An invariance principle for the fourth moment

In this section, we will be interested in f(x) that is a multilinear polynomial over the
doubly-indexed set of indeterminates {xi,j}i∈[N],j∈N with degree at most `, i.e., f(x) can
be written in the form of

f(x) =
∑

α∈NN ,|α|≤`

f̂(α)xα,

where xα =
∏N

i=1 xi,αi , and |α|, the degree of α, is defined to be |{i ∈ [N] : αi > 0}|.
1A similar, though not identical, challenge arises in [35] where they need to extend the invariance prin-

ciple to the “short code” setting. However, their solution does not seem to apply in our case, and we use a
different approach.

164

We will use the following definition introduced in [174].

Definition 9.1.1 (Definition 3.1 from [174]). We call a collection of finitely many or-
thonormal random variables, one of which is the constant 1, an orthonormal ensemble.
We will write a typical sequence of n orthonormal ensembles as X = (X 1,X 2, . . . ,XN),
where X i = {Xi,0 = 1,Xi1 , . . . ,Xi,mi}. We call a sequence of orthonormal ensembles
X independent if the ensembles are independent families of random variables.

In this section, we are only interested in independent sequences of orthonormal ensem-
bles, and we will call these sequences of ensembles for brevity.

Let q = 2t for some t ∈ N. Let zi be a random variable uniformly distributed over
{±1}t, and let z = (z1, z2, . . . ,zN) be the random variable uniformly distributed over
{±1}Nt.

Let X = (X 1,X 2, . . . ,XN) be a sequence of ensembles such that X i = {Xi,0,Xi1 , . . . ,Xi,q−1}
andXi,j = χj(zi), where {χ0 ≡ 1, χ1, . . . , χq−1} is the set of characters for {±1}t.

Let Y = (Y1,Y2, . . . ,YN) be a sequence of ensembles such that Y i = {Yi,0,Yi,1, . . . ,Yi,q−1}
where Yi,0 ≡ 1 and Yi,j is an independent uniform sample from {±1} for j > 0.

Now we are ready to state our invariance principle for the fourth moment of f .

Theorem 9.1.2. Let f̂(α) be the indeterminates. Define Inf i(f) =
∑

α:αi>0 f̂(α)2. For
every constant β > 0, we have{∑

α

f̂(α)2 ≤ 1

}
`4 E f(X)4 ≤ E f(Y)4 + β · q5` +

(
1 +

1

β

)∑
i∈[N]

Inf i(f)2.

Proof. Let Z(i) = (X 1, . . . ,X i,Y i+1, . . . ,YN) for i = 0, 1, 2, . . . , N . Also for each
i = 1, 2, . . . , N , let

Eif(x) =
∑
α:αi=0

f̂(α)xα,

and
Dif(x) =

∑
α:αi>0

f̂(α)xα.

For all i = 1, 2, . . . , N , we have the following polynomial identities,

E f(Z(i))4 − E f(Z(i−1))4

=E
[
Eif(Z(i)) + Dif(Z(i))

]4

− E
[
Eif(Z(i−1)) + Dif(Z(i−1))

]4

165

=E
[
Eif(Z(i))Dif(Z(i))3 + Dif(Z(i))4

]
− E

[
Eif(Z(i−1))Dif(Z(i−1))3 + Dif(Z(i−1))4

]
,

where in the second identity we use the fact that the first two moments of Xi and Yi match.

Now, for every constant β > 0, we use Fact 8.3.10 and the simple fact that `4

−EDif(Z(i−1))4 ≤ 0, and get

`4 E f(Z(i))4 − E f(Z(i−1))4

≤ E

[
β

2
Eif(Z(i))2Dif(Z(i))2 +

(
1 +

1

2β

)
Dif(Z(i))4

]
+ E

[
β

2
Eif(Z(i−1))2Dif(Z(i−1))2 +

1

2β
Dif(Z(i−1))4

]
. (9.1)

We view Eif(Z(i)) as a multilinear polynomial over {±1} inputs with degree at most
t`, and view Dif(Z(i)) as a multilinear polynomial over the same set of inputs with degree
at most t`. Therefore, by hypercontractivity inequality (Theorem 8.4.3), we have

`4 EEif(Z(i))2Dif(Z(i))2 ≤ 9t`
(
EEif(Z(i))2

)(
EDif(Z(i))2

)
= 9t`

(
EEif(X)2

) (
EDif(X)2

)
= 9t`

(
EEif(X)2

)
Inf i(f), (9.2)

where the first equality is because the first two moments of Z(i) match those of X , and
the second one is by the definition of Inf i(f). Similarly, we have

`4 EEif(Z(i−1))2Dif(Z(i−1))2 ≤ 9t`
(
EEif(Z(i−1))2

)(
EDif(Z(i−1))2

)
= 9t`

(
EEif(X)2

) (
EDif(X)2

)
= 9t`

(
EEif(X)2

)
Inf i(f). (9.3)

We also view Dif(Z(i))4 as a multilinear polynomial over {±1} inputs with degree at
most t`. Using Theorem 8.4.3, we get

`4 EDif(Z(i))4 ≤ 9t`
(
EDif(Z(i))2

)2

=
(
EDif(X)2

)2
= (Inf i(f))2 . (9.4)

Again, the first equality is because the first two moments of Z(i) match those of X , while
the second equality is by the definition of Inf i(f). Similarly, we have

`4 EDif(Z(i−1))4 ≤ 9t`
(
EDif(Z(i−1))2

)2

=
(
EDif(X)2

)2
= (Inf i(f))2 . (9.5)

166

Now we incorporate (9.2), (9.3), (9.4), and (9.5) into (9.1), and get

`4 E f(Z(i))4 − E f(Z(i−1))4 ≤ β · 9t`
(
EEif(X)2

)
Inf i(f) +

(
1 +

1

β

)
(Inf i(f))2 .

Therefore, for every constant β,> 0,{∑
α

f̂(α)2 ≤ 1

}
`4 E f(Z(i))4 − E f(Z(i−1))4 ≤ β · 9t` · Inf i(f) +

(
1 +

1

β

)
(Inf i(f))2 .

(9.6)

Now we sum up (9.6) over all i = 1, 2, . . . , N , and get{∑
α

f̂(α)2 ≤ 1

}
`4 E f(X)4−E f(Y)4 ≤ β·9t`·

∑
i∈[N]

Inf i(f)+

(
1 +

1

β

)∑
i∈[N]

(Inf i(f))2

≤ β` · 9t` +

(
1 +

1

β

)∑
i∈[N]

(Inf i(f))2 ≤ β · q5` +

(
1 +

1

β

)∑
i∈[N]

(Inf i(f))2 .

The following corollary will be useful.

Corollary 9.1.3. Let f̂(α) be the indeterminates. Define Inf i(f) =
∑

α:αi>0 f̂(α)2. For
every constant β > 0, we have{∑

α

f̂(α)2 ≤ 1

}
`4 E f(X)4 ≤ 9`

(
E f(X)2

)2
+ β · q5` +

(
1 +

1

β

)∑
i∈[N]

Inf i(f)2.

Proof. Since f(Y) is a multilinear polynomial over {±1} inputs with degree at most `, by
hypercontractivity inequality (Theorem 8.4.3), we have

`4 E f(Y)4 ≤ 9`
(
E f(Y)2

)2
.

We apply this together with the polynomial identity (E f(Y)2)
2

= (E f(X)2)
2 (since the

first two moments of X and Y match) to Theorem 9.1.2, and get the desired conclusion.

167

9.2 Analysis of the dictatorship test gadget for UNIQUEGAMES

in the SOS proof system

In this section, we are going to prove the following theorem (Theorem 9.2.1) in the SOS
proof system. The theorem can be viewed as an analog of the “Majority Is Stablest”
theorem in [174], and serves the same purpose – to show that any function with no
influential coordinates succeeds with very small probability in the dictatorship test for
UNIQUEGAMES.

Let q = tt for some t ∈ N throughout this section.

Theorem 9.2.1. Let the entries in f(x) where x ∈ ZNq be indeterminates. Let Tρ be the
operator on f : ZNq → R such that Tρf(x) = Ey∼ρx f(y), where y ∼ρ x means each yi
independently takes the value xi with probability ρ, and takes a uniform random value in
Zq with probability (1− ρ). Define 〈f,Tρf〉 = Ex∈FNq f(x)Tρf(x).

For all constants δ, γ ∈ [0, 1] and β > 0, we have{
f(x)2 ≤ f(x) : ∀x,E f ≤ δ

}
`4

〈f,T1−γf〉 ≤ δ1+.01γ + δ1.1 +
1

4δ.3

β · q.1 log 1
δ +

(
1 +

1

β

)∑
i∈[N]

Inf
≤.02 log 1

δ
i (f)2

 .

Proof. For every constant λ : 0 < λ < 1, let P>λ be the operator so that P>λf is the
projection of f on to the eigenspace of T1−γ with eigenvalue greater than λ. The following
SOS statement is easy to deduce.

`2 〈f,T1−γf〉 ≤ 〈f,P>λf〉+ λE f
2. (9.7)

On the other hand, by Fact 8.3.13, we know that for every constant ε > 0, we have{
f(x)2 ≤ f(x) : ∀x

}
`4 〈f,P>λf〉 ≤

3ε

4
E f +

1

4ε3
E (P>λf)4 . (9.8)

Observe that both f and P>λf can be written in the multilinear forms of

f(x) =
∑
α∈NN

f̂(α)
n∏
i=1

χαi(xi)

P>λf(x) =
∑

α∈NN ,|α|≤ lnλ
ln(1−γ)

f̂(α)
n∏
i=1

χαi(xi),

168

where {χ0 ≡ 1, χ1, . . . , χq−1} is the set of characters for {±1}t. Also, f̂(α) can be written
as linear combinations of the indeterminates f(x); and {f(x)2 ≤ f(x) : ∀x,E f ≤ δ} `2

E f 2 ≤ 1 (when δ ≤ 1), and {E f 2 ≤ 1} `2

∑
α P̂>λf(α)2 ≤ 1. Therefore, let

`
def
=

2

γ
log

1

λ

which upper bounds the degree of P>λf , by Corollary 9.1.3, for every constant β > 0,{
f(x)2 ≤ f(x) : ∀x,E f ≤ δ

}
`4 9`

(
E (P>λf)2)2

+ β · q5` +

(
1 +

1

β

)∑
i∈[N]

Inf≤`i (f)2,

(9.9)

where Inf≤`i (f) =
∑

α,|α|≤` f̂(α)2 is the low-degree influence of f . Since

`4

(
E (P>λf)2)2 ≤

(
E f

2
)2
,

and {
f(x)2 ≤ f(x) : ∀x

}
`2 E f

2 ≤ E f, (9.10)

together with (9.8) and (9.9), we get for all constants ε, β > 0,{
f(x)2 ≤ f(x) : ∀x,E f ≤ δ

}
`4

〈f,P>λf〉 ≤
3ε

4
E f +

9`

4ε3
(E f)2 +

β · q5`

4ε3
+

1

4ε3

(
1 +

1

β

)∑
i∈[N]

Inf≤`i (f)2

≤ 3εδ

4
+

9`δ2

4ε3
+
β · q5`

4ε3
+

1

4ε3

(
1 +

1

β

)∑
i∈[N]

Inf≤`i (f)2. (9.11)

We combine (9.11), (9.10), and (9.7), and get{
f(x)2 ≤ f(x) : ∀x,E f ≤ δ

}
`4

〈f,T1−γf〉 ≤ λδ +
3εδ

4
+

9`δ2

4ε3
+
β · q5`

4ε3
+

1

4ε3

(
1 +

1

β

)∑
i∈[N]

Inf≤`i (f)2. (9.12)

Now we set λ = δ.01γ (and therefore ` = .02 log 1
δ
), and ε = δ.1. We have 3εδ

4
+ 9`δ2

4ε3
≤

δ1.1. Therefore, (9.12) implies

169

{
f(x)2 ≤ f(x) : ∀x,E f ≤ δ

}
`4

〈f,T1−γf〉 ≤ δ1+.01γ + δ1.1 +
1

4δ.3

β · q.1 log 1
δ +

(
1 +

1

β

)∑
i∈[N]

Inf
≤.02 log 1

δ
i (f)2


for every constant β > 0.

9.3 The KV UNIQUEGAMES instance and its SOS analysis

Let us recall the UNIQUEGAMES problem with label-size N ∈ N+. Given is a regu-
lar weighted graph G = (V , E) (self-loops allowed) with weights summing to 1. Also,
given for each edge (u, v) is a permutation πuv : [N] → [N]. We write (u,v,π) ∼ E
to denote that edge (u,v) with pumutation π = πuv is chosen with probability equal
to its edge weight. The goal is to give a labeling F : V → [N] so as to maximize
Pr(u,v,π)∼E [π(F (u)) = F (v)]. The natural polynomial optimization formulation has an
indeterminate Xu,i for each u ∈ V , i ∈ [k]:

max E
(u,v,π)∼E

[N∑
i=1

Xu,iXv,π(i)

]
= E
u∈V

[N∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]

s.t. X2
u,i = Xu,i ∀u ∈ V , i ∈ [N]

N∑
i=1

Xu,i = 1 ∀u ∈ V ,

where we write (v,π) ∼ u in place of (u,v,π) ∼ E|u=u for brevity. Thus the degree-d
SOS SDP hierarchy will use binary search to compute the smallest β for which

{X2
u,i = Xu,i : ∀u ∈ V , i ∈ [N]} ∪ {

N∑
i=1

Xu,i = 1 : ∀u ∈ V}

∪
{

E
u∈V

[N∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≥ β

}
`d −1 ≥ 0. (9.13)

The Khot–Vishnoi UNIQUEGAMES instance is defined as follows. Fix k ∈ N. Let
F = {{±1}k → {±1}} be the family of Boolean functions on {±1}k. Consider the
following equivalence relation ≡ on F . For any two Boolean functions f, g ∈ F , we say
f ≡ g if and only if there is an S ⊆ [k] such that f = gχS where χS(i) =

∏
i∈S xi. Now

this relation partitions F into equivalence classes P1,P2, . . . ,Pm. We denote by [Pi] an

170

arbitrary representative in Pi. For each f ∈ F , let P(f) be the Pi which contains f . Now
we are ready to describe the UNIQUEGAMES instance G = (V , E) with parameter η > 0.
The vertex set V is simply the set of equivalence classes. The label set is [N]. For each
vertex Pi, we decide an arbitrary one-to-one correspondence between the elements in Pi
and [N] so that the permutations π can be described as mappings between the elements in
Pi and Pj . We define the edge set together with the weight distribution (Pi,Pj ,π) ∼ E
as follows,

• choose f as an uniform random function in F , and let Pi = P(f);

• choose g ∼1−η f , i.e. we obtain g by flipping each entry of f independently with
probability 2η. Let Pj = P(g);

• finally, since Pi = {fχS : ∀S ⊆ [k]} and Pj = {gχS : ∀S ⊆ [k]}, we define
π : Pi → Pj as π(fχS) = gχS for every S ⊆ [k].

We are going to show degree-4 SOS proofs to the statement that the UNIQUEGAMES

instance G defined as above does not have great solution. In fact we are going to show
something stronger than (9.13), in the sense that we only assumeX2

u,i ≤ Xui and Eu∈V Ei∈[N] Xu,i ≤
1/N , and we will give an SOS proof instead of an SOS refutation. We prove

Theorem 9.3.1. Given G = (V , E) as the instance described above, for every constant
δ ∈ (0, 1), we have

{X2
u,i ≤ Xu,i : ∀u ∈ V , i ∈ [N]} ∪ { E

u∈V
E
i∈[N]

Xu,i ≤ δ} `4

E
u∈V

[N∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≤ N · δ1+Ω(η).

Therefore, when δ = 1/N , we have

{X2
u,i ≤ Xu,i : ∀u ∈ V , i ∈ [N]} ∪ { E

u∈V
E
i∈[N]

Xu,i ≤ 1
N
} `4

E
u∈V

[N∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≤ N−Ω(η).

Proof. We first perform some notational manipulations in order to make the representation
easier. Observe that each pair (u, i) ∈ V × [N] is uniquely mapped to a function f ∈ F .
Therefore, we will talk about X(f) : f ∈ F instead of Xu,i : (u, i) ∈ V × [N]. Given

171

u ∈ V and i ∈ [N] (therefore f ∈ F), let g ∈ F be the function corresponding to (v,π(i))
where (v,π) ∼ u. Observe that g in fact follows the distribution g ∼1−η f , and therefore

E
u∈V

[
N∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]

]
= N E

f∈F ,g∼1−ηf
X(f)X(g) (9.14)

if we assign X(f) according to Xu,i.

Therefore, to prove the theorem, it suffices to show that

{X(f)2 ≤ X(f) : ∀f ∈ F} ∪ { E
f∈F

X(f) ≤ δ} `4 〈X,T1−ηX〉 ≤ δ1+Ω(η). (9.15)

where T1−η is the operator so that T1−ηX(f) = Eg∼1−ηf X(g) and we define 〈X,T1−ηX〉 =

Ef∈F X(f)T1−ηX(f).

The rest of the proof is to prove (9.15). For every d ∈ N, it is easy to show that

`2 〈X,T1−ηX〉 ≤ 〈X,P≥(1−η)dX〉+ (1− η)d E
f∈F

X(f)2, (9.16)

where P≥(1−η)d is the operator so that P≥(1−η)dX is the projection of X on to the span of
the characters χS where |S| ≤ d. Now we apply Fact 8.3.13 to (9.16), and have that for
every constant ε > 0, we have

`4 〈X,T1−ηX〉 ≤
3ε

4
E
f∈F

X(f) +
1

4ε3
E
f∈F

(P≥(1−η)dX(f))4 + (1− η)d E
f∈F

X(f)2.

(9.17)

Observe that P≥(1−η)dX(f) is a multilinear polynomial of f(x) with degree at most d.
Therefore, by hypercontractivity inequality (Theorem 8.4.3) we have

`4 〈X,T1−ηX〉 ≤
3ε

4
E
f∈F

X(f) +
9d

4ε3

(
E
f∈F

(P≥(1−η)dX(f))2

)2

+ (1− η)d E
f∈F

X(f)2.

(9.18)

With some simple SOS facts, (9.18) implies

{X(f)2 ≤ X(f) : ∀f ∈ F} ∪ { E
f∈F

X(f) ≤ δ} `4

〈X,T1−ηX〉 ≤ δ

(
3ε

4
+ (1− η)d

)
+

9dδ2

4ε3

for every ε > 0 and d ∈ N.

We choose d =
⌈

ln(1/δ)
ln 81

⌉
and ε = N−.1 to establish (9.15).

172

Corollary 9.3.2. Given G = (V , E) as the instance in Theorem 9.3.1, for every constant
δ ∈ (0, 1), we have

{X2
u,i ≤ Xu,i : ∀u ∈ V , i ∈ [N]} ∪ { E

u∈V
E

i∈[N]
Xu,i ≤ δ} `4

E
u∈V

[
N∑
i=1

(
E

(v,π)∼u
[Xv,π(i)]

)2
]
≤ N · δ1+Ω(η).

Proof. The proof of this corollary is almost the same as that of Theorem 9.3.1. The only
difference is that in (9.14), instead we observe that

E
u∈V

[
N∑
i=1

(
E

(v,π)∼u
[Xv,π(i)]

)2
]

= N E
f∈F

(
E

g∼1−ηf
X(g)

)2

,

and in (9.15), we turn to prove

{X(f)2 ≤ X(f) : ∀f ∈ F} ∪ { E
f∈F

X(f) ≤ 1
N
} `4

〈T1−ηX,T1−ηX〉 = 〈X,T(1−η)2X〉 ≤ δ1+Ω(η).

instead.

In the rest of the proof, we use (1− η)2 whenever (1− η) occurs, and reach the same
conclusion.

9.4 Influence decoding and putting everything together

Now let us recall that the UNIQUEGAMES instances we are interested in Theorem 9.0.8
are obtained by composing the KKMO “noise stability” reduction from [141] with the KV
integrality gap instances analyzed in the previous section. Let us fix an UNIQUEGAMES

instance G = (V , E) with label-size N (in this section, we are interested in the KV inte-
grality gap instance presented in the previous section with parameter η). The KKMO re-
duction, parameterized by γ ∈ [0, 1], creates a new UNIQUEGAMES instance G = (V,E)
with label-size q. In the vertex set V , there is a vertex wu,x for each u ∈ V and each
x ∈ ZNq . For each c ∈ Zq, let σc(x) = x+ c. The probability distribution E on edges and
permutations is given as follows.

173

• draw u ∈ V uniformly;

• independently draw (u,v1,π1) and (u,v2,π2) from the marginal of E which is first
vertex u;

• draw x ∈ ZNq uniformly;

• draw y ∼1−γ x, i.e. each yi independently becomes xi with probability 1 − γ and
a uniform random element from Zq with probability γ;

• pick a random element c ∈ Zq;

• output the edge (wu1,x◦π1 , wu2,(y−c)◦π2) together with σc as the permutation.

Here x ◦ π is defined to be the string in ZNq such that (x ◦ π)i = xπ(i) for all i ∈ [N]; and
y − c is the string in ZNq such that (y − c)i = yi − c for all i ∈ [N].

In this section we will prove the following theorem using the tools developed in the
previous sections. The theorem directly implies Theorem 9.0.8 (when q is sufficiently
large and logN � (log q)2/η).

Theorem 9.4.1. For each u ∈ V , x ∈ ZNq , a ∈ Zq, let f (a)
u (x) be the indeterminate which

is intended to be the indicate variable for the event that wu,x takes the label a. Let

A =
{
f (a)
u (x)2 = f (a)

u (x) : ∀u ∈ V , x ∈ ZNq , a ∈ Zq
}
∪

∑
a∈Zq

f (a)
u (x) = 1 : ∀u ∈ V , x ∈ ZNq

 .

We have

A `8 val(f)
def
= E

u∈V
E

(v1,π1)∼u
(v2,π2)∼u

E
x∈ZNq
y∼1−γx

E
c∈Zq

∑
a∈Zq

f (a)
v1

(x ◦ π1)f (a+c)
v2

((y − c) ◦ π2)

≤ q−Ω(γ) + qO(log q)N−Ω(η).

Proof. For each u ∈ V , x ∈ ZNq , a ∈ Zq, let f̃ (a)
u (x) = Ec∈Zq f

(a+c)
u (x− c); let h(a)

u (x) =

E(v,π)∼u f̃
(a)
v (x ◦ π−1). Let T1−γ be the operator such that T1−γh(x) = Ey∼1−γx h(y)

when h is a function defined over ZNq . The following polynomial identity is easy to verify.

val(f) =
∑
a∈Zq

E
u∈V
〈h(a)
u ,T1−γh

(a)
u 〉.

174

Therefore, to prove the theorem, we only need to show that for every a ∈ Zq,

A `4 E
u∈V
〈h(a)
u ,T1−γh

(a)
u 〉 ≤ q−1−Ω(γ) + qO(log q)N−Ω(η). (9.19)

Now fix an arbitrary a ∈ Zq, by the definition of h (and using Fact 8.3.15) we have

∀u ∈ V , x ∈ Znq , A `2 h
(a)
u (x)2 ≤ h(a)

u (x), (9.20)

and

∀u ∈ V , A `2 E
x∈Znq

h(a)
u (x) =

1

q
. (9.21)

Therefore, by Theorem 9.2.1, for every u ∈ V and every constant β > 0, we have 2

A `4 〈h(a)
u ,T1−γh

(a)
u 〉 ≤

1

q1+Ω(γ)
+

1

4q.3

β · q.1 log q +

(
1 +

1

β

)∑
i∈[N]

Inf≤.02 log q
i (h(a)

u)2

 .

(9.22)

Therefore, for every constant β > 0,

A `4 E
u∈V
〈h(a)
u ,T1−γh

(a)
u 〉

≤ 1

q1+Ω(γ)
+

1

4q.3

β · q.1 log q +

(
1 +

1

β

)
E
u∈V

∑
i∈[N]

Inf≤.02 log q
i (h(a)

u)2

 . (9.23)

Since (for every ` ∈ N)

Inf≤`i (h(a)
u) =

∑
α:|α|≤`,αi>0

ĥ
(a)
u (α)2 =

∑
α:|α|≤`,αi>0

(
E

(v,π)∼u

̂̃
f

(a)
v (α ◦ π)

)2

,

by Fact 8.3.15, we have

`2 Inf
≤`
i (h(a)

u) ≤
∑

α:|α|≤`,αi>0

E
(v,π)∼u

̂̃
f

(a)
v (α ◦ π)2 = E

(v,π)∼u
Inf≤`π(i)(f̃

(a)
v). (9.24)

2This would require degree 6 if we apply Fact 8.2.3 directly. However, if carefully examining the details,
one can see that degree-4 SOS proof suffices.

175

Therefore,

`4 E
u∈V

∑
i∈[N]

Inf≤.02 log q
i (h(a)

u)2 ≤
∑
i∈[N]

E
u∈V

(
E

(v,π)∼u
Inf≤.02 log q

π(i) (f̃ (a)
v)

)2

(9.25)

On the other hand, for every i ∈ [N], v ∈ V , we have the following proof (whose proof
will be deferred to the end of this section).

Claim 9.4.2. A `4 Inf
≤.02 log q
i (f̃ (a)

v)2 ≤ Inf≤.02 log q
i (f̃ (a)

v) .

Since

E
v∈V

E
i∈[N]

Inf≤.02 log q
i f̃ (a)

v =
1

N
E
v∈V

∑
α:|α|≤.02 log q

|α|̂̃f (a)
v (α)2,

We also have

`2 E
v∈V

E
i∈[N]

Inf≤.02 log q
i f̃ (a)

v ≤
.02 log q

N
E
v∈V

E
x
f̃ (a)
v (x)2. (9.26)

It’s easy to deduce that `2 f̃
(a)
v (x)2 ≤ f̃

(a)
v (x) (for all v ∈ V , x ∈ ZNq). Therefore, (9.26)

implies

`2 E
v∈V

E
i∈[N]

Inf≤.02 log q
i f̃ (a)

v ≤
.02 log q

N
E
v∈V

E
x
f̃ (a)
v (x) =

.02 log q

N
E
v∈V

E
x
E
a
f (a)
v (x).

(9.27)

Therefore,

A `2 E
v∈V

E
i∈[N]

Inf≤.02 log q
i f̃ (a)

v ≤
.02 log q

Nq
. (9.28)

Claim 9.4.2, (9.28), Corollary 9.3.2, and Fact 8.2.3 imply

A `8

∑
i∈[N]

E
u∈V

(
E

(v,π)∼u
Inf≤.02 log q

π(i) (f̃ (a)
v)

)2

≤ N

(
.02 log q

Nq

)1+Ω(η)

≤ log q

NΩ(η)q
. (9.29)

Now, we put (9.23), (9.25), and (9.29) together, and get (for every β > 0)

A `8 E
u∈V
〈h(a)
u ,T1−γh

(a)
u 〉 ≤

1

q1+Ω(γ)
+

1

4q.3

(
β · q.1 log q +

(
1 +

1

β

)
· log q

NΩ(η)q

)
. (9.30)

We establish (9.19) by choosing β = N c·η where c > 0 is a constant depending on the
coefficient hidden in the Ω(η) notation in (9.30).

176

9.4.1 Proof of Claim 9.4.2

It remains to prove Claim 9.4.2.

Proof of Claim 9.4.2. By fact Fact 8.3.5, we know that

A `2 f
(c)
u (x) ≤ 1,

and hence
A `2 f

(c)
u (x)2 ≤ 1,

for all u ∈ V , x ∈ ZNq , c ∈ Zq. Therefore, by Fact 8.3.15, we have

A `2 f̃
(a)
v (x)2 ≤ 1 (9.31)

for all x ∈ ZNq .

Since Inf≤.02 log q
i (f̃

(a)
v) =

∑
α:αi>0,|α|≤.02 log q

̂̃
f

(a)
v (α)2, we have

A `2 Inf
≤.02 log q
i (f̃ (a)

v) ≤
∑
α

̂̃
f

(a)
v (α)2 = E

x
f̃ (a)
v (x)2.

Together with (9.31), we have

A `2 Inf
≤.02 log q
i (f̃ (a)

v) ≤ 1. (9.32)

On the other hand, since Inf≤.02 log q
i (f̃

(a)
v) is a sum of squared linear forms, we can multi-

ply Inf≤.02 log q
i (f̃

(a)
v) on the both sides of (9.32), and get

A `4 Inf
≤.02 log q
i (f̃ (a)

v)2 ≤ Inf≤.02 log q
i (f̃ (a)

v),

which is the desired statement.

9.5 Refuting Instances based on Short Code

In this section, we consider the UNIQUEGAMES instances obtained by composing the KV
UNIQUEGAMES integrality gap instances with the “short code” gadget reduction con-
structed in [35].

The following analog of Theorem 9.0.8 holds.

177

Theorem 9.5.1. Let G be an n-variable UNIQUEGAMES instance with label-size q ob-
tained by composing the KV “quotient noisy cube” UNIQUEGAMES integrality gap in-
stances with the “short code” gadget reduction constructed in [35] so that the best as-
signment to G’s variables satisfies at most an ε fraction of the constraints. When ε is
sufficiently small and n is sufficiently large, there is a degree-8 SOS refutation for the
statement that the best assignment to G’s variables satisfy at least 1/100 fraction of the
constraints.

The proof of Theorem 9.5.1 is almost literally the same as the proof of Theorem 9.0.8.
In the following, we sketch the main arguments why the proof doesn’t have to change.
First, several of the results of the previous sections apply to general graphs and instances
of UNIQUEGAMES. In particular, the proofs in Section 9.3 does not need to change. The
proofs in 9.2 will still go through assuming the invariance principle result (in Section 9.1)
for the type of graphs we are interested in; and the proofs in Section 9.4 apply to gen-
eral gadget-composed instances of unique games assuming a “Majority Is Stablest” result
for the gadget. In fact, the only parts that require further justification are the invariance
principle (the proofs in Section 9.1) and hypercontractivity bound (Theorem 8.4.3). Both
the invariance principle and the hypercontractivity bound are about the fourth moment
of a low-degree Fourier polynomial (whose coefficients are fictitious random variables).
For the construction of [35], we need to argue about the fourth moment with respect to
a different distribution over inputs. (Instead of the uniform distribution, [35] considers a
distribution over inputs related to the Reed–Muller code.) However, this distribution hap-
pens to be k-wise independent for k/4 larger than the degree of our Fourier polynomial.
Hence, as a degree-4 polynomial in Fourier coefficients, the fourth moment with respect
to the [35]-input distribution is the same as with respect to the uniform distribution, which
considered here.

178

Chapter 10

SOS proofs of SSE in the Noisy
Hypercube, KKL, and the analysis of
the DKSV BALANCEDSEPARATOR

instances

In this chapter, we given an SOS proof for the KKL theorem, and use this to show that
degree-4 SOS proofs certify the lower bound for the optimal value of the DKSV BAL-
ANCEDSEPARATOR instances up to only a constant factor.

10.1 An SOS proof of small-set expansion in the noisy hy-
percube

The following well-known theorem concerning small-set expansion (SSE) in the hyper-
cube is due to Kahn, Kalai, and Linial [129]:

Noisy Hypercube SSE Theorem. Let f : {−1, 1}n → {−1, 0, 1}. Then for any 0 ≤ ρ ≤
1,

Stabρ[f] ≤ E[f 2]2/(1+ρ),

where Stabρ[f] denotes 〈f,Tρf〉 = ‖T√ρf‖2
2.

Proof.

Stabρ[f] = ‖T√ρf‖2
2 ≤ ‖f‖2

1+ρ = E[|f |1+ρ]2/(1+ρ) = E[f 2]2/(1+ρ),

179

where the inequality is hypercontractivity (the Hölder dual of Theorem 8.4.1).

We remark on two special cases:

Stab 1
3
[f] ≤ E[f 2]3/2, Stab 1√

3
[f] ≤ E[f 2]3−

√
3 ≤ E[f 2]1.2679.

We do not know how to obtain a low-degree SOS proof of either inequality. Nevertheless,
we come close in the following theorem. We remark that its proof is very similar to the
one in Section 9.3.

Theorem 10.1.1. (SOS proof of a weakened special case of the Noisy Hypercube SSE
Theorem.)

Let n ∈ N, and for each x ∈ {−1, 1}n let f(x) be an indeterminate. Then for any real
ε > 0,

{f(x) = f(x)3 : ∀x} `4 Stab 1√
3
[f] ≤ E

x
[f(x)2]

(
3ε
4

+ 1
4ε3 E[f(x)2]

)
.

Remark 10.1.1. From this we can deduce that if f : {−1, 1}n → {−1, 0, 1} is an ordinary
function then Stab 1√

3
[f] ≤ E[f(x)2]5/4, by taking ε = E[f(x)2]1/4.

Proof. From Fact 8.3.12 (and the trivial fact Y = Y 3 `4 Y p
2 = Y 4) we may easily deduce

Y = Y 3 `4 Y Z ≤ 3ε
4
Y 2 + 1

4ε3
Z4.

Since Stab 1√
3
[f] = Ex[f(x)T 1√

3
f(x)] we may therefore obtain

{f(x) = f(x)3 : ∀x} `4 Stab 1√
3
[f] ≤ 3ε

4 E
x

[f(x)2] + 1
4ε3 E

x
[T 1√

3
f(x)4].

The result now follows from Theorem 8.4.4.

10.2 The KKL Theorem

With the Noisy Hypercube SSE Theorem in hand, we can now give an SOS proof of the
famed KKL Theorem [129], the key ingredient in the analysis of the DKSV BALANCED-
SEPARATOR instances.

180

Theorem 10.2.1. (SOS proof of the KKL Theorem.)

Let n ∈ N, and for each x ∈ {−1, 1}n let f(x) be an indeterminate. Let τ be an
indeterminate. Then for any reals ε > 0, K ≥ 2,

{f(x)2 = 1 : ∀x}∪{Inf i[f] ≤ τ : ∀i ∈ [n]} `4 Var[f] ≤
(√

3
K−1

K

(
3ε
4

+ τ
4ε3

)
+ 1

K

)
I[f].

Remark 10.2.1. From this we can deduce that if f : {−1, 1}n → {−1, 1} is an ordinary
function and τ ≤ 1

9
is a positive real such that Inf i[f] ≤ τ for all i, then I[f] ≥ 1

2
log9(9

τ
) ·

Var[f]. This follows by taking ε = τ 1/4 and K = log9(9
τ
).

Proof. We may apply Theorem 10.1.1 to each of the derivative “functions”

Dif(x) =
f(x(i 7→1))− f(x(i 7→−1))

2
.

(These are actually sets of indeterminates, each of which is a homogeneous linear form
in the indeterminates f(x).) We can obtain the hypothesis Dif(x) = Dif(x)3 from the
hypotheses f(x)2 = 1 via Fact 8.3.6. We deduce

{f(x)2 = 1 : ∀x} `4 Stab 1√
3
[Dif] ≤ E

x
[Dif(x)2]

(
3ε
4

+ 1
4ε3 E[Dif(x)2]

)
⇔

∑
S3i

(1√
3
)|S|−1f̂(S)2 ≤ Inf i[f]

(
3ε
4

+ 1
4ε3

Inf i[f]
)

for each i ∈ [n]. Further, since Inf i[f] is SOS and of degree 2 we have

Inf i[f] ≤ τ `4 Inf i[f] · (τ
4ε3
− 1

4ε3
Inf i[f]) ≥ 0.

Adding the previous two deductions yields

{f(x)2 = 1 : ∀x}∪{Inf i[f] ≤ τ : ∀i ∈ [n]} `4

∑
S3i

(1√
3
)|S|−1f̂(S)2 ≤ Inf i[f]·

(
3ε
4

+ τ
4ε3

)
for each i. Now adding over all i ∈ [n] gives

{f(x)2 = 1 : ∀x} ∪ {Inf i[f] ≤ τ : ∀i ∈ [n]} `4

∑
S⊆[n]

|S|(1√
3
)|S|−1f̂(S)2 ≤

(
3ε
4

+ τ
4ε3

)
I[f].

Moreover, since s(1√
3
)s−1 ≥ K(1√

3
)K−1−s(1√

3
)K−1 holds for all s ∈ [n] (consider s ≤ K

and s ≥ K), it follows that

`2

∑
S⊆[n]

|S|(1√
3
)|S|−1f̂(S)2 ≥ K√

3
K−1 Var[f]− 1√

3
K−1 I[f].

181

By combining the previous two deductions and doing some rearranging, we obtain

{f(x)2 = 1 : ∀x}∪{Inf i[f] ≤ τ : ∀i ∈ [n]} `4 Var[f] ≤
(√

3
K−1

K

(
3ε
4

+ τ
4ε3

)
+ 1

K

)
I[f],

as claimed.

We can now easily deduce (an SOS proof of) the fact that if f : {−1, 1}n → {−1, 1}
has constant variance and all its influences equal then its total influence is Ω(log n). For
the application to BALANCEDSEPARATOR, we will in fact need a slightly more technical
statement:

Corollary 10.2.2. (SOS proof of KKL for equal-influence functions.)

Let n ≥ 81 be an integer and for each x ∈ {−1, 1}n let f(x) be an indeterminate.
Define

A = {f(x)2 = 1 : ∀x} ∪ {Inf i[f] ≤ τ : ∀i ∈ [n]}
∪ {Inf i[f] = Inf j[f] : ∀i, j ∈ [n]} ∪ {Var[f] ≥ 3

4
} ∪ {I[f] ≤ 1

20
lnn}.

Then A `4 −1 ≥ 0.

In fact, the result holds even if we change the equal-influences assumption {Inf i[f] =
Inf j[f] : ∀i, j ∈ [n]} to the weaker pair of assumptions {Inf i[f] = Inf j[f] : ∀i, j ≤ n/2}
and {Inf i′ [f] = Inf j′ [f] : ∀i′, j′ > n/2} (assume n even).

Proof. We will prove the “in fact” statement, assuming n is even. (The reader will see
why the original statement is also true when n is odd.) Define I(1)[f] =

∑
i≤n/2 Inf i[f]

and I(2)[f] =
∑

i>n/2 Inf i[f], so I[f] = I(1)[f] + I(2)[f]. Note that

{Inf i[f] = Inf j[f] : ∀i, j ≤ n/2} `2 Inf i[f] = 2
n
I(1)[f]

for each i ≤ n/2, and similarly for i > n/2. Since I(1)[f], I(2)[f] are themselves SOS and
of degree 2, we get

{Inf i[f] = Inf j[f] : ∀i, j ≤ n/2 & ∀i, j > n/2} `2 Inf i[f] ≤ 2
n
I(1)[f]+ 2

n
I(2)[f] = 2

n
I[f]

for each i ∈ [n]. (Note that with the basic equal-influences assumption we can obtain
the even stronger conclusion Inf i[f] = 1

n
I[f] for each i ∈ [n].) We can now employ

Theorem 10.2.1, replacing τ by 2
n
I[f]. Using also Var[f] ≥ 3

4
, we obtain that for any

reals ε > 0, K ≥ 2,

A \ {I[f] ≤ 1
20

lnn} `4
3
4
≤
(√

3
K−1

K

(
3ε
4

+ 1
2ε3n

I[f]
)

+ 1
K

)
I[f].

182

Select K = log9(9n1/2) and ε = n−1/8 to obtain

A \ {I[f] ≤ 1
20

lnn} `4
3
4
≤
(

n1/8

log9(9n1/2)

(
3
4
n−1/8 + 1

2
n−5/8I[f]

)
+ 1

log9(9n1/2)

)
I[f]

= 7
2 log9(81n)

I[f] + 1
n1/2 log9(81n)

I[f]2. (10.1)

We now employ I[f] ≤ 1
20

lnn. Since I[f] is SOS and of degree 2 we also have

I[f] ≤ 1
20

lnn `4 I[f]2 ≤ 1
400

ln2 n.

Substituting this into (10.1) yields

A `4
3
4
≤ 7

2 log9(81n)
· 1

20
lnn+ 1

n1/2 log9(81n)
· 1

400
ln2 n ≤ 7

20
ln(3) ≤ 0.4,

whence A `4 −1 ≥ 0.

10.3 Analysis of the DKSV BALANCEDSEPARATOR instances

We recall the BALANCEDSEPARATOR problem: Given is an undirected multigraph G =

(V,E). It is required to find a cut S ⊆ V with 1
3
≤ |S|
|V | ≤

2
3

so as to minimize E(S,S)
|E| . The

natural polynomial optimization formulation has an indeterminate f(x) for each vertex
x ∈ V :

min 1
|E|

∑
(x,y)∈E

(
f(x)−f(y)

2

)2

s.t. f(x)2 = 1 ∀x ∈ V,(
1
|V |
∑
x∈V

f(x)

)2

≤ 1
9
.

Thus as discussed in Section 8.2, the degree-4 SOS SDP hierarchy will use binary search
to compute the largest β for which

{f(x)2 = 1 : ∀x ∈ V } ∪
{(

1
|V |
∑
x∈V

f(x)

)2

≤ 1
9

}
∪
{

1
|E|

∑
(x,y)∈E

(
f(x)−f(y)

2

)2

≤ β
}

`4 −1 ≥ 0.

183

The DKSV instances. We now recall the DKSV BALANCEDSEPARATOR instances [79].
The instances G = (V,E) = (VN , EN) are parameterized by primes N . Let F =
{−1, 1}N×{−1, 1}N , thought of as the 2N -dimensional hypercube graph. Let σ act on el-
ements (x, y) ∈ F by cyclic rotation of both halves:
σ(x, y) = (xN , x1, . . . , xN−1, yN , y1, . . . , yN−1). The elements σ, σ2, . . . , σN = id form a
group acting on F , partitioning it into orbits O1, . . . ,Om; 4 of these orbits have cardinal-
ity 1 and the remaining (22N −4)/N have cardinality N . A cardinality-N orbitO is called
“nearly orthogonal” if for all distinct (x, y), (x′, y′) ∈ O it holds that |〈(x, y), (x′, y′)〉| ≤
8
√
N logN . Presuming thatN is sufficiently large, [79] shows that the number n of nearly

orthogonal orbits satisfies (1− 4/N2)m ≤ n ≤ m. (This implies N = Θ(log n).) For ty-
pographic simplicity the nearly orthogonal orbits are assumed to be {O1, . . . ,On}, and this
set is taken to be the vertex set V . We write L ⊆ F for the “leftover” elements contained in
orbitsOn+1, . . . ,Om; writing ε = |L|

22N we have ε = O(1/N2). The edges E in G are given
by the usual hypercube edges in F . More precisely, any pairO,O′ ∈ V have eitherN or 0
edges between them, according to whether or not there exist (x, y) ∈ O, (x′, y′) ∈ O′ at
Hamming distance 1 in F . There are no self-loops in G because of the near orthogonality
property. The set of edges E is in one-to-one correspondence with a subset of (almost all
the) hypercube edges in F ; specifically, all those not incident on L. The authors of [79]
use the KKL Theorem to prove:

Theorem 10.3.1. The DKSV BALANCEDSEPARATOR instances have optimum value Ω(log logn
logn

).

(Although we haven’t formally verified it, it’s very likely that the optimum value of
these instances is also O(log logn

logn
), at least for infinitely many N . The reason is that

there is a σ-invariant function f : F → {−1, 1} of constant variance and total influ-
ence Ω(logN); namely, f(x, y) = 1 if x ∈ {−1, 1}N contains a “run” (with wraparound)
of length blog2N − log2 log logNc.)

On the other hand, the main result of [79] is the following:

Theorem 10.3.2. The standard SDP relaxation with triangle inequalities for the DKSV
BALANCEDSEPARATOR instances has value O(1

logn
).

We show here that this factor Θ(log log n) gap is eliminated when the degree-4 SOS
relaxation is used.

Theorem 10.3.3. The degree-4 SOS relaxation for the DKSV BALANCEDSEPARATOR

instances has value Ω(log logn
logn

).

Proof. We need to show

184

{f(O)2 = 1 : ∀O ∈ V }∪
{(

1
n

∑
O∈V

f(O)

)2

≤ 1
9
, 1
|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2

≤ c log logn
logn

}
`4 −1 ≥ 0 (10.2)

for some constant c > 0 (and N sufficiently large).

Introduce indeterminates g(x) for all x ∈ F = {−1, 1}N × {−1, 1}N . By Corol-
lary 10.2.2 it is possible to write

− 1 = u0 +
∑
x∈F

vx(g(x)2 − 1)

+
∑

1≤i<j≤N
N+1≤i<j≤2N

wij(Inf i[g]− Inf j[g]) + u1(Var[g]− 3
4
) + u2(1

20
ln(2N)− I[g]), (10.3)

where u0, u1, u2 are SOS (in the variables g(x)) and all summands have degree at most 4.
Now substitute into this identity g(x) = f(O) for each x ∈ O ∈ V , and also substitute
g(x) = 1 for each x ∈ F which is not contained in any O ∈ V . We now consider what
happens to each term in (10.3).

First, we notice that the degree of each term cannot increase. The polynomial u0 (now
over indeterminates f(O)) remains SOS. The next term,

∑
x∈F vx(g(x)2− 1), becomes of

the form
∑
O∈V v

′
O(f(O)2 − 1) for some polynomials v′O. We claim that each summand

wij(Inf i[g]−Inf j[g]) in the next term drops out entirely. This is because when g is viewed
as mapping from F to the set of homogeneous degree-1 polynomials in the f(O)’s, it is
invariant under the action of σ, by construction. From this it follows that Inf i[g] = Inf j[g]
formally as polynomials for all 1 ≤ i < j ≤ N and N + 1 ≤ i < j ≤ 2N .

Next we come to the term u1(Var[g]− 3
4
). We have

Var[g]− 3
4

= E
x∈F

[g(x)2]− 3
4
− E
x∈F

[g(x)]2.

Even after our substitution, Ex∈F [g(x)2]− 3
4

will provably equal 1
4

under the assumption
{f(O)2 = 1 : ∀O ∈ V }, so it remains to focus on

E
x∈F

[g(x)]2 =

(
ε+ (1− ε) 1

n

∑
O∈V

f(O)

)2

.

Recalling that `2 (Y + Z)2 ≤ 2Y 2 + 2Z2, we deduce(
1
n

∑
O∈V

f(O)

)2

≤ 1
9
`2

(
ε+ (1− ε) 1

n

∑
O∈V

f(O)

)2

≤ 2ε2 + 2(1− ε)2 · 1
9
≤ 1

4

185

(for N sufficiently large, since ε = O(1/N2)), as needed.

Finally we come to the term u2(1
20

ln(2N) − I[g]). Let ε′ denote the fraction of hy-
percube edges in F which are incident on L; note that ε′ ≤ 2ε = O(1/N2). After our
substitution, we have

1
20

ln(2N)− I[g] = 1
20

ln(2N)− (2N) E
edge (x,y)

in F

[(
g(x)−g(y)

2

)2
]

= 1
20

ln(2N)− (2N)(1− ε′) · 1
|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2

− ε′ · (∗),

(10.4)

where (∗) is the average of a number of terms, some of which are (1−1
2

)2 = 0 and some of
which are of the form(

f(Oi)−1
2

)2

= 1 + 1
2
(f(Oi)2 − 1)− 1

4
(f(Oi) + 1)2.

The above shows that {f(O)2 = 1 : ∀O ∈ V } `2

(
f(Oi)−1

2

)2

≤ 1. Hence

{f(O)2 = 1 : ∀O ∈ V } ∪
{

1
|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2

≤ c log logn
logn

}
`2 (10.4) ≥ 1

20
ln(2N)− (2N)(1− ε′) · c log logn

logn
− ε′,

which is nonnegative for c sufficiently small, since N = Θ(log n) and ε′ = O(1/N2).
Thus we have verified (10.2).

186

Chapter 11

SOS proofs of the CLT, the 2
π Theorem,

and the analysis of the KV MAXCUT

instances

In this chapter, we give an SOS proof for the 2
π

theorem, and use this to show that constant-
degree SOS proofs certify a better upper bound on the optimal value of the KV MAXCUT

instances (than the upper bound given by the Goemans-Williamson algorithm).

11.1 An invariance theorem for polynomials of linear forms

Theorem 11.1.1. (SOS proof of an Invariance Theorem for polynomials of linear forms.)

Let a1, . . . , an be indeterminates. For any real vector z = (z1, . . . , zn), let `(z) denote
the homogeneous linear polynomial `(z) = a1z1 + · · · + anzn. Then for any even integer
k ≥ 4 we have

a2
1 + · · ·+ a2

n ≤ 1 `2k E
G

[`(G)k]− kO(k)

n∑
i=1

a4
i ≤ E

x
[`(x)k] ≤ E

G
[`(G)k],

whereG = (G1, . . . ,Gn) ∼ N(0, 1)n and x ∼ {−1, 1}n is uniform.

Remark 11.1.1. It is easy to see that Ex[`(x)k] = EG[`(G)k] formally as polynomials
for k = 0, 1, 2, 3, and any odd integer k > 3.

187

Proof. For each integer 0 ≤ i ≤ n, define the polynomial

Pi = E[`(G1, · · · ,Gi,xi+1, · · · ,xn)k].

We will show for each 1 ≤ i ≤ n that

a2
1 + · · ·+ a2

n ≤ 1 `2k Pi − kO(k)a4
i ≤ Pi−1 ≤ Pi. (11.1)

The desired result then follows by summing over i. So fix 1 ≤ i ≤ n and write `(z) =
`′(z′) + aizi, where z′ = (z1, . . . , zi−1, zi+1, zn) and

`′(z′) = a1z1 + · · ·+ ai−1zi−1 + ai+1zi+1 + · · ·+ anzn

does not depend on the indeterminate ai. Denoting Z ′ = (G1, . . . ,Gi−1,xi+1, . . . ,xn)
we have

Pi − Pi−1 = E
Z′

[
E
Gi,xi

[(`′(Z ′) + aiGi)
k − (`′(Z ′) + aixi)

k]

]
=

k/2∑
j=2

(
k

2j

)
((2j − 1)!!− 1) a2j

i E
Z′

[`′(Z ′)k−2j] (11.2)

where we used E[Gr
i] = E[xri] = 0 for r odd and E[Gr

i] = (r − 1)!!, E[xri] = 1, for r
even. The above polynomial is evidently SOS, justifying the second inequality in (11.1).
As for the first inequality in (11.1), we have

a2
1 + · · ·+ a2

n ≤ 1 `2j a2j
i ≤ a4

i (11.3)

for each i ∈ [n] and 2 ≤ j ≤ k/2 because

a4
i − a

2j
i = (1− a2

i)(a
4
i + a6

i + a8
i + · · ·+ a2j−2

i)

=

(
(1−

n∑
i′=1

a2
i′) +

∑
i′ 6=i

a2
i′

)
(a4
i + a6

i + a8
i + · · ·+ a2j−2

i);

and, we have

a2
1 + · · ·+ a2

n ≤ 1 `2(k−2j) E
Z′

[`′(Z ′)k−2j] ≤ kO(k)
E
Z′

[`′(Z ′)2]k/2−j

= kO(k)(a2
1 + · · ·+ a2

n)k/2−j ≤ kO(k)

(11.4)

188

by Corollary 8.4.7, the second inequality’s SOS proof being

1− (
∑
a2
i′)
k/2−j = 1 + (

∑
a2
i′) + (

∑
a2
i′)

2 + (
∑
a2
i′)

3 + · · ·+ (
∑
a2
i′)
k/2−j−1.

Combining (11.3) and (11.4) via Fact 8.2.4

a2
1 + · · ·+ a2

n ≤ 1 `2k a2j
i E
Z′

[`′(Z ′)k−2j] ≤ kO(k)a4
i .

Using this in (11.2), along with
(
k
2j

)
((2j − 1)!!− 1) ≤ kO(k) for each j, yields the first

inequality in (11.1), completing the proof.

11.2 An SOS proof of the 2
π Theorem

We require the below technical lemma giving a polynomial approximator to the absolute-
value function. The proof uses some standard methods in approximation theory and is
deferred to Section 11.4.

Lemma 11.2.1. For any sufficiently small parameter δ > 0, there exists a univariate, real,
even polynomial P (t) = Q(t2) of degree at most Õ(1/δ2) such that:

1. P (t) ≥ |t| for all t ∈ R;

2. E[P (σg)] ≤
√

2
π
· σ + δ ≤

(
1
2
σ2 + 1

π

)
+ δ for all 0 ≤ σ ≤ 1, where g ∼ N(0, 1);

3. Each coefficient of P is at most 2O(d) in absolute value.

It is not hard to show that among degree-2 polynomials P (t) with P (t) ≥ |t|, the
lowest possible value of E[P (g)] is 1, achieved by P (t) = 1

2
+ 1

2
t2. Interestingly, this is

also the lowest possible value even when degree-4 is allowed:

Theorem 11.2.2. Suppose P (t) is a univariate real polynomial of degree at most 4 satis-
fying P (t) ≥ |t| for all real t. Then Eg∼N(0,1)[P (g)] ≥ 1.

Proof. Replacing P (t) by 1
2
(P (t) + P (−t)) if necessary, we may assume P (t) is even;

i.e., P (t) = a+ bt2 + ct4 for some real a, b, c. For any M > 0 we have
1
M2 × (P (0) ≥ 0) + M2−3

M2−1
× (P (1) ≥ 1) + 2

(M2−1)M2 × (P (M) ≥M)

⇒ 1
M2 × (a ≥ 0) + M2−3

M2−1
× (a+ b+ c ≥ 1) + 2

(M2−1)M2 ×
(
a+M2b+M4c ≥M

)
⇒ a+ b+ 3c ≥ 1− 2

M(M+1)
.

This completes the proof because E[P (g)] = a+b+3c andM may be arbitrarily large.

189

Remark 11.2.1. Once we allow degree 6 it is possible to obtain a bound strictly smaller
than 1. For example, P (t) = .333+.815t2−.136t4+.01t6 ≥ |t| pointwise, and E[P (g)] =
.89.

The following “ 2
π

Theorem”, due to [141], is essentially the special case of the Majority
Is Stablest Theorem in which ρ→ 0+. We reproduce the proof.

Theorem 11.2.3. Let f : {−1, 1}n → [−1, 1] and assume |f̂(i)| ≤ ε for all i ∈ [n]. Then∑n
i=1 f̂(i)2 ≤ 2

π
+O(ε).

Proof. Let ` : {−1, 1}n → R be `(x) =
∑n

i=1 f̂(i)xi and let σ =

√∑n
i=1 f̂(i)2. Then

σ2 = E
x∼{−1,1}n

[f(x)`(x)] ≤ E
x

[|`(x)|] ≤ σ E
g∼N(0,1)

[|g|] +O(σε) = σ

(√
2
π

+O(ε)

)
,

the inequality being Berry–Esseen. The result follows after dividing by σ and squaring.

Theorem 11.2.4. (SOS proof of the Berry–Esseen Theorem with `1 functional.)

Let a1, . . . , an be indeterminates, and for each x ∈ {−1, 1}n, let f(x) be an indeter-
minate. Let

A = {f(x) ≥ −1, f(x) ≤ 1 : ∀x} ∪ {a2
1 + · · ·+ a2

n ≤ 1}.

Then for any small real δ > 0,

A `Õ(1/δ2) E
x∼{−1,1}n

[f(x)(a1x1 + · · ·+ anxn)] ≤ b+ δ + 2Õ(1/δ2)

n∑
i=1

a4
i ,

where we may choose either

b =
√

2
π

or b = 1
2
(a2

1 + · · ·+ a2
n) + 1

π
.

Proof. For each x ∈ {−1, 1}n, let `(x) denote a1x1 + · · · + anxn, a homogeneous linear
polynomial in the indeterminates ai. Let P (t) = Q(t2) =

∑
k=0,2,4,...,d

ckt
k be the univariate

real polynomial in Lemma 11.2.1, where d = deg(P) ≤ Õ(1/δ2). Since P (t) ≥ ±t for
all real t, Fact 8.3.1 tells us that `d P (t) ≥ ±t in R[t]. Using Fact 8.3.7 and substituting
t = `(x) we deduce

{f(x) ≥ −1, f(x) ≤ 1} `d+1 f(x)`(x) ≤ P (`(x)).

190

Averaging over x yields

{f(x) ≥ −1, f(x) ≤ 1 : ∀x} `d+1 E
x

[f(x)(a1x1 + · · ·+ anxn)] ≤ E
x

[P (`(x))]

=
∑

k=0,2,4,...,d

E
x

[ck`(x)k]. (11.5)

For each even 0 ≤ k ≤ d, regardless of the sign of ck, Theorem 11.1.1 implies that

a2
1 + · · ·+ a2

n ≤ 1 `2d E
x

[ck`(x)k] ≤ E
G

[ck`(G)k] + |ck|kO(k)

n∑
i=1

a4
i .

Summing this over k, using
∑

k |ck|kO(k) ≤ dO(d), and combining with (11.5) yields

A `2d E
x

[f(x)(a1x1 + · · ·+ anxn)] ≤ E
G

[P (`(G))] + dO(d)

n∑
i=1

a4
i . (11.6)

Let σ2 be shorthand for
∑n

i=1 a
2
i . Note that if we treat a1, . . . , an as arbitrary real numbers,

we have
E
G

[P (`(G))] = E
g∼N(0,1)

[P (σg)] = E
g∼N(0,1)

[Q(σ2g2)], (11.7)

by the rotational symmetry of multivariate Gaussians. Since the left and right sides are
polynomials in a1, . . . , an, it follows that (11.7) also holds as a formal polynomial identity
over the indeterminates a1, . . . , an. Now temporarily view σ2 as an indeterminate. From

Lemma 11.2.1 we have that Eg∼N(0,1)[Q(σ2g2)] is upper-bounded by both
√

2
π

+ δ and
1
2
σ2 + 1

π
+ δ for all real numbers 0 ≤ σ2 ≤ 1. Thus from Fact 8.3.2 we have the following

univariate SOS proof(s):

(1− σ2)σ2 ≥ 0 `d/2 E
g∼N(0,1)

[Q(σ2g2)] ≤
√

2
π

+ δ, 1
2
σ2 +

1

π
+ δ

(note that Q has even degree). Letting σ2 =
∑n

i=1 a
2
i again, we deduce that for either

choice of b, (
1−

n∑
i=1

a2
i

)(
n∑
i=1

a2
i

)
≥ 0 `d E

g∼N(0,1)
[Q(σ2g2)] ≤ b+ δ

⇔ a2
1 + · · ·+ a2

n ≤ 1 `d E
G

[P (`(G))] ≤ b+ δ,

191

using (11.7) and the fact that
∑n

i=1 a
2
i is already SOS. Combining this with (11.6) yields

A `2d E
x

[f(x)(a1x1 + · · ·+ anxn)] ≤ b+ δ + dO(d)

n∑
i=1

a4
i ,

as needed.

Corollary 11.2.5. (SOS proof of the 2
π

Theorem.)

For each x ∈ {−1, 1}n, let f(x) be an indeterminate. Define f̂(S) as usual and write
f̂(i) = f̂({i}) for short. Let

A = {f(x) ≥ −1, f(x) ≤ 1 : ∀x}.

Then for each small real δ > 0,

A `Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 2
π

+ δ + 2Õ(1/δ2)

n∑
i=1

f̂(i)4,

A ∪ {f̂(i)2 ≤ τ : ∀i ∈ [n]} `Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 2
π

+ δ + 2Õ(1/δ2) · τ.

Proof. We wish to apply Theorem 11.2.4 with ai = f̂(i) for each i ∈ [n]. A standard
proof shows that ∑

S⊆[n]

f̂(S)2 = E
x∼{−1,1}n

[f(x)2]

and hence, using Fact 8.3.4,

`3

n∑
i=1

f̂(i)2 ≤ 1. (11.8)

We may therefore employ Theorem 11.2.4 (with δ/2 instead of δ) to obtain

A `Õ(1/δ2)

E
x∼{−1,1}n

[f(x)(f̂(1)x1 + · · ·+ f̂(n)xn)] ≤ 1
2

n∑
i=1

f̂(i)2 + 1
π

+ δ
2

+ 2Õ(1/δ2)

n∑
i=1

f̂(i)4.

But

E
x∼{−1,1}n

[f(x)(f̂(1)x1 + · · ·+ f̂(n)xn)] =
n∑
i=1

f̂(i)2

192

is a polynomial identity so we deduce

A `Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 1
2

n∑
i=1

f̂(i)2 + 1
π

+ δ
2

+ 2Õ(1/δ2)

n∑
i=1

f̂(i)4

⇔
n∑
i=1

f̂(i)2 ≤ 2
π

+ δ + 2Õ(1/δ2)

n∑
i=1

f̂(i)4,

completing the first part of the proof. Now adding the assumptions f̂(i)2 ≤ τ easily yields

A ∪ {f̂(i)2 ≤ τ : ∀i ∈ [n]} `4

n∑
i=1

f̂(i)4 ≤ τ
n∑
i=1

f̂(i)2 ≤ τ

using (11.8) again. The proof is complete.

11.3 Analysis of the KV MAXCUT instances

We recall the MAXCUT problem: Given is an undirected weighted graph G on vertex
set V in which the nonnegative edge weights sum to 1. We write (x,y) ∼ E to denote
that (x,y) is a random edge chosen with probability equal to the edge weight. It is required
to find a cut S ⊆ V so as to maximize Pr(x,y)∼E[x ∈ S,y 6∈ S or vice versa]. The natural
polynomial optimization formulation has an indeterminate f(x) for each vertex x ∈ V :

max E
(x,y)∼E

[1
2
− 1

2
f(x)f(y)]

s.t. f(x)2 = 1 ∀x ∈ V.

Thus as discussed in Section 8.2, the degree-d SOS SDP hierarchy will use binary search
to compute the smallest β for which

{f(x)2 = 1 : ∀x ∈ V } ∪
{

E
(x,y)∼E

[1
2
− 1

2
f(x)f(y)] ≥ β

}
`d −1 ≥ 0.

UNIQUEGAMES. The Khot–Vishoi (KV) instances of MAXCUT [144] are given by com-
posing the KKMO “noise stability” reduction from [141] with the KV integrality gap in-
stances for UNIQUEGAMES (UG). Our SOS proof of the 2

π
Theorem gives us a “black-

box” analysis of the KKMO reduction which can essentially be “plugged in” to a suf-
ficiently strong SOS analysis of UG instances. Let us now recall the UNIQUEGAMES

193

problem with label-size k ∈ N+. Given is a regular weighted graph G = (V , E) (self-loops
allowed) with weights summing to 1. Also, given for each edge (u, v) is a permutation
πuv : [k] → [k]. We write (u,v,π) ∼ E to denote that edge (u,v) with permutation
π = πuv is chosen with probability equal to its edge weight. The goal is to give a labeling
F : V → [k] so as to maximize Pr(u,v,π)∼E [π(F (u)) = F (v)]. The natural polynomial
optimization formulation has an indeterminate Xu,i for each u ∈ V , i ∈ [k]:

max E
(u,v,π)∼E

[k∑
i=1

Xu,iXv,π(i)

]
= E
u∈V

[k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]

s.t. X2
u,i = Xu,i ∀u ∈ V , i ∈ [k]

k∑
i=1

Xu,i = 1 ∀u ∈ V ,

where we write (v,π) ∼ u in place of (u,v,π) ∼ E|u=u for brevity. Thus the degree-d
SOS SDP hierarchy will use binary search to compute the smallest β for which

{X2
u,i = Xu,i : ∀u ∈ V , i ∈ [k]} ∪ {

k∑
i=1

Xu,i = 1 : ∀u ∈ V}

∪
{

E
u∈V

[k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≥ β

}
`d −1 ≥ 0.

In Section 9.3, we have shown that the degree-4 moment SDP proves that the KV
family of UG instances has a very low optimum value. In fact we have shown something
stronger; one only needs the hypotheses X2

u,i ≤ Xu,i and (avgu,iXu,i)
2 ≤ 1/k2. Let us

make a somewhat more general definition which applies to SOS-refutations of any UG
instances:

Definition 11.3.1. Given a UG instance G = (V , E) with label-size k, we say there is a
degree-d SOS refutation that the fractional assignment optimum is at least β if

{Xu,i ≥ 0 : ∀u ∈ V , i ∈ [k]} ∪ {
k∑
i=1

Xu,i ≤ 1 : ∀u ∈ V}

∪
{

E
u∈V

[k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≥ β

}
`d −1 ≥ 0.

The above definition is slightly more demanding than the most natural one, in which
the hypotheses X2

u,i = Xu,i are granted. As mentioned, in Section 9.3, we have estab-
lished something noticeably stronger anyway: the following theorem is a restatement of
Theorem 9.3.1:

194

Theorem 11.3.2. Let G = G(N, η) = (V , E) be the Khot–Vishnoi instance of UNIQUEGAMES

parameterized byN (a power of 2) and η ∈ (0, 1), which has 2N/N vertices, label-sizeN ,
and optimum value at mostN−η. Then there is a degree-4 SOS refutation that its fractional
assignment optimum is at least N−Ω(η).

We now recall the KKMO [141] reduction from UG to MAXCUT, which is parame-
terized by ρ ∈ (−1, 0). Given a UG instance G with label-size N , the reduction creates a
vertex set V with a vertex wu,x for each u ∈ V and each x ∈ {−1, 1}N . The probability
distribution E on edges for the MAXCUT instance is given as follows:

• draw u ∼ V;

• independently draw (u,v1,π1) and (u,v2,π2) from the marginal of E which has
first vertex u;

• draw “ρ-correlated strings” (x,y) from {−1, 1}N ;

• output the edge (wu1,x◦π1 , wu2,y◦π2).

KKMO make the following easy observation:

Proposition 11.3.3. Consider any cut V → {−1, 1} in the above-described MAXCUT

instance (V,E); specifically, let us write it as a collection of functions fv : {−1, 1}N →
{−1, 1}, one for each v ∈ V . Then the value of this cut is

1
2
− 1

2
E
u∼V

[Stabρ[gu]],

where gu : {−1, 1}N → [−1, 1] is defined by gu(x) = E
(u,v,π)∼E|u=u

[fv(x ◦ π)].

As mentioned, the KV MAXCUT instances are formed by composing the KKMO re-
duction with the KV UG instances. Khot and Vishnoi show that for any fixed η ∈ (0, 1),
the optimum value of the resulting MAXCUT instance is at most (arccos ρ)/π + oN(1).
Further, using “Majority cuts” it’s easy to show (using, e.g. [179, Theorem 3.4.2]) that the
optimum values is at least (arccos ρ)/π − oN(1).

The main result of this section is the following:

Theorem 11.3.4. Fix any small ε, δ > 0. Let G = (V , E) be a UG instance with label-size
N for which there is a degree-d SOS proof (d ≥ 2) that its fractional assignment optimum
is at most ε. Let G = (V,E) be the MAXCUT instance resulting from applying the KKMO
reduction with parameter ρ ∈ (−1, 0) to G. Then there is a degree d + Õ(1/δ2) SOS
refutation of the claim that the optimum value of G is at least 1

2
− 1

π
ρ− (1

2
− 1

π
)ρ3 + δ +

ε · 2Õ(1/δ2).

195

Together with Theorem 11.3.2 this implies:

Corollary 11.3.5. Fix any small δ > 0. Let G = (V , E) be a Khot-Vishnoi UG instance
with label-size N and noise parameter η. Let G = (V,E) be the MAXCUT instance
resulting from applying the KKMO reduction with parameter ρ ∈ (−1, 0) to G. Then there
is a degree Õ(1/δ2) SOS refutation of the claim that the optimum value of G is at least
1
2
− 1

π
ρ− (1

2
− 1

π
)ρ3 + δ + 2Õ(1/δ2) ·N−Ω(η).

Corollary 11.3.6. Consider the KV MAXCUT instances with parameter ρ0 ≈ −.689. The
degree-O(1) SOS SDP certifies they have value at most .779, which is within a factor .952
of the optimum. For general ρ, the degree-O(1) SOS SDP certifies a value for the KV
MAXCUT instances which is within a factor .931 of the optimum, where

.931 ≈ min
ρ∈(−1,0)

(arccos ρ)/π
1
2
− 1

π
ρ− (1

2
− 1

π
)ρ3

.

Before proving Theorem 11.3.4 we prove a lemma which gives an alternative way
to refute a UG instance having a good solution: roughly, for most vertices v ∈ V , its
neighbors cannot agree well on what v’s label should be.

Lemma 11.3.7. Let G = (V , E) be a UG instance with label-size N and suppose there is
a degree-d SOS refutation that its fractional assignment optimum is at least ε. Then also

A ∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼v
[Xv,π(i)]

)2
]
≥ 4ε

}
`d −1 ≥ 0,

where

A = {Xu,i ≥ 0 : ∀x ∈ V , i ∈ [N]} ∪ {
N∑
i=1

Xu,i ≤ 1 : ∀x ∈ V}.

Proof. Given the indeterminatesXu,i, define for each u ∈ V and i ∈ [N] the homogeneous
linear forms

Yu,i = 1
2
Xu,i + 1

2 E
(v,π)∼u

[Xv,π(i)].

We will apply the assumption regarding the degree-d SOS refutation for G to the Yu,i’s.
Certainly we have

A `1 Yu,i ≥ 0,
N∑
j=1

Yu,j ≤ 1

196

for every u ∈ V , i ∈ [N]. Indeed, it’s not hard to check that to complete the proof we need
only verify

A `2 E
u∼V

[
N∑
i=1

Yu,i · E
(v,π)∼u

[Yv,π(i)]

]
≥ 1

4
E
u∼V

[
N∑
i=1

(
E

(v,π)∼v
[Xv,π(i)]

)2
]
.

But this follows from

E
u

[∑
i

Yu,i · E
(v,π)∼u

[Yv,π(i)]

]
= 1

2
E
u

[∑
i

Xu,i · E
(v,π)∼u

[Yv,π(i)]

]
+ 1

2
E
u

[∑
i

E
(v,π)∼u

[Xv,π(i)] · E
(v,π)∼u

[Yv,π(i)]

]
= 1

2
E
u

[∑
i

Xu,i · E
(v,π)∼u

[Yv,π(i)]

]
+ 1

4
E
u

[∑
i

E
(v,π)∼u

[Xv,π(i)] · E
(v′,π′)∼v

[Xv′,π′(i)]

]
+ 1

4
E
u

[∑
i

(
E

(v,π)∼u
[Xv,π(i)]

2
)]

(where we do not even need the assumptions
∑N

i=1 Xu,i ≤ 1).

We now give the proof of Theorem 11.3.4.

Proof. It is not hard to deduce the following result from Corollary 11.2.5:

Corollary 11.3.8. In the setting of Corollary 11.2.5, for any ρ ∈ (−1, 0) we have

A `Õ(1/δ2) Stabρ[f] ≥ 2
π
· ρ+ (1− 2

π
) · ρ3 − δ − 2Õ(1/δ2) ·

n∑
i=1

f̂(i)4.

It is also easy to check using Fact 8.3.3 that

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N} `4 gv(x) ≥ −1, gv(x) ≤ 1

for all v ∈ V , x ∈ {−1, 1}N . Thus using the above corollary and Proposition 11.3.3 we
obtain

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N}

`Õ(1/δ2)
1
2
− 1

2
E
u∼V

[Stabρ[gu]] ≤ 1
2
− 1

π
ρ− (1

2
− 1

π
)ρ3 + δ + 2Õ(1/δ2) · E

u∼V

[N∑
i=1

ĝu(i)4
]
.

(11.9)

197

Now we bound the error term 2Õ(1/δ2) ·Eu∼V [
∑N

i=1 ĝu(i)4] as follows. Using the poly-
nomial identity ĝu(i) = E(v,π)∼u[f̂v(π(i))] together with Fact 8.3.14 and Fact 8.3.15, we
have

`4 E
u∼V

[N∑
i=1

ĝv(i)
4
]
≤ E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
[f̂v(π(i))2]

)2
]
. (11.10)

On the other hand, it is easy to check that for all i ∈ [N] and v ∈ V , we have

{fv(x)2 = 1 : ∀x ∈ {−1, 1}N} `2 f̂v(i)
2 ≥ 0,

N∑
i=1

f̂v(i)
2 ≤ 1. (11.11)

Since there is a degree-d refutation for G having a fractional assignment of value at least
ε, implementing Lemma 11.3.7 with Xv,i = f̂v(i)

2, we have

{f̂u(i)2 ≥ 0 : ∀x ∈ V , i ∈ [N]} ∪ {
N∑
i=1

f̂u(i)
2 ≤ 1 : ∀x ∈ V}

∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
f̂v(π(i))2

)2
]
≥ 4ε

}
`d+2 −1 ≥ 0. (11.12)

By Fact 8.2.3, (11.11) and (11.12) give

{fv(x)2 = 1 : ∀v ∈ V , x ∈ {−1, 1}N} ∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
f̂v(π(i))2

)2
]
≥ 4ε

}
`d+4 −1 ≥ 0. (11.13)

Combining (11.13) and (11.10), we get

{fv(x)2 = 1 : ∀v ∈ V , x ∈ {−1, 1}N} ∪
{

E
u∼V

[N∑
i=1

ĝv(i)
4
]
≥ 4ε

}
`d+2 −1 ≥ 0.

(11.14)

Finally, combining (11.14) and (11.9), we get

{fv(x)2 = 1 : ∀v ∈ V , x ∈ {−1, 1}N}

∪{1
2
−1

2
E
u∼V

[Stabρ[gu]] ≥ 1
2
− 1
π
ρ−(1

2
− 1
π
)ρ3+δ+2Õ(1/δ2)} `d+Õ(1/δ2) −1 ≥ 0.

198

11.4 An approximator for the absolute-value function

Here we restate and prove Lemma 11.2.1. A key tool will be the polynomial approximator
to the sgn function constructed in [80].

Lemma 11.2.1. For any sufficiently small parameter δ > 0, there exists a univariate, real,
even polynomial P (t) = Q(t2) of degree at most Õ(1/δ2) such that:

1. P (t) ≥ |t| for all t ∈ R;

2. E[P (σg)] ≤
√

2
π
· σ + δ ≤

(
1
2
σ2 + 1

π

)
+ δ for all 0 ≤ σ ≤ 1, where g ∼ N(0, 1);

3. Each coefficient of P is at most 2O(deg(P)) in absolute value.

Proof. We will use the following result from [80, Theorem 3.10]:

Theorem 11.4.1. For every 0 < ε < .1 there is an odd integer d = d(ε) = Θ(log2(1/ε)/ε)
and a univariate polynomial p(t) of degree d satisfying:

• p(t) ∈ [sgn(t)− ε, sgn(t) + ε] for all |t| ∈ [ε, 1];

• p(t) ∈ [−1− ε, 1 + ε] for all |t| ≤ ε;

• p(t) is monotonically increasing on the intervals (−∞,−1] and [1,+∞).

We can assume without loss of generality that p(t) is odd since the odd part of p(t)
(i.e. (p(t)− p(−t))/2) also satisfies the properties in Theorem 11.4.1.

Given p(t) as in Theorem 11.4.1, define

p0(t) = (1 + 2ε)p(t/M), where M =
c logc(1/ε)√

ε

and c > 1 is a universal constant to be chosen later. The polynomial p0(t) has the following
properties:

• p0(t) ∈ [1, 1+4ε] when t ∈ [Mε,M], p0(t) ∈ [−(1+4ε),−1] when t ∈ [−M,−Mε];

• p0(t) ∈ [−(1 + 4ε), 1 + 4ε] for all |t| ≤Mε;

• p0(t) ≥ 1 when t ≥M , p0(t) ≤ 1 when t ≤ −M .

199

Finally, define

P (t) =

∫ t

0

p0(x)dx+ 2Mε.

an even polynomial of degree d + 1. We will show that the following hold assuming c is
taken sufficiently large and then ε is sufficiently small:

(a) P (t) ≥ |t| for all t ∈ R;

(b) E[P (σg)] ≤
√

2
π
· σ +O(Mε) for all 0 ≤ σ ≤ 1;

(c) Each coefficient of P is at most 2O(d) in absolute value.

The proof is then completed by taking ε = δ2/polylog(1/δ).

Properties ((a)) follows easily from the definition of P (t). It also follows easily from
the definition that |P (t)| ≤ 1 + O(Mε) ≤ 2 for all |t| ≤ 1. It is a standard fact in
approximation theory (see, e.g., [208, 176]) that if P is a degree d+1 polynomial satisfying
|P (t)| ≤ b for all |t| ≤ 1 then each coefficient of P (t) is at most, say, b(4e)d+1 = 2O(d) in
magnitude. This verifies ((c)). It remains to establish property ((b)). For this we have

E[P (σg)] = E[P (σg) · 1{|σg| ≤M}] + E[P (σg) · 1{|σg| > M}] (11.15)

Regarding the first term in (11.15) we use that for |t| ≤ M we have |p0(t)| ≤ 1 + 4ε and
hence

P (t) ≤ (1 + 4ε)|t|+ 2Mε = |t|+O(Mε) ∀|t| ≤M. (11.16)

Thus

E[P (σg) · 1{|σg| ≤M}] ≤ E[|σg| · 1{|σg| ≤M}] +O(Mε)

≤ E[|σg|] +O(Mε) =
√

2
π
· σ +O(Mε).

To complete the verification of ((b)) it therefore suffices to bound the second term in (11.15)
by O(Mε). In fact we will show

E[P (σg) · 1{|σg| > M}]�Mε. (11.17)

Using evenness of P and the fact that it is evidently increasing on [M,∞) we have

E[P (σg)·1{|σg| > M}] = 2E[P (σg)·1{σg > M}] ≤ 2E[P (g)·1{g > M}]. (11.18)

We upper-bound P ’s value on large inputs using a well-known fact from approximation
theory (and a corollary of the theorem in §33 of [169]):

200

Fact 11.4.2. Let q(t) be a polynomial of degree at most k satisfying |q(t)| ≤ b for all
|t| ≤ 1. Then |q(t)| ≤ b |3t|k for all |t| ≥ 1.

Applying this fact to p(t) we obtain p(t) ≤ (1 + ε)(3t)d for all t ≥ 1, whence p0(t) ≤
2(3t/M)d for all t ≥M , whence

P (t) =

∫ t

0

p0(x)dx+ 2Mε ≤ O(M) + t · 2(3t/M)d ≤ O(1) · (3t/M)d+1

for all t ≥M (we also used M = o(2d)). Thus

(11.18) ≤ O(3
M

)d+1 · E[gd+1 · 1{g > M}] ≤ O(3
M

)d+1 ·O(dM)d+1 exp(−M2/2)

≤ 2polylog(1/ε)/ε exp(−M2/2) = 2polylog(1/ε)/ε exp(−c2 log2c(1/ε)/2ε)�Mε

if we choose c to be a large enough universal constant. This completes the justification
of (11.17) and the overall proof.

201

202

Part III

Robust algorithms

203

Chapter 12

Robust satisfiability algorithms for
width 1 CSPs

12.1 Introduction

Constraint satisfaction problems (CSPs) constitute a broad and important subclass of al-
gorithmic tasks. One approach to studying the complexity of CSPs centers around the
Feder–Vardi Dichotomy Conjecture [86] and the use of algebra [125] to classify all CSP
decision problems. Another approach to the study of CSPs involves quantifying the extent
to which natural CSPs can be approximately solved [127]; this approach has been char-
acterized by more “analytic” methods. Recently there has been interest in melding the
two approaches (see, e.g., [155, 128, 113]); the present work takes another step in this
direction.

Almost-satisfiable instances. The algebraic approach to CSPs is mainly concerned with
what we’ll call the decision problem for CSPs: given an instance, is it completely satis-
fiable? The Dichotomy Conjecture states that for every CSP this task is either in P or is
NP-hard; the Algebraic Dichotomy Conjecture of Bulatov, Jeavons, and Krokhin [53] re-
fines this by conjecturing a precise algebraic characterization of the tractable CSP decision
problems. However when it comes to approximability, not all tractable CSPs are “equally
tractable”. E.g., for Max-Cut, not only can one efficiently find a completely satisfying
assignment when one exists, the Goemans–Williamson algorithm [94] efficiently finds an
almost-satisfying assignment whenever an almost-satisfying assignment exists. (Specifi-
cally, it finds a (1 − O(

√
ε))-satisfying assignment whenever a (1 − ε)-satisfying assign-

205

ment exists.) Contrast this with the kLin(mod 2) problem, k ≥ 3: again, one can efficiently
find a completely satisfying assignment whenever one exists; however Håstad [116] has
shown that finding even a somewhat-satisfying assignment whenever an almost-satisfying
assignment exists is NP-hard. (Specifically, ∀ε > 0 it is hard to find a (1/2 + ε)-satisfying
assignment when a (1− ε)-satisfying assignment exists.)

Prior work on robust decidability. In 1997, Zwick [228] initiated the study of the
following very natural problem: which CSPs are efficiently robustly decidable? By this we
mean that the algorithm should find (1− oε(1))-satisfying assignments whenever (1− ε)-
satisfying assignments exist (formal definitions are given in Section 12.2). Zwick gave
a linear programming (LP)-based algorithm for finding (1 − O(1/ log(1/ε)))-satisfying
assignments for Horn-kSat (for any fixed k); he also gave a semidefinite programming
(SDP)-based algorithm for finding (1 − O(ε1/3))-satisfying assignments for 2Sat (since
improved to 1 − O(ε1/2) [60]). Later, Khot [136] gave an SDP-based algorithm for
finding (1 − Õ(ε1/5))-satisfying assignments for the notorious Unique-Games problem
over domains D with |D| = O(1) (since improved to 1 − O(ε1/2) [59]).1 On the other
hand, the only tractable CSPs for which the robust decision problem seems to be NP-hard
are the ones that can encode linear equations over groups.

Bounded width. If we wish to classify the CSPs which are efficiently robustly decid-
able, we seek a property that is shared by Horn-kSat, 2Sat, and Unique-Games but not by
3Lin(mod p). From the algebraic viewpoint on CSPs there is a very obvious candidate: the
former CSPs have bounded width while the latter does not. Briefly, a CSP is said to have
bounded width if unsatisfiable instances can always be “refuted” in a proof system that
only allows for constant-sized partial assignments to be kept “in memory” (again, more
formal definitions are in Section 12.2). Recent independent works of Barto–Kozik [37] and
Bulatov [52] have connected this notion to algebra by showing that bounded-width CSPs
coincide with those which cannot encode linear equations over groups. Thus by Håstad’s
work we know that any CSP which is efficiently robustly decidable must have bounded
width (assuming P 6= NP). As mentioned at the beginning of this thesis, the Guruswami–
Zhou Conjecture [113] states that the converse also holds: every bounded-width CSP has
an efficient robust decision algorithm.

1We emphasize that in this chapter, we always treat the domain size |D| as a fixed constant, with ε → 0
independently.

206

Linear and semidefinite programming. Essentially the only known way to produce
CSP approximation algorithms is through the use of LPs and SDPs. Indeed, recent work
of Raghavendra [189] shows that if one believes Khot’s Unique Games Conjecture [136],
then a CSP Π is efficiently robustly decidable if and only if the basic SDP relaxation
robustly decides it. However understanding and solving SDPs can be difficult, and as
Zwick’s Horn-kSat algorithm illustrates, sometimes only the power of linear programming
is needed for robust decision algorithms.

12.1.1 Our contributions

As a step towards the Guruswami–Zhou Conjecture, we show that a special case of the
bounded width CSPs are robustly decidable by the basic linear programming relaxation.
Somewhat informally stated, our main theorem is the following:

Theorem 12.1.1 (Informal version of Theorem 12.3.1). Let Π be any (finitely presented)
CSP. Then the basic LP relaxation robustly decides Π if Π has width 1.

(Formal definitions of the terms in this theorem are given in Section 12.2.)

In slightly more details, our proof of Theorem 12.1.1 gives an efficient deterministic
“LP-rounding” algorithm for actually finding the required almost-satisfying assignments.
Quantitatively, it finds (1−O(1/ log(1/ε)))-satisfying assignments for (1− ε)-satisfiable
instances, matching the performance of Zwick’s Horn-kSat algorithm. As we describe
below, this is best possible. Our rounding algorithm is also simpler than Zwick’s.

Independently and concurrently, Dalmau and Krokhin have also shown that width 1
CSPs have efficient robust decision algorithms. Their proof is different from ours; it is by
a black-box reduction to Zwick’s Horn-Sat algorithm.

The quantitative dependence on ε. As mentioned, our LP-based algorithm for width-1
CSPs finds (1 − O(1/ log(1/ε)))-satisfying assignments to (1 − ε)-satisfiable instances.
One might hope for a better (say, polynomial) dependence on ε here. Unfortunately, this
is not possible. Zwick [228] already showed that for Horn-3Sat there are “gap instances”
where the basic LP has value 1−ε but the optimum value is only 1−Ω(1/ log(1/ε)). Indeed
Guruswami and Zhou [113] extended this by showing there are equally bad gap instances
for the basic SDP relaxation of Horn-3Sat. Assuming the Unique Games Conjecture,
Raghavendra’s work [189] in turn implies that no polynomial-time algorithm can find
(1− o(1/ log(1/ε)))-satisfying assignments to (1− ε)-satisfiable instances. On a positive

207

note, in Section 12.3.1 we show that for the special case of width-1 CSPs called “lattice
CSPs”, the basic LP relaxation can be used to find (1 − O(ε))-satisfying assignments to
(1− ε)-satisfiable instances.

12.2 Preliminaries

12.2.1 CSP preliminaries

Definitions. Let D be a nonempty finite domain of values, and let Γ be a nonempty
finite set of relations over D, each of positive finite arity. We write such a k-ary relation as
R : Dk → {0, 1}. An instance I of the constraint satisfaction problem CSP (Γ) consists
of a set V of n variables, along with a list of m constraints. Each constraint C is a pair
(S,R), where S is a tuple of some k variables (the scope of the constraint), and R is a
k-ary relation in the set Γ. We say that I ′ is a sub-instance of I if contains just a subset
of the variables and constraints in I; it is induced by the variable set V ′ ⊆ V if it includes
all constraints in I involving just the variables in V ′. An assignment for an instance of
CSP (Γ) is any mapping α : V → D. The assignment satisfies a constraint C = (S,R)
if R(α(S)) = 1 (where α operates on Si component-wise). The value of the assignment,
valI(α) ∈ [0, 1], is the fraction of constraints it satisfies. We define the optimum value
of the instance I to be opt(I) = maxα{valI(α)}. We say the instance is satisfiable if
opt(I) = 1.

CSP width. An important parameter of a CSP (Γ) problem is its width. This notion,
dating back to Feder and Vardi [86], can be given many equivalent definitions (in terms of,
e.g., pebble games, Datalog, logic, tree-width, proof complexity. . .). Roughly speaking,
CSP (Γ) has width k if unsatisfiable instances of CSP (Γ) can always be refuted while
only keeping k partial assignments “in memory”. More formally, given an instance I of
CSP (Γ), consider the following (k, `) pebble game with 1 ≤ k < ` integers: Alice begins
by placing each of ` pebbles on variables in V . Bob must respond with a partial assignment
to the pebbled variables which satisfies all constraints in which they participate. On each
subsequent turn, Alice may move ` − k of the pebbles to different vertices. Bob must
respond with a partial assignment to the newly pebbled variables which again satisfies
all constraints in which the pebbled variables participate, and which is consistent with
the assignment to the k unmoved pebbles from the previous turn. If ever Bob cannot
respond, Alice wins the game; if Bob can always play forever, he wins the game. If I is a
satisfiable instance then Bob can always win regardless of k and `; on the other hand, if I

208

is unsatisfiable, then Alice may or may not be able to win. We say that CSP (Γ) has width
(k, `) if Alice can win the (k, `) pebble game on all unsatisfiable instances; and, we say
that CSP (Γ) has width k if it has width (k, `) for some finite `. In particular, we say that
CSP (Γ) has bounded width if it has width k for some finite k. Bounded width CSPs can
be solved in polynomial time using a simple enumeration over Bob’s possible strategies.
As examples, Horn-kSat has width 1, 2-Colorability has width 2 (but not width 1), and
3Lin(mod 2) does not have bounded width.

Tree duality and width 1. It is well known [86] that the CSPs of width 1 can be precisely
characterized as those which have tree duality. We say that CSP (Γ) has tree duality if for
every unsatisfiable instance I there is a unsatisfiable “tree” instance T which “witnesses”
this. By “witness” we mean that there is a homomorphism from T to I; i.e., a map from
T ’s variables into I’s variables which preserves all relations. The definition of a “tree”
instance is the natural one in case all relations in Γ have arity 2; in general, we must make
more careful definitions. We define a walk in instance I of CSP (Γ) to be a sequence
x1, C1 = (S1, R1), t1, u1, x2, C2 = (S2, R2), t2, u2, . . . , x`+1 where each xi is a variable
in I, each Ci is a constraint in I, the indices ti and ui are distinct, and (Si)ti = xi,
(Si)ui = xi+1 for all i ∈ [`]. We say the walk proceeds from starting point x1 to endpoint
x`. We say the walk is non-backtracking if for every i ∈ [`] either Ci differs from Ci+1 or
ui 6= ti+1. We say that I is connected if there is a walk from x to y for all pairs of distinct
variables x and y in I. Finally, we say that I is a tree if it is connected and it does not
contain any non-backtracking walk with the same starting point and endpoint.

12.2.2 Algorithmic preliminaries

Approximation algorithms. For real numbers 0 ≤ s ≤ c ≤ 1, we say an algorithm
(c, s)-approximates CSP (Γ) if it outputs an assignment with value at least s on any input
instance with value at least c. For c = s = 1 we simply say that the algorithm decides
CSP (Γ); this means the algorithm always finds a satisfying assignment given a satisfiable
instance. We say that an algorithm robustly decides CSP (Γ) if there is an error function
r : [0, 1] → [0, 1] with r(ε) → 0 as ε → 0 such that the algorithm (1 − ε, 1 − r(ε))-
approximates CSP (Γ) for all ε ∈ [0, 1]. In particular, the algorithm must decide CSP (Γ).

The basic integer program. For any instance I of CSP (Γ) there is an equivalent
canonical 0-1 integer program we denote by IP(I). It has variables pv(j) for each v ∈ V ,
j ∈ D, as well as variables qCi(J) for each arity-k constraint Ci = (Si, Ri) and tuple

209

J ∈ Dki . The interpretation of pv(j) = 1 is that variable v is assigned value j; the inter-
pretation of qCi(J) = 1 is that the ki-tuple of variables Si is assigned the ki-tuple of values
J . More formally, IP(I) is the following:

maximize
1

m

m∑
i=1

∑
J :Ri(J)=1

qCi(J)

subject to:
∑
j∈D

pv(j) = 1 for all v ∈ V , (12.1)∑
J∈Dki :Jt=j

qCi(J) = pv(j) for all Ci and t such that (Si)t = v. (12.2)

The optimum value of IP(I) is precisely opt(I). Note that the size of this integer pro-
gramming formulation is poly(n,m) (as we are assuming that D and Γ are of constant
size).

The basic linear program. If we relax IP(I) by having the variables take values in the
range [0, 1] rather than {0, 1}, we obtain the basic linear programming relaxation which
we denote by LP(I). An optimal solution of LP(I) can be computed in poly(n,m) time;
the optimal value, which we denote by optLP(I), always satisfies opt(I) ≤ optLP(I) ≤ 1.
We interpret any feasible solution to LP(I) as follows: For each v ∈ V , the quantities
pv(j) form a discrete probability distribution on D (because of (12.1)), denoted pv. For
each ki-ary constraint Ci = (Si, Ri), the quantities qCi(J) form a probability distribution
onDki , denoted qCi . Furthermore (because of (12.2)), the marginals of the qCi distributions
are “consistent” with the pv distributions, in the sense that whenever (Si)t = v it holds that
PrJ∼qCi [Jt = j] = pv(j) for all j ∈ D. Finally, the objective value to be optimized in
LP(I) is

valLP
I ({pv}, {qCi}) =

1

m

m∑
i=1

Pr
J∼qCi

[Ri(J) = 1];

the optimum value of this over all feasible solutions is optLP(I).

12.2.3 Algebraic preliminaries

Polymorphisms. The Dichotomy Conjecture of Feder and Vardi [86] asserts that for
each Γ, the problem of deciding CSP (Γ) is either in P or is NP-complete. The most suc-
cessful approach towards this conjecture has been the algebraic one initiated by Jeavons

210

and coauthors [125] in which the problem is studied through the polymorphisms of Γ. We
say f : D` → D is an `-ary polymorphism for the k-ary relationR ifR(f(x1), . . . , f(xk)) =
1 whenever R(x1

i , . . . , x
k
i) = 1 for all i ∈ [`] (here each xj is a tuple in D`). We say that

f is a polymorphism for Γ if it is a polymorphism for each relation in Γ. We say that Γ
is a core, if all of its 1-ary polymorphisms are bijections (at a high level, this means that
there are no superfluous values in D for CSP (Γ)). Finally, we call a polymorphism f
idempotent, if f(j, . . . , j) = j for all j ∈ D.

Polymorphisms and width. Recently, independent works of Barto–Kozik [37] and Bu-
latov [52] managed to characterize bounded-width CSPs in terms of their polymorphisms.
Specifically, they showed that CSP (Γ) has bounded width (for Γ a core) if and only if
Γ has an `-ary weak near-unanimity (WNU) polymorphism for all ` ≥ 3. Here a poly-
morphism f is said to be WNU if it is idempotent and has the following symmetry:
f(x, x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(x, y, x, . . . , x) = f(y, x, x, . . . , x).

Much earlier, Dalmau and Pearson [73] gave a straightforward characterization the
class of width-1 CSPs in terms of their polymorphisms. Specifically, they showed that
CSP (Γ) has width 1 if and only if Γ is preserved by a set operation g : P(D)→ D. This
means that f : D` → D defined by f(x1, . . . , x`) = g({x1, . . . , x`}) is a polymorphism
for all ` ≥ 1. Note that all these polymorphisms are symmetric, meaning invariant under
all permutations of the inputs. We will use a simple lemma about width-1 CSPs which first
requires a definition.

Definition 12.2.1. Let J be a subset of a cartesian product B1 × · · · × Bk of nonempty
sets. We say J is subdirect, written J ⊆S B1× · · ·×Bk, if for each i ∈ [k] the projection
of J to the i’th coordinate is all of Bi.

Lemma 12.2.2. Say g is a set operation for CSP (Γ), R is an arity-k relation in Γ, and
B1, . . . , Bk ⊆ D. Assume there is a J ⊆S B1× · · · ×Bk all of whose members satisfy R.
Then R(g(B1), . . . , g(Bk)) = 1.

Proof. For each t ∈ [k] and j ∈ Bt, select some J t,j ∈ J whose t’th coordinate is j..
Think of the ` =

∑
|Bt| ≥ 1 tuples J t,j as column vectors, and adjoin them in some order

to form a k × ` matrix X . Let xt be the tth row of X . It is clear that the set of values
appearing in xt is precisely Bt. Thus if f is the `-ary polymorphism defined by g, we have
f(xt) = g(Bt). But since f is a polymorphism and each J t,j satisfies R, it follows that
R(g(B1), . . . , g(Bk)) = 1.

211

12.3 Width 1 implies robust decidability by LP

The following theorem shows that a simple rounding algorithm for the basic linear pro-
gram robustly decides any width-1 CSP.

Theorem 12.3.1. Let Γ be a finite set of relations over the finite domain D, each relation
having arity at most K. Assume that CSP (Γ) has width 1. Then there is a poly(n,m)-
time algorithm for CSP (Γ) which when given an input I with valLP(I) = 1−ε outputs an
assignment α : V → D with valI(α) ≥ 1−O(K2|D| log(2|D|))/ log(1/ε). (In particular,
valI(α) = 1 if valLP(I) = 1.)

Proof. The first step of the algorithm is to solve the LP relaxation of the instance, deter-
mining an optimal solution {pv : v ∈ V }, {qCi : i ∈ [m]} which obtains valLP(I) = 1− ε.
For technical reasons we will now assume without loss of generality that K ≥ 2 and that

2−poly(n,m) ≤ ε ≤ 1

4(2|D|)2(K−1)
. (12.3)

The assumption (12.3) is also without loss of generality. We may assume the upper bound
by adjusting the constant in the O(·) of our theorem. As for the lower bound, since linear
programming is in polynomial time, ε will be either 0 or at least 2−poly(n,m). In the former
case, we replace ε with a sufficiently small 2−O(m) so that the theorem’s claimed lower
bound on valI(α) exceeds 1 − 1/m; then valI(α) > 1 − 1/m implies valI(α) = 1 as
required when valLP(I) = 1.

For a particular constraint Ci, let εi =
∑

J :Ri(J)=0 qCi(J). Since valLP(I) ≥ 1 − ε

we have avg{εi} ≤ ε. The next step is to “give up” on any constraint having εi >
√
ε.

By Markov’s inequality the fraction of such constraints is at most
√
ε, which is negligible

compared to the O(1/ log(1/ε)) error guarantee of our algorithm. For notational simplic-
ity, we now assume that εi ≤

√
ε for all i ∈ [m].

We now come to the main part of the algorithm. Since CSP (Γ) has width 1, it has
a set operation g : P(D) → D. We first describe a simple randomized “LP-rounding”
algorithm based on g:

1. Let r = (2|D|)K−1 and let b = blogr(1/2
√
ε)c. We have b ≥ 1 by (12.3).

2. Choose θ ∈ {r−1, r−2, . . . , r−b} uniformly at random. Note that r−b ≥ 2
√
ε.

3. Output the assignment α : V → D defined by α(v) = g(suppθ(pv)), where
suppθ(pv) denotes {j ∈ D : pv(j) ≥ θ}.

212

We will show for each constraint Ci = (Si, Ri) that

Pr[Ri(α(Si)) = 0] ≤ K|D|/b. (12.4)

It follows from linearity of expectation that the expected fraction of constraints not satis-
fied by α is at most K|D|/b = O(K2|D| log(2|D|))/ log(1/ε). This would complete the
proof, except for the fact that we have given a randomized algorithm. However we can
easily make the algorithm deterministic and efficient by trying all choices for θ (of which
there are at most b ≤ poly(n,m) by (12.3)) and selecting the best resulting assignment.

We now give the analysis justifying (12.4) for each fixed constraint Ci = (Si, Ri). For
simplicity we henceforth write C = Ci, S = Si, R = Ri and suppose that R has arity
k ≤ K. Let us say that a choice of θ is bad if it falls into the interval (pSt(j)/r, pSt(j)] for
some t ∈ [k] and j ∈ D. For each choice of t and j there is at most one bad choice of θ
for the associated interval; hence the overall probability θ is bad is at most K|D|/b. Thus
it suffices to show that whenever θ is not bad, C is satisfied by α.

For each t ∈ [k] let Bt = suppθ(pSt); these sets are nonempty because θ ≤ r−1 ≤
|D|−1. Also, let J = {J ∈ B1×· · ·×Bk : R(j) = 1}. By Lemma 12.2.2, to show that C
is satisfied by α, we only need to show that J ⊆S B1× · · · ×Bk — i.e., that for all t ∈ [k]
and all j ∈ Bt there exists a tuple J ∈ J such that Jt = j. We show this is true for t = k
and the statement for other values of t follows in the same way. For any j ∈ Bk, we have
θ ≤ pSk(j) by the definition ofBt. Since θ is not bad, we know that θ 6∈ (pSk(j)/r, pSk(j)].
Therefore we have θ ≤ pSk(j)/r. Now since all but at most εi ≤

√
ε of the probability

mass in qC is on assignments satisfying R, we conclude∑
J ′∈Dk−1:R(J ′,j)=1

qC(J ′, j) ≥ pSk(j)−
√
ε ≥ pSk(j)/2.

Here we used 2
√
ε ≤ r−b ≤ θ ≤ pSk(j). Now the pigeonhole principle implies there exists

some J ′ ∈ Dk−1 with R(J, j) = 1 and qC(J, j) ≥ pSk(j)/(2|D|k−1) ≥ pSk(j)/r. By
consistency of marginals this certainly implies pSt′ (Jt′) ≥ pSt(j)/r ≥ θ for all t′ ∈ [k−1].
Now for all t′ ∈ [k − 1] we know that J ′St′ ∈ Bt′ . Therefore, if we let J = (J ′, j) we have
that J ∈ J and Jk = j.

12.3.1 Lattice CSPs: better quantitative dependence on ε

As discussed at the end of Section 12.1.1, one cannot hope to improve the approximation
guarantee of 1− O(1/ log(1/ε)) given by our LP-rounding algorithm, even in the case of
Horn-3Sat. On the other hand, for Horn-2Sat it is known [135] that on (1 − ε)-satisfiable

213

instances one can efficiently find (1 − O(ε))-satisfying assignments (indeed, (1 − 2ε)-
satisfying [113]). One might ask what the algebraic difference is between Horn-2Sat and
Horn-3Sat. A notable difference is that the former is a lattice CSP.

Subclasses of width-1: lattice and semilattice CSPs. A broad natural subclass of the
width-1 CSPs is the class of semilattice CSPs. These are CSPs which have a semilattice
polymorphism, meaning a binary polymorphism ∧ which is associative, commutative, and
idempotent. Horn-Sat CSPs are not just width-1 but are in fact semilattice; thus we cannot
hope for improved dependence on ε even for semilattice CSPs.2

An even further subclass is that of lattice CSPs. These are CSPs whose relations are
preserved by two semilattice operations ∧ and ∨ which additionally satisfy the “absorp-
tion” identity: ∨(x,∧(x, y)) = ∧(x,∨(x, y)) = x. Note that ∨ and ∧ extend naturally
to polymorphisms of every arity. Good examples of lattice CSPs are “lattice retraction
problems”. Here there is a fixed lattice poset L; the CSP’s domain is L and its constraints
are the poset constraint “≤” along with all unary constraints “=a” for a ∈ L.

Robust decidability for lattice CSPs. In this subsection we prove a variant of our The-
orem 12.3.1 which shows an efficient LP-based algorithm for finding (1−O(ε))-satisfying
assignments to (1− ε)-satisfiable lattice CSP instances.

We first describe the characterization of lattice CSPs we need. Carvalho, Dalmau, and
Krokhin [58] have observed that if CSP (Γ) has lattice polymorphisms then it is preserved
by what they call an absorptive block-symmetric operation. This is an operation f which
takes as input tuples (of any positive length) of nonempty subsets ofD, outputs an element
of D, and has the following properties:

• (Block-symmetry.) f(B1, . . . , B`) only depends on
{B1, . . . , B`}.

• (Absorption.) If B ⊇ B1 then f(B,B1, . . . , B`) = f(B1, . . . , B`).

• (Preservation.) LetR be an arity-k relation Γ and let (Bj
i)
j=1...k
i=1...` be nonempty subsets

of D. Assume that for each i ∈ [`] there is a Ji ⊆R B1
i × · · · × Bk

i all of whose
members satisfy R. Then R(f(B1

1 , . . . , B
1
`), . . . , f(Bk

1 , . . . , B
k
`))) = 1.

2There are CSPs which are width-1 but not semilattice; e.g., the CSP over domain {a, b, c, d} with all
unary relations and also the binary relations (a, b), (b, a), (c, a), (c, b), (c, d), (d, c), and (d, d).

214

Indeed, the operation f is simply f(B1, . . . , B`) =
∨
{∧Bi : i ∈ [`]}.

We now show:

Theorem 12.3.2. Let Γ be a finite set of relations over the finite domain D, each relation
having arity at most K. Assume that CSP (Γ) has lattice polymorphisms. Then there is
a poly(n,m)-time algorithm for CSP (Γ) which when given an input I with valLP(I) =
1− ε outputs an assignment α : V → D with valI(α) ≥ 1−O(K2|D|)ε.

Proof. As in Theorem 12.3.1, the first step of the algorithm is to solve the LP relaxation of
the instance, determining an optimal solution {pv : v ∈ V }, {qCi : i ∈ [m]} which obtains
valLP(I) = 1 − ε. Since CSP (Γ) has lattice polymorphisms, it has some absorptive
block-symmetric operation f . We next describe a randomized LP-rounding algorithm:

1. Set r = (2K2|D|m)−1 and choose
θ ∈ {1/r, 2/r, 3/r, . . . , 1} uniformly at random.

2. For each v ∈ V , define Bv = {B ⊆ D : pv(B) ≥ θ}, a nonempty family of
nonempty sets. (Here we introduce the notation pv(B) =

∑
b∈B pv(b).)

3. Output the assignment α : V → D defined by α(v) = f(Bv).

We will show for each constraint Ci = (Si, Ri) that

Pr[Ri(α(Si)) = 0] ≤ K2|D|(εi + 1/r) = K2|D|εi + 1/2m, (12.5)

where εi =
∑

J :Ri(J)=0 qCi(J) as in the previous proof. It then follows from linearity of
expectation that the expected fraction of constraints not satisfied by α is at most
K2|D| avg{εi} + 1/2m = K2|D|ε + 1/2m. We can therefore efficiently deterministically
find an α with value at least 1 − K2|D|ε − 1/2m by trying all O(m) possible values for
θ. This is sufficient to prove the theorem: if ε < (2K2|D|m)−1 then α’s value exceeds
1−1/m and hence is in fact 1; if ε ≥ (2K2|D|m)−1 then theO(·) in the theorem statement
covers the loss of 1/2m.

We now give the analysis justifying (12.5) for each fixed constraint Ci = (Si, Ri). For
simplicity we henceforth write C = Ci, S = Si, R = Ri and suppose that R has arity
k ≤ K. It suffices to show that R(α(S)) = 1 holds assuming

θ 6∈ (pSt(B), pSt(B) + εi] ∀t ∈ [k], ∀B ⊆ D. (12.6)

The reason is that the probability of (12.6) not holding is at most K2|D|(εi + 1/r). Note
that with assumption (12.6), whenever we have pSt(B) ≥ θ − εi it follows that in fact
pSt(B) ≥ θ and thus B ∈ BSt .

215

Claim 12.3.3. For all t ∈ [k] and B ∈ BSt , there exist B1, . . . , Bk with Bu ∈ BSu such
that: a) Bt ⊆ B; b) there exists J ⊆S B1 × · · · ×Bk with R(J) = 1 for all J ∈ J .

Proof. Suppose B ∈ BSt , so pSt(B) ≥ θ. Letting J ′ = {J ∈ Dk : Jt ∈ B}, it follows
from consistency of marginals that qC(J ′) ≥ θ. Thus if J is the subset of J ′ for which
R holds, it follows that qC(J) ≥ θ − εi. For u ∈ [k], we define Bu = {Ju : J ∈ J }.
Certainly Bt ⊆ B, and by consistency of marginals we obtain from qC(J) ≥ θ − εi that
pSu(Bu) ≥ θ − εi for each u ∈ [k]. Thus it follows from assumption (12.6) that Bu ∈ BSu
for each u, completing the proof of the claim.

For each choice of t ∈ [k] and B ∈ BSt , take the (names of the) sets B1, . . . , Bk given
by the above claim and arrange them in a height-k column. Adjoin all of these columns to
form a k×`matrixM , where ` =

∑k
t=1 |BSt |. The matrixM has the following properties:

(i) each entry in row u is a set in BSu; (ii) for each setB ∈ BSu , some subset of it appears in
the uth row of M ; (iii) for each column (B1, . . . , Bk) of M there is a J ⊆S B1× · · · ×Bk

all of whose members satisfy R.

Suppose we now apply the absorptive block-symmetric operation f to the rows of M ,
with the uth row producing ju ∈ D. By (iii), R(j1, . . . , jk) = 1. Thus the justification
of (12.5) is complete if we can show ju = f(BSu) = α(Su). But this follows from (i), (ii),
and the absorptive property of f .

216

Chapter 13

An algorithm for
ROBUSTMAXBISECTION

13.1 Introduction

In the MAXCUT problem, we are given a graph and the goal is to partition the vertices
into two parts so that a maximum number of edges cross the cut. As one of the most basic
problems in the class of constraint satisfaction problems, the study of MAXCUT has been
highly influential in advancing the subject of approximability of optimization problems,
from both the algorithmic and hardness sides. The celebrated Goemans-Williamson (GW)
algorithm for MAXCUT [94] was the starting point for the immense and highly successful
body of work on semidefinite programming (SDP) based approximation algorithms. This
algorithm guarantees finding a cut whose value (i.e., fraction of edges crossing it) is at
least 0.878 times the value of the maximum cut. On graphs that are “almost-bipartite” and
admit a partition such that most edges cross the cut, the algorithm performs much better
— in particular, if there is a cut such that a fraction (1− ε) of edges cross the cut, then the
algorithm finds a partition cutting at least a fraction 1−O(

√
ε) of edges. (All through the

discussion in the paper, think of ε as a very small positive constant.)

On the hardness side, the best known NP-hardness result shows hardness of approxi-
mating MAXCUT within a factor greater than 16/17 [116, 219]. Much stronger and in fact
tight inapproximability results are now known conditioned on the Unique Games Conjec-
ture of Khot [136]. In fact, one of the original motivations and applications for the formu-
lation of the UGC in [136] was to show that finding a cut of value larger than 1 − o(

√
ε)

in a graph with Max-Cut value (1− ε) (i.e., improving upon the above-mentioned perfor-

217

mance guarantee of the GW algorithm substantially) is likely to be hard. This result was
strengthened in [141] to the optimal 1 − O(

√
ε) bound, and this paper also showed that

the 0.878 approximation factor is the best possible under the UGC. (These results relied,
in addition to the UGC, on the Majority is Stablest conjecture, which was proved shortly
afterwards in [174].)

There are many other works on MAXCUT, including algorithms that improve on the
GW algorithm for certain ranges of the optimum value and integrality gap constructions
showing limitations of the SDP based approach. This long line of work on MAXCUT cul-
minated in the paper [183] which obtained the precise integrality gap and approximation
threshold curve as a function of the optimum cut value.

Maximum Bisection. Let us consider a closely related problem called MAXBISECTION,
which is MAXCUT with a global “balanced cut” condition. In the MAXBISECTION prob-
lem, given as input a graph with an even number of vertices, the goal is to partition the
vertices into two equal parts while maximizing the fraction of cut edges. Despite the
close relation to MAXCUT, the global constraint in MAXBISECTION changes its char-
acter substantially, and the known algorithms for approximating MAXBISECTION have
weaker guarantees. While MAXCUT has a factor 0.878 approximation algorithm [94], the
best known approximation factor for MAXBISECTION equals 0.7027 [91]1, improving on
previous bounds of 0.6514 [93], 0.699 [226], and 0.7016 [115].

In terms of inapproximability results, it is known that MAXBISECTION cannot be ap-
proximated to a factor larger than 15/16 unless NP ⊆

⋂
γ>0 TIME(2n

γ
) [120]. Note that

this hardness factor is slightly better than the inapproximability factor of 16/17 known
for MAXCUT [116, 219]. A simple approximation preserving reduction from MAXCUT

shows that MAXBISECTION is no easier to approximate than MAXCUT (the reduction is
simply to take two disjoint copies of the MAXCUT instance). Therefore, the factor 0.878
Unique-Games hardness for MAXCUT [141] also applies for MAXBISECTION. Further,
given a graph that has a bisection cutting 1 − ε of the edges, it is Unique-Games hard to
find a bisection (or even any partition in fact) cutting 1−O(

√
ε) of the edges.

An intriguing question is whether MAXBISECTION is in fact harder to approximate
than MAXCUT (so the global condition really changes the complexity of the problem), or
whether there are algorithms for MAXBISECTION that match (or at least approach) what

1At the time when this chapter was published. This ratio was later improved by [195] and subsequently
[28], as we will mention soon.

218

is known for MAXCUT.2 None of the previously known algorithms3 for MAXBISEC-
TION [93, 226, 115, 91] are guaranteed to find a bisection cutting most of the edges even
when the graph has a near-perfect bisection cutting (1− ε) of the edges (in particular, they
may not even cut 75% of the edges). These algorithms are based on rounding a vector
solution of a semidefinite programming relaxation into a cut (for example by a random
hyperplane cut) and then balancing the cut by moving low-degree vertices from the larger
side to the smaller side. After the first step, most of the edges are cut, but the latter re-
balancing step results in a significant loss in the number of edges cut. In fact, as we will
illustrate with a simple example in Section 13.2, the standard SDP for MAXBISECTION

has a large integrality gap: the SDP optimum could be 1 whereas every bisection might
only cut less than 0.95 fraction of the edges.

Thus an interesting “qualitative” question is one can one efficiently find an almost-
complete bisection when promised that one exists. Formally, we ask the following ques-
tion.

Question 13.1.1. Is there a polynomial time algorithm that given a graph G = (V,E)
with a MAXBISECTION solution of value (1 − ε), finds a bisection of value (1 − g(ε)),
where g(ε)→ 0 as ε→ 0?

Indeed, this question motivates the problem of ROBUSTMAXBISECTION defined pre-
viously in Definition 2.2.6. We restate the definition here for reader’s convenience.

Definition 13.1.2 (ROBUSTMAXBISECTION, re-statement of Definition 2.2.6). We say
that an algorithmA solves the ROBUSTMAXBISECTION problem if there exists a function
r : [0, 1] → [0, 1] satisfying r(ε) → 0 as ε → 0+ such that whenever A is given an
undirected graph G with MAXBISECTION optimum at least 1 − ε, A outputs a bisection
with (1− r(ε)) of the edges across the bisection.

Note that without the bisection constraint, we can achieve g(ε) = O(
√
ε), and when

ε = 0, we can find a bisection cutting all the edges (see the first paragraph of Section 13.2
for details). Thus this question highlights the role of both the global constraint and the
“noise” (i.e., ε fraction of edges need to be removed to make the input graph bipartite) on
the complexity of the problem.

2Note that for the problem of minimizing the number of edges cut, the global condition does make a big
difference: MINCUT is polynomial-time solvable whereas MINBISECTION is NP-hard.

3Also by the time when this chapter was published.

219

13.1.1 Our contributions

In this chapter, we answer the above question in the affirmative, by proving the following
theorem.

Theorem 13.1.3. There is a randomized polynomial-time algorithm such that for every
ε > 0, given an edge-weighted graphG with a MAXBISECTION solution of value4 (1−ε),
finds a MAXBISECTION of value (1−O(3

√
ε log(1/ε))).

We remark that for regular graphs any cut with most of the edges crossing it must be
near-balanced, and hence we can solve MAXBISECTION by simply reducing to MAXCUT.
Thus the interesting instances for our algorithm are non-regular graphs.

Our algorithms are not restricted to finding exact bisections. If the graph has a β-
balanced cut (which means the two sides have a fraction β and 1 − β of the vertices) of
value (1− ε), then the algorithm can find a β-balanced cut of value 1−O(ε1/3 log(1/ε)).

Our results are not aimed at improving the general approximation ratio for MAXBI-
SECTION which remains at ≈ 0.7027 [91]. More generally, our work highlights the chal-
lenge of understanding the complexity of solving constraint satisfaction problems with
global constraints. Algorithmically, the challenge is to ensure that the global constraint
is met without hurting the number of satisfied constraints. From the hardness side, the
Unique Games based reductions which have led to a complete understanding of the ap-
proximation threshold of CSPs [189] are unable to exploit the global constraint to yield
stronger hardness results.

13.1.2 Later development

Soon after our work was published, Raghavendra and Tan [195] also studied the RO-
BUSTMAXBISECTION problem, improving our algorithm and giving an algorithm that
finds a MAXBISECTION of value (1− O(

√
ε)) when there is a MAXBISECTION of value

(1 − ε). As mentioned earlier, as a function of ε, this approximation is best possible as-
suming the Unique Games Conjecture. However, one thing not very satisfactory about
the Raghavendra–Tan algorithm is that their algorithm runs in time n1/εΘ(1) , which is not
completely polynomial in n when ε is subconstant (say, 1

polylog(n)
). It is an interesting open

question whether the same approximation guarantee can be obtained in poly(n) time for
every ε.

4The value of a cut in an edge-weighted graph is defined as the weight of the edges crossing the cut
divided by the total weight of all edges.

220

Using the same technique, Raghavendra and Tan [195] also gave an algorithm substan-
tially improving the approximation ratio of MAXBISECTION to ≈ .852. This approxima-
tion ratio was later improved by [28] to ≈ .8776. It remains an interesting question how
much this can be improved and whether one approach (or even match) the 0.878 factor
possible for MAXCUT.

13.2 Method overview

13.2.1 Integrality gap

We begin by describing why the standard SDP for MAXBISECTION has a large gap.
Given a graph G = (V,E), this SDP, which is the basis of all previous algorithms for
MAXBISECTION starting with that of Frieze and Jerrum [93], solves for unit vectors vi
for each vertex i ∈ V subject to

∑
i vi = 0, while maximizing the objective function

Ee=(i,j)∈E
1
4
‖vi − vj‖2.

This SDP could have a value of 1 and yet the graph may not have any bisection of
value more than 0.95 (in particular the optimum is bounded away from 1), as the following
example shows. Take G to be the union of three disjoint copies of K2m,m (the complete
2m × m bipartite graph) for some even m. It can be seen that every bisection fails to
cut at least m2/2 edges, and thus has value at most 11/12. On the other hand, the SDP
has a solution of value 1. Let ω = e2πi/3 be the primitive cube root of unity. In the two-
dimensional complex plane, we assign the vector/complex number ωi−1 (resp. −ωi−1) to
all vertices in the larger part (resp. smaller part) of the ith copy of K2m,m for i = 1, 2, 3.
These vectors sum up to 0 and for each edge, the vectors associated with its endpoints are
antipodal.

For all CSPs, a tight connection between integrality gaps (for a certain “canonical”
SDP) and inapproximability results is now established [189]. The above gap instance sug-
gests that the picture is more subtle for CSPs with global constraints — in this work we
give an algorithm that does much better than the integrality gap for the “basic” SDP. Could
a stronger SDP relaxation capture the complexity of approximating CSPs with global con-
straints such as MAXBISECTION? It is worth remarking that we do not know whether an
integrality gap instance of the above form (i.e., 1 − ε SDP optimum vs. say 0.9 MAXBI-
SECTION value) exists even for the basic SDP augmented with triangle inequalities.

221

13.2.2 Notations

Suppose we are given a graph G = (V,E). We use the following notation: E(U) =
{(u, v) ∈ E : u, v ∈ U} denotes the set of edges within a set of verticesU , edges(U1, U2) =
{(u, v) ∈ E : u ∈ U1, v ∈ U2} denotes the set of edges between two sets of vertices U1

and U2, and G[U] denotes the subgraph of G induced by the set U .

Definition 13.2.1 (Value and bias of cuts). For a cut (S, V \ S) of a graph G = (V,E),
we define its value to be |edges(S,V \S)|

|E| (i.e., the fraction of edges which cross the cut) if G is

unweighted, and w(edges(S,V \S))
w(E)

if G is edge-weighted with weight function w : E → R≥0

(where for F ⊆ E, w(F) =
∑

e∈F w(e)).

We define the bias β ∈ [0, 1] of a cut (S, V \ S) to be β = 1
|V | ·

∣∣∣|S| − |V \ S|∣∣∣, and we say
that the cut (S, V \ S) is β-biased. (Note that a 0-biased cut is a bisection.)

Recall that the normalized Laplacian of G is a matrix LG whose rows and columns
correspond to vertices of G that is defined as follows

LG(u, v) =


1, if u = v and du 6= 0,

−1/
√
dudv, if (u, v) ∈ E,

0, otherwise,

where du is the degree of the vertex u. Let λ2(LG) be the second smallest eigenvalue of
LG. We abuse the notation by letting λ2(G) = λ2(LG). We define the volume of a set
U ⊆ V as vol(U) = volG(U) =

∑
u∈U du.

We will use the following version of Cheeger’s inequality.

Theorem 13.2.2 (Cheeger’s inequality for non-regular graphs [67]). For every graph G =
(V,E),

λ2(G)/2 ≤ φ(G) ≤
√

2λ2(G),

where φ(G) is the expansion of G,

φ(G) ≡ min
S⊆V

|edges(S, V \ S)|
min(vol(S), vol(V \ S))

.

Moreover, we can efficiently find a setA ⊆ V such that vol(A) ≤ vol(V)/2 and |edges(A, V \
A)|/ vol(A) ≤

√
2λ2(G).

For any two disjoint sets X, Y ⊆ V , let uncut(X, Y) = |E(X) +E(Y)|/|E(X ∪ Y)|
be the fraction of edges of G[X ∪ Y] that do not cross the cut (X, Y). We say that a cut
(X, Y) of V is perfect if uncut(X, Y) = 0.

222

13.2.3 Our approach

In this section, we give a brief overview of our algorithm. It is instructive to consider
first the case when G has a perfect bisection cut. In this case, G is a bipartite graph. If
G has only one connected component, each part of this component has the same number
of vertices, so this is the desired bisection. Now assume that G has several connected
components. Then each connected component C of G is a bipartite graph with two parts
XC and YC . Since all edges are cut in the optimal solution, XC must lie on one side of the
optimal cut and YC on the other. So in order to find a perfect bisection (X, Y), for every
connected component C we need to either (i) add XC to X and YC to Y or (ii) add XC to
Y and YC to X so that |X| = |Y | = |V |/2. We can do that using dynamic programming.

Our algorithm for almost satisfiable instances proceeds in a similar way. Assume that
the optimal bisection cuts a (1− ε) fraction of edges.

1. In a preprocessing step, we use the algorithm of Goemans and Williamson [94] to
find an approximate maximum cut in G. A fraction 1 − O(

√
ε) of edges cross this

cut. We remove all uncut edges and obtain a bipartite graph. We denote the parts of
this graph by A and B. (Of course, in general |A| 6= |B|.)

2. Then we recursively partition G into pieces W1, . . . ,Ws using Cheeger’s Inequality
(see Lemma 13.3.1). Every piece is either a sufficiently small subgraph, which
contains at most an ε fraction of all vertices, or is a spectral expander, with λ2 ≥ ε2/3.
There are very few edges between different pieces, so we can ignore them later. In
this step, we obtain a collection of induced subgraphs G[W1], . . . , G[Ws] with very
few edges going between different subgraphs.

3. Now our goal is to find an “almost perfect” cut in every G[Wi] , then combine these
cuts and get a bisection of G. Note that every G[Wi] is bipartite and therefore has a
perfect cut (since G is bipartite after the preprocessing step). However, we cannot
restrict our attention only to this perfect cut since the optimal solution (S, T) can
cut G[Wi] in another proportion. Instead, we prepare a listWi of “candidate cuts”
for each G[Wi] that cut Wi in different proportions. One of them is close to the cut
(Wi ∩ S,Wi ∩ T) (the restriction of the optimal cut to Wi).

4. IfG[Wi] is an expander, we find a candidate cut that cutsG[Wi] in a given proportion
by moving vertices from one side of the perfect cut (Wi ∩ A,Wi ∩ B) to the other,
greedily (see Lemma 13.4.1 and Lemma 13.4.2).

5. IfG[Wi] is small, we find a candidate cut that cutsG[Wi] in a given proportion using
semi-definite programming (see Lemma 13.4.3 and Corollary 13.4.4). We solve an

223

SDP relaxation similar to the Goemans–Williamson relaxation [94] with “`2
2-triangle

inequalities”, and then find a cut by using hyperplane or threshold rounding.

In fact, the cut that we find can be more unbalanced than (Wi∩S,Wi∩T) but this is
not a problem since the set Wi is small. Note however that if a cut of another piece
Wj is very unbalanced than we might need to find a cut of Wi that is unbalanced
in the other direction. So it is important that the candidate cut of Wi is at least as
unbalanced as (Wi ∩ S,Wi ∩ T).

6. Finally, we combine candidate cuts of subgraphs G[Wi] into one balanced cut of the
graph G, in the optimal way, using dynamic programming (see Lemma 13.5.1).

13.2.4 Organization

The rest of the chapter is devoted to the full description and proof of the algorithm. In
Section 13.3, we partition the graph into expanders and small pieces, after proper pre-
processing. In Section 13.4, we produce a list of candidate cuts for each expander and
small piece, by different methods. In Section 13.5, we show how to choose one candi-
date cut for each part. In Section 13.6, we put everything together to finish the proof of
Theorem 13.1.3.

13.3 Preprocessing and partitioning graph G

In this section, we present the preprocessing and partitioning steps of our algorithms. We
will assume that we know the value of the optimal solution opt = 1 − εopt (with a high
precision). If we do not, we can run the algorithm for many different values of ε and output
the best of the bisection cuts we find.

13.3.1 Preprocessing: Making G bipartite and unweighted

In this section, we show that we can assume that the graph G is bipartite, with parts A and
B, unweighted, and that |E| ≤ O(|V |/ε2opt).

First, we “sparsify” the edge-weighted graph G = (V,E), and make the graph un-
weighted: we sampleO(ε−2

opt|V |) edges (according to the weight distribution) with replace-
ment from G, then with high probability, every cut has the same cost in the original graph

224

as in the new graph, up to an additive error εopt (by Chernoff’s bound). So we assume that
|E| ≤ O(ε−2

opt|V |).

We apply the algorithm of Goemans and Williamson to G and find a partitioning of G
into two pieces A and B so that only an O(

√
εopt) fraction of edges lies within A or within

B.

13.3.2 Partitioning

In this section, we describe how we partition G into pieces.

Lemma 13.3.1. Given a graph G = (V,E), and parameters δ ∈ (0, 1) and λ ∈ (0, 1)
such that |E| = O(|V |/δ2), we can find a partitioning of V into disjoint sets U1, . . . , Up
(“small sets”), and V1, . . . , Vq (“expander graphs”):

V =
⋃
i

Ui ∪
⋃
j

Vj,

in polynomial time, so that

1. |Ui| ≤ δ|V | for each 1 ≤ i ≤ p;

2. λ2(G[Vi]) ≥ λ for each 1 ≤ i ≤ q;

3.
∑

i |E(Ui)|+
∑

j |E(Vj)| ≥ (1−O(
√
λ log(1/δ)))|E|.

Proof. We start with a trivial partitioning {V } of V and then iteratively refine it. Initially,
all sets in the partitioning are “active”; once a set satisfies conditions 1 or 2 of the lemma,
we permanently mark it as “passive” and stop subdividing it. We proceed until all sets are
passive. Specifically, we mark a set S as passive in two cases. First, if |S| ≤ δ|V | then we
add S to the family of sets Ui. Second, if λ2(G[S]) ≥ λ then we add S to the family of
sets Vi.

We subdivide every active S into smaller pieces by applying the following easy corol-
lary of Cheeger’s inequality (Theorem 13.2.2) to H = G[S].

Corollary 13.3.2. Given a graph H = (S,E(H)) and a threshold λ > 0, we can find, in
polynomial time, a partition S1, S2, · · · , St of S such that

1. |E(Si)| ≤ |E(S)|/2 or λ2(H[Si]) ≥ λ, for each 1 ≤ i ≤ t.

2.
∑

i<j |edges(Si, Sj)| ≤
√

8λ|E(H)|.

225

3. each graph H[Si] is connected.

Proof. If λ2(H) ≥ λ then we just output a trivial partition {S}. Otherwise, we apply
Theorem 13.2.2 to H1 = H , find a set S1 s.t. volH1(S1) ≤ volH1(S)/2 and |edges(S1, S \
S1)|/ volH1(S1) ≤

√
2λ2(H1) ≤

√
2λ. Then we remove S1 from H1, obtain a graph H2

and iteratively apply this procedure to H2. We stop when either λ2(Hi) ≥ λ or |E(Hi)| ≤
|E(S)|/2.

We verify that the obtained partitioning S1, . . . , St of S satisfies the first condition. For
each i ∈ {1, . . . , t−1}, we have |E(Si)| ≤ volHi(Si)/2 ≤ volHi(V (Hi))/4 = E(Hi)/2 ≤
|E(H)|/2. Our stopping criterion guarantees that St satisfies the first condition. We verify
the second condition.

∑
i<j

|edges(Si, Sj)| =
t−1∑
i=1

|edges(Si, V (Hi) \ Si)|

≤
t−1∑
i=1

√
2λ volHi(Si) ≤

√
2λ volH(S) = 2

√
2λ|E(H)|.

Finally, if for some i, H[Si] is not connected, we replace Si in the partitioning with the
connected components of H[Si].

By the definition, sets Ui and Vj satisfy properties 1 and 2. It remains to verify that

p∑
i=1

|E(Ui)|+
q∑
j=1

|E(Vj)| ≥ (1−O(
√
λ log(1/δ)))|E|.

We first prove that the number of iterations is O(log(1/δ)). Note that if S is an active
set and T is its parent then |E(S)| ≤ |E(T)|/2. Set V contains O(|V |/δ2) edges. Every
active set S contains at least δ|V |/2 edges, since |E(S)| ≥ |S| − 1 ≥ δ|V |/2 (we use that
G[S] is connected). Therefore, the number of iterations is O(log2((|V |/δ2)/ (δ|V |/2))) =
O(log 1/δ).

We finally observe that when we subdivide a set S, we cut O(
√
λ|E(S)|) edges. At

each iteration, since all active sets are disjoint, we cut at mostO(
√
λ|E|) edges. Therefore,

the total number of edges cut in all iterations is O(
√
λ log(1/δ))|E|.

226

13.4 Finding cuts in sets Ui and Vi

In the previous section, we showed how to partition the graph G into the union of “small
graphs” G[Ui] and expander graphs G[Vi]. We now show how to find good “candidate
cuts” in each of these graphs.

13.4.1 Candidate cuts in Vi

In this section, first we prove that there is essentially only one almost perfect maximum
cut in an expander graph (Lemma 13.4.1). That implies that every almost perfect cut in
the graph G[Vi] should be close to the perfect cut (Vi∩A, Vi∩B). Using that we construct
a list of good candidate cuts (Lemma 13.4.2). One of these cuts is close to the restriction
of the optimal cut to subgraph G[Vi].

Lemma 13.4.1. Suppose we are given a graph H = (V,E) and two cuts (S1, T1) and
(S2, T2) of G, each of value at least (1− δ). Then

min{volH(S14S2), volH(S14T2)} ≤ 4δ|E|/λ2(H).

Proof. Let

X = S14S2 = (S1 ∩ T2) ∪ (S2 ∩ T1);

Y = S14T2 = (S1 ∩ T1) ∪ (S2 ∩ T2).

Note that V = X ∪ Y . There are at most 2δ|E| edges between X and Y , since

edges(X, Y) ⊂ E(S1) ∪ E(S2) ∪ E(T1) ∪ (T2),

|E(S1) ∪ E(T1)| ≤ δ|E| and |E(S2) ∪ E(T2)| ≤ δ|E|.
On the other hand, by Cheeger’s inequality (Theorem 13.2.2), we have

|edges(X, Y)|
min(volH(X), volH(Y))

≥ λ2(H)/2.

Therefore,

min(volH(X), volH(Y)) ≤ 2|edges(X, Y)|/λ2(H) ≤ 4δ|E|
λ2(H)

.

227

Consider one of the sets Vi. Let H = G[Vi]. Denote Ai = Vi ∩ A and Bi = Vi ∩ B.
We sort all vertices in Ai and Bi w.r.t. their degrees in H . Now we are ready to define
the family of candidates cuts (X0, Y0), . . . , (X|Vi|, Y|Vi|) for G[Vi]. For each j, we define
(Xj, Yj) as follows.

• If j ≤ |Ai| then Xj consists of j vertices of Ai with highest degrees, and Yj consists
of the remaining vertices of H (i.e. Yj contains all vertices of Bi as well as |Ai| − j
lowest degree vertices of Ai).

• If j ≥ |Ai| then Yj consists of |Vi| − j vertices of Bi with highest degrees, and Xj

consists of the remaining vertices of H .

Clearly, |Xj| = j and |Yj| = |Vi| − j. Let (S, T) be the restriction of the optimal bisection
of G to H . We will show that one of the cuts (Xj, Yj) is not much worse than (S, T). By
Lemma 13.4.1 applied to cuts (Ai, Bi) and (S, T) (note that uncut(Ai, Bi) = 0),

min{volH(Ai4S), volH(Ai4T)} ≤ 4 · uncut(S, T)|E(H)|
λ2(H)

.

Assume without loss of generality that volH(Ai4S) ≤ 4E(H)/λ2(H) (otherwise,
rename sets X and Y). We show that volH(Ai4X|S|) ≤ volH(Ai4S). Consider the case
|Ai| ≥ |S|. Note that by the definition of X|S|, the set X|S| has the largest volume among
all subsets of Ai of size at most |S|. Correspondingly, Ai \ X|S| has the smallest volume
among all subsets of Ai of size at least |Ai| − |S|. Finally, note that |Ai \ S| ≥ |Ai| − |S|.
Therefore,

volH(Ai4X|S|) = volH(Ai \X|S|) ≤ volH(Ai \ S) ≤ volH(Ai4S).

The case when |Ai| ≤ |S| is similar. We conclude that

volH(Ai4X|S|) ≤ 4 · uncut(S, T)|EH |/λ2(H).

Therefore, the size of the cut (X|S|, Y|S|) is at least

|E(H)| − volH(Ai4X|S|) ≥
(

1− 4 · uncut(S, T)

λ2(H)

)
|E(H)|.

We have thus proved the following lemma.

Lemma 13.4.2. There is a polynomial time algorithm that given a graph H = G([Vi])
finds a family of cuts Vi = {(X1, Y1), . . . , (X|Vi|, Y|Vi|)} such that for every cut (S, T) of
H there exists a cut (X, Y) ∈ Vi with |X| = min(|S|, |T |) and

uncut(X, Y) ≤ 4 · uncut(S, T)

λ2(H)
.

228

13.4.2 Candidate cuts in Ui

In this section, we show how to find candidate cuts for the small parts, i.e., the induced
subgraphs G[Ui].

Lemma 13.4.3. Suppose we are given a graph H = (U,E) and two parameters 0 ≤ θ ≤
1/2 and 0 < ∆ < 1. Then in polynomial time we can find a cut (X, Y) such that for every
cut (S, T) in H , with |S| ≤ θ|U |, we have

1. uncut(X, Y) ≤ O(
√

uncut(S, T) + uncut(S, T)/∆).

2. |X| ≤ (θ + ∆)|U |.

Proof. Let (S, T) be the maximum cut among all cuts with |S| ≤ t|U | (of course, our al-
gorithm does not know (S, T)). Let εH = uncut(S, T). We may assume that our algorithm
knows the value of εH (with high precision) — as otherwise, we can run our algorithm on
different values of ε and output the best of the cuts the algorithm finds.

We write the following SDP program. For every vertex i ∈ U , we introduce a unit
vector vi. Additionally, we introduce a special unit vector v0.

Maximize
1

|U |
∑
i∈U

〈v0, vi〉

Subject to
1

4|E|
∑

(i,j)∈E

‖vi + vj‖2 ≤ εH

‖vi‖2 = 1 ∀i ∈ V ∪ {0}

|〈vi + vj, v0〉| ≤
‖vi + vj‖2

2
∀i, j ∈ V.

The “intended solution” to this SDP is vi = v0 if i ∈ T and vi = −v0 if i ∈ S (vector v0 is
an arbitrary unit vector). Clearly, this solution satisfies all SDP constraints. In particular, it
satisfies the last constraint (“an `2

2-triangle inequality”) since the left hand side is positive
only when vi = vj , then |〈vi + vj, v0〉| =

‖vi+vj‖2
2

= 2. The value of this solution is
(|T | − |S|)/|U | ≥ 1− 2θ.

We solve the SDP and find the optimal SDP solution {vi}. Note that
∑

i∈U〈v0, vi〉 ≥
(1− 2θ)|U |.

Let ∆′ = 2∆/3. Choose r ∈ [∆′, 2∆′] uniformly at random. Define a partition of U
into sets Zk, 0 ≤ k < 1/∆′, as follows: let Zk = {i : k∆′+r < |〈v0, vi〉| ≤ (k+1)∆′+r}

229

for k ≥ 1 and Z0 = {i : −∆′ − r ≤ 〈v0, vi〉 ≤ ∆′ + r}. We bound the probability that the
endpoints of an edge (i, j) belong to different sets Zk. Note that if no point from the set
{±(k∆′+ r) : k ≥ 1} lies between |〈vi, v0〉| and |〈vj, v0〉| then i and j belong to the same
set Zk. The distance between |〈vi, v0〉| and |〈vj, v0〉| is at most |〈vi + vj, v0〉|. Therefore,
the probability (over r) that i and j belong to different sets Zk is at most |〈vi + vj, v0〉|/∆′.
So the expected number of cut edges is at most

1

∆′

∑
(i,j)∈E

|〈vi + vj, v0〉| ≤
1

2∆′

∑
(i,j)∈E

‖vi + vj‖2 ≤ 2|E|εH
∆′

. (13.1)

For each k ≥ 1, let Z+
k = {i ∈ Zk | 〈vi, v0〉 > 0} and Z−k = {i ∈ Zk | 〈vi, v0〉 < 0}.

We use hyperplane rounding of Goemans and Williamson [94] to divide Z0 into two sets
Z+

0 and Z−0 . We are ready to define sets X and Y . For each k, we add vertices from the
smaller of the two sets Z+

k and Z−k to X , and vertices from the larger of them to Y .

Now we bound uncut(X, Y). Note that

|uncut(X, Y)| ≤
∑
k<l

|edges(Zk, Zl)|+
∑
k≥0

(|E(Z+
k)|+ |E(Z−k)|).

We have already shown that
∑

k<l |edges(Zk, Zl)| is less than 2εH |E|/∆′ in expectation.
If (i, j) ∈ E(Z+

k) or (i, j) ∈ E(Z−k) for k ≥ 1 then |〈vi + vj, v0〉| ≥ ∆′. Therefore,∑
k≥1

(|E(Z+
k)|+ |E(Z−k)|) ≤ 2εH |E|

∆′
=

3εH |E|
∆

.

Finally, note that when we divide Z0, the fraction of edges of E(Z0) that do not cross the
random hyperplane is O(

√
ε0) (in expectation) where

ε0 =
1

4|E(Z0)|
∑

(i,j)∈E(Z0)

‖vi + vj‖2 ≤ 1

4|E(Z0)|
∑

(i,j)∈E

‖vi + vj‖2 ≤ εH · |E|
|E(Z0)|

.

Thus,

E
[
|E(Z+

0)|+ |E(Z−0)|
∣∣r] ≤ O

(√
εH |E|/|E(Z0)

)
|E(Z0)| ≤ O(

√
εH)|E|.

Combining the above upper bounds, we conclude that

E[uncut(X, Y)] ≤ O
(εH

∆
+
√
εH

)
.

230

Finally, we estimate the size of the setX . Note that if vi ∈ Z+
k then |〈vi, v0〉−k∆′| ≤ 3∆′,

if vi ∈ Z−k then |〈vi, v0〉+ k∆′| ≤ 3∆′. Therefore,
∑

i∈Zk〈vi, v0〉 ≤ k(|Z+
k | − |Z

−
k |)∆′ +

3∆′|Zk|, which implies∑
k

k
(
|Z+

k | − |Z
−
k |
)
∆′ ≥

∑
i∈U

〈vi, v0〉 − 3∆′|U | ≥ (1− 2θ − 3∆′)|U | .

Therefore,

|Y | − |X| =
∑
k

∣∣|Z+
k | − |Z

−
k |
∣∣ ≥ ∑

k:|Z+
k |−|Z

−
k |>0

(
|Z+

k | − |Z
−
k |
)

≥
∑

k:|Z+
k |−|Z

−
k |>0

(k∆′)
(
|Z+

k | − |Z
−
k |
)

≥
∑
k

k
(
|Z+

k | − |Z
−
k |
)
∆′ ≥ (1− 2θ − 3∆′)|U | ,

implying |X| ≤ (θ + 3∆′/2)|U | = (θ + ∆)|U |.

We apply this algorithm to every graph G[Ui] and every θ = k/|Ui|, 0 < k ≤ |Ui|/2,
and obtain a list of candidate cuts. We get the following corollary.

Corollary 13.4.4. There is a polynomial time algorithm that given a graph H = G([Ui])
and a parameter ∆ ∈ (0, 1) finds a family of cuts Ui such that for every cut (S, T) of H
there exists a cut (X, Y) ∈ Ui with |X| ≤ min(|S|, |T |) + ∆|Ui| and

uncut(X, Y) ≤ O

(√
uncut(S, T) +

uncut(S, T)

∆

)
.

13.5 Combining candidate cuts

In this section, we show how to choose one candidate cut for each set Ui and Vj .

For brevity, we denote Wi = Ui for i ∈ {1, . . . , p} and Wp+j = Vj for j ∈ {1, . . . , q}.
Similarly,Wi = Ui for i ∈ {1, . . . , p} andWp+j = Vj for j ∈ {1, . . . , q} ThenW1, . . . ,Wp+q

is a partitioning of V , andWi is a family of cuts of G[Wi].

We say that a cut (X, Y) of G is a combination of candidate cuts from Wi if the
restriction of (X, Y) to each Wi belongs toWi (we identify cuts (S, T) and (T, S)).

231

Lemma 13.5.1. There exists a polynomial time algorithm that given a graph G = (V,E)
and a threshold ζ ∈ [0, 1/2], sets Wi and families of cuts Wi, finds the maximum cut
among all combination cuts (X, Y) with |X|, |Y | ∈ [(1/2− ζ)|V |, (1/2 + ζ)|V |].

Proof. We solve the problem by dynamic programming. Denote Hk = G[
⋃k
i=1 Wi]. For

every a ∈ {1, . . . , p+ q} and b ∈ {1, . . . , |G[Ha]|}, let Q[a, b] be the size of the maximum
cut among all combination cuts (X, Y) on Ha with |X| = b (Q[a, b] equals −∞ if there
are no such cuts). We loop over all value of a from 1 to p+ q and fill out the table Q using
the following formula

Q[a, b] = max
(X,Y)∈Wa or (Y,X)∈Wa

(Q[a− 1, b− |X|] + |edges(X, Y)|),

where we assume that Q[0, 0] = 0, and Q[a, b] = −∞ if a ≤ 0 and b ≤ 0 and (a, b) 6=
(0, 0).

Finally the algorithm outputs maximum among T [p + q, d(1/2 − ζ)|V |e], . . . , T [p +
q, b(1/2 + ζ)|V |c], and the corresponding combination cut.

Finally, we prove that there exists a good almost balanced combination cut.

Lemma 13.5.2. Let G = (V,E) be a graph. Let V =
⋃
i Ui∪

⋃
j Vj be a partitioning of V

that satisfies conditions of Lemma 13.3.1, and Ui and Vj be families of candidate cuts that
satisfy conditions of Corollary 13.4.4 and Lemma 13.4.2, respectively. Then there exists a
composition cut (X, Y) such that∣∣∣∣ |X||V | − 1

2

∣∣∣∣ ≤ max(∆, δ)

and

uncut(X, Y) ≤ O

(√
λ log(1/δ) +

√
uncut(Sopt, Topt) + uncut(Sopt, Topt)

(1

λ
+

1

∆

))
,

where (Sopt, Topt) is the optimal bisection of G.

Proof. Consider the optimal bisection cut (Sopt, Topt). We choose a candidate cut for every
set Vi. By Lemma 13.4.2, for every Vi there exists a cut (Xi, Yi) ∈ Vi such that

uncut(Xi, Yi) ≤ 4uncut(Sopt ∩ Vi, Topt ∩ Vi)/λ2(G[Vi]) ≤ 4uncut(Sopt ∩ Vi, Topt ∩ Vi)/λ,
(13.2)

232

and |Xi| = min(|Sopt ∩ Vi|, |Topt ∩ Vi|). We define sets XV and Y V as follows. For
each i, we add Xi to XV if |Xi| = |Sopt ∩ Vi|, and we add Yi to XV , otherwise (i.e. if
|Yi| = |Sopt ∩ Vi|). Similarly, we add Yi to Y V if |Yi| = |Topt ∩ Vi|, and we add Xi to
Y V , otherwise. Clearly, (XV , Y V) is a candidate cut of

⋃
i Vi and |XV | = |Sopt ∩

⋃
i Vi|.

Assume without loss of generality that |XV | ≥ |Y V |.
Now we choose a candidate cut for every set Ui. By Corollary 13.4.4, for every Ui

there exists a cut (X ′i, Y
′
i) ∈ Ui such that

uncut(X ′i, Y
′
i) ≤ O

(√
uncut(Sopt ∩ Ui, Topt ∩ Ui) +

uncut(Sopt ∩ Ui, Topt ∩ Ui)
∆

)
,

(13.3)

and |X ′i| ≤ min(|Sopt ∩ Ui|, |T ∩ Ui|) + ∆|Ui|. We assume that X ′i is the smaller of the
two sets X ′i and Y ′i .

We want to add one of the sets X ′i and Y ′i to XV , and the other set to Y V so that the
resulting cut (X, Y) is almost balanced. We setX = XV and Y = Y V . Then consequently
for every i from 1 to p, we add X ′i to the larger of the sets X and Y , and add Y ′i to the
smaller of the two sets (recall thatX ′i is smaller than Y ′i). We obtain a candidate cut (X, Y)
of G.

We show that
∣∣|X|/|V | − 1/2

∣∣ ≤ max(∆, δ). Initially, |X| = |XV | ≥ |Y | = |Y V |.
If at some point X becomes smaller than Y then after that

∣∣|X| − |Y |∣∣ ≤ δ|V | since
at every step

∣∣|X| − |Y |∣∣ does not change by more than |Ui| ≤ δ|V |. So in this case∣∣|X|/|V | − 1/2
∣∣ ≤ δ. So let us assume that the set X always remains larger than Y . Then

we always add X ′i to X and Y ′i to Y . We have

|X| =
∣∣∣XV ∪

⋃
i

X ′i

∣∣∣
≤

q∑
j=1

|Sopt ∩ Vj|+
p∑
i=1

(min(|Sopt ∩ Ui|, |Topt ∩ Ui|) + ∆|Ui|)

≤
q∑
j=1

|Sopt ∩ Vj|+
p∑
i=1

|Sopt ∩ Ui|+ ∆|V |

= |Sopt|+ ∆|V | = (1/2 + ∆)|V |.

It remains to bound uncut(X, Y). We have,

uncut(X, Y)|E| ≤
∑

1≤i<j≤p

|edges(Ui, Uj)|+
∑

1≤i<j≤q

|edges(Vi, Vj)|+
∑

1≤i≤p
1≤j≤q

|edges(Ui, Vj)|

233

+
∑

1≤i≤p

uncut(X ′i, Y
′
i)|E(Ui)|+

∑
1≤j≤q

uncut(Xj, Yj)|E(Vj)| .

By Lemma 13.3.1, the sum of the first three terms is at mostO(
√
λ log(1/δ))|E|. From

(13.3), we get∑
1≤i≤p

uncut(X ′i, Y
′
i)|E(Ui)|

≤O(1)

p∑
i=1

(√
uncut(Sopt ∩ Ui, Topt ∩ Ui) + uncut(Sopt ∩ Ui, Topt ∩ Ui)/∆

)
|E(Ui)|

=O(1)

p∑
i=1

√(
|E(Sopt ∩ Ui)|+ |E(Topt ∩ Ui)|

)
·
√
|E(Ui)|

+O(1)

p∑
i=1

|E(Sopt ∩ Ui)|+ |E(Topt ∩ Ui)|
∆

≤O(1)

√√√√ p∑
i=1

(
|E(Sopt ∩ Ui)|+ |E(Topt ∩ Ui)|

)
·

√√√√ p∑
i=1

|E(Ui)|+O

(
uncut(Sopt, Topt) · |E|

∆

)

≤O
(√

uncut(Sopt, Topt) +
uncut(Sopt, Topt)

∆

)
· |E|.

From (13.2), we get∑
j

uncut(Xj, Yj)|E(Vj)|

≤
∑
j

4 · uncut(Sopt ∩ Vj, Topt ∩ Vj)|E(Vj)|
λ

≤ 4 · uncut(Sopt, Topt)

λ
· |E| .

13.6 The bisection algorithm – proof of Theorem 13.1.3

First, we run the preprocessing step described in Section 13.3.1. Then we use the algo-
rithm from Lemma 13.3.1 with λ = ε

2/3
opt and δ = εopt to find a partition of V into sets

U1, . . . , Up, V1, . . . , Vq. We apply Corollary 13.4.4 with ∆ =
√
εopt to all sets Ui, and ob-

tain a list Ui of candidate cuts for each set Ui. Then we apply Lemma 13.4.2 and obtain

234

a list Vj of candidate cuts for each set Vj . Finally, we find the optimal combination of
candidate cuts using Lemma 13.5.1. Denote it by (X, Y). By Lemma 13.5.2, we get that
uncut(X, Y) is at most

O

(√
λ log(1/δ) +

√
εopt +

εopt
λ

+
εopt
∆

)
≤ O(3

√
εopt log(1/εopt)),

and ∣∣∣∣ |X||V | − 1

2

∣∣∣∣ ≤ max(∆, δ) = O(
√
εopt).

By moving at most O(
√
εopt)|V | vertices of the smallest degree from the larger size of

the cut to smaller part of the cut, we obtain a balanced cut. By doing so, we increase
the number of uncut edges by at most O(

√
εopt|E|). The obtained bisection cut cuts a

1−O(3
√
εopt log(1/εopt)) fraction of all edges.

It is easy to see that a slight modification of the algorithm leads to the following exten-
sion of Theorem 13.1.3.

Theorem 13.6.1. There is a randomized polynomial time algorithm that given an edge-
weighted graph G with a β-biased cut of value (1 − ε) finds a β-biased cut of value
(1−O(3

√
ε log(1/ε) +

√
ε/(1− β))).

Proof. We use the algorithm above, while changing DP algorithm used by Lemma 13.5.1
to find the best combination with bias β ± t (where t = O(

√
ε)). We modify the proof of

Lemma 13.5.2 to show that there exists a β± t cut of value 1−O(
√
ε). As previously, we

first find sets X = XV and Y = Y V with |XV | ≥ |Y V |. Now, however, if |X| − |Y | >
β|V | then we add X ′i to X and Y ′i and Y ; otherwise, we add X ′i to Y and Y ′i and X . We
argue again that if at some point the difference

∣∣|X| − |Y |∣∣ becomes less than O(
√
ε|V |),

then after that
∣∣|X|− |Y |∣∣ = O(

√
ε|V |), and therefore, we find a cut with bias β+O(

√
ε).

Otherwise, there are two possible cases: either we always have |X| − |Y | > β|V |, and
then we always add X ′i to X and Y ′i to Y , or we always have |X| − |Y | > β|V |, and then
we always add X ′i to Y and Y ′i to X . Note, however, that in both cases

∣∣|X| − |Y | −β|V |∣∣
decreases by |Y ′i | − |X ′i| ≥

∣∣|Sopt ∩ Ui| − |Topt ∩ Ui|
∣∣− 2∆|Ui| after each iteration. Thus

after all iterations, the value of
∣∣|X| − |Y | − β|V |∣∣ decreases by at least

p∑
i=1

∣∣∣|Sopt ∩ Ui| − |Topt ∩ Ui|
∣∣∣− 2∆|Ui| ≥

∣∣∣∣∣Sopt ∩
⋃
i

Ui
∣∣− ∣∣Topt ∩⋃

i

Ui
∣∣∣∣∣− 2∆

∣∣⋃
i

Ui
∣∣.

Taking into the account that |XV | − |Y V | = |Sopt ∩
⋃
i Vi| − |Topt ∩

⋃
i Vi|, we get the

following bound for the bias of the final combination cut (X, Y),

235

∣∣∣|X| − |Y | − β|V |∣∣∣
≤
∣∣∣∣∣Sopt∩

⋃
i

Vi
∣∣− ∣∣Topt∩⋃

i

Vi
∣∣−β|V |∣∣∣− ∣∣∣∣∣Sopt∩

⋃
i

Ui
∣∣+ ∣∣Topt∩⋃

i

Ui
∣∣∣∣∣+ 2∆

∣∣⋃
i

Ui
∣∣

≤
∣∣∣|Sopt| − |Topt| − β|V |

∣∣∣+ 2∆|V | = 2∆|V |.

We get the exact β-biased cut by moving at most O(
√
ε)|V | vertices of the smallest

degree from the larger size of the cut to smaller part of the cut. By doing so, we lose at
most O(

√
ε)|E|/(1− β) cut edges. Therefore the theorem follows.

236

Chapter 14

A robust isomorphism algorithm for
trees

14.1 Introduction

The graph isomorphism problem (GISO) is arguably one of the most famous computa-
tional problems on graphs: given two graphs G and H , we have to decide whether they
are isomorphic, i.e. there exists a bijection π : V (G) → V (H) such that there is an edge
(u, v) ∈ E(G) if and only if there is an edge (π(u), π(v)) ∈ E(H). Here we use V (G)
to denote the set of vertices in G, and use E(G) to denote the set of edges in G. GISO

is one of the rare, intriguing problems in NP that is neither known to be polynomial-time
tractable nor NP-Complete. Resolving the complexity of GISO is one of major problems
in graph theory and it is still open despite many decades of effort.

Graph isomorphism algorithms are also very useful in practice to test for isomorphism
between any structures that can be encoded as graphs. A few examples of its applications
include: image analysis [82], isomorphisms of molecule (for chemistry) [84, 85], and data
mining [197]. In many settings, even when the two graphs are not completely isomorphic,
we are still interested in measuring how similar the two graphs are. The following opti-
mization problem which captures the similarity between the two given graphs was studied
in literature (e.g. [17, 25]).

Definition 14.1.1 (MAXGISO, rephrase of Definition 2.1.6). For two graphs G and H
with the same number of vertices and a bijection π : V (G) → V (H), let val(G,H, π) =
|{(u, v) ∈ E(G) | (π(u), π(v)) ∈ E(H)}|. Let opt(G,H) = maxπ val(G,H, π). In the
maximum graph isomorphism problem (MAXGISO), the objective is to compute opt(G,H)

237

for given two graphs G and H .

Observe that GISO is a special case of the above optimization variant since opt(G,H) =
max{|E(G)|, |E(H)|} if and only ifG andH are isomorphic, and any π such that val(G,H, π) =
max{|E(G)|, |E(H)|} is an isomorphism.

In most applications of GISO, we are interested in graphs which are almost isomorphic
to each other. We say that G and H are (1 − ε)-isomorphic when val(G,H, π) = (1 −
ε) max{E(G), E(H)}. In fact, even graphs which are isomorphic to each other may get
perturbed slightly in practice, due to some small noise. This motivates us to introduce
the following definition of robust graph isomorphism algorithm, which certifies when two
graphs are (1− ε)-isomorphic when ε is very small.

Definition 14.1.2 (ROBUSTGISO, rephrase of Definition 2.2.7). Given two graphs G and
H on n vertices, we say A is a robust graph isomorphism algorithm for G and H if there
exists a function f : [0, 1] → [0, 1] satisfying limε→0+ f(ε) = 0, such that A outputs
a bijection π : V (G) → V (H) with val(G,H, π) ≥ (1 − f(ε)) max{|E(G)|, |E(H)|}
whenever opt(G,H) = (1− ε) max{|E(G)|, |E(H)|}, for any ε ≥ 0.

A robust graph isomorphism algorithm is a graph isomorphism algorithm (when ε is
so small that f(ε) < 1

max{|E(G)|,|E(H)|}). Therefore, we currently do not expect an efficient
robust graph isomorphism algorithm given that a polynomial-time algorithm for GISO is
not yet known. However, GISO is known to be polynomial-time tractable for many special
cases such as trees [134], planar graphs [122], graphs of bounded-degree [167], and graphs
of bounded tree-width [46]. This leads to the following natural question:

Question 14.1.3. Can polynomial-time algorithms for graph isomorphism (on restricted
families of instances) be made robust?

14.1.1 Our contributionss and overview of the proofs

In this chapter, we present a robust isomorphism algorithm for trees. The well known
canonicalization approach for trees seems quite sensitive to the ε-fraction of “noisy edges”.
Our algorithm is inspired by a property testing algorithm by Newman and Sohler [178]
which implies a PTAS for MAXGISO on bounded-degree trees. In Section 14.2, we first
show the following much weaker statement compared to Newman and Sohler’s theorem,
but with a simpler proof. 1

1The simple proof can be modified to give robust isomorphism algorithm for bounded-degree planar
graphs and graphs with bounded-width as well.

238

Theorem 14.1.4. Given two n-vertex B-degree bounded forests G and H , suppose that
opt(G,H) ≥ (1 − ε)n. There is a polynomial-time algorithm to find a bijection σ :
V (G)→ V (H) such that val(G,H, σ) ≥ (1− 20

√
Bε)n.

Then we reduce the general trees to bounded-degree trees, and prove that

Theorem 14.1.5. Given two n-vertex trees G and H such that opt(G,H) ≥ (1 − ε)n,
there is a polynomial-time algorithm to find a bijection σ : V (G) → V (H) where
val(G,H, σ) ≥ (1− 200ε1/4)n.

To prove Theorem 14.1.5, by removing a tiny fraction of edges, we decompose the two
input trees into two collections of trees where each tree has at most one high-degree vertex.
We match the high-degree vertices using the maximum weight bipartite graph matching
algorithm with carefully designed weights. Then we use the algorithm in Theorem 14.1.4
to match up the low-degree vertices.

14.2 The algorithm

In this section, we prove Theorem 14.1.5, which is restated as follows.

Theorem 14.1.5 (restated). Given two n-vertex trees G and H such that opt(G,H) ≥
(1−ε)n, there is a polynomial-time algorithm to find a bijection σ : V (G)→ V (H) where
val(G,H, σ) ≥ (1− 200ε1/4)n.

We prove Theorem 14.1.5 by first proving Theorem 14.1.4 which says that when G
and H are bounded-degree forests, there is a robust isomorphism algorithm for G and H .
Then, we reduce the general trees to bounded-degree trees.

Theorem 14.1.4 (restated). Given two n-vertex B-degree bounded forests G and H ,
suppose that opt(G,H) ≥ (1 − ε)n. There is a polynomial-time algorithm to find a
bijection σ : V (G)→ V (H) such that val(G,H, σ) ≥ (1− 20

√
Bε)n.

Proof sketch. Let k = d1/
√
Bεe. There is a simple way to remove at most n/k edges

from G to obtain a forest G′, such that each tree in G′ has at most kB vertices. We do the
same decomposition for H to obtain a forest H ′. Since we removed at most n/k edges
from both G and H , we have

opt(G′, H ′) ≥ opt(G,H)− 2n/k ≥ (1− ε− 2/k)n.

239

Now the algorithm lets G′′ = G′, H ′′ = H ′. The algorithm chooses a tree TG from G′′

and a tree TH from H ′′ so that TG is isomorphic to TH , lets σ map the vertices in TG to
the vertices in TH according to the isomorphism, and removes TG from G′′, TH from H ′′.
The algorithm iterates this process until no such pair of trees can be found in G′′ and H ′′.
Finally the algorithm extends σ to a bijection between vertex sets of G and H .

It is easy to see that, when the algorithm terminates, the total number of trees in G′′ is
at most 4(|E(G′)|+ |E(H ′)| − 2opt(G′, H ′)) ≤ 8εn (because |E(G′)| ≤ (1− 2/k)n and
|E(H ′)| ≤ (1 − 2/k)n). Since each tree has at most kB edges, σ loses at most kB · 8εn
edges. Therefore,

val(G,H, σ) ≥ val(G′, H ′, σ) ≥ opt(G′, H ′)−8kBεn ≥ (1−2/k−9kBε)n ≥ (1−20
√
Bε)n.

Now we introduce the following definition.

Definition 14.2.1. We call a tree T a B-tree if there is one vertex with degree at least B,
while other vertices have degree less than B. The vertex with highest degree is referred to
as the center of T. Let cdeg(T) be the degree of the center.

We will use Theorem 14.1.4 to prove the following Lemma 14.2.2, which says that
there is an robust isomorphism algorithm for forests of B-trees and degree bounded trees.

Lemma 14.2.2. Let G and H be two n-vertex forests of B-trees and (B − 1)-degree
bounded trees. Given that opt(G,H) ≥ |E(G)|−εn, there is a polynomial-time algorithm
to find a bijection σ : V (G)→ V (H) such that val(G,H, σ) ≥ opt(G,H)− 100B

√
εn.

We defer the proof of Lemma 14.2.2 to the next subsection. Now we prove Theo-
rem 14.1.5 using Lemma 14.2.2.

Proof of Theorem 14.1.5 from Lemma 14.2.2. For any integer parameter B ≥ 2, one can
remove at most 2n/B edges from G to get a forest of B-trees and (B−1)-degree bounded
trees, namely G′. (To see this, simply root G using an arbitrary vertex, and for each
vertex whose degree is no less than B, remove the edge to its parent.) We do the similar
decomposition for H to get H ′. Since we removed at most n/B edges from both G and
H , we have opt(G′, H ′) ≥ opt(G,H) − 4n/B ≥ (1 − ε − 4/B)n. Also observe that
|E(G′)| − opt(G′, H ′) ≤ |E(G)| − opt(G,H) ≤ εn.

Now we apply the algorithm in Lemma 14.2.2 to G′ and H ′ to get a bijection σ. We
have

val(G,H, σ) ≥ val(G′, H ′, σ) ≥ opt(G′, H ′)− 100B
√
εn ≥ (1− ε− 4/B − 100B

√
ε)n.

240

If we take B = dε−1/4e, the algorithm finds a bijection σ such that val(G,H, σ) ≥
(1− 200ε1/4)n.

14.2.1 Robust isomorphism algorithm for B-trees

In this subsection, we prove Lemma 14.2.2. Let G consist of G1, G2, . . . , Gp and G̃ where
G1, G2, . . . , Gp are B-trees and G̃ is a forest of (B − 1)-degree bounded trees; let H
consist of H1, H2, . . . , Hq and H̃ where H1, H2, . . . , Hq are B-trees and H̃ is a forest of
(B − 1)-degree bounded trees.

For any two B-trees Gi and Hj , let Ec(Gi) and Ec(Hj) be the set of edges incident
to the centers of Gi and Hj . Now let C(Gi, Hj) be the minimum number of edges in
Ec(Gi) ∪ Ec(Hj) one has to remove from Gi and Hj , so that the connected components
where the two centers are in are isomorphic and the isomorphism maps the center of Gi to
the center of Hj . Also, let Ce(Gi, Hj) be the set of edges removed from Ec(Gi)∪Ec(Hj).
It is easy to see that both C(·, ·) and Ce(·, ·) can be computed in polynomial-time.

The algorithm. The first step of the algorithm finds a (partial) matching between {G1, G2, . . . , Gp}
and {H1, H2, . . . , Hq}. We use two mappings

τ : {G1, G2, . . . , Gp} → {H1, H2, . . . , Hq,⊥}, and
τ ′ : {H1, H2, . . . , Hq} → {G1, G2, . . . , Gp,⊥}

to denote the (partial) matching. It is satisfied that τ(Gi) = Hj iff τ ′(Hj) = Gi. The algo-
rithm uses the (polynomial-time) maximum weight bipartite graph matching algorithm to
find τ and τ ′ so that the following cost is minimized.

cost(τ, τ ′) =
∑

Gi:τ(Gi)=⊥

(cdeg(Gi)−B + 1)

+
∑

Hj :τ ′(Hj)=⊥

(cdeg(Hj)−B + 1) +
∑

Gi:τ(Gi) 6=⊥

C(Gi, τ(Gi)).

For eachGi, letE ′c(Gi) be an arbitrary subset of cardinality (cdeg(Gi)−B+1) ofEc(Gi).
Define E ′c(Hj) similarly for each Hj . Let

E0 = ∪
Gi:τ(Gi)=⊥

E ′c(Gi)
⋃

∪
Hj :τ ′(Hj)=⊥

E ′c(Hj)
⋃

∪
Gi:τ(Gi)6=⊥

Ce(Gi, τ(Gi)),

241

we have |E0| = cost(τ, τ ′).

In the second step of the algorithm, we remove the edges in E0 from G and H , call the
remaining graphsG′ andH ′ respectively. Observe that opt(G′, H ′) ≥ opt(G,H)−|E0| =
opt(G,H) − cost(τ, τ ′). Both G′ and H ′ can be divided into two parts: G(a), H(a) and
G(b), H(b). G(a) consists of the connected components where the centers of Gi’s are in,
where τ(Gi) 6= ⊥. Similarly,H(a) consists of the connected components where the centers
of Hj’s are in, where τ ′(Hj) 6= ⊥. G(b) and H(b) are the remaining parts of G′ and H ′.
Observe that G(a) is isomorphic to H(a), while G(b) and H(b) are (B− 1)-degree bounded.

Finally, we use the algorithm in Theorem 14.1.4 to find an approximation to opt(G(b), H(b)).
Suppose that each of G(b), H(b) has n(b) vertices. The algorithm finds a bijection σ(b) such
that

val(G(b), H(b), σ(b)) ≥

(
1− 20

√
B(n(b) − opt(G(b), H(b)))

n(b)

)
n(b)

≥ opt(G(b), H(b))− 20
√
B(n(b) − opt(G(b), H(b)))n(b). (14.1)

Observe that since opt(G(b), H(b)) + |E0|+ |E(G(a))| ≥ opt(G,H) ≥ (1− ε)n, we have

n(b) − opt(G(b), H(b)) ≤ n(b) − n+ |E(G(a))|+ |E0|+ εn ≤ εn+ |E0|
= εn+ cost(τ, τ ′), (14.2)

where the last inequality is because |E(G(a))| is less than the number of vertices in G(a),
which is n− n(b). Now we combine (14.1) and (14.2), getting

val(G(b), H(b), σ(b)) ≥ opt(G(b), H(b))− 20
√
B(εn+ cost(τ, τ ′))n(b)

≥ opt(G(b), H(b))− 20
√
B(εn+ cost(τ, τ ′))n. (14.3)

Let σ(a) be the isomorphism between G(a) and H(a). The algorithm lets σ = σ(a)∪σ(b)

be the final solution.

Analysis. The analysis of the algorithm uses the following lemmas.

Lemma 14.2.3. cost(τ, τ ′) ≤ 2(B + 1)εn ≤ 4Bεn.

Lemma 14.2.4. Let G = G0 ∪ G1 be a union of two graphs with disjoint vertex sets.
Similarly, let H = H0 ∪H1. Suppose that G0 is isomorphic to H0 and |V (G)| = |V (H)|,
we have opt(G,H) = opt(G1, H1) + |E(G0)|.

242

We prove both Lemma 14.2.3 and Lemma 14.2.4 in the next subsection. Lemma 14.2.4
is very intuitive: if G has a connected component G0 which is isomorphic to a connected
component H0 in H , there must be an optimal solution for G and H which maps G0 to
H0.

Now we proceed to analyze val(G,H, σ) using these lemmas.

val(G,H, σ) ≥ val(G(a), H(a), σ(a)) + val(G(b), H(b), σ(b))

≥ |E(G(a))|+ opt(G(b), H(b))

− 20
√
B(εn+ cost(τ, τ ′))n (by (14.3))

≥ |E(G(a))|+ opt(G(b), H(b))− 20B
√

5εn (by Lemma 14.2.3)

= opt(G′, H ′)− 20B
√

5εn (Lemma 14.2.4)

≥ opt(G,H)− 4Bεn− 20B
√

5εn (by Lemma 14.2.3 again)

≥ opt(G,H)− 100B
√
εn.

14.2.2 Proofs of Lemma 14.2.3 and Lemma 14.2.4

Proof of Lemma 14.2.3. Let σ∗ : V (G)→ V (H) be a bijection such that val(G,H, σ∗) =
(1−ε)n. We define τ ∗ : {G1, G2, . . . , Gp} → {H1, H2, . . . , Hq,⊥} and τ ∗′ : {H1, H2, . . . , Hq} →
{G1, G2, . . . , Gp,⊥} as follows.

• τ ∗(Gi) = Hj when σ∗ maps the center of Gi to the center of Hj; τ ∗(Gi) = ⊥ when
the center of Gi is not mapped to the center of any Hj .

• τ ∗′(Hj) = Gi when σ∗ maps the center of Gi to the center of Hj; τ ∗′(Hj) = ⊥
when none of the centers of Gi is not mapped to the center of Hj .

Now we are going to upper bound cost(τ ∗, τ ∗′) and therefore prove the lemma.

For each Gi where 1 ≤ i ≤ p, if the center of Gi is not mapped by σ∗ to the center of
anyHj , it must be mapped to a vertex whose degree is less thanB. This means that at least
(cdeg(Gi) − B + 1) edges incident to the center of Gi are not mapped to H . Therefore,
we have ∑

Gi:τ∗(Gi)=⊥

(cdeg(Gi)−B + 1) ≤ εn.

243

Since cdeg(Gi)/(cdeg(Gi)−B + 1) ≤ B , we have∑
Gi:τ∗(Gi)=⊥

cdeg(Gi) ≤ εBn (14.4)

Similarly, we have ∑
Hj :τ∗′(Hj)=⊥

cdeg(Hj) ≤ εBn. (14.5)

For each 1 ≤ i ≤ p, 1 ≤ j ≤ q, let EGi be the set of the edges in Gi that are not mapped to
H; let EHj be the set of the edges in Hj that are not mapped to G. Now consider any pair
of Gi and Hj such that σ∗ maps the center of Gi to the center of Hj . Recall that C(Gi, Hj)
is the minimum number of edges in Ec(Gi) ∪Ec(Hj) one has to remove from Gi and Hj ,
so that the connected components corresponding to the two centers are isomorphic. Also
recall that Ec(Gi) and Ec(Hj) are the sets of edges incident to the centers of Gi and Hj

respectively.

For each edge e ∈ EGi , we remove the corresponding edge in Ec(Gi), i.e. the unique
edge on the unique path connecting e to the center ofGi. Similarly, for each edge e ∈ EHj ,
we remove the corresponding edge in Ec(Hj), i.e. the unique edge on the unique path
connecting e to the center of Hj . In total, at most |EGi |+ |EHj | edges are removed.

We observe that, after removing the edges, the connected components corresponding
to the centers of Gi and Hj are isomorphic and the isomorphism maps the center of Gi to
the center of Hj : σ∗ defines such an isomorphism.

To summarize, we have proved that C(Gi, Hj) ≤ |EGi|+ |EHj |. Therefore,

∑
Gi:τ∗(Gi)6=⊥

C(Gi, τ(Gi)) ≤
∑

Gi:τ∗(Gi)6=⊥

(|EGi |+|Eτ∗(Gi)|) ≤
p∑
i=1

|EGi |+
q∑
j=1

|EHj | ≤ 2εn.

(14.6)

Now, summing up (14.4), (14.5), and (14.6), we get

cost(τ, τ ′) ≤ cost(τ ∗, τ ∗′)

=
∑

Gi:τ∗(Gi)=⊥

cdeg(Gi)+
∑

Hj :τ∗′(Hj)=⊥

cdeg(Hj)+
∑

Gi:τ∗(Gi)6=⊥

C(Gi, τ(Gi)) ≤ 2(B+1)εn.

244

Proof of Lemma 14.2.4. It is straightforward to see that opt(G,H) ≥ opt(G1, H1) +
|E(G0)|. Now we prove that opt(G,H) ≤ opt(G1, H1) + |E(G0)|.

Given σ : V (G)→ V (H) such that val(G,H, σ) = opt(G,H), we define the bijection
σ′ : V (G1)→ V (H1) as follows and prove that opt(G,H) ≤ val(G1, H1, σ

′) + |E(G0)|.
Let the bijection τ : V (G0) → V (H0) be the isomorphism between G0 and H0. For

each v ∈ V (G1), use the following procedure to decide σ′(v) : if σ(v) ∈ V (H1), then
return σ(v); if σ(v) ∈ V (H0), repeat this procedure with v ← τ−1(σ(v)).

One can verify that the procedure above always terminates for all v ∈ V (G1), and that
σ′ is indeed a bijection. It remains to show that val(G1, H1, σ

′) ≥ opt(G,H)− |E(G0)|.
For each edge (u, v) ∈ E(G1) such that (σ(u), σ(v)) ∈ E(H), let us write down u1 =

σ(u), u2, u3, . . . , up = σ′(u) and v1 = σ(v), v2, v3, . . . , vq = σ′(v) to be the sequence of
vertices in V (H) visited by the procedure above when the input is u and v respectively.
We can assume w.l.o.g. that p ≤ q.

Suppose that (σ′(u), σ′(v)) 6∈ E(H1), we know that up = σ′(u) ∈ V (H1) and
vp ∈ V (H0), and therefore (up, vp) 6∈ E(H). Let i be the smallest index such that
(ui, vi) 6∈ E(H). We have that i ≥ 2. Therefore (ui−1, vi−1) ∈ E(H0). Since τ is
the isomorphism betweenG0 andH0, we have that (τ−1(ui−1), τ−1(vi−1)) ∈ E(G0). Also
note that (σ(τ−1(ui−1)), σ(τ−1(vi−1))) = (ui, vi) 6∈ E(H).

To summarize, for each (u, v) ∈ E(G1) such that (σ(u), σ(v)) ∈ E(H) and (σ′(u), σ′(v)) 6∈
E(H1), we have set up a mapping f((u, v)) = (uf , vf) = (τ−1(ui−1), τ−1(vi−1)) with the
property that (uf , vf) ∈ E(G0) and (σ(uf), σ(vf)) 6∈ E(H). By the fact that the procedure
to define σ′(v) is reversible at any point, one can verify that f is injective. Therefore,

|{(u, v) ∈ E(G1) : (σ(u), σ(v)) ∈ E(H), (σ′(u), σ′(v)) 6∈ E(H1))}|
≤ |{(u, v) ∈ E(G0) : (σ(u), σ(v)) 6∈ E(H)}|.

Therefore,

val(G1, H1, σ
′) = |E(G1)| − |{(u, v) ∈ E(G1) : (σ′(u), σ′(v)) 6∈ E(H1))}|

≥|E(G1)| − |{(u, v) ∈ E(G1) : (σ′(u), σ′(v)) 6∈ E(H1)), (σ(u), σ(v)) ∈ E(H)}|
− |{(u, v) ∈ E(G1) : (σ(u), σ(v)) 6∈ E(H)}|

≥|E(G1)| − |{(u, v) ∈ E(G0) : (σ(u), σ(v)) 6∈ E(H)}|−
|{(u, v) ∈ E(G1) : (σ(u), σ(v)) 6∈ E(H)}|

=|E(G1)| − |E(G0)|+ |{(u, v) ∈ E(G0) : (σ(u), σ(v)) ∈ E(H)}|
− |{(u, v) ∈ E(G1) : (σ(u), σ(v)) 6∈ E(H)}|

245

=val(G,H, σ)− |E(G0)|
=opt(G,H)− |E(G0)|.

246

Part IV

Other approximation and hardness of
approximation results

247

Chapter 15

Certifying the 2→ 4 norm of random
linear operators

15.1 Introduction

For a function f : Ω → R on a (finite) probability space Ω, the p-norm is defined as
‖f‖p = (EΩ f

p)1/p.1 The p → q norm ‖A‖p→q of a linear operator A between vector
spaces of such functions is the smallest number c ≥ 0 such that ‖Af‖q ≤ c ‖f‖p for all
functions f in the domain of A. We also define the p→ q norm of a subspace V to be the
maximum of ‖f‖q / ‖f‖p for f ∈ V ; note that for p = 2 this is the same as the norm of
the projector operator into V .

In this chapter, we are interested in the case p < q and we will call such p→ q norms
hypercontractive.2 Roughly speaking, for p < q, a function f with large ‖f‖q compared
to ‖f‖p can be thought of as “spiky” or somewhat sparse (i.e., much of the mass concen-
trated in small portion of the entries). Hence finding a function f in a linear subspace V
maximizing ‖f‖q / ‖f‖2 for some q > 2 can be thought of as a geometric analogue of the
problem finding the shortest word in a linear code. This problem is equivalent to comput-
ing the 2 → q norm of the projector P into V (since ‖Pf‖2 ≤ ‖f‖2). Also when A is
a normalized adjacency matrix of a graph (or more generally a Markov operator), upper

1We follow the convention to use expectation norms for functions (on probability spaces) and counting
norms, denoted as ‖‖‖v‖‖‖p = (

∑n
i=1 |vi|p)1/p, for vectors v ∈ Rm. All normed spaces here will be finite

dimensional. We distinguish between expectation and counting norms to avoid recurrent normalization
factors.

2We use this name because a bound of the form ‖A‖p→q ≤ 1 for p < q is often called a hypercontractive
inequality.

249

bounds on the p → q norm are known as mixed-norm, Nash or hypercontractive inequal-
ities and can be used to show rapid mixing of the corresponding random walk (e.g., see
the surveys [104, 201]). Such bounds also have many applications to theoretical computer
science, which are described in the survey [43].

However, very little is known about the complexity of computing these norms. This
is in contrast to the case of p → q norms for p ≥ q, where much more is known both in
terms of algorithms and lower bounds, see [214, 146, 42].

We study a natural semidefinite programming (SDP) relaxation for computing the 2→
4 norm of a given linear operator which we call TensorSDP.3 While TensorSDP is very
unlikely to provide a poly-time constant-factor approximation for the 2 → 4 norm in
general (as shown in [34]), we do show that it provides such approximation on random
linear operators, as we describe below.

We show that TensorSDP certifies a constant upper bound on the ratio ‖A‖2→4/ ‖A‖2→2

where A : Rn → Rm is a random linear operator (e.g., obtained by a matrix with entries
chosen as i.i.d Bernoulli variables) and m ≥ Ω(n2). In contrast, if m = o(n2) then this
ratio is ω(1), and hence this result is almost tight in the sense of obtaining “good approx-
imation” in the sense mentioned above. We find this interesting, since random matrices
seem like natural instances; indeed for superficially similar problems such shortest code-
word, shortest lattice vector (or even the 1 → 2 norm), it seems hard to efficiently certify
bounds on random operators.

15.2 The TensorSDP algorithm

Observe that when the linear operator A is given in the form of A =
∑m

j=1 eja
T
j , for every

x such that ‖x‖2 = 1, we have

‖Ax‖4
4 =

1

m

m∑
j=1

(aTj x)4 =
1

m

m∑
j=1

∑
i1,i2,i3,i4∈[n]

tr(aia
T
i ⊗ aiaTi)(xxT ⊗ xxT).

Instead of maximizing the above quantity over all xxT ⊗xxT , we maximize over all the 4-
th moment matrices. This gives the following natural semidefinite program for estimating
the 2→ 4 norm of A.

3We use the name TensorSDP for this program since it will be a canonical relaxation of the polynomial
program max‖x‖2=1 〈T, x⊗4〉 where T is the 4-tensor such that 〈T, x⊗4〉 = ‖Ax‖44. Indeed, it is identical to
the degree-2 Lasserre–Parrilo SDP relaxation.

250

Algorithm 2 The TensorSDP algorithm for 2→ 4 norms.

Input: A linear operator A =
∑m

j=1 eja
T
j .

Output: An estimated value for ‖A‖4
2→4.

Find X = (X(i1,i2),(i3,i4))i1,i2,i3,i4∈[n] over set of n2 × n2 real matrices to maximize

tr

 1

m

m∑
j=1

∑
i1,i2,i3,i4∈[n]

tr(aia
T
i ⊗ aiaTi)

X

such that

• X � 0,

• Ei,j∈[n] X(i,j),(i,j) = 1,

• X(i1,i2),(i3,i4) = X(π(i1),π(i2)),(π(i3),π(i4)) for all permutations π over [4].

Output the above quantity with the maximizer X .

15.3 Certifying the hypercontractivity of random opera-
tors

In this section we show that TensorSDP provides non-trivial approximation guarantees
on the 2→ 4 norms of random linear operators.

Let A =
∑m

i=1 eia
T
i /
√
n, where ei is the vector with a 1 in the ith position, and each ai

is chosen i.i.d. from a distribution D on Rn. Three natural possibilities are

1. Dsign: the uniform distribution over {−1, 1}n

2. DGaussian: a vector of n independent Gaussians with mean zero and variance 1

3. Dunit: a uniformly random (expectation-norm) unit vector on Rn.

Our arguments will apply to any of these cases, or even to more general nearly-unit vectors
with bounded sub-Gaussian moment (details below).

Before discussing the performance of TensorSDP, we will discuss how the 2 → 4-
norm of A behaves as a function of n and m. We can gain intuition by considering two
limits in the case ofDGaussian. If n = 1, then ‖A‖2→4 = ‖a‖4, for a random Gaussian vector

251

a. For large m, ‖a‖4 is likely to be close to 31/4, which is the fourth moment of a mean-
zero unit-variance Gaussian. By Dvoretzky’s theorem [186], this behavior can be shown
to extend to higher values of n. Indeed, there is a universal c > 0 such that if n ≤ c

√
mε2,

then w.h.p. ‖A‖2→4 ≤ 31/4 + ε. In this case, the maximum value of ‖Ax‖4 looks roughly
the same as the average or the minimum value, and we also have ‖Ax‖4 ≥ (31/4− ε) ‖x‖2

for all x ∈ Rn. In the cases ofDsign andDunit, the situation is somewhat more complicated,
but for large n, their behavior becomes similar to the Gaussian case.

On the other hand a simple argument (see e.g. [34]) shows that ‖A‖2→4 ≥ n1/2/m1/4

for any (not only random) m×n matrix with all±1/
√
n entries. A nearly identical bound

applies for the case when the ai are arbitrary unit or near-unit vectors. Thus, in the regime
where n ≥ ω(

√
m), we always have ‖A‖2→4 ≥ ω(1).

The following theorem shows that TensorSDP achieves approximately the correct
answer in both regimes.

Theorem 15.3.1. Let a1, . . . , am be drawn i.i.d. from a distribution D on Rn with
D ∈ {DGaussian,Dsign,Dunit}, and let A =

∑m
i=1 eia

T
i /
√
n. Then w.h.p. TensorSDP(A) ≤

3 + cmax(n√
m
, n

2

m
) for some constant c > 0.

From Theorem 15.3.1 and the fact that ‖A‖4
2→4 ≤ TensorSDP(A), we obtain:

Corollary 15.3.2. Let A be as in Theorem 15.3.1. Then ∃c > 0 such that w.h.p.

‖A‖2→4 ≤

{
31/4 + c n√

m
if n ≤

√
m

c n
1/2

m1/4 if n >
√
m

(15.1)

Before proving Theorem 15.3.1, we introduce some more notation. This will in fact
imply that Theorem 15.3.1 applies to a broader class of distributions. For a distribution D
on RN , define the ψp norm ‖D‖ψp to be the smallest C > 0 such that

max
v∈S(RN)

E
a∼D

e
|〈v,a〉|pNp/2

Cp ≤ 2, (15.2)

or ∞ if no finite such C exists. We depart from the normal convention by including a
factor of Np/2 in the definition, to match the scale of [2]. The ψ2 norm (technically a
seminorm) is also called the sub-Gaussian norm of the distribution. One can verify that
for each of the above examples (sign, unit and Gaussian vectors), ψ2(D) ≤ O(1).

We also require thatD satisfies a boundedness condition with constant K ≥ 1, defined
as

Pr

[
max
i∈[m]
‖ai‖2 > K max(1, (m/N)1/4)

]
≤ e−

√
N . (15.3)

252

Similarly, K can be taken to be O(1) in each case that we consider.

We will require a following result of [1, 2] about the convergence of sums of i.i.d
rank-one matrices.

Lemma 15.3.3 ([2]). Let D′ be a distribution on RN such that Ev∼D′ vv
T = I , ‖D′‖ψ1 ≤

ψ and (15.3) holds for D′ with constant K. Let v1, . . . , vm be drawn i.i.d. from D′. Then
with probability ≥ 1− 2 exp(−c

√
N), we have

(1− ε)I ≤ 1

m

m∑
i=1

viv
T
i ≤ (1 + ε)I, (15.4)

where ε = C(ψ +K)2 max(N/m,
√
N/m) with c, C > 0 universal constants.

The N ≤ m case (when the
√
N/m term is applicable) was proven in Theorem 1 of

[2], and the N > m case (i.e. when the max is achieved by N/m) was proven in Theorem
2 of [2] (see also Theorem 3.13 of [1]).

Proof of Theorem 15.3.1. Define A2,2 = 1
m

∑m
i=1 aia

T
i ⊗ aiaTi . For n2 × n2 real matrices

X, Y , define 〈X, Y 〉 := trXTY/n2 = Ei,j∈[n] Xi,jYi,j . Additionally define the convex
set X to be the set of n2 × n2 real matrices X = (X(i1,i2),(i3,i4))i1,i2,i3,i4∈[n] with X � 0,
Ei,j∈[n] X(i,j),(i,j) = 1 and X(i1,i2),(i3,i4) = X(iπ(1),iπ(2)),(iπ(3),iπ(4)) for any permutation π ∈
S4. Finally, let hX (Y) := maxX∈X 〈X, Y 〉. It is straightforward to show that

TensorSDP(A) = hX (A2,2) = max
X∈X
〈X,A2,2〉. (15.5)

We note that if X were defined without the symmetry constraint, it would simply be the
convex hull of xxT for unit vectors x ∈ Rn2 and TensorSDP(A) would simply be the
largest eigenvalue of A2,2. However, we will later see that the symmetry constraint is
crucial to TensorSDP(A) being O(1).

Our strategy will be to analyze A2,2 by applying Lemma 15.3.3 to the vectors vi :=
Σ−1/2(ai ⊗ ai), where Σ = E aia

T
i ⊗ aia

T
i , and −1/2 denotes the pseudo-inverse. First,

observe that, just as the ψ2 norm of the distribution over ai is constant, a similar calculation
can verify that the ψ1 norm of the distribution over ai ⊗ ai is also constant. Next, we have
to argue that Σ−1/2 does not increase the norm by too much.

To do so, we compute Σ for each distribution over ai that we have considered. Let
F be the operator satisfying F (x ⊗ y) = y ⊗ x for any x, y ∈ Rn; explicitly F =∑n

i,j=1 eie
T
j ⊗ ejeTi .

253

Define

Φ :=
n∑
i=1

ei ⊗ ei (15.6)

∆ :=
n∑
i=1

eie
T
i ⊗ eieTi (15.7)

Direct calculations (omitted) can verify that the cases of random Gaussian vectors, random
unit vectors and random ±1 vectors yield respectively

ΣGaussian = I + F + ΦΦT (15.8a)

Σunit =
n

n+ 1
ΣGaussian (15.8b)

Σsign = ΣGaussian − 2∆ (15.8c)

In each case, the smallest nonzero eigenvalue of Σ is Ω(1), so vi = Σ−1/2(ai ⊗ ai) has
ψ1 ≤ O(1) and satisfies the boundedness condition (15.3) with K ≤ O(1).

Thus, we can apply Lemma 15.3.3 (withN = rank Σ ≤ n2 and ε := cmax(n/
√
m,n2/m))

and find that in each case w.h.p.

A2,2 =
1

m

m∑
i=1

aia
T
i ⊗ aiaTi � (1 + ε)) Σ � (1 + ε) (I + F + ΦΦT) (15.9)

Since hX (Y) ≥ 0 whenever Y � 0, we have hX (A2,2) ≤ (1 + ε)hX (Σ). Additionally,
hX (I + F + ΦΦT) ≤ hX (I) + hX (F) + hXΦΦT), so we can bound each of three terms
separately. Observe that I and F each have largest eigenvalue equal to 1, and so hX (I) ≤ 1
and hX (F) ≤ 1. (In fact, these are both equalities.)

However, the single nonzero eigenvalue of ΦΦT is equal to n. Here we will need to
use the symmetry constraint on X . Let XΓ be the matrix with entries XΓ

(i1,i2),(i3,i4) :=

X(i1,i4),(i3,i2). If X ∈ X then X = XΓ. Additionally, 〈X, Y 〉 = 〈XΓ, Y Γ〉. Thus

hX (ΦΦT) = hX ((ΦΦT)Γ) ≤ ‖(ΦΦT)Γ‖2→2 = 1.

This last equality follows from the fact that (ΦΦT)Γ = F .

Putting together these ingredients, we obtain the proof of the theorem.

It may seem surprising that the factor of 31/4 emerges even for matrices with, say, ±1
entries. An intuitive justification for this is that even if the columns of A are not Gaussian
vectors, most linear combinations of them resemble Gaussians. The following Lemma
shows that this behavior begins as soon as n is ω(1).

254

Lemma 15.3.4. Let A =
∑m

i=1 eia
T
i /
√
n with Ei ‖ai‖4

2 ≥ 1. Then ‖A‖2→4 ≥ (3/(1 +
2/n))1/4.

To see that the denominator cannot be improved in general, observe that when n = 1 a
random sign matrix will have 2→ 4 norm equal to 1.

Proof. Choose x ∈ Rn to be a random Gaussian vector such that Ex ‖x‖2
2 = 1. Then

E
x
‖Ax‖4

4 = E
i
E
x
n−2(aTi x)4 = n2

E
i
E
x
〈ai, x〉4 = 3E

i
‖ai‖4

2 ≥ 3. (15.10)

The last equality comes from the fact that 〈ai, x〉 is a Gaussian random variable with mean
zero and variance ‖ai‖2

2/n. On the other hand, Ex ‖x‖4
2 = 1 + 2/n. Thus, there must exist

an x for which ‖Ax‖4
4/‖x‖4

2 ≥ 3/(1 + 2/n).

255

256

Chapter 16

Hardness of MAXΓ-2-LIN and
MAXΓ-3-LIN over integers

16.1 Introduction

In this chapter we consider one of the most fundamental algorithmic tasks: solving systems
of linear equations. Given a ring R, the MAXk-LIN(R) problem is defined as follows: An
input instance is a list of linear equations of the form a1xi1 + · · · + akxik = b, where
a1, . . . , ak, b ∈ R are constants and xi1 , . . . , xik are variables from the set {x1, . . . , xn}.
Each equation also comes with a nonnegative rational weight; it is assumed the weights
sum up to 1. The algorithmic task is to assign values from R to the variables so as to
maximize the total weight of satisfied equations. We say that an assignment is γ-good if the
equations it satisfies have total weight at least γ. We say that an algorithm achieves (c, s)-
approximation if, whenever the instance has a c-good solution, the algorithm is guaranteed
to find an s-good solution.

16.1.1 Prior work on MAX3-LIN(Z)

It is an old result of Arora–Babai–Stern–Sweedyk [13] that for all 0 < δ < 1 there exists
ε > 0 and k ∈ Z+ such that it is NP-hard to (ε, δε)-approximate MAXk-LIN(Q). Håstad’s
seminal work from 1997 [116] showed hardness even for very sparse, near-satisfiable in-
stances: specifically, he showed that for all constant ε, δ > 0 and q ∈ N, it is NP-hard to
(1− ε, 1/q + δ)-approximate MAX3-LIN(Zq). This is optimal in the sense that it is algo-
rithmically easy to (1, 1)-approximate or (c, 1/q)-approximate MAX3-LIN(Zq). Håstad’s

257

hardness result even holds for the special case of MAXΓ-3-LIN(Zq), meaning that all
equations are of the form xi1 − xi2 + xi3 = b.

Håstad’s proof does not strictly generalize the ABSS [13] result on MAXk-LIN(Q)
because there is no obvious reduction from hardness over Zq to hardness over Q. In-
deed, it was not until much later, 2006, that NP-hardness of (1 − ε, δ)-approximating
MAXk-LIN(Q) was shown [92, 108]. Finally, in 2007 Guruswami and Raghavendra [109]
generalized all of [13, 92, 108] by showing NP-hardness of (1 − ε, δ)-approximating
MAXΓ-3-LIN(Z). As we will see shortly, this easily implies the same hardness for MAXΓ-3-LIN(Q)
and MAXΓ-3-LIN(R). Indeed, it shows a kind of “bicriteria” hardness: given a MAXΓ-3-LIN(Z)
instance with a (1− ε)-good solution over Z, it is NP-hard to find a δ-good solution even
over R. Guruswami and Raghavendra’s proof followed that of Håstad’s to some extent, but
involved somewhat technically intricate derandomized Long Code testing, using Fourier
analysis with respect to a certain exponential distribution on Z+.

We would also like to mention the very recent work of Khot and Moshkovitz [139].
Motivated by proving the Unique Games Conjecture, they showed a strong NP-hardness
result for a homogeneous variant of MAX3-LIN(R). Specifically, they considered the case
where all equations are of the form a1xi1 + a2xi2 + a3xi3 = 0 with a1, a2, a3 ∈ [1

2
, 2].

Very roughly speaking, they showed there is a universal δ > 0 such that for all ε > 0 the
following problem is NP-hard: given an instance where there is a “Gaussian-distributed”
real assignment which is (1 − ε)-good, find a Gaussian-distributed assignment in which
the weight of equations satisfied to within margin δ

√
ε is at least 1 − δ. This result is

incomparable to the one in [109].

16.1.2 Prior work on MAX2-LIN

Following Håstad’s work there was five years of no progress on MAX2-LIN(R) for any
ring R. To circumvent this, in 2002 Khot [136] introduced the Unique Games (UG) Con-
jecture, which would prove to be very influential (and notorious!). Khot showed a strong
“UG-hardness” result for MAX2-LIN(Z2) (crediting the result essentially to Håstad), namely
that for all t > 1/2 and sufficiently small ε > 0 it is UG-hard to (1−ε, 1−εt)-approximate
MAX2-LIN(Z2). This result is essentially optimal due to the Goemans–Williamson algo-
rithm [94].

In 2004, Khot–Kindler–Mossel–O’Donnell [141] (using [175]) extended this work by
showing that for all ε, δ > 0, there exists q ∈ N such that (1 − ε, δ)-approximating
MAXΓ-2-LIN(Zq) is UG-hard, and hence in fact UG-complete. Here Γ-2-LIN means
that all equations are of the form xi1 − xi2 = b. KKMO gave a quantitative dependence as

258

well: given ε and q one can choose any δ > qΛ1−ε(1/q) ≈ (1/q)ε/(2−ε), where Λ1−ε(1/q)
is a certain correlated Gaussian quadrant probability.

The following natural question was left open by KKMO [141]:

Question 16.1.1. Is it true that for all ε, δ > 0 it is UG-hard to (1 − ε, δ)-approximate
MAXΓ-2-LIN(Z)?

The key technical tool used in the KKMO hardness result for MAX2-LIN(Zq), namely
the Majority Is Stablest Theorem [175], has a bad dependence on the parameter q. Thus
pushing q to be “superconstantly” large seemed to pose a fundamental problem. The
question above is one of the open problems posed at the end of Raghavendra’s monumental
thesis [190].

16.1.3 Our contributions

In this chapter we show that it is relatively easy to modify the proofs of the hardness results
known for MAXΓ-2-LIN(Zq) and MAXΓ-3-LIN(Zq) to obtain (1 − ε, δ)-approximation
hardness results for MAXΓ-2-LIN(Z) and MAXΓ-3-LIN(Z). (Here Γ-3-LIN means that
all equations are of the form xi1 + xi2 − xi3 = b.) Thus we resolve the open question
about MAXΓ-2-LIN(Z) and give a simpler proof of the Guruswami–Raghavendra [109]
result. Our results also hold over R and over “superconstantly large” cyclic groups Zq (we
are not aware of previously known hardness results over Zq when q is superconstant and
prime). The results also have an essentially optimal quantitative tradeoff between ε, δ, and
the magnitudes of the “right-hand side constants” b.

To state our two theorems, let us define B-BOUNDED-MAXΓ-2-LIN and
B-BOUNDED-MAXΓ-3-LIN to be the special cases of MAXΓ-3-LIN and MAXΓ-2-LIN

in which all right-hand side constants b are integers satisfying |b| ≤ B. Given an instance
I of MAXΓ-k-LIN with integer constants b, we use the notation optR(I) to denote the
maximum weight of equations that can be satisfied when the equations are evaluated over
R.

Theorem 16.1.2. For all constant ε, γ, κ > 0 and constant q ∈ N, given a
q-BOUNDED-MAXΓ-2-LIN instance I it is UG-hard to distinguish the following two
cases:

• (Completeness.) There is a (1 − ε − 3γ)-good assignment over Z; i.e., optZ(I) ≥
1− ε− 3γ.

259

• (Soundness.) There is no (qΛ1−ε(1/q)+κ)-good assignment over Zq; i.e., optZq(I) ≤
qΛ1−ε(1/q) + κ.

Note that qΛ1−ε(1/q) ≈ (1/q)ε/(2−ε) is the same soundness proved by KKMO [141] for
MAXΓ-2-LIN(Zq).

Theorem 16.1.3. For all constant ε, κ > 0 and q ∈ N, given a q-BOUNDED-MAXΓ-3-LIN

instance I it is NP-hard to distinguish the following two cases:

• (Completeness.) There is a (1 − O(ε))-good assignment over Z, i.e., optZ(I) ≥
1−O(ε).

• (Soundness.) There is no (1/q + κ)-good assignment over Zq; i.e., optZq(I) ≤
1/q + κ.

Note that optZ(I) ≤ optZq(I) since we can convert a δ-good assignment over Z to
a δ-good assignment over Zq by reducing the integer solution modulo q. Therefore our
hardness results are of the strongest “bicriteria” type: even when promised that there is
near-perfect solution over Z, it is hard for an algorithm to find a slightly good solution over
Zq. Indeed, by virtue of Lemma 16.6.1 in Section 16.6, by losing just a constant factor
in the soundness, we can show that it is also hard for an algorithm to find a slightly good
solution over any ring {R,Z,Zq+1, Zq+2, . . .} of the algorithm’s choosing. Our results
subsume and unify all aforementioned results on MAX3-LIN(Zq), MAX3-LIN(Z), and
MAX2-LIN(Zq), and also provide an optimal UG-hardness result for MAXΓ-2-LIN(Z).

16.2 Preliminaries

16.2.1 Notations and Definitions

We write Zq for the integers modulo q, and we identify the elements with {0, 1, . . . , q −
1} ∈ Z. We sometimes write⊕q for addition of integers modulo q and + for addition over
the integers. For two vectors x, y ∈ Zn, both x ⊕q y and x + y are coordinate-wise add.
We will also write ∆q for the set of probability distributions over Zq. We can identify ∆q

with the standard (q − 1)-dimensional simplex in Rq. We also identify an element a ∈ Zq
with a distribution in ∆q, namely, the distribution that puts all of its probability mass on a.

Fix x ∈ Znq , a random variable y is (1 − ε)-correlated to x, i.e. y ∼1−ε x, if y can be
get by rerandomizing each coordinate of x independently with probability ε.

260

We recall some standard definitions from the harmonic analysis of boolean functions
(see, e.g., [190]). We will be considering functions of the form f : Znq → R. The set of all
functions f : Znq → R forms an inner product space with inner product

〈f, g〉 = E
x∼Znq

[f(x) · g(x)],

where x ∼ Znq means that x is uniform randomly chosen from Znq . We also write ‖f‖2 =√
〈f, f〉 as usual.

The following Efron–Stein decomposition theorem is well-known; see [141].

Theorem 16.2.1. Any f : Znq → R can be uniquely decomposed as a sum of functions

f(x) =
∑
S⊆[n]

fS(x),

where

• fS(x) depends only on xS = (xi, i ∈ S),

• for every S ⊆ [n], for every S ′ such that S \ S ′ 6= ∅, and for every y ∈ Znq , it holds
that

E
x∼Znq

[fS(x)|xS′ = yS′] = 0.

Definition 16.2.2 (Influences). For functions f : Znq → R, define the influence of the i-th
coordinate on f to be

Inf i(f) =
∑
S3i

‖fS‖2
2,

where ‖fS‖2
2 = Ex[fS(x)2]. For functions f : Znq → ∆m, let

Inf i(f) =
∑
a∈Zm

Inf i(fa),

where fa(x) = f(x)a,∀x ∈ Znq .

Definition 16.2.3 (Noise operators). For functions f : Znq → R, define the noise operator
T1−η to be

T1−ηf(x) = E
y∼1−ηx

[f(y)].

For functions f : Znq → ∆m, let T1−η be the noise operator so that (T1−ηf)a = T1−η(fa),∀a ∈
Zq.

261

Definition 16.2.4 (Noisy-influences). For functions f : Znq → R and functions f : Znq →
∆m, define the (1− η)-noisy-influence of the i-th coordinate of f to be

Inf
(1−η)
i (f) = Inf i(T1−ηf).

Fact 16.2.5. For functions f : Znq → ∆m, we have∑
i∈[n]

Inf
(1−η)
i (f) ≤ 1/η.

Proposition 16.2.6. Let f (1), . . . , f (t) be a collection of functions Znq → Rm. Then

Inf
(1−η)
i

[
avg
k∈[t]

{
f (k)
}]
≤ avg

k∈[t]

{
Inf

(1−η)
i [f (k)]

}
.

Here for any c1, c2, ...ct ∈ R (or Rm), we use the notation avg(c1, . . . , ct) to denote their
average: ∑t

i=1 ci
t

.

Both of Fact 16.2.5 and Proposition 16.2.6 are easy to verify by the definition of Noisy-
influences. The proofs of the facts can be found in, e.g., [180] and [181].

Definition 16.2.7 (Noise stability). For functions f : Znq → R, define its stability against
ε noise to be

Stab1−ε[f] = E
x∼Znq ,y∼1−εx

[f(x)f(y)].

One tool we need is the Majority Is Stablest Theorem from [175]. (We state here a
version using a small noisy-influences assumption rather than a small “low-degree influ-
ences” assumption; see, e.g., Theorem 3.2 in [190] for a sketch of the small modification
to [175] needed.)

Theorem 16.2.8. For every function f : Znq → [0, 1] such that Inf (1−η)
i [f] ≤ τ for all

i ∈ [n], Let µ = E[f]. Then for any 0 < ε < 1,

Stab1−ε[f] ≤ Λ1−ε(µ) + e(τ, q, η).

Here if we fix η, q, e(τ, η, q) goes to 0 when τ goes to 0.

In the above theorem, the quantity Λ1−ε(µ) is defined to be Pr[x,y ≤ t] when (x,y)
are joint standard Gaussians with covariance 1− ε and t is defined by Pr[x ≤ t] = µ.

262

16.3 Review of proofs of MAXΓ-2-LIN(Zq) and MAXΓ-3-LIN(Zq)
hardness

As mentioned, we prove Theorem 16.1.2 and Theorem 16.1.3 by fairly easy modifications
of the known hardness results for MAXΓ-2-LIN(Zq) and MAXΓ-3-LIN(Zq), due respec-
tively to Khot–Kindler–Mossel–O’Donnell [141] and Håstad [116]. In this section, we
review several places in the two proofs that are related to our modifications. We also
assume the reader’s familiarity with these works.

16.3.1 MAXΓ-2-LIN

Let us begin with MAXΓ-2-LIN. As shown in [141], to prove UG-hardness of (1− ε, δ)-
approximating MAXΓ-2-LIN(Zq) for constant κ and q, where δ = qΛ1−ε(1/q) + κ, it
suffices to construct a “Dictator vs. Small Low-Degree-Influences Test” (or, Dictator Test
for short) for functions f : ZLq → ∆q which uses Γ-2-LIN constraints and has complete-
ness 1− ε, soundness δ. We recall the definition of Dictator Test as follows.

Generally speaking, a 1 − ε vs. δ Dictator Test for functions f : ZLq → Zq is defined
by a distribution over Γ-2-LIN constraints (over the entries of f). We say f passes the test
when a random constraint (from the distribution) is satisfied by f . At the completeness
side, all the L dictators (i.e., f(x) = xi for some i ∈ L) pass the test with probability
at least 1 − ε. At the soundness side, all functions with small noisy-influences (on all
coordinates) pass the test with probability at most δ. KKMO indeed needs to construct a
Dictator Test for functions of distributions, i.e., for f : ZLq → ∆q, where whenever the
test refers an entry f(x) for an element in Zq, it randomly samples an element from the
distribution f(x).

The Dictator Test used by KKMO is indeed a noise-stability test. Intuitively, dictator
functions have high noise stability, while functions far from dictators have low noise sta-
bility. Note that this intuition is true only for balanced functions, as constant functions are
far from dictators but very noise stable. Therefore, KKMO used the “folding” trick (which
was introduced in [116]) to ensure that f outputs 1, 2, . . . , q with the same probability.

16.3.2 MAXΓ-3-LIN

Let us move on to MAXΓ-3-LIN and our proof of Theorem 16.1.3. Håstad essentially
showed that to prove NP-hardness of (1 − ε, 1/q + κ)-approximating MAXΓ-3-LIN(Zq)

263

for constant q, it suffices to construct a “Matching-Dictator Test” on two functions for
f : ZKq → Zq, g : ZLq → Zq and π : L → K. The test is defined by a distribution over
x ∈ ZKq ,y ∈ ZLq , z ∈ ZLq with the check f(x) + g(y) − g(z) = c mod q. Håstad’s Test
has the following completeness and soundness promises:

• If f(x) = xi and g(y) = yj such that π(i) = j, then f and g passes with probability
1− ε.

• If f and g passes the test with probability 1/q + κ, then there is a randomized pro-
cedure that “decodes” f into a coordinate i ∈ L and g into a coordinate j ∈ K such
that π(i) = j with constant probability depending only on q, ε, κ and independent of
L,K, π. Also note that the decoding processes for f and g should be independent
from each other.

Håstad constructed the following test: choose x ∈ ZKq and y ∈ ZLq uniformly and
independently, define z ∈ ZLq to be z = y ⊕q (x ◦ π), where (x ◦ π)i := xπ(i), let z′ be
(1 − ε)-correlated to z, and test f(x) ⊕q g(y) = g(z′). Such a test does not work when
f ≡ 0; thus Håstad introduced and used his method of folding (which was also used [141])
to ensure that f outputs 1, 2, . . . , q with equal probability.

16.4 Overview of our proofs

As mentioned, we obtain Theorem 16.1.2 and Theorem 16.1.3 by modifying the KKMO [141]
and Håstad [116] proofs. In this section we describe the idea of the modifications.

16.4.1 Active folding

The usual folding trick [116] enforces that f is balanced by replacing references to f(x1, . . . , xL)
with references to f(x1 ⊕q xj∗ , x2 ⊕q xj∗ , . . . , xL ⊕q xj∗) ⊕q (−xj∗) for some arbitrary
j∗ ∈ [L]. (I.e., the reduction only uses qL−1 variables to represent f as opposed to qL.
Note that this makes the test’s constraints of the form f(x)⊕q b = f(x′)⊕q b′, but this is
still of Γ-2-LIN type. We call this trick static folding.

Let us explain the alternative to “static folding” which we call active folding. Active
folding is nothing more than building the folding directly into the test. We feel that this is
slightly more natural than static folding, and as we will see it proves to be more flexible.

264

In the KKMO context of MAXΓ-2-LIN(Zq), active folding means that the test additionally
chooses c, c′ ∼ Zq uniformly and independently, and then it checks the Γ-2-LIN constraint

f(x⊕q (c, . . . c))⊕q (−c) = f(x′ ⊕q (c′, . . . c′))⊕q (−c′)

rather than f(x) = f(x′). To analyze the KKMO test with active folding, first note that
completeness does not change. As for the soundness analysis, given a function f : ZLq →
∆q we introduce f̃ : ZLq → ∆q defined by

f̃(x)a = E
c∼Zq

[f(x⊕q (c, . . . , c))a⊕qc]. (16.1)

Then the probability f satisfies the test with active folding is precisely the probability
that f̃ satisfies the f̃(x) = f̃(x′) test (in the sense of randomized functions), namely
Stab1−ε[f̃]. We can now proceed with the KKMO analysis; the key is that we still have
E[f̃a] = 1/q for all a ∈ Zq. To see this, take Q = q in the following lemma:

Lemma 16.4.1. Let f : ZLQ → ∆q and suppose f̃ : ZLQ → ∆q is defined as in (16.1). Then

E[f̃a] = 1/q for all a ∈ Zq.

Proof. We have
E[f̃a] = E

x∼ZKQ ,c∼Zq

[
f(x⊕Q (c, . . . , c))a⊕qc

]
.

Write x̃ = x ⊕Q (c, . . . , c) ∈ ZKQ . The distribution of x̃ | (c = c) is uniform on ZKQ for
every c. In other words, x̃ and c are independent. Thus

E[f̃a] = E
x̃

[
E
c

[
f(x̃)a⊕qc

]]
= E

x̃

[
(1/q)

∑
b∈Zq

[f(x̃)b]

]
= E

x̃
[1/q] = 1/q.

16.4.2 Modifying the KKMO proof

We now describe how to obtain Theorem 16.1.2. Let us first ask: Why does the KKMO re-
duction (with active folding) not prove Theorem 16.1.2 already? The soundness statement
of Theorem 16.1.2 would hold since it is over Zq. The problem is in the completeness
statement: a dictator f : ZLq → Z, f(x) = xi does not satisfy the the KKMO test with
probability close to 1. The reason is that folding may introduce wrap-around in Zq. More
specifically (and ignoring the ε noise), the KKMO test with active folding will check

(xi + c mod q)− c = (xi + c′ mod q)− c′ (16.2)

over the integers, and this is only satisfied if both xi+c and xi+c′ wrap around, or neither
does: probability 1/2. (The situation with static folding is similar.)

265

Sketch of a first fix. There is a simple way to somewhat fix the completeness: choose c
and c′ from a range smaller than {0, 1, . . . , q−1}. E.g., if we choose c and c′ independently
and uniformly in {0, 1, . . . , bq/tc}, then we get wrap-around in xi + c with probability at
most 1/t. Hence the dictator f(x) = xi will satisfy the test (16.2) over Z with probability
at least 1 − 2/t, which we can make close to 1 by taking t large. Now how does this
restricted folding affect the soundness analysis? If we redefine the folded function f̃ ap-
propriately, it is not hard to show that we will have E[f̃a] ≤ (t/q) for all a. We could then
proceed with the KKMO analysis applied to f̃ and obtain soundness qΛ1−ε(t/q). Choos-
ing, say, t = log q would achieve a good completeness versus soundness tradeoff; roughly
1− ε′ versus Õ(1/q)ε/(2−ε).

A better fix. A slight twist on this idea actually gives the optimal completeness versus
soundness tradeoff. Instead of restricting the range of the folding, we simply enlarge the
domain of f . Specifically, let γ > 0 be any small constant and define Q = dq/γe. To
prove Theorem 16.1.2 we run the KKMO reduction with functions f whose domain is ZLQ.
We still active folding with c ∈ Zq. In other words, the test chooses x,x′ to be (1 − ε)-
correlated strings in ZLQ, chooses c, c′ ∈ Zq uniformly and independently, and outputs
the constraint f(x ⊕Q (c, . . . , c)) − c = f(x′ ⊕Q (c′, . . . , c′)) − c′. Note that this is a
q-BOUNDED-Γ-2-LIN constraint. As the ‘wrap-around” probability is q/Q ≤ γ, we have
completeness over Z of at least 1 − ε − γ. As for the soundness over Zq, we now need
to consider functions f : ZLQ → ∆q. If we introduce the folded function f̃ : ZLQ → ∆q

as in (16.1), the probability f passes the test over Zq is again Stab1−ε[f̃], and we still
have E[f̃a] = 1/q by Lemma 16.4.1. Hence the soundness analysis for Theorem 16.1.2
becomes essentially identical to the soundness analysis for KKMO with active folding.
The only tiny difference is that we need to apply the Majority Is Stablest Theorem with
domain ZLQ rather than ZLq . But Q is still a constant since γ and q are; hence we obtain the
claimed 1− ε− γ completeness over Z and qΛ1−ε(1/q) soundness over Zq.

16.4.3 Modifying the Håstad proof

The modification to Håstad’s test needed to obtain Theorem 16.1.3 is similar. If one carries
out Håstad’s proof using the Efron–Stein decomposition rather than harmonic analysis
over Zq, one sees that the soundness relies entirely on E[fa] = 1/q for all a ∈ Zq. Thus we
only need to apply folding to f . Let us examine the Håstad Γ-3-LIN test on f : ZKq → Zq,
g : ZLq → Zq, and π : L → K. We will use active folding on f , and for simplicity of
this discussion ignore the ε-noise. The test chooses x ∼ ZKq and y ∼ ZLq uniformly and

266

Figure 16.1: Test T with parameters ε, γ, q for functions on ZKQ

• Choose x,x′ ∼ ZKQ to be a pair of (1− ε)-correlated random strings.

• Choose c, c′ ∼ [q] independently and uniformly.

• Define x̃ = x⊕Q (c, c, . . . , c), and define x̃′ = x′ ⊕Q (c′, c′, . . . , c′).

• Test the constraint f(x̃)− c = f(x̃′)− c′.

independently, defines z ∈ ZLq by z = y ⊕q (x ◦ π) (again, (x ◦ π)i := xπ(i)), chooses
c ∼ Zq uniformly, and finally checks the Γ-3-LIN constraint

f(x⊕q (c, . . . , c))− c+ g(y) = g(z).

Again, if we simply use this reduction in an attempt to prove Theorem 16.1.3, the sound-
ness is fine but the completeness over Z is a problem due to wrap-around. Indeed, there
are two possibilities for wrap-around here: in xi + c and in yj + xπ(j). We mitigate
this with the same idea used for MAXΓ-2-LIN. Given constants ε and q we define con-
stants Q = dq/εe and Q = dQ/εe. We enlarge f ’s domain to ZKQ and g’s domain to ZLQ.
We continue to fold f using c ∼ Zq. Now the two possibilities for wrap-around occur
with probability at most ε each and hence the completeness over Z is 1 − O(ε). Defining
f̃ : ZKQ → ∆q as in (16.1), we again have E[f̃a] = 1/q for each a ∈ Zq and can carry out
the (Efron–Stein-style) Håstad soundness analysis, obtaining soundness 1/q + κ over Zq.

16.5 Dictator Test details

16.5.1 Dictator Test for MAXΓ-2-LIN

Given constants ε, γ, κ > 0 and q,K ∈ Z+, let Q = dq/γe. We define the Dictator Test
T for functions f with domain ZKQ as in Figure 16.1. Let valTZ (f) be the probability that f
passes the test, and let valTZq(f) be the probability that f passes the test over Zq.

Theorem 16.5.1. There exists τ, η > 0 such that T is a q-BOUNDED-Γ-2-LIN test with
following properties:

267

• (Completeness.) Each of the K dictators f : ZKQ → Z has valTZ (f) ≥ 1− ε− γ.

• (Soundness.) Let f : ZKQ → ∆q and define f̃ : ZKQ → ∆q as in (16.1). Suppose
that Inf (1−η)

i [f̃] ≤ τ for all i ∈ [K]. Then valTZq(f) ≤ qΛ1−ε(1/q) + κ, where
κ = κ(τ,Q, η) > 0 can be made arbitrarily small by taking τ, η > 0 sufficiently
small.

Theorem 16.5.1 together with the following lemma proves Theorem 16.1.2.

Lemma 16.5.2. Theorem 16.5.1 implies Theorem 16.1.2 .

Lemma 16.5.2 is implicit from [141], and is proved in Section 16.7.1.

Proof of Theorem 16.5.1. For the Completeness case, we need to analyze for a fixed i ∈
[K] the probability that

(xi ⊕Q c)− c = (x′i ⊕Q c′)− c′ (16.3)

holds over Z. We have xi = x′i except with probability at most ε, and xi ≤ Q− q except
with probability at most q/Q ≤ γ. When both of these events occur, equation (16.3) holds.
This proves the completeness.

As for the Soundness case, by Lemma 16.4.1 we have µa = E[f̃a] = 1/q for each a ∈
Zq. By assumption we have Inf

(1−η)
i [f̃a] ≤ Inf

(1−η)
i [f̃] ≤ τ . Thus from Theorem 16.2.8

we obtain Stab1−ε[f̃a] ≤ Λ1−ε(1/q) + e(τ,Q, η) for each a. Summing this over a ∈ Zq
yields

Stab1−ε[f̃] ≤ qΛ1−ε(1/q) + q · e(τ,Q, η).

The proof is completed by taking κ = q · e(τ,Q, η), since Stab1−ε[f̃] = valTZq(f) by
unrolling definitions.

16.5.2 Matching Dictator Test for MAXΓ-3-LIN

Given constants ε, κ > 0 and q, L,K ∈ Z, let Q = dq/εe and Q = dQ/εe. In Figure 16.2,
we define the Matching Dictator Test U for function f with domain ZKQ , function g with
domain ZLQ, and projection π : L→ K. Let valUZ(f, g) be the probability that f, g pass the
test, and let valUZq(f, g) be the probability that f, g pass the test over Zq.

Theorem 16.5.3. U is a q-BOUNDED-Γ3-LIN test satisfying:

268

Figure 16.2: Test U with parameters ε, q for f on ZKQ , g on ZLQ, π : L→ K

• Choose x ∼ ZKQ , y ∼ ZLQ uniformly and independently.

• Define z ∈ ZLQ by z = y ⊕Q (x ◦ π).

• Choose c ∼ Zq uniformly and define x̃ ∈ ZKQ by x̃ = x⊕Q (c, c, . . . , c).

• Let x′ ∈ ZKQ be (1− ε)-correlated to x̃, let y′ ∈ ZLQ be (1− ε)-correlated to
y, and let z′ ∈ ZLQ be (1− ε)-correlated to z.

• Test the constraint f(x′)− c+ g(y′) = g(z′).

• (Completeness.) If f : ZKQ → Z and g : ZLQ → Z are matching dictators — i.e.,
f(x) = xπ(j) and g(y) = yj for some j ∈ [L] — then valUZ(f, g) ≥ 1− 5ε.

• (Soundness.) Let f : ZKQ → Zq, g : ZLQ → Zq and define f̃ : ZKQ → ∆q as
in (16.1). Suppose that valUZq(f, g) ≥ 1/q+κ, then there is a randomized “decoding
procedure” D which decodes g to a coordinate D(g) ∈ [L] and f to a coordinate
D(f) ∈ [K] such that π(D(g)) = D(f) with at least a constant probability ζ =
ζ(q, ε, κ) independent of π, L,K.

Theorem 16.5.3 together with the following lemma proves Theorem 16.1.3.

Lemma 16.5.4. Theorem 16.5.3 implies Theorem 16.1.3 .

Lemma 16.5.4 is proved in Section 16.7.2.

Proof of Theorem 16.5.3. Define f̃ : ZKQ → ∆q as in (16.1). For the completeness case,
we need to analyze for a fixed j ∈ [L] the probability that

x′π(j) − c+ y′j = z′j (16.4)

holds over Z. Except with probability at most 3ε we have all of

x′π(j) = x̃π(j) = xπ(j) ⊕Q c,
y′j = yj, z′j = zj = xπ(j) ⊕Q yj.

269

Except with probability at most q/Q ≤ ε we have xπ(j) ≤ Q− q, in which case xπ(j)⊕Q c
equals xπ(j) +c. Except with probability at mostQ/Q ≤ ε we have yj ≤ Q−Q, in which
case xπ(j) ⊕Q yj = xπ(j) + yj . Thus when all five events occur, equation (16.4) indeed
holds over Z.

As for the soundness case, write f ′ = T1−εf̃ and g′ = T1−εg, where we think of g as
g : ZLQ → ∆q. By unrolling definitions we have

valUZq(f, g) =
∑
a,b∈Zq

E
x,y,z

[f ′a(x)g′b(y)g′a⊕qb(z)].

Write µa = E[f ′a(x)]. Thus µa = E[f̃a] = 1/q, by Lemma 16.4.1. We conclude that

valUZq(f, g) =
∑
a,b∈Zq

E[(f ′a(x)− µa)g′b(y)g′a⊕qb(z)] + (1/q)
∑
a,b∈Zq

E[g′b(y)g′a⊕qb(z)].

The second term above is

(1/q)
∑
a,b∈Zq

E[g′b(y)g′a⊕qb(z)] = (1/q)E
[
(
∑
c

g′c(y)) · (
∑
c

g′c(z))
]

= (1/q)E[1 · 1] = 1/q,

since g′ is ∆q-valued. Thus to complete the proof it remains to show that if∑
a,b∈Zq

E[(f ′a(x)− µa)g′b(y)g′a⊕qb(z)] (16.5)

is at least κ > 0 then we can suitably decode f̃ and g. Let us now apply the Efron–Stein
decomposition to f ′ and g′ with respect to the uniform distributions on their domains.
Given S ⊆ [K], T ⊆ [L], for simplicity we write

F S
a = f ′

S
a (x), GT

b = g′
T
b (y), HT

a+b = g′
T
a⊕qb(z).

Thus

(16.5) =
∑
a,b∈Zq

E
[(∑
∅6=S⊆[K]

F S
a

)(∑
T⊆[L]

GT
b

)(∑
U⊆[L]

HU
b

)]
=
∑
a,b∈Zq

∑
∅6=S⊆[K]
T,U⊆[L]

E[F S
a G

T
bH

U
a+b].

Let us simplify the above. We have E[F S
a G

T
bH

U
a+b] = E[F S

a · E[GT
bH

U
a+b | x]]. Note

that even if we condition on x, the marginals on y and z are uniform on ZLQ. It follows

270

from the properties of the Efron–Stein decomposition that E[GT
bH

U
a+b | x] is always 0 if

T 6= U . Thus
(16.5) =

∑
a,b∈Zq

∑
∅6=S⊆[K]
U⊆[L]

E[F S
a G

U
bH

U
a+b].

Similarly, conditioned on the U -coordinates of y and z, the coordinates of x outside π(U)
are independent and uniform on ZQ. Hence E[F S

a G
U
bH

U
a+b] = 0 if S 6⊆ π(U). We

conclude that

(16.5) =
∑
a,b∈Zq

∑
U 6=∅

∅6=S⊆π(U)

E[F S
a G

U
bH

U
a+b] =

∑
a,b∈Zq

∑
U 6=∅

E[F≤π(U)
a GU

bH
U
a+b],

where we defined F≤π(U)
a =

∑
∅6=S⊆π(U) F

S
a . Shifting the sum over a and b to the inside

we obtain

(16.5) =
∑
U 6=∅

E
[∑
a,b∈Zq

F≤π(U)
a GU

bH
U
a+b

]
≤
∑
U 6=∅

E

[√∑
a,b

(F
≤π(U)
a)2(GU

b)2
√∑

a,b

(HU
a+b)

2

]
,

having used Cauchy-Schwarz. We can think of, e.g., (GU
0 , . . . ,G

U
q−1) as a vector in Rq;

writing ‖GU‖ for the Euclidean length of this vector (and similarly for F and H), the
right side above is precisely

√
q
∑

U 6=∅E
[
‖F≤π(U)‖ · ‖GU‖ · ‖HU‖

]
. Thus

(16.5) ≤√q
∑
U 6=∅

E
[
‖F≤π(U)‖ · ‖GU‖ · ‖HU‖

]
≤ √q

∑
U 6=∅

√
E[‖F≤π(U)‖2‖GU‖2]

√
E[‖HU‖2],

using Cauchy-Schwarz again. Now F≤π(U) depends only on x and GU depends only on
y; hence they are independent. Further, since y and z have the same distribution (though
they are not independent), the same is true ofGU andHU . Hence

(16.5) ≤ √q
∑
U 6=∅

√
E[‖F≤π(U)‖2]E[‖GU‖2]

≤√q
√∑

U 6=∅

E[‖F≤π(U)‖2]E[‖GU‖2]

√∑
U 6=∅

E[‖GU‖2],

using Cauchy-Schwarz again. By (generalized) Parseval,
∑

U 6=∅E[‖GU‖2] ≤
∑

U E[‖GU‖2] =

E[‖G‖2] ≤ 1, sinceG takes values in ∆q. Thus we finally conclude

(16.5) ≤ √q
√∑

U 6=∅

E[‖F≤π(U)‖2]E[‖GU‖2]

271

=

√
q
∑
U 6=∅

E[‖(T1−εf̃)≤π(U)(x)‖2]E[‖(T1−εg)U(y)‖2].

If valUZq(f, g) ≥ 1/q + κ, then we have κ ≤ (16.5) and therefore∑
U 6=∅

E[‖(T1−εf̃)≤π(U)(x)‖2]E[‖(T1−εg)U(y)‖2] ≥ κ2/q. (16.6)

We now define the decoding procedure. It works in a similar way as in Håstad’s
work [116], as follows. We sample a random set S ⊆ [K] according to distribution
E[‖f̃S(x)‖2], and let D(f) ∈ S uniformly (or an arbitrary element of [K] if S = ∅).
We also sample a random set T ⊆ [L] according to distribution E[‖gT (y)‖2], and choose
D(g) ∈ T uniformly (or an arbitrary element of [L] if T = ∅). We have

Pr[π(D(g)) = D(f)]

≥
∑

T,∅6=S⊆π(T)

E[‖f̃S(x)‖2]E[‖gT (y)‖2]
1

|S|

≥2ε
∑

T,∅6=S⊆π(T)

E[‖f̃S(x)‖2]E[‖gT (y)‖2](1− ε)2|S|,

where in the last step we use the fact 1/|S| ≥ 2ε(1 − ε)2|S|. Note that E[‖f̃S(x)‖2](1 −
ε)2|S| = E[‖T1−εf̃

S(x)‖2] and E[‖gT (y)‖2] ≥ E[‖(T1−εg)T (y)‖2], we have

Pr[π(D(g)) = D(f)]

≥2ε
∑

T,∅6=S⊆π(T)

E[‖(T1−εf̃)S(x)‖2]E[‖(T1−εg)T (y)‖2]

=2ε
∑
T

E[‖(T1−εf̃)≤π(T)(x)‖2]E[‖(T1−εg)T (y)‖2]

≥2εκ2/q,

where the second last step is by definition and orthogonality of (T1−εf̃)S1 and (T1−εf̃)S2

(S1 6= S2), and the last step is by (16.6).

16.6 Reductions between MAXk-LIN(R) problems

Lemma 16.6.1. Given a q-BOUNDED-MAXΓ-k-LIN instance and positive integerm ≥ q:

272

• When k = 2, optZ(I), optR(I), optZm(I) ≤ 4 · optZq(I).

• When k = 3, optZ(I), optR(I), optZm(I) ≤ 8 · optZm(I).

Proof. It is obvious that the optZ is a lower bound for optZq . It suffice then to show how
to convert a δ-good assignment over Zm and R to a Ω(δ)-good assignment over Z.

First we show the conversion from an assignment over R to Z. For case of k = 3, as
is noted in [108], suppose one has an δ-good real assignment to a system of equations of
the form xi1 − xi2 + xi3 = b, b ∈ Z. If one randomly rounds each variable up or down
to an integer, every formerly satisfied equation has probability at least 1/8 of remaining
satisfied.1 Hence there must exist a δ/8-good integer assignment. For the case of k = 2,
The reduction from MAXΓ-2-LIN(Z) to MAXΓ-2-LIN(R) is even easier and incurs no
loss: given a δ-good real assignment, simply dropping the fractional parts yields a δ-good
integer assignment.

Next we show the conversion from assignment over Zm to Zq. First let us consider
the case of k = 3. Suppose one has an δ-good assignment A : xi → Zm to a system of
equations of the form

xi1 − xi2 + xi3 = b mod m.

Then we know that if A(xi1) − A(xi2) + A(xi3) = b mod m. Notice that |b| ≤ q ≤ m,
we must have that A(xi1)−A(xi2) +A(xi3) ∈ {b, b−m, b+m} when the assignment is
evaluated over Z. If we define assignments A1(xi) = A(xi)−m and A2(xi) = A(xi) +m
for every xi. Then it is easy to verify that the best assignment among A,A1, A2 will give
a δ/3-good assignment. Essentially, every equation over Zm satisfiable by A must also be
satisfiable by one of A,A1, A2 over Z.

As for the case k = 2, we know that for a δ-good assignment A over Zm, we know that
if A(xi1)−A(xi2) = b mod m, then A(xi1)−A(xi2) ∈ {b−m, b} when evaluated over
Z. Therefore, we can randomly set A′(xi) to be A(xi)−m or A(xi) . Then we know that
A′ is at least a δ/4-good assignment over Z.

It is not too hard to see that the proof technique also works for m < q; in particu-
lar, a δ-good assignment for q-BOUNDED-MAXΓ-k-LINon Zm implies a Ω(δ

(2q/m)k
)-good

assignment on Zq.

1In the usual case when the hard instances also have “bipartite” structure, it is not hard to make the loss
only a factor of 2 rather than 8.

273

16.7 From Dictator Tests to hardness of approximation

16.7.1 Proof of Lemma 16.5.2

We start by defining UNIQUEGAMES and the Unique Games Conjecture.

Definition 16.7.1 (UNIQUEGAMES). A UNIQUEGAMES instanceL(G(U, V,E),Σ, {πe|e ∈
E}) is a constraint satisfaction problem defined as follows. G(U, V,E) is a bipartite graph
whose vertices represent variables and edges represent constraints. The goal is to assign
to each vertex a label from the set Σ. The constraint on an edge e = (u, v) ∈ E, where
u ∈ U, v ∈ V , is described by a bijection πe : Σ→ Σ. A labeling σ : U ∪V → Σ satisfies
the constraint on edge e = (u, v) if and only if πe(σ(v)) = σ(u). Let opt(U) denote the
maximum fraction of constraints that can be satisfied by any labeling:

opt(U) := max
L:U∪V→Σ

1

|E|
· |{e ∈ E|L satisfies e}|.

Conjecture 2 (Unique Games Conjecture [136]). For every γ, δ > 0, there exists a con-
stantM = M(γ, δ), such that given a UNIQUEGAMES instance L(G(U, V,E),Σ, {πe|e ∈
E}) with |Σ| = M , it is NP-hard to distinguish between these two cases :

• YES Case: opt(L) ≥ 1− γ.

• NO Case: opt(L) ≤ δ.

By standard reductions, we can assume the bipartite graph G(U, V,E) is left-regular in
the conjecture.

Now we are ready to prove Lemma 16.5.2.

Proof of Lemma 16.5.2. Given a UNIQUEGAMES instanceL(G(U, V,E),Σ, {πe|e ∈ E}),
and a Dictator Test T (ε, γ, κ, q,K = |Σ|) described in the lemma statement, we build a
q-BOUNDED-MAXΓ-2-LIN instance I as follows. The variable set consists of all the en-
tries of gv : [Q]Σ → Z,∀v ∈ V , which are supposed Q-ary Long Codes of the labels for
v ∈ V , where Q = q/γ is defined in the Dictator Test. The equations are placed by the
following random process, where the probability of a equation being placed corresponds
to its weight.

• Pick a random vertex u and two of its random neighbors of v, v′ ∈ V , let π = π(u,v)

and π′ = π(u,v′).

274

• Run the Dictator Test T on an imaginary function f defined on [Q]Σ, suppose T
chooses to test f(x)− f(y) = b.

• Place the equation (gv ◦ π)(x)− (gv′ ◦ π′)(y) = b, where (g ◦ π)(x) := g(π(x)).

Completeness. Suppose opt(L) ≥ 1− γ, and σ is a labeling function satisfying 1− γ
fraction of the constraints. Let gv be the Long Code for σ(v), i.e. let gv(x) = xσ(v) for each
x. According to the random process shown above, we pick a random equation in I. With
probability at least 1−2γ, both of the constraints on (u, v) and (u, v′) are satisfied by σ. In
this case, both gv ◦π and gv′ ◦π′ are the Long Code for σ(u), and gv ◦π(x)−gv′ ◦π′(y) = b
is satisfied with probability 1−ε−γ by the property of T . In all, at least 1−ε−3γ fraction
(of weight) of the equations are satisfied.

Soundness. Suppose there is a set of functions gv : [Q]Σ → Zq satisfying more than
qΛ1−ε(1/q) + κ fraction (of weight) of the equations over Zq. Then there are at least κ/2
fraction of vertices u ∈ U such that conditioned on u is picked in the first step of the
random process shown above, the equation is satisfied over Zq with probability more than
qΛ1−ε(1/q) + κ/2. We call such u’s “good”. For each u, we define fu : [Q]Σ → ∆q to
be fu = avgv:(u,v)∈E{gv ◦ π(u,v)}. Since the equations generated after picking u are indeed
a Dictator Test T running on fu, for good u’s, we have valTZq(fu) > qΛ1−ε(1/q) + κ/2 .

Therefore, for each good u, there exists i = iu ∈ Σ, such that Inf (1−η)
i [f̃u] > τ . Note that

f̃u = avg
v:(u,v)∈E

{ ˜gv ◦ π(u,v)}.

By Proposition 16.2.6, we have

τ < Inf
(1−η)
i [f̃u] = Inf

(1−η)
i

[
avg

v:(u,v)∈E
{ ˜gv ◦ π(u,v)}

]
≤ avg

v:(u,v)∈E

{
Inf

(1−η)
i [˜gv ◦ π(u,v)]

}
.

Therefore, for at τ/2 fraction of neighbors v of u, there exists j = π(u,v)(i), such that
Inf

(1−η)
j (g̃v) > τ/2.

Let σ(u) = iu if u is good. For each v ∈ V , let Cand(v) = {i : Inf
(1−η)
i (g̃v) > τ/2}.

By Fact 16.2.5, we have |Cand(v)| < 1/(τη). If Cand(v) 6= ∅, let σ(v) be a random
element in Cand(v). Now for a good u, there are τ/2 fraction of neighbors v of u such
that j = π(u,v)(σ(u)) ∈ Cand(v), therefore the edge (u, v) is satisfied with probability
1/|Cand(v)| > τη. It follows that σ satisfies more than (κ/2)(τ/2)τη = κητ 2/2 fraction
of the constraints in expectation. Therefore there is a labeling satisfying more than δ′ =
κητ 2/2 fraction of the constraints.

275

16.7.2 Proof of Lemma 16.5.4

We start by defining Label Cover Games and introducing its hardness.

Definition 16.7.2 (Label Cover Games). A Label Cover Game C(G(U, V,E), [K], [L], {πe|e ∈
E}) is a constraint satisfaction problem defined as follows. G(U, V,E) is a bipartite graph
whose vertices represent variables and edges represent the constraints. The goal is to as-
sign to each vertex in U a label from the set [K] and to each vertex in V a label from
the set [L]. The constraint on an edge e = (u, v) ∈ E is described by a “projection”
πe : [L] → [K]. The projection is onto. A labeling σ : U → [K], σ : V → [L] satisfies
the constraint on edge e = (u, v) if and only if πe(σ(v)) = σ(u). Let opt(C) denote the
maximum fraction of constraints that can be satisfied by any labeling :

opt(C) := max
σ:U→[K]
σ:V→[L]

1

|E|
· |{e ∈ E|σ satisfies e}|.

Theorem 16.7.3 (PCP Theorem + Raz’s Parallel Repetition Theorem [22, 20, 198]). There
exists an absolute constant c such that for every δ > 0, given C(G(U, V,E), [K], [L], {πe|e ∈
E}), K = (1/δ)C , it is NP-hard to distinguish between:

• YES Case: opt(C) = 1.

• NO Case: opt(C) = δ.

Now we are ready to prove Lemma 16.5.4.

Proof of Lemma 16.5.4. Given a Label Cover Game instance C(G(U, V,E), [K], [L], {πe|e ∈
E}), and a Matching Dictator Test U(ε, κ, q, L,K) described in the lemma statement, we
build a q-BOUNDED-MAXΓ-3-LIN instance I as follows. The variable set consists of all
the entries of fu : [Q]L → Z and gv : [Q]K → Z for all u ∈ U, v ∈ V . The equations
are the gathering of the Matching Dictator Tests U for fu, gv with projection π(u,v) for all
(u, v) ∈ E. The weights of the equations are normalised by a factor 1/|E|.

Completeness. Suppose opt(C) = 1, and σ is a labeling function satisfying all the con-
straints. For all u ∈ U, v ∈ V , let fu and gv be the Long Codes for σ(u), σ(v) respectively,
i.e. let fu(x) = xσ(u), gv(y) = yσ(v). For each edge (u, v) ∈ E, the Matching Dictator Test
U passes with probability at least 1 − ε. Therefore, at least 1 − ε fraction (of weight) of
the equations are satisfied.

Soundness. Suppose there is a set of functions fu : [Q]K → Zq, gv : [Q]L → Zq
satisfying more than 1/q + κ fraction (of weight) of the equations over Zq. By averaging

276

argument, for at least κ/2 fraction of the edges, the corresponding Matching Dictator Test
passes with probability more than 1/q + κ/2. Call these edges “good edges”. For all
u ∈ U, v ∈ V , let σ(u) = D(fu), σ(v) = D(gv). For good edges e ∈ E, the probability
that e is satisfied by σ is at least ζ = ζ(q, ε, κ). It follows that σ satisfies more than ζκ/2
fraction of the constraints in expectation. Therefore there is a labeling satisfying more
than δ′ = ζκ/2 fraction of the constraints.

277

278

Chapter 17

Hardness of approximating almost
satisfiable MAXHORN3-SAT

17.1 Introduction

Schaefer proved long ago that there are only three non-trivial classes of Boolean constraint
satisfaction problems (CSPs) for which satisfiability is polynomial time decidable [202].
These are LIN(2) (linear equations modulo 2), 2-SAT, and HORNSAT. The maximiza-
tion versions of these problems (where the goal is to find an assignment satisfying the
maximum number of constraints) are NP-Hard, and in fact APX-Hard, i.e., NP-Hard to
approximate within some constant factor bounded away from 1. An interesting special
case of the maximization version is the following problem of “finding almost-satisfying
assignments”: Given an instance which is (1 − ε)-satisfiable (i.e., only ε fraction of con-
straints need to be removed to make it satisfiable for some small constant ε), can one
efficiently find an assignment satisfying most (say, 1 − f(ε) − o(1) where f(ε) → 0 as
ε→ 0) of the constraints? 1

The problem of finding almost-satisfying assignments was first suggested and studied
in a beautiful paper by Zwick [227]. This problem seems well-motivated, as even if a
MAXCSP is APX-Hard in general, in certain practical situations instances might be close
to being satisfiable (for example, a small fraction of constraints might have been corrupted

1Throughout this chapter, constraints could have weights, and by a “fraction α of constraints” we mean
any subset of constraints whose total weight is a fraction α of the sum of the weights of all constraints. For
CSPs with no unary constraints, the approximability of the weighted and unweighted versions are known to
be the same [71].

279

by noise). An algorithm that is able to satisfy most of the constraints of such an instance
could be very useful.

As pointed out in [135], Schaefer’s reductions together with the PCP theorem imply
that the previous goal is NP-Hard to achieve for any Boolean CSP for which the satisfia-
bility problem is NP-complete. Indeed, all but the above three tractable cases of Boolean
CSPs have a “gap at location 1,” which means that given a satisfiable instance it is NP-
Hard to find an assignment satisfying α fraction of the constraints for some constant α < 1.
This result has been extended to CSPs over arbitrary domains recently [128].

The natural question therefore is whether for the three tractable Boolean CSPs, LIN(2),
2-SAT, and HORNSAT, one can find almost-satisfying assignments in polynomial time.
Effectively, the question is whether there are “robust” satisfiability checking algorithms
that can handle a small number of inconsistent constraints and still produce a near-satisfying
assignment.

With respect to the feasibility of finding almost-satisfying assignments, LIN(2), 2-
SAT, and HORNSAT behave rather differently from each other. For LIN(2), Håstad in
his breakthrough paper [116] showed that for any ε, δ > 0, finding a solution satisfying
1/2 + δ of the equations of a (1 − ε)-satisfiable instance is NP-Hard. In fact, this result
holds even when each equation depends on only 3 variables. Since just picking a random
assignment satisfies 1/2 the constraints in expectation, this shows, in a very strong sense,
that there is no robust satisfiability algorithm for LIN(2).

In sharp contrast to this extreme hardness for linear equations, Zwick [227] proved
that for 2-SAT and HORNSAT, one can find almost-satisfying assignments in polynomial
time. For MAX2-SAT, Zwick gave a semidefinite programming (SDP) based algorithm
that finds a (1 − O(ε1/3))-satisfying assignment (i.e., an assignment satisfying a fraction
(1 − O(ε1/3)) of the constraints) given as input a (1 − ε)-satisfiable instance. This algo-
rithm was later improved to one that finds a 1−O(

√
ε)-satisfying assignment by Charikar,

Makarychev, and Makarychev [62]. The 1 − O(
√
ε) bound is known to be best possible

under the Unique Games Conjecture (UGC) [136, 141]. In fact, this hardness result for
MAX2-SAT was the first application of the UGC and one of the main initial motivations
for its formulation by Khot [136].

For HORNSAT, Zwick gave a linear programming (LP) based algorithm to find an as-
signment satisfying (1−O(log log(1/ε)/ log(1/ε))) of constraints of a (1− ε)-satisfiable
instance. Recall that an instance of HORNSAT is a CNF formula where each clause con-
sists of at most one unnegated literal.2 Equiavlently, each clause is of the form xi, xi, or

2The dual variant DUALHORNSAT is an instance of SAT where each clause has at most one negated
literal and it is also polynomial time solvable.

280

xi ∧ x2 ∧ . . .∧ xk → xk+1 for variables xi. For HORN3-SAT where each clause involves
at most three variables, the algorithm finds a (1− O(1/ log(1/ε)))-satisfying assignment.
Note that the fraction of unsatisfied constraints is exponentially worse for HORNSAT com-
pared to MAX2-SAT.

Horn-SAT is a fundamental problem in logic and artificial intelligence. Zwick’s ro-
bust Horn satisfiability algorithm shows the feasibility of solving instances where a small
number of constraints are faulty and raises the following natural question, which was also
explicitly raised in [227]. Is this 1/ log(1/ε) deficit inherent? Or could a more sophisti-
cated algorithm, say based on an SDP relaxation instead of the LP relaxation used in [227],
improve the deficit to something smaller (such as εb for some constant b as in the case of
the SDP based algorithm for MAX2-SAT)? It is known that for some absolute constant
c < 1, it is NP-Hard to find a (1 − εc)-satisfying assignment given a (1 − ε)-satisfiable
instance of HORNSAT [135].

In this chapter, we address the above question and resolve it (conditioned on the UGC),
showing the 1/ log(1/ε) deficit to be inherent. We describe our results in more detail below
in Section 17.2.

Remark 17.1.1. For (1 − ε)-satisfiable instances of MAX2-SAT, even the hardness of
finding a (1−ωε(1)ε)-satisfying assignment is not known without assuming the UGC (and
the UGC implies the optimal 1 − Ω(

√
ε) hardness bound). For HORNSAT, as mentioned

above, we know the NP-Hardness of finding a (1 − εc)-satisfying assignment for some
absolute constant c < 1. Under the UGC, we are able to pin down the exact asymptotic
dependence on ε.

17.2 Our contributions and previous work

We prove the following hardness result concerning finding almost-satisfying assignments
for HORNSAT (in fact for the arity 3 case where all clauses involve at most 3 variables).
In the sequel, we use the terminology “UG-Hard” to mean at least as hard as refuting the
Unique Games Conjecture.

Theorem 17.2.1. For some absolute constant C > 0, for every ε > 0, given a (1 − ε)-
satisfiable instance of HORN3-SAT, it is UG-Hard to find an assignment satisfying more
than a fraction

(
1− C

log(1/ε)

)
of the constraints.

Zwick gave a polynomial time algorithm that finds a 1−O(log k
log(1/ε)

)-satisfying assign-
ment on input a (1− ε)-satisfiable instance of MAXHORNk-SAT. Our inapproximability

281

bound is therefore optimal up to the constant C, and resolves Zwick’s question on whether
his algorithm can be improved in the negative. (For arbitrary arity HORNSAT, Zwick’s
algorithm has the slightly worse 1 − O(log log(1/ε)/ log(1/ε)) performance ratio; we do
not show this to be tight.)

Theorem 17.2.1 shows that HORNSAT has a very different quantitative behavior com-
pared to MAX2-SAT with respect to approximating near-satisfiable instances: the fraction
of unsatisfied clauses Ω(1/ log(1/ε)) is exponentially worse than the O(

√
ε) fraction that

can be achieved for MAX2-SAT.

A strong hardness result for MINHORNDELETION, the minimization version for HORN-
SAT, was shown in [135]. It follows from their reduction that for some absolute constant
c < 1, it is NP-Hard to find a (1 − εc)-satisfying assignment given a (1 − ε)-satisfiable
instance of HORNSAT. The constant c would be extremely close to 1 in this result as
it is related to the soundness in Raz’s parallel repetition theorem. While our inapprox-
imability bound is stronger and optimal, we are only able to show UG-Hardness and not
NP-Hardness.

In light of our strong hardness result for HORN3-SAT, we also consider the approx-
imability of the arity two case. For HORN2-SAT, given a (1 − ε)-satisfiable instance, an
approximation preserving reduction from vertex cover shows that it is UG-Hard to find
a (1 − cε)-satisfying assignment for c < 2. It is also shown in [135] that one can find
a (1 − 3ε)-satisfying assignment efficiently. We improve the algorithmic bound (to the
matching UG-Hardness) by proving the following theorem, based on half-integrality of an
LP relaxation for the problem.

Theorem 17.2.2. Given a (1 − ε)-satisfiable instance for HORN2-SAT, it is possible to
find a (1− 2ε)-satisfying assignment in polynomial time.

17.3 Proof method

We construct integrality gap instances for a certain semidefinite programming relaxation
(described in Section 17.3.1), and then use Raghavendra’s theorem [189] to conclude that
assuming the Unique Games Conjecture, no algorithm can achieve an approximation ratio
better than the SDP integrality gap.

In contrast to previous such integrality gap constructions (eg., for MAXCUT) where
the instances had a good SDP solution “by design” and the technical core was bounding
the integral optimum, in our case bounding the integral optimum is the easy part and
the challenge is in the construction of appropriate SDP vectors. See Section 17.3.2 for an

282

overview of our gap instances. It is also interesting that our SDP gaps match corresponding
LP gaps. In general it seems like an intriguing question for which CSPs this is the case
and therefore LPs suffice to get the optimal approximation ratio.

For our algorithmic results (see Section 17.3.3), we use a natural linear programming
relaxation. The algorithm for HORN2-SAT proceeds by showing half-integrality of the
LP.

17.3.1 The canonical SDP for Boolean CSPs and UG-Hardness

For Boolean CSP instances, we write C as the set of constraints over variables x1, x2, . . . , xn ∈
{0, 1}. The SDP relaxation from [189], which we call the canonical SDP, sets up for each
constraint C ∈ C a local distribution πC on all the truth-assignments {σ : XC → {0, 1}},
where XC is the set of variables involved in the constraint C. This is implemented via
scalar variables πC(σ) which are required to be non-negative and satisfy

∑
σ:XC→{0,1} πC(σ) =

1. For each variable x, two orthogonal vectors v(x,0) and v(x,1), corresponding to the events
x = 0 and x = 1, are set up. The SDP requires for each variable x, v(x,0) · v(x,1) = 0 and
v(x,0) + v(x,1) = I where I is a global unit vector. (In the integral solution, one of the
vectors v(x,1),v(x,0) — based on the x’s Boolean value — is intended to be I and the other
one to be 0.)

Then, as constraint (17.5), the SDP does a consistency check: for two variables x, y
(that need not be distinct) involved in the same constraint C, and for every b1, b2 ∈ {0, 1},
the SDP insists that the inner product v(x,b1) · v(y,b2) equals Prσ∈πC [(σ(x) = b1)∧ (σ(y) =
b2)].

Maximize E
C∈C

[Pr
σ∈πC

[C(σ) = 1]] (17.1)

Subject to v(xi,0) · v(xi,1) = 0 ∀i ∈ [n] (17.2)
v(xi,0) + v(xi,1) = I ∀i ∈ [n] (17.3)

‖I‖2 = 1 (17.4)
Pr
σ∈πC

[σ(xi) = b1 ∧ σ(xj) = b2] = v(xi,b1) · v(xj ,b2) ∀C ∈ C, xi, xj ∈ C,

b1, b2 ∈ {0, 1} (17.5)

Note that if we discard all the vectors by removing constraints (17.2)∼(17.4), and changing
constraints (17.5) to Prσ∈πS [σ(xi) = b1 ∧ σ(xj) = b2] = X(xi,b1),(xj ,b2), the SDP becomes
a lifted LP in Sherali-Adams system. We call this LP scheme the lifted LP in this chapter.

The following striking theorem (Theorem 1.1 in [189]) states that once we have an
integrality gap for the canonical SDP, we also get a matching UG-Hardness. Below and

283

elsewhere in the chapter, a c vs. s gap instance is an instance with SDP optimum at least c
and integral optimum at most s.

Theorem 17.3.1. Let 1 > c > s > 0. If a constraint satisfaction problem Λ admits a c
vs. s integrality gap instance for the above canonical SDP, then for every constant η > 0,
given an instance of Λ that admits an assignment satisfying (c − η) of constraints, it is
UG-Hard to find an assignment satisfying more than (s+ η) of constraints.

To make our construction of integrality gaps easier, we notice the following simplifi-
cation of the above SDP. Suppose we are given the global unit vector I and a vector vx for
each variable x in the CSP instance, subject to the following constraints:

(I − vx) · vx =0 ∀ variables x (17.6)
Pr
σ∈πC

[σ(xi) = 1 ∧ σ(xj) = 1] =vxi · vxj ∀C ∈ C, xi, xj ∈ C . (17.7)

Defining v(x,1) = vx and v(x,0) = I − vx, it is easy to check that all constraints of the
above SDP are satisfied. For instance, for variables x, y belonging to a constraint C,

v(x,0) · v(y,1) =(I − v(x,1)) · v(y,1)

=‖v(y,1)‖2 − v(x,1) · v(y,1)

= Pr
σ∈πC

[σ(y) = 1]− Pr
σ∈πC

[(σ(x) = 1) ∧ (σ(y) = 1)]

= Pr
σ∈πC

[(σ(x) = 0) ∧ (σ(y) = 1)] ,

and other constraints of (17.5) follow similarly.

Henceforth in this chapter, we will work with this streamlined canonical SDP with
vector variables I , {vx}, scalar variables corresponding to the local distributions πC , con-
straints (17.6) and (17.7), and objective function (17.1).

17.3.2 Overview of construction of SDP gaps

In the concluding section of [227], Zwick remarks that there is an integrality gap for the LP
he uses that matches his approximation ratio. Indeed such a LP gap is not hard to construct
and we start by describing one such instance. The instance begins with clause x1, and in
the intermediate (k − 1) clauses, the i-th clause x1 ∧ . . . ∧ xi → xi+1 makes xi+1 true
if all the previous clauses are satisfied. Then the last clause xk generates a contradiction.
Thus the optimal integral solution is at most (1 − 1/k). On the other hand, one possible
fractional solution starts with x1 = (1− ε) for some ε > 0. Then for 1 ≤ i < k, by letting

284

(1 − xi+1) =
∑i

j=1(1 − xj), all the intermediate (k − 1) clauses are perfectly “satisfied”
by the LP, while the gap (1 − xi+1) = 2i−1ε increases exponentially. Thus by letting
ε = 1/2k−2, we get xk = 0 and the LP solution is at least (1−1/2Ω(k)). The instance gives
a (1− 2−Ω(k)) vs. (1− 1/k) LP integrality gap.

Now we convert this LP gap instance into an SDP gap instance in two steps. First,
since we are going to give a gap instance for MAX HORN-3SAT, we reduce the arity of
the instance from k to 3. Then, we find a set of vectors for the LP solution to make it an
SDP solution.

For the first step, to get an instance of MAX HORN-3SAT, we introduce yi which is
intended to be x1 ∧ . . . ∧ xi−1. For 1 ≤ i < k, we replace the intermediate clauses by
xi ∧ yi → xi+1, and add xi ∧ yi → yi+1 to meet the intended definition of yi. We call
each of these two clauses as comprising one step . It is easy to show that for this instance
there is a solution of value (1 − 1/2Ω(k)) even for the lifted LP. (The difference between
the lifted LP and Zwick’s LP is that the lift LP introduces local distributions over clauses
which are consistent in the first and second moments, while Zwick’s LP only has variables
for singletons.)

Finding vectors for the SDP turns out to be more challenging. Note that if we want to
perfectly satisfy all the intermediate clauses in SDP, we need to obey vxi · vyi ≤ ‖vxi+1

‖2

and vxi · vyi ≤ ‖vyi+1
‖2 for 1 ≤ i < k. Thus to make the norms ‖vxi+1

‖2 and ‖vyi+1
‖2

decrease fast (since we want ‖vxk‖2 = ‖vyk‖2 = 0), we need to make the inner product
vxi · vyi decrease fast as well. But technically it is hard to make both kinds of quantities
decrease at a high rate for all intermediate clauses. Our solution is to decrease the norms
and inner products alternately. More specifically, we divide the intermediate clauses into
blocks, each of which contains two consecutive steps. In the first step of each block,
we need that the inner product is much smaller than the norms so that we can decrease
the norms quickly, but we preserve the value of inner product. Thus we cannot do this
step repeatedly, and we need the second step, where we decrease the inner product (while
preserving the norms) in preparation to start the first step of the next block.

17.3.3 Overview of algorithmic results

Our algorithmic result for HORN2-SAT (Theorem 17.2.2) is obtained by rounding frac-
tional solutions of appropriate linear programming (LP) relaxations. The algorithm is
indeed a 2-approximation algorithm for MINHORNDELETION problem (refer to Sec-
tion 17.4.2 for the definition of MINHORNDELETION). We prove a half-integrality prop-
erty of the optimal solution to the natural LP relaxation of the problem, which can be

285

viewed as a generalization of half-integrality property of (the natural LP for) Vertex Cover.
We take the optimal solution of the natural LP relaxation, iteratively make every variable
move towards half-integral values (0, 1, and 1/2), while never increasing the value of the
solution. This yields an optimal half-integral solution which can then be trivially rounded
to obtain an integral solution that gives a factor 2 approximation.

17.4 Approximability of HORN3-SAT

17.4.1 SDP gap and UG hardness for HORN3-SAT

17.4.1.1 Instance

We consider the following HORN3-SAT instance IHorn
k parameterized by k ≥ 1. (This

construction is essentially the same as the one described in Section 17.3.2.)

Start point: x0, y0

Block i (0 ≤ i ≤ k − 1) Step i.1 : x2i ∧ y2i → x2i+1, x2i ∧ y2i → y2i+1

Step i.2 : x2i+1 ∧ y2i+1 → x2i+2, x2i+1 ∧ y2i+1 → y2i+2

End point: x2k ∧ y2k → x2k+1, x2k ∧ y2k → y2k+1

x2k+1, y2k+1

It is easy to see this instance contains (4k+ 6) clauses, and cannot be completely satisfied.
Thus we have:

Lemma 17.4.1. Every Boolean assignment satisfies at most a fraction 1 − 1/(4k + 6) of
the clauses of IHorn

k .

17.4.1.2 Construction of a good SDP solution

We will work with the SDP in simplified form described at the end of Section 17.3.1.
Recall that the SDP requires a local distribution for each clause, and uses vectors to check
the consistency on every pair of variables that belong to the clause. To construct a good
solution for the SDP, we want to first find a good solution in the scalar part (i.e., local
distributions), and then construct vectors which meet the consistency requirement. But it
is difficult to construct a lot of vectors which meet all the requirements simultaneously.
Thus, we break down the whole construction task into small pieces, each of which is easy
to deal with. As long as there are solutions to these small pieces, and the solutions agree

286

with each other on some interfaces, we can coalesce the small solutions together and come
up with a global solution. The following definition and claim formally help us bring down
the difficulty, and focus on one local block of variables at a time.

Definition 17.4.2 (partial solution). Let C ′ ⊆ C be a subset of clauses. f = {πC =
πC(f),vx = vx(f), I = I(f) | ∀C ∈ C ′, x ∈ C} is said to be a partial solution on C ′, if
all constraints of the SDP restricted to the subset of variables defined in f are satisfied.

Claim 17.4.3. Let C1, C2 ⊆ C be two disjoint set of clauses. Let f and g be partial solutions
on C1, C2 respectively. If for all v1,v2 (not necessarily distinct) defined in both f and g,
v1(f) · v2(f) = v1(g) · v2(g), then there exists a partial solution, namely h, for C1 ∪ C2,
such that ∀C1 ∈ C1, C2 ∈ C2, πC1(h) = πC1(f), πC2(h) = πC2(g).

Proof. Let X be the set of variables x for which vx(f) and vx(g) are both defined. De-
note Vf = {vx(f) | x ∈ X} ∪ {I(f)} and Vg = {vx(g) | x ∈ X} ∪ {I(g)}. Since
the dot products of every pair of vectors in Vf exactly equals the dot product between
the corresponding pair in Vg, there is a rotation (orthogonal transformation) T such that
I(f) = TI(g) and for all x ∈ X , vx(f) = Tvx(g).

Now define the partial solution g′ as πC(g′) = πC(g) for all C ∈ C2 and vx(g′) =
Tvx(g), I(g′) = TI(g) for all x ∈ C ∈ C2. Obviously f and g′ agree on all the scalar and
vector variables that are defined in both f and g′. Letting

vx(h) =

{
vx(f) x ∈ C ∈ C1

vx(g
′) x ∈ C ∈ C2

, πC(h) =

{
πC(f) C ∈ C1

πC(g′) C ∈ C2
,

it is easy to see h is a partial solution on C1 ∪ C2.

By the above lemma, if we establish the following lemma which constructs a good
partial solution on each block (the proof of which is deferred to Section 17.4.1.3), it is
then easy to get a good global solution.

Lemma 17.4.4. For each Block i (0 ≤ i ≤ k − 1), each 0 < c ≤ 0.2, let rc = 1.5(1 +
c)/(1.5 + c) > 1, and for each 0 < p ≤ 1

(1+c)rc
, there is a partial solution f which

completely satisfies all the clauses in Block i (by local distributions), and with following
properties,

‖vx2i
(f)‖2 = ‖vy2i

(f)‖2 =1− p
vx2i

(f) · vy2i
(f) =1− (1 + c)p

‖vx2i+2
(f)‖2 = ‖vy2i+2

(f)‖2 =1− rcp
vx2i+2

(f) · vy2i+2
(f) =1− (1 + c)rcp.

287

As explained in Section 17.3.2, in the first step (the step to decrease norms), to make
‖vx2i+2

(f)‖2 and ‖vy2i+2
(f)‖2 much smaller than ‖vx2i

(f)‖2 and ‖vy2i
(f)‖2, we need the

inner product vx2i
(f) · vy2i

(f) to be small. This is why we introduce c, and require that
vx2i

(f) · vy2i
(f) = 1 − (1 + c)p. The larger c is, the faster the norms decrease. But due

to technical reasons, in the second step (the step to decrease the inner product), we are not
able to decrease the inner product fast when it is much smaller than the norms. So we put
a upper bound c ≤ 0.2 in the lemma.

Using Lemma 17.4.4 together with Claim 17.4.3, we immediately get the following
corollary.

Corollary 17.4.5. For the union of Block 0 to Block k′ (0 ≤ k′ ≤ k−1), given parameters
0 < c ≤ 0.2 and 0 < p ≤ 1

(1+c)rk
′+1
c

, there is a partial solution g which completely satisfies
all the clauses, and with following properties,

‖vx0(g)‖2 = ‖vy0(g)‖2 =1− p
vx0(g) · vy0(g) =1− (1 + c)p

‖vx2k′+2
(g)‖2 = ‖vy2k′+2

(g)‖2 =1− rk′+1
c p

vx2k′+2
(g) · vy2k′+2

(g) =1− (1 + c)rk
′+1
c p.

Proof. Apply induction on k′. The basis case k′ = 0 is exactly Lemma 17.4.4. For k′ > 0,
by induction hypothesis there is a partial solution g′ satisfying all the clauses of the union
of Blocks 0 to k′ − 1 with the same parameter c, p. By Lemma 17.4.4, there is a partial
solution f satisfying all the clauses of Block k′ with parameter c, rk′c p. Since g′ and f agree
on pairwise inner-products over the definition of {vx2k′

,vy2k′
}, by Claim 17.4.3, there is a

partial solution g on the union of Blocks 0 to k′ completely satisfying all the clauses.

With the above pieces in place, we now come to the final SDP solution.

Lemma 17.4.6. The optimal SDP solution for the instance IHorn
k has value at least 1 −

1
(2k+3)1.05k

.

Proof. By Corollary 17.4.5, for any 0 < c ≤ 0.2, by setting p = 1
(1+c)rkc

, there is a partial
solution g completely satisfying all the clauses of all the blocks, with

‖vx0(g)‖2 = ‖vy0(g)‖2 =1− 1

(1 + c)rkc
‖vx2k

(g)‖2 = ‖vy2k
(g)‖2 =c/(1 + c)

vx2k
(g) · vy2k

(g) =0.

288

Based on g, we define a local distribution on two “Start point” clauses by making x0

(or y0) equal 1 with probability 1− p. At “End point”, we define the local distribution on
clause x2k ∧ y2k → x2k+1 as

Pr
π

[x2k = 1 ∧ y2k = 0 ∧ x2k+1 = 0] =c/(1 + c)

Pr
π

[x2k = 0 ∧ y2k = 1 ∧ x2k+1 = 0] =c/(1 + c)

Pr
π

[x2k = 0 ∧ y2k = 0 ∧ x2k+1 = 0] =(1− c)/(1 + c) .

And a similar distribution for the clause x2k ∧ y2k → y2k+1 can be defined (by replacing
x2k+1 by y2k+1 in the equations above). The distribution on clauses x2k+1 and y2k+1 never
picks the corresponding variable to be 1. By defining vx2k+1

and vy2k+1
to be zero vectors,

we note that the distributions are consistent with vectors. Thus the solution we construct
is valid.

On the other hand, note that all the distributions locally satisfy the clauses, except
for the distributions at “Start point” satisfy the corresponding clause with probability 1 −

1
(1+c)rkc

. Thus the SDP solution has value 1 − 2
(4k+6)(1+c)rkc

= 1 ≥ 1 − 1
(2k+3)rkc

. By
setting c = 0.2, we get rc ≥ 1.05. Thus the best SDP solution has value better than
1− 1

(2k+3)1.05k
.

Combining Lemma 17.4.1 and Lemma 17.4.6, we get the following theorem.

Theorem 17.4.7. IHorn
k is a (1− ε) vs. (1−Ω(1/ log(1/ε))) gap instance of HORN3-SAT

for the canonical SDP relaxation.

Together with Theorem 17.3.1, Theorem 17.4.7 implies our main result, Theorem 17.2.1,
on HORNSAT.

17.4.1.3 Proof of the Key Lemma 17.4.4

For Block i, denote the clauses in Step i.1 by C1x and C1y, and the clauses in Step i.2 by
C2x and C2y. We first construct partial solutions on Step i.1 and Step i.2 separately, as
follows.

Partial solution on Step i.1 We first define a local distribution on satisfying assignments
for C1x as follows, and C1y in a similar way (by replacing x2i+1 by y2i+1 in following
equations).

Pr
πC1x

[x2i = 1 ∧ y2i = 1 ∧ x2i+1 = 1] = 1− (1 + c)p

289

Pr
πC1x

[x2i = 1 ∧ y2i = 0 ∧ x2i+1 = 0] = cp

Pr
πC1x

[x2i = 0 ∧ y2i = 1 ∧ x2i+1 = 0] = cp

Pr
πC1x

[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 1] = (1 + c− rc)p =
(1 + c)c

1.5 + c
· p

Pr
πC1x

[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 0] = (rc − 2c)p =
1.5− 1.5c− 2c2

1.5 + c
· p.

Recall rc = 1.5(1 + c)/(1.5 + c). Note that all the probabilities are defined to be non-
negative values by the range of c and p, and they sum up to 1.

We observe the following inner-product matrix A over I,vx2i
,vy2i

,vx2i+1
,vy2i+1

is
consistent with the local distributions on satisfying assignments for C1x and C1y.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp


By Claim 17.4.8 (at the end of this section) we know that A is positive semidefinite, and
therefore there is a set of vectors consistent with our local distributions, i.e., we get a
partial solution on Step i.1.

Partial solution on Step i.2 We define the local distribution on satisfying assignments for
C2x as follows. The distribution for C2y is defined in a similar way (by replacing x2i+2

with y2i+2 in the following equations). Let q = rcp and ε = c/1.5.

Pr
πC2x

[x2i+1 = 1 ∧ y2i+1 = 1 ∧ x2i+2 = 1] = 1− (1 + ε)q

Pr
πC2x

[x2i+1 = 1 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = εq

Pr
πC2x

[x2i+1 = 0 ∧ y2i+1 = 1 ∧ x2i+2 = 0] = εq

Pr
πC2x

[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 1] = εq

Pr
πC2x

[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = (1− 2ε)q.

Note that all the probabilities are defined to be non-negative values by the range of c
and p, and they sum up to 1.

290

Then note that the following inner-product matrixB over I,vx2i+1
,vy2i+1

,vx2i+2
,vy2i+2

is consistent with the local distribution.

B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q


Again by Claim 17.4.8, B is positive semidefinite, and therefore there is a set of vectors
consistent with local distributions – we have constructed a partial solution on Step i.2.

Combining the two partial solutions. We first check that under our parameter setting,
partial solutions on Step i.1 and Step i.2 agree on pairwise inner-products between their
shared vectors I,vx2i+1

,vy2i+1
.

• For 〈I, I〉, we have 1 = 1.

• For 〈I,vx2i+1
〉, we have 1− rcp = 1− q.

• For 〈I,vy2i+1
〉, we have 1− rcp = 1− q.

• For 〈vx2i+1
,vx2i+1

〉, we have 1− rcp = 1− q.

• For 〈vx2i+1
,vy2i+1

〉, we have 1− (1 + c)p = 1− (1 + c/1.5)rcp = 1− (1 + ε)q.

• For 〈vy2i+1
,vy2i+1

〉, we have 1− rcp = 1− q.

Thus, there is a partial solution on Block i, with

‖vx2i
(f)‖2 = ‖vy2i

(f)‖2 =1− p
vx2i

(f) · vy2i
(f) =1− (1 + c)p

‖vx2i+2
(f)‖2 = ‖vy2i+2

(f)‖2 =1− q = 1− rcp
vx2i+2

(f) · vy2i+2
(f) =1− (1 + 1.5ε)q = 1− (1 + c)rcp. 2

Finally, we establish the two positive semidefinite matrices used in the proof above.

Claim 17.4.8. Given 0 < c ≤ 0.2, 0 < p ≤ 1
1+c

rc, q = rcp, ε = c/1.5, the following two
matrices are positive semidefinite.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp

 ,

291

B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q

 .

Proof. Let J be the all 1 matrix,E1 be the matrix with 1 in entry (1, 1) as the only one non-
zero entry. We also define Ei,j, Fi,j and Gi,j as matrices with only four non-zero entries
located in the intersections of Column i, j and Row i, j. The sub-matrices of Ei,j, Fi,j and
Gi,j on Column i, j and Row i, j are defined as

(for Ei,j)
[

1 1
1 1

]
, (for Fi,j)

[
2 1
1 0.5

]
and (for Gi,j)

[
1 −1
−1 1

]
.

Clearly, all of J , E1, Ei,j , Fi,j and Gi,j are positive semidefinite matrices.

Then we can write A as

A =(1− (1 + c)p)J + cp(E1,2 + E1,3) + (1 + c− rc)p(E1,4 + E1,5) + (2rc − 1− 3c)pE1

=(1− (1 + c)p)J + cp(E1,2 + E1,3) +
(1 + c)c

1.5 + c
· p(E1,4 + E1,5) +

1.5− 2.5c− 3c2

1.5 + c
· pE1,

Note that all the coefficient before matrices are non-negative within the range of c. SinceA
can be written as the sum of several positive semidefinite matrices, A is positive semidefi-
nite.

For matrix B, note that

B = (1− (1 + ε)q)J + εq(E1,2 + E1,3 + F1,4 + F1,5) + 0.5εqG4,5 + (1− 5ε)qE1,

Clearly, as long as 5ε = 5c/1.5 < 1, B can be expressed as sum of positive semidefinite
matrices, and hence B is positive semidefinite.

17.4.2 Algorithm for MINHORNDELETION and MAXHORN2-SAT

In the MINHORNDELETION problem, we are given a HORN2-SAT instance, and the
goal is to find a subset of clauses of minimum total weight whose deletion makes the in-
stance satisfiable. A factor 3 approximation algorithm for MINHORNDELETION is given
in [135]. Here we improve the approximation ratio to 2. Note that following reduction
from vertex cover is approximation preserving: given a graph with n vertices, for each

292

edge (i, j), introduce a clause x̄i ∨ x̄j of weight n; for each vertex i, introduce a clause
xi of weight 1. Therefore, by the inapproximability result for vertex cover [143], our
approximation algorithm for MINHORNDELETION is optimal under the UGC.

Our motivation to study MINHORNDELETION in the context of this chapter is to pin
down the fraction of clauses one can satisfy in a (1 − ε)-satisfiable instance of HORN2-
SAT: we can satisfy a fraction (1 − 2ε) of clauses (even in the weighted case), and sat-
isfying a (1 − cε) fraction is hard for c < 2 assuming that vertex cover does not admit a
c-approximation for any constant c < 2.

In this section, we prove the following theorem by showing half-integrality of a natural
LP relaxation for the problem.

Theorem 17.4.9. There is a polynomial-time 2-approximation algorithm for MINHORN-
DELETION problem.

A direct corollary of Theorem 17.4.9 is the following result for approximating near-
satisfiable instances of HORN2-SAT.

Theorem 17.2.2 (restated). Given a (1− ε)-satisfiable instance for MAXHORN2-SAT, it
is possible to find a (1− 2ε)-satisfying assignment efficiently.

17.4.2.1 LP Formulation

We find it slightly more convenient to present the algorithm for DUALHORN2-SAT where
each clause has at most one negated literal. (So the clauses are of the form x, x̄, x ∨ y,
or x → y, for variables x, y.) Let w(D)

ij > 0 be the weight imposed on the disjunction
constraint xi ∨ xj (for each pair of i, j such that i < j), and w

(I)
ij > 0 be the weight

imposed on the implication constraint xi → xj (for each pair of i, j such that i 6= j). For
each variable xi, let w(T)

i be the weight on xi being true (i.e. xi = 1), and w(F)
i be the

weight on xi being false (i.e. xi = 0). Then we write the following LP relaxation, where
each real variable yi corresponds to the integer variable xi.

293

Minimize
∑
i∈V

w
(T)
i (1− yi) +

∑
i∈V

w
(F)
i yi +

∑
i<j

w
(D)
ij z

(D)
ij +

∑
i 6=j

w
(I)
ij z

(I)
ij

Subject to z
(D)
ij ≥ 1− yi − yj ∀i < j

z
(I)
ij ≥ yi − yj ∀i 6= j

z
(D)
ij ≥ 0 ∀i < j

z
(I)
ij ≥ 0 ∀i 6= j
yi ∈ [0, 1] ∀i ∈ V

Let OPT be the optimal value of the integral solution, and OPTLP be the optimal value
of the LP solution. We have OPTLP ≤ OPT.

17.4.2.2 Half-integrality and rounding

Given a LP solution f = {z(D)
ij , z

(I)
ij , yi}, we can assume z(D)

ij = max{1− yi − yj, 0} and
z

(I)
ij = max{yi − yj, 0} to minimize val(f). Thus, we only need f = {yi} to characterize

a solution, and we have

val(f) =∑
i∈V

w
(T)
i (1−yi)+

∑
i∈V

w
(F)
i yi+

∑
i<j

w
(D)
ij max{1−yi−yj, 0}+

∑
i 6=j

w
(I)
ij max{yi−yj, 0}.

Lemma 17.4.10. There is a polynomial-time algorithm that, given a solution f = {yi} to
the above LP, converts f into another solution f ∗ = {y∗i } such that each y∗i is half-integral,
i.e. y∗i ∈ {0, 1, 1/2}, and val(f ∗) ≤ val(f).

Proof. We run Algorithm 3 whose input is the LP formulation and one of the solutions
f = {yi}, and whose output is the desired f ∗. At a high level, the algorithm iteratively
moves the LP variables that are not half integral to half integral values (according to some
strategy), and we need to prove that at each step of the iteration, the algorithm creates a
new valid LP solution whose objective value is no greater than the previous one.

It’s easy to see that Algorithm 3 always maintains a valid solution f to the LP (i.e., all
variables yi’s are within the [0, 1] range). Then we only need to prove the following two
things to show the correctness of Algorithm 3: (1) the while loop terminates (in a linear
number of steps), (2) in each loop, min{val(f (a)), val(f (b))} ≤ val(f), so that val(f) never
increases in the whole algorithm.

294

Algorithm 3 Round any LP solution f = {yi} to a half-integral solution f ∗ such that
val(f ∗) ≤ val(f)

1: while ∃i ∈ V : yi 6∈ {0, 1, 1/2} do
2: choose k ∈ V , such that yk 6∈ {0, 1, 1/2} (arbitrarily)
3: if yk < 1/2 then
4: p← yk
5: else
6: p← 1− yk
7: S ← {i : yi = p}, S ′ ← {i : yi = 1− p}
8: a ← max{yi : yi < p, 1 − yi : yi > 1 − p, 0}, b ← min{yi : yi > p, 1 − yi : yi <

1− p, 1/2}
9: f (a) ← {y(a)

i = a}i∈S ∪ {y(a)
i = 1− a}i∈S′ ∪ {y(a)

i = yi}i∈V \(S∪S′)
10: f (b) ← {y(b)

i = b}i∈S ∪ {y(b)
i = 1− b}i∈S′ ∪ {y(b)

i = yi}i∈V \(S∪S′)
11: if val(f (a)) ≤ val(f (b)) then
12: f ← f (a)

13: else
14: f ← f (b)

15: return f (as f ∗)

To prove the first point, we consider the set Wf = {0 < y < 1/2 : ∃i ∈ V, s.t. y =
yi ∨ y = 1 − yi}. In each loop, the algorithm picks a p from Wf . At the end of the loop,
we see that p is wiped from Wf while no new elements are added. Thus, after linear steps
of the loop, Wf becomes ∅ and the loop terminates.

For the second point, we define f (t) = {y(t)
i = t}i∈S ∪ {y(t)

i = 1 − t}i∈S′ ∪ {y(t)
i =

yi}i∈V \(S∪S′) for t ∈ [a, b] at Line 8 in the algorithm. Then if we can show val(f (t)) is a
linear function within t ∈ [a, b], together with the fact p ∈ [a, b], we shall conclude that
min{val(f (a)), val(f (b))} ≤ val(f (p)) = val(f). To prove the linearity of val(f (t)), we only
need to show that g1(t) = max{1 − y

(t)
i − y

(t)
j , 0} and g2(t) = max{y(t)

i − y
(t)
j , 0} are

linear with the respect to t ∈ [a, b], for any possible i, j. Thus we discuss the following
five cases.

• i, j ∈ V \ (S ∪ S ′). In this case, g1 and g2 are constant functions.

• i ∈ V \ (S ∪S ′), j ∈ S ∪S ′. In this case, the only “non-linear point” is at t = 1− yi
for g1 and t = yi for g2. But these two points are away from [a, b].

• i ∈ S ∪ S ′, j ∈ V \ (S ∪ S ′). Similar argument works as the previous case.

295

• i ∈ S, j ∈ S ′ (or i ∈ S ′, j ∈ S). In this case, 1 − y(t)
i − y

(t)
j = 0 always holds for

t ∈ [a, b] and therefore g1 is constant function. On the other hand, since y(t)
i ≤ y

(t)
j

(or y(t)
i ≥ y

(t)
j) , we also have g2(t) = 0 (or g2(t) = y

(t)
i −y

(t)
j = 1−2t) being linear.

• i, j ∈ S (or i, j ∈ S ′). In this case, y(t)
i = y

(t)
j always holds for t ∈ [a, b] and

therefore g2 is constant function. On the other hand, since y(t)
i + y

(t)
j ≤ 1 (or y(t)

i +

y
(t)
j ≥ 1), we also have g1(t) = 1− y(t)

i − y
(t)
j = 1− 2t (or g1(t) = 0) being linear.

A direct corollary of Lemma 17.4.10 is the following.

Corollary 17.4.11. There is a polynomial-time algorithm to get a solution f such that
val(f) = OPTLP and the variables in f are half-integral (i.e. being one of 0, 1, and 1/2).

Now we are ready for the proof of Theorem 17.4.9.

Proof of Theorem 17.4.9. Apply Corollary 17.4.11 to get an optimal LP solution f = {yi}
which has half-integral values. Then define fint = {xi} as follows. For each i ∈ V , let
xi = 1 when yi ≥ 1/2, and xi = 0 when yi = 0. We observe that

• xi ≤ 2yi and 1− xi ≤ 1− yi for each i ∈ V .

• For each i < j, we have max{1− xi − xj, 0} ≤ max{1− yi − yj, 0} since xi ≥ yi
and xj ≥ yj .

• For each i 6= j, we see that when max{yi − yj, 0} = 0 (in which case we have
yi ≤ yj), we always have xi ≤ xj , therefore max{xi−xj, 0} = 0. On the other hand,
when max{yi− yj, 0} (in which case by half-integrality we havemax{yi− yj, 0} ≥
1/2), we have max{xi − xj, 0} ≤ 1 ≤ 2 max{yi − yj, 0}.

Altogether, we have

val(fint)

=
∑
i∈V

w
(T)
i (1− xi) +

∑
i∈V

w
(F)
i xi +

∑
i<j

w
(D)
ij max{1− xi − xj, 0}+

∑
i 6=j

w
(I)
ij max{xi − xj, 0}

≤
∑
i∈V

w
(T)
i (1− yi) +

∑
i∈V

w
(F)
i 2yi +

∑
i<j

w
(D)
ij max{1− yi − yj, 0}+

∑
i 6=j

w
(I)
ij 2 max{yi − yj, 0}

≤2val(f) = 2OPTLP ≤ 2OPT.

296

Part V

Future directions

297

Chapter 18

Open problems

There are numerous questions unsolved in approximation algorithms and hardness of ap-
proximation. The biggest open question related to this thesis is whether constant-degree
Parrilo–Lasserre SDP solves UNIQUEGAMES and/or gives an approximation guarantee
better than that of the Goemans-Williamson algorithm; and how this type of results would
help us understand the real approximability of UNIQUEGAMES and MAXCUT (and more
problems such as UNIFORMSPARSESTCUT and BALANCEDSEPARATOR).

Given this goal, it is highly worthwhile to extend our current understanding of the lim-
itations of the Parrilo–Lasserre hierarchy and prove more lower bounds for the Parrilo-
Lasserre hierarchy. One concrete question is whether degree-4 Parrilo-Lasserre SDP,
i.e. the first SDP in the hierarchy that is stronger than the basicSDP, already solves
UNIQUEGAMES or beats the Goemans-Williamson algorithm on MAXCUT. Another con-
crete open question here is whether it is possible improve the current best lower bound for
DENSEkSUBGRAPH (i.e. Theorem 3.1.4) and possibly match the best approximation al-
gorithm by [41].

Apart from the limitations of the Parrilo-Lasserre hierarchy, here we list a few other
interesting research directions on convex relaxation hierarchies and approximation algo-
rithms.

Faster hierarchy-based algorithms. Convex programming relaxation hierarchies are
powerful but have additional variables/constraints and therefore need more computation
time. Authors in [111] showed a way to speed up the algorithms for some problems by
only partially solving the convex program. It is desirable to extend their results to more

299

problems. One particular problem is ROBUSTMAXBISECTION. As discussed in Sec-
tion 13.1.2, Raghavendra and Tan [195] gave an (1 − ε) vs. (1 − O(

√
ε)) algorithm for

ROBUSTMAXBISECTION (which is optimal assuming the UGC). However, their algo-
rithm requires n1/εΘ(1) , which is not completely polynomial in n when ε is subconstant
(say, 1

polylog(n)
). The concrete open problem is to speed up the algorithm by Raghavendra

and Tan (possibly using the techniques in [111]) and get the same approximation guarantee
in poly(n) time for every ε.

The Parrilo-Lasserre hierarchy for average-case problems. For problems that are
hard in the worst case, it is still possible to solve them in practice if these problems are
easy on average (i.e. when a random instance is solvable with high probability). One
problem I am particularly interested in is estimating hypercontractive norms. This prob-
lem is highly related to the certification of the matrix restricted isometry property (RIP)
and has applications to compressed sensing and sparse recovery. As our initial result in
Chapter 15 showed that, in the average case, the 2 → 4 operator norm (a special form
of the hypercontractive norms) can be efficiently estimated by the Parrilo-Lasserre hierar-
chy. Applying the Parrilo-Lasserre hierarchy to other forms of the hypercontractive norms
might lead to more important results and applications.

Robust isomorphism algorithms. It is very interesting to extend our robust isomor-
phism algorithm for trees (Theorem 14.1.4) to more subclasses of graphs such as planar
graphs and graphs of bounded treewidth. There is a natural linear programming relaxation-
based candidate algorithm and it is worthwhile to try and prove its correctness for several
subclasses of graphs.

300

Bibliography

[1] Radosław Adamczak, Alexander E. Litvak, Alain Pajor, and Nicole Tomczak-
Jaegermann. Quantitative estimates of the convergence of the empirical covari-
ance matrix in log-concave ensembles. J. Amer. Math. Soc., 23:535–561, 2010.
arXiv:0903.2323. 15.3, 15.3

[2] Radosław Adamczak, Alexander E. Litvak, Alain Pajor, and Nicole Tomczak-
Jaegermann. Sharp bounds on the rate of convergence of the empirical co-
variance matrix. Comptes Rendus Mathematique, 349(3-4):195–200, 2011.
arXiv:1012.0294. 15.3, 15.3, 15.3.3, 15.3

[3] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(
√

log n) approximation algorithms for Min-Uncut, Min-2CNF-Deletion, and di-
rected cut problems. In Proc. 37th ACM Symposium on Theory of Computing, pages
573–581, 2005. 1.3

[4] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the
ACM, 52(5):749–765, 2005. 7.1

[5] Michael Alekhnovich. More on average case vs. approximation complexity. In
Proc. 44th IEEE Symposium on Foundations of Computer Science, pages 298–307,
2003. 7.1.2

[6] Farid Alizadeh. Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51,
1995. 1.3

[7] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri We-
instein. On the inapproximability of the densest k-subgraph problem. Manuscript,
2011. 3.1.2, 5.1

301

[8] Noga Alon, W Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ran-
dom sampling and approximation of Max-CSPs. Journal of computer and system
sciences, 67(2):212–243, 2003. 4.1

[9] Noga Alon and Assaf Naor. Approximating the Cut-Norm via Grothendieck’s In-
equality. SIAM Journal on Computing, 35(4):787–803, 2006. 1.3

[10] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability
results for sparsest cut, optimal linear arrangement, and precedence constrained
scheduling. In Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, 2007. 3.1.2

[11] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability re-
sults for maximum edge biclique, minimum linear arrangement, and sparsest cut.
SIAM Journal on Computing, 40(2):567–596, 2011. 6.1, 6.1.2, 6.3.1

[12] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from differ-
ent assumptions. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing, pages 171–180. ACM, 2010. 5.1

[13] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
in lattices, codes and linear equations. In focs93, pages 724–733, 1993. 16.1.1

[14] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.
1.2

[15] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational
complexity and information asymmetry in financial products. In Proceedings of the
First Symposium on Innovations in Computer Science (ICS), 2010. 5.1

[16] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
unique games and related problems. In Proceedings of the 51th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 563–572. IEEE, 2010. 2.3,
7.1

[17] Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure for
the assignment problem with applications to dense graph arrangement problems.
Mathematical Programming, 92(1):1–36, 2002. 3.1.1, 4.1, 4.1.3, 4.1.4, 4.2, 7.1.3,
14.1

302

[18] Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial Time Approxima-
tion Schemes for Dense Instances of NP-Hard Problems. Journal of computer and
system sciences, 58(1):193–210, 1999. 3.1.1, 4.1, 4.1.4

[19] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani,
and Nisheeth Vishnoi. Unique games on expanding constraint graphs are easy. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
21–28, 2008. 2.3

[20] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998. 4.1, 16.7.3

[21] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009. 1.3,
1.3.1, 3.1.2, 6.1

[22] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the ACM, 45(1):70–122, 1998. 16.7.3

[23] Emil Artin. Über die Zerlegung definiter Funktionen in Quadrate. Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, 5(1):100–115, 1927.
8.1.1

[24] V. Arvind and Johannes Köbler. Isomorphism testing: Perspective and open prob-
lems. Bulletin of the European Association for Theoretical Computer Science,
86:66–84, 2005. 2.1.3, 7.1

[25] Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Yadu Vasudev. Ap-
proximate graph isomorphism. In Mathematical Foundations of Computer Science
2012, pages 100–111, 2012. 7.1.3, 7.1.5, 14.1

[26] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, 2008. 8.1

[27] Albert Atserias and Elitza Maneva. Sherali–Adams relaxations and indistinguisha-
bility in counting logics. SIAM Journal on Computing, 42(1):112–137, 2013. 3.1.2,
4.1.1, 7.1.2

[28] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by be-
ing biased: a 0.8776-approximation for max bisection. In Proceedings of the 24th

303

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 277–294. SIAM,
2013. 1, 13.1.2

[29] L. Babai. Trading group theory for randomness. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, pages 421–429. ACM, 1985. 2.1.3, 7.1

[30] László Babai. Automorphism groups, isomorphism, reconstruction. In Handbook
of combinatorics, Vol. 1, 2, pages 1447–1540. Elsevier, Amsterdam, 1995. 2.1.3,
7.1

[31] László Babai, Paul Erdős, and Stanley Selkow. Random graph isomorphism. SIAM
Journal on Computing, 9(3):628–635, 1980. 7.1.2

[32] László Babai and Ludik Kučera. Canonical labelling of graphs in linear average
time. In Proceedings of the 20th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 39–46, 1979. 7.1.2

[33] László Babai and Eugene Luks. Canonical labeling of graphs. In Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.
2.1.3, 3.3, 7.1, 7.1.2

[34] Boaz Barak, Fernando Brandao, Aram Harrow, Jonathan Kelner, David Steurer, and
Yuan Zhou. Hypercontractivity, Sum-of-Squares Proofs, and their Applications. In
Proceedings of the 44nd Annual ACM Symposium on Theory of Computing, 2012.
3.4.1, 7.1.2, 7.2.1, 15.1, 15.3

[35] Boaz Barak, Parikshit Gopalan, Johan Hastad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter. In Proceedings of the 53th
Annual IEEE Symposium on Foundations of Computer Science, pages 370–379.
IEEE, 2012. 8.1, 9, 1, 9.5, 9.5.1, 9.5

[36] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In Proc. 52nd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 472–481, 2011. 4.1.4

[37] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science, volume 9, pages 595–603, 2009. 12.1, 12.2.3

[38] Libor Barto and Marcin Kozik. Robust satisfiability of constraint satisfaction prob-
lems. In Proceedings of the 44nd Annual ACM Symposium on Theory of Computing,
pages 931–940. ACM, 2012. 3.3, 7.1.3

304

[39] Paul Beame, Russell Impagliazzo, Jan Krajı́ček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proceedings
of the London Mathematical Society, 3(1):1–26, 1996. 8.1.1

[40] A. Bhaskara, M. Charikar, V. Guruswami, A. Vijayaraghavan, and Y. Zhou. Poly-
nomial integrality gaps for strong SDP relaxations of Densest k-subgraph. In Pro-
ceedings of the 23th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
388–405. SIAM, 2012. 3.1.2

[41] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-
jayaraghavan. Detecting high log-densities: an O(n1/4) approximation for densest
k-subgraph. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing, pages 201–210. ACM, 2010. 3.1.2, 5.1, 5.2.2, 18

[42] Aditya Bhaskara and Aravindan Vijayaraghavan. Approximating matrix p-norms.
In SODA, pages 497–511, 2011. 15.1

[43] Punyashloka Biswal. Hypercontractivity and its applications. Manuscript. Available
as eprint arXiv:1101.2913v1, 2011. 15.1

[44] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003. 7.1.3

[45] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry.
Springer, 1998. 8.1.1

[46] Hans L Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990. 14.1

[47] Béla Bollobás. The asymptotic number of unlabelled regular graphs. The Journal
of the London Mathematical Society, Second Series, 26(2):201–206, 1982. 7.1.4

[48] Aline Bonami. Étude des coefficients Fourier des fonctions de Lp(G). Annals de
l’institute Fourier, 20(2):335–402, 1970. 8.1.2, 8.4

[49] Ravi Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987. 2.1.3, 7.1

[50] Christer Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z.
Wahrsch. Verw. Gebiete, 70(1):1–13, 1985. 8.1.2

305

http://arxiv.org/abs/1101.2913

[51] Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via ex-
ponential clocks and the multiway cut problem. In Proceedings of the 45nd Annual
ACM Symposium on Theory of Computing, pages 535–544. ACM, 2013. 1.3

[52] Andrei Bulatov. Bounded relational width. Available at
http://www.cs.sfu.ca/∼abulatov/mpapers.html, 2009. 12.1, 12.2.3

[53] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742,
2005. 12.1

[54] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. In Proceed-
ings of the 31st Annual ACM Symposium on Theory of Computing, pages 547–556,
1999. 8.1.1

[55] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12(4):389–410, 1992.
2.1.3, 3.1.2, 7.1.1, 7.1.2, 1, 7.1.2, 7.3

[56] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation
algorithm for multiway cut. Journal of Computer and System Sciences, 60(3):564–
574, 2000. 1.3

[57] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms
for the 0-extension problem. SIAM Journal on Computing, 34(2):358–372, 2005.
1.3

[58] Catarina Carvalho, Vı́ctor Dalmau, and Andrei Krokhin. Two new homomorphism
dualities and lattice operations. Journal of Logic and Computation, 2010. 12.3.1

[59] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal al-
gorithms for unique games. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pages 205–214, 2006. 1.3, 2.3, 12.1

[60] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Note on MAX
2SAT. In Electronic Colloquium on Computational Complexity TR06-064, 2006.
12.1

[61] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advan-
tage over random for maximum acyclic subgraph. In Proceedings of the 48th An-
nual IEEE Symposium on Foundations of Computer Science, pages 625–633. IEEE,
2007. 1.3

306

[62] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal al-
gorithms for maximum constraint satisfaction problems. ACM Transactions on Al-
gorithms, 5(3), 2009. 17.1

[63] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
Grothendieck’s Inequality. In Proc. 45th IEEE Symposium on Foundations of Com-
puter Science, pages 54–60, 2004. 1.3

[64] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-
mar. On the hardness of approximating multicut and sparsest-cut. Computational
Complexity, 15:94–114, June 2006. 6.1

[65] Kevin Cheung. Computation of the Lasserre ranks of some polytopes. Mathematics
of Operations Research, 32(1):88–94, 2007. 8.1.1

[66] Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. In
Handbook on Semidefinite, Conic and Polynomial Optimization, pages 139–169.
Springer, 2012. 1.2, 1.3.1, 5.2.3

[67] F. R. K. Chung. Laplacians of graphs and Cheeger’s inequalities. Combinatorics,
Paul Erdős is Eighty, 2:157–172, 1996. 13.2.2

[68] Matthew Clegg, Jeffrey Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, pages 174–183, 1996. 1

[69] Paolo Codenotti. Testing isomorphism of combinatorial and algebraic structures.
PhD thesis, University of Chicago, 2011. 2.1.3, 7.1

[70] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity
concept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034, 2009. 4.1.4

[71] Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs un-
weighted versions of combinatorial optimization problems. Information and Com-
putation, 167(1):10–26, 2001. 1

[72] Vı́ctor Dalmau and Andrei Krokhin. Robust satisfiability for CSPs: hardness and
algorithmic results. ACM Transactions on Computation Theory (TOCT), 5(4):15,
2013. 7.1.3

[73] Vı́ctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In
Proceedings of the 5th Annual Principles and Practice of Constraint Programming,
pages 159–173, 1999. 12.2.3

307

[74] W Fernandez de la Vega. Max-Cut has a randomized approximation scheme in
dense graphs. Random Structures & Algorithms, 8(3), 1996. 3.1.1, 4.1

[75] W Fernandez de la Vega, Marek Karpinski, Ravi Kannan, and Santosh Vempala.
Tensor decomposition and approximation schemes for constraint satisfaction prob-
lems. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pages 747–754, 2005. 2.1.4, 3.1.1, 4.1, 4.2

[76] W Fernandez de la Vega, Marek Karpinski, and Claire Kenyon. Approximation
schemes for Metric Bisection and partitioning. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, 2004. 3.1.1, 4.1

[77] W Fernandez de la Vega and Claire Kenyon. A randomized approximation scheme
for metric Max-Cut. Journal of computer and system sciences, 63(4):531–541,
2001. 3.1.1, 4.1

[78] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming
relaxations of maxcut. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 53–61, 2007. 4.1.4

[79] Nikhil Devanur, Subhash Khot, Rishi Saket, and Nisheeth Vishnoi. Integrality gaps
for sparsest cut and minimum linear arrangement problems. In Proc. 38th ACM
Symposium on Theory of Computing, pages 537–546, 2006. 3.2, 6.1, 6.2.2.2, 8.1,
8.1.2, 10.3, 10.3

[80] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. SIAM Journal on Com-
puting, 39(8):3441–3462, 2010. 11.4, 11.4

[81] Paul Erdős and Alfréd Rényi. Asymmetric graphs. Acta Mathematica Hungarica,
14(3):295–315, 1963. 7.1.2, 7.1.4, 7.1.4

[82] M.A. Eshera and K.-S. Fu. A graph distance measure for image analysis. Sys-
tems, Man and Cybernetics, IEEE Transactions on, SMC-14(3):398 –408, may-
june 1984. 14.1

[83] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approxi-
mating arbitrary metrics by tree metric. Journal of Computer & System Sciences,
69:485–497, 2004. 1.3

308

[84] J. L. Faulon. Isomorphism, automorphism partitioning, and canonical labeling can
be solved in polynomial-time for molecular graphs. Journal of Chemical Informa-
tion and Computer Sciences, 38(3):432–444, 1998. 14.1

[85] J. L. Faulon, M. J. Collins, and R. D. Carr. The signature molecular descriptor.
4. can- onizing molecules using extended valence sequences. Journal of Chemical
Information and Computer Sciences, 44(2):427–436, 2004. 14.1

[86] Tomás Feder and Moshe Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998. 12.1, 12.2.1, 12.2.1, 12.2.3

[87] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proceed-
ings of the 11th Annual IEEE Conference on Computational Complexity (CCC-96),
pages 278–289, Los Alamitos, May 24–27 1996. IEEE Computer Society. 3.1.1,
4.1

[88] Uriel Feige. Relations between average case complexity and approximation com-
plexity. In Proc. 34th ACM Symposium on Theory of Computing, pages 543–543,
2002. 3.1.2, 3.3, 3.3.3, 5.1, 5.3.3.2, 7.1.1, 7.1.4

[89] Uriel Feige and Michel Goemans. Approximating the value of two prover proof
systems, with applications to MAX-2SAT and MAX-DICUT. In Proc. 3rd Israel
Symp. on Theory of Comp. and Sys., pages 182–189, 1995. 1.3

[90] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the min-
imum bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002. 1.2

[91] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidefinite
programs. J. Algorithms, 60(1):1–23, 2006. 1.3, 3.3, 13.1, 13.1.1

[92] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Ponnuswami. New
results for learning noisy parities and halfspaces. In Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer Science, pages 349–359, 2006.
16.1.1

[93] Alan Frieze and Mark Jerrum. Improved approximation algorithms for maxk-cut
and max bisection. Algorithmica, 18(1):67–81, 1997. 3.3, 13.1, 13.2.1

[94] Michel X. Goemans and David P. Williamson. Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming. J. Assoc. Comput. Mach., 42:1115–1145, 1995. 1.1, 1.3, 2.2, 2.2.1, 3.2, 8.1.2,
12.1, 13.1, 13.1, 1, 5, 13.4.2, 16.1.2

309

[95] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of
lattice problems. Journal of Computer and System Sciences, 60(3):540–563, 2000.
7.1

[96] Gaston H Gonnet. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM (JACM), 28(2):289–304, 1981. 6.3.1

[97] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus
proofs for the parity. Technical Report IHES/M/99/68, Insitut des Hautes Études
Scientifiques, 1999. 1.3.1, 8.1.1

[98] Dima Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Compu-
tational Complexity, 10(2):139–154, 2001. 8.1.1

[99] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus
proofs for the parity. Theoretical Computer Science, 259(1-2):613–622, 2001.
1.3.1, 7.1.2, 8.1.1

[100] Dima Grigoriev, Edward Hirsch, and Dmitrii Pasechnik. Complexity of semialge-
braic proofs. Moscow Mathematical Journal, 2(4):647–679, 2002. 8.1.1

[101] Dima Grigoriev and Nicolai Vorobjov. Complexity of null- and positivstellensatz
proofs. Annals of Pure and Applied Logic, 113(1):153–160, 2001. 8.1, 8.1.1

[102] Martin Grohe. Fixed-point definability and polynomial time on graphs with ex-
cluded minors. Journal of the ACM, 59(5):Article 27, 2012. 2.1.3, 7.1.2

[103] Martin Grohe and Martin Otto. Pebble games and linear equations. Technical
Report 1204.1990, arXiv, 2012. 3.1.2, 7.1.2

[104] Leonard Gross. Logarithmic Sobolev inequalities. American Journal of Mathemat-
ics, 97(4):1061–1083, 1975. 15.1

[105] Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 99–106.
ACM, 2006. 2.3

[106] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra,
and Moses Charikar. Beating the random ordering is hard: Every ordering CSP is
approximation resistant. SIAM Journal on Computing, 40(3):878–914, 2011. 2.3

310

[107] Venkatesan Guruswami, Yury Makarychev, Prasad Raghavendra, David Steurer,
and Yuan Zhou. Finding almost-perfect graph bisections. In Proceedings of the 2nd
Innovations in Theoretical Computer Science Conference, pages 321–337, 2011.
3.3

[108] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces
with noise. In Proc. 47th IEEE Symposium on Foundations of Computer Science,
pages 543–552, 2006. 16.1.1, 16.6

[109] Venkatesan Guruswami and Prasad Raghavendra. A 3-query PCP over integers. In
Proc. 39th ACM Symposium on Theory of Computing, pages 198–206, 2007. 3.4.2,
16.1.1, 16.1.3

[110] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenval-
ues, and approximation schemes for graph partitioning and quadratic integer pro-
gramming with PSD objectives. In Proceedings of 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 482–491, 2011. 6.1

[111] Venkatesan Guruswami and Ali Kemal Sinop. Faster SDP hierarchy solvers for
local rounding algorithms. In Proceedings of the 53th Annual IEEE Symposium on
Foundations of Computer Science, pages 197–206. IEEE, 2012. 18

[112] Venkatesan Guruswami, Ali Kemal Sinop, and Yuan Zhou. Constant factor lasserre
integrality gaps for graph partitioning problems. arXiv preprint arXiv:1202.6071,
2012. 3.1.2, 8.1.1

[113] Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of
almost-satisfiable Horn SAT and Exact Hitting Set. In Proceedings of the 22th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1574–1589, 2011.
7.1.3, 12.1, 12.1, 12.1.1, 12.3.1

[114] Venkatesan Guruswami and Yuan Zhou. Tight Bounds on the Approximability of
Almost-Satisfiable Horn SAT and Exact Hitting Set. Theory of Computing, 8:239–
267, 2012. 3.3

[115] Eran Halperin and Uri Zwick. A unified framework for obtaining improved approx-
imation algorithms for maximum graph bisection problems. Random Structures &
Algorithms, 20(3):382–402, 2002. 3.3, 13.1

[116] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001. 3.3, 3.3, 3.4.2, 7.1.5, 12.1, 13.1, 13.1, 16.1.1, 16.3, 16.3.1,
16.4, 16.4.1, 16.5.2, 17.1

311

[117] David Hilbert. Über die Darstellung definiter Formen als Summe von Formen-
quadraten. Mathematische Annalen, 32(3):342–350, 1888. 8.1.1

[118] David Hilbert. Mathematical problems. Bulletin of the American Mathematical
Society, 8(10):437–479, 1902. 8.1.1

[119] W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58:13–30, 1963. 5.3.3.2

[120] Jonas Holmerin and Subhash Khot. A new PCP outer verifier with applications to
homogeneous linear equations and max-bisection. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 11–20. ACM, 2004. 13.1

[121] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. Bull. of the American Mathematical Society, 43(4):439–561, 2006. 6.3.1

[122] John E Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism of pla-
nar graphs (preliminary report). In Proceedings of the sixth annual ACM symposium
on Theory of computing, pages 172–184. ACM, 1974. 14.1

[123] Neil Immerman. Number of quantifiers is better than number of tape cells. Journal
of Computer and System Sciences, 22(3):384–406, 1981. 7.1.2

[124] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In Proceedings of the 39th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 653–662. IEEE, 1998. 3.3

[125] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997. 12.1, 12.2.3

[126] Kumar Joag-Dev and Frank Proschan. Negative association of random variables
with applications. The Annals of Statistics, 11(1):286–295, 1983. 7.6, 7.6

[127] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974. 12.1

[128] Peter Jonsson, Andrei Krokhin, and Fredrik Kuivinen. Hard constraint satisfaction
problems have hard gaps at location 1. Theoretical Computer Science, 410(38–
40):3856–3874, 2009. 12.1, 17.1

[129] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean
functions. In Proceedings of the 29th Annual IEEE Symposium on Foundations of
Computer Science, pages 68–80, 1988. 8.1.2, 10.1, 10.2

312

[130] Daniel M. Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials
with applications to Sparsest Cut. In Proceedings of the 45th Symposium on Theory
of Computing, pages 1–10, 2013. 6.2.2.2

[131] Anna Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear
and semi-definite programming relaxations for Knapsack. In Proceedings of the
15th Annual Conference on Integer Programming and Combinatorial Optimization,
pages 301–314, 2011. 8.1.1

[132] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for Max-3Sat? In
Proc. 38th IEEE Symposium on Foundations of Computer Science, pages 406–415,
1997. 1.3

[133] Manuel Kauers, Ryan O’Donnell, Li-Yang Tan, and Yuan Zhou. Hypercontractive
inequalities via SOS, and Frankl-Rödl graph. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014. To appear. 7.1.2

[134] Paul J Kelly. A congruence theorem for trees. Pacific Journal of Mathematics,
7(1):961–968, 1957. 14.1

[135] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson. The ap-
proximability of constraint satisfaction problems. SIAM Journal on Computing,
30(6):1863–1920, 2000. 12.3.1, 17.1, 17.2, 17.4.2

[136] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM
Symposium on Theory of Computing, pages 767–775, 2002. 1.3.1, 1, 2.3, 3.4.4, 6.1,
7.1, 12.1, 12.1, 13.1, 16.1.2, 2, 17.1

[137] Subhash Khot. Ruling out PTAS for Graph Min-Bisection, Dense k-Subgraph, and
Bipartite Clique. SIAM Journal of Computing, 36:1025–1071, 2006. 3.1.2, 5.1,
6.1.2

[138] Subhash Khot. On the unique games conjecture (invited survey). In 2010 IEEE
25th Conference on Computational Complexity, pages 99–121. IEEE, 2010. 2.3

[139] Subhash Khot and Moshkovitz Dana. NP-Hardness of Approximately Solving Lin-
ear Equations Over Reals. Technical Report 112, Electronic Colloquium on Com-
putational Complexity, 2010. 16.1.1

[140] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for MAX-CUT and other 2-variable CSPs? In Proceedings

313

of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004.
8.1.2

[141] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for Max-Cut and other 2-variable CSPs? SIAM Journal on
Computing, 37(1):319–357, 2007. 1.3.1, 3.2.1, 3.2, 3.4.2, 7.1.5, 8.1.2, 8.1.1, 8.1.2,
8.1.2, 9.0.8, 9, 9.4, 11.2, 11.3, 11.3, 13.1, 13.1, 16.1.2, 16.1.3, 16.2.1, 16.3, 16.3.1,
16.3.2, 16.4, 16.5.1, 17.1

[142] Subhash Khot, Preyas Popat, and Rishi Saket. Approximate Lasserre integrality
gap for unique games. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 298–311. Springer, 2010. 3.2.1, 8.1,
8.1.2, 8.1.1, 9.0.8

[143] Subhash Khot and Oded Regev. Vertex Cover might be hard to approximate to
within 2 − ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.
17.4.2

[144] Subhash Khot and Nisheeth Vishnoi. The Unique Games Conjecture, integrality
gap for cut problems and embeddability of negative type metrics into `1. In Proc.
46th IEEE Symposium on Foundations of Computer Science, pages 53–62, 2005.
2.3, 3.2.1, 3.2, 6.1, 8.1, 8.1.2, 8.1.1, 8.1.2, 8.1.2, 8.1.2, 9.0.8, 11.3

[145] Jeong Han Kim, Benny Sudakov, and Van Vu. On the asymmetry of random regular
graphs and random graphs. Random Structures & Algorithms, 21(3-4):216–224,
2002. 7.1.4

[146] Guy Kindler, Assaf Naor, and Gideon Schechtman. The UGC hardness threshold
of the `p Grothendieck problem. In SODA, pages 64–73, 2008. 15.1

[147] Guy Kindler and Ryan O’Donnell. Gaussian noise sensitivity and Fourier tails. In
Proceedings of the 27th Annual IEEE Conference on Computational Complexity,
2012. 8.1.2

[148] Johannes Köbler. On graph isomorphism for restricted graph classes. In Arnold
Breckmann, Ulrich Berger, Benedikt Löwe, and John Tucker, editors, Logical
Approaches to Computational Barriers, number 3988 in LNCS, pages 241–256.
Springer-Verlag, 2006. 2.1.3, 7.1

[149] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1993. 2.1.3, 7.1

314

[150] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings
into L1. SIAM Journal on Computing, 38(6):2487–2498, 2009. 8.1.2

[151] Jean-Louis Krivine. Anneaux préordonnés. Journal d’Analyse Mathématique,
12(1):307–326, 1964. 8.1, 8.1.1

[152] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K Vishnoi. On
lp-based approximability for strict csps. In Proceedings of the 22th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1560–1573. SIAM, 2011. 1.3,
1.3.1, 2.3, 4.1.1

[153] Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou.
Linear programming, width-1 CSPs, and robust satisfaction. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, pages 484–495.
ACM, 2012. 7.1.3

[154] Gabor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture.
In Proceedings of the 41st Annual ACM symposium on Theory of Computing, pages
725–734. ACM, 2009. 3.2.1, 3.2, 8.1.2, 8.1.1, 8.1.2, 9.0.8

[155] Gábor Kun and Mario Szegedy. A new line of attack on the Dichotomy Conjecture.
In Electronic Colloquium on Computational Complexity TR09-059, 2009. 12.1

[156] Jean Lasserre. Optimisation globale et théorie des moments. Comptes Rendus de
l’Académie des Sciences, 331(11):929–934, 2000. 1.4, 7.1.2, 8.1, 8.1.1

[157] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In-
teger Programming and Combinatorial Optimization, pages 293–303, 2001. 1.3.1,
1.4, 8.1, 8.1.1, 8.1.1

[158] Jean B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear
0-1 programs. SIAM Journal on Optimization, 12(3):756–769, 2002. 6.1.2, 6.2.1,
6.2.1

[159] Monique Laurent. Lower bound for the number of iterations in semidefinite relax-
ations for the cut polytope. Mathematics of Operations Research, 28(4):871–883,
2003. 8.1.1

[160] Monique Laurent. Semidefinite relaxations for max-cut. In Martin Grötschel, editor,
The Sharpest Cut, chapter 16, pages 257–290. Society for Industrial and Applied
Mathematics and the Mathematical Programming Society, 2004. 8.1.1

315

[161] Monique Laurent. Semidefinite representations for finite varieties. Mathematical
Programming, 109(1):1–26, 2007. 8.1.1

[162] Monique Laurent. Sums of squares, moment matrices and optimization over poly-
nomials. Emerging Applications of Algebraic Geometry, 149:157–270, 2009. 8.1.1,
8.3

[163] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 422–431, 1988. 1.3

[164] Henri Lombardi, Nikolai Mnev, and Marie-Fran coise Roy. The Positivstellensatz
and small deduction rules for systems of inequalities. Mathematische Nachrichten,
181(1):245–259, 1996. 1

[165] László Lovász. On the shannon capacity of a graph. Information Theory, IEEE
Transactions on, 25(1):1–7, 1979. 1

[166] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. 1.3.1

[167] Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in poly-
nomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982. 14.1

[168] Rajsekar Manokaran, Joseph Naor, Prasad Raghavendra, and Roy Schwartz. SDP
gaps and UGC hardness for Multiway Cut, 0-Extension, and Metric Labeling. In
Proc. 40th ACM Symposium on Theory of Computing, pages 11–20, 2008. 1.3,
1.3.1, 2.3

[169] Vladimir Andreevich Markov. On functions of least deviation from zero in a given
interval. 1892. 11.4

[170] Murray Marshall. Positive polynomials and sums of squares. American Mathemat-
ical Society, 2008. 8.2, 8.3

[171] Brendan McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–
87, 1981. 7.1.2

[172] Brendan McKay and Nicholas C. Wormald. Automorphisms of random graphs with
specified vertices. Combinatorica, 4(4):325–338, 1984. 7.1.4

316

[173] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008. 3.3

[174] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with
low influences: invariance and optimality. Annals of Mathematics, 171(1):295–341,
2010. 7.1.5, 8.1.2, 8.1.2, 8.4, 8.4, 9, 9.1, 9.1.1, 9.2, 13.1

[175] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability
of functions with low influences: invariance and optimality. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages 21–30,
2005. 16.1.2, 16.1.2, 16.2.1

[176] Fedor Nazarov. http://mathoverflow.net/questions/97769/approximation-theory-
reference-for-a-bounded-polynomial-having-bounded-coefficien, 2012. 11.4

[177] Yurii Nesterov. Global quadratic optimization via conic relaxation, pages 363–384.
Kluwer Academic Publishers, 2000. 8.1

[178] Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable.
SIAM Journal on Computing, 42(3):1095–1112, 2013. 14.1.1

[179] R. O’Donnell. Computational applications of noise sensitivity. PhD thesis, Mas-
sachusetts Institute of Technology, 2003. 11.3

[180] Ryan O’Donnell. Analysis of Boolean Functions lecture notes, 2007.
http://www.cs.cmu.edu/∼odonnell/boolean-analysis/. 16.2.1

[181] Ryan O’Donnell. Some topics in analysis of boolean functions. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, pages 569–578, 2008.
8.4, 16.2.1

[182] Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of Ro-
bust Graph Isomorphism, Lasserre Gaps, and Asymmetry of Random Graphs. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014. To appear. 3.1.2

[183] Ryan O’Donnell and Yi Wu. An optimal SDP algorithm for Max-Cut, and equally
optimal Long Code tests. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, pages 335–344, 2008. 13.1

317

[184] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Pro-
ceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1537–1556, 2013. 3.2, 3.2, 7.1.2

[185] Pablo Parrilo. Structured semidefinite programs and Semialgebraic Methods in Ro-
bustness and Optimization. PhD thesis, California Institute of Technology, 2000.
1.3.1, 1.4, 7.1.2, 8.1, 8.1.1

[186] G. Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cambridge
Tracts in Mathematics. Cambridge University Press, 1999. 15.3

[187] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Uni-
versity Mathematics Journal, 42(3):969–984, 1993. 8.1, 8.1.1

[188] Yuval Rabani and Amir Shpilka. Explicit construction of a small epsilon-net for
linear threshold functions. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, pages 649–658, 2009. 3.2

[189] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 245–254, 2008. 1.3, 1.3.1, 2.3, 12.1, 12.1.1, 13.1.1, 13.2.1, 17.3, 17.3.1,
17.3.1

[190] Prasad Raghavendra. Approximating NP-hard problems: efficient algorithms and
their limits. PhD thesis, University of Washington, 2009. 16.1.2, 16.2.1, 16.2.1

[191] Prasad Raghavendra and David Steurer. How to round any CSP. In Proc. 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 586–
594, 2009. 4.2

[192] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations
of unique games. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 575–585. IEEE, 2009. 3.2.1, 6.1, 8.1, 8.1.2, 8.1.1,
8.1.2, 9.0.8

[193] Prasad Raghavendra and David Steurer. Graph expansion and the unique games
conjecture. In Proceedings of the 42nd ACM symposium on Theory of computing,
pages 755–764. ACM, 2010. 2.3, 3.1.2, 5.1

[194] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between
expansion problems. In 2012 IEEE 27th Annual Conference on Computational
Complexity (CCC), pages 64–73. IEEE, 2012. 6.1.1

318

[195] Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality
constraints using SDP hierarchies. In Proceedings of the 23th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 373–387. SIAM, 2012. 4.1.4, 1, 13.1.2,
18

[196] Motakuri Ramana, Edward Scheinerman, and Daniel Ullman. Fractional isomor-
phism of graphs. Discrete Mathematics, 132(1-3):247–265, 1994. 7.1.2

[197] A. C. Rao and D. Varada Raju. Application of the hamming number technique
to detect isomorphism among kinematic chains and inversions. Mechanism and
Machine Theory, 26(1):55–75, 1991. 14.1

[198] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–
803, June 1998. 16.7.3

[199] Ronald Read and Derek Corneil. The graph isomorphism disease. Journal of Graph
Theory, 1(4):339–363, 1977. 7.1

[200] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th ACM Symposium on Theory of Computing (STOC), pages
84–93, 2005. 7.1.3

[201] Laurent Saloff-Coste. Lectures on finite markov chains. Lectures on probability
theory and statistics, 1665:301–413, 1997. 15.1

[202] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symppsium on Theory of Computing, pages 216–226, 1978. 17.1

[203] Konrad Schmüdgen. The K-moment problem for compact semi-algebraic sets.
Mathematische Annalen, 289(1):203–206, 1991. 8.1.1

[204] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 593–602, 2008. 1.3.1, 6.1.2, 6.2, 6.2.4, 7.1.2, 7.1.2, 7.2.2, 4

[205] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37(3):312–323, 1988. 2.1.3, 7.1

[206] Ankit Sharma and Jan Vondrák. Multiway cut, the golden ratio, and descending
thresholds. arXiv preprint arXiv:1309.2729, 2013. 1.3

319

[207] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3:411, 1990. 1.3.1, 7.1.2

[208] Alexander Sherstov. Making polynomials robust to noise. In Proceedings of the
44nd Annual ACM Symposium on Theory of Computing, pages 747–758, 2012.
11.4

[209] Naum Shor. An approach to obtaining global extremums in polynomial mathemat-
ical programming problems. Cybernetics, 23(5):695–700, 1987. 8.1.1

[210] Naum Shor. Class of global minimum bounds of polynomial functions. Cybernetics,
23(6):731–734, 1987. 8.1, 8.1.1

[211] Aaron Snook, Grant Schoenebeck, and Paolo Codenotti. Graph isomorphism and
the lasserre hierarchy. arXiv preprint arXiv:1401.0758, 2014. 7.1.2

[212] D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. 2.1.3

[213] Daniel Spielman. Faster isomorphism testing of strongly regular graphs. In Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 576–
584, 1996. 7.1.2

[214] Daureen Steinberg. Computation of matrix norms with applications to robust opti-
mization. Master’s thesis, Technion, 2005. Available on A. Nemirovski’s website
http://www2.isye.gatech.edu/˜nemirovs/. 15.1

[215] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geome-
try. Mathematische Annalen, 207(2):87–97, 1973. 8.1, 8.1.1

[216] E. Szemerédi. Regular partitions of graphs. In Proc. Colloque Inter. CNRS (J. C.
Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.), pages 399–401,
1978. 4.1

[217] Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,
33(5):1093–1108, 2004. 7.1, 7.1.2

[218] Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages 197–
205. IEEE, 2005. 2.3

320

http://www2.isye.gatech.edu/~nemirovs/

[219] Luca Trevisan, Gregory Sorkin, Madhu Sudan, and David Williamson. Gadgets,
approximation, and linear programming. SIAM Journal on Computing, 29(6):2074–
2097, 2000. 1.1, 7.1.5, 13.1, 13.1

[220] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, pages 303–312, 2009.
1.3.1, 5.3, 5.3.1, 5.3.1, 5.3.3, 5.3.1, 6.1.2, 7.1.2, 8.1.1

[221] Vijay V Vazirani. Approximation algorithms. Springer, 2001. 1.2

[222] Boris Weisfeiler, editor. On construction and identification of graphs. Lecture
Notes in Mathematics, Vol. 558. Springer–Verlag, Berlin, 1976. 2.1.3, 7.1.2

[223] Thorsten Wörmann. Strikt positive Polynome in der semialgebraischen Geometrie.
PhD thesis, TU Dortmund University, 1998. 8.1.1

[224] SJ Wright and J Nocedal. Numerical optimization. Springer New York, 1999. 1.3

[225] Stephen J Wright. Primal-dual interior-point methods, volume 54. SIAM, 1997.
1.3

[226] Yinyu Ye. A. 699-approximation algorithm for Max-Bisection. Mathematical Pro-
gramming, 90(1):101–111, 2001. 3.3, 13.1

[227] Uri Zwick. Approximation algorithms for constraint satisfaction problems involv-
ing at most three variables per constraint. In Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 201–210, 1998. 1.3, 17.1, 17.3.2

[228] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 551–560, 1998. 2.2.1,
2.2.1, 3.3, 3.4.3, 7.1.3, 12.1, 12.1.1

[229] Uri Zwick. Outward rotations: A tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to MAX CUT and other problems. In Proc.
31st ACM Symposium on Theory of Computing, pages 679–687, 1999. 1.3

321

	1 Introduction
	1.1 The notion of approximation algorithms
	1.1.1 Robust algorithms
	1.1.2 Hardness of approximation

	1.2 The relaxation and rounding framework for designing approximation algorithms
	1.2.1 Convex relaxations
	1.2.2 Rounding schemes
	1.2.3 Integrality gaps and limitations of the relaxation

	1.3 Linear and semidefinite programming relaxations, and methods of designing them
	1.3.1 Relaxation hierarchies and the implication of their limitations

	1.4 A brief overview of contributions

	2 Preliminaries
	2.1 Problems studied in this thesis
	2.1.1 Constraint satisfaction problems
	2.1.1.1 The UniqueGames problem

	2.1.2 Graph partitioning problems
	2.1.3 Graph isomorphism and assignment problems
	2.1.4 Dense and locally-dense instances

	2.2 Approximation and hardness of approximation
	2.2.1 Robust algorithms

	2.3 The Unique Games Conjecture

	3 Summary of contributions and organization of this thesis
	3.1 Overview of Part I: study of the LP/SDP relaxation hierarchies
	3.1.1 Algorithmic results
	3.1.2 Integrality gaps

	3.2 Overview of Part II: using the Parrilo–Lasserre hierarchy to solve hard instances for weaker hierarchies
	3.3 Overview of Part III: robust algorithms
	3.4 Overview of Part IV: other approximation and hardness of approximation results
	3.4.1 Approximating the 24 norm of random linear operators
	3.4.2 Hardness of Max-2-Lin and Max-3-Lin over integers
	3.4.3 Hardness of approximating almost satisfiable MaxHorn3-SAT

	I Study of the LP/SDP relaxation hierarchies
	4 Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems
	4.1 Introduction
	4.1.1 Linear Programming (LP) relaxation and LP relaxation hierarchies
	4.1.2 Our contributions
	4.1.3 Proof overview
	4.1.4 Comparison to previous works
	4.1.5 Organization

	4.2 Preliminaries
	4.3 Conditioning operations for Sherali-Adams LP hierarchy
	4.3.1 Conditioning operations
	4.3.2 The dense case
	4.3.3 The locally dense case

	4.4 Rounding -independent solutions
	4.4.1 Constraint satisfaction problems
	4.4.2 Assignment problems
	4.4.2.1 From -independence to relaxation H
	4.4.2.2 From relaxation H to an integral solution

	4.4.3 The rounding lemmas

	4.5 Putting things together
	4.6 Proof of Lemma 4.4.4
	4.7 Proof of Lemma 4.4.5
	4.8 Bisection MaxkCSP
	4.9 A gap instance for relaxation H

	5 Lasserre integrality gaps for DensekSubgraph
	5.1 Introduction
	5.1.1 Our contributions

	5.2 Preliminaries
	5.2.1 Notations
	5.2.2 The natural and min degree integer programmings for DensekSubgraph
	5.2.3 The Lasserre hierarchy for DensekSubgraph

	5.3 The integrality gap
	5.3.1 Lasserre gap for kCSP from Tulsiani
	5.3.2 The gap instance for DensekSubgraph
	5.3.3 Analysis
	5.3.3.1 Completeness
	5.3.3.2 Soundness
	5.3.3.3 Proof of Theorem 5.3.6
	5.3.3.4 Proof of Theorem 5.3.7

	5.3.4 Expansion for random kCSP instances

	6 Lasserre integrality gaps for BalancedSeparator and UniformSparsestCut
	6.1 Introduction
	6.1.1 Our contributions
	6.1.2 Our techniques

	6.2 Preliminaries on Lasserre SDPs for BalancedSeparator and UniformSparsestCut
	6.2.1 Useful theorems about the Lasserre hierarchy
	6.2.2 Lasserre SDP for graph partitioning problems
	6.2.2.1 BalancedSeparator
	6.2.2.2 UniformSparsestCut

	6.2.3 Lasserre Gaps for 3-XOR from Schoenebeck

	6.3 Gaps for BalancedSeparator
	6.3.1 Reduction
	6.3.2 Completeness : good SDP solution
	6.3.3 Soundness : bound for integral solutions
	6.3.4 Constant-degree integrality gap instance

	6.4 Gaps for UniformSparsestCut

	7 Lasserre integrality gaps for RobustGiso
	7.1 Introduction
	7.1.1 Our contributions
	7.1.2 SOS/Lasserre gaps
	7.1.3 Robust graph isomorphism
	7.1.4 Robust asymmetry of random graphs
	7.1.5 Organization

	7.2 Preliminaries
	7.2.1 SOS/Lasserre hierarchy
	7.2.2 Random 3-XOR

	7.3 Reduction from 3-XOR to GIso
	7.4 Completeness
	7.4.1 SOS completeness

	7.5 Soundness
	7.5.1 Proof of the claims

	7.6 Random graphs are robustly asymmetric
	7.6.1 Generalization to hypergraphs

	II A proof complexity view of the Parrilo–Lasserre hierarchy and the success of Lasserre on hard instances for weaker hierarchies
	8 Introduction and SOS preliminaries
	8.1 Introduction
	8.1.1 History
	8.1.2 Our contributions and organization of this part

	8.2 The SOS proof system and the SDP hierarchy for optimization
	8.3 A few simple SOS preliminaries
	8.4 SOS proofs of hypercontractivity

	9 Analysis of the UniqueGames instances
	9.1 An invariance principle for the fourth moment
	9.2 Analysis of the dictatorship test gadget for UniqueGames in the SOS proof system
	9.3 The KV UniqueGames instance and its SOS analysis
	9.4 Influence decoding and putting everything together
	9.4.1 Proof of Claim 9.4.2

	9.5 Refuting Instances based on Short Code

	10 SOS proofs of SSE in the Noisy Hypercube, KKL, and the analysis of the DKSV BalancedSeparator instances
	10.1 An SOS proof of small-set expansion in the noisy hypercube
	10.2 The KKL Theorem
	10.3 Analysis of the DKSV BalancedSeparator instances

	11 SOS proofs of the CLT, the 2 Theorem, and the analysis of the KV MaxCut instances
	11.1 An invariance theorem for polynomials of linear forms
	11.2 An SOS proof of the 2 Theorem
	11.3 Analysis of the KV MaxCut instances
	11.4 An approximator for the absolute-value function

	III Robust algorithms
	12 Robust satisfiability algorithms for width 1 CSPs
	12.1 Introduction
	12.1.1 Our contributions

	12.2 Preliminaries
	12.2.1 CSP preliminaries
	12.2.2 Algorithmic preliminaries
	12.2.3 Algebraic preliminaries

	12.3 Width 1 implies robust decidability by LP
	12.3.1 Lattice CSPs: better quantitative dependence on

	13 An algorithm for RobustMaxBisection
	13.1 Introduction
	13.1.1 Our contributions
	13.1.2 Later development

	13.2 Method overview
	13.2.1 Integrality gap
	13.2.2 Notations
	13.2.3 Our approach
	13.2.4 Organization

	13.3 Preprocessing and partitioning graph G
	13.3.1 Preprocessing: Making G bipartite and unweighted
	13.3.2 Partitioning

	13.4 Finding cuts in sets Ui and Vi
	13.4.1 Candidate cuts in Vi
	13.4.2 Candidate cuts in Ui

	13.5 Combining candidate cuts
	13.6 The bisection algorithm – proof of Theorem 13.1.3

	14 A robust isomorphism algorithm for trees
	14.1 Introduction
	14.1.1 Our contributionss and overview of the proofs

	14.2 The algorithm
	14.2.1 Robust isomorphism algorithm for B-trees
	14.2.2 Proofs of Lemma 14.2.3 and Lemma 14.2.4

	IV Other approximation and hardness of approximation results
	15 Certifying the 24 norm of random linear operators
	15.1 Introduction
	15.2 The TensorSDP algorithm
	15.3 Certifying the hypercontractivity of random operators

	16 Hardness of Max-2-Lin and Max-3-Lin over integers
	16.1 Introduction
	16.1.1 Prior work on Max3-Lin (Z)
	16.1.2 Prior work on Max2-Lin
	16.1.3 Our contributions

	16.2 Preliminaries
	16.2.1 Notations and Definitions

	16.3 Review of proofs of Max-2-Lin (Zq) and Max-3-Lin (Zq) hardness
	16.3.1 Max-2-Lin
	16.3.2 Max-3-Lin

	16.4 Overview of our proofs
	16.4.1 Active folding
	16.4.2 Modifying the KKMO proof
	16.4.3 Modifying the Håstad proof

	16.5 Dictator Test details
	16.5.1 Dictator Test for Max-2-Lin
	16.5.2 Matching Dictator Test for Max-3-Lin

	16.6 Reductions between Maxk-Lin(R) problems
	16.7 From Dictator Tests to hardness of approximation
	16.7.1 Proof of Lemma 16.5.2
	16.7.2 Proof of Lemma 16.5.4

	17 Hardness of approximating almost satisfiable MaxHorn3-SAT
	17.1 Introduction
	17.2 Our contributions and previous work
	17.3 Proof method
	17.3.1 The canonical SDP for Boolean CSPs and UG-Hardness
	17.3.2 Overview of construction of SDP gaps
	17.3.3 Overview of algorithmic results

	17.4 Approximability of Horn3-SAT
	17.4.1 SDP gap and UG hardness for Horn3-SAT
	17.4.1.1 Instance
	17.4.1.2 Construction of a good SDP solution
	17.4.1.3 Proof of the Key Lemma 17.4.4

	17.4.2 Algorithm for MinHornDeletion and MaxHorn2-SAT
	17.4.2.1 LP Formulation
	17.4.2.2 Half-integrality and rounding

	V Future directions
	18 Open problems
	Bibliography

