
Usable Human Authentication:
A Quantitative Treatment

Jeremiah Blocki

CMU-CS-14-108

June 30, 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuel Blum, Co-Chair

Anupam Datta, Co-Chair
Luis von Ahn

Ron Rivest, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2014 Jeremiah Blocki

This research was sponsored by the Naval Surface Warfare Center under grant number N00164-
03-DG6623-0009, the National Science Foundation under grant numbers CNS-0831178, CCR-
0122581, DGE-0750271, DGE-1252522, and CCF-0424422, and the Air Force under grant number
FA95501210040. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

Keywords: Human Authentication, Passwords, Password Management Scheme,
Usability Model, Security Model, Password Composition Policy, GOTCHA

I would like to thank my beautiful wife Heather for her love and support. I would also like
to thank my parents for raising me and caring for me over the years. Finally, I would like
to thank my Lord and Savior Jesus Christ for creating me, saving me and placing all of

the people I mentioned above into my life.

iv

Abstract

A typical computer user today manages passwords for many dif-
ferent online accounts. Users struggle with this task — often forgetting
their passwords or adopting insecure practices, such as using the same
passwords for multiple accounts and selecting weak passwords. While
there are many books, articles, papers and even comics about select-
ing strong individual passwords, there is very little work on password
management schemes — systematic strategies to help users create and
remember multiple passwords. Before we can design good password
management schemes it is necessary to address a fundamental ques-
tion: How can we quantify the usability or security of a password
management scheme. One way to quantify the usability of a password
management scheme would be to conduct user studies evaluating each
user’s success at remembering multiple passwords over an extended
period of time. However, these user studies would necessarily be slow
and expensive and would need to be repeated for each new password
management scheme. Our thesis is that user models and security mod-
els can guide the development of password management schemes with
analyzable usability and security properties. We present several results
in support of this thesis. First, we introduce Naturally Rehearsing Pass-
word schemes. Notably, our user model, which is based on research on
human memory about spaced rehearsal, allows us to analyze the us-
ability of this family of schemes while experimentally validating only
the common user model underlying all of them. Second, we introduce
Human Computable Password schemes, which leverage human capa-
bilities for simple arithmetic operations. We provide constructions that
make modest demands on users and we prove that these constructions
provide strong security: an adversary who has seen about 100 10-digit
passwords of a user cannot compute any other passwords except with
very low probability. Our password management schemes are pre-
cisely specified and publishable: the security proofs hold even if the
adversary knows the scheme and has extensive background knowl-
edge about the user (hobbies, birthdate, etc.). They do not require
any significant server-side changes. In further support of our thesis,
we show that user models and security models can also be used to
develop server-side defenses against online and offline attacks.

vi

Acknowledgments

I am indebted to my advisors Manuel Blum and Anupam Datta for all of their
guidance and encouragement over the years. I would like to thank Luis Von Ahn
and Ron Rivest for serving on my thesis committee and for giving me helpful
comments and suggestions about my work. I would like to thank Ariel Procaccia,
Saranga Komanduri and Or Sheffet who coauthored the paper Optimizing Pass-
word Composition Policies with me. Saranga Komanduri has also collaborated
with me to run user studies to empirically test several of the usability models pre-
sented in this thesis. Calvin Beideman, a bright high school student, worked with
me on the paper Set Families with Low Pairwise Intersection, and Shikun Zhang
has been working with me to develop a password management application based
on ideas from this thesis. I would also like to thank Santosh Vempala for many
helpful discussions about statistical algorithms and random planted satisfiability
problems, and Ryan O’Donnell for pointing me to recent general hypercontractiv-
ity results. These discussions helped me to obtain the main technical result in my
work on Human Computable Passwords.

I am thankful to Steven Rudich for running Andrew’s Leap, a summer program
at Carnegie Mellon University for high school students interested in computer
science, and for his continued interest in my research. The Andrew’s Leap program
helped me to decide to study computer science as an undergraduate at CMU. I am
thankful to Lenore Blum for helping me find a summer Research Experience for
Undergraduates program while I was a sophomore at CMU, and I am thankful
to Ryan Williams and Manuel Blum for advising me during the summer. My
experience during the summer REU convinced me to pursue a PhD in computer
science.

vii

Some passages have been quoted verbatim from the following sources:
Optimizing Password Composition Policies [34, 35] by Jeremiah Blocki, Saranga Komanduri, Ariel
Procaccia and Or Sheffet.
GOTCHA Password Hackers! [31, 32] by Jeremiah Blocki, Manuel Blum and Anupam Datta.
Naturally Rehearsing Passwords [30, 33] by Jeremiah Blocki, Manuel Blum and Anupam Datta.
Human Computable Passwords [36] by Jeremiah Blocki, Manuel Blum and Anupam Datta.
Set Families with Low Pairwise Intersection[25] by Calvin Beideman and Jeremiah Blocki.

The material from Chapter 4 is based on ongoing research with Anupam Datta, Saranga Koman-
duri and Lorrie Cranor.

viii

Contents

1 Overview 1

1.1 Introduction . 1

1.2 Statement of Thesis . 4

1.2.1 User Models . 4

1.2.2 Quantitative Security Model 8

1.2.3 Developing Human Authentication Schemes with Analyz-
able Security and Usability Properties 8

1.3 Usable and Secure Password Management 11

1.3.1 Overview . 12

1.4 Human Computable Passwords . 16

1.4.1 Overview . 17

1.5 Empirical Validation of User Model 22

1.6 A Defense against Online Attacks . 23

1.6.1 Overview . 23

1.7 A Defense Against Offline Attacks 25

1.7.1 Background . 25

1.7.2 GOTCHAs . 26

1.7.3 Overview . 26

2 Naturally Rehearsing Passwords 29

2.1 Introduction . 29

ix

2.2 Related Work. 32

2.3 Definitions . 35

2.3.1 Associative Memory and Cue-Association Pairs 35

2.3.2 Visitation Schedules and Rehearsal Requirements 36

2.3.3 Password Management Scheme 37

2.4 Usability Model . 38

2.4.1 Rehearsal Requirements . 39

2.4.2 Visitation Schedules. 40

2.5 Security Model . 42

2.6 Our Construction . 45

2.6.1 Constructing
(
n, `, γ

)
-sharing set families 46

2.6.2 Shared Cues . 48

2.6.3 Usability and Security Analysis 49

2.7 Discussion and Future Work . 51

3 Human Computable Passwords 53

3.1 Introduction . 53

3.2 Related Work . 57

3.3 Definitions . 59

3.3.1 Notation . 59

3.3.2 Requirements for a Human Computable Function 61

3.3.3 Password Unforgeability . 62

3.3.4 Security Parameters of f . 63

3.4 Statistical Adversaries and Lower Bounds 64

3.4.1 Statistical Algorithms . 64

3.4.2 Statistical Dimension Lower Bounds 66

3.5 Security Analysis . 68

3.5.1 Breaking UF-RCA is Equivalent to Secret Recovery 68

3.5.2 Gaussian Elimination . 71

x

3.6 Candidate Secure Human Computable Functions 72

3.6.1 Candidate Scheme 1 . 74

3.6.2 Candidate Scheme 2 . 75

3.6.3 Usability: . 75

3.6.4 Statistical Algorithms: Security Upper Bound 78

3.7 Discussion . 79

3.7.1 Human Computable Passwords Challenge 79

3.7.2 Security Under Continuous Leakage 80

3.7.3 Open Questions . 80

4 Empirical Validation of User Model 83

4.1 Introduction . 83

4.2 Related Work . 85

4.3 Study Design . 87

4.3.1 Recruitment Text . 88

4.3.2 Memorization Phase . 88

4.3.3 Rehearsal Phase . 93

4.3.4 Follow Up Survey . 94

4.3.5 Rehearsal Schedules . 95

4.3.6 List of People, Actions and Objects from the User Study . . 96

4.4 Preliminary Results . 97

4.4.1 Discussion . 103

5 Password Composition Policies: A Defense Against Online Attacks 105

5.1 Introduction . 105

5.1.1 Our Model . 106

5.1.2 Our Results . 108

5.1.3 Related Work . 110

5.2 A Model of Password Composition Policies 111

xi

5.3 Ranking Model: Complexity Results 113

5.3.1 Positive Rules: Efficient Algorithm for Constant k 114

5.3.2 Special Case k = 1 . 115

5.3.3 The General Case . 116

5.3.4 Singleton Rules: Hardness for Large k 118

5.3.5 Negative Rules: Hardness of Approximation for k = 1 120

5.4 Normalization Model: Complexity Results 123

5.4.1 Singleton Rules: Efficient Algorithm for large k 123

5.4.2 Negative Rules: Hardness for k = 1 124

5.4.3 Positive Rules: Hardness of Approximation for Large k . . . 126

5.5 Efficient Sampling Algorithms . 126

5.6 Experiments . 128

5.6.1 Experiment Rules . 129

5.6.2 Baselines . 130

5.6.3 Performance . 130

5.7 Discussion . 131

6 GOTCHAs: A Defense Against Offline Attacks 135

6.1 Introduction . 135

6.1.1 Related Work . 138

6.2 Definitions . 141

6.2.1 Password Storage and Offline Attacks 145

6.3 Inkblot Construction . 146

6.3.1 GOTCHA Authentication . 148

6.3.2 User Study . 151

6.3.3 An Open Challenge to the AI Community 153

6.4 Analysis: Cost of Offline Attacks . 154

6.5 Discussion . 156

xii

7 Appendix: Naturally Rehearsing Passwords 161

7.1 Missing Proofs . 162

7.2 Varying the Association Strength Constant 165

7.3 Baseline Password Management Schemes 166

7.3.1 Security Of Baseline Password Management Schemes 169

7.3.2 Usability of Baseline Schemes 170

7.3.3 Sources of Randomness . 170

7.4 Other Measures of Password Strength 170

7.4.1 Password Strength Meters . 171

7.4.2 Entropy . 172

7.4.3 Minimum Entropy . 173

7.5 Economics . 174

7.5.1 Password Storage . 174

7.5.2 Attack Cost and Benefit . 175

7.5.3 Cost of Guessing . 175

7.5.4 Benefit . 176

7.6 Associative Memory and Sufficient Rehearsal Assumptions 177

7.6.1 Squared Rehearsal Assumption 178

7.7
(
n, `, γ

)
-sharing Set Families . 179

7.7.1 Improved Constructions . 180

7.7.2 Applications to Pseudorandom Number Generators 182

7.7.3 Upper Bounds . 189

7.7.4 Open Questions . 193

8 Appendix: Human Computable Passwords 195

8.1 Human Computable Passwords Challenge 196

8.2 Statistical Dimension . 197

8.3 Security Proofs . 205

8.4 Proofs of Claims and Facts . 209

xiii

8.4.1 Security Upper Bounds . 214

9 Appendix: Password Composition Policies 217

9.1 Optimizing Password Composition Policies: Missing Proofs 218

9.2 Impossibility of constant-factor universal approximation 223

10 Appendix: GOTCHA Password Hackers 225

10.1 Missing Proofs . 226

10.2 HOSP: Pre-Generated CAPTCHAs 227

Bibliography 229

xiv

List of Figures

1.1 XKCD: correct, horse, battery staple Source: http://xkcd.com/936/ 7

1.2 Example 1. Memorizing a Person-Action-Object Story 13

1.3 Example 2. Memorizing a Person-Action-Object Story 13

1.4 Login Example 1 . 14

1.5 Login Example 2 . 15

1.6 Secret Random Mapping from Pictures to Digits 17

1.7 Mnemonics to help memorize the secret mapping σ 17

1.8 A single-digit challenge . 18

1.9 Computing the response
(

f (σ (C)) = 6
)

to a single-digit challenge . 19

1.10 Login Screen . 20

1.11 Login Screen after the user responds to the first single-digit challenge 20

1.12 GOTCHA Authentication Example 27

2.1 Person Action Object Story with Cue 45

2.2 Account A19 using Shared Cues with the (43, 4, 1)-sharing set family
CRT (90, 9, 10, 11, 13). 45

3.1 Mnemonics to help memorize the secret mapping σ 73

4.1 Memorization Step 0. Scene and Person. 90

4.2 User Study: Non-Mnemonic Group Memorization Phase 93

xv

http://xkcd.com/936/

4.3 Total Survival with Failures Carried Forward
(

Survived(i)
Survived(t)+

∑t
j=1 Failed(j)

)
vs Time (i). 99

4.4 Conditional Survival: Survived (i) /Returned (i) vs Time (i). 100

4.5 EstimatedSurvival (i) vs Time (i) . 101

4.6 Survey: Which of the following reasons best describes why you
were unable to return to take the follow up test? 102

6.1 Randomly Generated Inkblot Image—An evil clown? 137

6.2 GOTCHA User Study: Phase 1 . 159

6.3 GOTCHA User Study: Phase 2 . 160

6.4 Random Walk Inkblots . 160

7.1 mmmmmmmmmmmmmmmmmmmmmmmmmmmm: sounds de-
licious, but is it really a strong password? 172

xvi

List of Tables

2.1 Visitation Schedules . 40

2.2 Extra Rehearsals for Baseline Schemes 41

2.3 E [XR365]: Extra Rehearsals over the first year for SC-0,SC-1 and
SC-2. 50

2.4 Shared Cues (q$106 , δ,m, s, r, h)-Security: δ vs h and r using a
(
n, `, γ

)
-

sharing family of m public cues. 50

3.1 Extra Rehearsals to Remember Secret Mapping 77

3.2 Example: Single-Digit Challenge . 77

4.1 Rehearsal Schedules . 96

4.2 Survived . 98

5.1 Summary of Complexity Results. 109

5.2 Rankings used in the proof of Theorem 15. 122

5.3 Rules Used in Sampling Experiments 133

5.4 Baseline probabilities for the RockYou dataset 134

5.5 Performance of Sampling Algorithms with Positive Rules 134

5.6 Performance of Sampling Algortihms with Negative Rules 134

6.1 GOTCHA User Study: Completion Times 152

6.2 Usability Results: Fraction of Participants who would have authen-
ticated with accuracy parameter α 152

xvii

7.1 Expanding Rehearsal Assumption: E
[
XR365,c

]
vs. λc and σ 166

7.2 Constant Rehearsal Assumption: E
[
XR365,c

]
vs. λc and σ 166

7.3 Upper Bound: qB for BCRYPT, MD5 and SHA1 174

7.4 Guessing Costs . 176

7.5 q$1,000,000 . 177

7.6 E [XR365]: Extra Rehearsals over the first year under the Squared
Rehearsal Assumption — σ = 1.
B+D: Lifehacker
SRI: Strong Random and Independent 179

7.7
(
n, `, γ

)
-sharing set family constructions 180

8.1 Human Computable Password Challenges n — Secret Length m—#
Challenge-Response Pairs . 196

xviii

Chapter 1

Overview

1.1 Introduction

A typical computer user has many different online accounts which require some
form of authentication. While passwords are still the dominant form of authen-
tication, users struggle to remember their passwords. As a result users often
adopt insecure password practices (e.g., reusing the same password, selecting
common passwords) [39, 52, 75, 102] or end up having to frequently reset their pass-
words. There have been numerous recent examples of major password breaches
[3, 6, 8, 9, 10, 11, 12, 13, 14, 28, 52, 141].

An adversary may crack a weak password in an online attack where he pretends
to login as a legitimate user and tries as many password guesses as the site permits
him to try before he is locked out. If the cryptographic hash of a password is leaked
or stolen an adversary will be able to mount a more dangerous attack known as an
offline attack, in which he can continue guessing the user’s password indefinitely.
Unfortunately, these attacks are commonplace (e.g., breaches at Zappos, LinkedIn,
Sony, Gawker and Adobe have affected millions of users [6, 8, 9, 11, 13, 14, 28]).
Users are often advised to pick long passwords that include numbers, special
characters and capital letters to protect themselves in the event of an offline attack
[132]. Even the strongest passwords can be compromised via a plaintext password
leak attack, which could occur because the user fell prey to a phishing attack or
because the user signed into his account on an infected computer or due to software
misconfigurations (e.g., [5, 10, 12, 141]). Users are typically advised against reusing
the same password to protect themselves in the event of a plaintext password leak.

1

Password Management Schemes. Informally, a password management scheme
is a strategy that a user could follow to create and remember each of his pass-
words. One of the central goals of this thesis is to develop password management
schemes which can be implemented on “human hardware.” A good password
management scheme should be usable and secure. Informally, a password man-
agement scheme is usable if a human can create and recall passwords without
too much effort. A secure password management scheme must provide concrete
security guarantees even against an adversary who has already learned one or
more of the user’s passwords. Before we can design good password manage-
ment schemes it is necessary to address two fundamental questions: How can we
quantify the usability of a password management scheme? How can we quantify
the security of a password management scheme? While it is straightforward to
introduce a quantitative security model based on the attack scenarios described
earlier, it is more challenging to quantify usability because our understanding of
human memory is incomplete. One way to evaluate the usability of a candidate
password management scheme is to conduct a large user study. However, this
would make the design process slow and expensive as the user study would have
to evaluate each user’s success at remembering multiple passwords over an ex-
tended period of time. Our goal is to develop a quantitative usability model so that
the design process for password management schemes could be separated from
the validation of the usability model. In Chapter 2 we introduce a mathematical
framework for quantifying the usability of a password management scheme, as
well as a mathematical framework for quantifying the security of a password man-
agement scheme. Our usability model builds on cognitive psychology literature
about spaced repetition and human memory. Using these models we develop a
novel password management scheme, Shared Cues, which balances security and
usability. In Chapter 3 we develop several password management schemes with
even stronger security properties than Shared Cues by leveraging the user’s capac-
ity to perform simple computations (e.g., addition modulo 10) in his head, and
we apply our usability model from Chapter 2 to help quantify the usability of our
human computable password management schemes.

Defenses for a System Administrator. In this thesis we also suggest several
defenses that a system administrator could adopt to mitigate the threat of online
and offline attacks. One way to defend against online attacks is to adopt a password
composition policy which specifies the passwords that a user may/may not select
(e.g., one common policy says that each password must contain at least one capital
letter and at least one number). The goal of these policies is to ensure that an

2

online adversary’s first few guesses are likely wrong by disallowing overly popular
passwords1. One natural question to ask is whether or not we can efficiently
compute the best password composition policy given sufficient data about the
password preferences of our users. In Chapter 5 we initiate the algorithmic study
of password composition policies and present an algorithm to find the optimal
policy with positive rules (e.g., one potential positive rules policy specifies that a
password is allowed if it satisfies one of the following conditions: 1) It is longer than
15 characters, 2) It is longer than 12 characters and contains upper and lower case
letters, or 3) It is longer than 9 characters and contains numbers as well as upper
and lower case letters.). In Chapter 6 we present a defense against offline attacks
called GOTCHAs. The basic idea behind GOTCHAs is to exploit hard artificial
intelligence problems to ensure that human feedback is necessary to validate each
different password guess. This dramatically increases the adversary’s cost during
an offline attack.

Organization. We first state our thesis in Section 1.2. In the remainder of this
chapter we briefly summarize each of the remaining chapters in this thesis. In these
summaries we emphasize how each of our proposed defenses would be used in
practice, while postponing a discussion of the technical details to later chapters.
Chapter 2 — based on the work of Blocki et al. [33] — takes the perspective of
the user who is given the complex task of creating and remembering passwords
for multiple accounts. We overview Chapter 2 in Section 1.3. In Chapter 4 we
describe an ongoing user study that we are conducting to quantify the effects of
rehearsal and the use of mnemonic techniques on long term memory retention.
We give a brief overview of this user study in Section 1.5. Chapter 3 — based
on the work of Blocki et al. [36] — continues the line of research from Chapter
2. We develop even more secure password managment schemes by considering
schemes in which the user must perform a few simple computations in his head
to compute each of his passwords. We overview Chapter 3 in Section 1.4. In
contrast to Chapters 2 and 3, Chapters 5 and 6 take the perspective of a system
administrator at a large company who is trying to protect users against online and
offline attacks. Chapter 5 — based on the work of Blocki et al. [34] — deals with
online attacks. We overview Chapter 5 in Section 1.6. Chapter 6 — based on the
work of Blocki et al. [31] — deals with offline attacks. We overview Chapter 6 in
Section 1.7.

1After a few incorrect guesses the server can temporarily lock the user’s account to stop the
online adversary.

3

1.2 Statement of Thesis

We argue in support of the following thesis:

User models and security models can guide the development of human
authentication schemes with analyzable usability and security proper-
ties.

We present two sets of results in support of this thesis. We present our first set of
results in Chapters 2 and 3. While there are many articles, books, papers and even
comics about selecting strong individual passwords [4, 46, 49, 82, 109, 132, 146, 162],
there is very little work on password management schemes—systematic strategies
to help users create and remember multiple passwords—that are both usable
and secure. One of the primary goals of this thesis is to develop theoretical
models to help quantify the security and usability of a password management
scheme and to use these models to develop better password management schemes.
A good password management scheme should be provably usable and should
provably result in secure passwords. Furthermore, the password management
scheme needs to be publishable, meaning that the security proof should hold
even if the adversary knows the password management scheme that our user
is following. We present models to quantify the usability and the security of a
password management scheme, and we use these models to develop password
management schemes that provably balance security and usability. We present
our second set of results in support of our thesis in Chapters 5 and 6, where we
develop and analyze defenses for offline and online attacks against passwords.
The defenses we propose follow naturally from our user models and our security
models.

1.2.1 User Models

A user model may either specify capabilities of the user or describe how the user
will behave in different scenarios; possibly both. In Chapter 2 our user model
consists of a memory assumption and a visitation schedule for each of the user’s
accounts. The memory assumption states that a user is capable of remembering
a story if he follows a particular rehearsal schedule, and our visitation schedule
specifies how often a user will naturally rehearse each of his passwords. This user
model allows us to quantify the usability of a password management scheme by

4

predicting how much extra effort a user would need to expend to remember all of
his passwords. In Chapter 3 we expand the user model of Chapter 2 by assuming
that the user can also perform simple computations (e.g., addition modulo 10) in
his head, and we show how to develop even more secure human computable
password management schemes. In Chapter 5 our user model predicts how
users will update their passwords in response to restrictions. While our user
model in this chapter is simple and intuitive it allows us to develop a novel
algorithm to find the optimal password composition policy to defend against
online attacks. In Chapter 6 our user model specifies a task that a human can do,
but a computer cannot (e.g., imagine objects in an randomly generated inkblot
image and recognize those same objects later). We certainly do not claim to
provide a comprehensive list of tasks that a human can do, but a computer could
not. However, we are able to develop a novel defense against offline attacks called
GOTCHAs based on a simple security assumption (e.g., given two randomly
generated inkblot images and a human-generated label for one of the inkblot
images the computer cannot accurately predict which inkblot image was labeled).

Each of our user models consists of an assumption about the user’s capabilities
(e.g., a user is able to remember a story if he follows a given rehearsal schedule, a
user is able to imagine objects in an inkblot image and recognize those same objects
later, a user is able to add two digits modulo 10 in his head) and/or a description
of the user’s behavior (e.g., how will a user change his password in response to a
composition policy, how often will a user login to each of his accounts). Borrowing
terminology from logic, our goal is develop user models that are sound (e.g., users
truly possess the capabilities specified by our model), but not necessarily complete
(e.g., users may have many other capabilities not considered by our models).

Related Work

A distinctive goal of our work is to develop a quantitative usability model so that
the design process for password management schemes can be separated from the
validation of the usability model. In contrast, a line of prior work on usability has
focused on empirical studies of user behavior including their password manage-
ment habits [52, 75, 102], the effects of password composition rules (e.g., requiring
numbers and special symbols) on individual passwords [34, 101], the memorabil-
ity of individual system assigned passwords [140], graphical passwords [27, 48],
and passwords based on implicit learning [38]. These user studies have been lim-
ited in duration and scope (e.g., study retention of a single password over a short

5

period of time) and can only test a very specific hypothesis.

Example. As an example, consider the suggestion that Randall Munroe gave in
his popular webcomic XKCD (See Figure 1.1). He suggested that users create
their passwords by picking four random words from the dictionary and creating
a story2. A user study conducted by Shay et al. [140] indicated that users had
more difficulty when asked to remember three to four random words than when
they were asked to remember 5 to 6 random characters. However, the user study
was only able to test a very specific hypothesis: that users have less difficulty re-
membering 5 to 6 random characters than remembering 3 to 4 random words from
a specific small dictionary when the users are not given instructions about how
to memorize their passwords. This leaves open a host of other questions. What
if the users were required to follow specific instructions about how to memorize
their words (e.g., by making up a story)? Would it still be harder to remember
4 random words? What if we used a larger dictionary with fewer words per
password? Is it still easier to remember 6 random characters than to remember
2 random words from a larger dictionary? Most importantly, what if the user is
memorizing multiple passwords?

Usability Models. One way to evaluate the usability of a candidate password
management scheme would be to conduct a large user study. However, this would
make the design process slow and expensive as the user study would have to eval-
uate each user’s success at remembering multiple passwords over an extended
period of time. In Chapter 2 we introduce a mathematical framework for quanti-
fying the usability of a password management scheme, as well as a mathematical
framework for quantifying the security of a password management scheme. Our
usability model allows us to separate the design process from the validation of the
usability model. Our usability model builds on cognitive psychology literature
about spaced repetition and human memory[160]. In Chapter 4 we describe our
ongoing user study to test the usability model itself.

2Munroe does not deal with the more complicated problem of creating and remembering
multiple passwords.

6

Figure 1.1: XKCD: correct, horse, battery staple
Source: http://xkcd.com/936/

7

http://xkcd.com/936/

1.2.2 Quantitative Security Model

We present a game based security model for a password management scheme in
the style of exact security definitions of Bellare and Rogaway [26]. The game is
played between a user (U) and a resource-bounded adversary (A) whose goal is
to guess one of the user’s passwords. Our game models three commonly occur-
ring breaches (online attack, offline attack, plaintext password leak attack). Our
security model is fundamentally different from metrics like guessing entropy (e.g.,
How many guesses does an adversary need to guess all of passwords in a dataset
[107]?) and partial guessing entropy (e.g., How many guesses does the adversary
need to crack α-fraction of the passwords in a dataset [39, 121]? How many pass-
words can the adversary break with β guesses per account [45]?), which take the
perspective of a system administrator who is trying to protect many users with
password protected accounts on his server. For example, a system administrator
who wants to evaluate the security effects of a a new password composition policy
may be interested in knowing what fraction of user accounts are vulnerable to
offline attacks. By contrast, our security model takes the perspective of the user
who has many different password protected accounts. Our user wants to evaluate
the security of various password management schemes that he could choose to
adopt. He is not worried about how many Amazon passwords could be cracked
in three guesses. Instead, he will be worried about whether or not his personal
accounts are vulnerable.

1.2.3 Developing Human Authentication Schemes with Analyz-
able Security and Usability Properties

No user model will perfectly capture all of the intricacies of human memory and
behavior. As George E.P. Box famously observed[44], “essentially, all models
are wrong, but some are useful.” We argue that our quantitative security and
usability models are useful because they allow us to develop usable and secure
human authentication schemes. In Chapter 2.6 we develop a novel password
management scheme, Shared Cues, which balances security and usability, and in
Chapter 3 we develop several password management schemes with even stronger
security properties than Shared Cues by leveraging the user’s capacity to perform
simple computations (e.g., addition modulo 10) in his head. In both of these cases
insights from our usability model in Chapter 2 helped us to optimize for usability
while we were developing our password management schemes. In Chapter 5 we

8

also propose a simple model of how users change their passwords in response
to a password composition policy, and we use this model to develop an efficient
sampling algorithm to find the most secure password composition policy.

Analyzable Usability and Security. Because our goal is to develop quantitative
security and usability models we focus on password management schemes that
are precisely specified. It is not always possible to quantify the security or usability
of a password management scheme that is not precisely defined. As an example,
consider the advice provided by Computing Facilities at the School of Computer
Science at Carnegie Mellon University3. They recommend that users follow the
following steps to create their passwords:

1. Make up a sentence you can easily remember. Some examples:

I have two kids: Jack and Jill.

I like to eat Dave & Andy’s ice cream.

No, the capital of Wisconsin isn’t Cheeseopolis!

2. Now take the first letter of every word in the sentence, and include
the punctuation. You can throw in extra punctuation, or turn numbers
into digits for variety. The above sentences would become:

Ih2k:JaJ.

IlteD&A’ic.

N,tcoWi’C!

...Please don’t use one of the sentences above to generate your pass-
word.

These instructions do not clearly specify how the user should select the sentences
for each of his passwords. Does our user select similar (or identical) sentences
for several (all) of his passwords? If he selects similar sentences for each of his
passwords then it may be easier to remember all of his passwords, but now a
plaintext password breach at one of the user’s accounts will leave our user’s other
passwords vulnerable. Does he pick his sentence(s) from a favorite poem, book
or movie instead of stringing together truly random words? If he does then the
sentence may be more memorable, but the resulting password(s) will be easier

3Source: http://www.cs.cmu.edu/˜help/security/choosing_passwords.html (Retrieved
May 5,2014.

9

http://www.cs.cmu.edu/~help/security/choosing_passwords.html

for an adversary to break, especially if the adversary has background knowledge
about the user. By contrast, the password management schemes that we present
in Chapters 2 and 3 are defined precisely (e.g., if we ask users to memorize a story
we specify the random distribution from which the story should be drawn, and
we even give the user instructions about how to memorize the story).

10

1.3 Usable and Secure Password Management

A typical computer user may have many password protected accounts (e.g., Ama-
zon, Google, LinkedIn) that require authentication, and the user may wish to
authenticate using a diverse set of computing devices (e.g., desktop, personal lap-
top, public computer, friend’s computer, smartphone). The user needs to account
for all three types of attacks: online attacks, offline attacks and plaintext password
leak attacks. If there is a password breach at LinkedIn [13] will the user’s password
resist offline cracking attempts? If the user borrows his friend’s malware-infected
computer to login to Google will the adversary also be able to recover the user’s
password for Amazon? Our user also needs to worry about remembering his
password(s) because the password-reset process is often costly [158].

In Chapter 2 we introduce quantitative usability and security models to guide
the design of password management schemes — systematic strategies to help users
create and remember multiple passwords. In the same way that security proofs
in cryptography are based on complexity-theoretic assumptions (e.g., hardness of
factoring and discrete logarithm), we quantify usability by introducing usability
assumptions. In particular, password management relies on assumptions about
human memory, e.g., that a user who follows a particular rehearsal schedule
will successfully maintain the corresponding memory. These assumptions are
informed by research in cognitive science and can be tested empirically. To quantify
the usability of the password scheme we predict how much ‘extra effort’ a user
would have to expend to remember all of his passwords. We say that a user
rehearses a secret naturally whenever he recalls that secret to log into one of his
accounts. If a user does not get sufficient natural rehearsal for a secret then he
will need to be reminded to rehearse that secret. We call this an extra rehearsal.
Given rehearsal requirements and a user’s visitation schedule for each account,
we can predict how many times our user will need to be reminded to perform extra
rehearsals to ensure that he remember all of his passwords. Our usability model
lead us to a key observation: password reuse benefits users not only by reducing
the number of passwords that the user has to memorize but, more importantly,
by increasing the natural rehearsal rate for each password. We also present a
security model which accounts for the complexity of password management with
multiple accounts and associated threats, including online, offline, and plaintext
password leak attacks. Observing that current password management schemes
are either insecure or unusable, we present Shared Cues — a novel password
management scheme in which the underlying secrets that the user memorizes are

11

strategically shared across accounts to ensure that most rehearsal requirements
are satisfied naturally while simultaneously providing strong security guarantees.
Our construction uses the Chinese Remainder Theorem to strategically share the
secrets in a way that achieves these competing goals.

1.3.1 Overview

We are developing an application which implements the Shared Cues password
management scheme.

Memorizing Person-Action-Object Stories. To begin using our application the
user first memorizes several randomly generated Person-Action-Object (PAO) sto-
ries. Figures 1.2 and 1.3 illustrate this process. To memorize each PAO story we
show the user four images: a person, an action, an object and a scene. We instruct
the user to imagine the PAO story taking place inside the scene.

Spend 10 seconds visualizing each story in your head, and try to
make it as vivid as possible by thinking of details. For example, suppose
that you see the story President Bush is flipping a leaf. When you are
picturing this story in your head you should try to answer questions
like the following: Is the leaf big or small? What color is the leaf? Is
President Bush laughing or frowning?

After the user has memorized a story the application stores the images of the
person and the scene, but discards the images of the action and object. The images
of the person and the scene will be used as a public cue to help the user remember
the secret action and object. We emphasize that actions and the objects in each
of these stories are randomly chosen by the computer not by the user. If the user
selected the action and the the object then he might pick words that are correlated
with person or the scene (e.g., in Figure 1.2 the user might pick the object ‘apple’
or ‘penguin’ because these words are correlated with Steve Jobs and the glacier
respectively). By having the computer select the story we can ensure that the
action and object are not correlated with the scene or the person that the user is
shown.

Creating an account. To help the user create a password for an account the
application first chooses four of the PAO stories (see Chapter 2 for more details).

12

Figure 1.2: Example 1. Memorizing a Person-Action-Object Story

Figure 1.3: Example 2. Memorizing a Person-Action-Object Story

13

Figure 1.4: Login Example 1

The user is shown the images of the person and scene in each of the four stories.
To form his password the user remembers the secret action and object associated
with each story and concatenates all of these words together. Figures 1.4 and 1.5
illustrate this process for two different accounts. Observe that these two accounts
have one common PAO story (the story involving Bart Simpson at the Niagara
Falls). By sharing stories across accounts we can cut down on the number of PAO
stories that the user has to memorize. In Chapter 2 we show that this can be done
in a way that preserves strong security properties. The application keeps track
of which stories are used for each account, but does not store any of the user’s
passwords.

Logging into an account. Logging into an account is similar to creating an ac-
count. When the user wants to login to an account the application displays the
images of the person and scene in each of the four stories associated with that
account (e.g., see Figure 1.4). We stress that these images will be the same images

14

Figure 1.5: Login Example 2

15

that the user saw when he created the account. To recreate his password the user
remembers the secret action and object associated with each story and concatenates
all of these words together.

Helping the user remember all his stories. Our application keeps track of when
the user rehearses each of his PAO stories. A user naturally rehearses a PAO story
whenever he uses that story to login to one of his accounts. If a user has not
rehearsed a PAO story in a long time then our application will remind that user to
rehearse the story. We call this an extra rehearsal. Observe that the two accounts
illustrated in Figures 1.4 and 1.5 have one common PAO story (the story involving
Bart Simpson at the Niagara Falls). By reusing stories for different accounts we
can minimize the total number of stories that the user needs to remember and
maximize the frequency of natural rehearsal for each story. Whenever possible,
our application ensures that each story is used as part of the password for a
frequently visited account.

Security Guarantees. As an example suppose that the user is willing to memorize
9 PAO stories. Our application can help the user generate 126 different passwords,
while providing our user with the following modest security guarantee: any
adversary who has seen one of your passwords will not be able to break any of
your other passwords in an online attack except with small probability. If the
user is willing to memorize 43 PAO stories then our application can help the user
generate 110 different passwords, while providing the following much stronger
security guarantee: any adversary who has seen one of your passwords will not
be able to break any of your other passwords in an offline attack.

1.4 Human Computable Passwords

While the Shared Cues password management scheme from Chapter 2 only relies
on the human capacity to memorize and retrieve information, Shared Cues is secure
against at most a constant number of plaintext password leak attacks. Could we
improve security (or usability) by having the user perform simple computations to
recover his passwords? In Chapter 3 we propose a human computable password
scheme and provide strong evidence that the user’s passwords will remain secure
even after many (e.g., 50–100) breaches.

16

Figure 1.6: Secret Random Mapping from Pictures to Digits

(a) Original photo (an ea-
gle).

(b) Mnemonic to help the
user remember
σ
(
eagle

)
= 2.

(c) Mnemonic to help the
user remember
σ
(
eagle

)
= 6.

Figure 1.7: Mnemonics to help memorize the secret mapping σ

1.4.1 Overview

Memorizing a Random Mapping. To begin using our human computable pass-
word schemes the user begins by memorizing a secret random mapping σ : [n]→
{0, . . . , 9} from n objects (e.g., letters, pictures) to digits. See Figure 1.6 for an
example.

The computer can provide the user with mnemonics to help memorize the
secret mapping σ — see Figures 1.7b and 1.7c. For example, if we wanted to help
the user remember that σ

(
eagle

)
= 2 we would show the user Figure 1.7b. We

observe that a 10 × n table of mnemonic images would be sufficient to help the
user memorize any random mapping σ. We stress that the computer will only save
the original image (e.g., Figure 1.7a). The mnemonic image (e.g., Figure 1.7b or
1.7c) would be discarded after the user memorizes σ

(
eagle

)
.

Single-Digit Challenges. In our scheme the user computes each of his pass-
words by responding to a sequence of single-digit challenges. A single-digit
challenge is a tuple C ∈ [n]14 of fourteen objects. See Figure 1.8 for an exam-
ple. To compute the response f (σ (C)) to a challenge C = {x0, . . . , x13} the user

17

Figure 1.8: A single-digit challenge

computes f (σ (C)) = σ
(
xσ(x10)+σ(x11) mod 10

)
+ σ (x12) + σ (x13) mod 10. Observe that

this computation involves just three addition operations modulo ten. See Fig-
ure 1.9 for an example. In this example the response to the challenge C = {x0 =
burger, x1 = eagle, . . . , x10 = lightning, x11 = dog, x12 = man standing on world,
x13 = kangaroo} is

f (σ (C)) = σ
(
xσ(x10)+σ(x11) mod 10

)
+ σ (x12) + σ (x13) mod 10

= σ
(
x
σ
(
lightning

)
+σ

(
dog

)
mod 10

)
+σ

(
man standing on world

)
+ σ

(
kangaroo

)
mod 10

= σ (x9+3 mod 10) + σ
(
man standing on world

)
+ σ

(
kangaroo

)
mod 10

= σ (minions) + σ
(
man standing on world

)
+ σ

(
kangaroo

)
mod 10

= 7 + 4 + 5 mod 10 = 6 .

We stress that this computation is done entirely in the user’s head. It takes the
author of this thesis 7.5 seconds on average to compute each response.

Creating an Account. To help the user create an account the computer would first
pick a sequence of single-digit challenges C1, . . . ,Ct, where the security parameter

18

Figure 1.9: Computing the response
(

f (σ (C)) = 6
)

to a single-digit challenge

is typically t = 10, and would display the first challenge C1 to the user — see Figure
1.10 for an example. To compute the first digit of his password the user would
compute f (σ (C1)). After the user types in the first digit f (σ (C1)) of his password
the computer will display the second challenge C2 to the user — see Figure 1.11.
After the user creates his account the computer will store the challenges C1, . . . ,C10

in public memory. The password pw = f (σ (C1)) . . . f (σ (Ct)) will not be stored.

Authentication. Authenticating is very similar to creating an account. To help
the user recompute his password for an account the computer first looks up the
challenges C1, . . . ,Ct which were stored in public memory, and the user authen-
ticates by computing his password pw = f (σ (C1)) . . . f (σ (Ct)). We stress that
the single-digit challenges the user sees during authentication will be the same
single-digit challenges that the user saw when he created the account.

Helping the user remember his secret mapping. As before the computer keeps
track of when the user rehearses each value of his secret mapping (e.g., (i, σ (i)) for
each i ∈ [n]), and reminds the user to rehearse any part of his secret mapping that
he hasn’t used in a long time. One advantage of our human computable password
scheme (compared with the Shared Cues scheme of Chapter 2) is that most users

19

Figure 1.10: Login Screen

Figure 1.11: Login Screen after the user responds to the first single-digit challenge

20

will use each part of their secret mapping often enough that they will not need
to be reminded to rehearse — see discussion in Chapter 3.6. The disadvantage is
that we require the user to spend extra effort computing his passwords each time
he authenticates.

Security Guarantees. The security guarantees of our human computable pass-
word scheme are much stronger than the security guarantees of Shared Cues. We
provide strong evidence that any polynomial time adversary needs to see at least
Ω̃

(
n1.5/t

)
of the user’s passwords before he can start to predict the user’s pass-

words at other accounts. For example, if the user memorized a secret mapping
from one-hundred pictures to digits then the adversary would need to see ap-
proximately one-hundred of the user’s ten digit passwords before he could start
predicting the user’s passwords for other accounts.

Technical Contributions. We develop a general framework for analyzing the
security of a human computable password management scheme and we propose
two candidate human computable password management schemes in Chapter 3.
We give evidence that a human computable password management scheme will
remain secure until the adversary has seen at least Ω̃

(
ns(f)

)
challenge-response

pairs
(
C, f (σ (C))

)
(see Theorem 6 in Chapter 3). Here, s(f) = min{r(f)/2, g(f) + 1}

is a composite security parameter which captures g(f) (how many inputs to f need
to be fixed to make f linear?) and r(f) (what is the largest value of r such that
the distribution over challenge-response pairs are (r − 1)-wise independent?). We
show that s(f) = 1.5 for our first scheme and s(f) = 2 for our second scheme. In
particular we prove that any statistical adversary needs to see at least Ω̃

(
nr(f)/2

)
challenge-response pairs

(
C, f (σ (C))

)
before he can even approximately recover

the secret mapping σ. Our lower bound is based on the statistical dimension of the
distribution over challenge-response pairs induced by f and σ. We stress that our
analysis of the statistical dimension applies to arbitrary functions f : Zk

d → Zd, not
just functions that are easy for humans to compute. Our analysis of the statistical
dimension generalizes recent results of Feldman et al. [73], which only applied to
binary predicates (e.g., d = 2), and may be of independent interest.

21

1.5 Empirical Validation of User Model

We are currently running user studies to empirically test the usability model
we presented in Chapter 2.4 and obtain estimates of rehearsal parameters that
are specific to the password setting. We are collaborating with the CyLab Usable
Privacy and Security Laboratory (CUPS) to conduct these online user studies using
Amazon’s Mechanical Turk framework. In Chapter 4 we describe the design of the
user study and present initial results from the study. Briefly, each participant in the
study is asked to memorize several randomly selected actions (e.g., ‘swallowing,’
‘kicking’) and several randomly selected objects (e.g., ‘bike,’ ‘car’). Participants
assigned to the mnemonic group were given specific instructions about how to
memorize the actions following the Shared Cues password management scheme in
Chapter 2.6. To help our participants memorize one of their action(s) and object(s)
each participant was shown two additional photos of a person and a scene and
was asked to imagine the corresponding person-action-object story taking place
inside the scene (e.g., the user might be shown a photos of Bill Gates and a
beach and asked to imagine “Bill Gates swallowing a bike on the beach.”). Other
participants were assigned to the standard group and were simply instructed to
memorize their actions and objects (e.g., by typing in their words several times).
After participants memorized their words we periodically asked them to return
to rehearse their words. During each rehearsal participants in the mnemonic
group were shown the photos of the person and the scene as a cue to help them
remember the associated action and object. Participants in the standard group were
simply asked to recall their actions and objects. Each participant was assigned a
specific rehearsal schedule (e.g., participants in the aggressive rehearsal group
were reminded to rehearse on the following days: 1, 2, 4, 8, 16, 32, 64). Because the
duration of the study is up to one-hundred days we do not yet have the full results
from the user study. In Chapter 4.4 we report the results for rehearsals that have
been completed. Our results support the hypothesis that recall is significantly
improved by asking users to follow specific mnemonic techniques to memorize
their actions and objects. Our results also demonstrate the benefit of having several
early rehearsals.

22

1.6 A Defense against Online Attacks

To guard against online attacks many organizations adopt a k-strikes policy in
which the user is locked out of his account after k incorrect guesses4. However,
this defense is often insufficient because many users select trivial passwords like
‘password’ and ‘123456’ [5]. To provide further protection against online attacks
organizations often adopt password composition policies. A password composi-
tion policy is a set of rules specifying which passwords users are allowed to select
and which passwords users are not allowed to select.

In Chapter 5 we initiate the algorithmic study of password composition policies.
Such policies restrict the space of passwords to a subset of allowed passwords and
force each user to pick a password in this subset. Thus, n users induce a distribution
over passwords where for a password w, Pr[w] = 1

n

∣∣∣{i : i picks w
}∣∣∣. By declaring

different subsets of allowed passwords, different password composition policies
induce different distributions. Our work formalizes and addresses the algorithmic
problem a server administrator faces when designing a password composition
policy; we ask:

In what settings can the information about the users’ preferences over pass-
words allow us to design a password composition policy that is guaranteed
to induce a password distribution as close to uniform as possible?

1.6.1 Overview

Suppose that a server administrator has created m candidate positive rules R1, . . . ,Rm,
where each positive rule Ri ⊆ P specifies a subset of passwords that the server
administrator expects to be strong (e.g., “the set of all passwords that are at least 10
characters long and include at least one number, at least one lowercase character
and at least one uppercase character,” or “the set all passwords longer than 12
characters”). A password composition policy is given by a subset S ⊆ [m] of active
rules. The user is allowed to choose only passwords from the set

⋃
i∈S Ri of per-

mitted passwords (e.g., any password contained in an active rule). Observe that
there are 2m different password composition policies that we could form. Which

4Other organizations instead require the user to solve a CAPTCHA [152] after several wrong
guesses [60]. This prevents an adversary from maliciously locking out another user (e.g., a com-
peting bidder on eBay).

23

of these policies is optimal for security? In Chapter 5 we give a sampling algo-
rithm to find the optimal password composition policy. A sampling algorithm
is an algorithm that is allowed to sample a random user and ask that user what
password he would select under a particular password composition policy

⋃
i∈S Ri.

Our algorithm is efficient both in its sample complexity and in its running time.

Negative Rules. We could also specify a password composition policy using
negative rules (e.g., the user can only select passwords in the set P −

⋃
i∈S Ri). A

negative rule specifies a subset of passwords that the server administrator expects
to be weak (e.g., “the set of all passwords that are not longer than 12 characters”).
In Chapter 5 we show that it is computationally intractable to find the optimal
policy in this negative rules setting.

Experiments. We tested our algorithm on a dataset of 32 million user passwords
using a small set of rules to find the optimal password composition policy in the
positive rules setting. Because we only considered twenty-one different rules we
were also also able to find the optimal password composition in the negative rules
setting by brute force search (If we used the positive rule “all passwords longer
than 9 characters” then the negative version of that rule would be “all passwords
that are not longer than 9 characters”). The optimal policy in the positive rules
setting was to allow any password pw ∈ P that satisfies any of the following
conditions: 1) pw is at least 14 characters long, 2) pw contains at least 2 special
symbols (e.g., !,*,&,@), OR 3) pw is at least 8 characters long and contains at least
one upper case letter and at least one digit. The optimal policy in the negative
rules setting was to allow any password pw ∈ P that satisfies all of the following
conditions: 1) pw is at least 10 characters long, 2) pw contains at least 2 digits, 3)
pw contains at least one special symbol (e.g., !,*,&,@), 4) pw contains at least one
lowercase letter, AND 5) pw is not in the dictionary. The optimal positive rules
policy was nearly as good as the optimal negative rules policy. We also used an
efficient heuristic algorithm to find a good policy in the negative rules setting.
The optimal positive rules policy was consistently far better than the negative
rules policies returned by our heuristic algorithm. Our experiments indicate that
it may be advantageous to find the optimal positive rules policy whenever we
have a large set of potential rules and are not able to find the optimal negative
rules policy by brute force. One limitation of these experiments is that they rely
on an assumption about the way user’s select passwords. See Section 5.1 for more
discussion about this normalized probabilities assumption, and see Section 5.6 for

24

more details about the experiments.

1.7 A Defense Against Offline Attacks

1.7.1 Background

Any adversary who has obtained the cryptographic hash of a user’s password can
mount an automated brute-force attack to crack the password by comparing the
cryptographic hash of the user’s password with the cryptographic hashes of likely
password guesses. This attack is called an offline dictionary attack, and there are
many password crackers that an adversary could use [63]. Offline dictionary at-
tacks against passwords are — unfortunately — powerful and commonplace [87].
Offline attacks are becoming increasingly dangerous as computing hardware im-
proves (e.g., a modern GPU can evaluate a cryptographic hash function like SHA2
about 250 million times per second [165]) and as more and more training data (e.g.,
leaked passwords from prior breaches) becomes available [87]. Adversaries have
been able to compromise servers at large companies (e.g., Zappos, LinkedIn, Sony,
Gawker [5, 9, 10, 11, 13, 28]) resulting in the release of millions of cryptographic
password hashes5. Symantec reported that compromised passwords have signif-
icant economic value to an adversary (e.g., compromised passwords are sold on
the black market for between $4 and $30 each) [79].

Because cryptographic hash functions like SHA1, SHA2 and MD5 were de-
signed for fast hardware computation they are poor choices for a password hash
function, as they allow an offline adversary to evaluate millions of password
guesses per second. One simple way that an organization can mitigate the threat
of offline attacks is by using a hash function like BCRYPT [122] which is intention-
ally designed to be slow to compute. The BCRYPT hash function takes a parameter
which allows the programmer to specify how costly the hash computation should
be. The downside to this approach is that it also increases costs for the company
that stores the passwords (e.g., if we want it to cost the adversary $1,000 for every
million guesses then it will also cost the company at least $1,000 for every million
login attempts). Another practical way for an organization to help defend against
offline attacks is to adopt the practice of password salting (e.g., instead of storing
the cryptographic hash of the password H(pw) the server stores

(
H

(
pw, r

)
, r

)
for a

5In a few of these cases [5, 10] the passwords were stored in the clear.

25

random string r [16]), which can help mitigate the threat of offline attacks6.

However, even these defenses will fail to protect many users against offline
attacks. It has been repeatedly demonstrated that users tend to select easily guess-
able passwords [39, 66, 92], and password crackers are able to quickly break many
of these passwords[136].

1.7.2 GOTCHAs

In Chapter 6 we introduce GOTCHAs (Generating panOptic Turing Tests to Tell
Computers and Humans Apart) as a way of preventing automated offline dictio-
nary attacks against user selected passwords. A GOTCHA is a randomized puzzle
generation protocol, which involves interaction between a computer and a human.
Informally, a GOTCHA should satisfy two key properties: (1) The puzzles are easy
for the human to solve. (2) The puzzles are hard for a computer to solve even if it
has the random bits used by the computer to generate the final puzzle — unlike
a CAPTCHA [152]. Our main theorem demonstrates that GOTCHAs can be used
to mitigate the threat of offline dictionary attacks against passwords by ensuring
that a password cracker must receive constant feedback from a human being while
mounting an attack. Finally, we provide a candidate construction of GOTCHAs
based on inkblot images. This construction relies on the usability assumption that
users can recognize the phrases that they originally used to describe each inkblot
image — a much weaker usability assumption than previous password systems
based on inkblots which required users to recall their phrase exactly [147]. We
conducted a user study to evaluate the usability of our GOTCHA construction
and generated a GOTCHA challenge where artificial intelligence and security re-
searchers are encouraged to try to crack several passwords protected with our
scheme.

1.7.3 Overview

Creating an account. To create an account in our scheme the user first selects a
username u and a password pw, and sends (u, pw) to the server. After verifying
that the username u is available and that pw is permitted under the password

6Rainbow tables, which consist of precomputed hashes, are often used by an adversary to
significantly speed up a password cracking attack because the same table can be reused to attack
each user when the passwords are unsalted [117].

26

Figure 1.12: GOTCHA Authentication Example

composition policy the server generates ten random Inkblot images I1, . . . , I10 using
(u, pw) as a random seed and sends these images to the user. The user responds by
sending back ten labels `1, . . . , `10 (one for each Inkblot image). The server stores
these labels in a random order.

Authenticating. To authenticate the user sends his username and password to
the server (u, pw). The server responds by regenerating the ten random Inkblot
images I1, . . . , I10 using (u, pw) as a random seed and sends these images to the user
along with the labels `1, . . . , `10 (in a random order). The user matches each label
`i with the appropriate Inkblot image. Figure 1.12 illustrates this process. The
server authenticates the user if the password is correct and all (most) of the Inkblot
images are matched correctly. We stress that if the user’s password is incorrect
(e.g., if the user sends (u, pw′) where pw , pw′) then the user will see different
Inkblot images I′1, . . . , I

′

10 (Ii , I′i for each i ≤ 10). The labels `1, . . . , `10 will be the
same in either case.

Server. After the user labels each of his Inkblots the server selects a random per-
mutation π : [10] → [10] and a random salt value s ∈ {0, 1}∗ and stores the tuple:

27

(
u, s, `π(1), . . . , `π(10),H

(
u, s, pw, π

))
. To authenticate the user the server verifies that

H
(
u, s, pw, π

)
= H

(
u, s, pw′, π′

)
, where pw′ and π′ are the password and permuta-

tion provided by the user during authentication. We stress that the server does not
store the Inkblot images I1, . . . , I10 or the random permutation π so an adversary
would need to simultaneously guess pw and π to crack the user’s password in an
offline attack.

28

Chapter 2

Naturally Rehearsing Passwords

2.1 Introduction

A typical computer user today manages passwords for many different online
accounts. Users struggle with this task—often forgetting their passwords or
adopting insecure practices, such as using the same password for multiple ac-
counts and selecting weak passwords [39, 52, 75, 102]. While there are many arti-
cles, books, papers and even comics about selecting strong individual passwords
[4, 46, 49, 82, 109, 132, 146, 162], there is very little work on password manage-
ment schemes—systematic strategies to help users create and remember multiple
passwords—that are both usable and secure. In this chapter, we present a rig-
orous treatment of password management schemes. Our contributions include
a formalization of important aspects of a usable scheme, a quantitative security
model, and a construction that provably achieves the competing security and
usability properties.

Usability Challenge. We consider a setting where a user has two types of mem-
ory: persistent memory (e.g., a sticky note or a text file on his computer) and
associative memory (e.g., his own human memory). We assume that persistent
memory is reliable and convenient but not private (i.e., accessible to an adver-
sary). In contrast, a user’s associative memory is private but lossy—if the user
does not rehearse a memory it may be forgotten. While our understanding of
human memory is incomplete, it has been an active area of research [23] and there
are many mathematical models of human memory [19, 100, 106, 150, 157]. These

29

models differ in many details, but they all model an associative memory with
cue-association pairs: to remember â (e.g., a password) the brain associates the
memory with a context ĉ (e.g., a public hint or cue); such associations are strength-
ened by rehearsal. A central challenge in designing usable password schemes is
thus to create associations that are strong and to maintain them over time through
rehearsal. Ideally, we would like the rehearsals to be natural, i.e., they should be
a side-effect of users’ normal online activity. Indeed insecure password manage-
ment practices adopted by users, such as reusing passwords, improve usability
by increasing the number of times a password is naturally rehearsed as users visit
their online accounts.

Security Challenge. Secure password management is not merely a theoretical
problem—there are numerous real-world examples of password breaches [3, 6, 8,
9, 10, 11, 12, 13, 28, 52, 141]. Adversaries may crack a weak password in an online
attack where they simply visit the online account and try as many guesses as the site
permits. In many cases (e.g., Zappos, LinkedIn, Sony, Gawker [6, 8, 9, 11, 13, 28])
an adversary is able to mount an offline attack to crack weak passwords after
the cryptographic hash of a password is leaked or stolen. To protect against
an offline attack, users are often advised to pick long passwords that include
numbers, special characters and capital letters [132]. In other cases even the
strongest passwords are compromised via a plaintext password leak attack (e.g.,
[5, 10, 12, 141]), for example, because the user fell prey to a phishing attack or signed
into his account on an infected computer or because of server misconfigurations.
Consequently, users are typically advised against reusing the same password.
A secure password management scheme must protect against all these types of
breaches.

Contributions. We precisely define the password management problem in Sec-
tion 2.3. A password management scheme consists of a generator—a function that
outputs a set of public cue-password pairs—and a rehearsal schedule. The generator
is implemented using a computer program whereas the human user is expected
to follow the rehearsal schedule for each cue. This division of work is critical—the
computer program performs tasks that are difficult for human users (e.g., gener-
ating random bits) whereas the human user’s associative memory is used to store
passwords since the computer’s persistent memory is accessible to the adversary.

Quantifying Usability. In the same way that security proofs in cryptography are

30

based on complexity-theoretic assumptions (e.g., hardness of factoring and dis-
crete logarithm), we quantify usability by introducing usability assumptions. In
particular, password management relies on assumptions about human memory,
e.g., that a user who follows a particular rehearsal schedule will successfully main-
tain the corresponding memory. These assumptions are informed by research in
cognitive science and can be tested empirically. Given rehearsal requirements and
a user’s visitation schedule for each account, we use the total number of extra
rehearsals that the user would have to do to remember all of his passwords as a
measure of the usability of the password scheme (Section 2.4). Specifically, in our
usability analysis, we use the Expanding Rehearsal Assumption (ER) that allows for
memories to be rehearsed with exponentially decreasing frequency, i.e., rehearse
at least once in the time-intervals (days) [1, 2), [2, 4), [4, 8) and so on. Few long-term
memory experiments have been conducted, but ER is consistent with known stud-
ies [144, 160]. Our memory assumptions are parameterized by a constant σ which
represents the strength of the mnemonic devices used to memorize and rehearse
a cue-association pair. Strong mnemonic techniques [78, 143] exploit the associa-
tive nature of human memory discussed earlier and its remarkable visual/spatial
capacity [145].

Quantifying Security. We present a game based security model for a password man-
agement scheme (Section 2.5) in the style of exact security definitions [26]. The
game is played between a user (U) and a resource-bounded adversary (A) whose
goal is to guess one of the user’s passwords. Our game models three commonly
occurring breaches (online attack, offline attack, plaintext password leak attack).

Our Construction. We present a new password management scheme, which we
call Shared Cues, and prove that it provides strong security and usability prop-
erties (see Section 2.6). Our scheme incorporates powerful mnemonic techniques
through the use of public cues (e.g., photos) to create strong associations. The user
first associates a randomly generated person-action-object story (e.g., Bill Gates
swallowing a bike) with each public cue. We use the Chinese Remainder Theorem
to share cues across sites in a way that balances several competing security and
usability goals: 1) Each cue-association pair is used by many different web sites
(so that most rehearsal requirements are satisfied naturally), 2) the total number
of cue-association pairs that the user has to memorize is low, 3) each web site uses
several cue-association pairs (so that passwords are secure) and 4) no two web
sites share too many cues (so that passwords remain secure even after the adver-

31

sary obtains some of the user’s other passwords). We show that our construction
achieves an asymptotically optimal balance between these security and usability
goals (Lemma 2, Theorem 3).

2.2 Related Work.

A distinctive goal of our work is to quantify the usability of password man-
agement schemes by drawing on ideas from cognitive science and leverage this
understanding to design schemes with acceptable usability. We view the results
of this paper–employing usability assumptions about rehearsal requirements—as
an initial step towards this goal. While the mathematical constructions start from
the usability assumptions, the assumptions themselves are empirically testable,
e.g., via longitudinal user studies. In contrast, a line of prior work on usability has
focused on empirical studies of user behavior including their password manage-
ment habits [52, 75, 102], the effects of password composition rules (e.g., requiring
numbers and special symbols) on individual passwords [34, 101], the memorabil-
ity of individual system assigned passwords [140], graphical passwords [27, 48],
and passwords based on implicit learning [38]. These user studies have been lim-
ited in duration and scope (e.g., study retention of a single password over a short
period of time). Other work [43] articulates informal, but more comprehensive,
usability criteria for password schemes.

Our use of cued recall is driven by evidence that it is much easier than pure recall
[23]. We also exploit the large human capacity for visual memory [145] by using
pictures as cues. Prior work on graphical passwords [27, 48] also takes advantage
of these features. However, our work is distinct from the literature on graphical
passwords because we address the challenge of managing multiple passwords.
More generally, usable and secure password management is an excellent problem
to explore deeper connections between cryptography and cognitive science.

Security metrics for passwords like (partial) guessing entropy (e.g., how many
guesses does the adversary need to crack α-fraction of the passwords in a dataset
[39, 107, 121]? how many passwords can the adversary break with β guesses per
account [45]?) were designed to analyze the security of a dataset of passwords
from many users, not the security of a particular user’s password management
scheme. While these metrics can provide useful feedback about individual pass-
words (e.g., they rule out some insecure passwords) they do not deal with the
complexities of securing multiple accounts against an adversary who may have

32

gained background knowledge about the user from previous attacks — we refer
an interested reader to Appendix 7.7 for more discussion.

Biometrics. Biometric factors like fingerprints and voice recognition have been
proposed as an alternative to passwords. For example, the user’s computer might
record features from the user’s fingerprint (a biometric template) and compare
them with the features extracted later when the user tries to authenticate — au-
thentication is successful if these biometric templates are ‘close enough’. While
biometrics do offer a usability advantage (e.g., there is usually nothing for the
user to remember) there are many drawbacks: they require additional hardware
support and biometric templates are difficult (or impossible) to change if they are
compromised. Another security disadvantage is that biometric templates often
have low entropy. For example, O’Gorman estimated that biometric templates
based on fingerprints, iris scans and voice recognition contain just 13.3, 19.9 and
11.7 bits of entropy respectively[118]. Storing biometric templates is also a chal-
lenging research problem because biometric templates are not matched exactly
like passwords, but based on the closeness of the two signals. There has been
some work in the cryptographic community on developing secure sketches or fuzzy
extractors[65, 104]. A secure sketch is a function that extracts a stable signal, which
could be encrypted, from a noisy signal with high minimum entropy. If two noisy
signals are ‘close’ then the secure sketch will extract the same stable signal from
both noisy signals. However, if the noisy signal has low minimum entropy like
most biometric templates then the stable signal we extract might not be random at
all because these techniques entail a small loss in entropy. Consequently, biometric
templates are often stored in the clear on the authentication server, which means
that an adversary who breaches the server will learn the user’s biometric template
directly.

Password Managers. A password manager is a computer program that uses
an initial password (often called a master password) to generate password(s) for
the user. For example, if the user wanted to generate a password for a domain
D using the initial password pwD then the password manager PwdHash[130]
would generate the password H

(
D, pwD

)1. Even if the user reuses the same initial

1Other password managers like 1Password and LastPass use a master password to encrypt a
database of passwords, which could be stored in untrusted memory (e.g., USB sticks, the cloud).
Gasti and Rasmussen showed that most of these password managers were vulnerable to attacks
by adversary who could read the encrypted database – even in the user’s master password was

33

password pwD for a different domain D′ the final password H
(
D′, pwD

)
will still

be different. Password mangers like PwdHash[130] do provide users with several
security advantages: the user can be sure that his initial password is always
properly hashed and encrypted before it is sent to the authentication server2 and an
adversary who observes the password H

(
D′, pw

)
for a domain D′will not be able to

guess the password H
(
D, pw

)
for another domain D unless he can break the master

password pw. However, password reuse is still a security problem even if the user
adopts a password manager. If a user selects one master password to generate
all of his passwords then an adversary who obtains this ‘master password’ would
be able to compromise all of the user’s accounts. This master password could
be a tempting target for an adversary who is looking to maximize the return on
investment of his attack. An adversary who has obtained the cryptographic hash
of the user’s final password for a domain D would still be able to execute an offline
attack against the user’s initial password (e.g., by applying the PwdHash function
as an extra step to verify each guess). Even if the master password is strong enough
to resist offline attacks the master password could still be exposed whenever the
user types it in to generate one of his passwords3. A user study conducted by
Chiasson et al. indicated that the master passwords of many PwdHash users may
still be vulnerable to phishing attacks because of confusing user interfaces[54].
Unless the user can be sure that every device (e.g., laptop, smartphone, friend’s
computer, public computer) he ever uses to login is malware free and that there
are no ‘hidden cameras’ at any location (e.g., library, home, friend’s house, office,
coffee shop) from which the user logs into an account then the user’s master
password may be vulnerable. We stress that the password management schemes
we propose could be used in conjunction with a password manager like PwdHash
(e.g., instead of using one master password for all of his accounts the user would
create a different initial password for each domain D by following our password
management scheme). In this case the user would get all of the security benefits
of a password manager (e.g., by ensuring that passwords are properly encrypted
and hashed before they are sent to a server) without the single-point of failure
problem.

strong[81].
2Unfortunately, some sites do not always properly hash the passwords stored on their servers[5,

13, 40]. Other sites do not properly encrypt their users’ passwords before they are transmitted over
the Internet[40].

3While this is a concern with or without a password manager, the damage of a plaintext
password leak attack is potentially much greater if the user only has one master password.

34

Combinatorial Designs. Our notion of (n, `, γ)-sharing set families (definition
5) is equivalent to Nisan and Wigderson’s definition of a (k,m)-design [115]. The
problem of finding maximally sized

(
n, `, γ

)
–sharing set families was considered

at least as early as 1956 by Paul Erdős and Alfréd Rényi [69], and applications of
some of these families may have been considered by Euler [71]. Erdős explored
properties of these families several times [68] [70], and Rödl built on his work [127].(
n, `, γ

)
–sharing set families were rediscovered by Nisan and Wigderson [115],

who used them to design a pseudorandom number generator. Trevisan showed
how to use

(
n, `, γ

)
–sharing set families to construct pseudorandom extractors

[149]. Because Nisan and Wigderson were focused on a different application
(constructing pseudorandom bit generators) the range of parameters that they
consider are not suitable for our password setting in which ` and γ are constants.
In Appendix 7.7.2 we show that our construction of (n, `, γ)-sharing set families
has interesting applications in the construction of parallel pseudorandom number
generators. See Appendix 7.7 for more discussion of (n, `, γ)-sharing set families.

2.3 Definitions

We use P to denote the space of possible passwords. A password management
scheme needs to generate m passwords p1, ..., pm ∈ P— one for each account Ai.

2.3.1 Associative Memory and Cue-Association Pairs

Human memory is associative. Competitors in memory competitions routinely
use mnemonic techniques (e.g., the method of loci [143]) which exploit associative
memory[78]. For example, to remember the word ‘apple’ a competitor might
imagine a giant apple on the floor in his bedroom. The bedroom now provides
a context which can later be used as a cue to help the competitor remember the
word apple. We use ĉ ∈ C to denote the cue, and we use â ∈ AS to denote the
corresponding association in a cue-association pair (ĉ, â). Physically, ĉ (resp. â)
might encode the excitement levels of the neurons in the user’s brain when he
thinks about his bedroom (resp. apples) [106].

We allow the password management scheme to store m sets of public cues
c1, ..., cm ⊂ C in persistent memory to help the user remember each password.
Because these cues are stored in persistent memory they are always available to
the adversary as well as the user. Notice that a password may be derived from

35

multiple cue-association pairs. We use ĉ ∈ C to denote a cue, c ⊂ C to denote a
set of cues, and C =

⋃m
i=1 ci to denote the set of all cues — n = |C| denotes the total

number of cue-association pairs that the user has to remember.

2.3.2 Visitation Schedules and Rehearsal Requirements

Each cue ĉ ∈ C may have a rehearsal schedule to ensure that the cue-association
pair (ĉ, â) is maintained.

Definition 1. A rehearsal schedule for a cue-association pair (ĉ, â) is a sequence of times
tĉ
0 < tĉ

1 < For each i ≥ 0 we have a rehearsal requirement, the cue-association pair
must be rehearsed at least once during the time window

[
tĉ
i , t

ĉ
i+1

)
= {x ∈ R tĉ

i ≤ x < tĉ
i+1}.

A rehearsal schedule is sufficient if a user can maintain the association (ĉ, â) by
following the rehearsal schedule. We discuss sufficient rehearsal assumptions in
Section 2.4. The length of each interval

[
tĉ
i , t

ĉ
i+1

)
may depend on the strength of the

mnemonic technique used to memorize and rehearse a cue-association pair (ĉ, â)
as well as i — the number of prior rehearsals. For notational convenience, we use
a function R : C ×N→ R to specify the rehearsal requirements (e.g., R

(
ĉ, j

)
= tĉ

j),
and we use R to denote a set of rehearsal functions.

A visitation schedule for an account Ai is a sequence of real numbers τi
0 < τ

i
1 <

. . ., which represent the times when the account Ai is visited by the user. We do not
assume that the exact visitation schedules are known a priori. Instead we model
visitation schedules using a random process with a known parameter λi based
on E

[
τi

j+1 − τ
i
j

]
— the average time between consecutive visits to account Ai. A

rehearsal requirement
[
tĉ
i , t

ĉ
i+1

)
can be satisfied naturally if the user visits a site A j

that uses the cue ĉ
(
ĉ ∈ c j

)
during the given time window. Formally,

Definition 2. We say that a rehearsal requirement
[
tĉ
i , t

ĉ
i+1

)
is naturally satisfied by a

visitation schedule τi
0 < τ

i
1 < . . . if ∃ j ∈ [m], k ∈N s.t ĉ ∈ c j and τ j

k ∈
[
tĉ
i , t

ĉ
i+1

)
. We use

XRt,ĉ =
∣∣∣∣{i tĉ

i+1 ≤ t ∧ ∀ j, k.
(
ĉ < c j ∨ τ

j
k <

[
tĉ
i , t

ĉ
i+1

))}∣∣∣∣ ,
to denote the number of rehearsal requirements that are not naturally satisfied by the
visitation schedule during the time interval [0, t].

36

We use rehearsal requirements and visitation schedules to quantify the usabil-
ity of a password management scheme by measuring the total number of extra
rehearsals. If a cue-association pair (ĉ, â) is not rehearsed naturally during the
interval

[
tĉ
i , t

ĉ
i+1

)
then the user needs to perform an extra rehearsal to maintain the

association. Intuitively, XRt,ĉ denotes the total number of extra rehearsals of the
cue-association pair (ĉ, â) during the time interval [0, t]. We use XRt =

∑
ĉ∈C XRt,ĉ

to denote the total number of extra rehearsals during the time interval [0, t] to
maintain all of the cue-association pairs.

Usability Goal: Minimize E [XRt].

2.3.3 Password Management Scheme

A password management scheme includes a generatorGm and a rehearsal schedule
R ∈ R. The generatorGm

(
k, b, ~λ,R

)
utilizes a user’s knowledge k ∈ K , random bits

b ∈ {0, 1}∗ to generate passwords p1, ..., pm and public cues c1, ..., cm ⊆ C. Gm may use
the rehearsal schedule R and the visitation schedules ~λ = 〈λ1, ..., λm〉 of each site
to help minimize E [XRt]. Because the cues c1, ...cm are public they may be stored
in persistent memory along with the code for the generator Gm. In contrast, the
passwords p1, ...pm must be memorized and rehearsed by the user (following R) so
that the cue association pairs (ci, pi) are maintained in his associative memory.

Definition 3. A password management scheme is a tuple 〈Gm,R〉, whereGm is a function
Gm : K × {0, 1}∗ × Rm

× R →

(
P × 2C

)m
and a R ∈ R is a rehearsal schedule which the

user must follow for each cue.

Our security analysis is not based on the secrecy of Gm, k or the public cues
C =

⋃m
i=1 ci. The adversary will be able to find the cues c1, ..., cm because they

are stored in persistent memory. In fact, we also assume that the adversary has
background knowledge about the user (e.g., he may know k), and that the adver-
sary knows the password management scheme Gm. The only secret is the random
string b used by Gm to produce p1, ..., pm.
Example Password Management Schemes. Most password suggestions are too
vague (e.g.,“pick an obscure phrase that is personally meaningful to you”) to sat-
isfy the precise requirements of a password management scheme — formal security
proofs of protocols involving human interaction can break down when humans

37

behave in unexpected ways due to vague instructions [123]. We consider the fol-
lowing formalization of password management schemes: (1) Reuse Weak — the
user selects a random dictionary word w (e.g., from a dictionary of 20, 000 words)
and uses pi = w as the password for every account Ai. (2) Reuse Strong — the user
selects four random dictionary words (w1,w2,w3,w4) and uses pi = w1w2w3w4 as
the password for every account Ai. (3) Lifehacker (e.g., [4]) — The user selects three
random words (w1,w2,w3) from the dictionary as a base password b = w1w2w3. The
user also selects a random derivation rule d to derive a string from each account
name (e.g., use the first three letters of the account name, use the first three vowels
in the account name). The password for account Ai is pi = bd (Ai) where d (Ai)
denotes the derived string. (4) Strong Random and Independent — for each account
Ai the user selects four fresh words independently at random from the dictionary
and uses pi = wi

1wi
2wi

3wi
4. Schemes (1)-(3) are formalizations of popular password

management strategies. We argue that they are popular because they are easy to
use, while the strongly secure scheme Strong Random and Independent is unpopular
because the user must spend a lot of extra time rehearsing his passwords. See
Appendix 7.6 for more discussion of the security and usability of each scheme.

2.4 Usability Model

People typically adopt their password management scheme based on usability
considerations instead of security considerations [75]. Our usability model can be
used to explain why users tend to adopt insecure password management schemes
like Reuse Weak, Lifehacker, or Reuse Strong. Our usability metric measures the
extra effort that a user has to spend rehearsing his passwords. Our measurement
depends on three important factors: rehearsal requirements for each cue, visitation
rates for each site, and the total number of cues that the user needs to maintain.
Our main technical result in this section is Theorem 1 — a formula to compute
the total number of extra rehearsals that a user has to do to maintain all of his
passwords for t days. To evaluate the formula we need to know the rehearsal
requirements for each cue-association pair as well as the visitation frequency λi

for each account Ai.

38

2.4.1 Rehearsal Requirements

If the password management scheme does not mandate sufficient rehearsal then
the user might forget his passwords. Few memory studies have attempted to study
memory retention over long periods of time so we do not know exactly what these
rehearsal constraints should look like. While security proofs in cryptography are
based on assumptions from complexity theory (e.g., hardness of factoring and dis-
crete logarithm), we need to make assumptions about humans. For example, the
assumption behind CAPTCHAs is that humans are able to perform a simple task
like reading garbled text [152]. A rehearsal assumption specifies what types of re-
hearsal constraints are sufficient to maintain a memory. We consider two different
assumptions about sufficient rehearsal schedules: Constant Rehearsal Assump-
tion (CR) and Expanding Rehearsal Assumption (ER). Because some mnemonic
devices are more effective than others (e.g., many people have amazing visual and
spatial memories [145]) our assumptions are parameterized by a constant σ which
represents the strength of the mnemonic devices used to memorize and rehearse
a cue association pair.

Constant Rehearsal Assumption (CR): The rehearsal schedule given by R (ĉ, i) =
iσ is sufficient to maintain the association (ĉ, â).

CR is a pessimistic assumption — it asserts that memories are not permanently
strengthened by rehearsal. The user must continue rehearsing every σ days —
even if the user has frequently rehearsed the password in the past.

Expanding Rehearsal Assumption (ER): The rehearsal schedule given by
R (ĉ, i) = 2iσ is sufficient to maintain the association (ĉ, â).

ER is more optimistic than CR — it asserts that memories are strengthened by
rehearsal so that memories need to be rehearsed less and less frequently as time
passes. If a password has already been rehearsed i times then the user does not
have to rehearse again for 2iσ days to satisfy the rehearsal requirement

[
2iσ , 2iσ+σ

)
.

ER is consistent with several long term memory experiments [144],[23, Chapter
7], [160] — we refer the interested reader to Appendix 7.6 for more discussion.
We also consider the rehearsal schedule R (ĉ, i) = i2 (derived from [18, 151]) in
Appendix 7.6 — the usability results are almost indentical to those for ER.

39

Schedule λ 1
1

1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35
Typical 5 10 10 10 40
Occasional 2 10 20 20 23
Infrequent 0 2 5 10 58

Table 2.1: Visitation Schedules - number of accounts visited with frequency λ
(visits/days)

2.4.2 Visitation Schedules.

Visitation schedules may vary greatly from person to person. For example, a 2006
survey about Facebook usage showed that 47% of users logged in daily, 22.4%
logged in about twice a week, 8.6% logged in about once a week, and 12% logged
in about once a month[15]. We use a Poisson arrival process with parameter λi

to model the visitation schedule for site Ai. We formally define a Poisson arrival
process in Appendix 7.1 (see Definition 18). One nice property of a Poisson arrival
process with parameter λ is that the value 1

λ represents the average time between
consecutive arrivals (see Fact 4 in Appendix 10.1). We assume that the value of 1/λi

— the average inter-visitation time — is known. For example, some websites (e.g.,
gmail) may be visited daily (λi = 1/1 day) while other websites (e.g., IRS) may
only be visited once a year on average (e.g., λi = 1/365 days). The Poisson process
has been used to model the distribution of requests to a web server [125]. While
the Poisson process certainly does not perfectly model a user’s visitation schedule
(e.g., visits to the IRS websites may be seasonal) we believe that the predictions we
derive using this model will still be useful in guiding the development of usable
password management schemes. While we focus on the Poisson arrival process,
our analysis could be repeated for other random processes.

We consider four very different types of internet users: very active, typical,
occasional and infrequent. Each user account Ai may be visited daily (e.g., λi = 1),
every three days (λi = 1/3), every week (e.g. λi = 1/7), monthly (λi = 1/31), or
yearly (λi = 1/365) on average. See Table 2.1 to see the full visitation schedules we
define for each type of user. For example, our very active user has 10 accounts he
visits daily and 35 accounts he visits annually.

Extra Rehearsals. Theorem 1 leads us to our key observation: cue-sharing ben-
efits users both by (1) reducing the number of cue-association pairs that the user

40

Assumption CR (σ = 1) ER (σ = 1)
Schedule/Scheme B+D SRI B+D SRI
Very Active ≈ 0 23, 396 .023 420
Typical .014 24, 545 .084 456.6
Occasional .05 24, 652 .12 502.7
Infrequent 56.7 26, 751 1.2 564

Table 2.2: E [XR365]: Extra Rehearsals over the first year for both rehearsal assump-
tions.
B+D: Lifehacker
SRI: Strong Random and Independent

has to memorize and (2) by increasing the rate of natural rehearsals for each
cue-association pair. For example, a active user with 75 accounts would need to
perform 420 extra-rehearsals over the first year to satisfy the rehearsal require-
ments given by ER if he adopts Strong Random and Independent or just 0.023 with
Lifehacker — see Table 2.2. The number of unique cue-association pairs n decreased
by a factor of 75, but the total number of extra rehearsals E[XR365] decreased by a
factor of 8, 260.8 ≈ 75 × 243 due to the increased natural rehearsal rate.

Theorem 1. Let iĉ∗ =
(
arg maxx tĉ

x < t
)
− 1 then

E [XRt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

−
∑

j:ĉ∈c j

λ j

 (tĉ
i+1 − tĉ

i

)
Theorem 1 follows easily from Lemma 1 and linearity of expectations. Each

cue-association pair (ĉ, â) is rehearsed naturally whenever the user visits any site
which uses the public cue ĉ. Lemma 1 makes use of two key properties of Poisson
processes: (1) The natural rehearsal schedule for a cue ĉ is itself a Poisson process,
and (2) Independent Rehearsals - the probability that a rehearsal constraint is
satisfied is independent of previous rehearsal constraints.

Lemma 1. Let Sĉ = {i ĉ ∈ ci} and let λĉ =
∑

i∈Sĉ
λi then the probability that the cue ĉ is

not naturally rehearsed during time interval [a, b] is exp (−λĉ (b − a)).

41

2.5 Security Model

In this section we present a game based security model for a password manage-
ment scheme. The game is played between a user (U) and a resource bounded
adversary (A) whose goal is to guess one of the user’s passwords. We demonstrate
how to select the parameters of the game by estimating the adversary’s amortized
cost of guessing. Our security definition is in the style of the exact security defi-
nitions of Bellare and Rogaway [26]. Previous security metrics (e.g., min-entropy,
password strength meters) fail to model the full complexity of the password man-
agement problem (see Appendix 7.3 for more discussion). By contrast, we assume
that the adversary knows the user’s password management scheme and is able to
see any public cues. Furthermore, we assume that the adversary has background
knowledge (e.g., birth date, hobbies) about the user (formally, the adversary is
given k ∈ K). Many breaches occur because the user falsely assumes that certain
information is private (e.g., birth date, hobbies, favorite movie)[7, 134].

Adversary Attacks. Before introducing our game based security model we con-
sider the attacks that an adversary might mount. We group the adversary attacks
into three categories: Online Attack — the adversary knows the user’s ID and at-
tempts to guess the password. The adversary will get locked out after s incorrect
guesses (strikes). Offline Attack — the adversary learns both the cryptographic
hash of the user’s password and the hash function and can try many guesses q$B.
The adversary is only limited by the resources B that he is willing to invest to crack
the user’s password. Plaintext Password Leak Attack — the adversary directly learns
the user’s password for an account. Once the adversary recovers the password pi

the account Ai has been compromised. However, a secure password management
scheme should prevent the adversary from compromising more accounts.

We model online and offline attacks using a guess-limited oracle. Let S ⊆ [m]
be a set of indices, each representing an account. A guess-limited oracle OS,q is
a blackbox function with the following behavior: 1) After q queries OS,q stops
answering queries. 2) ∀i < S, OS,q

(
i, p

)
= ⊥ 3) ∀i ∈ S, OS,q

(
i, pi

)
= 1 and 4)

∀i ∈ S, p , pi, OS,q
(
i, p

)
= 0. Intuitively, if the adversary steals the cryptographic

password hashes for accounts {Ai i ∈ S}, then he can execute an offline attack
against each of these accounts. We also model an online attack against account Ai

with the guess-limited oracle O{i},s with s � q (e.g., s = 3 models a three-strikes
policy in which a user is locked out after three incorrect guesses).

42

Game Based Definition of Security. Our cryptographic game proceeds as fol-
lows:
Setup: The user U starts with knowledge k ∈ K , visitation schedule ~λ ∈ Rm, a
random sequence of bits b ∈ {0, 1}∗ and a rehearsal schedule R ∈ R. The user
runs Gm

(
k, b, ~λ,R

)
to obtain m passwords p1, ..., pm and public cues c1, ..., cm ⊆ C for

accounts A1, ...,Am. The adversaryA is given k, Gm, ~λ and c1, ..., cm.
Plaintext Password Leak Attack: A adaptively selects a set S ⊆ [m] s.t |S| ≤ r and
receives pi for each i ∈ S.
Offline Attack: A adaptively selects a set S′ ⊆ [m] s.t. |S′| ≤ h, and is given blackbox
access to the guess-limited offline oracle OS′,q .
Online Attack: For each i ∈ [m] − S, the adversary is given blackbox access to the
guess-limited offline oracle O{i},s.
Winner: Awins by outputting (j, p), where j ∈ [m] − S and p = p j.

We use AdvWins
(
k, b, ~λ,Gm,A

)
to denote the event that the adversary wins.

Definition 4. We say that a password management scheme Gm is (q, δ,m, s, r, h)-secure
if for every k ∈ K and adversary strategyA we have

Pr
b

[
AdvWins

(
k, b, ~λ,Gm,A

)]
≤ δ .

Discussion: Observe that the adversary cannot win by outputting the password
for an account that he already compromised in a plaintext password leak. For
example, suppose that the adversary is able to obtain the plaintext passwords
for r = 2 accounts of his choosing: pi and p j. While each of these breaches is
arguably a success for the adversary the user’s password management scheme
cannot be blamed for any of these breaches. However, if the adversary can use
this information to crack any of the user’s other passwords then the password
management scheme can be blamed for the additional breaches. For example, if
our adversary is also able to use pi and p j to crack the cryptographic password hash
H

(
pt
)

for another account At in at most q guesses then the password management
scheme could be blamed for the breach of account At. Consequently, the adversary
would win our game by outputting (t, pt). If the password management scheme
is (q, 10−4,m, s, 2, 1)-secure then the probability that the adversary could win is at
most 10−4 — so there is a very good chance that the adversary will fail to crack pt.

Economic Upper Bound on q. Our guessing limit q is based on a model of a
resource constrained adversary who has a budget of $B to crack one of the user’s

43

passwords. We use the upper bound qB = $B/Cq , where Cq = $R/ fH denotes the
amortized cost per query (e.g., cost of renting ($R) an hour of computing time on
Amazon’s cloud [1] divided by fH — the number of times the cryptographic hash
function can be evaluated in an hour.) We experimentally estimate fH for SHA1,
MD5 and BCRYPT[122] — more details can be found in Appendix 7.5. Assuming
that the BCRYPT password hash function [122] was used to hash the passwords
we get qB = B

(
5.155 × 104

)
— we also consider cryptographic hash functions like

SHA1, MD5 in Appendix 7.5. In our security analysis we focus on the specific
value q$106 = 5.155 × 1010 — the number of guesses the adversary can try if he
invests $106 to crack the user’s password.

Sharing and Security. In Section 2.4 we saw that sharing public cues across
accounts improves usability by (1) reducing the number of cue-association pairs
that the user has to memorize and rehearse, and (2) increasing the rate of natural
rehearsals for each cue-association pair. However, conventional security wisdom
says that passwords should be chosen independently. Is it possible to share public
cues, and satisfy the strong notion of security from Definition 4? Theorem 2
demonstrates that public cues can be shared securely provided that the public
cues {c1, . . . , cm} are a

(
n, `, γ

)
-sharing set family. The proof of Theorem 2 can be

found in Appendix 7.1.

Definition 5. We say that a set familyS = {S1, ...,Sm} is
(
n, `, γ

)
-sharing if (1)

∣∣∣⋃m
i=1 Si

∣∣∣ =

n, (2)|Si| = ` for each Si ∈ S, and (3)
∣∣∣Si ∩ S j

∣∣∣ ≤ γ for each pair Si , S j ∈ S.

Theorem 2. Let {c1, . . . , cm} be a (n, `, γ)-sharing set of m public cues produced by the
password management scheme Gm. If each ai ∈ AS is chosen uniformly at random then
Gm satisfies (q, δ,m, s, r, h)-security for δ ≤ q

|AS|
`−γr and any h.

Discussion: To maintain security it is desirable to have ` large (so that pass-
words are strong) and γ small (so that passwords remain strong even after an
adversary compromises some of the accounts). To maintain usability it is desirable
to have n small (so that the user doesn’t have to memorize many cue-association
pairs). There is a fundamental trade-off between security and usability because it
is difficult to achieve these goals without making n large.

For the special case h = 0 (e.g., the adversary is limited to online attacks) the
security guarantees of Theorem 2 can be further improved to δ ≤ sm

|A|`−γr because the
adversary is actually limited to sm guesses.

44

Figure 2.1: PAO Story with Cue

Figure 2.2: Account A19 using Shared Cues with the (43, 4, 1)-sharing set family
CRT (90, 9, 10, 11, 13). For convenience, we adopt the notation ĉ1

j = ĉ j and ĉ4
j =

ĉ9+10+11+ j.

2.6 Our Construction

We present Shared Cues— a novel password management scheme which balances
security and usability considerations. The key idea is to strategically share cues to
make sure that each cue is rehearsed frequently while preserving strong security
goals. Our construction may be used in conjunction with powerful cue-based
mnemonic techniques like memory palaces [143] and person-action-object stories
[78] to increase σ — the association strength constant. We use person-action-object
stories as a concrete example.

Person-Action-Object Stories. A random person-action-object (PAO) story for a
person (e.g., Bill Gates) consists of a random action a ∈ ACT (e.g., swallowing)
and a random object o ∈ OBJ (e.g., a bike). While PAO stories follow a very simple
syntactic pattern they also tend to be surprising and interesting because the story is
often unexpected (e.g., Bill Clinton kissing a piranha, or Michael Jordan torturing

45

a lion). There is good evidence that memorable phrases tend to use uncommon
combinations of words in common syntactic patterns [61]. Each cue ĉ ∈ C includes
a person (e.g., Bill Gates) as well as a picture. To help the user memorize the story
we tell him to imagine the scene taking place inside the picture (see Figure 2.1
for an example). We use Algorithm 2.2 to automatically generate random PAO
stories. The cue ĉ could be selected either with the user’s input (e.g., use the name
of a friend and a favorite photograph) or automatically. As long as the cue ĉ is
fixed before the associated action-object story is selected the cue-association pairs
will satisfy the independence condition of Theorem 2.

2.6.1 Constructing
(
n, `, γ

)
-sharing set families

We use the Chinese Remainder Theorem to construct nearly optimal
(
n, `, γ

)
-

sharing set families. Our application of the Chinese Remainder Theorem is differ-
ent from previous applications of the Chinese Remainder Theorem in cryptogra-
phy (e.g., faster RSA decryption algorithm [64], secret sharing [21]). The inputs
n1, ...,n` to Algorithm 2.1 should be co-prime so that we can invoke the Chinese
Remainder Theorem — see Figure 2.2 for an example of our construction with
(n1,n2,n3,n4) = (9, 10, 11, 13).

Algorithm 2.1 CRT (m,n1, ...,n`)

Input: m, and n1, ...,n`.
for i = 1→ m do

Si ← ∅

for j = 1→ ` do
N j ←

∑ j−1
i=1 n j

Si ← Si ∪
{(

i mod n j

)
+ N j

}
return {S1, . . . ,Sm}

46

Algorithm 2.2 CreatePAOStories

Input: n, random bits b, images I1, ..., In, and names P1, ...,Pn.
for i = 1→ n do

ai
$
←ACT , oi

$
← OBJ %Using random bits b

%Split PAO stories to optimize usability
for i = 1→ n do

ĉi ←
(
(Ii,Pi, ‘Act′) ,

(
Ii+1 mod n,Pi+1 mod n, ‘Obj′

))
âi ← (ai, oi+1 mod n)

return {ĉ1, . . . , ĉn}, {â1, . . . , ân}

Lemma 2 says that Algorithm 2.1 produces a
(
n, `, γ

)
-sharing set family of size

m as long as certain technical conditions apply (e.g., Algorithm 2.1 can be run
with any numbers n1, ...,n`, but Lemma 2 only applies if the numbers are pairwise
co-prime.).

Lemma 2. If the numbers n1 < n2 < . . . < n` are pairwise co-prime and m ≤
∏γ+1

i=1 ni

then Algorithm 2.1 returns a (
∑`

i=1 ni, `, γ)-sharing set of public cues.

Proof. Suppose for contradiction that |Si
⋂

Sk| ≥ γ + 1 for i < k < m, then by con-
struction we can find γ+ 1 distinct indices j1, ..., jγ+1 ∈ such that i ≡ k mod n jt for
1 ≤ t ≤ γ + 1. The Chinese Remainder Theorem states that there is a unique
number x∗ s.t. (1) 1 ≤ x∗ <

∏γ+1
t=1 n jt , and (2) x∗ ≡ k mod n jt for 1 ≤ t ≤ γ + 1.

However, we have i < m ≤
∏γ+1

t=1 n jt . Hence, i = x∗ and by similar reasoning k = x∗.
Contradiction!

�

Example: Suppose that we select pairwise co-prime numbers n1 = 9,n2 = 10,n3 =
11,n4 = 13, then CRT (m,n1, . . . ,n4) generates a (43, 4, 1)-sharing set family of size
m = n1 × n2 = 90 (i.e. the public cues for two accounts will overlap in at most one
common cue), and for m ≤ n1 × n2 × n3 = 990 we get a (43, 4, 2)-sharing set family.

Lemma 2 implies that we can construct a
(
n, `, γ

)
-sharing set system of size

m ≥ Ω
(
(n/`)γ+1

)
by selecting each ni ≈ n/`. Theorem 3 proves that we can’t hope

to do much better — any
(
n, `, γ

)
-sharing set system has size m ≤ O

(
(n/`)γ+1

)
. We

refer the interested reader to Appendix 7.1 for the proof of Theorem 3 and for
discussion about additional (n, `, γ)-sharing constructions.

47

Theorem 3. Suppose that S = {S1, ...,Sm} is a
(
n, `, γ

)
-sharing set family of size m then

m ≤
(n
γ+1

)/(`
γ+1

)
.

2.6.2 Shared Cues

Our password management scheme — Shared Cues— uses a
(
n, `, γ

)
-sharing set

family of size m (e.g., a set family generated by Algorithm 2.1) as a hardcoded input
to output the public cues c1, ...cm ⊆ C and passwords p1, ..., pm for each account.
We use algorithm 2.2 to generate the underlying cues ĉ1, . . . , ĉn ∈ C and their
associated PAO stories. The computer is responsible for storing the public cues
in persistent memory and the user is responsible for memorizing and rehearsing
each cue-association pair (ĉi, âi).

We use two additional tricks to improve usability: (1) Algorithm 2.2 splits
each PAO story into two parts so that each cue ĉ consists of two pictures and two
corresponding people with a label (action/object) for each person (see Figure 2.2).
A user who sees cue ĉi will be rehearsing both the i’th and the i + 1’th PAO story,
but will only have to enter one action and one object. (2) To optimize usability
we use GreedyMap (Algorithm 2.4) to produce a permutation π : [m]→ [m] over
the public cues — the goal is to minimize the total number of extra rehearsals by
ensuring that each cue is used by a frequently visited account.

Algorithm 2.3 SharedCues [S1, . . . ,Sm,] Gm

Input: k ∈ K , b, λ1, ..., λm, Rehearsal Schedule R.
{ĉ1, . . . , ĉn}, {â1, . . . , ân} ← CreatePAOStories (n, I1, ..., In,P1, . . . ,Pn)
for i = 1→ m do

ci ←
{
ĉ j j ∈ Si

}
, and pi ←

{
â j j ∈ Si

}
.

% Permute cues
π← GreedyMap (m, λ1, ..., λm, c1, . . . , cm,R, σ)
return

(
pπ(1), cπ(1)

)
, . . . ,

(
pπ(m), cπ(m)

)
User: Rehearses the cue-association pairs (ĉi, âi) by following the rehearsal
schedule R.
Computer: Stores the public cues c1, ..., cm in persistent memory.

Once we have constructed our public cues c1, ..., cm ⊆ C we need to create a
mapping π between cues and accounts A1, ...,Am. Our goal is to minimize the
total number of extra rehearsals that the user has to do to satisfy his rehearsal

48

requirements. Formally, we define the Min-Rehearsal problem as follows:
Instance: Public Cues c1, ..., cm ⊆ C, Visitation Schedule λ1, ..., λm, a rehearsal
schedule R for the underlying cues ĉ ∈ C and a time frame t.
Output: A bijective mapping π : {1, ...,m} → {1, ...,m} mapping account Ai to
public cue Sπ(i) which minimizes E [XRt].
Unfortunately, we can show that Min-Rehearsal is NP-Hard to even approximate
within a constant factor. Our reduction from Set Cover can be found in Appendix
7.1 of this paper. Instead GreedyMap uses a greedy heuristic to generate a permu-
tation π.

Theorem 4. It is NP-Hard to approximate Min-Rehearsal within a constant factor.

Algorithm 2.4 GreedyMap

Input: m, λ1, ..., λm, c1, . . . , cm, Rehearsal Schedule R (e.g., CR or ER with param-
eter σ).
Relabel: Sort λ’s s.t λi ≥ λi+1 for all i ≤ m − 1.
Initialize: π0

(
j
)
← ⊥ for j ≤ m, UsedCues← ∅.

%πi denotes a partial mapping [i] → [m],for j > i, the mapping is
undefined (e.g., πi

(
j
)

= ⊥). Let Sk = {ĉ ĉ ∈ ck}.

for i = 1→ m do
for all j ∈ [m] −UsedCues do

∆ j ←

∑
ĉ∈S j

E

XRt,ĉ λĉ = λi +
∑

j:ĉ∈Sπi−1(j)

λ j

 − E
XRt,ĉ λĉ =

∑
j:ĉ∈Sπi−1(j)

λ j

 % ∆ j:

expected reduction in total extra rehearsals if we set πi(i) = j
πi (i)← arg max j ∆ j, UsedCues← UsedCues ∪ {πi (i)}

return πm

2.6.3 Usability and Security Analysis

We consider three instantiations of Shared Cues: SC-0, SC-1 and SC-2. SC-0
uses a (9, 4, 3)-sharing family of public cues of size m = 126 — constructed by
taking all

(9
4

)
= 126 subsets of size 4. SC-1 uses a (43, 4, 1)-sharing family of

public cues of size m = 90 — constructed using Algorithm 2.1 with m = 90 and
(n1,n2,n3,n4) = (9, 10, 11, 13). SC-2 uses a (60, 5, 1)-sharing family of public cues of
size m = 90 — constructed using Algorithm 2.1 with m = 90 and (n1,n2,n3,n4,n5) =
(9, 10, 11, 13, 17).

49

Assumption CR (σ = 1) ER (σ = 1)
Schedule/Scheme SC-0 SC-1 SC-2 SC-0 SC-1 SC-2
Very Active ≈ 0 1, 309 2, 436 ≈ 0 3.93 7.54
Typical ≈ 0.42 3, 225 5, 491 ≈ 0 10.89 19.89
Occasional ≈ 1.28 9, 488 6, 734 ≈ 0 22.07 34.23
Infrequent ≈ 723 13, 214 18, 764 ≈ 2.44 119.77 173.92

Table 2.3: E [XR365]: Extra Rehearsals over the first year for SC-0,SC-1 and SC-2.

Offline Attack? h = 0 h > 0(
n, `, γ

)
-sharing r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

(n, 4, 3) (e.g., SC-0) 2 × 10−15 0.011 1 3.5 × 10−7 1 1
(n, 4, 1) (e.g., SC-1) 2 × 10−15 4 × 10−11 8 × 10−7 3.5 × 10−7 0.007 1
(n, 5, 1) (e.g., SC-2) 1 × 10−19 2 × 10−15 4 × 10−11 1.8 × 10−11 3.5 × 10−7 0.007

Table 2.4: Shared Cues (q$106 , δ,m, s, r, h)-Security: δ vs h and r using a
(
n, `, γ

)
-

sharing family of m public cues.

Our usability results can be found in Table 2.3 and our security results can be
found in Table 2.4. We present our usability results for the very active, typical,
occasional and infrequent internet users (see Table 2.1 for the visitation schedules)
under both sufficient rehearsal assumptions CR and ER. Table 2.3 shows the values
of E [XR365] — computed using the formula from Theorem 1 — for SC-0, SC-1 and
SC-2. We used association strength parameter σ = 1 to evaluate each password
management scheme — though we expect that σ will be higher for schemes like
Shared Cues that use strong mnemonic techniques 4.

Our security guarantees for SC-0,SC-1 and SC-2 are illustrated in Table 2.4.
The values were computed using Theorem 2. We assume that |AS| = 1402 where
AS = ACT × OBJ (e.g., their are 140 distinct actions and objects), and that the
adversary is willing to spend at most $106 on cracking the user’s passwords (e.g.,
q = q$106 = 5.155 × 1010). The values of δ in the h = 0 columns were computed
assuming that m ≤ 100.

Discussion: Comparing Tables 2.3 and 2.2 we see that Lifehacker is the most
usable password management scheme, but SC-0 compares very favorably! Unlike
Lifehacker, SC-0 provides provable security guarantees after the adversary phishes
one account — though the guarantees break down if the adversary can also ex-

4We explore the effect of σ on E
[
XRt,c

]
in Appendix 7.6.

50

ecute an offline attack. While SC-1 and SC-2 are not as secure as Strong Random
and Independent — the security guarantees from Strong Random and Independent do
not break down even if the adversary can recover many of the user’s plaintext
passwords — SC-1 and SC-2 are far more usable than Strong Random and Inde-
pendent. Furthermore, SC-1 and SC-2 do provide very strong security guarantees
(e.g., SC-2 passwords remain secure against offline attacks even after an adversary
obtains two plaintext passwords for accounts of his choosing). For the very active,
typical and occasional user the number of extra rehearsals required by SC-1 and
SC-2 are quite reasonable (e.g., the typical user would need to perform less than
one extra rehearsal per month). The usability benefits of SC-1 and SC-2 are less
pronounced for the infrequent user — though the advantage over Strong Random
and Independent is still significant.

2.7 Discussion and Future Work

We conclude by discussing future directions of research.

Sufficient Rehearsal Assumptions. While there is strong empirical evidence for
the Expanding Rehearsal assumption in the memory literature (e.g., [160]), the
parameters we use are drawn from prior studies in other domains. In Chapter
4 we present preliminary results from user studies we are conducting to test the
Expanding Rehearsal assumption in the password context, and obtain parameter
estimates specific to the password setting.

Expanding Security over Time. Most extra rehearsals occur soon after the
user memorizes a cue-association pair — when the rehearsal intervals are still
small. Is it possible to start with a password management scheme with weaker
security guarantees (e.g., SC-0), and increase security over time by having the user
memorize additional cue-association pairs as time passes?

Secure Password Recovery Mechanism. Recently, we proposed a password re-
covery mechanism which would allow users who forget a few of their stories to
recover them provided that they can still remember a couple of their other stories
[164]. For example, suppose that we have the hash of the user’s first six PAO

51

stories H (a1o1 . . . a6o6). The entropy of the string a1o1 . . . a6o6 is high enough that
no adversary who manages to obtain this hash will be able to crack the password.
However, if the user can remember five of these stories then it is trivial for our
password recovery mechanism to find the sixth story by brute force search. By
storing enough cryptographic hashes we can ensure that our user can recover any
story that he forgets provided that he can remember any five of his other stories.
These hashes could be deleted after the each of the stories are firmly entrenched
in the user’s memory (e.g., after the user has rehearsed each of his stories many
times).

Login Time. One potential usability drawback of Shared Cues is that it might
take a few seconds to type in each of his passwords because they are long (e.g.,
one password consists of four actions and four objects). One way to save time
during authentication would be to instruct the user to form his password from
the first three characters in each action and each object instead of typing in each
word completely (most actions and objects in our set could be uniquely identified
from the first two or three characters in the word). Alternatively, we could use
auto-completion to help the user type in his passwords faster. Because we assume
that the adversary already knows the set of actions and objects that we are using
we would not reduce the adversary’s search space by using only the first three
characters of each word or by using auto-completion.

Human Computable Passwords. Shared Cues only relies on the human capacity
to memorize and retrieve information, and is secure against at most r = `/γ plain-
text password leak attacks. Could we improve security (or usability) by having
the user perform simple computations to recover his passwords? In Chapter 3 we
present a candidate Human Computable Password scheme and provide strong ev-
idence that this scheme will remain secure even after many (e.g., 50–100) plaintext
password breaches.

52

Chapter 3

Human Computable Passwords

3.1 Introduction

Secure cryptographic protocols to authenticate humans typically assume that the
human will receive assistance from trusted hardware or software. One interesting
challenge for the cryptography community is to build authentication protocols
that are so simple that a human can execute them without relying on assistance
from a trusted computer. In this chapter we propose several candidate human
authentication protocols in a setting in which the user can only receive assistance
from a semi-trusted computer — a computer that can be trusted to store informa-
tion and perform computations correctly, but cannot be trusted to ensure privacy.
In our schemes, a semi-trusted computer is used to store and display public chal-
lenges Ci ∈ [n]k. The user memorizes a random secret mapping σ : [n] → Zd and
authenticates by computing responses f (σ(Ci)) to a sequence of public challenges,
where f : Zk

d → Zd is a function that is easy for the human to evaluate. We prove
that any statistical adversary needs to sample m = Ω̃

(
ns(f)

)
challenge-response

pairs to recover σ — for a security parameter s(f) that depends on two key prop-
erties of f 1. Our lower bound generalizes recent results of Feldman et al. [73],
who proved analogous results for the special case d = 2. To obtain our results we
apply the general hypercontractivity theorem [116] to lower bound the statistical

1Our guarantees are not information theoretic. Indeed, a computationally unbounded adver-
sary would need to see at most O (n) challenge-response pairs to break any such human computable
password scheme. Our lower bounds provide strong evidence that any polynomial time adversary
will need at least m = Ω̃

(
ns(f)

)
challenge-response pairs — even if s(f) > 1.

53

dimension of the distribution over challenge-response pairs induced by f and σ.
Our statistical dimension lower bounds apply to arbitrary functions f : Zk

d → Zd

— not just functions that are easy for a human to evaluate — and may be of in-
dependent interest. For our particular schemes, we show that forging passwords
is equivalent to recovering the secret mapping. We also show that s(f1) = 1.5 for
our first scheme and that s(f2) = 2 in our second scheme. Thus, our human com-
putable password schemes can maintain strong security guarantees even after an
adversary has observed the user login to many different accounts (e.g., 100). We
also issue a public challenge to the cryptography community to crack passwords
that were generated using our human computable password schemes.

In Chapter 2 we initiated the rigorous study of usable and secure password
management schemes — systematic strategies to help users create and remember
multiple passwords. Shared Cues, the proposed password management scheme
from Chapter 2, balances security and usability considerations. However, Shared
Cues only maintains security for a small (constant) number of plaintext password
breaches (e.g., 1 to 4). An adversary who has seen several of the user’s passwords
might be able to break the user’s passwords at other accounts. This raises an
important question: Is it possible to design a human authentication protocol that
allows a user to authenticate to multiple untrusted parties and will remain secure
even after many breaches (e.g., 50 to 100)?

In this chapter the goal is to develop a secure human computable password
management scheme in which security guarantees are maintained after many
breaches. In a human computable password management scheme the user re-
constructs each of his passwords by computing the response to a public challenge.
The computation may only involve a few very simple operations (e.g., addition
modulo 10) over secret values (digits) that the user has memorized. More specif-
ically, in our candidate human computable password schemes the user learns to
compute a simple function f : Zk

d → Zd (in our candidate schemes we adopt the
base d = 10 that is natural for most humans), and memorizes a secret mapping
σ : [n] → Zd. The user authenticates by responding to a sequence of single digit
challenges — a challenge-response pair

(
C, f (σ (C))

)
is a challenge C ∈ Xk ⊆ [n]k

and the corresponding response.

Our first candidate human computable password scheme uses the function

f1 (x0, x1, x2, x3, x4, x5, . . . , x13) = x13 + x12 + x(x10+x11 mod 10) mod 10 .

To evaluate this function a human would only need to perform three addition
operations modulo 10. While this function is quite simple we show that the attacker

54

would need to see Ω̃
(
n1.5

)
challenge-response pairs before he can forge the user’s

passwords (accurately predict the responses to randomly selected challenges). In
particular, if we ask the user to memorize a secret mapping of length n = 100
and the password for each account is ten digits then the adversary would need to
breach about one-hundred of the user’s accounts before he could obtain enough
challenge-response pairs (1001.5 = 10(100)) to forge the user’s passwords.

As in Chapter 2 we consider a setting where a user has two types of memory:
persistent memory (e.g., a sticky note or a text file on his computer) and associative
memory (e.g., his own human memory). We assume that persistent memory is
reliable and convenient but not private (i.e., accessible to an adversary). In contrast,
a user’s associative memory is private but lossy—if the user does not rehearse a
memory it may be forgotten. Thus, the user can store a password challenge C ∈ Xk

in persistent memory, but the mapping σ must be stored in associative memory
(e.g., memorized and rehearsed). We allow the user to receive assistance from
a semi-trusted computer. A semi-trusted computer will perform computations
accurately (e.g., it can be trusted to show the user the correct challenge), but it will
not ensure privacy of its inputs or outputs. This means that a human computable
password management scheme should be based on a function f that the user can
compute entirely in his head.

Contributions. We develop a general framework for analyzing the security of a
human computable password management scheme and we propose two candi-
date human computable password management schemes. We give evidence that
our schemes remain secure until the adversary has seen at least Ω̃

(
ns(f)

)
challenge-

response pairs
(
C, f (σ (C))

)
. Here, s(f) = min{r(f)/2, g(f) + 1} is a composite secu-

rity parameter which captures g(f) (how many inputs to f need to be fixed to make
f linear?) and r(f) (what is the largest value of r such that the distribution over
challenge-response pairs are (r − 1)-wise independent?). We show that s(f) = 1.5
for our first scheme and s(f) = 2 for our second scheme. In particular we prove that
any statistical adversary needs to see at least Ω̃

(
nr(f)/2

)
challenge-response pairs(

C, f (σ (C))
)

before he can even approximately recover the secret mapping σ. Our
lower bound is based on the statistical dimension of the distribution over challenge-
response pairs induced by f and σ. We stress that our analysis of the statistical
dimension applies to arbitrary functions f : Zk

d → Zd, not just functions that are
easy for humans to compute. Our analysis of the statistical dimension general-
izes recent results of Feldman et al. [73], which only applied to binary predicates
(e.g., d = 2), and may be of independent interest. Because our function f is not a

55

binary predicate we cannot use the Walsh basis functions to express the Fourier
decomposition of f and analyze the statistical dimension of our distribution over
challenge-response pairs as Feldman et al. [73] do. Instead, we use a general-
ized set of Fourier basis functions to take the Fourier basis decomposition of f ,
and we apply the general hypercontractivity theorem [116] to obtain our bounds
on the statistical dimension. Furthermore, we show that forging passwords and
approximately recovering the secret mapping are equivalent for any ‘reasonable’
candidate human computable password scheme. This means that any adversary
who can predict the response f (C) to a random challenge C with better accuracy
than random guessing can be used as a blackbox to approximately recover the
secret mapping. These results imply that any statistical adversary needs to see
at least Ω̃

(
nr(f)/2

)
challenge-response pairs before he can accurately forge pass-

words. This is significant because almost all known algorithmic techniques have
statistical analogues. In particular techniques like Expectation Maximization[62],
local search, MCMC optimization[83], first and second order methods for convex
optimization, PCA, ICA, k-means can be modeled as statistical algorithms — see
[37] and [55] for proofs. While Gaussian Elimination is a notable exception our
composite security parameter accounts for attacks based on Gaussian Elimination
— we show that an adversary needs to see m = Ω̃

(
n1+g(f)

)
challenge-response pairs

to recover σ using Gaussian Elimination. To analyze the usability of our candidate
human computable password schemes we use the usability model from Chapter 2
to quantify the effort that a user must expend to memorize and rehearse the secret
mapping σ, and we use step counting to estimate the effort that a user must ex-
pend to compute each password. We also propose a mnemonic tool to help users
memorize their secret mapping σ. Finally, we constructed public challenges for
cryptographers to break our human computable password management schemes
under various parameters (e.g., n = 100, m = 1000).

Organization. The rest of the paper is organized as follows: We first explore re-
lated work in Section 3.2. We then introduce preliminary notation and definitions
in Section 3.3. We present our main technical results in Section 3.4 including an
overview of our lower bound for statistical adversaries. We use these results to
provide general security bounds for a human computable password scheme in
Section 3.5. We introduce our candidate human computable password schemes
in Section 3.6 and analyze the security and usability of these schemes. We con-
clude in Section 3.7 by presenting our human computable password challenge and
discussing how a human computable password scheme could be used to defend

56

against an adversary who can always observe the user when he logs into any of his
accounts (e.g., every time the user computes the response f (σ (C)) to a single-digit
challenge the adversary observes the pair

(
C, f (σ (C))

)
).

3.2 Related Work

The literature on passwords has grown rapidly over the past decade. One line of
prior work has focused on the effects of password composition rules (e.g., requiring
a password to contain capital letters and numbers) on individual passwords [34,
101]. Another line of prior work has focused on empirical studies of user behavior
in password management [39, 52, 75, 102] (e.g., How many different passwords
do people have? How often do users reuse the same password? How strong are
the passwords that people pick?). These studies consistently paint a grim picture.
Many of the passwords that users select have low entropy and users frequently
reuse their passwords. Shay et al. [140] empirically studied the usability of system
assigned passwords and found that users often had difficulty remembering system
assigned passwords. Some researchers have considered replacing text passwords
with graphical passwords [27, 48] driven by evidence that humans have a large
capacity for visual memories [145] and that cued-recall is easier than pure recall
[23]. Fundamentally, both graphical passwords and text passwords rely solely
on the user’s ability to remember something (e.g., a string, a face or a location
on a picture). Many security metrics have been proposed to analyze the security
of a dataset of passwords or to estimate the security of an individual password
[39, 45, 107, 121]. While these metrics can provide useful feedback about individual
passwords (e.g., they rule out some insecure passwords) they do not deal with the
complexities of securing multiple accounts against an adversary (e.g., they don’t
consider correlations between a user’s passwords).

In Chapter 2 we considered the problem of developing usable and secure pass-
word management schemes — strategies for creating and remembering multiple
passwords. We use the same usability model in this chapter to quantify the effort
that a user will need to expend to remember his secret mapping in our human
computable password schemes. We emphasize two key differences between the
work in the previous chapter and the work in the previous chapter. First, Shared
Cues, the password management scheme from Chapter 2, only maintains security
for a small (constant) number of plaintext password breaches, while our goal in
this chapter is to design protocols that maintain security guarantees even after

57

many password breaches. There are scenarios in which it may not be reasonable
to assume that the adversary can only compromise a small number of the user’s
passwords (e.g., if the user’s computer is infected with malware for a few days).
Second, the Shared Cues scheme only requires users to remember several cue-
association pairs to reconstruct their passwords while the password management
schemes we consider in this chapter require users to perform a few additional
computations in their head to reconstruct their passwords.

Hopper and Blum [91] designed a Human Identification Protocol based on a
the noisy parity problem — a learning problem that is believed to be hard. Juels
and Weis [93] modified the protocol of Hopper and Blum to design HB+ — a
lightweight authentication protocol for pervasive devices like smartcards. Subse-
quent work has explored the security of the HB+ protocol under various threat
models (e.g., man-in-the-middle attacks[47, 84], concurrent composition[95]). We
emphasize a few fundamental differences between our work and the work of
Hopper and Blum. First, they focus on the authentication setting where a human
authenticates to a single trusted party with a shared secret. By contrast, we focus
on the setting where a human user wishes to authenticate to multiple (possibly un-
trusted) parties without sharing his secret (e.g., by only sharing the cryptographic
hashes of each password he computes). Second, computations in their protocol
are randomized (e.g., the human occasionally flips his answer), while the com-
putations in our protocol are deterministic. This is significant because humans
are not good at consciously generating random numbers [74, 111, 154] (e.g., noisy
parity could be easy to learn when humans are providing source of noise). It also
means that their protocol would need to be modified in our setting so that the
untrusted third party could validate a noisy response using only a cryptographic
hash of the answer — invoking error correcting codes would increase the number
of rounds needed to provide an acceptable level of security. Finally, we focus on
computations of very simple functions over a constant number of variables so that
a human can compute the response to each challenge quickly.

Naor and Pinkas[112] proposed using visual cryptography[113] to address a
related problem: how can a human verify that a message he received from a trusted
server has not been tampered with by an adversary? Their protocol requires the
human to carry a visual transparency (a shared secret between the human and the
trusted server in the visual cryptography scheme), which he will use to verify that
messages from the trusted server have not been altered.

A related goal in cryptography, constructing pseudorandom generators in
NC0, was proposed by Goldreich [86] and by Cryan and Miltersen [58]. In

58

Goldreich’s construction we fix C1, . . . ,Cm ∈ [n]k once and for all, and a bi-
nary predicate P : {0, 1}k → {0, 1}. The pseudorandom generator is a function
G : {0, 1}n → {0, 1}m, whose i’th bit G(x)[i] is given by P applied to the bits of
x specified by Ci. O’Donnel and Witmer gave evidence that the “Tri-Sum-And”
predicate (TSA (x1, . . . , x5) = x1 + x2 + x3 + x4x5 mod 2) provides near-optimal
stretch. In particular, they showed that for m = n1.5−ε Goldreich’s construction
with the TSA predicate is secure against subexponential-time attacks using SDP
hierarchies. Our candidate human-computable password schemes use functions
f : Zk

10 → Z10 instead of binary predicates. While our candidate functions are
contained in NC0, we note that an arbitrary function in NC0 is not necessarily
human computable.

Feldman et al. [73] considered the problem of finding a planted solution in a
random binary satisfiability problem. They showed that any statistical algorithm
— a class of algorithms that covers almost all known algorithmic techniques —
needs to see at least Ω̃

(
nr/2

)
random clauses to efficiently identify the planted

solution when the distribution over clauses are (r−1)-wise independent2. Feldman
et al. [73] also demonstrate that Õ

(
nr/2

)
clauses are sufficient. We extend the

analysis of Feldman et al. [73] to cover non-binary planted satisfiability problems,
and argue that our candidate human computable password schemes are secure.

3.3 Definitions

3.3.1 Notation

Given two strings α1, α2 ∈ Zn
d we use H (α1, α2) � |{i ∈ [n] α1[i] , α2[i]}| to denote

the Hamming distance between them. We will also use H (α1) � H
(
α1,~0

)
to

denote the Hamming weight of α1. We use σ : [n]→ Zd to denote a secret random
mapping that the user will memorize. We will sometimes abuse notation and
think of σ ∈ Zn

d as a string which encodes the mapping, and we will use σ ∼ Zn
d to

denote a random mapping chosen from Zn
d uniformly at random.

2We note that after we have seen O(n log n) random clauses the planted solution is — with high
probability — the only solution which satisfies all of the random clauses. The results of Feldman
et al. [73] are evidence that we need Ω̃

(
nr/2

)
examples to find the planted solution efficiently. We

also note that r = 3 for the uniform distribution over clauses that satisfy the TSA predicate, which
provides further evidence that the Goldreich’s PRG is secure for m = n1.5−ε.

59

Definition 6. We say that two mappings σ1, σ2 ∈ Zn
d are ε-correlated if H(σ1,σ2)

n ≤
d−1

d − ε,
and we say that a mapping σ ∈ Zn

d is δ-balanced if

max
i∈{0,...,d−1}

∣∣∣∣∣∣∣∣
H

(
σ,~i

)
n

−
d − 1

d

∣∣∣∣∣∣∣∣ ≤ δ .

Note that for a random mappingσ2 we expectσ1 andσ2 to differ atEσ2∼Z
n
d

[H (σ1, σ2)] =

n
(

d−1
d

)
locations, and for a random mapping σ and i ∼ {0, . . . , d − 1}we expect σ to

differ from~i at Ei∼Zd,σ∼Z
n
d

[
H

(
σ,~i

)]
= n

(
d−1

d

)
locations. Thus, for any constant ε > 0

a random mapping σ2 will not be ε-correlated with σ1 with probability 1− o(1), but
for any constant δ > 0 a random mapping σ will be δ-balanced with probability
1 − o(1).

We let Xk ⊆ [n]k denote the space of ordered clauses of k variables without
repetition. We use C ∼ Xk to denote a clause C chosen uniformly at random from
Xk and we use σ (C) ∈ Zk

d to denote the values of the corresponding variables
in C. For example, if d = 10, C = (3, 10, 59) and σ (i) = (i + 1 mod 10) then
σ (C) = (4, 1, 0).

We view each clause C ∈ Xk as a single-digit challenge. The user responds to a
challenge C by computing f (σ (C)), where f : Zk

d → Zd is a human computable func-
tion (see discussion below) and σ : [n] → Zd is the secret mapping that the user
has memorized. For example, if d = 10, C = (3, 10, 59), σ (i) = (i + 1 mod 10) and
f
(
x, y, z

)
=

(
x − y + z mod 10

)
then f (σ (C)) = (4 − 1 + 0 mod 10) = 3. A length-t

password challenge ~C = 〈C1, . . . ,Ct〉 ∈ (Xk)
t is a sequence of t single digit chal-

lenges, and f
(
σ
(
~c
))

=
〈

f (σ (C1)) , . . . , f (σ (Ct))
〉
∈ Zt

d denotes the corresponding
response (e.g., a password).

Let’s suppose that the user has m accounts A1, . . . ,Am. In a human com-
putable password management scheme we will generate m length-t password
challenges ~C1, . . . , ~Cm ∈ (Xk)

t. These challenges will be stored in persistent mem-
ory so they are always accessible to the user as well as the adversary. When our
user needs to authenticate to account Ai he will be shown the length-t password
challenge ~Ci =

〈
Ci

1, . . . ,C
i
t

〉
. The user will respond by computing his password

pi =
〈

f
(
σ
(
Ci

1

))
, . . . , f

(
σ
(
Ci

t

))〉
∈ Zt

d.

60

3.3.2 Requirements for a Human Computable Function

In our setting we require that the composite function f ◦ σ : Xk → Zd is hu-
man computable. A human computable function might involve several memory
lookups (e.g., we can ask the user to recall the value σ(i)) as well as several simple
operations. However, if we want the function f ◦ σ to be human computable then
we cannot ask the user to perform too many operations.

Requirement 1. A function f is t̂-human computable for a human user H if H can
evaluate f in his head in t̂ seconds.

Example: The function f (x, y) = x+ y mod 10 is 1-human computable for many
humans.

Discussion Informally we say that a function f is human-computable if a human
user can evaluate f quickly in his head. Intuitively, evaluation of a human com-
putable function must only involve a few operations — otherwise a human will
not be able to evaluate the function quickly. Furthermore, the operations must be
extremely simple. A human computable function must only involve operations
with a very low memory footprint as a typical person can only keep 7± 2 ‘chunks’
of information in short-term memory [108] at any given time. If the memory
footprint of a function is high then the user will need to store intermediate values
in long-term memory and recall them mid-computation. We take the view that
no human computable function should require users to store intermediate val-
ues in long-term memory because the memorization process would necessarily
slow down computation3. Therefore, we can rule out operations involving large
numbers. For example, expressions like 98423 + 498874 mod 2345 or 54322340489

mod 8156243869 would be very difficult — if not impossible — for most humans
to evaluate in their heads. Most humans would be capable of evaluating a long
expressions like 7+1+6+0+8+3+4+7+2+7+8+9+5+3 mod 10 in their head
— after receiving a few basic preliminary instructions (e.g., only worry about re-
membering the least significant digit). However, even this expression would take
a while to evaluate because it involves many terms. Thus a human computable
function involves 1) simple operations with a very small memory footprint 2) few
terms, and 3) few operations.

3However, we do consider functions that require users to retrieve values from long-term mem-
ory. For example, the user might need to remember the value σ(i) or the user might need to
remember basic arithmetic facts that he memorized in grade school (e.g., 9+5=14).

61

3.3.3 Password Unforgeability

In the password forgeability game the adversary attempts to guess the user’s pass-
word for a randomly selected account after he has seen the user’s passwords at
m other randomly selected accounts. We say that a scheme is UF-RCA (Unforge-
ability against Random Challenge Attacks) secure if any probabilistic polynomial
time adversary fails to guess the user’s password with high probability. In the
password forgeability game we select the secret mapping σ : [n]→ Zd uniformly
at random along with challenges C1, . . . ,Cmt+t ∼ Xk. The adversary is given the
function f : Zk

d → Zd and is shown the challenges C1, . . . ,Ct(m+1) as well as the
values f (σ (Ci)) for i ∈ {t + 1, . . . ,mt + t}. The game ends when the adversary A
outputs a guess

〈
q1, . . . , qt

〉
∈ Zt

d for the value of
〈

f (σ (C1)) , . . . , f (σ (Ct))
〉
. We say

that the adversary wins if he correctly guesses the responses to all of the challenges
C1, . . . ,Ct. Formally, we use

Wins (A,n,m, t) = ∀i ∈ {1, . . . , t}.qi = f (σ (Ci))

to denote the event that the adversary wins the game. We are interested in under-
standing how many example single digit challenge-response pairs the adversary
needs to see before he can start breaking the user’s passwords.

Definition 7. (Security) We say that a function f : Zk
d → Zd is UF−RCA (n,m, t, δ)−

secure if for every probabilistic polynomial time (in n,m) adversaryA

Pr [Wins (A,n,m, t)] ≤ δ ,

where the randomness is taken over the selection of the secret mapping σ ∼ Zn
d , the

challenges C1, . . . ,Cmt+t as well as the adversary’s coins.

Discussion Our security model in this chapter is different from the security
model from Chapter 2 in which the adversary gets to adaptively select which
accounts to compromise and which account to attack. While our security model
may seem weaker at first glance because the adversary does not get to select
which account to compromise/attack, we observe that the password management
schemes of Chapter 2 are only secure against one to three adaptive breaches. By
contrast, our goal is to design human computable password schemes that satisfy
UF−RCA security for large values of m (e.g. 100), which means that it is reasonable
to believe that the user has at most m password protected accounts. If the user has
at most m accounts then even an adaptive adversary — who gets to compromise
all but one account — will not be able to forge the password at any remaining
account with probability greater than mδ (typically, m� 1/δ).

62

3.3.4 Security Parameters of f

Given a function f : Zk
d → Zd we define the function Q f : Zk+1

d → {±1} s.t.
Q f (x, i) = 1 if f (x) = i; otherwise Q f (x, i) = −1. We use Q f

σ to define a distribution
over Xk ×Zd (challenge-response pairs) as follows

Pr
Q f
σ

[C, i] �
Q f (σ (C) , i) + 1

2 |Xk|
.

Intuitively, Q f
σ is the uniform distribution over challenge response pairs (C, j)

s.t. f (σ (C)) = j. We also use Q f , j : Zk
d → {±1} (Q f , j (x) = Q f (x, j

)
) to define a

distribution over Xk. We write the Fourier decomposition of a function Q : Zk
d →

{±1} as follows
Q(x) =

∑
α∈Zk

d

Q̂α · χα (x) ,

where our basis functions are

χα (x) � exp
(
−2π
√
−1 (x · α)
d

)
.

We say that a function Q has degree ` if ` = max
{
H (α) α ∈ Zk

d

}
— equivalently

if Q(x) =
∑

i Qi(x) can be expressed as a sum of functions where each function
Qi : Zk

d → R depends on at most ` variables.

Definition 8. We use r(Q) � min
{
H (α) ∃α ∈ Zk

d.Q̂α , 0 ∧ α , ~0
}

to denote the dis-

tributional complexity of Q, and we use r(f) = min
{
r
(
Q f , j

)
j ∈ Zd

}
to denote the

distributional complexity of f . We use

g(f) � min
{
` ∈N ∪ {0} ∃α ∈ Z`d,S ⊆ [k].s.t |S| = ` and f|S,α is a linear function

}
,

to denote the minimum number of variables that must be fixed to make f a linear function.
Here, f|S,α : Zk−`

d → Zd denotes the function f after fixing the variables at the indices
specified by S to α. Finally, we use s(f) � min{r(f)/2, g(f) + 1} as our composite security
measure.

We argue that a human computable password scheme — given by a function
f — is secure against m = Ω̃

(
ns(f)

)
breaches. In particular, we argue that any

63

statistical algorithm needs to see at least m = Ω̃
(
nr(f)/2

)
challenge response pairs

to (approximately) recover the secret mapping σ. We also demonstrate that any
adversary that can break the security of our password scheme after seeing m
challenge response pairs can be used to approximately recover the secret mapping
using only Õ (m) challenge response pairs.

3.4 Statistical Adversaries and Lower Bounds

Our main technical result (Theorem 6) is a lower bound on the number of single
digit challenge-response pairs that a statistical algorithm needs to see to (approx-
imately) recover the secret mapping σ. Our results are quite general and may
be of independent interest. Given any function f : Zk

d → Zd we prove that any
statistical algorithm needs Ω̃

(
nr(f)/2

)
examples before it can find a secret mapping

σ′ ∈ Zn
d such that σ′ is ε-correlated with σ. We first introduce statistical algorithms

in section 3.4.1 before stating our main lower bound for statistical algorithms in
section 3.4.2. We also provide a high level overview of our proof in section 3.4.2.

3.4.1 Statistical Algorithms

LetD denote a set of distributions over a domain X, let F denote a set of solutions
and Z : D → 2F . The distributional search problem [72] Z over D and F is
the following problem: Given access to m random samples from an unknown
distribution D ∈ D find a solution s ∈ Z (D) ⊆ F . For a solution s ∈ F we
will use Z−1 (s) ⊆ D to denote the set of distributions for which s is a valid
solution (e.g., D′ ∈ D s.t. s ∈ Z (D′)). We can think of our planted constrained
satisfiability problem as a distributional search problem. For example, in our
context X = Xk×Zd ⊆ [n]k

×Zd denotes the set of all possible single-digit challenge
response pairs, and our solution space F = Zn

d is the set of possible mappings.
Each σ ∈ F defines a unique distribution Dσ = Q f

σ over challenge response pairs
and Z (Dσ) would denote the set of all assignments τ ∈ Zn

d that are ε-correlated
with σ. Now the distributional search problem is to find an assignment τ ∈ Zn

d
that is ε-correlated with our planted solution σ (the secret mapping) given m
challenge-response pairs.

A statistical algorithm can access the input distribution by querying the 1-MSTAT
oracle or by querying the VSTAT oracle.

64

Definition 9. [73] [1-MSTAT(L) oracle and VSTAT oracle] Let D be the input distribution
over the domain X. Given any function h : X → {0, 1, . . . ,L − 1}, 1-MSTAT(L) takes
a random sample x from D and returns h(x). For an integer parameter T > 0 and any
query function h : X → {0, 1}, VSTAT (T) returns a value v ∈

[
p − τ, p + τ

]
where

p = Ex∼D [h(x)] and τ = max
{

1
T ,

√
p(1−p)

T

}
.

The discrimination norm [73] of a set of distributionsD′ relative to a distribution
D is denoted by κ2(D′,D) and defined as follows:

κ2(D′,D) � max
h,‖h‖D=1

{ED′∼D′ [|ED′[h] − ED[h]|]} ,

where ‖h‖D =
√
Ex∼D [h2 (x)]. In our setting D′ ⊆

{
Q f
σ σ ∈ Z

n
d

}
and our reference

distribution D is the uniform distribution over Xk ×Zd so we can write

κ2(D′,D) = max
h,‖h‖D=1

{
E
σ∼

{
σ′∈Zn

d Q f
σ′
∈D′

} [|∆ (σ, h)|]
}
,

where
∆ (σ, h) � E(C, j)∼Q f

σ

[
h(C, j)

]
− E(C, j)∼Xk×Zd

[
h(C, j)

]
.

Definition 10. [73] For κ > 0, η > 0, domain X and a search problem Z over a set of
solutions F and a class of distributions D over X, let d′ be the largest integer such that
there exists a reference distribution D over X and a finite set of distributions DD ⊆ D

with the following property: for any solution s ∈ F the setDs = DD \ Z
−1(s) has size at

least (1− η) · |DD| and for any subsetD′ ⊆ Ds, where |D′| ≥ |Ds|/d′, κ2(D′,D) ≤ κ. The
statistical dimension with discrimination norm κ and error parameter η ofZ is d′ and
denoted by SDN(Z, κ, η).

Feldman et al. [73] proved the following lower bound on the number of
1-MSTAT(L) queries needed to solve a distributional search problem. Intuitively,
Theorem 5 implies that many queries are needed to solve a distributional search
problem with high statistical dimension. In Section 3.4.2 we argue that the statis-
tical dimension our distributional search problem (finding σ′ that is ε-correlated
with the secret mapping σ given m samples from the distribution Q f

σ) is high.

Theorem 5. [73, Theorems 10 and 12] Let X be a domain andZ be a search problem over
a set of solutions F and a class of distributions D over X. For κ > 0 and η ∈ (0, 1), let
d′ = SDN(Z, κ, η). Let D be the reference distribution and DD be a set of distributions

65

for which the value d′ is achieved. Any randomized statistical algorithm that, given access
to a VSTAT

(
1

3κ2

)
(resp. 1-MSTAT (L)) for a distribution chosen randomly and uniformly

from DD, succeeds with probability Λ > η over the choice of distribution and internal

randomness requires at least Λ−η
1−η d′ (resp. Ω

(
1
L min

{
d′(Λ−η)

1−η ,
(Λ−η)2

κ2

})
) calls to the oracle.

As Feldman et al. [73] observe, almost all known algorithmic techniques can
be modeled within the statistical query framework. In particular, techniques
like Expectation Maximization[62], local search, MCMC optimization[83], first
and second order methods for convex optimization, PCA, ICA, k-means can be
modeled as a statistical algorithm even with L = 2 — see [37] and [55] for proofs.
One issue is that a statistical simulation might need polynomially more samples.
However, for L > 2 we can think of our queries to 1-MSTAT(L) as evaluating L
disjoint functions on a random sample. Indeed, Feldman et al. [73] demonstrate
that there is a statistical algorithm for binary planted satisfiability problems using
Õ

(
nr(f)/2

)
calls to 1-MSTAT

(
ndr(f)/2e

)
.

Remark 1. We can also use the statistical dimension to lower bound the number of
queries that an algorithm would need to make to other types of statistical oracles to
solve a distributional search problem. For example, we could also consider an oracle
MVSTAT(L,T) that takes a query h : X → {0, . . . ,L − 1} and a set S of subsets of
{0, . . . ,L − 1} and returns a vector v ∈ RL s.t for every Z ∈ S∣∣∣∣∣∣∣∑i∈Z v[i] − pZ

∣∣∣∣∣∣∣ ≤ max

 1
T
,

√
pZ

(
1 − pZ

)
T

 ,
where pZ = Prx∼D [h(x) ∈ Z] and the cost of the query is |S|. Feldman et al. [73, Theorem
7] proved lower bounds similar to Theorem 5 for the MVSTAT oracle. In this paper we
focus on the 1-MSTAT and VSTAT oracles for simplicity of presentation.

3.4.2 Statistical Dimension Lower Bounds

We are now ready to state our main technical result.

Theorem 6. Let σ ∈ Zn
d denote a secret mapping chosen uniformly at random and letZQ f

be a planted constrained satisfiability problem with distribution Q f
σ over Xk ×Zd, where

f has distributional complexity r = r(f). Any randomized statistical algorithm that finds

66

an assignment τ such that τ is
(√

−2 ln(η/2)
n

)
-correlated with σ with probability at least

Λ > η over the choice of σ and the internal randomness of the algorithm needs at least

m calls to the 1-MSTAT(L) oracle (resp. VSTAT
(

nr

2(log n)2r

)
)with m · L ≥ c1

(
n

log n

)r
(resp.

m ≥ nc1 log n) for a constant c1 = Ωk,1/(Λ−η)(1). In particular if we set L =
(

n
log n

)r/2
then

our algorithms needs at least m ≥ c1

(
n

log n

)r/2
calls to 1-MSTAT(L).

The proof of Theorem 6 follows from Theorems 7 and 5. Theorems 6 and 7
generalize results of Feldman et al. The results of Feldman et al. [73] only apply for
functions f : {0, 1}k → {0, 1}. An interested reader can find our proofs in Appendix
8.2. At a high level our proof proceeds as follows: Given any function h : Xk → R
we show that ∆ (σ, h) can be expressed in the following form:

∆ (σ, h) =

k∑
`=r(f)

1
|X`|

b` (σ) ,

where |X`| = Θ
(
n`

)
and each function b` has degree ` (Lemma 5). We then use the

general hypercontractivity theorem [116, Theorem 10.23] to obtain the following
concentration bound.

Lemma 3. Let b : Zn
d → R be any function with degree at most `, and let S ⊆ Zn

d be a
set of assignments for which d′ = dn/ |S| ≥ e`. Then Eσ∼S [|b (σ)|] ≤ 2(ln d′/c0)`/2

d` ‖b‖2, where

c0 = `
(

1
2ed

)
and ‖b‖2 =

√
Ex∼Zn

d

[
b (x)2

]
.

We then use Lemma 3 to bound Eσ∼S [∆ (σ, h)] for any set S ⊆ Zn
d such that

|S| =
∣∣∣Zk

d

∣∣∣ /d′ (Lemma 8). This leads to the following bound on κ2(D′,Uk) =

Ok

(
(ln d′/n)r(f)/2

)
.

Theorem 7. Let ZQ,ε denote the problem of finding for every σ ∈ Zn
d , an assignment

τ ∈ Zk
d that is ε-correlated with σ given access to distribution Q f

σ over Xk × Zd. Then
there exists a constant cQ > 0 such that for any ε > 1/

√
n and q ≥ n,

SDN

ZQ,ε,
cQ

(
log q

)r/2

nr/2 , 2e−n·ε2/2

 ≥ q ,

where r = r(f) is the distributional complexity of f .

67

3.5 Security Analysis

In this section we analyze the security of a human computable password scheme
using our statistical query lower bounds as a building block. In section 3.5.1 we
show that any adversary that breaks UF-RCA security can also (approximately)
recover the secret mapping σ. As we showed in Section 3.4 statistical algorithms
need at least m = Ω̃

(
nr(f)/2

)
challenge-response pairs to recover the secret map-

ping. This implies that no statistical adversary can break UF-RCA security. This
is significant because most known algorithmic techniques can be modeled within
the statistical query framework. While Gaussian Elimination is a notable excep-
tion, we show that an adversary needs m = Ω̃

(
nr(f)/2

)
challenge-response pairs to

recover σ using Gaussian Elimination in Section 3.5.2 .

3.5.1 Breaking UF-RCA is Equivalent to Secret Recovery

Theorem 6 only establishes that it is hard for a statistical adversary to properly
learn the secret mapping σ. Could an adversary win our password security game
without properly learning the secret mapping? In learning theory it is NP-hard to
find a 2-term DNF that is consistent with a given dataset. However, just because
2-DNF is hard to learn in the proper learning model does not mean that learning
2-DNF is hard. Indeed, if we allow our learning algorithm to output a linear
classifier instead of a 2-term DNF then 2-DNF is easy to learn [96]. Of course,
for some functions it is very easy to predict challenge-response pairs without
learning σ. For example, if f is the constant function — or any function highly
correlated with the constant function — then it is easy to predict the value of
f (σ (C)). However, any function that is highly correlated with a constant function
is a poor choice for a human computable passwords scheme. We argue that any
adversary that can win the password game can be converted into an adversary that
properly learns σ provided that our function f has certain reasonable properties.

Definition 11. We say that a function f is (δ1, δ2)—hard to predict if ∀σ, σ′ ∈ Zn
d s.t. σ

is δ1-balanced and σ′ is not δ1-correlated with σ we have

Pr
C∼Xk

[
f (σ (C)) = f (σ′ (C))

]
≤

1
d

+ δ2 .

Intuitively, Definition 11 says that if σ is approximately balanced (e.g., for each
i ∈ Zd the string σ contains≈ n/d i’s) and σ′ is not δ1-correlated with σ then f (σ′ (C))

68

is not a good predictor of f (σ (C)). We note that if f is highly correlated with a
constant function then f (σ′ (C)) will always be a good predictor of f (σ (C)).

Corollary 1 says that any statistical adversary needs to see at least Ω̃
(
nr(f)/2

)
ex-

ample challenge response pairs before it can accurately guess the value of f (σ (C))
for a randomly chosen challenge C ∈ Xk. Corollary 1 follows easily from Theorems
8 and 6.

Theorem 8. Let f be (δ1, δ2)—hard to predict, let σ ∼ Zn
d denote the secret mapping, let

ε > 0 be any constant and suppose that we are given labels `C ∈ Zd for every C ∈ Xk s.t

Pr
C∼Xk

[
f (σ (C)) = `C

]
≥

1
d

+ δ2 + ε .

There is a polynomial time algorithm (in n, 1/ε, 1/δ2) that with high probability finds a
mapping σ′ ∈ Zn

d such that σ′ is δ1-correlated with σ provided that σ is δ1-balanced.

Corollary 1. Let ε > 0 be any constant and let A be any statistical adversary that

outputs labels `C for each clause C ∈ Xk after making at most m = o
(

nr(f)/2

logr(f) n

)
queries to

1-MSTAT
(
nr(f)/2

)
. If f is (δ1, δ2)—hard to predict then with probability 1 − o(1) we have

Pr
σ∼Zn

d
C∼Xk

[
f (σ (C)) = `C

]
≤

1
d

+ δ2 + ε .

We will briefly overview the proof of Theorem 8 here — see Appendix 8.4
for more details. We first randomly partition [n] into n/τ parts S1, ...,Sn/τ where
τ = Õ

(
log n

)
. For each set Si, we can check all of the mappings σ′i (Si) ∈ Zτd to find

the one that is consistent with the most noisy labels `C for each C ∈ Si. With high
probability for each set Si we have

Pr
[
`C = f (σ (C)) C ⊂ Si

]
≈ Pr

[
`C = f (σ (C))

]
.

Because f is (δ1, δ2)—hard to guess this means that for each i the strings σ′i (Si) ∈ Zτd
and σ (Si) ∈ Zτd are δ2-correlated. We combine each of the σ′i mappings to construct
a mapping σ′ ∈ Zn

d that is δ2-correlated with σ.

Theorem 9 further extends our argument. Any adversary A that can win our
security game could be used in a blackbox manner to recover a mapping σ′ that is
highly correlated with the secret mapping σ. Theorem 9 implies that no statistical
adversary can break the security of our human computable password schemes
with o

(
ns(f)

)
examples.

69

Theorem 9. Suppose that f is (δ1, δ2)—hard to predict, but that f is not UF−RCA (n,m, t, δ)−

secure for δ >
(

1
d + δ2 + ε

)t
. Then there is a probabilistic polynomial time algorithm (in n,

m, 1/δ1, 1/δ2, 1/ε) that extracts a string σ′ ∈ Zn
d that is c-correlated with σ after seeing

Õ (m) examples, where c > 0 is a constant.

To prove Theorem 9 we first show how to use the adversary A as a blackbox
to generate (noisy) predictions `C for every clause C ∈ Xk. By Lemma 8 we can
use these predictions to find a mapping σ′ that is highly correlated with the secret
mapping σ.

We use AC1,...,Cm : (Xk)
t
→ Zt

d to denote an adversary who sees examples
C1, . . . ,Cm ∈ Xk and f (C1) , . . . , f (Cm). AC1,...,Cm

(
C′1, . . . ,C

′

t

)
∈ Zt

d denotes the ad-

versaries prediction of f
(
σ
(
C′1

))
, . . . , f

(
σ
(
C′t

))
. Given a function b : (Xk)

t
→ Zt

d,

challenges C′1, . . . ,C
′

t ∈ Xk and responses f
(
σ
(
C′1

))
, . . . , f

(
σ
(
C′t

))
we usePb,i,C′1,...,C

′
m

:
Xk × [t]→ Zd ∪ {⊥} to predict the value of a clause C ∈ Xk

Pb,C′1,...,C
′

t
(C, i) =

b
(
Ĉ1, . . . , Ĉt

)
[i], if f

(
σ
(
Ĉ j

))
= b

(
Ĉ1, . . . , Ĉt

)
[j] ∀ j < i

⊥, otherwise

where Ĉi = C and Ĉ j = C′j for j , i. We allow our predictor Pb,C′1,...,C
′

t
(C, i) to output

⊥ when it is unsure. Informally, Claim 1 says that for b = AC1,...,Cm our predictor
Pb,i,C′1,...,C

′
m

is reasonably accurate whenever it is not unsure. The proof of Claim 1
can be found in Appendix 8.4. Briefly, Claim 1 follows because for b = AC1,...,Cm we
have

Pr [Wins (A,n,m, t)] =

d∏
i=1

Pr
C∼Xk

C1,...,Cm∼Xk
C′1,...,C

′

t∼Xk

[
Pb,C′1,...,C

′

t
(C, i) = f (σ (C)) Pb,C′1,...,C

′

t
(C, i) , ⊥

]
.

Claim 1. Let A be an adversary s.t Pr [Wins (A,n,m, t)] >
(

1
d + δ + ε

)t
and let b =

AC1,...,Cm then

Pr
i∼[t],C∼Xk

C1,...,Cm∼Xk
C′1,...,C

′

t∼Xk

[
Pb,C′1,...,C

′

t
(C, i) = f (σ (C)) Pb,C′1,...,C

′

t
(C, i) , ⊥

]
≥

(1
d

+ δ + ε
)
.

70

Now we can select a random index iC ∼ [t] for each clause C ∈ Xk, and set
`C = Pb,C′1,...,C

′

t
(C, iC) whenever Pb,C′1,...,C

′

t
(C, iC) , ⊥. The remaining challenge is that

we need to label for all of the clauses C ∈ Xk before we can apply Theorem 8. To
ensure that all clauses are labeled we construct multiple independent predictors.
Notice that for each clause C ∈ Xk the probability thatPb,C′1,...,C

′

t
(C, iC) , ⊥ is at least

1/t (the probability that iC = 1).

3.5.2 Gaussian Elimination

Most known algorithmic techniques can be modeled within the statistical query
framework. Gaussian Elimination is a notable exception. As an example con-
sider the function f (x1, . . . , x7) = x1 + . . . + x7 mod 10 (in this example r(f) = 7
and g(f) = 0). Our previous results imply that any statistical algorithm would
need to see at least m = Ω̃

(
n7/2

)
challenge response pairs

(
C, f (σ (C))

)
to recover

σ. However, it is trivial to recover σ from O(n) random challenge response
pairs using Gaussian Elimination. In general, consider the following attacker
shown in algorithm 3.1, which uses Gaussian Elimination. Algorithm 3.1 relies
on the subroutine TryExtract

(
C, f (σ (C)) S, α

)
, which attempts to extract a linear

constraint from
(
C, f (σ (C))

)
under the assumption that σ (S) = α. We assume

TryExtract
(
C, f (σ (C)) S, α

)
returns ∅ if it cannot extract a linear constraint.

Algorithm 3.1 GaussianAttack

Input: Clauses C1, . . . ,Cm ∼ Xk, and labels f (σ (C1)) , . . . , f (σ (Cm)).
for all S ∈ Xg(f), α ∈ Z

g(f)
d do

LC← ∅ . LC is the set of linear constraints extracted
for all C ∈ {C1, . . . ,Cm} do

LC← LC
⋃

TryExtract
(
C, f (σ (C)) ,S, α

)
if |LC| ≥ n then

σ′ ← LinearSolve (LC)
if ∀i ∈ [m]. f (σ′ (Ci)) = f (σ (Ci)) ∈ C then return σ′

Fact 1 says that an attacker needs at least m = Ω̃
(
n1+g(f)

)
challenge-response

pairs to recover σ using Gaussian Elimination. This is because the probability

that TryExtract
(
C, f (σ (C)) S, α

)
extracts a linear constraint is at most O

((
|S|
n

)−g(f)
)
,

which is O
(
n−g(f)

)
for |S| constant. The adversary needs O(n) linearly independent

71

constraints to run Gaussian Elimination. If the adversary can see at most Õ
(
ns(f)

)
examples neither approach (Statistical Algorithms or Gaussian Elimination) can
be used to recover σ.

Fact 1. Algorithm 3.1 needs to see at least m = Ω̃
(
n1+g(f)

)
challenge-response pairs to

recover σ.

Remark 2 explores the tradeoff between the adversary’s running time and the
number of challenge-response pairs that an adversary would need to see to recover
σ using Gaussian elimination. In particular the adversary can recover σ from
Õ

(
n1+g(f)/2

)
challenge-response pairs if he is willing to increase his running time

by a factor of d
√

n. In practice, this attack may be reasonable for n ≤ 100 and d = 10,
which means that it may be beneficial to look for candidate human computable
functions f that maximize min{r(f)/2, 1+ g(f)/2} instead of s(f) whenever n ≤ 100.

Remark 2. If the adversary correctly guesses value of σ (S) for |S| = nε then he may be
able to extract a linear constraint from a random example with probability Ω(1/n(1−ε)g(f)).
The adversary would only need Õ

(
n1+(1−ε)g(f)

)
examples to solve for σ, but his running

time would be proportional to dεn — the expected number of guesses before he is correct.

3.6 Candidate Secure Human Computable Functions

For all of our candidate human computable functions f : Zk
d → Zd we fix d = 10

because most humans are used to performing arithmetic operations on digits. A
good human computable function should balance security and usability. A secure
human computable function should have r(f) and g(f) large. This makes it chal-
lenging to simultaneously achieve usability because usable human computable
function should only require the user to perform a few simple operations to eval-
uate f . We present two candidate human computable functions and analyze their
security parameters. We consider the usability of our human computable pass-
word schemes by (1) discussing ways that the secret mapping could be memorized
easily, (2) analyzing the extra effort that a user needs to spend rehearsing to re-
member the secret mapping σ, and (3) estimating the time it would take a human
user to compute a password. Algorithms 3.2 and 3.3 illustrate the authentication
process. To protect users from offline attacks in the event of a server breach, pass-
words should be stored using a slow cryptographic hash function H like BCRYPT
[122]. Servers could also use GOTCHAs (Chapter 6) or HOSPs [51] for additional
protection.

72

(a) MD,2 (b) MD,9

Figure 3.1: Mnemonics to help memorize the secret mapping σ

Mnemonics to help memorizeσ In practice, we envision that the user memorizes
a mapping from n objects (e.g., images) to digits. For example, if n = 26 and d = 10
then the user might memorize a mapping from characters to digits. To memorize
the mapping σ(D) = 2 we might show a visually inclined user an animation of
the letter D transforming into a 2 (see Figure 3.1a). If instead σ(D) = 9 then we
would show the user a different animation (see Figure 3.1b). One nice feature of
this approach is that we only need to generate nd illustrations to help our users
memorize any mapping (e.g., to help users memorize any mapping from characters
to digits we would need just 260 such illustrations — 10 for each character).

Algorithm 3.2 CreateChallenges

Input: n, m, base d, random bits b, images I1, ..., In, and mnemonic helpers Mi, j

for i ∈ [n], j ∈ {0, . . . , d − 1}.
. Generate and Memorize Secret Mapping

for i = 1→ n do
σ (i) ∼ {0, . . . , d − 1} %Using random bits b
Mi ←Mi,σ(i)

(User) Using Mi memorizes the association (Ii, σ (i)) for i ∈ [n].
. Generate Challenges

for i = 1→ m do
for j = 1→ t do

Ci
j ∼ Xk

~Ci ←
〈
Ci

1, . . . ,C
i
t

〉
. H is a strong cryptographic hash function

(User) Computes
〈
q1, . . . , qt

〉
= f

(
σ
(
~Ci

))
(Server i) Stores hi = H

(
~Ci,

〈
q1, . . . , qt

〉)
return ~C1, . . . , ~Cm

73

Algorithm 3.3 Authenticate

Input: Security parameter t. Account i ∈ [m]. Challenges ~C1, . . . , ~Cm.〈
Ci

1, . . . ,C
i
t

〉
← ~Ci . Display Single Digit Challenges

for j = 1→ t do
(Semi-Trusted Computer) Displays Ci

j to the user.

(User) Computes q j ← f
(
σ
(
C j

i

))
.

(Semi-Trusted Computer) Sends
〈
q1, . . . , qt

〉
to the server for account i.

(Server) Verifies that H
(
~Ci,

〈
q1, . . . , qt

〉)
= hi

3.6.1 Candidate Scheme 1

Our first candidate human computable password scheme uses the function

f1 (x0, x1, x2, x3, x4, . . . , x13) = x13 + x12 + x(x11+x10 mod 10) mod 10 .

Claim 2 and Theorems 6 and 9 provide strong evidence that an adversary will need
to see Ω̃

(
n1.5

)
example challenge-response pairs before he can recover the secret

mapping σ or begin to forge the user’s passwords. A formal proof of Claim 2 can be
found in the appendix. We first observe that to influence the value of f1(x0, . . . , x13)
we must fix the values of x12, x13 and at least one xi for i ∈ Z10. Similarly, we
must fix the values of x10 and x11 to make the resulting function linear. Therefore,
r(f1) = 3 and g(f1) = 2.

Claim 2. r(f1) = 3, g(f1) = 2 and s(f1) = 3/2.

The proof of fact 2 can be found in the appendix.

Fact 2. f1 is (0.01, 0.045)—hard to predict.

Remark 3. Claim 2 and Theorem 6 imply that any statistical adversary needs to see
Ω̃

(
n3/2

)
example challenge-response pairs to recover σ in the human computable password

scheme given by f1. Fact 2 and Corollary 1 demonstrate that a statistical adversary needs
at least Ω̃

(
n3/2

)
example challenge response pairs before it can guess the response to a

random challenge with probability > 0.145. Theorem 9 provides strong evidence that f1 is
UF − RCA (n,m, t, δ) − secure for m = Ω̃

(
n3/2

)
and δ > 0.145t.

74

3.6.2 Candidate Scheme 2

Our second candidate human computable password scheme uses the function

f2 (x0, x1, x2, x3, x4, . . . , x13) = x13 + x12 + x11 + x(x10 mod 10) mod 10 .

Claim 3 and Theorem 6 provide strong evidence that an adversary will need to see
Ω̃

(
n1.5

)
example challenge-response pairs before he can recover the secret mapping

σ or begin to forge the user’s passwords. The proof of Claim 3 is very similar to
the proof of Claim 2. To influence the value of f1(x0, . . . , x13) we must fix the values
of x11, x12, x13 and at least one xi for i ∈ Z10. Similarly, we must fix the value of x10

to make the resulting function linear. Therefore, g(f2) = 1 and r(f2) = 3.

Claim 3. r(f2) = 4, g(f2) = 1 and s(f2) = 2.

Fact 3. f2 is (0.01, 0.01)—hard to predict.

Remark 4. Claim 2 and Theorem 6 imply that any statistical adversary needs to see Ω̃
(
n2)

example challenge response pairs to recover σ in the human computable password scheme
given by f2. Fact 2 and Corollary 1 demonstrate that a statistical adversary needs at
least Ω̃

(
n2) example challenge response pairs before it can guess the response to a random

challenge with probability> 0.11. Theorem 9 provides strong evidence that f1 is (n,m, t, δ)
for m = Ω̃

(
n2) and δ > 0.11t.

3.6.3 Usability:

We analyze usability along two dimensions: (1) the extra effort required for the
user to memorize and rehearse the secret mapping σ, and (2) the time that it takes
the user to compute his password when he wants to login.

Memorizing and Rehearsing σ

We adopt the usability model from Chapter 2.4 to quantify the extra effort that a
user would need to spend rehearsing the mapping σ (the results are summarized
in Table 3.1).We quantify usability by calculating E [XR365], the expected number
of extra rehearsals that the user will be required to do to remember the secret
mapping σ during the first year.

75

Review. Suppose that the user has m accounts A1, . . . ,Am. Recall that a visitation
schedule for an account Ai is a sequence of real numbers τi

0 < τi
1 < . . ., which

represent the times when the account Ai is visited by the user. Recall that a rehearsal
requirement

[
tĉ
i , t

ĉ
i+1

)
for a cue-association pair (ĉ, â) can be satisfied naturally if the

user visits a site A j that uses the cue ĉ
(
ĉ ∈ c j

)
during the given time window.

Here, c j denote the set of cue-association pairs that the user must remember when
logging into account A j. In our case the user must remember the cue-association
pairs (i, σ (i)) for each i ∈ [n].

Example: Consider the human computable function f1 from Section 3.6, and
suppose that the user has to compute f1 (σ (Ci)) to authenticate at account A j,
where Ci = (x0, . . . , x13). When the user computes f1 he must rehearse the as-
sociations (x10, σ (x10)), (x11, σ (x11)), (x12, σ (x12)), (x13, σ (x13)) and (xi, σ (xi)) where
i = (σ (x10) + σ (x11) mod 10). Thus c j ⊃ {xi, x10, x11, x12, x13}. When user authenti-
cates he naturally rehearses each of these associations in c j.

Evaluating Usability Given a sufficient rehearsal schedule and a visitation sched-
ule, Theorem 1 predicts the value of XRt, the total number of extra rehearsals that
a user will need to do to remember all of the cue-association pairs required to
reconstruct all of his passwords for t days. We use the formula from Theorem 1
to obtain the usability results in Table 2.3. To evaluate this formula we need to
be given the rehearsal requirements, a visitation schedule (λi) for each account
Ai and a set of public challenges ~Ci ∈ (X14)10 for each account Ai. The rehearsal
requirements are given by the Expanding Rehearsal Assumption from Chapter
2.4 (we use the same association strength parameter σ = 1), and the visitation
schedules for each user are given in Table 2.1. We assume that each password is
10 digits long and that the challenges ~Ci ∈ (X14)10 are chosen at random by algo-
rithm 2.2. Notice that each time the user responds to a single digit challenge he
rehearses the secret mapping at five locations (see section 3.6.3). Because the value
of E [XR365] depends on the particular password challenges that we generated for
each account, we ran Algorithm 3.2 and computed the resulting value E [XR365]
one-hundred times. The values in Table 2.3 represent the mean value of E [XR365].

Discussion One of the advantages of our human computable passwords schemes
is that memorization is essentially a one time cost for our Very Active, Typi-
cal and Occasional users. That is once the user has memorized the mapping

76

Our Scheme
(
σ ∈ Zn

10

)
Shared Cues

User n = 100 n = 50 n = 30 SC-0 SC-1 SC-2
Very Active 0.396 0.001 ≈ 0 ≈ 0 3.93 7.54
Typical 2.14 0.039 ≈ 0 ≈ 0 10.89 19.89
Occasional 2.50 0.053 ≈ 0 ≈ 0 22.07 34.23
Infrequent 70.7 22.3 6.1 ≈ 2.44 119.77 173.92

Table 3.1: E [XR365]: Extra Rehearsals over the first year to remember σ in our
scheme. Compared with Shared Cues schemes SC-0,SC-1 and SC-2[33].

A B C D
0 E 5 J
1 F 6 K
2 G 7 L
3 H 8 M
4 I 9 N

Table 3.2: Single-Digit Challenge Layout in Scheme 1

σ : {1, ...,n} → Zd he will get sufficient natural rehearsal to maintain this memory.
With the exception of SC-0 (the least secure Shared Cues scheme), our schemes re-
quire the user to expend less extra effort rehearsing his secret mapping. Intuitively,
this is because human computable password schemes give the user more op-
portunities to naturally rehearse σ during the authentication process. To compute
f1 (σ ({1, . . . , 14})) the user would need to recall the values of σ(11), σ(12), σ(13), σ(14)
and σ (1 + (σ(11) + σ(12) mod 10)). If the user has 10 digit passwords then he will
naturally rehearse the value of σ at up to fifty different locations each time he
computes one of his passwords. The disadvantage is that the user needs to spend
extra time computing his password each time he authenticates.

Computation Time

To help the user compute the response to a single digit challenge C more quickly
a semi-trusted computer could display the challenge in a more helpful manner.
For example, the challenge C = (E,F,G,H, I, J,K,L,M,N,A,B,C,D) ∈ X14 might be
displayed to the user as in Table 3.2. Now to compute f (σ (C)) in scheme 1 the
user would execute the following steps (1) Recall σ(A) — the number associated

77

with the letter A, (2) Recall σ(B), (3) Compute i = σ(A) + σ(B) mod 10 — without
loss of generality suppose that i = 8, (4) Find the letter at index i—M if i = 8, (5)
Recall σ(M) (6) Recall σ(C) (8) Compute j = σ(M) + σ(C) mod 10 (9) Recall σ(D)
(10) Return j + σ(D) mod 10.

Notice that the computation at each step only relies on values from the last two
steps so we do not require the user to keep more than 7 chunks of information in
active memory [108]. Thus, in scheme 1 the user can compute his response to a
single-digit challenge in 10 mental steps, and it would take 10` steps to respond
to a length-` password challenge.

We timed ourselves to determine how long each scheme took one of the authors
to evaluate. After the first author had memorized the secret mapping it took him
t̂ = 7.5 seconds on average to respond to compute the response f (σ (C)) to a
random challenge C ∈ Xk in both schemes. Thus, our schemes are 7.5-human
computable for at least some human users so it would take 75 seconds to compute
a 10 digit password using this scheme4.

3.6.4 Statistical Algorithms: Security Upper Bound

Theorem 10 demonstrates that our lower bound for statistical algorithms are
asymptotically tight for both of our human computable password schemes. In
particular, we demonstrate that m = Õ

(
nr(f)/2

)
queries to 1-MSTAT are sufficient

for a statistical algorithm to recover σ.

Theorem 10. For fi ∈ { f1, f2} there is a randomized algorithm that makes O
(
nmax{1,r(fi)/2} log2 n

)
calls to the 1-MSTAT

(
ndr(fi)/2e

)
oracle and returns σ with probability 1 − o(1).

For binary functions f ′ : {0, 1}k → {0, 1}, Feldman et al. [73] gave a random-
ized statistical algorithm to find σ′ ∈ {0, 1}n using just O

(
nr(f)/2 log2 n

)
calls to the

1-MSTAT
(
ndr(f)/2e

)
oracle. Their main technique is a discrete spectral iteration pro-

cedure to find the eigenvector (singular vector) with the largest eigenvalue (singu-
lar value) of a matrix M sampled from a distribution Mσ′,p over

∣∣∣Xbr(f)/2c

∣∣∣× ∣∣∣Xdr(f)/2e

∣∣∣
matrices. With probability 1− o(1) this eigenvector will encode the value σ′ (C) for
each clause C ∈ Xr(f)/2. We show that the discrete spectral iteration algorithm of

4Admittedly, we may not be a representative sample for an average human user, but we would
argue that this is at least a reasonable approximation of the average member of the computer
science community.

78

Feldman et al. [73] can be extended to recover σ ∈ Z10 when f ∈ { f1, f2} is one of
our candidate human computable functions. See Appendix 8.4.1 for more details.

Discussion We note that Theorem 10 cannot be extended to arbitrary func-
tions f : Zk

d → Zd. Consider for example the unique function f : Z6
10 →

Z10 s.t. f (x1, . . . , x6) ≡ f ′ (x1 mod 2, . . . , x6 mod 2) mod 2 and f (x1, . . . , x6) ≡
f ′′ (x1 mod 5, . . . , x6 mod 5) mod 5, where f ′ : Z6

2 → Z2 and f ′′ : Z6
5 → Z5.

By the Chinese Remainder Theorem instead of picking a secret mapping σ ∈ Zn
10

we could equivalently pick the unique secret mappings σ1 ∈ Zn
2 and σ2 ∈ Zn

5 s.t
σ ≡ σ1 mod 2 and σ ≡ σ2 mod 5. Now drawing challenge response pairs from
the distributions Q f

σ is equivalent to drawing challenge-response pairs from the
distributions Q f ′

σ1
and Q f ′′

σ2 . Suppose that f ′(x1, . . . , x6) = x1x2 + x3 + x4 + x5 + x6

mod 2, and f ′′(x1, . . . , x6) = x1. Then we have r(f) = min
(
r(f ′), r(f ′′)

)
= r(f ′′) = 1,

but r(f ′) = 4. We can find σ2 using O
(
n log2 n

)
calls to 1-MSTAT(n), but to find σ

we must first recover σ1, which requires Ω̃
(
nr(f ′)/2

)
= Ω̃

(
n2) calls to 1-MSTAT

(
n2).

3.7 Discussion

3.7.1 Human Computable Passwords Challenge

Our security lower bounds are asymptotic (e.g., an adversary needs to see
m = Ω̃

(
ns(f)

)
challenge-response pairs to forge passwords), but in our con-

text the constants are very important. To better understand the exact security
bounds in our scheme we created several public challenges to break our can-
didate human computable password schemes under different parameters (see
Table 8.1). The challenges can be found athttp://www.cs.cmu.edu/˜jblocki/
HumanComputablePasswordsChallenge/challenge.htm. For each challenge we
selected a random secret mapping σ ∈ Zn

10, and published (1) m single digit
challenge-response pairs

(
C1, f (σ (C1))

)
,. . .,

(
Cm, f (σ (Cm))

)
, where each clause Ci is

chosen uniformly at random from Xk, and (2) 20 length—10 password challenges
~C1, . . . , ~C20 ∈ (Xk)

10. The goal of each challenge is to correctly guess one of the
secret passwords pi = f

(
σ
(
~Ci

))
for some i ∈ [20]. More details can be found in

Appendix 8.1.

79

http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm
http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm

3.7.2 Security Under Continuous Leakage

Consider the following scenario: the adversary infects the user’s computer with
malware which is never detected. Every time the user computes a password in
response to a challenge the adversary observes the password in plaintext. One
way to protect the user in this extreme scenario would be to generate multiple (e.g.,
106) one-time passwords for each of the user’s accounts. While usability concerns
make this approach infeasible in a traditional password scheme (it would be far
too difficult for the user to memorize a million one-time passwords for each of
his accounts), it may be feasible to do this using a human computable password
scheme. When we initially generate the secret mapping σ ∼ Z100

d we could also
generate cryptographic hashes for multiple one-time passwords H

(
~C, f3

(
σ
(
~C
)))

.

We conjecture that the following candidate human computable password scheme
f3 could be used to provide security even in this extreme scenario

f3 (x0, x1, x2, x3, x4, . . . , x31) =

 31∑
i=21

xi

 + x(∑20
i=10 xi mod 10) mod 10 .

The drawback is that f3 will take longer for a user to execute in his head. It
requires the user to perform 23 additions modulo 10 compared with three in the
previous schemes f1 and f2. The advantage is that the security parameters are
quite strong (e.g., g(f3) = 11, r(f3) = 12 and s(f3) = 6), which implies that a
polynomial time adversary needs m = Ω̃

(
n6) challenge response pairs to recover

the secret mapping. If n = 100 then the adversary would need around 1012

challenge response pairs before he could break UF-RCA security. Even if the
adversary runs in time proportional to n

√
n and uses the attack from remark 2 he

would still need Ω̃
(
n1+5.5

)
examples. If we make the reasonable assumption that a

single user has at most 105 accounts and never authenticates to any single account
more than 106 times over the course of his life then the adversary will never see
enough examples to recover σ.

3.7.3 Open Questions

Can we precisely characterize the functions f : Zk
d → Zd for which we can ef-

ficiently recover σ after seeing Õ
(
nr(f)/2

)
challenge-response pairs? Feldman et

al. [73] gave a statistical algorithm that recovers the secret mapping whenever

80

d = 2 after making Õ
(
nr(f)/2

)
queries to 1-MSTAT

(
nr(f)/2

)
. While we show that

the same algorithm can be used to recover σ after making Õ
(
nr(f)/2

)
queries to

1-MSTAT
(
nr(f)/2

)
in our candidate human computable password schemes with

d = 10, we also showed that these results do not extend to all functions f : Zk
d → Zd.

Improving Usability Is it possible to improve usability by designing a human
computable function f : Zk

10 → Z100? This could potentially allow the user to
generate a secure length t password after responding to only t/2 challenges. Our
statistical dimension lower bounds also hold for functions f : Zk

d1
→ Zd2 . As

before the challenge would be designing a function that is human computable and
has strong security properties (e.g., s(f) is large and f is (δ1, δ2)-hard to guess).

81

82

Chapter 4

Empirical Validation of User Model

4.1 Introduction

In this chapter we discuss our ongoing user study to quantify the effects of rehearsal
and the use of mnemonic techniques on long term memory retention. We are
conducting this study online using Amazon’s Mechanical Turk framework. Our
goal is to empirically evaluate the usability model presented in Chapter 2 as well
as the Shared Cues password management scheme.

Specific Rehearsal Schedules: Recall that the usability model of Chapter 2 was
based on a sufficient rehearsal assumption. The expanding rehearsal assumption
from Chapter 2 said that a user can maintain a memory by rehearsing once during
each of the time intervals

[
2iσ , 2(i+1)σ

)
, where i ∈N is number of previous rehearsals

and σ is a constant that measures association strength. This assumption implies
that after the i’th rehearsal a user will be able to recall a memory for 2iσ more days
without any additional rehearsals. Wozniak and Gorzelanczyk [160] conducted an
empirical study of undergraduate students who were learning vocabulary words
for a foreign language. Their results indicated that σw varied slightly with each
vocabulary word w (σw was smaller for difficult vocabulary words). This raises
an important question. What specific rehearsal schedules work in our password
context?

Advantages of Mnemonic Techniques: In Chapter 2 we simply used σ = 1 to
measure the usability of a password management scheme, whether or not the
password management scheme used mnemonic techniques to help users remem-
ber their passwords. This raises an important question. Does the use of mnemonic

83

techniques (e.g., method of loci, person-action-object stories) allow us to safely
adopt a rehearsal schedule with longer intervals in between rehearsals? More
formally, is σmnemonic > σnon−mnemonic?

Interference: Suppose that our user is able to remember a person-action-object
story by following the rehearsal schedule given by the expanding rehearsal as-
sumption with association strength σ. Can our user memorize n person-action-
object stories by following the same rehearsal schedule or does the user need to
follow a more conservative schedule (smaller value of σ) when he is memorizing
multiple person-action-object stories?

Study Overview Each participant in the study was asked to memorize several
randomly selected actions (e.g., ‘swallowing,’ ‘kicking’) and several randomly
selected objects (e.g., ‘bike,’ ‘car’). Participants assigned to the mnemonic group
were given specific instructions about how to memorize the actions following the
Shared Cues password management scheme in Chapter 2.6. To help participants in
the mnemonic group memorize one of their action(s) and object(s) each participant
was shown two additional photos of a person and a scene and was asked to imagine
the corresponding person-action-object story taking place inside the scene (e.g.,
the user might be shown a photos of Bill Gates and a beach and asked to imagine
“Bill Gates swallowing a bike on the beach.”). Other participants were assigned
to the standard group and were simply instructed to memorize their actions and
objects (e.g., by typing in their words several times). Participants were paid
$0.50 for completing the memorization phase. After participants memorized their
words we periodically asked them to return to rehearse their words. During
each rehearsal participants in the mnemonic group were shown the photos of the
person and the scene as a cue to help them remember the associated action and
object. Participants in the standard group were simply asked to recall their actions
and objects. Each participant was assigned a specific rehearsal schedule (e.g.,
participants in the aggressive rehearsal group were reminded to rehearse on the
following days: 1, 2, 4, 8, 16, 32, 64). During each rehearsal participants were given
three chances to remember all of their actions and objects (e.g., their password).
To encourage participants to return we paid $0.75 for each complete rehearsal. To
incentivize participants to remember their words we required who forgot their
words to re-complete the memorization phase before paying they were paid $0.75.
Participants who did not remember their words during a rehearsal were not asked

84

to return for future rehearsals.

Preliminary Results. While the user study is still ongoing, we present the re-
sults from completed rehearsals in Section 4.4. Our results provide strong em-
pirical evidence that user can remember person-action-object stories by following
a rehearsal schedule that satisfies the expanding rehearsal assumption. Specific
Rehearsal Schedules: Our results demonstrate the benefit of having several early
rehearsals. Participants who followed the heavierstart rehearsal schedule (a sched-
ule with several rehearsals on day one) have been very successful at remembering
their action-object pairs during rehearsals. Participants following the aggressive
rehearsal schedule (the same schedule as heavierstart, but without the extra re-
hearsal on day 1) struggled to remember all of their action-object pairs during
the first rehearsal on day one (25% of participants forgot at least one of their sto-
ries), but participants who survived this first rehearsal had much higher success
rates during all of the ensuing rehearsals. Mnemonic Advantage: Our results
strongly support the hypothesis that recall is significantly improved by asking
users to follow specific mnemonic techniques to memorize their actions and ob-
jects. Participants in the mnemonic group consistently outperformed participants
in standard text group during each rehearsal. Interference: While participants in
other groups did well, no other group did as well as participants who only had to
memorize one or two action-object pairs – even participants in groups with more
frequent rehearsals. Participants who were asked to memorize only one or two
action-object pairs at a time have perfectly remembered their stories during each
rehearsal phase.

Organization. In Section 4.2 we discuss related work. We then overview the
design of our user study in Section 4.3. While the study is still ongoing we do have
some preliminary results from the study. We present these results in Section 4.4.

4.2 Related Work

Pimsleur[120] proposed a rehearsal schedule to help people memorize unfamil-
iar vocabulary words. His proposed schedule is precisely the schedule given
by expanding rehearsal assumption with the association strength constant set to
σ = log2 5 ≈ 2.3 and the initial delay before the first rehearsal set to 5 seconds
(e.g., he suggested rehearsing after 5 seconds, 25 seconds, 2 minutes, 10 minutes, 5

85

hours, 1 day, 5 days, 20 days). Pimsleur based his recommendations on previous
empirical studies[159, pp. 726 ff]. The application SuperMemo[161] uses a similar
rehearsal schedule to help users remember flashcards. Wozniak and Gorzelanczyk
conducted an empirical study to test these rehearsal schedules[160]. In their study
undergraduate students were asked to memorize and rehearse vocabulary words
for a foreign language by following a rehearsal schedule very similar to the ex-
panding rehearsal schedule1. While these prior studies provide strong empirical
evidence for the expanding rehearsal assumption from Chapter 2 we stress that
there are two key differences in our study: First, because we are asking the user
to memorize secrets that will be used to form passwords our rehearsal schedule
needs to be conservative enough that our user will consistently be able to remem-
ber his secrets during each rehearsal. In other studies the information participants
were asked to memorize (e.g., vocabulary words for a foreign language) was not
secret so if the participant forgot this information during a rehearsal they could
simply look up the correct answer. However, in the password setting the secrets
that the user memorizes should not be written down because they are sensitive so
we will not always be able to refresh the user’s memory if he forgets his secret.
Second, in our password management scheme we are asking users to memorize
secret person-action-object stories by following particular mnemonic techniques.
Because these stories may be easier or harder to memorize than other information
the ideal rehearsal schedule should be tailored to particular mnemonic techniques.
Previous studies have demonstrated that cued recall is easier than pure recall (see
for example [23]) and that we have a large capacity for visual memories[145].
However, we are not aware of any prior studies which compare cued recall and
pure recall when participants are following a rehearsal schedule similar to the one
suggested by the expanding rehearsal assumption.

Bonneau and Schechter conducted a user study in which participants were
encouraged to slowly memorize a stronger password using spaced repetition[42].
Each time a participant returned to complete a distractor task he was asked to login
by entering his password. During the first login the participant was shown four
additional random characters and asked to type them in after his password. To
encourage participants to memorize these four characters they would intentionally

1Wozniak and Gorzelanczyk tracked each students performance with each particular vocab-
ulary word and used that information to estimate how difficult each word was. If a word was
deemed ‘difficult’ then the length of the time interval before the next rehearsal would only increase
by a small multiplicative constant (e.g., 1.5) and if the word was judged to be ‘easy’ then this time
interval would increase by a larger multiplicative constant (e.g., 4).

86

wait a few seconds before displaying them to the user the next time he was asked
to login to complete a distractor task. Once a participant was able to login several
times in a row (without waiting for the characters to be displayed) they would
encourage that participant to memorize four additional random characters in
the same way. They found that 88% of participants were able to recall their
entire password without any prompting three days after the study was completed.
There are several key difference between their study and ours: First, in our study
participants were asked to memorize their entire password at the start of the study.
By contrast, Bonneau and Schechter encouraged participants to slowly memorize
their passwords. Second, Bonneau and Schechter did not tell participants that their
goal was to slowly memorize a strong 56 bit password. By contrast, in our study we
explicitly told participants that their goal was to remember their words (without
writing them down). Finally, participants in our study were given fewer chances
to rehearse their passwords and were asked to remember their passwords over
a longer duration of time (3 months vs 2 weeks). Bonneau and Schechter asked
participants to login 90 times over a two week period. In our study participants
were asked to rehearse at most 11 times over a period of up to 85 days.

4.3 Study Design

Our user study is being conducted online using Amazon’s Mechanical Turk frame-
work. It was approved by the Institutional Review Board (IRB) at Carnegie Mel-
lon University under IRB protocol HS14-294: Sufficient Rehearsal Schedules and
Mnemonic Techniques. After participants consented to participate in the research
study we randomly assigned each participant to a particular study condition.
Members in a particular condition were asked to memorize a particular number of
action-object pairs (either 1,2 or 4) by using a particular memorization technique
(e.g., mnemonic or standard) and following a particular rehearsal schedule (e.g.,
aggressive, conservative, heavystart). After we assigned participants to a study
condition we asked each participant to complete the memorization phase. During
the memorization phase each participant was given several randomly generated
actions (e.g., swallowing) and several randomly generated objects (e.g., bike), and
asked to memorize each word. Participants in mnemonic conditions were given
specific instructions about how to memorize their words. We paid participants
$0.50 for completing the memorization phase. After each participant completed
the memorization phase we asked them to return periodically to rehearse their
words. To encourage participants to return we paid participants $0.75 for each

87

rehearsal — whether or not they were able to remember the words. If a participant
forgot the action and the object then we reminded the participant of the actions and
objects that he had memorized and asked that user to complete the memorization
phase again.

Below we provide examples of the instructions given to each participant during
the memorization and rehearsal phases.

4.3.1 Recruitment Text

On the Mechanical Turk website, participants were recruited with the following
text:

Participate in a Carnegie Mellon University research study on mem-
ory. You will be asked to memorize and rehearse random words for a
50 cent payment. After you complete the memorization phase, we will
periodically ask you to return to check if you still remember the words.
If you forget the words then we will remind you of the words and ask
you to complete the memorization phase again. You will be paid 75
cents upon the completion of each rehearsal.

Because this is a memory study we ask that you do not write down
the words that we ask you to memorize. You will be paid for each
completed rehearsal phase — even if you forgot the words.

After each participant consented to participate in the research study they were
assigned to the mnemonic group or to the standard group. We then asked each
participant to complete the memorization phase of the study.

4.3.2 Memorization Phase

Mnemonic Group

We first describe the memorization phase for participants assigned to the mnemonic
group. Participants in the mnemonic group were first given the following instruc-
tions.

88

Instructions

This study is being conducted as part of a Carnegie Mellon Univer-
sity research project. It is important that you answer questions honestly
and completely. Please take a minute to read the following instructions.

The goal of this study is to quantify the effects of rehearsal and
the use of mnemonic techniques on long term memory retention. In
this study you will be asked to memorize and rehearse eight random
words (four actions and four objects). During the first phase we will
ask you to memorize the eight random words - you will be paid $0.50
upon completion of the memorization phase. After you complete the
memorization phase we will periodically ask you to return via email to
check if you still remember the words. If you forget the words, we will
remind you of the words and ask you to complete the memorization
phase again. You will be paid $0.75 upon the completion of each
rehearsal.

Important: Because this is a memory study we ask that you do not
write down the words we ask you to memorize. You will be paid for
each completed rehearsal phase - even if you forgot the words. You
have been assigned to the mnemonic group, which means that we give
you specific instructions about how to memorize the words. One of the
purposes of this study is to determine how effective certain mnemonic
techniques are during the memorization task. We ask that you follow
the directions exactly - even if you would prefer to memorize the words
in a different way.

After participants finished reading the instructions the memorization phase
proceeded as follows:

Memorization Steps. Step 0) Initially, participants were shown a photo of a
scene (e.g., Figure 4.1a). Participants were then asked to select a famous person or
character (e.g., Darth Vader) and were shown a photograph of the famous person
that they selected — see Figure 4.1b. We then generated a random action (e.g.,
bribing) and a random object (e.g., roach). See Section 4.3.6 for the lists of people,
actions and objects used in the study.

Figures 4.1a and 4.1b illustrates Step 0. After we generated the random action
and the random object we asked the participant to memorize their action and their

89

(a) Scene: Lily Pads on the Amazon River (b) Person: Darth Vader

Figure 4.1: Memorization Step 0. Scene and Person.

object by completing Steps 1–3. Figure 4.2a illustrates these steps. Step 1) We asked
participants to imagine the person they selected performing the action in the given
scene (e.g., imagine Darth Vader bribing the roach on the lily pad). Step 2) We
asked each participant to make up a story involving their person, action and object
and enter it (e.g., “Darth Vader is bribing a roach”)2. Step 3) Select a photograph of
the action and a photograph of the object, and type in the action and the object two
more times. Step 4) We asked most participants to repeat Steps 0 through 3 four
times using a new scene (e.g., a baseball field or a hotel room underneath the sea),
a new famous person/character and a new — randomly selected — action-object
pair during each repetition. Thus, most participants memorized a total of eight
words (four actions and four objects). Step 5) Finally, we asked each participant
to complete a rehearsal phase (See Figure 4.2b).

Standard Group

We next describe the memorization phase for participants assigned to the stan-
dard group. Participants in the standard group were first given the following
instructions.

2We required participants to type in a story that contained all of their words in the correct order
(Person-Action-Object)

90

(a) Memorization Steps 1–3. Darth Vader bribing a roach on the lily pad.

(b) Rehearsal Phase. Darth Vader and the photo of the lily pads on the Amazon River
are a cue to aid memory recall.

91

Instructions

This study is being conducted as part of a Carnegie Mellon Univer-
sity research project. It is important that you answer questions honestly
and completely. Please take a minute to read the following instructions.

The goal of this study is to quantify the effects of rehearsal and
the use of mnemonic techniques on long term memory retention. In
this study you will be asked to memorize and rehearse eight random
words (four actions and four objects). During the first phase we will
ask you to memorize the eight random words you will be paid $0.50
upon completion of the memorization phase. After you complete the
memorization phase we will periodically ask you to return via email
to check if you still remember the words. If you forget the words, we
will remind you of the words and ask you to complete the memoriza-
tion phase again. You will be paid $0.75 upon the completion of each
rehearsal.

Important: Because this is a memory study we ask that you do not
write down the words we ask you to memorize. You will be paid for
each completed rehearsal phase even if you forgot the words.

After participants finished reading the instructions the memorization phase
proceeded as follows:

Memorization Steps. Step 0) We generated a random action and a random object,
and displayed these words to the user. Step 1) We asked each participant to spend
one minute memorizing his words. We suggested that participants imagine a
person performing the action with the object. Step 2) We asked each participant to
type in a story which includes the action and the object in the correct order. Step 3)
We asked each participant to type in the both words two times — paying attention
to the order. See Figure 4.2 for an example of Steps 0–3. Step 4) Most participants
were asked to complete Steps 0 through 3 four times to memorize a total of eight
words (four actions and four objects). Step 5) Finally, we asked each participant
to complete a rehearsal phase.

92

Figure 4.2: User Study: Non-Mnemonic Group Memorization Phase

4.3.3 Rehearsal Phase

Each participant was assigned a particular rehearsal schedule. The particular
times that we ask the participant to return were given by the rehearsal schedule
that participant was assigned to use (see Table 4.1). We e-mailed participants to
remind them to return for each rehearsal:

Dear Carnegie Mellon study participant: Please return to (url) to
participate in the next part of the memory study. If you do not return
promptly upon receiving this email, you might not be considered for
future phases of the study. You will receive a $0.75 bonus payment for
completing this task and it should take less than five minutes.

Remember that you should not write down the words that were
assigned to you. You will be paid for each completed rehearsal phase
– even if you forgot the words.

There is no need to return to Mechanical Turk and find the HIT to
receive the bonus, this bonus and any future bonuses will be applied to
this MTurk account automatically as you complete each phase. Please
do not attempt to take the HIT again on MTurk as this will result in a
rejection.

If, for any reason, you do not want to complete the study, please
reply to this email and let us know why, so we can improve our protocol

93

for future studies.
Thank you! The Carnegie Mellon University Study Team

We describe the rehearsal phase below:

Mnemonic Group

Each participant from the mnemonic group was shown the picture of a scene and
the picture of the person that he chose while memorizing his first story during the
memorization phase (see Figure 4.2b). We then asked each participant to recall
the person action object story he made up and enter the associated action and the
object. If the participant was correct then we moved on to the next story. If the
participant was incorrect then we asked the participant to try again. After three
incorrect guesses we asked the participant to repeat the memorization phase with
the same actions and objects, and try again. Once the participant correctly entered
all four action-object pairs the rehearsal is finished.

Standard Group

Each participant from the standard group was simply asked to recall the random
actions and the random objects that he was given during the memorization phase.
If the participant was incorrect then we asked the participant to try again. After
three incorrect guesses we asked the participant to repeat the memorization phase,
and try again. The rehearsal was finished when the participant enters in all of the
actions and objects correctly.

4.3.4 Follow Up Survey

Some participants did not return to rehearse their stories during the rehearsal
phase. We cannot tell whether or not these participants would have remembered
their passwords if they had returned. Instead we can only report the fraction of
participants who remembered their passwords among those who returned for each
rehearsal during the study. There are several reasons why a participant may not
have returned (e.g., too busy, did not get the follow up message in time, convinced
s/he would not remember the password). If participants do not return because
they are convinced that they would not remember the password then this could

94

be a source of bias (e.g., we would be selecting participants who are confident
that they remember the story). Our hypothesis is that the primary reason that
participants do not return is because they were too busy, because they did not get
our follow up message in time or because they do not interested in interacting
with us outside of the initial Mechanical Turk Hit, and not because they were
convinced that they would not remember the story. In order to test our hypothesis
we sent a follow up survey to all participants who did not return to complete a
rehearsal phase. The purpose of this survey was to allow us to check for sources
of biases. Participants were paid 25 cents for completing this survey. The survey
is described below:

You are receiving this message because you recently participated in
a CUPS Memory Study at CMU. A while ago you received an e-mail
to participate in a follow up test. We would like to ask you you to
complete a quick survey to help us determine why participants were
not able to return to complete this follow up study. The survey should
take less than a minute to complete, and you will be paid 25 cents for
completing the survey. The survey consists of one question. Which of
the following reasons best describes why you were unable to return to
take the follow up test?

A I no longer wished to participate in the study.
B I was too busy when I got the e-mail for the follow up test.
C I did not see the e-mail for the follow up test until it was too late.
D I was convinced that I would not be able to remember the words/stories

that I memorized when I received the e-mail for the follow up test.
E I generally do not participate in follow up studies on mechanical

turk.

Discussion It is possible that some participants will choose not to participate
in the follow up survey. However, in our case their decision not to participate is
valuable information which supports our hypothesis.

4.3.5 Rehearsal Schedules

Each user was assigned one of the rehearsal schedules from Table 4.1. If the par-
ticipant was assigned to the Aggressive rehearsal schedule then we would send

95

that participant a reminder to rehearse 1 day after the memorization phase. If that
participant successfully completes the first rehearsal phase then we will send that
participant another reminder to rehearse 2 days after the memorization phase, and
the next reminder would come on day four, etc... The final rehearsal would take
place on day 64.

We use the following syntactic pattern to denote a group of participants (Mem-
orization Technique) (Rehearsal Schedule) (Number of action-object pairs memo-
rized). For example, a participant in the group mnemonic aggressive4 refers to a
user who was asked to memorize four actions and four objects using the mnemonic
techniques we suggested and to rehearse his person-action-object stories follow-
ing the Aggressive rehearsal schedule from Table 4.1. Because most participants
were asked to memorize four actions and four objects we will sometimes drop the
number at the end unless the participants was only asked to memorize one or two
action-object pairs.

Remark 5. We use the label “Aggressive” to refer to a rehearsal schedule that we believe
will be more challenging for each participant (e.g., the length of time between consecutive
rehearsals grows at a faster rate). Similarly, we use the label “Conservative” to refer to a
rehearsal schedule that we believe will be less challenging for each participant.

Schedule Multiplier Base Rehearsal Times
Aggressive ×2 1 Day 1, 2, 4, 8, 16, 32, 64
Conservative ×1.5 1 Day 1, 2.5, 5, 8, 13, 21,32,49,74
Very Conservative ×1.5 0.5 days 0.5, 1.25, 2.4, 4, 6.5,

10,16,24,37,56,85
Heavy Start ×2 1 Day 0.1, 0.5, 1, 2, 4, 8, 16, 32, 64
Heavier Start ×2 30 min 1 hr, 2 hr, 4 hr, 8 hr, 1 day, 2

, 4 , 8, 16 , 32 , 64

Table 4.1: Rehearsal Schedules

4.3.6 List of People, Actions and Objects from the User Study

Here are a list of the people, actions and objects we used in the study.

96

People: Bill Gates, Bill Clinton, George W Bush, Lebron James, Kobe Bryant, Brad
Pitt, Darth Vader, Luke Skywalker, Frodo, Gandalf, Michael Jordan, Tiger Woods,
Michael Phelps, Angelina Jolie, Albert Einstein, Oprah Winfrey, Nelson Mandela,
Bart Simpson, Homer Simpson, Adolf Hitler, Steve Jobs, Mark Zuckerberg, Justin
Timberlake, Jay Z, Beyonce, Kim Jong Un, Joe Biden, Barack Obama, Pope Francis,
Rand Paul, Ron Paul, Ben Afleck, Hillary Clinton, Jimmy Fallon

Actions: gnawing, mowing, rowing, oiling, egging, waving, bowing, seizing,
stewing, signing, searing, bribing, swallowing, sucking, saving, sipping, tazing,
tattooing, drying, dueling, dodging, tugging, taping, nosing, hunting, numb-
ing, inhaling, knifing, nipping, muddying, miming, marrying, mauling, mashing,
mugging, moving, mopping, racing, riding, reeling, reaching, raking, lassoing,
welding, aligning, leashing, elbowing, juicing, shining, sheering, judging, chok-
ing, chipping, coating, concealing, destroying, kissing, aiming, kicking, punch-
ing, canning, combing, gluing, cooking, giving, copying, vising, voting, fanning,
fuming, firing, fishing, high fiving, batting, burying, plowing, puking, popping,
tasting, pulling, climbing, weeping, swimming, stretching, following, paddling,
howling, smelling, rolling, waking, jumping

Objects: saw, teacup, hen, ammo, arrow, owl, shoe, cow, hoof, boa, sauce, suit,
snow, piranha, chainsaw, shark, tiger, snake, razor-blade, sumo, seal, sock, safe,
soap, daisy, toad, dime, tire, dish, duck, dove, ant, onion, wiener, nail, navy, menu,
mummy, hammer, mail, microphone, horse, rat, iron, ram, pin, roach, rib, lion,
lime, leach, lock, leaf, cheese, jet, chain, chime, gyro, chili, jeep, goose, cat, wagon,
igloo, couch, cake, coffee, cab, vase, foot, phone, waffle, fish, bus, patty, bunny,
bomb, pill, bush, bike, beehive, puppy, kite, canoe, boar, apple, moon, moose,
tepee, ditch, key, shoe, home, toe, nose, cheetah

4.4 Preliminary Results

We say that a participant survived through rehearsal i if that participant correctly
remembered all of his stories in ≤ 3 attempts during rehearsals j = 1, . . . , i, and
we used Survived (i) to denote the number of participants who survived through
rehearsal i (Survived (0)) denotes the number of initial participants). Table 4.2
shows how many participants survived each round. We stress that there are
two reasons that a participant might not survive through rehearsal i: (1) the

97

Initial Survived(i)
Condition / i (i = 0) 1 2 3 4 5 6 7 9 9 10 11

mnemonic heavierstart 73 38 27 26 24 22 22 22 22 22 20 18
mnemonic heavystart 80 48 41 38 36 36 35 33 27 7

text heavystart 100 63 52 51 51 48 46 39 31 7
mnemonic aggressive real 75 50 42 40 38 36 30

mnemonic aggressive 2 81 50 42 42 41 38 37 36 33
mnemonic aggressive 1 86 64 52 49 49 47 46 45 41

mnemonic veryconservative 83 62 52 51 51 49

Table 4.2: Survived

participant failed to return to rehearse in a timely manner when we asked, or (2) the
participant failed to remember all of his stories in ≤ 3 attempts. Because we used
the mnemonic heavystart and the text heavystart conditions for our pilot study we
have the results from more rehearsals under those conditions. Observe that for the
first rehearsal we have the largest drop-off under the heavystart and heavierstart
conditions. This may seem paradoxical because we would expect participants in
these conditions to have a better chance of remembering their words because they
had less time to forget them. Indeed, this is true for participants who returned to
complete the first rehearsal. However, many participants in these conditions were
not able to return in a timely manner because less time had elapsed.

Total Survival Rate Among Participants who Always Returned Figures 4.3a
and 4.3b shows the total survival rate for each completed rehearsal under each
study condition for participants who always returned when we asked. More
specifically, Figures 4.3a and 4.3b plot the value of

Survived (i) /

Survived (t) +

t∑
j=1

Failed
(
j
) ,

where t denotes the total number of rehearsals and Failed
(
j
)

denotes the number
of participants who survived through rehearsals 1, . . . , j−1 and did not remember
all of their words on rehearsal j in ≤ 3 attempts. We use Time (i) to denote
the time of the i’th rehearsal. Observe that each of the curves in these figures
is monotonically decreasing. This is because a participant who did not survive
round i will also be counted as a participant who did not survive round j for each

98

�

�
�� � �

�

�
�������� �

�
�

�
����� � �

�

�

������ � � �

������ � � � �

���� � � � �

�

�
���

� �
�

�

�

mnemonic_aggressive_real mnemonic_heavierstart

mnemonic_heavystart mnemonic_heavystart_1

mnemonic_heavystart_2 mnemonic_veryconservative

text_heavystart

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 a

lw
a
y
s
 r

e
tu

rn
e
d
 o

r
fa

ile
d
 p

re
v
io

u
s
ly

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(a) Faceted

����� � � � ��

�

�
�

�

�

�

�

�

��
�
��� � �

�

�

�

�

� � � �

�
�

�

��
��� � � � �

�

�

���

�

�

�

�

�

�

�
�
�

� �

�

�

�

�

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 a

lw
a
y
s
 r

e
tu

rn
e
d
 o

r
fa

ile
d
 p

re
v
io

u
s
ly

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(b) Together

Figure 4.3: Total Survival with Failures Carried Forward
(

Survived(i)
Survived(t)+

∑t
j=1 Failed(j)

)
vs

Time (i).

j > i. While we include this data for completeness we emphasize that this view is
overly pessimistic. For example, consider a participant who correctly remembered
his stories during the first three rehearsals, but was not able to return for the fourth
rehearsal (e.g., because he went on vacation). The results of this participant would
be dropped. However, if the same participant had failed during round three then
his results would be included because we would not have asked him to return
for the fourth rehearsal while he was on vacation. Suppose that participants
who return for rehearsal one succeed with probability 0.99 and that participants
who return for rehearsal i > 1 succeed with probability 1. If participants always
returned to rehearse when we asked them to then the survival rate after rehearsal
i would be 99% for all i > 0. However, if participants are not able to return to
complete each rehearsal phase independently with probability p > 0 then the total
survival rate among participants who always returned will always tend to 0.

Conditional Survival Probability Figures 4.4a and 4.4b show the conditional
probability of survival (e.g., % of those who participants who correctly remem-
bered all of their stories in ≤ 3 attempts on the i’th rehearsal conditioned on the
event that the participant survived rounds j = 1, . . . , i−1 and returned for rehearsal
i). More formally, these Figures plot the value of Survived (i) /Returned (i), where
Returned (i) counts the number of participants who survived rounds j = 1, . . . , i−1
and returned for rehearsal i. Figures 4.4c and 4.4d show the same data with a

99

�

�

�
� � � � �

�
������� �

�
�

�
�
���� � �

�

�

������ � � �

������ � � � �

�

��� � � � �

�

�
���� �

�
� �

mnemonic_aggressive_real mnemonic_heavierstart

mnemonic_heavystart mnemonic_heavystart_1

mnemonic_heavystart_2 mnemonic_veryconservative

text_heavystart

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 r

e
tu

rn
e
d
 f
o
r

re
h
e
a
rs

a
l
i

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(a) Faceted. Mean Time Since Memorization.

����� � � � ��

�

�

�

� � �

�

�

������ � �

�

�

�

�

�
� � �

�

�

�

����� � � � ��

�

�

��

�
�

�

�
�

�

�

��

�

�

� �

�

�

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 r

e
tu

rn
e
d
 f
o
r

re
h
e
a
rs

a
l
i

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(b) Together. Mean Time Since Memo-
rization.

�

�

�
� � � � �

�
������� �

�
�

�
�
���� � �

�

�

������ � � �

������ � � � �

�

��� � � � �

�

�
���� �

�
� �

mnemonic_aggressive_real mnemonic_heavierstart

mnemonic_heavystart mnemonic_heavystart_1

mnemonic_heavystart_2 mnemonic_veryconservative

text_heavystart

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Mean time since last visit (in hours)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 r

e
tu

rn
e
d
 f
o
r

re
h
e
a
rs

a
l
i

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(c) Faceted. Mean Time Since Last Rehearsal.

����� � � � ��

�

�

�

� � �

�

�

������ � �

�

�

�

�

�
� � �

�

�

�

�� ��� � � � ��

�

�

��

�
�

�

�
�

�

�

��

�

�

� �

�

�

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Mean time since last visit (in hours)

D
id

n
't

fa
il

>
 2

 t
im

e
s

%
 o

f
th

o
s
e
 w

h
o
 r

e
tu

rn
e
d
 f
o
r

re
h
e
a
rs

a
l
i

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(d) Together. Mean Time Since Last Re-
hearsal.

Figure 4.4: Conditional Survival: Survived (i) /Returned (i) vs Time (i).

different x-axis (e.g., mean time since last visit instead of mean time since first
visit). Notice that these curves are not necessarily monotonic. For example, in
the mnemonic aggressive condition 25% of users failed to remember all four of
their stories during the first rehearsal. However, every participant who survived
to rehearsal three also survived to rehearsal four in the mnemonic aggressive con-
dition. This illustrates the advantage of having several immediate rehearsals. In
the heavystart conditions the last rehearsal on day 64 was the most difficult for
participants.

100

�

�
�� � � �

�
�������� �

�
�

�
����� � �

�

�

������ � � �

������ � � � �

���� � � � �

�

����
� �

�

�

�

mnemonic_aggressive_real mnemonic_heavierstart

mnemonic_heavystart mnemonic_heavystart_1

mnemonic_heavystart_2 mnemonic_veryconservative

text_heavystart

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

E
s
ti
m

a
te

d
 %

 o
f
a
ll

p
a
rt

ic
ip

a
n
ts

 i
n
 i
d
e
a
l
c
ir
c
u
m

s
ta

n
c
e
s

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(a) Faceted.

����� � � � ��

�

� �
�

�

�

�

������� � �

�

�

�

�
� � � �

� �

�

����� � � � ��

�

���

�

�

�

�

�

�

���

� �

�

�

�

�

0.00

0.25

0.50

0.75

1.00

0 50 100

Mean time since end of Day 1 (in days)

D
id

n
't

fa
il

>
 2

 t
im

e
s

E
s
ti
m

a
te

d
 %

 o
f
a
ll

p
a
rt

ic
ip

a
n
ts

 i
n
 i
d
e
a
l
c
ir
c
u
m

s
ta

n
c
e
s

Condition

�

�

�

�

�

�

�

mnemonic_aggressive_real

mnemonic_heavierstart

mnemonic_heavystart

mnemonic_heavystart_1

mnemonic_heavystart_2

mnemonic_veryconservative

text_heavystart

(b) Together.

Figure 4.5: EstimatedSurvival (i) vs Time (i)

Estimated True Total Survival Rate We can use our conditional success proba-
bilities to estimate what the true survival rate would have been under ideal cir-
cumstances (e.g., all participants are always available to return to rehearse when
we asked them). Our results are shown in Figures 4.5a and 4.5b. We use the
estimate

EstimatedSurvival (i) =

i∏
j=1

Survived
(
j
)

Returned(j)
,

where
Survived(j)
Returned(j) denotes our empirical estimate of the conditional probability that

a participant will survive round j given that the participant survived all previous
rounds and returned for rehearsal j.

Survey Results We surveyed 61 participants who did not return to complete
their first rehearsal to ask them why they were not able to return. The results
from our survey are presented in Figures 4.6a and 4.6b. The results from our
survey strongly supports our hypothesis that the primary reason that participants
do not return is because they were too busy, because they did not get our follow up
message in time or because they do not interested in interacting with us outside
of the initial Mechanical Turk Hit, and not because they were convinced that they
would not remember the story.

101

(a) Participants who Completed the Survey (b) All Invited Survey Participants

Figure 4.6: Survey: Which of the following reasons best describes why you were
unable to return to take the follow up test?
A: I no longer wished to participate in the study.
B: I was too busy when I got the e-mail for the follow up test.
C: I did not see the e-mail for the follow up test until it was too late.
D: I was convinced that I would not be able to remember the words/stories that I
memorized when I received the e-mail for the follow up test.
E: I generally do not participate in follow up studies on Mechanical Turk.
F: Participant did not respond to survey.

102

Fun We had several participants e-mail us to tell us how much fun they were
having memorizing person-action-object stories. The results from our survey are
also consistent with the hypothesis that memorizing person-action-object stories
is fun (e.g., no participants said that they no longer wished to participate in the
study).

4.4.1 Discussion

Mnemonic Advantage. Our results strongly support the hypothesis thatσmnemonic >
σnon−mnemonic. Participants consistently did better in the mnemonic heavystart con-
dition than in the text heavystart condition. For example, compare the estimated
survival rates for mnemonic heavystart and text heavystart in Figure 4.5a or
compare the conditional survival rates for mnemonic mnemonic heavystart and
text heavystart in Figure 4.4a. Even the pessimistic total survival rates shown in
Figure 4.3a support this hypothesis.

Benefit of Several Early Rehearsals. Participants did very well in conditions
which involve several early rehearsals like the mnemonic heavystart and the
mnemonic heavierstart conditions. In the mnemonic veryconservative condition
a few participants struggled during the first rehearsal, but have been perfect af-
ter that. In the mnemonic aggressive condition participants also struggled most
during the first rehearsal.

Interference. While a few participants struggled under the mnemonic heavystart
condition this was not the case when we only asked participants to memorize one
or two person-action object stories. This is likely because participants had less en-
ergy to devote to memorizing the third and fourth story in the mnemonic heavystart
condition. Our results do not mean that users are incapable of remembering mul-
tiple stories. In fact, most participants in the mnemonic heavystart were able to
remember all four of their stories. However, our results do indicate that it may be
prudent to either adopt a rehearsal schedule with many early rehearsals whenever
the user is memorizing multiple stories at once, or space out the memorization
process so that users are not memorizing multiple stories at once.

103

104

Chapter 5

Password Composition Policies: A
Defense Against Online Attacks

5.1 Introduction

Imagine a web surfer, an online shopper, or a reviewer in a prominent CS and
Economics conference who logs on for the first time to a server; so that she can
sign up for some service, place a shopping order, or view a list of assigned papers.
Such a user registers on the server by choosing a username and picking a password.
Naturally, our user’s first attempt at picking a password is her favorite combination
‘123456’, which the server declines. She then has to pick a password that follows
certain guidelines: of suitable length, involving lower- and upper-case letters, with
numbers or special characters, etc. Such password composition policies defend against
the “first line” of attack – guessing attacks by uninformed attackers (attackers with
no previous knowledge of the user whose account they are trying to break into).

Password composition policies are a necessity because — without them — user-
selected passwords are predictable. Indeed, many unrestricted users would select
simple passwords like ‘123456’, ‘password’ and ‘letmein’ [66]. Furthermore, this
issue is of great importance to today’s economy. Passwords are commonly used in
electronic commerce to protect financial assets. In fact, the passwords themselves
have financial value. Symantec reported that compromised passwords are sold for
between $4 and $30 on the black market [79], and a 2004 Gartner case study [158]
estimated that it cost a large firm over $17 per password-reset call. Nevertheless,
existing password composition policies are typically not principled, and do not

105

necessarily result in less common passwords. For example, studies show that
users respond to restrictions in predictable ways [97], or pick weaker passwords
due to user-fatigue [56, 102].

In this chapter, we initiate the algorithmic study of password composition poli-
cies. Such policies restrict the space of passwords to a subset of allowed passwords,
and force each user to pick a password in this subset. Thus, n users induce a dis-
tribution over passwords where for a password w, Pr[w] = 1

n

∣∣∣{i : i picks w
}∣∣∣. By

declaring different subsets of allowed passwords, different password composi-
tion policies induce different distributions. Our work formalizes and addresses
the algorithmic problem a server administrator faces when designing a password
composition policy; we ask:

In what settings can the information about the users’ preferences over pass-
words allow us to design a password composition policy that is guaranteed
to induce a password distribution as close to uniform as possible?

We wish to stress at this point that in this chapter we do not take a crypto-
graphic approach to the problem: we do not design a protocol aimed at amplifying
a password’s strength, nor do we rely on standard cryptographic assumptions or
techniques in designing our password composition policies. Single-factor authen-
tication does not defend against an attacker who learns about the most probable
password from an external source. Furthermore, because password systems often
allow users multiple attempts in entering their password, an attacker can make a
small number of guesses with impunity. Therefore, we instead focus on the de-
sign and analysis of algorithms for optimizing the password composition policy’s
induced distribution over passwords, and in our theoretical results compare the
performance of our algorithm to the optimal policy among exponentially many
potential policies in the worst case.

5.1.1 Our Model

We study the algorithmic problem of optimizing password composition policies
along multiple dimensions: the goal, the user model, and the policy structure.

Goal. We focus on designing a policy that maximizes the minimum-entropy of the
resulting password distribution. Specifically, we assume the server deals with n
users, each picking a password from some space of passwords P that respects the

106

server’s password composition policy. These n passwords form a distribution over
the domain of all allowed passwords and our goal is to minimize the probability
of the most likely password. This is a natural goal (see Section 5.7), as opposed
to maximizing the Shannon-entropy of the distribution, which for example is
still high even if half the people choose the same password and the other half
choose a password uniformly at random from P. From a security standpoint, the
minimum entropy represents the fraction of accounts that could be compromised
in one guess. For example, an adversary would be able to crack 0.9% of RockYou
passwords [92] with only one guess. Alternatively, should the attacker attempt to
break into only one account, the minimum entropy represents the likelihood that
the account is compromised on the first guess. We also consider a slightly stronger
goal of minimizing the fraction of accounts that could be compromised using k
guesses, that is, the overall probability of the k most likely passwords [45].

User model. We consider two models for how users select passwords when
presented with a password composition policy.

In the ranking model, each user has an implicit ranking over passwords, from
the most preferred to the least preferred. Given a password policy, each user
selects the highest-ranking password among those allowed by the policy. There
is a distribution over the space of rankings that determines the fraction of users
with each possible ranking. Note that for any password composition policy, such
a distribution over rankings induces a distribution over the most preferred allowed
passwords.

In the normalization model, there is a distribution D over the space of all pass-
words. This distribution tells us the likelihood that an unrestricted user would
select a given password. Given a password composition policy,D induces a new
distribution over the allowed passwords (which can be obtained by normalizing
the probabilities under D of the allowed passwords). When we ban a password
the fraction of users that prefer each allowed password grows; the natural inter-
pretation is that users who preferred an allowed password still use that password,
but users who preferred a banned password are redistributed among the allowed
passwords according to the induced distribution.

As we show, the normalization model is strictly more restrictive than the rank-
ing model: any distribution in the normalization model can be simulated in the
ranking model, but there exist hardness results for the ranking model that do not
hold for the normalization model.

Policy structure. We consider the best policy that is restricted to manipulation of a

107

given set of rules — each rule is simply a predefined subset of potential passwords.
These rules are given to us as part of the problem (see Section 5.7 for a discussion of
this point). If we interpret a rule as a subset of banned passwords (e.g., passwords
shorter than seven characters), its complement (e.g., passwords of at least seven
characters) can be interpreted as a subset of allowed passwords. As such, when we
take the union of rules we get either a set of banned passwords (negative rules) or
allowed passwords (positive rules); this is our password composition policy. While
the distinction between the two cases may at first seem a mere technicality, it is
in fact quite significant due to the following observation. If we ban the union of
rules then in order to ban a password that was picked by too many users, we may
ban any rule that contains this password. In contrast, if we allow a union of rules
then in order to ban this password we must not allow any rule that contains it. In
other words, when our goal is to discard a password in the negative rules setting,
we have multiple ways to do so. When our goal is to discard a password in the
positive rules setting, we have only one way to do so — excluding all rules that
allow this password. As we shall see, this seemingly small difference leads to a
clear separation between the two scenarios in terms of the complexity of designing
optimal policies.

We pay special attention to the case where each password has its own singleton
rule. In this setting, a policy can be interpreted as a “blacklist” of banned pass-
words that do not necessarily share common characteristics. Note that when each
password has its own singleton rule, it does not matter whether these rules are
positive or negative.

5.1.2 Our Results

As we noted above, a password composition policy induces a distribution over
most preferred passwords (in both user models). We study algorithms that sample
these distributions — algorithms that repeatedly query random users and ask
them to choose a password constrained by some policy, and then output the a
good policy for the empirical sample of users. Our goal is therefore twofold: (i) to
show that having sufficiently many samples (i.e., sufficiently many users queried)
guarantees that w.h.p the best policy for the empirical sample is good for all users;
and (ii) exhibit algorithms that find an optimal (or close-to-optimal) policy for a
given sample. Clearly, we want our sample size to be “small”. In particular, since
the size of the space of all passwords P— which we denote by N — is typically
very large (e.g., P can include all passwords that are no longer than 32 ASCII

108

Table 5.1: Summary of Complexity Results.

Ranking Model Normalization Model

Constant k Large k Constant k Large k

Singleton rules P NP-Hard
(Thm 13)
APX-Hard
w. UGC
(Thm 14)

P P (Thm 16)

Positive rules P (Thm 12) NP-Hard P NP-Hard
(Thm 18)

Negative rules n1/3-approx
is NP-hard
(Thm 15)

NP-Hard NP-Hard
(Thm 17)

NP-Hard

characters), we wish to get a bound on the sample size that is independent of N.

For the ease of exposition, we discuss goal (ii) before goal (i). I.e., we first
(Sections 5.3 and 5.4) study the problem in a simpler setting where the preferences
of all users are given to us as input; and only then (Section 5.5) we introduce an
algorithm that samples users’ preferences. Also for the ease of exposition, we
first discuss algorithms where P is a part of the input, so they are allowed to
run in time polynomial in N. This is motivated by the fact that computational
complexity of problems in this setting informs their study in the sampling set-
ting — it is hopeless to design efficient sampling algorithms for problems that
are computationally hard. (Efficient sampling algorithms are applicable only to
computationally tractable problems.)

Table 5.1 summarizes our complexity results. The parameter k refers to our
optimization target: minimizing the likelihood of the k most likely passwords.
Some results are direct corollaries of others — using the fact that singleton rules
are a special case of positive rules and the fact that the normalization model is
a special case of the ranking model (see Section 5.2). Looking at the table one
immediately notices a clear separation between negative rules and positive rules:
optimization using the latter is much easier.

We therefore focus on positive rules in our attempt to design an efficient sam-
pling algorithm. Our main result is the best one could hope for in this setting. We

109

design an algorithm that works in the more general ranking model, and finds a
policy whose entropy is ε-close to optimal with probability 1 − δ, for any given
ε, δ > 0. The required number of samples is polynomial in 1/ε, log(1/δ), and the
number of positive rules m. We can assume that m is small, because each rule
corresponds to a subset of passwords that can be concisely described to users.

These results can be applied in a practical setting, and we show this through
simulated sampling experiments using natural rules and a large dataset of real
passwords. The experimental results provide evidence for the difficulty of the
negative rules setting: we search all combinations of rules to find the optimal
policy and then attempt to discover this policy by making decisions both randomly
and with a heuristic. In the negative rules setting, neither approach succeeded
at finding the optimal policy after hundreds of iterations at various sample sizes,
and average-case performance did not improve with sample size. In the positive
rules setting, the average-case performance of our efficient algorithm improved
with sample size and, with a moderate sample size, found policies that were either
optimal or very close to optimal.

5.1.3 Related Work

It has been repeatedly demonstrated that users tend to select easily guessable
passwords [39, 66, 92] and NIST recommends that organizations “should also
ensure that other trivial passwords cannot be set,” to thwart potential attackers
[133]. Unfortunately, this task is more difficult than it might appear at first. Policies
were initially developed without empirical data to support them, since such data
was not available to policy designers [50]. When hackers leaked the RockYou
dataset to the Internet, both researchers (and attackers) suddenly had access to
password data, leading to many insights into true passwords [156]. However,
recent research analyzing leaked datasets from non-English speakers, notably
Hebrew and Chinese-language websites, shows that trivial password choices can
vary between contexts, making a simple blacklist approach ineffective [40]. This
means that, depending on the context, a policy based on leaked password data
might provide no security guarantee, and it has ethical issues as well.

To combat this issue, researchers have turned to a sampling approach. Bon-
neau 2012 added a system for sampling to the Yahoo! password infrastructure.
This system allows one to gain empirical data about the frequency distribution of
passwords without revealing the passwords themselves. Such approaches pro-
vide a way of gathering empirical data about passwords while maintaining the

110

anonymity of users. Our algorithms could be used in conjunction with such an
infrastructure to optimize policies.

Komanduri et al. 2012 studied the effectiveness of several basic password com-
position policies by using Amazon’s Mechanical Turk to conduct a large scale user
study. They found that people often respond to restrictions in predictable ways
(e.g., if the password needs to contain a capital letter users might tend to capitalize
the first letter of a password) and provide very general recommendations for pass-
word composition policies. However, no theoretical model has been proposed for
studying the password composition problem.

Schechter et al. 2010 suggest using a popularity oracle to prevent individual
passwords that have been used too frequently from being selected by new users.
They also proposed using the count-min sketch data structure [57] to build such
a popularity oracle. Malone and Maher 2012 suggest a similar system using
a Metropolis-Hastings scheme to force an approximately uniform distribution
on passwords. Usability results on the effectiveness of dictionary checks [97]
suggest that such policies would be very frustrating since the policy is hidden
from users behind an oracle. In contrast, we seek to construct optimal policies
from combinations of rules that are visible to the user and can be described in
natural language.

This consideration of users is important to electronic commerce, even where
security is concerned. Florencio and Herley 2010 studied the economic factors
that drive institutions to adopt strict password composition policies and find that
they often value the user experience over security. An e-mail provider like Yahoo!
might adopt simple composition policies because a frustrated user could easily
switch to Gmail, while universities are free to adopt strict policies because users
cannot switch easily.

5.2 A Model of Password Composition Policies

We use P to denote the space of all possible passwords. N = |P| is used to denote
the total number of passwords. We denote the number of users by n.

A password composition policy may be specified in terms of rules. A rule is
a subset of passwords R ⊆ P (e.g., the set of all passwords with more than seven
characters). We use R1, ...,Rm to denote a list of rules that may be active or inactive.
We consider two schemes.

111

• Positive Rules: A password w is allowed if and only if it is allowed by some
active positive rule. Formally, a password composition policy AS =

⋃
i∈S Ri

is specified by a set S ⊆ [m] = {1, ...,m} of active rules. In this setting rules
should consist of sets of passwords which we expect to be strong (e.g., Ri

might be the set of all passwords longer than 10 characters, or the set of
all passwords that use both upper and lowercase letters, or the set of all
passwords that do not include a dictionary word).

• Negative Rules: A password w is allowed if and only if it is not contained
in any active negative rule. Formally, a solution AS =

{
w ∈ P w <

⋃
i∈S Ri

}
is given by a subset S ⊆ [m] of active rules. A negative rule should consist
of passwords that we expect to be weak (e.g., Ri might be the set of all
passwords without an uppercase letter, or the set of all passwords shorter
than 6 characters, or the set of all passwords that include a dictionary word).

We also consider the special case of singleton rules, where our rules are {w1}, . . . ,
{wN}. Equivalently, we are allowed to ban or allow any individual password.

We use Pr[w A] to denote the probability of a password w given composition
policy A. For w < A we have Pr[w A] = 0. Given a set W ⊆ A we will also use
Pr[W A] =

∑
w∈W Pr[w A]. We use p (k,A) = maxW⊆A:|W|=k Pr[W A] to denote the

probability of the k most popular passwords. Intuitively, p (k,A) represents the
probability that an adversary can successfully guess a password using k attempts.
To avoid cumbersome notation we sometimes use p1 = p (1,A) to denote the
probability of the most popular password. Similarly, we use p2 (resp., pk) to denote
the probability of the second (resp., k’th) most popular password.

We consider two user models that determine how users choose passwords
under a given password composition policy.

• The ranking model: A ranking is simply a permutation of P, which represents
a user’s password preferences. It can be represented using an ordered list
`i = w1,i, ...,wN,i; user i prefers password w j,i to w j+1,i for all j. The ranking `i

naturally tells us which password i will pick under any composition policy
A. Specifically, i will use password wA,i = w j,i where j = argmin{t : wt,i ∈ A}.
Given a distributionD over rankings, we have

Pr [w A] = Pr
`i∼D

[
wA,i = w

]
.

112

• The normalization model: Let D be an initial distribution over P, and let
Pr [w] = Prx∼D [w = x]. If we select the composition policyA then the proba-
bilities of all w ∈ A are simply re-normalized so that

∀w ∈ P,A ⊆ P,Pr [w A] =
Pr [w]
Pr [A]

.

Clearly it holds for both models that the probability of an allowed password
monotonically increases as one bans more passwords. Formally, for all w ∈ A and
B ⊆ P such that w < B we have

Pr [w A] ≤ Pr [w A\B] . (5.1)

Another important observation is that for our purposes the ranking model is
more general than the normalization model. Indeed, we argue that a distribution
D over passwords in the normalization model induces an equivalent distribution
over rankings. To generate the most highly ranked password, draw a password
w1 from D. Next, let A1 = P \ {w1}, and draw the next most preferred password
w2, where w2 = w with probability Pr[w |A1]. In the following round we ban w2 to
obtain a policyA2, and so on, until all passwords have been banned.

Given k ∈ N, our goal is to find S ⊆ [m] such that p (k,AS) ≤ p (k,AS′) for
all S′ ⊆ [m]. When k = 1 this goal is equivalent to maximizing the minimum
entropy. If p (k,AS) ≤ c · p (k,AS′) + ε for all S′ ⊆ [m] then we say that S is a (c, ε)-
approximation. To simplify notation we sometimes use c-approximation instead
of (c, 0)-approximation.

5.3 Ranking Model: Complexity Results

In this section we consider the complexity of finding the optimal password com-
position policy in the more general ranking model when the organization is given
complete information about users’ preferences. Specifically, the organization is
given the rankings `1, ..., `n of every user.

Our first result is for the positive rules setting. Given positive rules R1, ...,Rm

we show that p (k,AS) can be computed efficiently for constant values of k (see The-
orem 12). In fact, for the special case k = 1 we present a very simple algorithm that
suffices. Both algorithms can be easily extended to the less general normalization
model. Our algorithms are based on three simple ideas: (1) Reduced Preference

113

Lists — each preference list `i can be efficiently reduced to a short (length ≤ m)
preference list ˆ̀i. (2) Guess and Check — start by guessing the ‘structure’ of the
optimal solution and find the resulting solution. (3) Iterative Elimination — find
the most popular password w and eliminate all positive rules that contain w. Our
sampling algorithms are based on the same core ideas.

Unfortunately, the picture is different in the negative rules even when k is a
constant. Given negative rules R1, ...,Rm we show that it is hard to even n1/3-
approximate p (1,AS). Also, for non-constant values of k we show that it is hard
to compute p (k,AS) in the singleton rules setting, which immediately implies
hardness in both the positive rules setting and in the negative rules setting. Given
a stronger complexity assumption known as the Unique Games Conjecture [98]
it is also hard to c0-approximate p (k,AS) in the singleton rules setting for some
constant c0. However, our hardness results do not rule out the possibility of a
c-approximation for a larger constant c.

5.3.1 Positive Rules: Efficient Algorithm for Constant k

We first show that p (k,AS) can be computed efficiently for constant values of k
in the positive rules setting. In this section the organization is given positive
rules R1, ...,Rm as well as preference lists `1, ..., `n. We assume that the organization
can efficiently query the preference lists (e.g., given S ⊆ [m] the organization can
efficiently find `i (AS) — user i’s preferred password given policyAS).

We elaborate on the key algorithmic ideas listed above. First, we can efficiently
reduce each preference list `i to a list ˆ̀i of at most m passwords (Claim 4). While
the reduced list ˆ̀i is much shorter than `i it is still sufficient to determine user
i’s preferred password given policy AS for any S ⊆ [m]. We use P̂ to denote the
reduced space of potential passwords.

Claim 4. Algorithm 5.1 makes at most m queries to ` and m2 membership queries and
outputs a reduced preference list ˆ̀ over at most m passwords such that for every S ⊆ [m]
it holds that ˆ̀ (AS) = ` (AS).

Proof. Clearly, the algorithm’s main loop iterates at most m times because for each
i we eliminate at least one rule (e.g., |Si+1| < |Si|), so the bound on queries and the
length of ˆ̀ are immediate. (Because we assume that we can query ` efficiently
Algorithm 5.1 is also efficient.) By construction we have ˆ̀(Si) = `(Si) for each Si.
Fix any S ⊆ [m]. Let Si be such that S ⊆ Si yet S * Si+1 and let wi be the most

114

Algorithm 5.1 Reduce
Input:
Preference List: `
Positive Rules: R1, ...,Rm

Initialize: i← 0, S0 ← [m], ˆ̀← empty ranking.
while Si , ∅ do

Let w be `
(
ASi

)
.

ˆ̀← 〈 ˆ̀,w〉 . ‘Append’ the current most preferred password to ˆ̀

Si+1 ← Si \
{
j w ∈ R j

}
. Deactivate all rules that contain w

i← i + 1
return ˆ̀

preferred word in ` out of all words in
⋃

j∈Si
R j. If it is the case that wi ∈

⋃
j∈S R j, then

wi is the most preferred word in S too and we’re done. Otherwise, wi ∈
⋃

j∈Si\S R j

which means that removing the set { j ∈ Si : wi ∈ R j} creates a set Si+1 s.t. S ⊆ Si+1,
contradiction. �

5.3.2 Special Case k = 1

For the special case k = 1 the simple algorithm IterativeElimination (Algorithm 5.2)
suffices. The basic idea is very simple: iteratively eliminate the most popular
password w by deactivating all positive rules that contain w. We repeat this
process until no passwords remain. We claim that one of the solutions along the
way was the optimal solution.

Algorithm 5.2 IterativeElimination
Input:
Preference Lists: `1, ..., `n

Positive Rules: R1, ...,Rm ⊆ P

Initialize: S0 ← [m], i← 0
while Si , ∅ do

w (Si)← arg max
{
Pr

[
w | ASi

]
w ∈ ASi

}
. w (Si) is most popular allowed

pwd
Si+1 ← Si \

{
j w (Si) ∈ R j

}
. Deactivate all rules that contain w (Si)

i← i + 1
return Si∗ where i∗ ← arg mini p

(
1,ASi

)
115

Theorem 11. Algorithm 5.2 outputs a set of positive rules S ⊆ [m] such that

∀S′ ⊆ [m] , p (1,AS) ≤ p (1,AS′) .

Proof. Let T denote the optimal policy. Clearly if T = [m] then our algorithm
returns S∗ = T because that is the first set we try. Otherwise, T ([m]. Let S be the
last set our algorithm considers that has the property that T ⊆ S. Again, if T = S,
our algorithm returns S. Let w(T) be the most popular word in AT, and because
of optimality Pr[w(T) | AT] ≤ Pr[w(S) | AS].

Now, because we modify S to not contain T in the next iteration, then the most
popular word in S, w(S) has to belong to some rule R j where j ∈ T. Therefore
w(S) ∈

⋃
j∈T R j, and by the definition, the most popular word in AT satisfies

Pr[w(T) | AT] ≥ Pr[w(S) | AT].

But observe, because w(S) ∈
⋃

j∈T R j, we must have that w(S) is at least as
popular in T. Indeed, if ` is a preference list where we disallowed P \

⋃
j∈S R j

and the most preferred word is w(S), then as long as we disallow more words
but keep allowing w(S) the word w(S) remains at the top of the list. There-
fore, Pr[w(S) | AT] ≥ Pr[w(S) | AS]. Combining together all inequalities we get
Pr[w(T) | AT] = Pr[w(S) | AS], which means our algorithm returns S∗ = S. �

5.3.3 The General Case

We now present an algorithm “Guess and Check” to find the optimal password
composition policy for any constant value of k. Our algorithm starts by guessing
what the optimal solution looks like (e.g., what the k most popular passwords
will be in the optimal solution and what the probability of the k’th most popular
password is). There are at most (mn)O(k) potential solutions to brute-force try. As
we show, for each candidate solution, it is easy to figure out which sets must be
eliminated using the iterative elimination idea behind Algorithm 5.2.

Theorem 12. Algorithm 5.3 runs in time polynomial in nk, mk and outputs a set of
positive rules S ⊆ [m] of positive rules such that

p (k,AS) ≤ p (k,AS′)

for every other set S′ ⊆ [m].

116

Algorithm 5.3 GuessAndCheck
Input:
Preference Lists: `1, ..., `n

Positive Rules: R1, ...,Rm ⊆ P

Integer k
Initialize: Candidates← ∅ . Candidate Solutions
for i = 1→ n do

ˆ̀i ← Reduce (`i,R1, ...,Rm)
P̂ ←

⋃n
i=1

ˆ̀i. . Reduced Password Space
for all (G, p) with G ⊆ P̂ s.t. |G| = k and p ∈ {1/n, 2/n, ..., 1} do

SG,p ← [m]
while SG,p , ∅ and ∃w ∈

(
P̂ \ G

)
∩ASG,p s.t Pr

[
w ASG,p

]
> p do

SG,p ← SG,p \ { j | w ∈ R j} . Ban w because it is inconsistent with guess

if Pr
[
w ASG,p

]
≤ p for all w ∈

(
ASG,p \ G

)
then

Candidates← Candidates ∪ {SG,p}

return arg min(G,p)∈Candidates p
(
k,ASG,p

)

Proof. It is evident that the running time of the algorithm is poly(nk,mk) since we
only have O((nm)k) potential solutions to try.

Let AS∗ denote an optimal solution and let G∗ denote the k most popular
passwords in this solution. Suppose we start with the correct guess (G = G∗

and p is the probability of the k’th most popular password), then we claim that
our algorithm must produce the optimal solution. In particular, we maintain the
invariant thatAS∗ ⊆ ASG,p until we converge to the optimal solution. Clearly, this
is true initially — before we have eliminated any passwords.

Suppose that the invariant holds and that our algorithm bans a password
w ∈ P \ G by deactivating all rules in SG,p that contain w. Then by the definition
of our algorithm we must have Pr

[
w ASG,p

]
> p. If w ∈ AS∗ then by Equation (5.1)

we have

Pr [w AS∗] ≥ Pr
[
w ASG,p

]
> p ,

which contradicts the choice of G. Therefore w < AS∗ , so all rules that contain it
are deactivated in AS∗ and the invariant still holds. By definition Algorithm 5.3
terminates when every password w ∈ ASG,p \ G has probability at most p. Because

117

our invariant still holds we can apply Equation (5.1) again to get

Pr
[
G ASG,p

]
≤ Pr [G AS∗] = p (k,AS∗) .

Hence, ASG,p is an optimal solution. �

5.3.4 Singleton Rules: Hardness for Large k

Now we turn our attention to the problem of optimizing p (k,AS) for large values of
k. Theorem 13 says that unless P = NP no polynomial time algorithm can compute
p (k,AS) even with singleton rules. If we are willing to make the Unique Games
Conjecture (UGC) [98] then it is hard to even c0-approximate p (k,AS) for some
constant c0. These results immediately imply hardness in both the positive and
negative rules setting because these settings are a generalization of the singleton
rules setting.

Theorem 13. Unless P = NP there is no poly(k,n,N)-algorithm that gets as input an
arbitrary set of n preference-lists `1, ..., `n overP and an integer k, and outputs the optimal
p(k,A) in the singleton rules setting.

Proof. We prove the theorem using a reduction from the Vertex-Cover problem.
Given a graph G over g vertices and e edges and an integer t, we first define

P = {wu : u ∈ V(G)} ∪ {wu,v : (u, v) ∈ E(G)}

and observe that |P| = g+e. We also construct the following n = 2e preference-lists,
where for every edge (u, v) ∈ E(G) we have the two lists:

`u,v = wu,wu,v, . . .
`v,u = wv,wu,v, . . .

where the choice of passwords below position 2 is arbitrary, but both rankings
must be identical from position 2 onwards. Finally, we set k = g + e − t − 1.

Given a policy A ⊆ P, we denote all banned words as B = P \ A. We denote
by LB as the set of words that at least one user ranks first after banning all words
in B. Observe, L∅ = {wu : u ∈ V(G)}. Using this notation, we show this reduction
indeed proves NP-hardness.

First, suppose G has a vertex cover C of size≤ t. Then by banning all passwords
B = {wv : v ∈ C}we now have LB = P\B, because for every (u, v) ∈ E(G) either wu

118

or wv are banned, so the word wu,v appears at the top of at least one of the two lists
{`u,v, `v,u}. Therefore, the n preference-lists induce a distribution whose support
contains g + e − |B| ≥ g + e − t words, thus p(g + e − t − 1,A) < 1.

Conversely, suppose all vertex covers of G are of size at least t + 1. Let A
be any set of banned words. Clearly, if |B| ≥ t + 1 then the distribution induced
by the n preferences-lists has support of size at most g + e − t − 1, which means
that p(g + e − t − 1,A) = 1. Otherwise, |B| ≤ t, and we denote the set of vertices
C = {v : wv ∈ B}. Observe, since any vertex cover of G must contain≥ t+1 vertices,
then there has to be at least t + 1 − |C| edges that C does not cover (since we can
always complete C to a vertex cover by adding one vertex from each uncovered
edge). Therefore, there have to be at least t + 1 − |C| words that do not appear at
the top of any preference list. We conclude that the distribution induced by the n
preference-lists has a support of size at most

|LB| = g − |C| + e − (t + 1 − |C|) ≤ g + e − t − 1

thus p(g + e − t − 1,A) = 1. �

From the same reduction described in Theorem 13 we get UGC-hardness of
approximation. While there are sub-exponential time algorithms to solve the
Unique Games problem [20], there are no known polynomial time algorithms.
Many famous approximation hardness results are based on the Unique Games
Conjecture (e.g., 2 − ε hardness for vertex cover [99]). Our reduction relies on a
result in [22], which says that vertex cover is hard to approximate up to a (say) 1.5-
factor even on bounded degree graphs. Because we start with a bounded degree
graph we can argue that each password in our reduction appears at the top of at
most d preference-lists for some constant d.

Theorem 14. There exists a constant c > 1 such that it is UGC-hard for a poly(n,N, k)-
time algorithm to c-approximate the optimal p(k,A) in the singleton rules setting and the
rankings model.

Proof of Theorem 14. We begin with a construction of a bounded degree graph
which is hard approximate up to a (say) 1.5-factor. As shown in [22], for every
constant d there exists a family of d-regular graphs for which it is UGC-hard to
determine whether there exists a vertex cover of size t, or all vertex-covers have
size at least

(
2 −O(log log(d)/ log(d)) − ε

)
t. Fixing d to be a large enough constant

such that this factor is > 1.5, we now reduce this family of instances to a password

119

problem using the exact same construction as in the proof of Theorem 13, with the
exception that we set k = g + e − (1.5 − ε)t.

Observe, for this family of instances, e = O(g) so |P| = O(g), but also the size of
the optimal vertex-cover has to be Θ(g) (at most g and at least g/d). Furthermore,
each password appears at the top of at most d preference-lists. Therefore, by
allowing A and banning B = P \ A, we not only have a distribution whose
support is of size |LB|, but it also holds that the probability of each word in LB is
Ω(1/|LB|).

Therefore, if the graph has a vertex-cover C of size t, then by banning all
words B = {wu : u ∈ C} we have that the n preference-lists induce a distribution
over |LB| ≥ g + e − t. Since we set k = g + e − (1.5 − ε)t we have that the set of
most uncommon passwords contain at least (0.5 − ε)t = Ω(|LB|) words, each with
Ω(1/|LB|) probability, thus p(k,A) = 1 −Ω(1). (And, in particular, for the optimal
policyA∗ we have p(k,A∗) = 1 −Ω(1).)

In contrast, applying the same argument from the proof of Theorem 13, we
have that if G has all vertex-covers of size > (1.5 − ε)t then p(k,A) = 1. The
O(1)-hardness of approximation follows. �

5.3.5 Negative Rules: Hardness of Approximation for k = 1

We next turn to negative rules, where we show that the problem is extremely
difficult even for k = 1.

Theorem 15. Let ε > 0. Unless P = NP there is no polynomial time algorithm (in
N,n,m) that approximates minS⊆[m] p(1,AS) to a factor of n1/3−ε in the negative rules
setting and the rankings model.

Proof of Theorem 15. Fix ε > 0. Our reduction is from the Max-Independent-Set
problem, which is known to be hard to approximate up to a factor of n1−ε [90]. We
are given a graph G with g vertices and e edges, and we must determine whether
the size of G’s largest independent set is g1−ε or gε.

Given a Max-Independent-Set instance, we denote K = gε and create the fol-
lowing password policy instance, which is composed out of the following set of

120

possible words:

P = {A1, ...,AK} ∪ {B1, ...,Bg}

∪

 ⋃
{u,v}∈E(G)

(
{Cv

u,1, ...,C
v
u,g} ∪ {C

u
v,1, ...,C

u
v,g}

)
∪

 ⋃
v∈V(G),1≤i< j≤K

({Dv,i, j,1, ...,Dv,i, j,g} ∪ {Dv, j,i,1, ...,Dv, j,i,g})

 ∪ {X}
We now describe the n = g + ge + g2(K

2

)
≤ g3 + g2+2ε users’ preference-lists.

We start with the g rankings specified in Table 5.2a. We continue with ge more
rankings, where for each edge (u, v) ∈ E(G) we add g more rankings, as detailed in
Table 5.2b. Lastly, we add g2(K

2

)
more rankings, where for each triple (v, i, j) where

v is a vertex of G and i , j ∈ [K] we add g rankings, as detailed in Table 5.2c.
(Observe, the tables detail the first few words in each list, then end with “. . .”
mark, which indicates that from that point on the remaining words may appear in
any order.)

Finally, we detail our rules. For every i ∈ [K] and u ∈ V(G) we have a rule
which roughly corresponds to deciding that u is a member of the independent set:

Ru,i = {Ai} ∪

⋃
{v: (u,v)∈E(G)}

{Cv
u,1,C

v
u,2, . . . ,C

v
u,g} ∪

⋃
j∈[K], j,i

{Du,i, j,1, . . . ,Du,i, j,g} .

Our analysis now follows from a series of observations.

Observation 1: If we do not ban all of the passwords A1, ...,AK then p1 ≥ g/n.
Therefore, for every i, we must choose at least one of the rules {Ru,i} to activate, or
else we have that p1 ≥ g/n

Observation 2: If we ban Cv
u,1, . . . ,C

v
u,g and Cu

v,1, . . . ,C
u
v,g then we must have p1 ≥ g/n.

Therefore, for any i , j it must not be the case that we ban Ru,i and Rv, j where
(u, v) ∈ E(G), or else we have that p1 ≥ g/n.

Observation 3: If we ban Dv,i, j,1, . . . ,Dv,i, j,g, and Dv, j,i,1, . . . ,Dv, j,i,g then p1 ≥ g/n.
Therefore, for any i , j it must not be the case that we ban Ru,i and Ru, j, or else we
have that p1 ≥ g/n.

These observations lead us to the following conclusion. If G contains an inde-
pendent set v1, ..., vK of size K, then activating the rules {Rv1,1,Rv2,2, . . . ,RvK,K} leads

121

Table 5.2: Rankings used in the proof of Theorem 15.

`1 . . . `g

A1 . . . A1

A2 . . . A2

. . .

AK . . . AK

B1 . . . Bg

. . .

(a) Type 1

`u,v,1 . . . `u,v,g

Cv
u,1 . . . Cv

u,g

Cu
v,1 . . . Cu

v,g

X . . . X

. . .

(b) Type 2

`v,i, j,1 . . . `v,i, j,g

Dv,i, j,1 . . . Dv,i, j,g

Dv, j,i,1 . . . Dv, j,i,g

X . . . X

. . .

(c) Type 3

122

to a setting where each truncated ranking begins with a unique word, so p1 = 1/n.
In contrast, if G does not have an independent set of size K, then p1 = g/n. Since
n = O(g3) we have an Ω(n1/3)-hardness of approximation. Observe also that the
number of total words is N = K + g + 2eg + g2K(K − 1) + 1 = O(g3) = O(n) so it is
also hard to approximate the problem to a factor of Ω(N1/3). �

5.4 Normalization Model: Complexity Results

In this section we focus on complexity results for the normalization model. Here
the structure of the input to our problem is a bit different: For each password
w ∈ Pwe are given the probability Pr[w] that w is selected by a random user when
A = P. Note that now we can give the distribution explicitly because it requires
N numbers (whereas a distribution over rankings requires N! numbers). This
distribution induces a distribution overP for any password composition policyA
by normalizing probabilities, as explained in Section 5.2.

Because the normalization model is a special case of the ranking model our
algorithms for the ranking model can also be applied in the normalization model.
The question is whether or not the hardness results carry over.

We first consider the singleton rules setting with large k, and show that that
we can compute arg minA⊆P p (k,A) in polynomial time in N (Theorem 16). This
result separates the normalization model from the ranking model (e.g., compare
Theorems 16 and 13). However, it does not extend to the positive rules setting. In
fact, we show that optimizing p (k,AS) is NP-Hard when k is a parameter (Theorem
18).

With negative rules R1, ...,Rm we show that it is hard to c0-approximate
arg maxS⊆[m] p (1,AS) (Theorem 17). However, we cannot rule out the possibility
of an efficient c-approximation algorithm for some constant c in the normaliza-
tion model (recall that Theorem 15 ruled out the possibility of a c-approximation
algorithm in the ranking model for any c).

5.4.1 Singleton Rules: Efficient Algorithm for large k

We present SortAndOptimize — an efficient algorithm to optimize p (k,A) in the
singleton rules setting for any value of k. The key intuition behind our algorithm
is that if w1 ∈ P is the most likely password then w1 will remain the most likely

123

allowed password unless we ban it — a property that does not hold in the rankings
model. A formal proof of Theorem 16 can be found in Appendix 9.1.

Theorem 16. For every k, Algorithm 5.4 computes arg minA p (k,A) in the singleton
rules setting of the normalized probabilities model, in time O(N log(N)).

Algorithm 5.4 SortAndOptimize

Input:
Password space P and a probability distribution over P.
Integer k.
Sort the words in P from highest to lowest probability, w1,w2, . . . ,wN.
return the setAi = {w j : j ≥ i}, where i minimizes the ratio

p(k,Ai) =

∑
i≤ j≤i+k Pr[w j]∑

j≥i Pr[w j]

5.4.2 Negative Rules: Hardness for k = 1

We next prove an inapproximability result that is somewhat weaker than the one
that we obtained for the more general ranking model.

Theorem 17. There exists some constant c0 > 1 such that unless NP = BPP no poly-
nomial time algorithm (in n,N,m) can c0-approximate minS⊆[m] p (1,AS) in the negative
rules setting and the normalization model.

We will require the following construction; the proof is given in Appendix 9.1.

Lemma 4. Fix m and s such that m ≥ s. There exists a domain D of size Θ(s2 log(m)) and
a family of m sets, F1,F2, . . . ,Fm ⊆ D, such that each set in the family contains |D|2s elements,
and for every C ⊆ [m] of size |C| ≤ s, we have that the size of the union

∣∣∣⋃i∈C Fi

∣∣∣ ≥ |D|2s
|C|
4 .

This domain can be constructed in randomized poly(s,m) time.

That is, each set in this family contains exactly the same fraction of the domain,
and furthermore — any union of |C| ≤ s sets has the property that its cardinality is
proportional to Ω(|C|)|Fi|.

124

Proof of Theorem 17. We reduce from Set-Cover — one of the classic NP-Complete
problems [94]. We are given sets S1, ...,Sm ⊆ U, universe U = {1, ..., g}, and an
integer t ≤ m, and we are asked whether there is a set C ⊆ [m] of size ≤ t such that
U =

⋃
i∈C Si.

It is a known fact that there exist Set-Cover instances, with (g,m, t) all polynomi-
ally dependent of each other, that are hard to approximate to a factor of c ln n [17].
That is, on this particular family of instances, it is NP-hard to distinguish whether
there exists a cover of size t or all covers have size (1 − ε)c · t ln n.

We now describe the reduction. Given a (g,m, t)-Set Cover instance, we set
s = c · t ln g = Θ(t ln t) and construct a domain D and m sets F1,F2, . . . ,Fm ⊆ D as in
Lemma 4. We then create the following password-banning instance. First P is the
union of D with additional disjoint g words denoted w1, ...,wg. Now, for each set Si

in the Set-Cover we add a rule Ri where Ri = {w j} j∈Si ∪Fi. Finally, we set the words’
probabilities as follows. Fixing some arbitrarily small δ > 0, we set for every i the
probability Pr[wi] = 1−δ

g , and for every x ∈ D we set the probability Pr[x] = δ
|D| .

Without loss of generality we can assume that |D| ≥ 100g (because, for example,
we can take 100g copies of the original D). Therefore, any policy that bans all of
{w1,w2, . . .wg} yet leaves a constant (say > 1/10) fraction of D has p1 ≤ 10/|D|,
whereas any policy that keeps even one of the words in {w1,w2, . . . ,wg} has
p1 ≥ 1/(2g). Therefore, if the Set-Cover instance has a cover of size ≤ s = Θ(t ln g),
then a c0-approximation of the optimal banning-policy must find a cover for
{w1,w2, . . . ,wg}. We will assume from now on that our Set-Cover instance is such
that it has a cover of size ≤ s. (Indeed, if s > t log(t) then the instance is no longer
NP-hard, since the greedy algorithm must return a cover of size > t log(t) which
causes us to deduce that the optimal cover must have size > t.)

So now, suppose our Set-Cover instance has a cover of size t. Then the re-
spective union of rules bans every password in {w1,w2, . . . ,wg} and no more than
t

2s |D| words of D (we get an upper bound by multiplying the size of each set by
the number of sets). This leaves a collection of

(
1 − t

2s

)
|D| equally likely words,

so p1 =
(
1 − t

2s

)−1
|D|−1 = (1 − O(1/ log(g)))−1

|D|−1 = (1 + o(1))|D|−1. In contrast, if
all covers of our Set-Cover instance have size s′ ≥ c · t ln(g) (where, because we
assume some cover has size ≤ s, we have s′ ≤ s,) then any collection of rules that
bans all words in {w1,w2, . . . ,wg}must also ban at least s′

8s |D| words out of D. This
leaves at most (1 − Ω(1))|D| words in D and so p1 ≥ (1 − Ω(1))−1

|D|−1. Denoting
the latter constant as c−1

0 , we have that any c0 − ε approximation of the optimal
banning-policy indicates the existence of a cover of cardinality < c · t ln(g). �

125

5.4.3 Positive Rules: Hardness of Approximation for Large k

While we can show that it is possible to optimize p (k,A) in the singleton rules
setting our result does not extend to the more general positive rules setting. We
are able to show that it is NP-Hard to compute arg minS⊆[m] p (k,AS). However,
our reduction does not imply approximation hardness so we cannot rule out the
existence of a PTAS.

Theorem 18. Unless P = NP there is no polynomial time algorithm (in N,m,n) which
outputs arg minS⊆[m] p (k,AS) in the positive rules setting and the normalization model.

The theorem’s proof is relegated to Appendix 9.1.

5.5 Efficient Sampling Algorithms

In a sense, our complexity results are not “realistic”, and in particular in the
ranking model our positive algorithmic results assume access to each user’s full
preferences. Moreover, some algorithms are allowed to run in polynomial time
in the number of passwords N, which can be huge. In this section we use our
complexity results as guidelines in the design of practical sampling algorithms.

In more detail, we are given oracle access to rules R1, ...,Rm (e.g., we can ask
whether or not a password w ∈ Ri) and we are allowed to sample from the
distribution induced by the password composition policy AS for any S ⊆ [m].
Less formally, a sample is equivalent to asking a random user what her favorite
password is given the current policy.

We will work in the more general ranking model, so there is essentially only
one positive result we can build on: Theorem 12, a polynomial time algorithm
for constant k in the positive rules setting. When adapting this algorithm to
the sampling setting, we cannot expect it to work perfectly due to the inherent
uncertainty of this domain. Instead we expect the algorithm to find an ε-optimal
password composition policy with probability at least 1− δ, for any given ε and δ.
Crucially, the number of samples must not depend on the number of passwords
N, and must have a polynomial dependence on the other parameters.

Formally, we let S∗ ⊆ [m] denote the optimal collection of positive rules to acti-
vate (for all S ⊆ [m], p (1,AS∗) ≤ p (1,AS)). Our goal is to find a (1, ε)-approximation
S ⊆ [m] to p (1,AS∗), that is, S such that p (1,AS) ≤ p (1,AS∗) + ε, with probability
1 − δ.

126

We first present Algorithm 5.5 that achieves our goal for k = 1; this algorithm
is an adaptation of Algorithm 5.2.

Algorithm 5.5 SampleAndEliminate

Positive Rules: R1, ...,Rm

Input: ε, δ
Initialize: S0 ← [m], i← 0
s← 100

ε2 log
(

4m
εδ

)
while Si , ∅ do

Sample: Draw samples w1, ...,ws according to the distribution Pr
[
w ASi

]
W ← {w1, ...,ws}

sw ←

∣∣∣∣{ j w j = w
}∣∣∣∣ for each w ∈W.

w∗ ← arg max {sw w ∈W} . w∗ is the most frequently sampled password
p̂i ←

sw∗

s . p̂i is our estimation of Pr
[
w∗ ASi

]
if p̂i ≤ ε/2 then return Si . The current solution is already sufficiently good
else

Si+1 ← Si − { j w∗ ∈ S j} . Deactivate all rules that contain w∗

i← i + 1
return Si∗ where i∗ = arg max

{
p̂ j j ≤ m

}
.

Theorem 19. Algorithm 5.5 runs in polynomial time in m, 1/ε, 1/δ, requires
O

(
m log (m/δ) /ε2) samples and returns a (1, ε)-approximation S ⊆ {1, ...,m} of p (1,AS∗)

with probability at least 1 − δ.

Proof. Let

BADi =
{
∃w ∈ ASi

∣∣∣∣sw

s
− Pr

[
w ASi

]∣∣∣∣ ≥ ε/2} ,
denote the event that our probability estimates are off during iteration i. Claim 5
bounds the probability of any bad event. The proof of Claim 5 can be found in the
appendix. The proof involves bucketing the passwords based on their probability,
applying Chernoff Bounds to upper bound the probability of a bad estimate for
our passwords in each bucket, and repeatedly applying union bounds.

Claim 5. Pr [∃i,BADi] ≤ δ .

For the rest of the analysis we assume that no bad event occurs. Let p∗ =
minS⊆[m] p (1,AS) and suppose that AS∗ ⊆ ASi . Clearly, this is true when i = 0. If
p̂i ≥ ε/2+p∗ then Pr [w∗ AS∗] ≥ Pr

[
w∗ ASi

]
> p∗ so that w∗ < AS∗ . Hence, AS∗ ⊆ ASi+1

127

and the property is maintained for at least one more iteration. If instead p̂i < ε/2+p∗

then we have p̂i∗ ≤ p̂i ≤ p∗ + ε/2 so for each w ∈ ASi∗ we have Pr
[
w ASi∗

]
≤ p∗ + ε.

We conclude that the solution Si∗ is a (1, ε)-approximation. �

We next explain how to extend Algorithm 5.3 to (1, ε)-approximate the optimal
p (k,AS) for any constant k.

Theorem 20. There is an algorithm which runs in polynomial time (in m, 1/ε, δ), takes
a polynomial number of samples, and returns a (1, ε)-approximation S ⊆ [m] of p (k,AS∗)
with probability at least 1 − δ.

sketch. To extend Algorithm 5.3 to (1, ε)-approximate p (k,AS) for constant k we
need one more idea. We cannot simply obtain a reduced password space P̂ by
reducing preference lists because we can only sample from our distribution. Notice
that for any S ⊆ [m] such that i ∈ S we have Pr [w AS] ≤ Pr

[
w A{i}

]
so to obtain

a (1, ε)-approximation it is sufficient to limit our attention to passwords in the
following set

P̂ =
{
w ∃i,Pr

[
w A{i} ≥

ε
k

]}
.

We can obtain a superset of P̂ by sampling. For each positive rule Ri we draw s
independent samples from the distributionA{i} and set

Ti =
{
w

sw

s
>
ε
2k

}
.

Intuitively, a password w is included in Ti if and only if our estimated proba-
bility is sufficiently large. Let T =

⋃
i Ti. For a sufficiently large sample size

s = O
(
poly (m, k, 1/ε, 1/δ)

)
we can apply Chernoff Bounds to argue that with prob-

ability 1 − δ (1) |T| is small, i.e., O
(
poly (m, k, 1/ε, 1/δ)

)
, and (2) T ⊃ P̂. �

5.6 Experiments

To demonstrate how our ideas could apply in a real-world scenario, we simulated
runs of Algorithm 5.5 by sampling with replacement from the RockYou leaked
password set [92]. The set contains over 32 million passwords with a frequency
distribution similar to that of many other password sets [39]. Note that all results
presented here are limited by the dataset and assume the normalization model.
Working in the normalization model is crucial because we cannot ask the RockYou

128

users for their preferred password under a specific policy; an initial distribution
over P — which is available to us — is sufficient though, because it induces a
distribution for any policyA.

We selected 21 positive rules that mirror commonly used password compo-
sition rules that are used in practice, and looked at sample sizes s of 100, 500,
1000, 5000, and 10000. The rules included length requirements, character class
requirements, combinations of requirements, a dictionary check, etc. (See Table
5.3 in Section 5.6.1 for a complete listing of the rules we selected.) For each run
with a particular value of s, the algorithm returns a policy AS for which we can
measure p (1,AS) in the original dataset and compare with the optimal p (1,AS∗),
determined from running Algorithm 5.2 on the original dataset. We performed
500 runs for each of the five values of s.

To gain an understanding of how policies based on negative rules perform,
we took the complement of the 21 positive rules selected above to get 21 nega-
tive rules. We then determined the optimal negative rules policy by calculating
S∗ = arg minS⊆[m] p (1,AS) via brute-force. This was required because we have
no equivalent to Algorithm 5.2 for negative rules. With this baseline in hand,
we designed two naı̈ve algorithms, similar in spirit to Algorithm 5.5. There are
multiple ways to discard a password in the negative rules setting, and one algo-
rithm makes this decision randomly while the other bans the smallest subset as
determined from the current sample. Again, 500 runs were performed for each
s ∈ {100, 500, 1000, 10000, 50000}.

5.6.1 Experiment Rules

We selected rules based on common types of rules used in constructing password
composition policies, e.g., the policies recommended by NIST [50]. The rules we
selected are shown in Table 5.3. Positive and negative forms of each rule are shown.
In the positive rules setting, a password is allowed if it matches any positive rule.
In the negative rules setting, a password is banned if it matches any negative rule.

The dictionary check used the cracking dictionary from openwall.com. This
dictionary is used by one of the most well-known password crackers, John the
Ripper [63]. Since this dictionary contains all alphabetic strings up to size 3, it
was pruned to only include entries of 4 characters or more for the “contains a
dictionary word” dictionary check.

Notice that for some groups of rules, e.g., length rules, digit rules, etc., the

129

subsets defined by these rules are subsets or supersets of each other. For example,
if the positive rule “8 characters or more” is in a policy, adding the “10 characters
or more” rule yields the same policy. We did this to prevent the selection of overly
complex policies, e.g., “8 characters” OR “11 characters” OR “12 characters” OR
“14 characters.” However, we also selected a couple of “combination rules” to
make policies more interesting.

5.6.2 Baselines

We examined several baselines for comparison with our algorithm. Table 5.4 shows
these baselines, the probability of the most frequent password in the resulting
policy, and the optimal policy as a union or intersection of rules (for clarity, the
complement of the union of negative rules is shown as the intersection of positive
rules).

As shown in Table 5.4 from the means across policies, randomly selecting a
policy from the power set of rules can be worse than having no policy. The “one
rule maximum” baseline was selected because, if decided based on sampling,
only m distributions need be sampled. Our efficient algorithm requires the same
amount of sampling, but can find the optimal policy over S ⊆ [m] rather than
S ∈ {1, ...,m}. Also of interest is the optimal policy with negative rules, which is
over 3x better than the optimal policy with positive rules. However, as shown in
the following section, the performance of our sampling algorithms with negative
rules was far worse than in the positive rules setting.

5.6.3 Performance

In the positive rules setting (see Table 5.5), the algorithm performed extremely
well even at moderate sample sizes. The average policy selected with s = 500 was
almost 10x better than having no policy. At s = 1000, the optimal policy was found
10% of the time (50 out of 500 times).

In the negative rules setting (see Table 5.6), however, neither algorithm found
the optimal policy. The “Ban Smallest” heuristic, when faced with a choice between
multiple subsets that contain the most likely password, decides to ban the smallest
available subset, disrupting the space the least. This might seem like an intuitively
good choice but, in fact, it fails to find a better policy than the empty set at
large sample sizes. The randomized algorithm does better (it cannot actually do

130

worse) but still has much worse average case performance than using our efficient
algorithm with positive rules.

5.7 Discussion

We conclude this chapter by discussing some key points.

Usability. In this chapter our goal was to optimize the security of a password
composition policy. However, many users find it difficult to comply with all of
the requirements of a complicated password composition policy. Can we quantify
the usability costs of a password composition policy? Can we characterize the
trade-off between security and usability in password composition policies? Can
we find the optimal password composition policy subject to usability constraints?
Where do the rules comes from? Throughout the paper we have assumed that
the rules (whether positive or negative) are given as part of the input; it is not up
to us to find these rules. Our experiments indicate that a collection of intuitive
and practical rules can already give very good results on real data. However, the
question of deciding which rules should be added to our collection is outside the
scope of this paper. Much like the problem of feature selection, it is an interesting
problem with real-life implications, which we suspect will be very difficult in
practice.

Alternate policy goals. Our goal [45] has been to minimize p (k,AS). Intuitively,
p (k,AS) represents the probability that an adversary with no background knowl-
edge can successfully guess the password of a randomly selected user in k tries. A
small value of k optimizes security guarantees against an online guessing attack in
which the adversary is locked out after k failed attempts to login. A much larger
value of k (e.g., 232) is necessary to optimize security against an adversary who has
obtained the cryptographic hash of a password and is able to mount a brute-force
dictionary attack [136]. However, the optimal solutions for p (1,AS) and p

(
232,AS

)
might be completely different. One stronger goal that we might hope to achieve is
to optimize both goals simultaneously. More formally, can we find a policy S ⊆ [m]
such that for every S′ ⊆ [m] and every k ≤ N we have p (k,AS) ≤ c · p (k,AS′) for
some constant c? Unfortunately, the answer is no. For any constant c this universal
approximation goal is impossible to satisfy in the ranking model — see Theorem
32 in the appendix.

Other natural goals include α-work factor [121] and a refinement called α-

131

guesswork [39] (e.g., maximize the total number of guesses needed to compromise
a fraction α of the accounts). While α-guesswork is an useful metric to analyze the
security of 70 million Yahoo passwords [39], it may not be a desirable optimization
goal for the organization because it might allow the adversary to crack up to
(α − ε)-fraction of the accounts with relatively few guesses.

Another interesting direction is to account for an adversary with basic back-
ground information about the user (e.g., e-mail address, username, birthday). It
may not always be realistic to assume that the adversary has no background knowl-
edge because the adversary can often easily obtain some background knowledge
about a user by searching for publicly available information on the internet. One
approach might be to design a rule R to specify different passwords for different
users (e.g., the set of passwords that contain the username or birthday of the user).

Open Questions. While we were able to prove several hardness results about
finding the optimal password composition policy in the negative rules setting,
it is possible that these hardness results could be circumvented by making mild
(hopefully realistic) assumptions about the underlying password distribution or
the rules R1, ...,Rm. Are there efficient algorithms to optimize p (k,AS) in the nega-
tive rules setting given realistic assumptions? It is also possible that mild realistic
assumptions could be used to circumvent the impossibility result of Theorem 32,
and design a universal approximation algorithm.

There are also several interesting technical questions that remain open:

1. Normalization model with negative rules: Can we efficiently c-approximate
p (1,AS∗) for any constant c? Is there a sub-exponential algorithm (in m) to
compute p (1,AS∗)?

2. Ranking model with positive rules: Can we efficiently c-approximate p (k,AS∗)
for some constant c when k is a parameter?

The future. There is a real need for a principled approach to optimizing password
composition policies. We have taken a first step in this direction by providing an
intuitive theoretical model and showing that it leads to algorithms that perform
well on real data. We can only hope that our work will spark a fundamentally
new interaction between theory and practice in passwords research.

132

Positive Rule Negative Rule Details

8 characters or more Less than 8 characters

Length rules

9 characters or more Less than 9 characters

10 characters or more Less than 10 characters

11 characters or more Less than 11 characters

12 characters or more Less than 12 characters

13 characters or more Less than 13 characters

14 characters or more Less than 14 characters

15 characters or more Less than 15 characters

16 characters or more Less than 16 characters

1 digit or more Less than 1 digit

Character class rules

1 symbol or more Less than 1 symbol

1 lowercase or more Less than 1 lowercase

1 uppercase or more Less than 1 uppercase

2 digits or more Less than 2 digits

2 symbols or more Less than 2 symbols

2 lowercase or more Less than 2 lowercase

2 uppercase or more Less than 2 uppercase

In a dictionary Not in a dictionary
Dictionary checks

Contains a dictionary
word

Does not contain a dictio-
nary word

8 characters or more
AND 1 uppercase or
more

Less than 8 characters OR
less than 1 uppercase Combination Rules

8 characters or more
AND 1 uppercase or
more AND 1 digit or
more

Less than 8 characters OR
less than 1 uppercase OR
less than 1 digit

Table 5.3: Rules Used in Sampling Experiments

133

Baseline p (1,AS) S

Mean across negative rules policies 1.3×10−2

Mean across positive rules policies 1.0×10−2

All passwords allowed (no policy) 9.2×10−3

One positive rule (S ∈ {1, ...,m}) 6.8×10−4 8 chars, 1 upper, 1 digit

Optimal policy with positive rules 4.4×10−4 14 chars OR 2 symbols OR
8 chars, 1 upper, 1 digit

Optimal policy with negative rules 1.4×10−4 10 chars AND 2 digits AND
1 symbol AND 1 lowercase
AND not in dictionary

Table 5.4: Baseline probabilities for the RockYou dataset

Sample Size mean p (1,AS) min p (1,AS) % Optimal

100 6.8×10−3 1.2×10−3

500 9.7×10−4 4.4 × 10−4 2%

1000 9.5×10−4 4.4 × 10−4 10%

5000 6.0×10−4 4.4 × 10−4 14%

10000 5.7×10−4 4.4 × 10−4 19%

Table 5.5: Performance of Sampling Algorithms with Positive Rules

Random Decision Ban Smallest

Sample Size mean p (1,AS) min p (1,AS) mean p (1,AS) min p (1,AS)

100 6.8×10−3 1.2×10−3 7.2×10−3 2.3×10−3

500 4.4×10−3 6.3×10−4 9.0×10−3 2.3×10−3

1000 4.3×10−3 4.5×10−4 8.6×10−3 2.3×10−3

5000 6.3×10−3 4.5×10−4 9.2×10−3 9.2×10−3

10000 7.2×10−3 4.5×10−4 9.2×10−3 9.2×10−3

Table 5.6: Performance of Sampling Algortihms with Negative Rules

134

Chapter 6

GOTCHAs: A Defense Against
Offline Attacks

6.1 Introduction

Any adversary who has obtained the cryptographic hash of a user’s password can
mount an automated brute-force attack to crack the password by comparing the
cryptographic hash of the user’s password with the cryptographic hashes of likely
password guesses. This attack is called an offline dictionary attack, and there
are many password crackers that an adversary could use [63]. Offline dictionary
attacks against passwords are — unfortunately — powerful and commonplace
[87]. Adversaries have been able to compromise servers at large companies (e.g.,
Zappos, LinkedIn, Sony, Gawker [5, 9, 10, 11, 13, 28]) resulting in the release of
millions of cryptographic password hashes1. It has been repeatedly demonstrated
that users tend to select easily guessable passwords [39, 66, 92], and password
crackers are able to quickly break many of these passwords[136]. Offline attacks are
becoming increasingly dangerous as computing hardware improves — a modern
GPU can evaluate a cryptographic hash function like SHA2 about 250 million times
per second [165] — and as more and more training data — leaked passwords from
prior breaches — becomes available [87]. Symantec reported that compromised
passwords have significant economic value to an adversary (e.g., compromised
passwords are sold on black market for between $4 and $30) [79].

HOSPs (Human-Only Solvable Puzzles) were suggested by Canetti, Halevi

1In a few of these cases [5, 10] the passwords were stored in the clear.

135

and Steiner as a way of defending against offline dictionary attacks [51]. The basic
idea is to change the authentication protocol so that human interaction is required
to verify a password guess. The authentication protocol begins with the user
entering his password. In response the server randomly generates a challenge —
using the password as a source of randomness — for the user to solve. Finally,
the server appends the user’s response to the user’s password, and verifies that
the hash matches the record on the server. To crack the user’s password offline
the adversary must simultaneously guess the user’s password and the answer to
the corresponding puzzle. The challenge should be easy for a human to solve
consistently so that a legitimate user can authenticate. To mitigate the threat of an
offline dictionary attack the HOSP should be difficult for a computer to solve —
even if it has all of the random bits used to generate the challenge.

The basic HOSP construction proposed by Canetti et al. [51] was to to fill a hard
drive with regular CAPTCHAs (e.g., distorted text) by storing the puzzles without
the answers. This solution only provides limited protection against an adversary
because the number of unique puzzles that can be generated is bounded by the size
of the hard drive (e.g., the adversary could pay people to solve all of the puzzles
on the hard drive). See Appendix 10.2 for more discussion. Finding a usable
HOSP construction which does not rely on a very large dataset of pregenerated
CAPTCHAs is an open problem. Several candidate HOSPs were experimentally
tested [59] (they are called POSHs in the second paper), but the usability results
were underwhelming.

Contributions In this chapter we introduce a simple modification of HOSPs
that we call GOTCHAs (Generating panOptic Turing Tests to Tell Computers and
Humans Apart). We use the adjective Panoptic to refer to a world without privacy
— there are no hidden random inputs to the puzzle generation protocol. The
basic goal of GOTCHAs is similar to the goal of HOSPs — defending against
offline dictionary attacks. GOTCHAs differ from HOSPs in two ways (1) Unlike
a HOSP a GOTCHA may require human interaction during the generation of the
challenge. (2) We relax the requirement that a user needs to be able to answer all
challenges easily and consistently. If the user can remember his password during
the authentication protocol then he will only ever see one challenge. We only
require that the user must be able to answer this challenge consistently. If the user
enters the wrong password during authentication then he may see new challenges.
We do not require that the user must be able to solve these challenges consistently
because authentication will fail in either case. We do require that it is difficult

136

Figure 6.1: Randomly Generated Inkblot Image—An evil clown?

for a computer to distinguish between the “correct” challenge and an “incorrect”
challenge. Our main theorem demonstrates that GOTCHAs like HOSPs can be
used to defend against offline dictionary attacks. The goal of these relaxations is
to enable the design of usable GOTCHAs.

We introduce a candidate GOTCHA construction based on Inkblot images.
While the images are generated randomly by a computer, the human mind can
easily imagine semantically meaningful objects in each image. To generate a
challenge the computer first generates ten inkblot images (e.g., figure 6.1). The
user then provides labels for each image (e.g., evil clown, big frog). During
authentication the challenge is to match each inkblot image with the corresponding
label. We empirically evaluate the usability of our inkblot matching GOTCHA
construction by conducting a user study on Amazon’s Mechanical Turk. Finally,
we challenge the AI community to break our GOTCHA construction.

137

Organization The rest of this chapter is organized as follows: We next discuss
related work in section 6.1.1. We formally define GOTCHAs in section 6.2 and
formalize the properties that a GOTCHA should satisfy. We present our candidate
GOTCHA construction in section 6.3, and in section 6.3.1 we demonstrate how
our GOTCHA could be integrated into an authentication protocol. We present the
results from our user study in section 6.3.2, and in section 6.3.3 we challenge the AI
and security communities to break our GOTCHA construction. In section 6.4 we
prove that GOTCHAs like HOSPs can also be used to design a password storage
system which mitigates the threat of offline attacks. We conclude by discussing
future directions and challenges in section 6.5.

6.1.1 Related Work

Inkblots [148] have been proposed as an alternative way to generate and remem-
ber passwords. Stubblefield and Simon proposed showing the user ten randomly
generated inkblot images, and having the user make up a word or a phrase to de-
scribe each image. These phrases were then used to build a 20 character password
(e.g., users were instructed to take the first and last letter of each phrase). Usabil-
ity results were moderately good, but users sometimes had trouble remembering
their association. Because the Inkblots are publicly available there is also a security
concern that Inkblot passwords could be guessable if different users consistently
picked similar phrases to describe the same Inkblot.

We stress that our use of Inkblot images is different in two ways: (1) Usability:
We do not require users to recall the word or phrase associated with each Inkblot.
Instead we require user’s to recognize the word or phrase associated with each
Inkblot so that they can match each phrase with the appropriate Inkblot image.
Recognition is widely accepted to be easier than the task of recall [23, 155]. (2)
Security: We do not need to assume that it would be difficult for other humans
to match the phrases with each Inkblot. We only assume that it is difficult for a
computer to perform this matching automatically.

CAPTCHAs — formally introduced by Von Ahn et al. [152] — have gained
widespread adoption on the internet to prevent bots from automatically registering
for accounts. A CAPTCHA is a program that generates a puzzle — which should
be easy for a human to solve and difficult for a computer to solve — as well as a
solution. Many popular forms of CAPTCHAs (e.g., reCAPTCHA [153]) generate

138

garbled text, which is easy2 for a human to read, but difficult for a computer to
decipher. Other versions of CAPTCHAs rely on the natural human capacity for
audio [131] or image recognition [67].

CAPTCHAs have been used to defend against online password guessing at-
tacks — users are sometimes required to solve a CAPTCHA before signing into
their account. An alternative approach is to lock out a user after several incorrect
guesses, but this can lead to denial of service attacks [60]. However, if the ad-
versary has access to the cryptographic hash of the user’s password, then he can
circumvent all of these requirements and execute an automatic dictionary attack
to crack the password offline. By contrast HOSPs — proposed by Canetti et al.[51]
— were proposed to defend against offline attacks. HOSPs are in some ways sim-
ilar to CAPTCHAs (Completely Automated Turing Tests to Tell Computers and
Humans Apart) [152]. CAPTCHAs are widely used on the internet to fight spam
by preventing bots from automatically registering for accounts. In this setting
a CAPTCHA is sent to the user as a challenge, while the secret solution is used
to grade the user’s answer. The implicit assumption is that the answer and the
random bits used to generate the puzzle remain hidden — otherwise a spam bot
could simply regenerate the puzzle and the answer. While this assumption may
be reasonable in the spam bot setting, it does not hold in our offline password
attack setting in which the server has already been breached. A HOSP is different
from a CAPTCHA in several key ways: (1) The challenge must remain difficult
for a computer to solve even if the random bits used to generate the puzzle are
made public. (2) There is no single correct answer to a HOSP. It is okay if different
people give different responses to a challenge as long as people can respond to the
challenges easily, and each user can consistently answer the challenges.

The only HOSP construction proposed in [51] involved stuffing a hard drive
with unsolved CAPTCHAs. The problem of finding a HOSP construction that does
not rely on a dataset of unsolved CAPTCHAs was left as an open problem [51].
Several other candidate HOSP constructions have been experimentally evaluated
in subsequent work [59] (they are called POSHs in the second paper), but the
usability results for every scheme that did not rely on a large dataset on unsolved
CAPTCHAs were underwhelming.

GOTCHAs are very similar to HOSPs. The basic application — defending
against offline dictionary attacks — is the same as are the key tools: exploiting
the power of interaction during authentication, exploiting hard artificial intelli-
gence problems. While the authentication with HOSPs is interactive, the initial

2Admitedly some people would dispute the use of the label ‘easy.’

139

generation of the puzzle is not. By contrast, our GOTCHA construction requires
human interaction during the initial generation of the puzzle. This simple relax-
ation allows for the construction of new solutions. In the HOSP paper humans
are simply modeled as a puzzle solving oracle, and the adversary is assumed to
have a limited number of queries to a human oracle. We introduce a more intricate
model of the human agent with the goal of designing more usable constructions.

Password Storage Password storage is an incredibly challenging problem. Ad-
versaries have been able to compromise servers at many large companies (e.g.,
Zappos, LinkedIn, Sony, Gawker [5, 9, 10, 11, 13, 28]). For example, hackers were
able to obtain 32 million plaintext passwords from RockYou using a simple SQL in-
jection attack [5]. While it is considered an extremely poor security practice to store
passwords in the clear [141], the practice is still fairly common [5, 10, 41]. Many
other companies [13, 41] have used cryptographic hashes to store their passwords,
but failed to adopt the practice of salting (e.g., instead of storing the cryptographic
hash of the password H(pw) the server stores

(
H

(
pw, r

)
, r

)
for a random string r

[16]) to defend against rainbow table attacks. Rainbow tables, which consist of
precomputed hashes, are often used by an adversary to significantly speed up a
password cracking attack because the same table can be reused to attack each user
when the passwords are unsalted [117].

Cryptographic hash functions like SHA1, SHA2 and MD5 — designed for fast
hardware computation — are popular choices for password hashing. Unfortu-
nately, this allows an adversary to try up to 250 million guesses per second on a
modern GPU [165]. The BCRYPT [122] hash function was designed specifically
with passwords in mind — BCRYPT was intentionally designed to be slow to
compute (e.g., to limit the power of an adversary’s offline attack). The BCRYPT
hash function takes a parameter which allows the programmer to specify how
costly the hash computation should be. The downside to this approach is that it
also increases costs for the company that stores the passwords (e.g., if we want
it to cost the adversary $1,000 for every million guesses then it will also cost the
company at least $1,000 for every million login attempts).

Users are often advised (or required) to follow strict guidelines when selecting
their password (e.g., use a mix of upper/lower case letters, include numbers and
change the password frequently) [133]. However, empirical studies show that
user’s are are often frustrated by restricting policies and commonly forget their

140

passwords [34, 75, 102]3. Furthermore, the cost of these restrictive policies can be
quite high. For example, a Gartner case study [158] estimated that it cost over $17
per password-reset call. Florencio and Herley [76] studied the economic factors
that institutions consider before adopting password policies and found that they
often value usability over security.

6.2 Definitions

In this section we seek to establish a theoretical basis for GOTCHAs. Several
of the ideas behind our definitions are borrowed from theoretical definitions of
CAPTCHAs [152] and HOSPs [51]. Like CAPTCHAs and HOSPs, GOTCHAs are
based on the assumption that some AI problem is hard for a computer to solve, but
easy for a person to solve. Ultimately, these assumptions are almost certainly false
(e.g., because the human brain can solve a GOTCHA it is reasonable to believe
that there exists a computer program to solve the problems). However, it may still
be reasonable to assume that these problems cannot be solved by applying known
ideas. By providing a formal definition of GOTCHAs we can determine whether
or not a new idea can be used to break a candidate GOTCHA construction.

We use c ∈ C to denote the space of challenges that might be generated. We
use H to denote the set of human users and H (c, σt) to denote the response that
a human H ∈ H gives to the challenge c ∈ C at time t. Here, σt denotes the
state of the human’s brain at time t. σt is supposed to encode our user’s existing
knowledge (e.g., vocabulary, experiences) as well as the user’s mental state at time
t (e.g., what is the user thinking about at time t). Because σt changes over time (e.g.,
new experiences) we use H (c) = {H (c, σt) t ∈N} to denote the set of all answers
a human might give to a challenge c. We use A to denote the range of possible
responses (answers) that a human might give to the challenges.

Definition 12. Given a metric d : A×A→ R, we say that a human H can consistently
solve a challenge c ∈ C with accuracy α if ∀t ∈N

d (H (c, σ0) ,H (c, σt)) ≤ α ,

where σ0 denotes the state of the human’s brain when he initially answers the challenge. If
|H (c)| = 1 then we simply say that the human can consistently solve the challenge.

3In fact the resulting passwords are sometimes more vulnerable to an offline attack! [34, 102]

141

Notation: When we have a group of challenges 〈c1, . . . , ck〉 we will sometimes
write H (〈c1, . . . , ck〉, σt) = 〈H (c1, σt) , . . . ,H (ck, σt)〉 for notational convenience. We
use y ∼ D to denote a random sample from the distribution D, and we use
r ∼ {0, 1}n to denote a element drawn from the set {0, 1}n uniformly at random.
We stress that while H denotes a human user in this chapter, H still denotes a
cryptographic hash that would be evaluated by a computer as in the rest of this
thesis.

One of the requirements of a HOSP puzzle system [51] is that the human H
must be able to consistently answer any challenge that is generated (e.g., ∀c ∈ C,
H can consistently solve c). These requirements seem to rule out promising ideas
for HOSP constructions like Inkblots[59]. In this construction the challenge is a
randomly generated inkblot image I, and the response H (I, σ0) is word or phrase
describing what the user initially sees in the inkblot image (e.g., evil clown, soldier,
big lady with a ponytail). User studies have shown that H (I, σ0) does not always
match H (I, σt) — the phrase describing what the user sees at time t [59]. In a few
cases the errors may be correctable (e.g., capitalization, plural/singular form of a
word), but oftentimes the phrase was completely different — especially if a long
time passed in between trials4. By contrast, our GOTCHA construction does not
require the user to remember the phrases associated with each Inkblot. Instead
we rely on a much weaker assumption — the user can consistently recognize his
solutions. We say that a human can recognize his solutions to a set of challenges if
he can consistently solve a matching challenge (definition 13) in which he is asked
to match each of his solutions with the corresponding challenge.

Definition 13. Given an integer k, and a permutation π : [k] → [k], a matching
challenge ĉπ =

(
~c, ~a

)
∈ C of size k is given by a k-tuple of challenges~c = 〈cπ(1), . . . , cπ(k)〉 ∈

C
k and solutions ~a = H (〈c1, . . . , ck〉, σ0). The response to a matching challenge is a

permutation π′ = H
(
~cπ, σt

)
.

For permutations π : [k]→ [k] we use the distance metric

dk (π1, π2) = |{i π1(i) , π2(i) ∧ 1 ≤ i ≤ k}| .

dk (π1, π2) simply counts the number of entries where the permutations don’t
match. We say that a human can consistently recognize his solution to a matching

4We would add the requirement that the human must be able to consistently answer the chal-
lenges without spending time memorizing and rehearsing his response to the challenge. Otherwise
we could just as easily force the user to remember a random string to append on to his password.

142

challenge ĉπ with accuracy α if ∀t.dk (H (ĉπ, σt) , π) ≤ α. We use {π′ dk (π, π′) ≤ α}
to denote the set of permutations π′ that are α-close to π.

The puzzle generation process for a GOTCHA involves interaction between the
human and a computer: (1) The computer generates a set of k challenges. (2) The
human solves these challenges. (3) The computer uses the solutions to produce a
final challenge5. Formally,

Definition 14. A puzzle-system is a pair (G1,G2), where G1 is a randomized challenge
generator that takes as input 1k (with k security parameter) and a pair of random bit
strings r1, r2 ∈ {0, 1}∗ and outputs k challenges 〈c1, . . . , ck〉 ← G1

(
1k, r1, r2

)
. G2 is a

randomized challenge generator that takes as input 1k (security parameter), a random bit
string r1 ∈ {0, 1}∗, and proposed answers ~a = 〈a1, ..., ak〉 to the challenges G1

(
1k, r1, r2

)
and

outputs a challenge
ĉ← G2

(
1k, r1, ~a

)
. We say that the puzzle-system is

(
α, β

)
-usable if

Pr
H∼H

[Accurate (H, ĉ, α)] ≥ β ,

whenever ~a = H
(
G1

(
1k, r1, r2

)
, σ0

)
, where Accurate (H, ĉ, α) denotes the event that the

human H can consistently solve ĉ with accuracy α.

In our authentication setting the random string r1 is extracted from the user’s
password using a strong pseudorandom function Extract. To provide a concrete
example of a puzzle-system, G1 could be a program that generates a set of inkblot
challenges 〈I1, . . . , Ik〉 using random bits r1, selects a random permutation π : [k]→
[k] using random bits r2, and returns 〈Iπ(1), . . . , Iπ(k)〉. The human’s response to an
Inkblot — H

(
I j, σ0

)
— is whatever he/she imagines when he sees the inkblot I j for

the first time (e.g., some people might imagine an evil clown when they look at
figure 6.1). Finally, G2 might generate Inkblots ~c = 〈I1, . . . , Ik〉 using random bits r1,
and return the matching challenge ĉπ =

(
~c, ~a

)
. In this case the matching challenge

is for the user to match his labels with the appropriate Inkblot images to recover
the permutation π. Observe that the final challenge — ĉπ — can only be generated
after a round of interaction between the computer and a human. By contrast, the
challenges in a HOSP must be generated automatically by a computer. Also notice
that if G2 is executed with a different random bit string r′1 then we do not require
the resulting challenge to be consistently recognizable (e.g., if the user enters in

5We note that a HOSP puzzle system (G) [51] can be modeled as a GOTCHA puzzle system
(G1,G2) where G1 does nothing and G2 simply runs G to generate the final challenge ĉ directly.

143

the wrong password then authentication will fail regardless of how he solves the
resulting challenge). For example, if the user enters the wrong password the
user might be asked to match his labels 〈`π(1), ..., `π(k)〉 = H

(
〈Iπ(1), . . . , Iπ(k)〉, σ0

)
with

Inkblots 〈I′1, . . . , I
′

k〉 that he has never seen.

An adversary could attack a puzzle system by either (1) attempting to distin-
guish between the correct puzzle, and puzzles that might be meaningless to the
human, or (2) by solving the matching challenge directly.

We say that an algorithm A can distinguish distributions D1 and D2 with
advantage ε if ∣∣∣∣∣ Pr

x∼D1
[A (x) = 1] − Pr

y∼D2

[
A

(
y
)

= 1
]∣∣∣∣∣ ≥ ε .

Our formal definition of a GOTCHA is found in definition 15. Intuitively,
definition 15 says that (1) The underlying puzzle-system should be usable — so
that legitimate users can authenticate. (2) It should be difficult for the adversary to
distinguish between the correct matching challenge (e.g., the one that the user will
see when he types in the correct password), and an incorrect matching challenge
(e.g., if the user enters the wrong password he will be asked to match his labels
with different Inkblot images), and (3) It should be difficult for the adversary to
distinguish between the user’s matching, and a random matching drawn from a
distribution R with sufficiently high minimum entropy.

Definition 15. A puzzle-system (G1,G2) is an (α, β, ε, δ, µ)-GOTCHA if (1) (G1,G2) is(
α, β

)
-usable (2) Given a human H ∈ H no probabilistic polynomial time algorithm can

distinguish between distributions

D1 =
{

H(G1(1k,r1,r2),σ0),
G2(1k,r1,H(G1(1k,r1,r2),σ0)) r1, r2 ∼ {0, 1}n

}
and

D2 =
{

H(G1(1k,r1,r2),σ0),
G2(1k,r3,H(G1(1k,r1,r2),σ0)) r1, r2, r3 ∼ {0, 1}n

}
with advantage greater than ε, and (3) Given a human H ∈ H , there is a distribution R(c)
with µ(m) bits of minimum entropy such that no probabilistic polynomial time algorithm
can distinguish between distributions

D3 =

 H(G1(1k,r1,r2),σ0)
G2(1k,r1,H(G1(1k,r1,r2),σ0)),

H(G2(1k,r1,H(G1(1k,r1,r2),σ0)),σ0)
r1, r2 ∼ {0, 1}n


144

and

D4 =

{
H(G1(1k,r1,r2),σ0)

G2(1k,r1,H(G1(1k,r1,r2),σ0)),
R(G2(1m,r1,〈a1,...,am〉),σ0)

r1, r2 ∼ {0, 1}n
}

with advantage greater then δ.

6.2.1 Password Storage and Offline Attacks

To protect users in the event of a server breach organizations are advised to store
salted password hashes — using a cryptographic hash function (H : {0, 1}∗ →
{0, 1}n) and a random bit string (s ∈ {0, 1}∗) [133]. For example, if a user (u) chose
the password (pw) the server would store the tuple

(
u, s,H

(
s, pw

))
. Any adversary

who has obtained
(
u, s,H

(
s, pw

))
(e.g., through a server breach) may mount a —

fully automated — offline dictionary attack using powerful password crackers
like John the Ripper [63]. To verify a guess pw′ the adversary simply computes
H

(
s, pw′

)
and checks to see if this hash matches H

(
s, pw

)
.

We assume that an adversary Adv who breaches the server can obtain the code
for h, as well as the code for any GOTCHAs used in the authentication protocol.
Given the code for h and the salt value s the adversary can construct a function

VerifyHash
(
pw′

)
=

{
1 if H

(
s, pw

)
= H

(
s, pw′

)
0 otherwise.

.

We also allow the adversary to have black box access to a GOTCHA solver (e.g.,
a human). We use cH to denote the cost of querying a human and cH to denote
the cost of querying the function VerifyHash6, and we use nH (resp. nH) to denote
the number of queries to the human (resp. VerifyHash). Queries to the human
GOTCHA solver are much more expensive than queries to the cryptographic
hash function (cH � cH) [110]. For technical reasons we limit our analysis to
conservative adversaries.

Definition 16. We say that an adversary Adv is conservative if (1) Adv uses the
cryptographic hash function H in a black box manner (e.g., the hash function H and the
stored hash value are only used to construct a subroutine VerifyHash which is then used
as a black box by Adv), (2) The pseudorandom function Extract is used as a black box,
and (3) The adversary only queries a human about challenges generated using a password
guess.

6The value of cH may vary widely depending on the particular cryptographic hash function —
it is inexpensive to evaluate SHA1, but BCRYPT [122] may be very expensive to evaluate.

145

It is reasonable to believe that our adversary is conservative. All existing
password crackers (e.g., [63]) use the hash function as a black box, and it is difficult
to imagine that the adversary would benefit by querying a human solver about
Inkblots that are unrelated to the password.

We use D ⊆ {0, 1}∗ to denote a dictionary of likely guesses that the adversary
would like to try,

Cost (Adv,D) = (nHcH + nHcH)

to denote the cost of the queries that the adversary makes to check each guess in
D, and Succeed

(
Adv,D, pw

)
to denote the event that the adversary makes a query

to VerifyHash that returns 1 (e.g., the adversary successfully finds the user’s
password pw). The adversary might use a computer program to try to solve some
of the GOTCHAs — to save cost by not querying a human. However, in this case
the adversary might fail to crack the password because the GOTCHA solver found
the wrong solution to one of the challenges.

Definition 17. An adversary Adv is
(
C, γ,D

)
-successful if Cost (Adv,D) ≤ C, and

Pr
pw∼D

[
Succeed

(
Adv,D, pw

)]
≥ γ .

Our attack model is slightly different from the attack model in [51]. They
assume that the adversary may ask a limited number of queries to a human
challenge solution oracle. Instead we adopt an economic model similar to [30],
and assume that the adversary is instead limited by a budget C, which may be
used to either evaluate the cryptographic hash function H or query a human H.

6.3 Inkblot Construction

Our candidate GOTCHA construction is based on Inkblots images. We use algo-
rithm 6.1 to generate inkblot images. Algorithm 6.1 takes as input random bits r1

and a security parameter k — which specifies the number of Inkblots to output.
Algorithm 6.1 makes use of the randomized subroutine

DrawRandomEllipsePairs
(
I, t,width, height

)
which draws t pairs of ellipses on the

image I with the specified width and height. The first ellipse in each pair is drawn
at a random (x, y) coordinate on the left half of the image with a randomly selected
color and angle α of rotation, and the second ellipse is mirrored on the right half

146

Algorithm 6.1 GenerateInkblotImages

Input: Security Parameter 1k, Random bit string r1 ∈ {0, 1}∗.
for j = 1, . . . , k do

I j ← new Blank Image . The following operations only use the random bit
string r1 as a source of randomness

DrawRandomEllipsePairs
(
I j, 150, 60, 60

)
DrawRandomEllipsePairs

(
I j, 70, 20, 20

)
DrawRandomEllipsePairs

(
I j, 150, 60, 20

)
return 〈I1, . . . , Ik〉 . Inkblot Images

of the image. Figure 6.1 is an example of an Inkblot image generated by algorithm
6.1.

Our candidate GOTCHA is given by the pair (G1,G2) — algorithms 6.2 and 6.3.
G1 runs algorithm 6.1 to generate k Inkblot images, and then returns these images
in permuted order — using a function GenerateRandomPermutation (k, r), which
generates a random permutation π : [k] → [k] using random bits r. G2 also runs
algorithm 6.1 to generate k Inkblot images, and then outputs a matching challenge.

Algorithm 6.2 G1

Input: Security Parameter 1k, Random bit strings r1, r2 ∈ {0, 1}∗.
〈I1, . . . , Ik〉 ← GenerateInkblotImages (k, r1)
π← GenerateRandomPermutation (k, r2)
return 〈Iπ(1), . . . , Iπ(k)〉

After the Inkblots 〈Iπ(1), . . . , Iπ(k)〉 have been generated, the human user is
queried to provide labels `π(1), . . . , `π(k) where

〈`π(1), . . . , `π(k)〉 = H
(
〈Iπ(1), . . . , Iπ(k)〉, σ0

)
.

In our authentication setting the server would store the labels `π(1), . . . , `π(k) in
permuted order. The final challenge — generated by algorithm 6.3 — is to match
the Inkblot images I1, . . . , Ik with the user generated labels `1, ..., `k to recover the
permutation π.

Observation: Notice that if the random bits provided as input to
GenerateInkblotImages and GenerateMatchingChallenge match that the user

147

Algorithm 6.3 GenerateMatchingChallenge G2

Input: Security Parameter 1k, Random bits r1 ∈ {0, 1}∗ and labels ~a =
〈`π(1), . . . , `π(k)〉.
〈I1, . . . , Ik〉 ← GenerateInkblotImages

(
1k, r1

)
return ĉπ =

(
~c, ~a

)
. Matching Challenge

will see the same Inkblot images in the final matching challenge. However, if the
random bits do not match (e.g., because the user typed the wrong password in our
authentication protocol) then the user will see different Inkblot images. The labels
`1, . . . , `k will be the same in both cases.

6.3.1 GOTCHA Authentication

To illustrate how our GOTCHAs can be used to defend against offline attacks we
present the following authentication protocols: Create Account (protocol 6.3.1)
and Authenticate (protocol 6.3.2). Communication in both protocols should take
place over a secure channel. Both protocols involve several rounds of interaction
between the user and the server. To create a new account the user sends his
username/password to the server, the server responds by generating k Inkblot
images I1, . . . , Ik, and the user provides a response 〈`1, . . . , `k〉 = H (〈I1, . . . , Ik〉, σ0)
based on his mental state at the time — the server stores these labels in permuted
order `π(1), . . . , `π(k)

7. To authenticate later the user will have to match these labels
with the corresponding inkblot images to recover the permutation π.

In section 6.4 we argue that the adversary who wishes to mount a cost effective
offline attack needs to obtain constant feedback from a human. Following [51] we
assume that the function Extract : {0, 1}∗ → {0, 1}n is a strong randomness extractor,
which can be used to extract random strings from the user’s password. Recall that
H : {0, 1}∗ → {0, 1}∗ denotes a cryptographic hash function.

Our protocol could be updated to allow the user to reject challenges he found
confusing during account creation in protocol 6.3.1. In this case the server would
simply note that the first GOTCHA was confusing and generate a new GOTCHA.

7For a general GOTCHA, protocol 6.3.1 would need to have an extra round of communication.
The server would send the user the final challenge generated by G2 and the user would respond
with H (G2 (,) , σ0). Protocol 6.3.1 takes advantage of the fact that π = H (G2 (,) , σ0) is already
known.

148

Protocol 6.3.1: Create Account

Security Parameters: k, n.
(User): Select username (u) and password (pw) and send

(
u, pw

)
to the server.

(Server): Sends Inkblots 〈I1, . . . , Ik〉 to the user where:
r′ ∼ {0, 1}n, r1 ← Extract

(
pw, r′

)
, r2 ∼ {0, 1}n and

〈I1, . . . , Ik〉 ← GenerateInkblotImages
(
1k, r1

)
(User): Sends responses 〈`1, ..., `k〉 back to the server where:
〈`1, . . . , `k〉 ← H (〈I1, . . . , Ik〉, σ0).

(Server): Store the tuple t where t is computed as follows:
Salt: s ∼ {0, 1}n

π← GenerateRandomPermutation (k, r2).
hpw ← H

(
u, s, pw, π(1), ..., π(k)

)
t←

(
u, r′, s, hpw, `π(1), . . . , `π(k)

)
Once our user has created an account he can login by following protocol 6.3.2.

Claim 6 says that a legitimate user can successfully authenticate if our Inkblot
construction satisfies the usability requirements of a GOTCHA. The proof of claim
6 can be found in appendix 10.1.

Claim 6. If (G1,G2) is a
(
α, β, ε, δ, µ

)
-GOTCHA then at least β-fraction of humans can

successfully authenticate using protocol 6.3.2 after creating an account using protocol
6.3.1.

One way to improve usability of our authentication protocol is to increase the
neighborhood of acceptably close matchings by increasing α. The disadvantage is
that the running time for the server in protocol 6.3.2 increases with the size of α.
Claim 7 bounds the time needed to enumerate over all close permutations. The
proof of claim 7 can be found in appendix 10.1.

Claim 7. For all permutations π : [k]→ [k] and α ≥ 0

|{π′ dk (π, π′) ≤ α}| ≤ 1 +

α∑
i=2

(
k
i

)
i! .

For example, if the user matches k = 10 Inkblots and we want to accept match-
ings that are off by at most α = 5 entries then the server would need to enumerate

149

Protocol 6.3.2: Authenticate

Security Parameters: k, n.
Usability Parameter: α
(User): Send username (u) and password (pw′) — pw′may or may not be correct.
(Server): Sends challenge ĉ to the user where ĉ is computed as follows:

Find t =
(
u, r′, s, hpw, `π(1), . . . , `π(k)

)
r′1 ← Extract

(
pw′, r′

)
〈I′1, ..., I

′

k〉 ← GenerateInkblotImages
(
r′1, k

)
ĉπ ←

(
〈I1, ..., Ik〉, 〈`π(1), . . . , `π(k)〉

)
(User): Solves ĉπ and sends the answer π′ = H (ĉ, σt).
(Server):
for all π0 s.t dk (π0, π′) ≤ α do

hpw,0 ← H
(
u, s, pw′, π0(1), ..., π0(k)

)
if hpw,0 = hpw then

Authenticate
Deny

over at most 36, 091 permutations8. Organizations are already advised to use
password hash functions like BCRYPT [122] which intentionally designed to be
slower than standard cryptographic hash functions — often by a factor of millions.
Instead of making the hash function a million times slower to evaluate the server
might instead make the hash function a thousand times slower to evaluate and
use these extra computation cycles to enumerate over close permutations. The
organization’s trade-off is between: security, usability and the resources that it
needs to invest during the authentication process.

We observe that an adversary mounting an online attack would be naturally
rate limited because he would need to solve a GOTCHA for each new guess.
Protocol 6.3.2 could also be supplemented with a k-strikes policy — in which a
user is locked out for several hours after k incorrect login attempts — if desired.

8A more precise calculation reveals that there are exactly 13, 264 permutations s.t. d10 (π′, π) ≤ 5
and a random permutation π′ would only be accepted with probability 3.66 × 10−3

150

6.3.2 User Study

To test our candidate GOTCHA construction we conducted an online user study9.
We recruited participants through Amazon’s Mechanical Turk to participate in
our study. The study was conducted in two phases. In phase 1 we generated ten
random Inkblot images for each participant, and asked each participant to provide
labels for their Inkblot images. Participants were advised to use creative titles (e.g.,
evil clown, frog, lady with poofy dress) because they would not need to remember
the exact titles that they used. Participants were paid $1 for completing this first
phase. A total of 70 users completed phase 1.

After our participants completed the first phase we waited ten days before
asking our participants to return and complete phase 2. During phase 2 we showed
each participant the Inkblot images they saw in phase 1 (in a random order) as well
as the titles that they created during phase 1 (in alphabetical order). Participants
were asked to match the labels with the appropriate image. The purpose of the
longer waiting time was to make sure that participants had time to forget their
images and their labels. See figure 6.3 for an example of phase 2. Participants were
paid an additional $1 for completing phase 2 of the user study. At the beginning
of the user study we let participants know that they would be paid during phase
2 even if their answers were not correct. We adopted this policy to discourage
cheating (e.g., using screen captures from phase 1 to match the images and the
labels) and avoid positively biasing our results.

We measured the time it took each participant to complete phase 1. Our results
are summarized in Table 6.1. It is quite likely that some participants left their
computer in the middle of the study and returned later to complete the study
(e.g., one user took 57.5 minutes to complete the study). While we could not
measure time away from the computer, we believe that it is likely that at least
9 of our participants left the computer. Restricting our attention to the other 61
participants who took at most 20 minutes we get an adjusted average completion
time of 6.2 minutes.

Fifty-eight of our participants returned to complete phase 2 by taking our
matching test. It took these participants 4.5 minutes on average to complete the
matching test. Seventeen of our participants correctly matched all ten of their
labels, and 69% of participants matched at least 5 out of ten labels correctly. Our
results are summarized in Table 6.2.

9Our study protocol was approved for exemption by the Institutional Review Board (IRB) at
Carnegie Mellon University (IRB Protocol Number: HS13-219).

151

Phase 1 Phase 2

Average 9.3 4.5

StdDev 9.6 3

Max 57.5 18.5

Min 1.4 1.6

Average ≤ 20 6.2 N/A

Table 6.1: Completion Times

α-accurate # partici-
pants

participants
58

|{π′ d10(π,π′)≤α}|
10!

α = 0 17 0.29 2.76 × 10−7

α = 2 22 0.38 1.27 × 10−5

α = 3 26 0.45 7.88 × 10−5

α = 4 34 0.59 6.00 × 10−4

α = 5 40 0.69 3.66 × 10−3

Table 6.2: Usability Results: Fraction of Participants who would have authenti-
cated with accuracy parameter α

Discussion Our user study provides evidence that our construction is at least
(0, 0.29)-usable or (5, 0.69)-usable. While this means that our Inkblot Matching
GOTCHA could be used by a significant fraction of the population to protect
their passwords during authentication it also means that the use of our GOTCHA
would have to be voluntary so that users who have difficulty won’t get locked out
of their accounts. Another approach would be to construct different GOTCHAs
and allow users to choose which GOTCHA to use during authentication.

Study Incentives: There is evidence that the lack of monetary incentives to
perform well on our matching test may have negatively influenced the results (e.g.,
some participants may have rushed through phase 1 of the study because their
payment in round 2 was independent of their ability to match their labels correctly).
For example, none of our 18 fastest participants during phase 1 matched all of
their labels correctly, and — excluding participants we believe left their computer
during phase 1 (e.g., took longer than 20 minutes) — on average participants who

152

failed to match at least five labels correctly took 2 minutes less time to complete
phase 1 than participants who did.

Time: We imagine that some web services may be reluctant to adopt GOTCHAs
out of fear driving away customers who don’t want to spend time labeling Inkblot
images [76]. However, we believe that for many high security applications (e.g.,
online banking) the extra security benefits of GOTCHAs will outweigh the costs
— GOTCHAs might even help a bank keep its customers by providing extra as-
surance that users’ passwords are secure. We are looking at modifying our Inkblot
generation algorithm to produce Inkblots which require less “mental effort” to
label. In particular could techniques like Perlin Noise [119] be used to generate
Inkblots that can be labeled more quickly and matched more accurately?

Accuracy: We believe that the usability of our Inkblot Matching GOTCHA
construction can still be improved. One simple way to improve the usability of
our GOTCHA construction would be to allow the user to reject Inkblot images that
were confusing. We also believe that usability could be improved by providing
users with specific strategies for creating their labels (e.g., we found that simple
labels like “a voodoo mask” were often mismatched, while more elaborate stories
like “A happy guy on the ground, protecting himself from ticklers” were rarely
mismatched).

6.3.3 An Open Challenge to the AI Community

We envision a rich interaction between the security community and the artificial
intelligence community. To facilitate this interaction we present an open challenge
to break our GOTCHA scheme.

Challenge Setup We chose several random passwords
(
pw1, ..., pw4

)
∼ {0, 107

}

and pw5 ∼ {0, 108
}. We used a function GenerateInkblots

(
pwi, 10

)
to generate ten

inkblots Ii
1, ..., I

i
10 for each password, and we had a human label each inkblot image

〈`i
1, . . . , `

i
10〉 ← H

(
〈Ii

1, . . . , I
i
10〉, σ0

)
. We selected a random permutation πi : [10] →

[10] for each account, and generated the tuple

Ti =
(
si, h

(
pwi, si, πi(1), ..., πi(10)

)
, `i
πi(1), ..., `

i
πi(10)

)
,

where si is a randomly selected salt value and h is a cryptographic hash function.
We are releasing the source code that we used to generate the Inkblots and evaluate

153

the hash function H along with the tuples T1, ...,T5 — see
http://www.cs.cmu.edu/˜jblocki/GOTCHA-Challenge.html.

Challenge: Recover each password pwi.

Approaches One way to accomplish this goal would be to enumerate over ev-
ery possible password guess pw′i and evaluate H

(
pw′i , si, π(1), ..., π(10)

)
for every

possible permutation π : [10] → [10]. However, the goal of this challenge is to
see if AI techniques can be applied to attack our GOTCHA construction. We in-
tentionally selected our passwords from a smaller space to make the challenge
more tractable for AI based attacks, but to discourage participants from trying
to brute force over all password/permutation pairs we used BCRYPT (Level 15)10

— an expensive hash function — to encrypt the passwords. Our implementation
allows the Inkblot images to be generated very quickly from a password guess
pw’ so an AI program that can use the labels in the password file to distinguish
between the correct Inkblots returned by GenerateInkblots

(
pwi, 10

)
and incorrect

Inkblots returned by GenerateInkblots
(
pw′i , 10

)
would be able to quickly dismiss

incorrect guesses. Similarly, an AI program which generates a small set of likely
permutations for each password guess could allow an attacker to quickly dismiss
incorrect guesses.

6.4 Analysis: Cost of Offline Attacks

In this section we argue that our password scheme (protocols 6.3.2 and 6.3.1)
significantly mitigates the threat of offline attacks. An informal interpretation
of our main technical result — Theorem 21 — is that either (1) the adversary’s
offline attack is prohibitively expensive (2) there is a good chance that adversary’s
offline attack will fail, or (3) the underlying GOTCHA construction can be broken.
Observe that the security guarantees are still meaningful even if the security
parameters ε and δ are not negligibly small.

Theorem 21. Suppose that our user selects his password uniformly at random from a set
D (e.g., pw $

← D) and creates his account using protocol 6.3.1. If algorithms 6.2 and 6.3

10The level parameter specifies the computation complexity of hashing. The amount of work
necessary to evaluate the BCRYPT hash function increases exponentially with the level so in our
case the work increases by a factor of 215.

154

http://www.cs.cmu.edu/~jblocki/GOTCHA-Challenge.html

are an
(
ε, δ, µ

)
-GOTCHA then no conservative offline adversary is

(
C, γ + ε + δ + nH

|D| ,D
)
-

successful for C < γ|D|2µ(k)cH + nHcH

Proof of Theorem 21. (Sketch) We use a hybrid argument. An adversary who
breaches the server is able to recover the tuple t =

(
u, r′, s,H

(
u, s, pw, π(1), . . . , π(k)

)
, `π(1), . . . , `π(k)

)
as well as the code for the cryptographic hash function H and the code for our
GOTCHA — (G1,G2).

1. World 0: W0 denotes the real world in which the adversary has recovered
the tuple

t0 =
(
u, r′, s,H

(
u, s, pw, π(1), . . . , π(k)

)
, `π(1), . . . , `π(k)

)
as well as the code for the cryptographic hash function H and the code for
our GOTCHA — (G1,G2). Because the adversary Adv is conservative it
constructs the function

VerifyHash
(
pw′, π′

)
=

{
1 if pw′ = pw and π′ = π

0 otherwise.
,

and uses VerifyHash as a blackbox. We say that Adv queries a human H
about password pw′ if it queries H for H

(
GenerateInkblotImages

(
1k,Extract

(
pw′, r′

)))
,

and we let D′ ⊆ D denote the set of passwords for which the adversary
queries a human.

2. World 1: W1 denotes a hypothetical world that is similar to W0 except that
VerifyHash function the adversary uses as a blackbox is replaced with the
following incorrect version

VerifyHash1 (pw′, π′
)

=

{
1 if pw′ < D′, pw′ = pw and π′ = π

0 otherwise.
,

where D′ ⊆ D is a subset of passwords which denotes the set of passwords
for which the adversary makes queries to a human in the real world.

3. World 2: W2 denotes a hypothetical world that is similar to W1 except that
VerifyHash1 function the adversary uses as a blackbox is replaced with the

155

following incorrect version

VerifyHash2 (pw′, π′
)

=


1 if π′ = R

(
G2

(
1k,Extract

(
pw′, r′

)
, `1, . . . , `k

))
,

pw′ < D′ and pw′ = pw
0 otherwise.

,

where R is a distribution with minimum entropy µ(k) as in definition 15.

4. World 3: W3 denotes a hypothetical real world which is similar to world 2,
except that the labels `π(1), . . . , `π(k) are replaced with the labels `′π′(1), . . . , `

′

π′(k),
where π′ : [k]→ [k] is a new random permutation, and the labels `′i are for a
completely unrelated set of Inkblot challenges

`′1, . . . , `k ← H
(
G1

(
1k, x1, x2

))
,

where x1, x2 ∈ {0, 1}n are freshly chosen random value.

In world 3 it is easy to bound the adversary’s probability of success. No adversary
is

(
C, γ,D

)
-successful for C < γ|D|2µ(k)cH, because the fake Inkblot labels are not

correlated with the actual Inblots that were generated with the real password. Our
particular adversary cannot be

(
C, γ,D

)
-successful for C < γ|D|2µ(k)cH + |D′|cH. In

world 2 the adversary might improve his chances of success by looking at the
Inblot labels, but by definition of (α, β, ε, δ, µ)-GOTCHA his chances change by at
most δ. In world 1 the adversary might further improve his chances of success, but
by definition of (α, β, ε, δ, µ)-GOTCHA his chances improve by at most ε. Finally,
in world 0 the adversary improves his chances by at most |D′|/|D| by querying the
human about passwords in D′. �

6.5 Discussion

We conclude by discussing some key directions for future work.

Improved Inkblots One way to improve our GOTCHA construction would be
to improve the Inkblot generation algorithm. One idea is to use random walks
to generate Inkblots[129] instead of adding colored ellipses with random sizes,
locations and orientations (e.g., Figure 6.1). Figure 6.4a is an example of an Inkblot

156

produced with random walks. The hope is that users will find it easier to label
these Inkblot images. Another potential improvement would be to have the user
identify and highlight several specific objects in his Inkblot image(s) during ac-
count creation (see Figure 6.4b). When the user authenticates he would be asked
to click on each of these objects (e.g., click on the “Bunny Ears”). One advantage is
that we may be able to provide equivalent security guarantees by having the user
specify two or three specific objects in the Inkblot images instead of requiring the
user to label and match ten different Inkblot images. While the author of this thesis
has personally found these random walk Inkblots much easier to label than the
Inkblots described earlier, we have not yet conducted a user study to empirically
evaluate these potential improvements.

Other GOTCHA Constructions Because GOTCHAs allow for human feedback
during puzzle generation — unlike HOSPs [51] — our definition potentially opens
up a much wider space of potential GOTCHA constructions. One idea might be
to have a user rate/rank random items (e.g., movies, activities, foods). By allowing
human feedback we could allow the user to dismiss potentially confusing items
(e.g., movies he hasn’t seen, foods about which he has no strong opinion). There
is some evidence that this approach could provide security (e.g., Narayanan and
Shmatikov showed that a Netflix user can often be uniquely identified from a few
movie ratings [114].).

Obfuscating CAPTCHAs If it were possible to efficiently obfuscate programs
then it would be easy to construct GOTCHAs from CAPTCHAs (e.g., just obfus-
cate a program that returns the CAPTCHA without the answer). Recently, Garg
et al. showed how to obfuscate arbitrary programs [80] using multilinear maps11.
Unfortunately, their obfuscator is not yet efficient enough for practical use. How-
ever, it may be still be possible to find an efficient way to obfuscate our particular
CAPTCHA program.

11While Barak et al. [24] showed that there is no general program obfuscator, their impossibility
result was for a stronger notion of obfuscation called blackbox obfuscation, which requires that any
adversary with access to an obfuscated program can be simulated with only blackbox access to the
same program. Garg et al. [80] used a weaker notion of obfuscation known as “indistinguishability
obfuscation,” which (loosely) only guarantees that the adversary cannot distinguish between the
obfuscations of two circuits which compute the same function.

157

Exploiting The Power of Interaction Can interaction be exploited and used to
improve security or usability in human-authentication? While interaction is an
incredibly powerful tool in computer security (e.g., nonces [128], zero-knowledge
proofs [85], secure multiparty computation [163]) and in complexity theory12,
human authentication typically does not exploit interaction with the human (e.g.,
the user simply enters his password). We view the idea behind HOSPs and
GOTCHAs — exploiting interaction to mitigate the threat of offline attacks — as
a positive step in this direction. Could interaction be exploited to reduce memory
burden on the user by allowing a user to reuse the same secret to authenticate
to multiple different servers? The human-authentication protocol of Hopper et
al. [91] — based on the noisy parity problem — could be used by a human to
repeatedly authenticate over an insecure channel. Unfortunately, the protocol is
slow and tedious for a human to execute, and it can be broken if the adversary is
able to ask adaptive parity queries [103].

12A polynomial time verifier can verify PSPACE-complete languages by interacting with a pow-
erful prover [138], by contrast the same verifier can only check proofs of NP-Complete languages
without interaction.

158

Figure 6.2: Phase 1

159

Figure 6.3: Phase 2

(a) Example Random Walk Inkblot. (b) Example Inkblot with Labels.

Figure 6.4: Random Walk Inkblots

160

Chapter 7

Appendix: Naturally Rehearsing
Passwords

161

7.1 Missing Proofs

Before we prove Lemma 1 and Theorem 1 we first formally define a Poisson arrival
process (Definition 18) and state a few basic facts about a Poisson arrival process.

Definition 18. Given 0 ≤ t1 ≤ t2 we use Visitsi (t1, t2) =
∣∣∣∣{ j τi

j ∈ (t1, t2)
}∣∣∣∣ to denote

the number of times the user visits account Ai during the interval (t1, t2). We say that
Visitsi (t1, t2) represents a Poisson arrival process with parameter λi if

Pr [Visitsi (t1, t2) = k] = eλi(t1−t2) (λi (t2 − t1))k

k!
,

and the random variables Visitsi (t1, t2) and Visitsi (t3, t4) are independent whenever
0 ≤ t1 ≤ t2 ≤ t3 ≤ t4.

Fact 4 says that 1/λi represents the average inter-visitation time for account Ai

whose visitation schedule follows a Poisson arrival process with parameter λi.

Fact 4. If Visitsi (t1, t2) represents a Poisson arrival process with parameter λi then 1/λi

represents the average inter-visitation time for account Ai. More formally, for all j > 0 we
have E

[
τi

j − τ
i
j−1

]
= 1

λi
.

Fact 5 says that the sum of two Poisson arrival processes with parameters λ1

and λ2 is itself a Poisson arrival process with parameter (λ1 + λ2).

Fact 5. If Visitsi (t1, t2) represents a Poisson arrival process with parameter λi and
Visits j (t1, t2) represents an independent Poisson arrival process with parameter λ j then
Visitsi, j (t1, t2) � Visitsi (t1, t2)+Visits j (t1, t2) is a Poisson arrival process with parameter(
λi + λ j

)
.

Reminder of Lemma 1. Let Sĉ = {i ĉ ∈ ci} and let λĉ =
∑

i∈Sĉ
λi then the probability

that the cue ĉ is not naturally rehearsed during time interval [a, b] is exp (−λĉ (b − a)).

Proof of Lemma 1. Let N (t1, t2) =
∣∣∣∣{τi

k i ∈ Sĉ ∧ t1 ≤ τi
k ≤ t2

}∣∣∣∣ denote the number of
times the cue ĉ is rehearsed during the interval [t1, t2]. Notice that the rehearsal
requirement [a, b] is naturally satisfied if and only if N(a, b) > 0. By Fact 5, N(t1, t2) =∑

i∈Sĉ
Visitsi (t1, t2) describes a Poisson arrival process with parameter λĉ =

∑
i∈Sĉ
λi

so we can apply the definition of a Poisson arrival process to get

162

Pr [N (a, b) = 0] = exp (−λĉ (b − a)) .

�

Reminder of Theorem 1. Let iĉ∗ =
(
arg maxx tĉ

x < t
)
− 1 then

E [XRt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

−
∑

j:ĉ∈c j

λ j

 (tĉ
i+1 − tĉ

i

)
Proof of Theorem 1. Let Sĉ = {i ĉ ∈ ci} and let Va,b (ĉ) be the indicator for the event
that ∃i ∈ Sĉ, k ∈ N.τi

k ∈ [a, b] (e.g., cue ĉ is rehearsed naturally during the time
interval [a, b]). Then by linearity of expectation

E
[
XRt,ĉ

]
=

iĉ∗∑
i=0

(
1 − E

[
Vti,ti+1 (ĉ)

])
,

where

E
[
1 − Vti,ti+1 (ĉ)

]
=

iĉ∗∑
i=0

exp

−
∑

j:ĉ∈c j

λ j

 (tĉ
i+1 − tĉ

i

) ,
by Lemma 1. The result follows immediately from linearity of expectation. �

Reminder of Theorem 4. It is NP-Hard to approximate Min-Rehearsal within a
constant factor.

Proof of Theorem 4. Let γ > 0 be any constant. We prove that it is NP-Hard to even
γ-approximate Min-Rehearsal. The reduction is from set cover.

Set Cover Instance: Sets S1, ...,Sn and universe U =
⋃

i Si. A set cover is a set
S ⊆ {1, ...,n} such that

⋃
i∈S Si = U.

Question: Is there a set cover of size k?

Given a set cover instance, we set C = U create public cues c1, ..., cm ⊆ C for
each account by setting ci = Si. We set the following visitation schedule

λi =
ln

(
γ |U|

(
maxĉ∈C i∗ĉ

))
min j,ĉ

(
tĉ

j+1 − tĉ
j

) ,

163

for i = 1, . . . , k and λk+1, ..., λn = 0. There are two cases: (1) There is a set cover
S = {x1, ..., xk} ⊆ {1, ...,n} of size k. If we assign π(i) = xi for each i ≤ k then for each
base cue ĉ ∈ U we have

λĉ =
∑
i:ĉ∈Si

λi ≥ λ1 .

Applying Theorem 1 we get

E [XRt] = =
∑
ĉ∈C

iĉ∗∑
i=0

exp

− (
tĉ
i+1 − tĉ

i

) ∑
i:ĉ∈Sπ(i)

λi


≤ |C|

(
max

ĉ∈C
i∗ĉ
)

exp

− (
tĉ
i+1 − tĉ

i

) ln
(
γ |U|

(
maxĉ∈C i∗ĉ

))(
min j,ĉ

(
tĉ
i+1 − tĉ

i

)) 
≤ |U|

(
max

ĉ∈C
i∗ĉ
)

exp
(
− ln

(
γ |U|

(
max

ĉ∈C
i∗ĉ
)))

≤ |U|
(
max

ĉ∈C
i∗ĉ
) 1

γ |U|
(
maxĉ∈C i∗ĉ

)
=

1
γ
.

(2) If there is no set cover of size k. Given a mappingπwe let Sπ =
{
i ∃ j ≤ k.π

(
j
)

= i
}

be the set of all public cues visited with frequency at least λ1. Because |Sπ| = k,
Sπ cannot be a set cover and there exists some ĉ j ∈ C which is never visited so no
rehearsal requirements are satisfied naturally.

E [XRt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

− (
tĉ
i+1 − tĉ

i

) ∑
i:ĉ∈Sπ(i)

λi

 ≥
iĉ j ∗∑
i=0

1 ≥ 1 .

�

Reminder of Theorem 2. Let {c1, . . . , cm} be a (n, `, γ)-sharing set of m public cues
produced by the password management scheme Gm. If each ai ∈ AS is chosen uniformly
at random then Gm satisfies (q, δ,m, s, r, h)-security for δ ≤ q

|AS|
`−γr and any h.

Proof of Theorem 2. Recall that S (resp. S′) denotes the set of accounts that the
adversary selected for plaintext recovery attacks. Let

(
k, p′k

)
denote the adversary’s

final answer. We can assume that k < S because the adversary cannot win by

164

outputting a password he obtained earlier in the game during a plaintext recovery
attack. We define

Uk = ck −
{
ĉ ∃ j ∈ S. ĉ ∈ c j

}
,

to be the set of all uncompromised base cues in ck. Observe that

|Uk| ≥ |ck| −

∑
j∈S

∣∣∣∣ck

⋂
c j

∣∣∣∣
≥ ` −

∑
j∈S

γ

≥ ` − rγ ,

by definition 5 of a
(
n, `, γ

)
-sharing family of public cues.

For each, ĉ ∈ Uk the corresponding association â was chosen uniformly at
random fromAS. We can upper bound BA — the bad event that the adversaryA
guesses (k, pk) in at most q attempts.

Pr [BA] ≤
q

|AS|
|Uk |
≤

q

|AS|
`−rγ .

�

Reminder of Theorem 3. Suppose that S = {S1, ...,Sm} is a
(
n, `, γ

)
-sharing set family

of size m then m ≤
(n
γ+1

)/(`
γ+1

)
.

Proof of Theorem 3. Let S ∈ S be given, and let T ⊆ S be subset of size |T| = γ + 1.
By definition of

(
n, `, γ

)
-sharing we cannot have T ⊆ S′ for any other set S′ ∈ S−S.

In total there are
(n
γ+1

)
subsets of [n] of size γ + 1 and each S ∈ S contains

(`
γ+1

)
of

them. The result follows from the pigeonhole principle. �

7.2 Varying the Association Strength Constant

In Tables 2.2 and 2.3 we used the same association strength constant for each
scheme σ = 1 — though we expect that σ will be higher for schemes like Shared
Cues that use strong mnemonic techniques. We explore the effect of σ on E

[
XRt,c

]
under various values of the natural rehearsal rate λ. Table 7.1 shows the values
E

[
XRt,c

]
under the expanding rehearsal assumption for σ ∈ {0.1.0.5, 1, 2}. We

165

λ (visits/days) 2 1 1
3

1
7

1
31

σ = 0.1 0.686669 2.42166 5.7746 7.43555 8.61931

σ = 0.5 0.216598 0.827594 2.75627 4.73269 7.54973

σ = 1 0.153986 0.521866 1.56788 2.61413 4.65353

σ = 2 0.135671 0.386195 0.984956 1.5334 2.57117

Table 7.1: Expanding Rehearsal Assumption: E
[
XR365,c

]
vs. λc and σ

λ (visits/days) 2 1 1
3

1
7

1
31

σ = 1 49.5327 134.644 262.25 317.277 354.382

σ = 3 0.3024 6.074 44.8813 79.4756 110.747

σ = 7 0.0000 0.0483297 5.13951 19.4976 42.2872

σ = 31 0.000 0.0000 0.0004 0.1432 4.4146

Table 7.2: Constant Rehearsal Assumption: E
[
XR365,c

]
vs. λc and σ

consider the following natural rehearsal rates: λ = 1 (e.g., naturally rehearsed
daily), λ = 3, λ = 7 (e.g., naturally rehearsed weekly), λ = 31 (e.g., naturally
rehearsed monthly).

Table 7.2 shows the values E
[
XRt,c

]
under the constant rehearsal assumption

for σ ∈ {1, 3, 7, 31} (e.g., if σ = 7 then the cue must be rehearsed every week).

7.3 Baseline Password Management Schemes

In this section we formalize our baseline password management schemes: Reuse
Weak (Algorithm 7.1), Reuse Strong (Algorithm 7.2),Lifehacker (Algorithm 7.3) and
Strong Random and Independent (Algorithm 7.4). The first three schemes (Reuse
Weak,Reuse Strong,Lifehacker) are easy to use, but only satisfy weak security guar-
antees. Strong Random and Independent provides very strong security guarantees,
but is highly difficult to use.

Vague instructions and strategies do not constitute a password management
scheme because it is unclear what the resulting distribution over P looks like.
When given such vague instructions (e.g., “pick a random sentence and use the

166

first letter of each word”) people tend to behave predictably (e.g., picking a pop-
ular phrase from a movie or book). For example, when people are required to
add special symbols to their passwords they tend to use a small set of random
symbols and add them in predictable places (e.g., end of the password) [101].
Most password advice provides only vague instructions. However, many of these
vague strategies can be tweaked to yield formal password management schemes.
Reuse Weak, Reuse Strong, and Lifehacker are formalizations of popular password
management strategies.

Each of these password management schemes ignores the visitation schedule
λ1, ..., λm. None of the schemes use cues explicitly. However, the user always has
an implicitly cue when he tries to login. For example, the implicit cue in Reuse
Weak might be “that word that I always use as my password.” We use four implicit
cues for Reuse Strong to represent the use of four separate words (chunks [108]).
These implicit cues are shared across all accounts — a user rehearses the implicit
association(s) when he logs into any of his accounts.

Algorithm 7.1 Reuse Weak Gm

Input: Background knowledge k ∈ K about the user. Random bits b, λ1, ..., λm.

Random Word: w $
← D20,000. . Select w uniformly at random from a dictionary

of 20,000 words.
for i = 1→ m do

pi ← w
ci ← {‘word′}

return
(
p1, c1

)
, ...,

(
pm, cm

)
User: Memorizes and rehearses the cue-association pairs

(
‘word′, pi

)
for each

account Ai by following the rehearsal schedule (e.g., CR or ER).

Lifehacker uses a derivation rule to get a different password for each account.
There is no explicit cue to help the user remember the derivation rule, but the
implicit cue (e.g., “that derivation rule I always use when I make passwords”) is
shared across every account — the user rehearses the derivation rule every time
he logs into one of his accounts. There are four base cues — three for the words,
one for the derivation rule.

Strong Random and Independent also uses implicit cues (e.g., the account name
Ai), which are not shared across accounts so the only way to naturally rehearse the
association

(
Ai, pi

)
is to visit account Ai.

167

Algorithm 7.2 Reuse Strong Gm

Input: Background knowledge k ∈ K about the user. Random bits b, λ1, ..., λm.
for i = 1→ 4 do

Random Word: wi
$
← D20,000.

for i = 1→ m do
pi ← w1w2w3w4

ci ←
{(

‘Word′, j
)

j ∈ [4]
}

return
(
p1, c1

)
, ...,

(
pm, cm

)
User: Memorizes and rehearses the cue-association pairs

((
‘Word′, j

)
,w j

)
for

each j ∈ [4] by following the rehearsal schedule (e.g., CR or ER).

Algorithm 7.3 Lifehacker Gm

Input: Background knowledge k ∈ K about the user. Random bits b, λ1, ..., λm.
for i = 1→ 3 do

Random Word: wi
$
← D20,000.

Derivation Rule: d $
← DerivRules. . DerivRules is a set of 50 simple

derivation rules to map the name of a site Ai to a string d (Ai) (e.g., use the first
three consonants of Ai).
for i = 1→ m do

pi ← w1w2w3d (Ai)
ci ←

{(
‘Word′, j

)
j ∈ [3]

}
∪ {‘Rule′}

return
(
p1, c1

)
, ...,

(
pm, cm

)
User: Memorizes and rehearses the cue-association pairs

((
‘Word′, j

)
,w j

)
for

each j ∈ [3] and (‘Rule′, d) by following the rehearsal schedule (e.g., CR or ER).

Algorithm 7.4 Strong Random and Independent Gm

Input: Background knowledge k ∈ K about the user. Random bits b, λ1, ..., λm.
for i = 1→ m do

for j = 1→ 4 do

Random Word: wi
j

$
← D20,000.

pi ← wi
1wi

2wi
3wi

4
ci ←

{(
Ai, j

)
j ∈ [4]

}
return

(
p1, c1

)
, ...,

(
pm, cm

)
User: Memorizes and rehearses the association

((
Ai, j

)
,wi

j

)
for each account Ai

and j ∈ [4] by following the rehearsal schedule (e.g., CR or ER).

168

7.3.1 Security Of Baseline Password Management Schemes

Reuse Weak is not (q$1, δ,m, s, 0, 1)-secure for any δ < 1 — an adversary who is only
willing to spend $1 on password cracking will still be able to crack the user’s
passwords! While Reuse Weak does provide some security guarantees against
online attacks they are not very strong. For example, Reuse Weak is not even(
q$1, .01, 100, 3, 0, 0

)
-secure because an adversary who executes an online attack can

succeed in breaking into at least one of the user’s 100 accounts with probability at
least .01 — even if all accounts implement a 3-strike limit. If the adversary recovers
any of the user’s passwords (r > 0) then all security guarantees break down.

Reuse Strong is slightly more secure. It satisfies (q$106 , 3.222 × 10−7,m, s, 0,m)-
security meaning that with high probability the adversary who has not been able
to recover any of the user’s passwords will not even be able to mount a successful
offline attack against against the user. However, Reuse Strong is not

(
q, δ,m, s, 1, 0

)
-

secure — if the adversary is able to recover just one password pi for any account
Ai then the adversary will be able to compromise all of the user’s accounts.

Lifehacker is supposed to limit the damage of a recovery attack by using a
derived string at the end of each password. However, in our security model the
adversary knows that the user used Lifehacker to generate his passwords. The
original article [4] instructs users to pick a simple derivation rule (e.g., “use the
first three consonants in the site name”). Because this instruction is vague we
assume that there are a set of 50 derivation rules and that one is selected at
random. If the adversary sees a password pi = w1w2w3d (Ai) for account Ai then
he can immediately infer the base password b = w1w2w3, and the adversary needs
at most 50 guesses to discover one of the user’s passwords1 — so if (m − 1)s ≥
50 then Lifehacker is not

(
q, δ,m, s, 1, 0

)
-secure for any values of δ, q. Lifehacker is

(q$106 , 1.29 × 10−4,m, s, 0,m)-secure — it defends against offline and online attacks
in the absence of recovery attacks.

Strong Random and Independent is highly secure! It satisfies (q$106 , 3.222 ×
10−7,m, s, α,m)-security for any α ≤ m. This means that even after the adversary
learns many of the user’s passwords he will fail to crack any other password with
high probability. Unfortunately, Strong Random and Independentis very difficult to
use.

1In fact the adversary most likely needs far fewer guesses. He can immediately eliminate any
derivation rule d̂ s.t. d̂ (Ai) , d (Ai). Most likely this will include almost all derivation rules besides
the correct one.

169

7.3.2 Usability of Baseline Schemes

Usability results for Lifehacker and Strong Random and Independent can be found
in Table 2.2 of the paper. We evaluate usability using the formula from Theorem
1. We present our results for the Very Active, Typical, Occasional and Infrequent
users under both sufficient rehearsal assumptions CR and ER — with association
strength σ = 1. The usability results for ReuseStrong are identical to Lifehacker,
because they have the same number of cues and each cue is rehearsed anytime the
user visits any account Ai. Similarly, the usability results for ReuseWeak are better
by a factor of 4 (e.g., because there is only one cue-association pair to rehearse and
the natural rehearsal rates are identical).

7.3.3 Sources of Randomness

Popular password advice tends to be informal — the user is instructed to select a
character/number/digit/word, but is not told how to do this. Certainly one reason
why people do not select random passwords is because they worry about forget-
ting their password [102]. However, even if the user is told to select a the character
uniformly at random it is still impossible to make any formal security guarantees
without understanding the entropy of a humanly generated random sequence.
We have difficulty consciously generating a random sequence of numbers even
when they are not trying to construct a memorable sequence [154] [111] [74].

This does not rule out the possibility that human generated random sequence
could provide a weak source of entropy [88] — which could be used to extract a
truly random sequence with computer assistance [65, 137]. We envision a com-
puter program being used to generate random words from a dictionary or random
stories (e.g., Person-Action-Object stories) for the user to memorize. The source of
randomness could come from the computer itself or it could be extracted from a
human source (e.g., a user randomly typing on the keyboard).

7.4 Other Measures of Password Strength

In this section we discuss other security metrics (e.g., entropy, minimum entropy,
password strength meters, α-guesswork) and their relationship to our security
model.

170

Our security model is fundamentally different from metrics like guessing en-
tropy (e.g., How many guesses does an adversary need to guess all of passwords
in a dataset [107]?) and partial guessing entropy (e.g., How many guesses does the
adversary need to crack α-fraction of the passwords in a dataset [39, 121]? How
many passwords can the adversary break with β guesses per account [45]?), which
take the perspective of a system administrator who is trying to protect many users
with password protected accounts on his server. For example, a system adminis-
trator who wants to evaluate the security effects of a a new password composition
policy may be interested in knowing what fraction of user accounts are vulnerable
to offline attacks. By contrast, our security model takes the perspective of the user
who has many different password protected accounts. This user wants to evaluate
the security of various password management schemes that he could choose to
adopt.

Our threat model is also strictly stronger than the threat models behind met-
rics like α-guesswork because we consider targeted adversary attacks from an
adversary who may have already compromised some of the user’s accounts.

Password strength meters can provide useful feedback to a user (e.g., they rule
out some insecure password management schemes). However, password strength
meters are insufficient for our setting for several reasons: (1) They fail to rule out
some weak passwords, and (2) They cannot take correlations between a user’s
passwords (e.g., Is the user reusing the same password?) into account. (3) They
do not model the adversaries background knowledge about the user (e.g., Does
the adversary know the user’s birth date or favorite hobbies?). Entropy is bad
measure of security for the same reasons. While minimum entropy fixes some of
these problems, minimum entropy still does not address problem 2 — minimum
entropy does not deal with correlated user passwords.

7.4.1 Password Strength Meters

Password strength meters use simple heuristics (e.g., length, character set) to es-
timate the entropy of a password. A password strength meter can provide useful
feedback to the user by warning the user when he picks passwords that are easy to
guess. However, password strength meters can also give users a false sense of con-
fidence (e.g., ‘mmmmmmmmmmmmmmmmmmmmmmmmmmmm’ is clearly
predictable, but is ranked ‘Best’ by some meters [2] — see Figure 7.1 [2]). A pass-
word like Mm1!Mm1!Mm1!Mm1!Mm1!Mm1! would be rated as very secure by
almost any password strength meter because it is long, it uses upper case and

171

lower case letters and it includes a special symbol (!). However, the password is
based on a very simple repeated pattern and has low entropy (e.g., it could be
compressed easily). A password strength meter cannot guarantee that a password
is secure because (1) It does not know whether or not the user has already used
this password (or a very similar password) somewhere else (2) It does not know if
the user is basing his password on personal knowledge (e.g., wife’s birthday) (3)
It does not know what background knowledge the adversary might have about
the user (e.g., does the adversary know the user’s wife’s birthday).

Figure 7.1: mmmmmmmmmmmmmmmmmmmmmmmmmmmm: sounds deli-
cious, but is it really a strong password?

7.4.2 Entropy

Entropy [139] can be used to measure the average number of guesses an adversary
would need to guess a password chosen at random from a distribution D over
passwords

H (D) =
∑

x

Pr [x D] log2

(
1

Pr [x D]

)
.

While entropy has been a commonly used information theoretic measure of pass-
word strength [101, 109], it is not always a good indicator of password strength
[107]. For example, consider the following distributions over binary passwords
D1 and D2:

D1 (n) =

1n−1 with probability 1/2,
x ∈ {0, 1}2n−2 with probability 2−2n+1.

D2 (n) = x ∈ {0, 1}n with probability 2−n .

172

While there is no difference in the entropy of both generators

H (D1 (n)) =
1
2

log2

(1
1/2

)
+

∑
x

2−2n+1 log2

(
22n−1

)
=

1
2

+
2n − 1

2
= n = H (D2 (n)) ,

D1 and D2 are by no means equivalent from a security standpoint! After just one
guess an adversary can successfully recover the password generated by D1 with
probability ≥ 1

2 ! By contrast an adversary would need at least 2n−1 guesses to
recover the password generated by D2 with probability ≥ 1

2 .

7.4.3 Minimum Entropy

If we instead consider the minimum entropy

Hmin (G) = min
x

log2

(
1

Pr [x G]

)
,

of both generators we get a different story.

Hmin (D1 (n)) = log2

(1
1/2

)
= 1� Hmin (D2 (n)) = log2 (2n) = n .

High minimum entropy guarantees with high probability any adversary will fail
to guess the password even after many guesses. However, even minimum entropy
is not a great measure of security when the user is managing multiple passwords
because it does not consider correlations between passwords. Suppose for example
that each user needs two passwords (x1, x2) and again consider two password
distributions D1 and D2 redefined below:

D1 (n) = (x, x) with probability 2−2n for each x ∈ {0, 1}2n .

D2 (n) = (x1, x2) with probability 2−2n for each (x1, x2) ∈ {0, 1}n × {0, 1}n .

The min-entropy of both generators is the same (2n). However, D1 provides
no security guarantees against a recovery attack — any adversary who knows x2

can immediately guess x1. However, when the passwords are chosen from D2 an
adversary who knows x2 has no advantage in guessing x1.

173

Benefit (B) BCRYPT MD5 SHA1

qB B
(
5.155 × 104

)
B
(
9.1 × 109) B × 1010

Table 7.3: Upper Bound: qB for BCRYPT, MD5 and SHA1

7.5 Economics

In this section we discuss how the parameter qB - our upper bound on the total
number of adversary guesses - could be selected. Our upper bound is based on
the economic cost of guessing. Guessing is not free! The basic premise is that
the adversary will not try more than q$B guesses to break into an account if his
maximum benefit from the attack is $B. The cost of guessing is influenced by
several factors including the cost of renting or buying computing equipment (e.g.,
Cray, GPUs), the cost of electricity to run the computers and the complexity of
the cryptographic hash function used to encrypt the password. The value of q$B

depends greatly on the specific choice of the cryptographic hash function. Table
7.3 shows the values of q$B we computed for the BCRYPT, SHA1 and MD5 hash
functions.

7.5.1 Password Storage

There are many cryptographic hash functions that a company might use (e.g.,
MD5, SHA1, SHA2, BCRYPT) to store passwords. Some hash functions like
BCRYPT [122] were designed specifically with passwords in mind — BCRYPT
was intentionally designed to be slow to compute (e.g., to limit the power of an
adversary’s offline attack). The BCRYPT hash function takes a parameter which
allows the programmer to specify how slow the hash computation should be
— we used L12 in our experiments. By contrast, MD5, SHA1 and SHA2 were
designed for fast hardware computation. Unfortunately, SHA1 and MD5 are more
commonly used to hash passwords [13]. In economic terms, hash functions like
BCRYPT increase the adversary’s cost of guessing. We use FH to denote number of
times that the hash function H can be computed in one hour on a 1 GHz processor.
We estimated FH experimentally on a Dell Optiplex 960 computer for BCRYPT,
MD5 and SHA1 (Table 7.4) — as expected the value of FH is much lower for
BCRYPT than SHA1 and MD5.

The rainbow table attack can be used to significantly speed up password crack-

174

ing attempts after the adversary performs some precomputation [117]. Rainbow
table attacks can be prevented by a practice known as password salting (e.g., in-
stead of storing the cryptographic hash of the password H

(
p
)

the a server stores(
H

(
p, r

)
, r

)
for a random string r) [16].

Note: , In reality, many companies do not salt their passwords [9, 13] (in fact some
do not even hash them [5]). In this paper, we assume that passwords are stored
properly (e.g., salted and hashed), and we use optimistic estimates for q$B based
on the BCRYPT hash function. To justify these decisions we observe that a user
could easily ensure that his passwords are salted and encrypted with a slow hash
function f (e.g., BCRYPT [122]) by using f

(
U,Ai, pi

)
as his password for account i

- where U is the username and Ai is the name of account i. Because the function
f is not a secret, its code could be stored locally on any machine being used or
publicly on the cloud.

7.5.2 Attack Cost and Benefit

Suppose that company Ai is hacked, and that the usernames and password hashes
are stolen by an adversary. We will assume that company A has been following
good password storage practices (e.g., company Ai hashes all of their passwords
with a strong cryptographic hash function, and company Ai salts all of their
password hashes). The adversary can purchase any computing equipment he
desires (e.g., Cray supercomputer, GPUs, etc) and run any password cracker he
wants for as long as he wants. The adversary’s primary limitation is money. It
costs money to buy all of this equipment, and it costs money to run the equipment.
If the adversary dedicates equipment to run a password cracker for several years
then the equipment may be obsolete by the time he is finished (depreciation). We
define Cg to be the amortized cost per guesses for the adversary.

7.5.3 Cost of Guessing

Included in the amortized guessing cost are: the price of electricity and the cost of
equipment. We estimate Cg by assuming that the adversary rents computing time
on Amazon’s cloud EC2 [1]. This allows us to easily account for factors like energy
costs, equipment failure and equipment depreciation. Amazon measures rented
computing power in ECUs [1] — “One EC2 Compute Unit (ECU) provides the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.”

175

Hash Function (H) FH Cq

SHA1 ∼ 576 × 106 guesses per hour $1 × 10−10

MD5 ∼ 561 × 106 guesses per hour $1.1 × 10−10

BCRYPT (L12) ∼ 31 × 103 guesses per hour $1.94 × 10−5

Table 7.4: Guessing Costs

We use CGHz to denote the cost of renting a 1 GHz processor for 1 hour on Amazon.
We have

Cg =
CGHz

FH
.

Using the Cluster GPU Instance rental option the adversary could rent 33.5 ECU
compute units for $2.10 per hour (CGHz = $.06).

Our results are presented in Table 7.4.

7.5.4 Benefit

The benefit B j of cracking an account A j is dependent on both the type of account
(e.g., banking, e-mail, commerce, social network, leisure) and the adversary’s
background knowledge about the user (e.g., Does the user reuse passwords? Is
the user rich? Is the user a celebrity?).

Password reuse has a tremendous impact on B. An adversary who cracked a
user’s ESPN account would likely get little benefit — unless the user reused the
password elsewhere. For most non-celebrities, B j can be upper bounded by the
total amount of money that the user has in all of his financial accounts. In fact, this
may be a significant overestimate — even if the user reuses passwords — because
banks are usually successful in reversing large fraudulent transfers [77]. Indeed,
most cracked passwords sell for between $4 and $17 on the black market [79].
An adversary might also benefit by exploiting the user’s social connections (e.g.,
tricking the user’s friends to wire money). Some user’s passwords may also be
valuable because have access to valuable information (e.g., celebrity gossip, trade
secrets).

Most users should be able to safely assume that no adversary will spend more
than $1,000,000 to crack their account even if they reuse passwords. Table 7.5
shows the value of q$1,000,000 for various hash functions.

176

Hash Function q$1,000,000

SHA1 1016

MD5 9.1 × 1015

BCRYPT (L12) 5.2 × 1010

Table 7.5: q$1,000,000

7.6 Associative Memory and Sufficient Rehearsal As-
sumptions

The expanding rehearsal assumption makes empirical predictions about long
term memory retention (e.g., a user who follows a rehearsal schedule for a cue-
association pair will retain that memory for many years). Empirical studies of
human memory are often limited in duration due to practical constraints.

The most relevant long term memory study was conducted by Wozniak and
Gorzelanczyk [160]. They supervised a group of 7 people who learned 35,000
Polish-English word pairs over 18 months. Their goal was to optimize the intervals
between rehearsal of each word pair. They ended up with the following recursive
formula

I(EF,R) = I(EF,R − 1) ×OF(EF,R) ,

where I(EF,R) denotes the time interval before the R’th rehearsal, EF denotes the
easiness factor of the particular word pair, and OF(EF,R) is a coefficient matrix
which specifies how quickly the intervals grow 2. The intervals are very similar to
those generated by the expanding rehearsal assumption. Our association strength
parameter σ is similar to the easiness factor EF. However, in the expanding
rehearsal assumption OF(EF,R) would be a constant that does not vary with R.

Squire tested very long term memory retention by conducting a series of stud-
ies over 30 years [144]. To conduct his studies Squire selected a TV show that
was canceled after one season, and quizzed participants about the show. It was
not surprising that participants in the early studies — conducted right after the
show was canceled — had the best performance on the quizzes. However, after
a couple of years performance dropped to a stable asymptote [144]. The fact that
participants were able to remember some details about the show after 30 years

2SuperMemo, a popular commercial memory program http://www.supermemo.com/, also uses
a similar rehearsal schedule.

177

http://www.supermemo.com/

suggests that it is possible to maintain a cue-association pair in memory with-
out satisfying all of the rehearsal requirements given by our pessimistic constant
rehearsal assumption.

7.6.1 Squared Rehearsal Assumption

Anderson and Schooler demonstrated that the availability of a memory is corre-
lated with recency and the pattern of previous exposures (rehearsals) to the item
[18]. Eventually, the following equation was proposed

Ai (t) =

n∑
j=1

1√
t − t j

where Ai (t) denotes the availability of item i in memory at time t and t1, . . . tn < t
denote the previous exposures to item i [151]. In this model the rehearsal schedule
R

(
~c, j

)
= j2 is sufficient to maintain high availability. To see this consider an

arbitrary time t and let k be the integer such that
(
k2 < t ≤ (k + 1)2). Because

tk = k2 < t at least k previous rehearsals have occurred by time t so

Ai (t) =

k∑
j=1

1√
t − t j

=

k∑
j=1

1√
t − j2

=

k∑
j=1

1√
(k + 1)2

≥
k

k + 1
.

Squared Rehearsal Assumption (SQ): The rehearsal schedule given by R (ĉ, i) =
i2σ is sufficient to maintain the association (ĉ, â).

While SQ is certainly not equivalent to ER it is worth noting that our general
conclusions are the same under both memory assumptions. The rehearsal inter-
vals grow with time under both memory assumptions yielding similar usability
predictions — compare Tables 2.2,2.3 and 7.6. The usability predictions are still
that (1) Strong Random and Independent —though highly secure — requires any
user with infrequently visited accounts to spend a lot of extra time rehearsing
passwords, (2) Lifehacker requires little effort — but it is highly insecure, (3) SC-
0, which is almost as good as Lifehacker from a usability standpoint, provides the
user with some provable security guarantees, and (4) SC-1 and SC-2 are reasonably
easy to use (except for the Infrequent user) and provide strong provable security
guarantees — though not as strong as Strong Random and Independent.

178

Schedule/Scheme B+D SC-0 SC-1 SC-2 SRI

Very Active ≈ 0 ≈ 0 2.77 5.88 794.7

Typical ≈ 0 ≈ 0 7.086 12.74 882.8

Occasional ≈ 0 ≈ 0 8.86 16.03 719.02

Infrequent .188 2.08 71.42 125.24 1176.4

Table 7.6: E [XR365]: Extra Rehearsals over the first year under the Squared Re-
hearsal Assumption — σ = 1.
B+D: Lifehacker
SRI: Strong Random and Independent

While the expanding rehearsal assumption yields fewer rehearsal requirements
over the first year, the usability results for Lifehacker and Shared Cues are even
stronger because the intervals initially grow faster. The usability results are worse
for Strong Random and Independent because many of the cues are naturally rehearsed
with frequency λ = 1/365 — in this case most rehearsal requirement will require
an extra rehearsal3.

7.7
(
n, `, γ

)
-sharing Set Families

Our notion of (n, `, γ)-sharing set families (definition 5) is equivalent to Nisan and
Wigderson’s definition of a (k,m)-design [115]. Nisan and Wigderson provided
several constructions of (k,m)-designs. For example, one of their constructions
implies that their is a

(
n, `, γ

)
-sharing set family of size m = `t for n = `c

d
`
ce and

γ = d t
ce, whenever ` is a prime power. While this construction is useful for building

pseudorandom bit generators, it is not especially helpful in the password context
because ` should be a small constant. For example, if we set L = 4 and the user
needs to create m = 64 accounts then we would need to set t = logL m = 3. This a
(128, 4, 1)-sharing set family of size m = 64 or a (32, 4, 2)-sharing set family of size
m = 64. By contrast, we can construct a (43, 4, 1)-sharing set family of size m > 64
as well as a (23, 4, 1)-sharing set family of size m > 64 (Observe that 23 = 3+5+7+8
and 3 × 5 × 7 > 64 so we can apply the Chinese Remainder Theorem construction
from Chapter 2.6). In Section 7.7.1 we show that the Chinese Remainder Theorem

3The usability results for our occasional user are better than the very active user because the
occasional user has fewer sites that a visited with frequency λ = 1/365.

179

(
n, `, γ

)
-

sharing
Lower Bound
(m)

Upper Bound
(Thm 3)

Comment

(n, `, ` − 1)
(n
`

) (n
`

)
Claim 8

(9, 4, 3) 126 126 Greedy Construction (Alg 7.5)

(16, 4, 1) 16 20 Greedy Construction (Alg 7.5)

(20, 6, 2) 40 57 Greedy Construction (Alg 7.5)

(25, 6, 2) 77 153 Greedy Construction (Alg 7.5)

(18, 6, 3) 88 204 Greedy Construction (Alg 7.5)

(19, 6, 3) 118 258 Greedy Construction (Alg 7.5)

(30, 9, 3) 36 217 Greedy Construction (Alg 7.5)

(40, 8, 2) 52 176 Greedy Construction (Alg 7.5)

(43, 4, 1) 110 150 Theorem 22

Table 7.7:
(
n, `, γ

)
-sharing set family constructions

construction from Section 2.6 can be improved slightly. In Section 7.7.2 we show
that our construction of

(
n, `, γ

)
-sharing may have applications to the construction

of highly parallelizable pseudorandom generators. Section 7.7.2 is based on work
of Beideman and Blocki [25].

7.7.1 Improved Constructions

In this section we discuss additional
(
n, `, γ

)
-sharing set family constructions.

Theorem 22 demonstrates how our Chinese Remainder Theorem construction can
be improved slightly. For example, we can get a (43, 4, 1)-sharing set family of size
m = 110 with the additional optimizations from Theorem 22 — compared with
m = 90 without the optimizations. We also use a greedy algorithm to construct(
n, `, γ

)
-sharing set families for smaller values of n. Our results our summarized

in Table 7.7 — we also include the theoretical upper bound from Theorem 3 for
comparison.

Theorem 22. Suppose that n1 < . . . < n` are pairwise co-prime and that for each 1 ≤ i ≤ `
there is a

(
ni, `, γ

)
-sharing set family of size mi. Then there is a

(∑`
i=1 ni, `, γ

)
-sharing set

family of size m =
∏γ+1

i=1 ni +
∑`

i=1 mi.

180

Algorithm 7.5 Greedy Construction

Input: n, `, γ
All Subsets: S′ ← {S ⊆ [n] |S| = `}
Candidates: S ← ∅
for all S ∈ S′ do

okToAdd← True
for all T ∈ S do

if |T
⋂

S| > γ then
okToAdd← False

if okToAdd then
S ← S ∪ {S}

return S

Proof. We can use Algorithm 2.1 to construct a
(
n, `, γ

)
-sharing set family S0 of

size m′ =
∏γ

i=1 ni. Let T1 = {k k < n1} and for each i > 1 let Ti =
{
k +

∑i−1
j=1 n j k < ni

}
.

By construction of S0 it follows that for each S ∈ S0 and each 1 ≤ i ≤ ` we have
|S

⋂
Ti| = 1. By assumption, for each i ≥ 1 there is a

(
n, `, γ

)
-sharing family of

subsets of Ti of size mi — denoted Si. For each pair S′ ∈ Si, and S ∈ S0 we have∣∣∣∣S ⋂
S′

∣∣∣∣ ≤ ∣∣∣∣S ⋂
Ti

∣∣∣∣ ≤ 1 ,

and for each pair S′ ∈ Si, and S ∈ Si (S , S′)∣∣∣∣S ⋂
S′

∣∣∣∣ ≤ γ ,
because Si is (ni, `, γ)-sharing. Finally, for each pair S′ ∈ Si, and S ∈ S j (j , i) we
have ∣∣∣∣S ⋂

S′
∣∣∣∣ ≤ ∣∣∣∣S ⋂

Ti

∣∣∣∣ ≤ 0 .

Therefore,

S =
⋃̀
i=0

Si ,

is a
(∑`

i=1 ni, `, γ
)
-sharing set family of size m =

∏γ
i=1 ni +

∑`
i=1 mi. �

Claim 8. For any 0 < ` ≤ n there is a (n, `, ` − 1)-sharing set family of size m =
(n
`

)
, and

there is no (n, `, ` − 1)-sharing set family of size m′ > m.

181

Proof. It is easy to verify that

S = {S ⊆ [n] |S| = `} ,

the set of all subsets of size `, is a (n, `, ` − 1)-sharing set family of size m =
(n
`

)
.

Optimality follows immediately by setting γ = ` − 1 in Theorem 3. �

7.7.2 Applications to Pseudorandom Number Generators

Applications to Pseudorandom Number Generation A pseudorandom number
generator is a function G : {0, 1}n → {0, 1}m which takes a uniformly random
seed x ∼ {0, 1}n of length n, and outputs a string G(x) ∈ {0, 1}m (m � n) which
“looks random.” Nisan and Wigderson used a

(
n, ` = O

(√
n
)
, γ = log m

)
-sharing

set familyS = {S1, . . . ,Sm} of size m to construct pseudorandom number generators
[115]. In particular, they define the pseudorandom number generator NWP,S (x) =
P
(
x|S1

)
. . .P

(
x|Sm

)
, where x|Si ∈ {0, 1}

` denotes the bits of x ∈ {0, 1}` at the indices
specified by Si and P : {0, 1}` → {0, 1} is a predicate. If the predicate P : {0, 1}` →
{0, 1} is “hard” for circuits of size H` (P) to predict 4 then no circuit of size H` (P) −
O (m2γ) will be able to distinguish NWP,S (x) from a truly random binary string of
length m, when the seed x ∼ {0, 1}n is chosen uniformly at random. In this context,
n is the length of the random seed, m is the number of random bits extracted and
the pseudorandom number generator fools circuits of size H` (P) −O (m2γ). Thus,
we would like to find

(
n, `, γ

)
-sharing set families where n is small, m is large (e.g.,

we can extract many pseudorandom bits from a small seed) and γ is small (e.g., so
that the pseudorandom bits look random to a large circuit). Nisan and Wigderson
gave an explicit construction of an

(
`2, `, γ

)
-sharing set family of size `γ+1.

Applications to Randomness Extractors Trevisan used the pseudorandom num-
ber generator of Nisan and Wigderson to construct a randomness extractor [149].
A (k, ε) randomness extractor is a function Ext : {0, 1} ˆ̀ × {0, 1}n → {0, 1}m that takes
a string x1 ∼ D, where D is a distribution over {0, 1} ˆ̀ with minimum entropy
k, along with a n additional uniformly random bits x2 ∼ {0, 1}n and extracts an
m-bit string y ∈ {0, 1}m that is almost uniformly random (e.g., distribution over
y ∈ {0, 1}m is ε-close to the uniform distribution Um over {0, 1}m). Trevisan used the
string x1 to select a random predicate P : {0, 1}` → {0, 1}, and then extracted m bits

4Nisan and Wigderson observe that a random predicate P will satisfy this property with high
probability[115].

182

by running NWP,S (x2). Raz et al [126] observed that the pseudorandom number
generator Nisan and Wigderson could be built using a weak

(
n, `, γ

)
-sharing set

family of size m, and showed how to construct weak
(
n, `, γ

)
-sharing set family

of size m for any value of m as long as n ≥ d `γe`. However, their construction
was not explicit (Informally, we say that a construction is explicit if their is a fast
parallel algorithm to output the i’th set.). Hartman and Raz[89] showed how to
use the Nisan-Wigderson construction to obtain an explicit construction of weak(
n, `, γ

)
-sharing set families. While their construction requires less space than our

construction, our construction can be computed faster on a parallel machine.

Advantages of Explicit Constructions One nice property of the Nisan Wigderson
Pseudorandom number generator is that it is highly parallelizable. For each j ∈ [m]
we can compute the j’th bit NWP,S (x) [j] = P

(
x|S j

)
independently as long as we can

quickly find the set S j ∈ S. Observe that we would need space at least O
(
m` log n

)
to store the set family S = {S1, . . . ,Sm}, which could be a problem especially when
m is very large. However, if the set family has an explicit construction (e.g., there
is a small circuit C s.t. C (i) = Si for all i ∈ [m]) then we can simply compute
NWP,S (x) [j] = P

(
x|C(j)

)
.

Preliminaries

Before we formally define a pseudorandom number generator we first define a
pseudorandom distribution X over {0, 1}m. Informally, Definition 19 say that a
distribution is pseudorandom if the distribution that ‘appears’ random to any
‘small enough’ circuit. Given a circuit C we use

AdvC (X) =

∣∣∣∣∣Pr
x∈X

[C(x) = 1] − Prx∈Um[C(x) = 1]
∣∣∣∣∣

to denote the advantage of C at predicting whether x was drawn from the dis-
tribution X or from Um, where Um is the uniform distribution over {0, 1}m. The
distribution X ‘appears’ random to a circuit C if AdvC (X) is small.

Definition 19. A distribution X over {0, 1}m is said to be (s, ε)-pseudorandom if, given
any circuit C (taking m inputs) of size at most s, AdvC (X) ≤ ε.

Given a distribution X over {0, 1}n and a function G : {0, 1}n → {0, 1}m we use
G(X) to denote the distribution over {0, 1}m induced by G. Informally, a function
G : {0, 1}n → {0, 1}m is pseudorandom if it induces a pseudorandom distribution.

183

Definition 20. Let {Gn}n∈N be a family of functions such that Gn : {0, 1}n → {0, 1}m. We
say the family is a (s, ε)-pseudorandom number generator if G is computable in time 2O(n),
and G(Un) considered as a distribution is (s, ε)-pseudorandom.

Nisan and Wigderson [115] show how to construct a pseudorandom number
generator G : {0, 1}n → {0, 1}m using any

(
n, `, γ

)
-sharing set family of size m. Their

construction assumes the existence of a predicate f : {0, 1}` → {0, 1} that is hard for
‘small’ circuits to predict.

Definition 21. Let f : {0, 1}` → {0, 1} be a boolean function. We say that f is (s, ε)-hard
if for any circuit C of size s,

∣∣∣Prx∼{0,1}`
[
C(x) = f (x)

]
−

1
2

∣∣∣ ≤ ε.
Observe that a random function will fool all small circuits with high probabil-

ity5. Following, Nisan and Wigderson we use H(f) to denote the hardness of a
function f .

Definition 22. Let f : {0, 1}∗ → {0, 1} be a boolean function and let f` be the restriction
of f to strings of length `. The hardness of f at `, H f (`) is defined to be the maximum
integer h` such that f` is (1/h`, h`) − hard.

Raz et al [126] showed that the Nisan-Wigderson pseudorandom number gen-
erator works even if the family of sets S1, ...,Sm only satisfies the weaker condition
from definition 23. Observe that any (n, `, γ)-sharing set family is also a weak
(n, `, γ)-sharing set family, but the converse is not necessarily true. We also note
that as m increases the requirement

∑
j<i 2|Si

⋂
S j| ≤ 2γ(m − 1) becomes increasingly

lax. This allows us to construct arbitrarily large weak (n, `, γ)-sharing families.

Definition 23. A family of sets S1, ...,Sm ⊂ [n] is a weak (n, `, γ)-sharing set family if (1)
∀i ∈ [m]. |Si| = `, and (2) ∀i ∈ [m].

∑
j<i 2|Si

⋂
S j| ≤ 2γ(m − 1).

Informally, we say that a set family S1, . . . ,Sm is explicitly constructible if their
is a fast parallel algorithm A (i) to compute the i’th set Si. We use Depth (A) to
denote the running time of A when executed in parallel processes Work (A) to
denote the total number of steps executed in all processes. Similarly, Space (A)
denotes the total space requirement of A. Our notion of explicit constructions
(Definition 24) is similar to the notion used by Hartman and Raz[89] except that
we also consider the parallel running time ofA.

5The argument is straightforward. Fix any circuit C. A random function f : {0, 1}` → {0, 1} will
satisfy AdvC

(
f (U`)

)
≤ εwith very high probability by Chernoff bounds. We can then apply union

bounds to argue that a random f will satisfy maxC∈CAdvC (X) ≤ ε for any sufficiently small class
C of circuits.

184

Definition 24. We say that a set family S1, . . . ,Sm ⊆ [n], where the size of each set is `,
is (t1, t2, t3)-explicitly constructible if there exists an algorithmA s.t. for all 1 ≤ i ≤ m we
haveA (i) = Si, Work (A) ≤ A, Depth (A) ≤ t2 and Space (A) ≤ t3.

Definition 25. We use m
(
n, `, γ

)
to denote the maximum value m such that there exists

a
(
n, `, γ

)
-sharing set family.

The
(
n, `, γ

)
-sharing set family construction of Chapter 2.6 relies on the Chinese

Remainder Theorem. To analyze their construction we will be interested in finding
a large set S = {t1, . . . , t`} of integers such that S has size `, the numbers in S are
pairwise coprime,

∑`
i=1 ti ≤ n and each ti ≥

n
2` . We will rely on recent results on

prime density.

Definition 26. π(t) indicates the number of prime numbers less than or equal to t. ππ(t)
indicates the maximum |S| such that S ⊆

{
d

t
2e, ..., t

}
and ∀i , j ∈ S.GCD

(
i, j

)
= 1.

We are particularly interested in lower bounding the value ππ(x). Clearly,
ππ(x) ≥ π(x)−π(x/2). As it turns out this lower bound is nearly tight (see Theorem
25). We can bound π(x) − π(x/2) using Ramanujan primes.

Definition 27. [124] The t’th Ramanujan Prime is the smallest integer Rt s.t. π(x) −
π(x/2) ≥ t for all x ≥ Rt.

Allowing n to equal at least `R` guarantees that
{

n
2` ,

n
`

}
contains at least ` primes

which will satisfy the conditions of the Chinese Remainder Theorem construction.
Sondow’s bounds on Ramanujan primes (see Theorem 23) allow us to express this
bound on n as an elementary function.

Constructions

Nisan and Wigderson [115] gave an explicit construction of
(
`2, `, γ

)
-sharing set

families of size m = `γ+1 for any prime power `. Given a polynomial p(x) with coeffi-
cients in GF(`), the finite field of size `, they define the set Sp =

{(
x, p(x)

)
x ∈ GF (`)

}
.

The family S =
{
Sp p has degree ≤ γ

}
is

(
`2, `, γ

)
-sharing and has size m = |S| =

`γ+1. Given pairwise coprime numbers n1 < . . . < n` we provided an explicit con-
struction of

(∑`
i=1 ni, `, γ

)
-sharing families in Chapter 2. Briefly, given an integer

i ≥ 0 we defined the set Si = {1 +
∑ j−1

k=1 nk +
(
i mod n j

)
: j ∈ [`]}, and showed that

185

the family S =
{
Si 0 ≤ i <

∏γ+1
j=1 n j

}
is an

(∑`
i=1 ni, `, γ

)
-sharing set family of size∏γ+1

j=1 ni.

The proof of Theorem 24 is based on Theorem 22. We take advantage of
Sondow’s results on prime density [142] to compare our construction to the con-
struction of Nisan and Wigderson.

Theorem 23. [142] For all t ≥ 1 the following bound holds 2t ln t < Rt < 4t ln 4t.

Theorem 24. ∀n ≥ 4`2 ln 4`, m(n, `, γ) ≥ (2` ln 2`)γ+1. Furthermore, this set family is
(t1, t2, t3)-explicitly constructible with t1 = O

(
`
(
log m

) (
log `

))
,t2 = O

(
log log m

)
and

t3 = O
(
`
(
log m

) (
log `

))
.

Proof. Theorem 23 due to Sondow [142] shows that there will always be at least
` primes p1, . . . , p` between 2` ln 2` and 4` ln 4`. We have

∑`
i=1 pi ≤ `(4` ln 4`) ≤ n.

Note that
∏γ+1

i=1 pi ≥ (2` ln 2`)γ+1. It follows from Theorem 22 that m
(
n, `, γ

)
≥

(2` ln 2`)γ+1.
To construct this set family our algorithm A will store the following values (1)
the primes p1, . . . , p`, (2) the precomputed values 2k mod p j for each 0 ≤ k ≤
min

{
p j − 1, blog mc

}
and 1 ≤ j ≤ `, and (3) the precomputed values kp j for each

1 ≤ k ≤ log log log m and each 1 ≤ j ≤ `. We need O
(
` log `

)
bits of space to store

each of the primes, O
(
`
(
log `

) (
log m

))
bits of space to store each of the the values

2k mod p j and O
(
`
(
log `

) (
log log log m

))
bits of space to store each of the values

kp j. Given an index i0 = i ≤ m our algorithm A computes each of the elements
of Si in parallel — to compute Si[j] it suffices to compute the value i0 mod p j.
We will focus on the computation of i0 mod p j. For each k ≤ blog mc we look up
the precomputed values 2k mod p j and compute yk = i0[k]2k mod p j (here, i0[k]
denotes the k’th bit of i0 when i0 is viewed as a binary string). We then compute
the value i1 =

∑blog mc
k=1 yk (observe that i1 ≡ i0 mod p j). This can be done by a

depth O
(
log log m

)
circuit by using two tricks: divide-and-conquer and carry-save

addition. We group y1, . . . , yblog mc into triples (e.g., (y1, y2, y3), . . . ,) for each triple we
compute the partial sum ps (the bits of ps are defined as ps[t] = y1[t] � y2[t] � y3[t]
for each index t) and the shift-carry sc (sc[t + 1] =

(
y1[t] ∧ y2[t]

)
∨

(
y1[t] ∧ y3[t]

)
∨(

y2[t] ∧ y3[t]
)
). Observe that y1 + y2 + y3 = ps + sc. We went from log m values that

we needed to add to 2
3 log m values that we needed to add — after O

(
log log m

)
rounds we will have the value i1 ≡ i0 mod p j. While i1 may not be the final answer
(e.g., we could have i1 > p j) we have i1 ≤ p j log m � i0 = O(m) so we are making
progress. Now we can recursively compute a value i2 s.t. i2 ≡ i1 mod p j and

186

i2 ≤ p j log
(
1 + log log m

)
— this time we are only adding O

(
log log m

)
numbers so

we need O
(
log log log m

)
rounds of computation to find i2. Now, we can search

for the biggest value kp j s.t. i2 ≥ kp j (note that there are only log log log m values
to check). Our final answer is simply i2 − kp j = i0 mod p j. �

Note that our construction only requires relatively prime numbers. So the re-
sults from Theorem 24 could be improved by including non-prime values. How-
ever, Theorem 25 implies that these improvements will not be particularly signifi-
cant.

Theorem 25. ∀n ∈ Z+. ππ(n) ≤ π(n) − π(n
2) + π(

√
n).

Proof. Let S ⊆
{
d

n
2 e, . . . ,n

}
be a set of coprime numbers of maximum size. Observe

that each prime number p ∈ [n] is a factor of at most one number in S. Without loss
of generality we can assume that each of the primes between n and n

2 are contained
in S (if p < S then, because S is of maximum size, we must have some t = pq ∈ S,
but in this case we can simply replace t with p). The number of primes between
n and n

2 is π(n) − π(n
2), and all of these integers are relatively prime to each other

and to every other number in the range [n]. All other numbers in S must have at
least two prime factors, and at least one of them must be less than or equal to

√
n.

Since each prime factor less than or equal to
√

n can be used at most once, for the
members of S to remain pairwise relatively prime, at most π(

√
n) non-primes can

be included in the set, each containing a single prime factor less that
√

n. �

Comparing Constructions. To compare our construction from Chapter 2 with
the construction of Nisan and Wigderson [115] we set n = 4`′2 ln 4`′ and we set
` =
√

4`′2 ln 4`′. The construction of Nisan and Wigderson gives use m
(
n, `, γ

)
≥

`γ+1 =
(
2`′
√

ln 4`′
)γ+1

, while our construction gives us m
(
n, `′, γ

)
≥ (2`′ ln 2`′)γ+1 >(

2`′
√

ln 4`′
)γ+1

. However, `′ < ` so our construction has a smaller `.

Constructing Weak
(
n, `, γ

)
-sharing set families. We now show that our explicit

Chinese Remainder Theorem set family construction can be also be used to con-
struct weak

(
n, `, γ

)
-sharing set families of arbitrary size m. Our main results are

stated in Theorem 26.

Theorem 26. For all m there is an explicitly constructible weak
(
4`2 ln 4`, `, γ

)
-sharing

set family of size m as long as 2γ ≥
(
1 + 1

−1+ln 2`

)
. Furthermore, this set family is

187

(t1, t2, t3)-explicitly constructible with t1 = O
(
`
(
log m

) (
log `

))
,t2 = O

(
log log m

)
and

t3 = O
(
`
(
log m

) (
log `

))
.

Proof. Let m be given. We use the explicit construction from Chapter 2.6. By
Theorem 23 we can find ` primes such that 2` ln 2` < p1 < . . . < p` < 4` ln 4`. In
particular, we let Si =

{
1 +

∑ j−1
k=1 pk +

(
i mod p j

)
j ∈ [`]

}
. Now for i ∈ [m] we have

∑
j<i

2|Si∩S j| =

∞∑
k=0

2k
∣∣∣∣{ j j < i ∧

∣∣∣Si ∩ S j

∣∣∣ = k
}∣∣∣∣ ≤ ∞∑

k=0

2k
∣∣∣∣{ j j < i ∧

∣∣∣Si ∩ S j

∣∣∣ ≥ k
}∣∣∣∣

≤

∞∑
k=0

2k

(
`
k

)
i − 1∏k

j=1 pi

≤

∞∑
k=0

2k

(
`
k

)
i − 1

(2` ln 2`)k

≤

∞∑
k=0

i − 1

(ln 2`)k
≤ (i − 1)

(ln 2`
−1 + ln 2`

)
≤ (m − 1) 2γ ,

where the second inequality follows from the Chinese Remainer Theorem. We al-
ready showed that this set family is explicitly constructible in the proof of Theorem
24. �

Raz et al gave a randomized construction of weak
(⌈
`
γ

⌉
· `, `, γ

)
-sharing set

families for any m, γ > 0. While they showed that their construction could be de-
randomized, their construction is not explicit (e.g., the construction of i’th subset
Si is dependent on the sets S1, . . . ,Si−1). Theorem 26 shows that our construction is
competitive with the construction of Raz et al [126] though the value of n is slightly
larger. Hartman and Raz[89] later showed how to use the Nisan-Wigderson con-
struction to get an explicit construction weak

(
`2, `,O(1)

)
-sharing set families with

t1 = t2 = O
(
poly

(
`, log m

))
and t3 = O

(
log m

)
. Their construction requires less

space than ours O
(
log m

)
vs O

(
`
(
log m

) (
log `

))
space, but our construction will

run faster on a parallel computer O
(
log log m

)
vs O

(
poly

(
`, log m

))
time. The

construction of Hartman and Raz[89] could be optimized to run in parallel time
t2 = O

(
log log m

)
by precomputing a few strategic values (e.g., an ` × ` multipli-

cation table and an ` × log m exponentiation table), but then we would require
O

(
`2 log `

)
space to store all of the precomputed values.

Parallel Pseudorandom Number Generators. Nisan and Wigderson proved that
if γ = log m, S is a

(
n, `, γ

)
-sharing set family and H f (`) ≥ 2m2 that their construc-

tion NW f ,S is a
(
m2, 1

m

)
pseudorandom number generator. In particular, Theorem

188

27 implies that if D is a circuit of size |D| ≤ m2 that distinguishes NW f ,S (Un) from
Um with advantage ADVD

(
NW f ,S (Un)

)
≥

1
m then there exists a circuit C of size

|C| ≤ 2m2 which predicts f (x) with advantage ADVC
(

f (U`)
)
≥

1
2m2 . This contra-

dicts the definition of H f (`). Raz et al [126] observed that it suffices for S to be
a weak

(
n, `, γ

)
-sharing set family. If we let Sm denote the explicitly constructible

weak
(
4`2 ln 4`, `, γ

)
-sharing set family of size m then for any m > 0 NW f ,Sm is

a
(
m2, 1

m

)
pseudorandom number generator with seed length 4`2 ln 4` assuming

that H f (`) ≥ 2m2. Because Sm is explicitly constructible we can compute each bit
NW f ,Sm (x) [i] = f

(
x|Si

)
independently.

Theorem 27. [115, 126] Let f : {0, 1}` → {0, 1} be a boolean function and S =
{S1, ...,Sm} be an weak

(
n, `, γ

)
-sharing set family. Suppose D : {0, 1}m → {0, 1} is

such that ADVD

(
NW f ,S (Un)

)
> ε, then there exists a circuit C of size |C| ≤ |D| +

O
(
max j∈[m]

∑
i< j 2|Si

⋂
S j|m

)
such that

∣∣∣Prx∼{0,1}`
[
C(x) = f (x)

]
−

1
2

∣∣∣ ≥ ε
m

7.7.3 Upper Bounds

Our main result in this section is Theorem 28. We prove that m(n, `, γ) = c1

whenever ` = n
c1

and γ = c2n provided that c2 is sufficiently small. We previously

showed that m(n, `, γ) ≤
(n
γ+1)

(`
γ+1)

. We note that this bound is far from tight whenever `

is large. For example, if c1 = 2 and c2 = 1
10 then this upper bound

(n
n+10

10

)/(n
2

n+10
10

)
grows

exponentially with n. By contrast, Theorem 28 implies that m (n,n/2,n/10) = 2.

Theorem 28. ∀ 0 < c2 < 1,n, c1 ∈N such that c1|n. m(n, n
c1
, c2n) = c1 iff c2 < 2

c3
1+c2

1
.

Before we prove Theorem 28 we first prove an easier result. Theorem 29 upper
bounds limn→∞m(n, `, γ) when ` is in a constant ratio to n and γ is small. Theorem
29 holds because the k’th set Sk must use cn− (k− 1)γ new elements (elements that
are not in

⋃k−1
i=1 Si).

Theorem 29. ∀ γc, 0 < c < 1 such that cn ∈N. m(n, cn, γc)→ b1
c c as n→∞.

Proof. Let ` = cn and let τ ∈ N be an integer such that τ > b1
c c. The first set will

contain ` elements. The second set can share at most γ of them, so the second set
must contain at least `−γ previously unused elements. Therefore the union of the

189

first two sets must contain at least 2` − γ elements. In a similar manner, the kth set
must contain at least ` − (k − 1)γ new elements, therefore,

k` −
(k − 1)kγ

2
≤

∣∣∣∣∣∣∣
k⋃

i=1

Si

∣∣∣∣∣∣∣ ≤ n . (7.1)

Assume for contradiction that lim supn→∞m(n, cn, γc) = τ.Then we have

lim
n→∞

(
n − τ` +

(k − 1)kγ
2

)
= lim

n→∞

(
n − τcn +

(k − 1)kγ
2

)
= lim

n→∞
(n (1 − cτ))

= −∞ .

This contradicts equation 7.1. �

The proof of Theorem 28 is a bit longer. Proof of Theorem 28. Suppose that for
some valid n, c1, c2 there is an (n, `, γ)–sharing set family of size c1 + 1. By equation
7.1, the number of elements used by such a set family must be at least:

(c1 + 1)` −
c1(c1 + 1)γ

2
≤ n (7.2)

Taking advantage of the fact that ` = n
c1

and γ = c2n, the inequality can be simpli-
fied:

n + ` −
c1(c1 + 1)γ

2
≤ n

` ≤
c1(c1 + 1)γ

2
n
c1
≤

c1(c1 + 1)c2n
2

2n ≤ (c3
1 + c2

1)c2n
2

c3
1 + c2

1

≤ c2 .

Thus, all set families of size c1 + 1 or greater must have c2 ≥
2

c3
1+c2

1
, and c2 < 2

c3
1+c2

1

guarantees the set family will have a size of at most c1.

Since c1` = n, it is possible to make a family of size c1 for any value of c2 by
simply choosing sets that share no elements. Therefore, the size of the largest
possible set family for any n, `, γ meeting the specified conditions is c1 if c2 < 2

c3
1+c2

1
.

190

If c2 ≥
2

c3
1+c2

1
, there will always exist a set family of size ≥ c1 + 1. To create such

a family, choose c1 + 1 sets such that each of them shares γ elements with each of
the others. This will be possible as long as:

c1γ ≤ `

nc1c2 ≤
n
c1

c2
1c2 ≤ 1

2c2
1

c3
1 + c2

1

≤ 1 .

Since this final inequality is true for all possible values of c1, it will such a set family
can always be created, and its size will be, as shown earlier, n when c2 = 2

c3
1+c2

1
. Since

increasing c2 will not eliminate any possible set families, no n, `, γ satisfying the
conditions with c2 ≥

2
c3

1+c2
1

will have a maximum family size < c1 + 1. Therefore, the

size of the largest possible set family for a valid n, `, γ will be c1 iff c2 < 2
c3

1+c2
1
. �

We now show that the upper bound from Theorem 28 is nearly tight. In partic-
ular, when γ = c2n for a slightly larger constant c2 then m(n, `, γ) is exponentially
large. Theorem 30 lower bounds the values of c2 for which m(n, `, γ) is exponen-
tially large. In particular, we demonstrate the existence of an (n, `, γ)–sharing set
family of exponential size by showing that the probability of obtaining such a
set family through random selection is non-zero. Our proof uses the following
randomized construction of an (n, `, γ)–sharing set family. Independently choose
random integers r j

i each in the range 0 ≤ ri < c1 for i ∈ {0, . . . , `− 1} and j ∈ [m]. Let

S j =
`−1⋃
i=0
{ic1 + r j

i }. We use standard concentration bounds due to Chernoff [53] to

show that
∣∣∣S j

⋂
S j

∣∣∣ ≤ γ with high probability, and then we union bounds to argue
that the entire set family is (n, `, γ)–sharing with non-zero probability.

Theorem 30. ∀ c2 > 0,n, c1 ∈N such that c1|n. m(n, n
c1
, c2n) > exp(O(n)) if c2 > 1

c2
1

+ ε.

The proof of Theorem 30 is based on standard concentration bounds due to
Chernoff. We use the specific form from Theorem 31. We demonstrate the existence
of an (n, `, γ)–sharing set family of exponential size by showing that the probability
of obtaining such a set family through random selection is non-zero.

191

Theorem 31. [53] Let X1, . . . ,Xn ∈ [0, 1] be a sequence of independent random variables.
Let S =

∑n
i=1 xi, and let µ = E[S]. Then for all δ ≥ 0

Pr[S ≥ µ + δn] ≤ e−2nδ2
.

Proof of Theorem 30. We create an (n, `, γ)–sharing set family by creating sets in
the following manner: Independently choose random integers r j

i each in the range

0 ≤ ri < c1 for j ∈ [m] and i ∈ {0, . . . , ` − 1}. Let S j =
`−1⋃
i=0

{
ic1 + r j

i

}
. Given two such

sets, S j,Sk let

xi =

 1 : r j
i = rk

i

0 : r j
i , rk

i

Then the number of elements shared by S j and Sk is

S j ∩ Sk =

`−1∑
i=0

xi .

Let µ = E
[
S j ∩ Sk

]
= n

c2
1

denote the expected number of shared elements. The

probability that two such sets share more than γ elements, given c2 = 1
c2

1
+ ε is

Pr[
∣∣∣S j ∩ Sk

∣∣∣ > γ] = Pr[
`−1∑
i=0

xi > c2n]

= Pr[
∑

xi >
n
c2

1

+ nε]

≤ Pr[
∑

xi ≥ µ + εn]

≤ e−2nε2

with the last step by Theorem 31. Thus the probability that two randomly selected
sets share more than γ elements is at most e−2nε2 .

An (n, `, γ)–sharing set family of size m will contain
(m

2

)
pairs of sets. The

probability that the family is valid, with none of the sets sharing more than γ

192

elements is

Pr[∃ j , k :
∣∣∣S j ∩ Sk

∣∣∣ > γ] ≤
(
m
2

)
Pr[

∣∣∣S j ∩ Sk

∣∣∣ > γ]

≤

(
m
2

)
e−2nε2

≤ m2e−2nε2

by the union bound. For m < enε2 , this probability will be less than 1, meaning there
is a non-zero chance of forming a valid set family of size m by random selection
and therefore such a family must exist. �

We previously observed that m
(
n, γ + 1, γ

)
=

(n
γ+1

)
whenever n ≥ γ + 1. In

general m
(
n, `, γ

)
≥ m

(
n, ` + 1, γ

)
whenever ` ≥ γ + 1.

Claim 9. For all n ≥ γ we have m
(
n, `, γ

)
≥ m

(
n, ` + 1, γ

)
whenever ` ≥ γ + 1.

Proof. Suppose that ` ≥ γ + 1 and we have an
(
n, ` + 1, γ

)
-sharing set family

S1, . . . ,Sm ⊆ [n] of size m. We can form a
(
n, `, γ

)
-sharing set family S′1, . . . ,S

′

m ⊆ [n]
by picking some element si ∈ Si setting S′i = Si − {si} for each i ∈ [m]. Observe that
this argument does not apply whenever ` = γ because then we might have S′i = S′j
for i , j. �

Claim 9 implies that whenever n/2 ≥ γ + 1 we have

max
`≥γ

m
(
n, `, γ

)
= m

(
n, γ + 1, γ

)
=

(
n

γ + 1

)
,

and whenever γ ≥ n/2 we have max`≥γ m
(
n, `, γ

)
= m

(
n, γ, γ

)
=

(n
γ

)
. Clearly, the

inequality m
(
n, `, γ

)
≥ m

(
n, `, γ + 1

)
also holds. Both of these inequalities also

hold for weak
(
n, `, γ

)
-sharing set families.

7.7.4 Open Questions

We conclude with some open questions.

We have shown that our explicit construction of
(
n, `, γ

)
-sharing set families

can be used with the weaker requirements of Raz et al [126] to create weak
(
n, `, γ

)
-

sharing set families of arbitrarily large size. Our analysis uses a number of po-
tentially loose bounds, however, so it is possible that a better analysis of our

193

construction for weak set families could improve our requirements on the param-
eters. Also of interest is whether there is another explicit construction that would
perform better than the Blocki et al construction. The explicit construction of Hart-
man and Raz[89] runs in sequential time poly

(
log m, `

)
and space O

(
log m

)
. Our

construction runs in parallel time O
(
log log m

)
, but requires more space than the

construction of Hartman and Raz. Future, work could explore the space-depth
trade-off in explicit constructions of weak

(
n, `, γ

)
-sharing set families.

We have shown that the value m (n,n/c1,nc2) is constant whenever c2 ≤
2

c3
1+c2

1
.

Furthermore, we showed that whenever c2 > 1
c2

1
, m(n,n/c1,nc2) grows exponen-

tially. How does m(n,n/c1,nc2) grow whenever c2 ∈

[
2

c3
1+c2

1
, 1

c2
1

]
?

We have shown that ππ(n) never exceeds π(n)−π(n
2) +π(

√
n). We hypothesize

that ππ(n) = π(n) − π(n
2) + π(

√
n) for all n ≥ 55. A simple method to select a

maximally-sized set of relatively prime integers is to take the square of each prime
between

√
n
2 and

√
n, and the product of the j’th prime less than

√
n
2 and the k’th

prime greater than
√

n, for j from 1 to π(
√

n) and k = j unless this would make
the product less than n

2 in which case k is chosen to be the minimum value greater
than the previous k so that the product is great than n

2 . With the aid of a computer
we have shown this equation true for all n from 1 to 100,000, except for 51, 52, 53,
and 54.

194

Chapter 8

Appendix: Human Computable
Passwords

195

8.1 Human Computable Passwords Challenge

Scheme 1 Scheme 2

n m Winner m Winner

100 digits
1000 N/A 500 N/A

500 N/A 300 N/A

300 N/A 200 N/A

50 digits
500 N/A 300 N/A

300 N/A 150 N/A

150 N/A 100 N/A

30 digits
300 N/A 150 N/A

100 N/A 100 N/A

50 N/A 50 N/A

Table 8.1: Human Computable Password Challenges
n — Secret Length
m—# Challenge-Response Pairs

While we provided asymptotic security bounds for our human computable
password schemes in our context it is particularly important to understand the
constant factors. In our context, we can assume that n ≤ 100 so it would be
feasible for the adversary to execute an attack that takes time proportional to
10
√

n
≤ 1010. We conjecture that in practice scheme 2 is slightly weaker than

scheme 1 when n ≤ 100 despite the fact that s
(

f1
)
< s

(
f2
)

because of the at-
tack described in remark 2. This attack requires Õ

(
n1+g(f)/2

)
examples, and the

running time O
(
d
√

npoly(n)
)

may be feasible for n ≤ 100. To better understand
the exact security bounds we created several public challenges for researchers to
break our human computable password schemes under different parameters (see
Table 8.1). The challenges can be found at http://www.cs.cmu.edu/˜jblocki/
HumanComputablePasswordsChallenge/challenge.htm. These challenges were
presented during the rump session at ASIACRYPT 2013 [29]. For each challenge
we selected a random secret mapping σ ∈ Zn

10, and published (1) m single digit
challenge-response pairs

(
C1, f (σ (C1))

)
, . . . ,

(
Cm, f (σ (Cm))

)
, where each clause Ci

is chosen uniformly at random from Xk, and (2) 20 length—10 password challenges

196

http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm
http://www.cs.cmu.edu/~jblocki/HumanComputablePasswordsChallenge/challenge.htm

~C1, . . . , ~C20 ∈ (Xk)
10. The goal is to guess one of the secret passwords pi = f

(
σ
(
~Ci

))
for some i ∈ [20].

8.2 Statistical Dimension

Our statistical dimension lower bounds closely mirror the lower bounds from [73]
for binary predicates. In particular Lemmas 5,6,3 ,7 and 8 are similar to Lemmas 2,
4,5, 6 and 7 from [73] respectively. The high level proof strategy is also very similar.
Because we are working with planted solutions σ ∈ Zn

d , instead of σ ∈ {±1}n, we
need to use different Fourier basis functions. We use the basis functions χα where
for α ∈ Zn

d is

χα (x) = exp
(
−2π
√
−1 (x · α)
d

)
.

While the Fourier coefficients b̂α of a function b : Zk
d → R might include complex

numbers, Parseval’s identity still applies:
∑
α∈Zk

d

∣∣∣b̂α∣∣∣2 = Ex∼Zk
d

[
b (x)2

]
. We first

consider the following search problem: find σ′ that is ε-correlated with σ given m
randomly chosen challenge clauses from the distribution Q f , j

σ for j ∈ Zd. Remark
6 explains how to generalize our results to the problem we are interested in: find
σ′ that is ε-correlated with σ given m randomly chosen challenge-response pairs
from the distribution Q f

σ. In this section we let Uk denote the uniform distribution
over Xk.

Definition 28. [73] Given a clause C ∈ Xk and S ⊆ [k] of size `, we let C|S ∈ X` denote
the clause of variables of C at the positions with indices in S (e.g., if C = (1, . . . , k) and
S = {1, 5, k − 2} then C|S = (1, 5, k − 2) ∈ X3). Given a function h : Xk → R and a clause
C` ∈ X` we define

h` (C`) =
|X`|

|Xk|

∑
S⊆[k],|S|=`,C∈Xk,C|S=C`

h (C) .

We first show that ∆ (σ, h) can be expressed in terms of the Fourier coefficients
of Q̂ as well as the functions h`. In particular, we define the degree ` function
b` : Zn

d → C as follows

b` (σ) �
1
|X`|

∑
α∈Zk

d:H(α)=`

Q̂α

∑
C`∈X`

χα (σ (C`)) h` (C`) .

197

Notice that if Q has distributional complexity r and ` ≤ r then b` (σ) = 0 because
Q̂α = 0 for all α ∈ Zk

d s.t. 1 ≤ H (α) ≤ r. This means that first r terms of the sum in
Lemma 5 will be zero.

Lemma 5. For every σ ∈ Zk
d and h : Xk → R

∆ (σ, h) =

k∑
`=1

1
|X`|

b` (σ) .

Proof.

EQσ [h] =
∑
C∈Xk

h (C) ·Qσ (C)

=
1
|Xk|

∑
C∈Xk

h (C) ·Q (σ (C))

=
1
|Xk|

∑
C∈Xk

h (C)
∑
α∈Zk

d

Q̂αχα (σ (C))

=
1
|Xk|

∑
α∈Zk

d

Q̂α

∑
C∈Xk

h (C)χα (σ (C))

=
1
|Xk|

k∑
`=0

∑
α∈Zk

d:H(α)=`

Q̂α

∑
C∈Xk

h (C)χα (σ (C))

Observe that whenever α = ~0 we have

Q̂α = Ex∼Zk
d
[Q (x)χα (x)] = Ex∼Zk

d
[Q (x)] =

∑
x∈Zk

d

Q (x)
dk

= 1 .

Therefore, for ` = 0 in the above sum we have

1
|Xk|

Q̂α

∑
C∈Xk

h(C)χα (σ (C)) =
1
|Xk|

Q̂~0

∑
C∈Xk

h (C)

=
1
|Xk|

∑
C∈Xk

h (C)

= EUk [h] .

198

Therefore,

EQσ [h] − EUk [h] =
1
|Xk|

k∑
`=1

∑
α∈{0,...,d−1}k:H(α)=`

Q̂α

∑
S⊆[k],|S|=`

∑
C`∈X`

∑
C∈Xk,C|S=C`

h (C)χα (σ (C))

=
1
|Xk|

 k∑
`=1

∑
α∈{0,...,d−1}k:H(α)=`

Q̂α

∑
C`∈X`

χα (σ (C`))
∑

S⊆[k],|S|=`

∑
C∈Xk,C|S=C`

h (C)


=

1
|Xk|


k∑
`=1

∑
α∈Zk

d:H(α)=`

Q̂α

∑
C`∈X`

χα (σ (C`)) · h` (C`)
|Xk|

|X`|


=


k∑
`=1

1
|X`|

∑
α∈Zk

d:H(α)=`

Q̂α

∑
C`∈X`

χα (σ (C`)) h` (C`)


=

 k∑
`=1

1
|X`|

b` (σ)


�

The following lemma is similar to Lemma 4 from [73]. Lemma 6 is based on the
general hypercontractivity theorem [116, Chapter 10] and applies to more general
(non-boolean) functions.

Lemma 6. [116, Theorem 10.23] If b : Zn
d → R has degree at most ` then for any

t ≥
(√

2e/d
)`

,

Pr
x∼Zn

d

[|b(x)| ≥ t‖b‖2] ≤
1
d`

exp
(
−
`

2ed
t2/`

)
,

where ‖b‖2 =
√
Ex∼Zn

d

[
b (x)2

]
Lemma 3 and its proof are almost identical to Lemma 5 in [73]. We simply

replace their concentration bounds with the concentration bounds in Lemma 6.
We include the proof for completeness.

199

Reminder of Lemma 3. Let b : Zn
d → R be any function with degree at most `, and

let S ⊆ Zn
d be a set of assignments for which d′ = dn/ |S| ≥ e`. Then Eσ∼S [|b (σ)|] ≤

2(ln d′/c0)`/2

d` ‖b‖2, where c0 = `
(

1
2ed

)
and ‖b‖2 =

√
Ex∼Zn

d

[
b (x)2

]
.

Proof of Lemma 3. The set S contains 1/d′ fraction of points in Zn
d . Therefore,

Pr
x∼S

[|b(x)| ≥ t‖b‖2] ≤
d′

d`
exp

(
−
`

2ed
t2/`

)
,

for any t ≥
(√

2e/d
)`

. For any random variable Y and value a ∈ R,

E[Y] ≤ a +

∫
∞

a
Pr[Y ≥ t]dt. .

We set Y = |b (σ)| /‖b‖2 and a =
(

ln d′
d2c0

)`/2
Assuming that a >

(√
2e/d

)`
We get

Eσ∼S[|b(σ)|]
‖b‖2

≤ (ln d′/c0)`/2 +

∫
∞

(ln d′/c0)`/2

d′

d`
· e−c0t2/`

dt

=
(ln d′/c0)`/2

d`
+

` · d′

2d` · c`/20

·

∫
∞

ln d′
e−zz`/2−1dz

=
(ln d′/c0)`/2

d`
+

` · d′

2d` · c`/20

·

(
−e−zz`/2−1

)∣∣∣∣∞
ln d′

+ (`/2 − 1)
∫
∞

ln d′
e−zz`/2−2dz

= . . . ≤
(ln d′/c0)`/2

d`
+

` · d′

2d` · c`/20

d`/2e−1∑
`′=1/2

(
−
d`/2e!
`′!

e−zz`
′

)∣∣∣∣∣∞
ln d′

=
(ln d′/c0)`/2

d`
+

1

2d` · c`/20

d`/2e−1∑
`′=0

d`/2e!
`′!

(ln d′)`
′

≤
2(ln d′/c0)`/2

d`
,

where we used the condition d′ ≥ e` to obtain the last inequality.

�

Lemma 7. Let S ⊆ {0, . . . , d − 1}n be a set of assignments for which d′ = dn/ |S|. Then

Eσ∼S

[∣∣∣∣∣ 1
|X`|

b` (σ)
∣∣∣∣∣] ≤ 4 (ln d′/c0)`/2

d`
‖h` (σ) ‖2
√
|X`|

200

Proof. For simplicity of notation we set b = b`. By Parseval’s identity we have

Eσ∼Zn
d

[
b (σ) b (σ)

]
= Eσ∼Zn

d

[
|b (σ)|2

]

= Eσ∼Zn
d


∣∣∣∣∣∣∣∣∣∣∣∣
∑
α∈Zk

d
H(α)=`

∑
C`∈X`

Q̂αχα (σ (C`))h` (C`)

∣∣∣∣∣∣∣∣∣∣∣∣
2

= Eσ∼Zn
d


∑
α∈Zk

d
H(α)=`

∑
C`∈X`

∣∣∣Q̂α

∣∣∣2 h` (C`)


= |X`|

∑
α∈Zk

d
H(α)=`

∣∣∣Q̂α

∣∣∣2 1
|X`|

∑
C`∈X`

h` (C`)

= |X`|

∑
α∈Zk

d
H(α)=`

∣∣∣Q̂α

∣∣∣2 ‖h`‖22
≤ |X`| ‖h`‖22 .

Before we can apply Lemma 3 we must address a technicality. The range of
b = b` might include complex numbers, but Lemma 3 only applies to functions
b with range R. For c, d ∈ R we adopt the notation Im

(
c + d

√
−1

)
= d and

Re
(
c + d

√
−1

)
= c. We observe that

Eσ∼Zn
d

[
b (σ) b (σ)

]
= Eσ∼Zn

d

[
Re (b (σ))2 + Im (b (σ))2

]
= ‖Re (b) ‖2 + ‖Im (b) ‖2 .

We first observe that Re (b) and Im (b) are both degree ` functions because we
can write

Re (b (σ)) =
1
|X`|

∑
α∈Zk

d:H(α)=`

∑
C`∈X`

Re
(
Q̂αχα (σ (C`)) h` (C`)

)
and

Im (b (σ)) ==
1
|X`|

∑
α∈Zk

d:H(α)=`

∑
C`∈X`

Im
(
Q̂αχα (σ (C`)) h` (C`)

)
.

201

Now we can apply Lemma 3 to get

Eσ∼S [|Re (b (σ))|] ≤
2 (ln d′/c0)`/2

d`
‖Re(b)‖2

≤
2 (ln d′/c0)`/2

d`
√
|X`|‖h` (σ) ‖2 .

A symmetric argument can be used to bound Eσ∼S [Im (b (σ))]. Now because

|b (σ)| ≤ |Re (b (σ))| + |Im (b (σ))| ,

it follows that

Eσ∼S
[∣∣∣∣∣ 1
|X`|

b (σ)
∣∣∣∣∣] ≤ 2

(1
|X`|

) (2 (ln d′/c0)`/2

d`

)
‖h` (σ) ‖2

√
|X`|

≤
4 (ln d′/c0)`/2

d`
‖h` (σ) ‖2
√
|X`|

.

�

We will use Fact 6 to prove Lemma 8. The proof of Fact 6 is found in [73,
Lemma 7]. We include it here for completeness.

Fact 6. [73] If h : X` → R satisfies ‖h‖22 = 1 then ‖h`‖22 ≤ 1.

Proof. First notice that for any C`,∣∣∣{C ∈ Xk ∃S ⊆ [k], s.t. |S| = ` ∧ C|S = C`}

∣∣∣ =
|Xk|

|X`|
.

By applying the definition of h` along with the Cauchy-Schwartz inequality

‖h`‖22 = EC`∼U`

[
h` (C`)

2
]

=
(
|X`|

|Xk|

)2

EC`∼U`


 ∑

S⊆[k],|S|=`,C∈Xk,C|S=C`

h (C)


2

≤

(
|X`|

|Xk|

)2

EC`∼U`

 |Xk|

|X`|

 ∑
S⊆[k],|S|=`,C∈Xk,C|S=C`

h (C)2




≤

(
|X`|

|Xk|

)
EC`∼U`


 ∑

S⊆[k],|S|=`,C∈Xk,C|S=C`

h (C)2




= EC∼Uk

[
h (C)2

]
= ‖h‖22 = 1 .

202

�

Lemma 8. Let Q be a clause distribution with distributional complexity r = r(Q), let
D
′
⊆ {Qσ}σ∈{0,...,d−1}n be a set of distributions over clauses and d′ = dn/|D′|. Then

κ2(D′,Uk) = Ok

(
(ln d′/n)r/2

)
Proof. LetS = {σ Qσ ∈ D

′
} and let h : Xk → Rbe any function such thatEUk

[
h2] = 1.

Using Lemma 5 and the definition of r,

|∆ (σ, h)| =

∣∣∣∣∣∣∣
k∑
`=r

1
|X`|

b` (σ)

∣∣∣∣∣∣∣
≤

k∑
`=r

∣∣∣∣∣ 1
|X`|

b` (σ)
∣∣∣∣∣ .

We apply Lemma 7 and Fact 6 to get

Eσ∼S [|∆ (σ, h)|] ≤
k∑
`=r

(
4 (ln d′/c0)`/2

d`
‖h` (σ) ‖2
√
|X`|

)

≤

k∑
`=r

(
4 (ln d′/c0)`/2

d`
√
|X`|

)
≤ Ok

(
(ln d′)`/2

d`nr/2

)
.

�

Remark 6. Recall that Q f
σ denotes the uniform distribution over pairs (C, i) ∈ Xk × Zd

that satisfy f (σ (C)) = i. If we let U′k denote the uniform distribution over Xk ×Zd then
for any function h : Xk ×Zd → R we can apply Lemma 8 to write

E(C, j)∼Qσ

[
h(C, j)

]
− E(C, j)∼Uk

[
h(C, j)

]
=

d∑
i=1

Pr
C∼Uk

[
f (σ (C)) = i

] (
EC∼Q f ,i

σ

[
hi (C)

]
− EC∼Uk

[
hi(C)

])
≤

d∑
i=1

max
j

{
EC∼Q f , j

σ

[
h j (C)

]
− EC∼Uk

[
h j(C)

]}
≤ Ok

(
(ln d′)`/2

d`nr/2

)
,

where hi (C) = h (C, i).

203

Reminder of Theorem 7. Let ZQ,ε denote the problem of finding for every σ ∈ Zn
d ,

an assignment τ ∈ Zk
d that is ε-correlated with σ given access to distribution Q f

σ over
Xk ×Zd. Then there exists a constant cQ > 0 such that for any ε > 1/

√
n and q ≥ n,

SDN

ZQ,ε,
cQ

(
log q

)r/2

nr/2 , 2e−n·ε2/2

 ≥ q ,

where r = r(f) is the distributional complexity of f .

Proof of Theorem 7.

We use the uniform distribution U′k over Zk+1
d as our reference distribution

and we use DU = D = {Q f
σ}σ∈Zn

d
to denote the set of distributions for all possible

assignments. First note that, by Chernoff bounds, for any solution τ ∈ Zn
d the

fraction of assignments σ ∈ Zn
d such that τ and σ are ε-correlated (e.g., H (σ, τ) ≤

n(d−1)
d − ε · n) is at most e−2n·ε2 . In other words |Dτ| ≥

(
1 − e−2n·ε2

)
|D|, where Dτ =

D\Z
−1
Q,ε(τ). LetD′ ⊆ Dτ be a set of distributions of size |Dτ|/q andS = {σ Q f

σ ∈ D
′
}.

Then for d′ = dn/|D′| = q · dn/|Dτ|, by Lemma 8 and remark 6, we get

κ2(D′,U′k) = Ok

(
(ln d′)r/2

nr/2

)
(8.1)

= Ok

(
(ln q)r/2

nr/2

)
, (8.2)

where the last line follows by Sterling’s Approximation

q = d′|Dτ|/dn = d′|Dτ|/dn
≈ d′c′

√
d
n

for a constant c′. The claim now follows from the definition of SDN. �

The proof of Theorem 6 follows from Theorem 7 and the following result of
Feldman et al. [73].

Reminder of Theorem 5 [73, Theorems 10 and 12]. Let X be a domain andZ be a
search problem over a set of solutions F and a class of distributionsD over X. For κ > 0
and η ∈ (0, 1), let d′ = SDN(Z, κ, η). Let D be the reference distribution andDD be a set of
distributions for which the value d′ is achieved. Any randomized statistical algorithm that,
given access to a VSTAT

(
1

3κ2

)
(resp. 1-MSTAT (L)) for a distribution chosen randomly

and uniformly from DD, succeeds with probability Λ > η over the choice of distribution

204

and internal randomness requires at least Λ−η
1−η d′ (resp. Ω

(
1
L min

{
d′(Λ−η)

1−η ,
(Λ−η)2

κ2

})
) calls

to the oracle.

Reminder of Theorem 6. Let σ ∈ Zn
d denote a secret mapping chosen uniformly

at random and let ZQ f be a planted constrained satisfiability problem with distribution
Q f
σ over Xk × Zd, where f has distributional complexity r = r(f). Any randomized

statistical algorithm that finds an assignment τ such that τ is
(√

−2 ln(η/2)
n

)
-correlated

with σ with probability at least Λ > η over the choice of σ and the internal randomness of

the algorithm needs at least m calls to the 1-MSTAT(L) oracle (resp. VSTAT
(

nr

2(log n)2r

)
)with

m · L ≥ c1

(
n

log n

)r
(resp. m ≥ nc1 log n) for a constant c1 = Ωk,1/(Λ−η)(1). In particular if we

set L =
(

n
log n

)r/2
then our algorithms needs at least m ≥ c1

(
n

log n

)r/2
calls to 1-MSTAT(L).

Proof of Theorem 6. We set ε =

√
−2 ln(η/2)

n and observe that 2e−nε2/2 = η, and we set
q = nlog n in Theorem 7. Notice that we usedDU = {Q f

σ}σ∈Zn
d

in the proof of Theorem
7. Now we apply Theorem 5 to get the desired lower bound

m = Ω

min

nΩk(log n) (Λ − η)
1 − η

,

 nr/2

cQ
(
log (nlog n)

)r/2

2 (
Λ − η

)2

 /L
 = Ω

((
nr

log2r n

)
/L

)
,

for the 1-MSTAT (L) oracle. For the VSTAT
(

nr

2(log n)2r

)
oracle we get m =

nΩk(log n)(Λ−η)
1−η .

�

8.3 Security Proofs

Reminder of Theorem 8. Let f be (δ1, δ2)—hard to predict, let σ ∼ Zn
d denote the

secret mapping, let ε > 0 be any constant and suppose that we are given labels `C ∈ Zd

for every C ∈ Xk s.t

Pr
C∼Xk

[
f (σ (C)) = `C

]
≥

1
d

+ δ2 + ε .

There is a polynomial time algorithm (in n, 1/ε, 1/δ2) that with high probability finds a
mapping σ′ ∈ Zn

d such that σ′ is δ1-correlated with σ provided that σ is δ1-balanced.

205

Proof of Theorem 8. Let σ ∈ Zn
d be given such that σ is δ1-balanced (e.g., d−1

d − δ1 ≤

maxi∈Zd

(
H(σ,~i)

n

)
≤

d−1
d + δ1.

We set τ = 2
ε2 ln (T) and select clauses C j

1, . . .C
j
τ at random for j ∈ [y]. Then by

Chernoff bounds

Pr
[∣∣∣∣∣{i `C j

i
= f

(
σ
(
C j

i

))}∣∣∣∣∣ ≤ τd + τδ2

]
≤ exp

(
2

2
ε2 ln (T)ε2

)
= exp (4 ln (T))

=
1

T4 .

Let T = n, set S j =
⋃τ

i=1 C j
i , and define BAD j to be the event that∣∣∣∣{C ∈ Xk C ⊆ S j

∧ `C = f (σ (C))
}∣∣∣∣

|{C ∈ Xk C ⊆ S j}|
≤

1
d

+ δ2 .

By the union bound

Pr
[
BADi

]
≤

(2k ln T
ε2

k

)
1

T4

≤
2kkk lnk T
δ2kT4

≤
1
n3 .

If we set y = O
(
n log n

)
then with high probability

⋃y
j=1 S j = [n]. By applying the

union bound again we have

Pr
[
∃ j ∈ [y].BAD j

]
≤

1
n1.5 .

Now for each j ∈ [y] we can enumerate over all nO((2k ln d)/δ2
2) mappings σ j

∈ Z
|S j|
d to

find one that satisfies∣∣∣∣{C ∈ Xk C ⊆ S j
∧ `C = f

(
σ j (C)

)}∣∣∣∣
|{C ∈ Xk C ⊆ S j}|

≥
1
d

+ δ2 ,

206

in polynomial time. Because f is (δ1, δ2)-hard to predictσ j
(
S j

)
must be δ1-correlated

with σ
(
S j

)
(e.g.,

H(σ(S j),σ j(S j))
|S j|

≤
d−1

d − δ1). Now we can find σ′ s.t. H (σ, σ′) ≤ d−1
d − δ1

by combining the σi’s. �

Reminder of Claim 1. LetA be an adversary s.t Pr [Wins (A,n,m, t)] >
(

1
d + δ + ε

)t

and let b = AC1,...,Cm then

Pr
i∼[t],C∼Xk

C1,...,Cm∼Xk
C′1,...,C

′

t∼Xk

[
Pb,C′1,...,C

′

t
(C, i) = f (σ (C)) Pb,C′1,...,C

′

t
(C, i) , ⊥

]
≥

(1
d

+ δ + ε
)
.

Proof of Claim 1. We draw examples
(
C1, f (σ (C1))

)
, . . . ,

(
Cm, f (σ (Cm))

)
to construct

b = AC1,...,Cm . Given a random length-t password challenge
(
C′1, . . . ,C

′

t

)
∈ (Xk)

t we
let

p j = Pr
C,C1,...,Cm,C′1,...,C

′

t∼Xk

[
Pb, j,C′1,...,C

′

t
(C) = f (σ (C)) Pb, j,C′1,...,C

′

t
(C) , ⊥

]
denote the probability that the adversary correctly guesses the response to the j’th
challenge conditioned on the event that the adversary correctly guesses all of the
earlier challenges. Observe that

Pr
C,C1,...,Cm,C′1,...,C

′

t−1∼Xk,i∼[t]

[
Pb,i,C′1,...,C

′

t
(C, i) = f (σ (C))

]
=

t∑
i=1

pi/t ,

so it suffices to show that
∑t

i=1 pi/t ≥ 1
d + δ + ε. We obtain the following constraint

t∏
i=1

pi =

t∏
i=1

Pr
C,C1,...,Cm,C′1,...,C

′

t∼Xk

[
Pb, j,C′1,...,C

′

t
(C) = f (σ (C)) Pb, j,C′1,...,C

′

t
(C) , ⊥

]
=

t∏
i=1

Pr
C1,...,Cm,C′1,...,C

′

t∼Xk

[
AC1,...,Cm

(
C′1, . . . ,C

′

t

)
[i] = f

(
σ
(
C′i

))
∀ j < i.AC1,...,Cm

(
C′1, . . . ,C

′

t

)
[j] = f

(
σ
(
C′j

))]
= Pr

C1,...,Cm,C′1,...,C
′

t∼Xk

[
AC1,...,Cm

(
C′1, . . . ,C

′

t

)
=

(
f
(
σ
(
C′1

))
, . . . , f

(
σ
(
C′t

)))]
≥

(1
d

+ δ + ε
)t

.

207

If we minimize
∑t

i=1 pi/t subject to the constraint
∏t

i=1 pi ≥
(

1
d + δ + ε

)t
then we

obtain the desired upper bound
∑t

i=1 pi/t ≥ 1
d + δ + ε. �

Reminder of Theorem 9. Suppose that f is (δ1, δ2)—hard to predict, but that f is

not UF − RCA (n,m, t, δ) − secure for δ >
(

1
d + δ2 + ε

)t
. Then there is a probabilistic

polynomial time algorithm (in n, m, 1/δ1, 1/δ2, 1/ε) that extracts a string σ′ ∈ Zn
d that is

c-correlated with σ after seeing Õ (m) examples, where c > 0 is a constant.

Proof of Theorem 9. (sketch) We first partition Xk into T = O
(

log|Xk |

ε

)
sets S1, . . . ,ST

of equal size. We let U j
i denote the set of unlabeled clauses from S j at time i. Initially,

U j
0 = S j. During step i we draw mT labeled examples

(
Ci, j

1 , f
(
σ
(
Ci, j

1

)))
, . . . ,

(
Ci, j

m , f
(
σ
(
Ci, j

m

)))
∼

Q f
σ and t labeled examples

(
Ĉi, j

1 , f
(
σ
(
Ĉi, j

1

)))
, . . . ,

(
Ĉi, j

t , f
(
σ
(
Ĉi, j

t

)))
∼ Q f

σ. For each
clause C ∈ Ui we select kC ∼ [t] uniformly at random. We set

U j
i+1 =

{
C ∈ U j

i Pb,kC,Ĉ
i, j
1 ,...,Ĉ

i, j
t

(C) = ⊥
}
,

and we set
`C = Pb,kC,Ĉ

i, j
1 ,...,Ĉ

i, j
t

(C)

for all C ∈ U j
i\U

j
i+1. Here, b = ACi

1,...,C
i
m
.

We first argue that O
(

ln|Xk |

ln(t
t−1)

)
rounds suffice to label every clause C ∈ Xk. Notice

that ∀C ∈ Xk we have

Pr
j∼[t]

Ci, j
1 ,...,C

i, j
m∼Xk

Ĉi, j
1 ,...,Ĉ

i, j
t ∼Xk

[
Pb, j,Ĉi, j

1 ,...,Ĉ
i, j
t

(C) , ⊥
]
≥ Pr

j∼[t]
[j = 1] =

1
t
.

The probability that a clause C hasn’t been labeled after i rounds is at most
(
1 − 1

t

)i
.

By union bounds the probability that any clause is unlabeled is at most |Xk|
(
1 − 1

t

)i

so after i = O
(

ln|Xk |

ln(t
t−1)

)
rounds we will have U j

i = ∅ for all j ∈ [T].

We now argue that with high probability we label at least 1
d + δ + ε/2 clauses

correctly. Formally, let

xi =
∣∣∣{C ∈ Si `C = f (σ (C))

}∣∣∣ ,
208

denote the number of clauses in Si labeled correctly. Notice that the random
variables are independent, and by Claim 1 we have

E

 T∑
i=1

xi

|Xk|

 ≥ 1
d

+ δ + ε .

Now by Chernoff Bounds it follows that with probability 1 − o(1)

T∑
i=1

xi

|Xk|
≥

1
d

+ δ + ε/2 ,

so we can apply Lemma 8 to obtain the desired result.

�

8.4 Proofs of Claims and Facts

Reminder of Claim 2. r(f1) = 3, g(f1) = 2 and s(f1) = 3/2.

Proof of Claim 2. We first observe that if we fix the values of x10, x11 ∈ Z10 then
f ′ (x0, . . . , x9, x12, x13) = f1 (x0, . . . , x13) is a linear function. Thus, g(f1) = 2. We also
note that for any α ∈ Z14

10 s.t. H (α) < 3 and i, t ∈ Z10 that

Pr
x∼Z14

10

[
f1(x) = t α · x ≡ i mod 10

]
= Pr

x∼Z14
10

[
f1(x) = t

]
=

1
10
.

Therefore,

Q̂ f1,t
α = Ex∼Zk

10

[
Q f1,t (x)χα (x)

]
=

9∑
i=0

Pr [α · x ≡ i mod 10]Ex∼Zk
10

[
Q f1,t (x)χα (x) α · x ≡ i mod 10

]
=

9∑
i=0

exp
(
−2πi

√
−1

10

)
Pr [α · x ≡ i mod 10]Ex∼Zk

10

[
Q f1,t (x) α · x ≡ i mod 10

]
=

1
10

9∑
i=0

exp
(
−2πi

√
−1

10

)
Ex∼Zk

10

[
Q f1,t (x) α · x ≡ i mod 10

]
= 0 ,

209

which implies that r(f1) ≥ 3. �

Reminder of Claim 3. r(f2) = 4, g(f2) = 1 and s(f2) = 2.

Proof of Claim 3. We first observe that if we fix the values of x10 ∈ Z10 then
f ′ (x0, . . . , x9, x11, x12, x13) = f2 (x0, . . . , x13) is a linear function. Thus, g(f1) = 1. We
also note that for any α ∈ Z14

10 s.t. H (α) < 4 and i, t ∈ Z10 that

Pr
x∼Z14

10

[
f2(x) = t α · x ≡ i mod 10

]
= Pr

x∼Z14
10

[
f2(x) = t

]
=

1
10
.

Therefore,

Q̂ f1,t
α = Ex∼Zk

10

[
Q f1,t (x)χα (x)

]
=

9∑
i=0

Pr [α · x ≡ i mod 10]Ex∼Zk
10

[
Q f1,t (x)χα (x) α · x ≡ i mod 10

]
=

9∑
i=0

exp
(
−2πi

√
−1

10

)
Pr [α · x ≡ i mod 10]Ex∼Zk

10

[
Q f1,t (x) α · x ≡ i mod 10

]
=

1
10

9∑
i=0

exp
(
−2πi

√
−1

10

)
Ex∼Zk

10

[
Q f1,t (x) α · x ≡ i mod 10

]
= 0 ,

which implies that r(f2) ≥ 4. �

Reminder of Fact 2. f1 is (0.01, 0.045)—hard to predict.

Proof of Fact 2. Let σ, σ′ ∈ Zn
10 be given. We assume that σ is

(
1

100

)
-balanced and that

σ and σ′ are not
(

1
100

)
-correlated. This means that 9

100 ≤ maxi∈Z10

(
n −

H(σ,~i)
n

)
≤

11
100

and
(
1 − H(σ,σ′)

n

)
< 11

100 . It suffices to show that

Pr
C=(x1,...,x14)∼X14

[
f (σ (C)) = f (σ′ (C))

]
≤

145
1000

.

For j ∈ Z10 we let p j =
n−H(σ j,σ′)

n where σ j (i) =
(
σ (i) + j mod 10

)
. In particular,

p0 = n−H(σ,σ′)
n denotes the probability that σ(i) = σ′(i) for a random index i ∼ [n]. By

assumption p0 ≤
1
10 + 1

100 . We have

210

Pr
C=(x1,...,x14)∼X14

[
f1 (σ (C)) = f1 (σ′ (C))

]
=


∑

i, j∈Z10
i+ j≡0 mod 10

pip j

 Pr
C=(x1,...,x14)∼X14

[
f1 (σ (C)) = f1 (σ′ (C))

σ (x11) + σ (x12) ≡ σ′ (x11) + σ′ (x12) mod 10]

+

1 −
∑

i, j∈Z10
i+ j≡0 mod 10

pip j

 Pr
C=(x1,...,x14)∼X14

[
f1 (σ (C)) = f1 (σ′ (C))

σ (x11) + σ (x12) . σ′ (x11) + σ′ (x12) mod 10]

=


∑

i, j∈Z10
i+ j≡0 mod 10

pip j

 Pr
(x1,x2,x3)∼X3

 3∑
i=1

(σ (xi) − σ′ (xi)) ≡ 0 mod 10


+

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j


 Pr

(x,y,x13,x14)∼X14

[σ (x) + σ (x13) + σ (x14) ≡

σ′
(
y
)

+ σ′ (x13) + σ′ (x14) mod 10
]

=


∑

i, j∈Z10
i+ j≡0 mod 10

pip j

 Pr
(x1,x2,x3)∼X3

 ∑
i, j,k∈Z10:i+ j+k≡0 mod 10

pip jpk


+

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j


 Pr

(x,y,x13,x14)∼X14

[σ (x) + σ (x13) + σ (x14) ≡

σ′
(
y
)

+ σ′ (x13) + σ′ (x14) mod 10
]

≤


∑

i, j∈Z10
i+ j≡0 mod 10

pip j




∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk


+

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j


 max

j∈Z10

Pr
(x)∼[n]

[
σ (x) ≡ j mod 10

]

≤


∑

i, j∈Z10
i+ j≡0 mod 10

pip j




∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk

 +

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j



(11
100

)
211

Maximizing


∑

i, j∈Z10
i+ j≡0 mod 10

pip j




∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk

 +

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j



(11
100

)
,

subject to the constraint that p0 ≤
1
10 + 1

100 , we obtain the desired upper bound


∑

i, j∈Z10
i+ j≡0 mod 10

pip j




∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk

 +

1 −


∑

i, j∈Z10
i+ j≡0 mod 10

pip j



(11
100

)
≤

145
1000

.

�

Reminder of Fact 3. f2 is (0.01, 0.01)—hard to predict.

Proof of Fact 3. Let σ, σ′ ∈ Zn
10 be given. We assume that σ is

(
1

100

)
-balanced and

that σ and σ′ are not
(

1
100

)
-correlated. This means that 9

100 ≤ maxi∈Z10

(
H(σ,~i)

n

)
≤

11
100

and
(
1 − H(σ,σ′)

n

)
< 11

100 . It suffices to show that

Pr
C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C))

]
≤

11
100

.

For j ∈ Z10 we let p j =
n−H(σ j,σ′)

n where σ j (i) =
(
σ (i) + j mod 10

)
. In particular,

p0 = n−H(σ,σ′)
n denotes the probability that σ(i) = σ′(i) for a random index i ∼ [n]. By

assumption p0 ≤
1
10 + 1

100 . We have

212

Pr
C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C))

]
= Pr

C=(x1,...,x14)∼X14

[σ (x11) = σ′ (x11)] Pr
C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) = σ′ (x11)

]
+ Pr

C=(x1,...,x14)∼X14

[σ (x11) , σ′ (x11)] Pr
C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) , σ′ (x11)

]
= p0 Pr

C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) = σ (x11)

]
+

(
1 − p0

)
Pr

C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) , σ (x11)

]
= p0 Pr

C=(x12,x13,x14)∼X3

[σ (x12) + . . . + σ (x14) ≡ σ′ (x12) + . . . + σ′ (x14) mod 10]

+
(
1 − p0

)
Pr

C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) , σ (x11)

]
= p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk

+
(
1 − p0

)
Pr

C=(x1,...,x14)∼X14

[
f2 (σ (C)) = f2 (σ′ (C)) σ (x11) , σ (x11)

]
= p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk

+
(
1 − p0

)
Pr

(x,y,x12,x13,x14)∼X5

[σ(x) + σ(x12) + σ (x13) + σ (x14) ≡

σ′(y) + σ′(x12) + σ′ (x13) + σ′ (x14) mod 10
]

≤ p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk +
(
1 − p10

)
max
j∈Z10

Pr
x∼[n]

[
σ(x) ≡ j mod 10

]
≤ p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk +
(
1 − p10

) (11
10

)
.

Maximizing

p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk +
(
1 − p0

) (11
10

)
,

subject to the constraint that p0 ≤
1

10 + 1
100 , we obtain the desired upper bound

213

p0

∑
i, j,k∈Z10

i+ j+k≡0 mod 10

pip jpk +
(
1 − p0

) (11
10

)
≤

11
100

.

�

8.4.1 Security Upper Bounds

Background The proof of Theorem 10 relies on the discrete spectral iteration
algorithm of [73]. We begin by providing a brief overview of their algorithm. In
their setting the secret mapping σ is defined over the binary alphabet Zn

2 . Let
k1 = d

r(f)
2 e, k2 = b

r(f)
2 c and let δ ∈ [0, 2]\{1}. They use σ to define a distribution over∣∣∣Xk1

∣∣∣ × ∣∣∣Xk2

∣∣∣ matrices Mσ,δ,p = M̂
(
Qσ,δ,p

)
− Jp, where J denotes the all ones matrix.

For (C1) ∈ Xk1 , (C2) ∈ Xk2 such that C1
⋂

C2 = ∅we have

M̂
(
Qσ,δ,p

)
[(C1) , (C2)] =


1, with probability

(
p (2 − δ)

)
if

∑
j∈C1∪C2

σ
(
j
)
≡ 0 mod 2

1, with probability
(
pδ

)
if

∑
j∈C1∪C2

σ
(
j
)
. 0 mod 2

0, otherwise
.

Given a vector x ∈∈ {±1}|Xk2 | (resp. y ∈∈ {±1}|Xk1 |) Mσ,px defines a distribution over
vectors in R|Xk1 | (resp. MT

σ,py defines a distribution over vectors in R|Xk1 |).

If r(f) is even then the the largest eigenvalue of E
[
Mσ,δ,p

]
has a corresponding

eigenvector x∗ ∈ {±1}Xr(f)/2 , where for Ci ∈ Xr(f)/2 we have x∗ [Ci] = 1 if
∑

j∈Ci
σ(j) ≡ 1

mod 2; otherwise x∗ [Ci] = −1 (if r(f) is odd then we consider the top singular
value instead). Feldman et al. [73] use discrete spectral iteration to find x∗. Given
x∗ it is easy to find σ using Gaussian Elimination.
The discrete spectral iteration algorithm of Feldman et al. [73] starts with a random
vector x0

∈ {0, 1}|Xk2 |. They then sample xi+1
∼ Mσ,pxi followed by a normalization

step to ensure that xi+1
∈ {0, 1}|Xk2 |. When r(f) is odd, power iteration has two steps:

draw a sample yi
∼ Mσ,δ,pxi and sample from the distribution xi+1 = MT

σ,δ,pyi. They

showed that O
(
log

∣∣∣Xr(f)

∣∣∣) iterations suffice to recover σ whenever p =
K log|Xr(f)|

(δ−1)2
√
|Xr(f)|

,

and that for a vector x ∈ {0, 1}|Xk2 | (resp. y ∈ {±1}|Xk1 |) it is possible to sample from
Mσ,δ,px (resp. MT

σ,δ,py) using O
(
1/p

)
queries to 1-MSTAT

(∣∣∣Xk1

∣∣∣).
214

Our Reduction The proof of Theorem 10 uses a reduction to the algorithm of
Feldman et al. [73].

Reminder of Theorem 10. For fi ∈ { f1, f2} there is a randomized algorithm that
makes O

(
nmax{1,r(fi)/2} log2 n

)
calls to the 1-MSTAT

(
ndr(fi)/2e

)
oracle and returns σ with

probability 1 − o(1).

Proof of Theorem 10. (sketch) Given a mapping σ ∈ Zn
d and a number i ∈ Zd we

define a mapping σi ∈ Zn
2 where

σi(j) =

1, if σ
(
j
)

= i
0, otherwise

.

Clearly, to recover σ it is sufficient to recover σi for each i ∈ Zd. Therefore, to
prove Theorem 10 it suffices to show that given x ∈ {±1}|Xk2 | (resp. y ∈ {±1}|Xk1 |) we
can sample from the distribution Mσi,δ,px (resp. MT

σi,δ,p
y) using O

(
1/p

)
queries to

1-MSTAT
(∣∣∣Xdr(f)/2e

∣∣∣) for each i ∈ {0, . . . , d−1}, where 1-MSTAT uses the distribution

Q f
σ. In general, this will not possible for arbitrary functions f . However, Lemma

9 shows that for our candidate human computable functions f1, f2 we can sample
from the distributions Mσi,δ,px (resp. MT

σi,δ,p
y). The proof of lemma 9 is similar to

the proof of [73, Lemma 10]. �

Lemma 9. Given vectors ~x ∈ {±1}|Xk1 |, ~y ∈ {±1}|Xk2 | we can sample from Mσ,δ,px and
MT

σ,δ,py using O
(
nr(fi)/2 log2 n

)
calls to the 1-MSTAT

(
ndr(fi)/2e

)
oracle for fi ∈ { f1, f2} .

The proof of Lemma 9 relies on Facts 7 and 8.

Fact 7. For each j, t ∈ Z10 we have

Pr
(x0,...,x13)∼Z14

10

[
x12 + x13 + xt ≡ j f1 (σ (x0, . . . , x13)) ≡ j mod 10

]
=

(
9
10

(
1

10

)
+ 1

10

) (
1

10

)(
1
10

) =
19
100

,

and

Pr
(x0,...,x13)∼Z14

10

[
x12 + x13 + xt ≡ j f1 (σ (x0, . . . , x13)) . j mod 10

]
=

(
9
10

(
1

10

)
+ 1

10 (0)
) (

1
10

)(
1
10

) =
9

100
.

215

Fact 8. For each j, t ∈ Z10 we have

Pr
(x0,...,x13)∼Z14

10

[
x11 + x12 + x13 + xt ≡ j f2 (σ (x0, . . . , x13)) ≡ j mod 10

]
=

(
9

10

(
1
10

)
+ 1

10

) (
1

10

)(
1

10

) =
19

100
,

and

Pr
(x0,...,x13)∼Z14

10

[
x11 + x12 + x13 + xt ≡ j f2 (σ (x0, . . . , x13)) . j mod 10

]
=

(
9

10

(
1
10

)
+ 1

10 (0)
) (

1
10

)(
1

10

) =
9

100
.

Proof of Lemma 9. Let xi
j ∈ {0, 1} denote a random variable that is 1 if and only if

x j = i. For f1 we define the function hi,+ : X14 ×Z10 → Xk1 ∪ {⊥} as follows

hi,+ (
x0, . . . , x13, f1 (σ (x0, . . . , x13))

)
=

(x0, x12, x13) if f1 (σ (x0, . . . , x13)) ≡ 3i mod 10
⊥ otherwise.

.

For f2 we simply change the condition to f2 (σ (x0, . . . , x13)) ≡ 4i mod 10 for hi,+.

Given a vector x ∈ {±1}|Xk1 | we query our 1-MSTAT
(∣∣∣Xk1

∣∣∣ + 1
)

oracle d10/pe
times with the function hi,+ to sample from Mσ,δ,px. Let q1, . . . , qd10/pe denote the
responses. We observe that for C ∈ Xk2 we have

Mσ,δ,px[C] ∼
∑

i∈d10/pe
qi=C

x
[
qi
]
− p

∑
C′∈Xk1

x[C′] ,

for some δ , 1 because by fact 7 it follows that

Pr
(x0,...,x13)∼Z14

10

[
xi

12 + xi
13 + xi

0 ≡ 1 mod 2 f1 (σ (x0, . . . , x13)) ≡ 3i mod 10
]

, Pr
(x0,...,x13)∼Z14

10

[
xi

12 + xi
13 + xi

0 ≡ 1 mod 2 f1 (σ (x0, . . . , x13)) ≡ 3i mod 10
]
.

Similarly, by fact 8 it follows that

Pr
(x0,...,x13)∼Z14

10

[
xi

11 + xi
12 + xi

13 + xi
0 ≡ 1 mod 2 f1 (σ (x0, . . . , x13)) ≡ 4i mod 10

]
, Pr

(x0,...,x13)∼Z14
10

[
xi

11 + xi
12 + xi

13 + xi
0 ≡ 1 mod 2 f1 (σ (x0, . . . , x13)) ≡ 4i mod 10

]
.

�

216

Chapter 9

Appendix: Password Composition
Policies

217

9.1 Optimizing Password Composition Policies: Miss-
ing Proofs

Reminder of Theorem 16. For every k, Algorithm 5.4 computes arg minA p (k,A) in
the singleton rules setting of the normalized probabilities model, in time O(N log(N)).

Proof of Theorem 16. LetA∗ denote the optimal solution, denote its most k popular
passwords as wi1 , . . . ,wik , and denote also P∗ as the total probability mass of the
words in A∗ according to the initial distribution: P∗ =

∑
w∈A∗ Pr[w]. Therefore,

p(k,A∗) =
∑k

j=1 Pr[wi j]/P
∗.

Clearly, all words w j s.t. j > ik belong to A∗ – otherwise, we could add such
a word and decrease the probability of the top k words. Similarly, all words w j

s.t j < i1 must not belong to A∗, otherwise they would belong to the set of most
popular k words. We now claim that wi1 , . . . ,wik are k consecutive words.

Suppose that there was some word w′ between some wi j and wi j+1 . Then A∗

clearly banned it, otherwise it would be one of the most popular k words. We claim
that the policyA′where we ban wi1 and allow w′ instead satisfies p(k,A′) ≤ p(k,A∗).

We denote p1 = Pr[wi1], q =
∑k

j=2 Pr[wi j] and p′ = Pr[w′], and we know p1 ≥ p′.
Then p(k,A∗) = (p1 + q)/P∗, whereas

p(k,A′) =
p′ + q

P∗ − p1 + p′
.

Our goal is to show p(k,A′) ≤ p(k,A∗), which holds iff

(p′ + q)P∗ ≤ (p1 + q)(P∗ − (p1 − p′))

By some algebraic manipulations, this holds iff

(p1 − p′)P∗ ≥ (p1 − p′)(p1 + q)

which clearly holds because p1 − p′ is a non-negative quantity, and p1 + q =∑k
j=1 Pr[wi j] ≤

∑
w∈A∗ Pr[w].

As for the running time of the algorithm, it is obvious that sorting requires
O(N log N) time. Finding the minimum requires only O(N) time: if we denote
ai =

∑
i≤ j≤i+k Pr[w j] and bi =

∑
i≤ j Pr[w j], then based on ai and bi it is easy to compute

ai+1 and bi+1 in O(1) time. �

218

Reminder of Lemma 4. Fix m and s such that m ≥ s. There exists a domain D of size
Θ(s2 log(m)) and a family of m sets, F1,F2, . . . ,Fm ⊆ D, such that each set in the family
contains |D|2s elements, and for every C ⊆ [m] of size |C| ≤ s, we have that the size of the
union

∣∣∣⋃i∈C Fi

∣∣∣ ≥ |D|2s
|C|
4 . This domain can be constructed in randomized poly(s,m) time.

Proof of Lemma 4. Given m and s, we first pick a random function φ : [m] → [2s].
Fixing a subset C ⊆ [m] of size |C| ≤ s, we claim that |φ(C)| > |C|/2 w.p. at least
1 − (0.825)|C|. Indeed,

Pr
[
|φ(C)| ≤ |C|/2

]
≤ Pr

[
∃T ⊆ [2s] s.t. |T| = |C|/2 and ∀i ∈ C, φ(i) ∈ T

]
≤

(
2s
|C|/2

)
Pr

[
∀i ∈ C, φ(i) ∈ T

]
≤

(4se
|C|

)|C|/2 (
|C|/2

2s

)|C|
= e|C|/2

(
|C|
4s

)|C|/2
=

(√
e/4

)|C|
< (0.825)|C| .

So assuming |C| ≥ 8 we have that C is mapped to at least |C|/2 distinct images by φ
w.p.> 3/4. Also, if |C| ≤ 7 then probability of even two elements getting mapped
to the same image is at most

(7
2

) 1
2s < 0.25 for s > 42.

We now construct D by taking d independently chosen such φ-mappings,
which we denote as φ1, φ2, . . . , φd, and so D = [2s] × [d]. We construct the family
Fi = {(φ1(i), 1), (φ2(i), 2), . . . , (φd(i), d)} for every i ∈ [m]. Clearly, for every i it holds
that |Fi| = d = |D|/2s. Supposed for the sake of contradiction that there exists some
C ⊆ [m] of size ≤ s such that

∣∣∣⋃i∈C Fi

∣∣∣ ≤ |C|4 |Fi|. By construction, we have that∣∣∣∣∣∣∣⋃i∈C Fi

∣∣∣∣∣∣∣ =

d∑
j=1

∣∣∣{(φ j(C), j)}
∣∣∣ =

d∑
j=1

|φ j(C)|

so by the Markov inequality we have that at least d/2 functions where the cardi-
nality of the image of C is less than |C|/2. Let XC, j be the indicator random variable
of φ j mapping the set C to no more than |C|/2 distinct elements, the Hoeffding
bound gives that

Pr
[
∃C of size ≤ s s.t.

∑
j XC, j > d/2

]
≤

∑
s′<s

(
m
s′

)
Pr[1

d

∑
j

XC, j > 0.5] ≤ mO(s)e−d/10

Setting d = Θ(s log m) gives that w.p. ≥ 1/2 no such C exists. �

Reminder of Theorem 18. Unless P = NP there is no polynomial time algorithm
(in N,m,n) which outputs arg minS⊆[m] p (k,AS) in the positive rules setting and the
normalization model.

219

Proof of Theorem 18. Our reduction is from set cover.

Set Cover Instance: Sets S1, . . . ,Sm, Universe U = {1, . . . ,n} and integer k.
Question: Is there a set cover of size k − 1?

Now we define W1, . . . ,Wn to be n disjoint sets of passwords

Wi =
{
wi,` 1 ≤ ` ≤ n5m5

}
.

We also define special passwords t j (j ≤ m) and τ j (j ≤ k) which are not contained
in any Wi.

We define the following positive password rules:

Ri = {ti} ∪
{
τ j 1 ≤ j ≤ k

}
+

⋃
j: j∈Si

W j .

We assign probabilities as follows:

Pr
[
wi,`

]
=

(
1 −

1
n3

) 1
m5n6 ,

for each i ≤ n and ` ≤ m5n5. Observe that

Pr

⋃
i≤m

Wi

 =
(
1 −

1
n3

)
,

so that almost all of the probability mass is concentrated inside the sets Wi and the
probability mass is uniformly distributed. We also set

Pr
[
τ j

]
=

1 − x
n3k

,

and
Pr

[
t j

]
=

x
n3m

,

where 0 ≤ x ≤ 1 will be defined later. First notice that∑
j≤k

τ j +
∑
j≤m

t j = k
(1 − x

n3k

)
+ m

(x
n3m

)
=

1
n3 ,

220

so our probability distribution is well defined. Suppose that there is a set cover
C ⊆ [m] s.t. |C| ≤ k − 1 ∧

⋃
i∈C Si = U, and consider the solution AC. We cover all

Wi’s and use at most k − 1 t’s. Hence,

p (k,AC) ≤ ((k − 1) Pr[t] + Pr[τ])
(

n3

n3 − 1

)
.

Suppose that there is no set cover of size k. For every set of k or more rules S we
have at least k t’s in our solution so

p (k,AS) ≥ k Pr[t] .

For every set of rules S that does not cover all the Wi’s we have at most
(
1 − 1

n

) (
1 − 1

n3

)
-

fraction of the total probability mass so

p (k,AS) ≥
((k − 1) Pr[τ] + Pr[t])(

1 − 1
n

) (
1 − 1

n3

) .

It suffices to select x s.t.

((k − 1) Pr[t] + Pr[τ])
(

n3

n3 − 1

)
< min

 ((k − 1) Pr[τ] + Pr[t])(
1 − 1

n

) (
1 − 1

n3

) , k Pr[t]

 ,

or —after some algebraic manipulation — equivalently,

a =

(
n3

n3−1

)(
1 − 1

n3−1

) Pr[τ] < Pr[t] < b = Pr[τ]
(k − 2) + 1

n−1

(k − 2) − 1
n−1

.

Observe that a ≤ Pr[t] ≤ b so it suffices to set x s.t. Pr[t] = a+b
2 . We can solve for x

to get

x =
m

(
−3 + 2n + 2n3

− 2n4 + k (n − 1)2 (1 + n + n2))
m (−3 + 2n + 2n3 − 2n4) + k2 (2 − 2n − n3 + n4) + k

(
−2 + 4n + n3 − 2n4 + m (n − 1)2 (1 + n + n2)

) .
�

Reminder of Claim 5. Pr [∃i,BADi] ≤ δ .

221

Proof of Claim 5. By the union bound it suffices to show that

Pr [BADi] ≤
δ
m
.

Our first step is to divide the passwords w ∈ P into buckets B j based on their
probability. For j > 0 we define

B j =
{
w
ε

2 j ≤ Pr
[
w ASi

]
≤

ε

2 j−1

}
,

and for j = 0 we set
B0 =

{
w ε ≤ Pr

[
w ASi

]}
.

Observe that

P =

∞⋃
j=0

B j .

Let w ∈ B j be given (j > 0) then by the Chernoff Bounds:

Pr
[
sw > s Pr

[
w ASi

]
+ sε/2

]
≤ exp

(
−2 j−1 log

(4m
δε

))
≤

4−2 j−1
δε

m
.

Notice that the bucket B j contains at most
∣∣∣B j

∣∣∣ = 2 j/ε passwords.

Pr
[
∃w ∈ B j, sw > s Pr

[
w ASi

]
+ sε/2

]
≤

4−2 j−1
δε

∣∣∣B j

∣∣∣
m

≤
δ

2 j+1m
.

Now if we union bound across all j > 0 we get

Pr

∃w ∈
∞⋃
j=1

B j, sw > s Pr
[
w ASi

]
+ sε/2

 ≤ ∞∑
j=1

δ

2 j+1m
=

δ
2m

.

Finally, we consider the passwords in B0. By Chernoff Bounds for each w ∈ B0 we
have

Pr
[∣∣∣sw − s Pr

[
w ASi

]∣∣∣ > sε/2
]
≤
δε
2m

,

by applying the union bound |B0| ≤ 1/ε we get

Pr
[
∃w ∈ B0

∣∣∣sw − s Pr
[
w ASi

]∣∣∣ > sε/2
]
≤

δ
2m

.

Combining our inequalities we obtain the desired result:

Pr [BADi] ≤ Pr

∃w ∈
∞⋃
j=0

B j, sw > s Pr
[
w ASi

]
+ sε/2

 ≤ δ
m
.

�

222

9.2 Impossibility of constant-factor universal approx-
imation

In this section we consider the following goal: given a constant c find a password
composition policyA such that

p (k,A) ≤ c · p (k,A′) ,

for any other policy A′ and every value of k ≤ N. Such a policy — if it exists —
would provide a nearly optimal defense against both online attacks and dictionary
attacks simultaneously [136]. Unfortunately, Theorem 32 rules out the possibility
of a constant universal approximation in the rankings model. Our impossibility
result holds even in the singleton rules setting. We show that it is possible to
construct a distribution D over rankings for which no universal approximation
exists.

We construct our distributionD (algorithm 9.1) over rankings by merging two
distributionsD1 andD2 over preference lists.

Intuition: Passwords sampled from D2 are highly secure, but passwords sam-
pled from D1 are highly insecure. To make improve the security of D1 it is necessary
to ban all passwords in W, but this reduces the security of D2 significantly.

We make two claims (1) We must ban all but a small subset of passwords if we
want to even approximately optimize p (1,A). (2) We must keep a larger subset of
passwords to even approximately optimize p (k,A) for large values of k.

Theorem 32. For all constants c > 0 there exists distributionD over rankings such that
∀A ⊆ P,∃A′, k ∈N, such that

p (k,A) > c · p (k,A′) .

Proof. (sketch) Let P = W ∪ X where W =
⋃r

i=1 Wi — Wi = {wi,1, . . . ,wi,t} — and
X = {x1, . . . , xL} are two disjoint sets of passwords, where the parameters are set as
follows q = 1

2c , t = L = log N and r = N−L
t . Our distribution over preference lists is

given by algorithm 9.1.

There are two cases to consider:

Case 1: ∃x ∈W −A then it is easy to see that

p (1,A) ≥
q
t

=
2c
t

=
2c
L
≥ 2c × p (1,X) .

223

Algorithm 9.1 SampleD

Input:
Parameters L, r, q, t
Random Number u ∈ [0, 1].
Random Permutation πi of Wi for each i ∈ {1, ..., r}
Random Permutation piX over X
Random Permutation πP of P
Initialize: `← empty ranking
if u ≤ q then . Select fromD1

for i = 1→ r do
`← 〈`, π10r〉 . Append random permutation of Wi

`← 〈`, πX〉 . Append random permutation of X
else . Select fromD2

`← πP
return `

Case 2: Suppose that ∀x ∈ W we have x < A and consider k = L with the
solution P— don’t ban any passwords. For the solution Pwe have

pi =
q
t

+
1 − q
|X| + |W|

,

for i ≤ t (e.g., for the t the passwords in W1), and

pi =
1 − q
|X| + |W|

,

for i > t.

c × p (k,P) = c
t∑

i=1

(
q
t

+
1 − q
|X| + |W|

)
+ c

k∑
i=t+1

1 − q
|X| + |W|

= c
(
q +

(
1 − q

) L
L + 10r

)
=

1
2

+
(
c −

1
2

) L
L + 10r

< 1 = p (k,A) .

�

224

Chapter 10

Appendix: GOTCHA Password
Hackers

225

10.1 Missing Proofs

Reminder of Claim 6. If (G1,G2) is a
(
α, β, ε, δ, µ

)
-GOTCHA then at least β-fraction of

humans can successfully authenticate using protocol 6.3.2 after creating an account using
protocol 6.3.1.

Proof of Claim 6. A legitimate user H ∈ H will use the same passwords in protocols
6.3.1 and 6.3.2. Hence,

r′1 = Extract
(
pw′, r′

)
= Extract

(
pw, r′

)
= r1 ,

and the final matching challenge ĉπ is the same one that would be generated by
G2

(
1k, r1,H

(
G1

(
1k, r1, r2

)
, σ0

))
. If ĉπ is consistently solvable with accuracy α by H

— by definition 15 this is the case for at least β-fraction of users — then it follows
that

dk (π, π′, σt) ≤ α ,

where H
(
G1

(
1k, r1, r2

))
. For some π0 (namely π0 = π) s.t. dk (π0, π′) ≤ α it must be

the case that

hpw,0 = h
(
u, s, pw′, π0(1), ..., π0(k)

)
= h

(
u, s, pw, π(1), ..., π(k)

)
= hpw ,

and protocol 6.3.2 accepts. �

Reminder of Claim 7. For all permutations π : [k]→ [k] and α ≥ 0

|{π′ dk (π, π′) ≤ α}| ≤ 1 +

α∑
i=2

(
k
i

)
i! .

Proof of Claim 7. It suffices to show that
(k

j

)
j! ≥

∣∣∣{π′ dk (π, π′) = j
}∣∣∣. We first choose

the j unique indices i1, . . . , i j on which π and π′ differ — there are
(k

j

)
ways to

do this. Once we have fixed our indices i1, . . . , i j we define π′ (k) = π (k) for each
k < {i1, . . . , i j}. Now j! upper bounds the number of ways of selecting the remaining
values π′ (ik) s.t. π (ik) , π′ (ik) for all k ≤ j. �

226

10.2 HOSP: Pre-Generated CAPTCHAs

The HOSP construction proposed by [51] was to simply fill several high capacity
hard drives with randomly generated CAPTCHAs — discarding the solutions.
Once we have compiled a database large D of CAPTCHAs we can use algorithm
10.1 as our challenge generator — simply return a random CAPTCHA from D. The
advantage of this approach is that we can make use of already tested CAPTCHA
solutions so there is no need to make hardness assumptions about new AI prob-
lems. The primary disadvantage of this approach is that the size of the database
D will be limited by economic considerations — storage isn’t free. While |D| the
number of CAPTCHAs that could be stored on a hard drive may be large, it is not
exponentially large. An adversary could theoretically pay humans to solve every
puzzle in D at which point the scheme would be completely broken.

Algorithm 10.1 GenerateChallenge

Input: Random bits r ∈ {0, 1}n, Database D = {P1, ...,P2n} of CAPTCHAs
return Pr

Economic Cost Suppose that two 4 TB hard drives are filled will text CAPTCHAS
1. Let S be the space required to store one CAPTCHA, and let CH denote the cost
of paying a human to solve a CAPTCHA. We use the values S = 8 KB 2 and
CH = $0.001 3. In this case |D| = 4 TB

8KB ≈ 109 so we can store a billion unsolved
CAPTCHAs on the hard drives. It would cost the adversary |D|CH = $1, 000, 000
to solve all of the CAPTCHAs — or $500, 000 to solve half of them. The up front
cost of this attack may be large, but once the adversary has solved the CAPTCHAs
he can execute offline dictionary attacks against every user who had an account on
the server. Many server breaches have resulted in the release of password records
for millions of accounts [5, 9, 11, 13]. If each cracked password is worth between
$4 and $30 [79] then it may be easily worth the cost to pay humans to solve every
CAPTCHA in D.

1At the time of submission a 4 TB hard drive can be purchased on Amazon for less than $162.
2The exact value of S may vary slightly depending on the particular method used to generate

the CAPTCHA. When we compressed a text CAPTCHA using popular GIF format the resulting
files were consistently 8 KB.

3Motoyama et al. estimated that spammers paid humans $1 to solve a thousand CAPTCHAs
[110]

227

228

Bibliography

[1] Amazon ec2 pricing. http://aws.amazon.com/ec2/pricing/. Retrieved
10/22/2012. 2.5, 7.5.3

[2] Check your password-is it strong? https://www.microsoft.com/

security/pc-security/password-checker.aspx. Retrieved 9/8/2011. 7.4.1

[3] Cert incident note in-98.03: Password cracking activity. http://www.cert.
org/incident_notes/IN-98.03.html, July 1998. Retrieved 8/16/2011. 1.1,
2.1

[4] Geek to live: Choose (and remember) great passwords. http:

//lifehacker.com/184773/geek-to-live--choose-and-remember-

great-passwords, July 2006. Retrieved 9/27/2012. 1.2, 2.1, 2.3.3, 7.3.1

[5] Rockyou hack: From bad to worse. http://techcrunch.com/2009/

12/14/rockyou-hack-security-myspace-facebook-passwords/, Decem-
ber 2009. Retrieved 9/27/2012. 1.1, 1.6, 1.7.1, 5, 2.1, 2, 6.1, 1, 6.1.1, 7.5.1,
10.2

[6] Oh man, what a day! an update on our security breach.
http://blogs.atlassian.com/news/2010/04/oh_man_what_a_day_an_

update_on_our_security_breach.html, April 2010. Retrieved 8/18/2011.
1.1, 2.1

[7] Sarah palin vs the hacker. http://www.telegraph.co.uk/news/worldnews/
sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html, May 2010. Re-
trieved 9/27/2012. 2.5

[8] Nato site hacked. http://www.theregister.co.uk/2011/06/24/nato_

hack_attack/, June 2011. Retrieved 8/16/2011. 1.1, 2.1

229

http://aws.amazon.com/ec2/pricing/
https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www.microsoft.com/security/pc-security/password-checker.aspx
http://www.cert.org/incident_notes/IN-98.03.html
http://www.cert.org/incident_notes/IN-98.03.html
http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-passwords
http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-passwords
http://lifehacker.com/184773/geek-to-live--choose-and-remember-great-passwords
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://blogs.atlassian.com/news/2010/04/oh_man_what_a_day_an_update_on_our_security_breach.html
http://blogs.atlassian.com/news/2010/04/oh_man_what_a_day_an_update_on_our_security_breach.html
http://www.telegraph.co.uk/news/worldnews/sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html
http://www.telegraph.co.uk/news/worldnews/sarah-palin/7750050/Sarah-Palin-vs-the-hacker.html
http://www.theregister.co.uk/2011/06/24/nato_hack_attack/
http://www.theregister.co.uk/2011/06/24/nato_hack_attack/

[9] Update on playstation network/qriocity services. http://blog.us.

playstation.com/2011/04/22/update-on-playstation-network-

qriocity-services/, April 2011. Retrieved 5/22/2012. 1.1, 1.7.1, 2.1,
6.1, 6.1.1, 7.5.1, 10.2

[10] Data breach at ieee.org: 100k plaintext passwords. http://ieeelog.com/,
September 2012. Retrieved 9/27/2012. 1.1, 1.7.1, 5, 2.1, 6.1, 1, 6.1.1

[11] Zappos customer accounts breached. http://www.usatoday.com/tech/
news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1,
January 2012. Retrieved 5/22/2012. 1.1, 1.7.1, 2.1, 6.1, 6.1.1, 10.2

[12] Apple security blunder exposes lion login passwords in clear
text. http://www.zdnet.com/blog/security/apple-security-blunder-
exposes-lion-login-passwords-in-clear-text/11963, May 2012. Re-
trieved 5/22/2012. 1.1, 2.1

[13] An update on linkedin member passwords compromised. http://blog.
linkedin.com/2012/06/06/linkedin-member-passwords-compromised/,
June 2012. Retrieved 9/27/2012. 1.1, 1.3, 1.7.1, 2.1, 2, 6.1, 6.1.1, 7.5.1, 10.2

[14] Important customer security announcement. http://blogs.

adobe.com/conversations/2013/10/important-customer-security-

announcement.html, October 2013. Retrieved 2/10/2014. 1.1

[15] Alessandro Acquisti and Ralph Gross. Imagined communities: awareness,
information sharing, and privacy on the facebook. In Proceedings of the
6th international conference on Privacy Enhancing Technologies, pages 36–58.
Springer-Verlag, 2006. 2.4.2

[16] S. Alexander. Password protection for modern operating systems. ;login,
June 2004. 1.7.1, 6.1.1, 7.5.1

[17] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for
k-restrictions. ACM Transactions on Algorithms, 2(2):153–177, 2006. 5.4.2

[18] John R Anderson and Lael J Schooler. Reflections of the environment in
memory. Psychological science, 2(6):396–408, 1991. 2.4.1, 7.6.1

[19] J.R. Anderson, M. Matessa, and C. Lebiere. Act-r: A theory of higher level
cognition and its relation to visual attention. Human-Computer Interaction,
12(4):439–462, 1997. 2.1

230

http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://ieeelog.com/
http://www.usatoday.com/tech/news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1
http://www.usatoday.com/tech/news/story/2012-01-16/mark-smith-zappos-breach-tips/52593484/1
http://www.zdnet.com/blog/security/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/11963
http://www.zdnet.com/blog/security/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/11963
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html

[20] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique
games and related problems. In Proc. of FOCS, pages 563–572, 2010. 5.3.4

[21] C. Asmuth and J. Bloom. A modular approach to key safeguarding. Infor-
mation Theory, IEEE Transactions on, 29(2):208–210, 1983. 2.6.1

[22] P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and
independent set in bounded degree graphs. Theory of Computing, 7(1), 2011.
5.3.4, 5.3.4

[23] A.D. Baddeley. Human memory: Theory and practice. Psychology Pr, 1997.
ISBN 0863774318. 2.1, 2.2, 2.4.1, 3.2, 4.2, 6.1.1

[24] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In Advances in Cryptology-CRYPTO 2001, pages 1–18. Springer,
2001. 11

[25] Calvin Beideman and Jeremiah Blocki. Set families with low pairwise inter-
section. CoRR, abs/1404.4622, 2014. (document), 7.7

[26] M. Bellare and P. Rogaway. The exact security of digital signatures-how to
sign with rsa and rabin. In Advances in CryptologyEurocrypt96, pages 399–416.
Springer, 1996. 1.2.2, 2.1, 2.5

[27] R. Biddle, S. Chiasson, and PC Van Oorschot. Graphical passwords: Learn-
ing from the first twelve years. ACM Computing Surveys (CSUR), 44(4):19,
2012. 1.2.1, 2.2, 3.2

[28] Sam. Biddle. Anonymous leaks 90,000 military email accounts in latest
antisec attack. http://gizmodo.com/5820049/anonymous-leaks-90000-
military-email-accounts-in-latest-antisec-attack, July 2011. Re-
trieved 8/16/2011. 1.1, 1.7.1, 2.1, 6.1, 6.1.1

[29] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Human-computable
passwords. ASIACRYPT Rump Session, 2013. URL http://asiacrypt.
2013.rump.cr.yp.to/b0279d7741ad5bab24cf5c55fd292d5c.pdf. 8.1

[30] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Naturally rehearsing
passwords. CoRR, abs/1302.5122, 2013. (document), 6.2.1

231

http://gizmodo.com/5820049/anonymous-leaks-90000-military-email-accounts-in-latest-antisec-attack
http://gizmodo.com/5820049/anonymous-leaks-90000-military-email-accounts-in-latest-antisec-attack
http://asiacrypt.2013.rump.cr.yp.to/b0279d7741ad5bab24cf5c55fd292d5c.pdf
http://asiacrypt.2013.rump.cr.yp.to/b0279d7741ad5bab24cf5c55fd292d5c.pdf

[31] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Gotcha password hack-
ers! In Proceedings of the 2013 ACM workshop on Artificial intelligence and
security, pages 25–34. ACM, 2013. (document), 1.1

[32] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Gotcha password hack-
ers! http://www.cs.cmu.edu/ jblocki/papers/aisec2013-fullversion.pdf, 2013.
(document)

[33] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Naturally rehearsing
passwords. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
- ASIACRYPT 2013, volume 8270 of Lecture Notes in Computer Science, pages
361–380. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-42044-3. doi:
10.1007/978-3-642-42045-0 19. URL http://dx.doi.org/10.1007/978-3-
642-42045-0_19. (document), 1.1, 3.1

[34] Jeremiah Blocki, Saranga Komanduri, Ariel Procaccia, and Or Sheffet. Opti-
mizing password composition policies. In Proceedings of the fourteenth ACM
conference on Electronic commerce, pages 105–122. ACM, 2013. (document),
1.1, 1.2.1, 2.2, 3.2, 6.1.1, 3

[35] Jeremiah Blocki, Saranga Komanduri, Ariel D. Procaccia, and Or Sheffet. Op-
timizing password composition policies. CoRR, abs/1302.5101, 2013. (docu-
ment)

[36] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Human computable
passwords. arXiv preprint arXiv:1404.0024, 2014. (document), 1.1

[37] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practi-
cal privacy: the sulq framework. In Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
128–138. ACM, 2005. 3.1, 3.4.1

[38] Hristo Bojinov, Daniel Sanchez, Paul Reber, Dan Boneh, and Patrick Lin-
coln. Neuroscience meets cryptography: designing crypto primitives secure
against rubber hose attacks. In Proceedings of the 21st USENIX conference on
Security symposium, pages 33–33. USENIX Association, 2012. 1.2.1, 2.2

[39] J. Bonneau. The science of guessing: analyzing an anonymized corpus of
70 million passwords. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 538–552. IEEE, 2012. 1.1, 1.2.2, 1.7.1, 2.1, 2.2, 3.2, 5.1.3, 5.6, 5.7, 6.1, 7.4

232

http://dx.doi.org/10.1007/978-3-642-42045-0_19
http://dx.doi.org/10.1007/978-3-642-42045-0_19

[40] J. Bonneau and R. Xu. Character encoding issues for web passwords. In Web
2.0 Security & Privacy, 2012. 2, 5.1.3

[41] Joseph Bonneau and Sören Preibusch. The password thicket: technical and
market failures in human authentication on the web. In Proc. of WEIS, volume
2010, 2010. 6.1.1

[42] Joseph Bonneau and Stuart Schechter. ”toward reliable storage of 56-bit keys
in human memory”. In Proceedings of the 23rd USENIX Security Symposium,
August 2014. 4.2

[43] Joseph Bonneau, Cormac Herley, Paul C van Oorschot, and Frank Stajano.
The quest to replace passwords: A framework for comparative evaluation
of web authentication schemes. In IEEE Symposium on Security and Privacy,
pages 553–567. IEEE, 2012. 2.2

[44] George EP Box and Norman R Draper. Empirical model-building and response
surfaces. John Wiley & Sons, 1987. 1.2.3

[45] S. Boztas. Entropies, guessing, and cryptography. Department of Mathematics,
Royal Melbourne Institute of Technology, Tech. Rep, 6, 1999. 1.2.2, 2.2, 3.2, 5.1.1,
5.7, 7.4

[46] S. Brand. Department of defense password management guideline. 1985.
1.2, 2.1

[47] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. Hbˆ+ˆ+: a
lightweight authentication protocol secure against some attacks. In Secu-
rity, Privacy and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU
2006. Second International Workshop on, pages 28–33. IEEE, 2006. 3.2

[48] S. Brostoff and M.A. Sasse. Are Passfaces more usable than passwords:
A field trial investigation. In People and Computers XIV-Usability or Else:
Proceedings of HCI, pages 405–424, 2000. 1.2.1, 2.2, 3.2

[49] M. Burnett. Perfect passwords: selection, protection, authentication. Syngress
Publishing, 2005. 1.2, 2.1

[50] W. E. Burr, D. F. Dodson, and W. T. Polk. Electronic authentication guideline.
NIST Special Publication 800-63, 2006. 5.1.3, 5.6.1

233

[51] Ran Canetti, Shai Halevi, and Michael Steiner. Mitigating dictionary attacks
on password-protected local storage. In Advances in Cryptology-CRYPTO
2006, pages 160–179. Springer, 2006. 3.6, 6.1, 6.1.1, 6.2, 6.2, 5, 6.2.1, 6.3.1, 6.5,
10.2

[52] I.A.D. Center. Consumer password worst practices. Imperva (White Paper),
2010. 1.1, 1.2.1, 2.1, 2.1, 2.2, 3.2

[53] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations. The Annals of Mathematical Statistics,
23(4):493–507, 1952. 7.7.3, 31

[54] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. A usability study
and critique of two password managers. In Usenix Security, volume 6, 2006.
2.2

[55] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, An-
drew Y Ng, and Kunle Olukotun. Map-reduce for machine learning on
multicore. Advances in neural information processing systems, 19:281, 2007. 3.1,
3.4.1

[56] L. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P. McDaniel, and
T. Jaeger. Password exhaustion: Predicting the end of password usefulness.
Proc. of ICISS, pages 37–55, 2006. 5.1

[57] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005. 5.1.3

[58] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in
nc0. In Mathematical Foundations of Computer Science 2001, pages 272–284.
Springer, 2001. 3.2

[59] Waseem Daher and Ran Canetti. Posh: A generalized captcha with security
applications. In Proceedings of the 1st ACM workshop on Workshop on AISec,
pages 1–10. ACM, 2008. 6.1, 6.1.1, 6.2

[60] Matthew Dailey and Chanathip Namprempre. A text graphics character
captcha for password authentication. In TENCON 2004. 2004 IEEE Region
10 Conference, pages 45–48. IEEE, 2004. 4, 6.1.1

234

[61] Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon Kleinberg, and Lillian
Lee. You had me at hello: How phrasing affects memorability. In Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1, pages 892–901. Association for Computational Linguistics,
2012. 2.6

[62] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977. 3.1, 3.4.1

[63] Solar Designer. John the Ripper. http://www.openwall.com/john/, 1996-
2010. 1.7.1, 5.6.1, 6.1, 6.2.1, 6.2.1

[64] C. Ding, D. Pei, and A. Salomaa. Chinese remainder theorem. World Scientific,
1996. 2.6.1

[65] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In Advances in cryptology-
Eurocrypt 2004, pages 523–540. Springer, 2004. 2.2, 7.3.3

[66] K. Doel. Scary logins: Worst passwords of 2012 and how to fix them, 2012.
URL http://www.prweb.com/releases/2012/10/prweb10046001.htm. Re-
trieved 1/21/2013. 1.7.1, 5.1, 5.1.3, 6.1

[67] Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul. Asirra: a captcha
that exploits interest-aligned manual image categorization. In Proc. of CCS.
6.1.1

[68] P Erd6s and H Hanani. On a limit theorem in combinatorical analysis. Publ.
Math. Debrecen, 10:10–13, 1963. 2.2

[69] P Erdös and A Renyi. On some combinatorial problems. Publ. Math. Debrecen,
4:398–405, 1956. 2.2

[70] Paul Erdös, Peter Frankl, and Zoltán Füredi. Families of finite sets in which
no set is covered by the union ofr others. Israel Journal of Mathematics, 51
(1-2):79–89, 1985. 2.2

[71] Leonhard Euler. Recherches sur une nouvelle espece de quarres magiques.
Zeeuwsch Genootschao, 1782. 2.2

235

http://www.openwall.com/john/
http://www.prweb.com/releases/2012/10/prweb10046001.htm

[72] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying
Xiao. Statistical algorithms and a lower bound for detecting planted cliques.
In Proceedings of the 45th annual ACM symposium on Symposium on theory of
computing, pages 655–664. ACM, 2013. 3.4.1

[73] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity
of random satisfiability problems with planted solutions. arXiv preprint
arXiv:1311.4821v2, 2013. 1.4.1, 3.1, 3.1, 3.2, 2, 9, 3.4.1, 10, 3.4.1, 5, 3.4.1, 1,
3.4.2, 3.6.4, 3.7.3, 8.2, 28, 8.2, 8.2, 8.2, 6, 8.2, 8.4.1, 8.4.1

[74] M. Figurska, M. Stanczyk, and K. Kulesza. Humans cannot consciously
generate random numbers sequences: Polemic study. Medical hypotheses, 70
(1):182–185, 2008. 3.2, 7.3.3

[75] D. Florencio and C. Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web, pages
657–666. ACM, 2007. 1.1, 1.2.1, 2.1, 2.2, 2.4, 3.2, 6.1.1

[76] D. Florêncio and C. Herley. Where do security policies come from. In Proc.
of SOUPS, page 10, 2010. 5.1.3, 6.1.1, 6.3.2

[77] Dinei Florencio and Cormac Herley. Is everything we know about password-
stealing wrong? IEEE Security and Privacy, 2012. 7.5.4

[78] J. Foer. Moonwalking with Einstein: The Art and Science of Remembering Every-
thing. Penguin Press, 2011. 2.1, 2.3.1, 2.6

[79] M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKin-
ney, M. K. Low, T. Adams, M. P. Laucht, and J. Gough. Syman-
tec report on the undergorund economy, November 2008. URL
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-

whitepaper_underground_economy_report_11-2008-14525717.en-

us.pdf. Retrieved 1/8/2013. 1.7.1, 5.1, 6.1, 7.5.4, 10.2

[80] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 40–49. IEEE, 2013. 6.5, 11

[81] Paolo Gasti and KasperB. Rasmussen. On the security of password manager
database formats. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,

236

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf

Computer Security ESORICS 2012, volume 7459 of Lecture Notes in Computer
Science, pages 770–787. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
33166-4. doi: 10.1007/978-3-642-33167-1 44. URL http://dx.doi.org/10.
1007/978-3-642-33167-1_44. 1

[82] Shirley Gaw and Edward W. Felten. Password management strategies for
online accounts. In Proceedings of the second symposium on Usable privacy
and security, SOUPS ’06, pages 44–55, New York, NY, USA, 2006. ACM.
ISBN 1-59593-448-0. doi: http://doi.acm.org/10.1145/1143120.1143127. URL
http://doi.acm.org/10.1145/1143120.1143127. 1.2, 2.1

[83] Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to cal-
culating marginal densities. Journal of the American statistical association, 85
(410):398–409, 1990. 3.1, 3.4.1

[84] Henri Gilbert, Matthew Robshaw, and Herve Sibert. Active attack against
hb+: a provably secure lightweight authentication protocol. Electronics Let-
ters, 41(21):1169–1170, 2005. 3.2

[85] O. Goldreich, A. Sahai, and S. Vadhan. Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. In Proc. of
CRYPTO, pages 467–484, 1999. 6.5

[86] Oded Goldreich. Candidate one-way functions based on expander graphs.
2000. 3.2

[87] Dan Goodin. Why passwords have never been weaker-and crackers
have never been stronger. http://arstechnica.com/security/2012/08/
passwords-under-assault/, August 2012. 1.7.1, 6.1

[88] R. Halprin and M. Naor. Games for extracting randomness. XRDS: Cross-
roads, The ACM Magazine for Students, 17(2):44–48, 2010. 7.3.3

[89] Tzvika Hartman and Ran Raz. On the distribution of the number of roots of
polynomials and explicit weak designs. Random Structures & Algorithms, 23
(3):235–263, 2003. 7.7.2, 7.7.2, 7.7.2, 7.7.4

[90] Johan Håstad. Clique is hard to approximate within n1-epsilon. In Proc. of
FOCS, 1996. 5.3.5

[91] N. Hopper and M. Blum. Secure human identification protocols. Advances
in cryptologyASIACRYPT 2001, pages 52–66, 2001. 3.2, 6.5

237

http://dx.doi.org/10.1007/978-3-642-33167-1_44
http://dx.doi.org/10.1007/978-3-642-33167-1_44
http://doi.acm.org/10.1145/1143120.1143127
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2012/08/passwords-under-assault/

[92] Imperva. Consumer password worst practices. 2010. URL http://www.
imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf. Re-
trived 1/22/2013. 1.7.1, 5.1.1, 5.1.3, 5.6, 6.1

[93] Ari Juels and Stephen A Weis. Authenticating pervasive devices with human
protocols. In Advances in Cryptology–CRYPTO 2005, pages 293–308. Springer,
2005. 3.2

[94] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum, 1972. 5.4.2

[95] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the hb and
hb+ protocols. In Advances in Cryptology-EUROCRYPT 2006, pages 73–87.
Springer, 2006. 3.2

[96] Michael Kearns and Umesh Virkumar Vazirani. An introduction to computa-
tional learning theory. The MIT Press, 1994. 3.5.1

[97] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez. Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms.
In Proc. of Oakland, pages 523–537, 2012. 5.1, 5.1.3

[98] S. Khot. On the power of unique 2-prover 1-round games. In Proc. of STOC,
pages 767–775, 2002. 5.3, 5.3.4

[99] S. Khot and O. Regev. Vertex cover might be hard to approximate to within
2- ε. Journal of Computer and System Sciences, 74(3):335–349, 2008. 5.3.4

[100] T. Kohonen. Associative memory: A system-theoretical approach. Springer-
Verlag Berlin; FRG, 1977. 2.1

[101] S. Komanduri, R. Shay, P.G. Kelley, M.L. Mazurek, L. Bauer, N. Christin, L.F.
Cranor, and S. Egelman. Of passwords and people: measuring the effect of
password-composition policies. In Proceedings of the 2011 annual conference
on Human factors in computing systems, pages 2595–2604. ACM, 2011. 1.2.1,
2.2, 3.2, 7.3, 7.4.2

[102] H. Kruger, T. Steyn, B. Medlin, and L. Drevin. An empirical assessment
of factors impeding effective password management. Journal of Information
Privacy and Security, 4(4):45–59, 2008. 1.1, 1.2.1, 2.1, 2.2, 3.2, 5.1, 6.1.1, 3, 7.3.3

238

http://www.imperva.com/docs/WP_Consumer_Password_ Worst_Practices.pdf
http://www.imperva.com/docs/WP_Consumer_Password_ Worst_Practices.pdf

[103] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier
spectrum. SIAM J. Comput., 22(6):1331–1348, 1993. ISSN 0097-5397. 6.5

[104] Qiming Li, Yagiz Sutcu, and Nasir Memon. Secure sketch for biometric tem-
plates. In Advances in Cryptology–ASIACRYPT 2006, pages 99–113. Springer,
2006. 2.2

[105] D. Malone and K. Maher. Investigating the distribution of password choices.
In Proc. of WWW, pages 301–310, 2012. 5.1.3

[106] D. Marr. Simple memory: a theory for archicortex. Philosophical Transactions
of the Royal Society of London. Series B, Biological Sciences, pages 23–81, 1971.
2.1, 2.3.1

[107] J.L. Massey. Guessing and entropy. In Information Theory, 1994. Proceedings.,
1994 IEEE International Symposium on, page 204. IEEE, 1994. 1.2.2, 2.2, 3.2,
7.4, 7.4.2

[108] G.A. Miller. The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychological review, 63(2):81, 1956.
3.3.2, 3.6.3, 7.3

[109] Randall. Monroe. Xkcd: Password strength. http://www.xkcd.com/936/.
Retrieved 8/16/2011. 1.2, 2.1, 7.4.2

[110] Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geof-
frey M Voelker, and Stefan Savage. Re: Captchas–understanding captcha-
solving services in an economic context. In USENIX Security Symposium,
volume 10, 2010. 6.2.1, 3

[111] Dave. Munger. Is 17 the ”most random” number? http://scienceblogs.
com/cognitivedaily/2007/02/is_17_the_most_random_number.php,
2007. Retrieved 8/16/2011. 3.2, 7.3.3

[112] Moni Naor and Benny Pinkas. Visual authentication and identification. In
Advances in CryptologyCRYPTO’97, pages 322–336. Springer, 1997. 3.2

[113] Moni Naor and Adi Shamir. Visual cryptography. In Advances in Cryptolo-
gyEUROCRYPT’94, pages 1–12. Springer, 1995. 3.2

[114] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In Proc. of the 2008 IEEE Symposium on Security and Privacy,
pages 111–125. IEEE, 2008. 6.5

239

http://www.xkcd.com/936/
http://scienceblogs.com/cognitivedaily/2007/02/is_17_the_most_random_number.php
http://scienceblogs.com/cognitivedaily/2007/02/is_17_the_most_random_number.php

[115] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal
of Computer and System Sciences, 49(2):149 – 167, 1994. ISSN 0022-0000.
doi: http://dx.doi.org/10.1016/S0022-0000(05)80043-1. URL http://www.
sciencedirect.com/science/article/pii/S0022000005800431. 2.2, 7.7,
7.7.2, 4, 7.7.2, 7.7.2, 7.7.2, 27

[116] Ryan ODonnell. Analysis of boolean functions. Textbook in Progress. Available
online at http://analysisofbooleanfunctions.org/ , 2014. 3.1, 3.1, 3.4.2,
8.2, 6

[117] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. Advances
in Cryptology-CRYPTO 2003, pages 617–630, 2003. 6, 6.1.1, 7.5.1

[118] Lawrence O’Gorman. Comparing passwords, tokens, and biometrics for
user authentication. Proceedings of the IEEE, 91(12):2021–2040, 2003. 2.2

[119] Ken Perlin. Implementing improved perlin noise. GPU Gems, pages 73–85,
2004. 6.3.2

[120] Paul Pimsleur. A memory schedule. The Modern Language Journal, 51(2):pp.
73–75, 1967. ISSN 00267902. URL http://www.jstor.org/stable/321812.
4.2

[121] J. Pliam. On the incomparability of entropy and marginal guesswork in
brute-force attacks. Progress in CryptologyINDOCRYPT 2000, pages 113–123,
2000. 1.2.2, 2.2, 3.2, 5.7, 7.4

[122] N. Provos and D. Mazieres. Bcrypt algorithm. 1.7.1, 2.5, 3.6, 6.1.1, 6, 6.3.1,
7.5.1

[123] Kenneth Radke, Colin Boyd, Juan Gonzalez Nieto, and Margot Brereton.
Towards a secure human-and-computer mutual authentication protocol. In
Proceedings of the Tenth Australasian Information Security Conference (AISC
2012), volume 125, pages 39–46. Australian Computer Society Inc, 2012.
2.3.3

[124] Srinivasa Ramanujan. A proof of bertrand’s postulate. Journal of the Indian
Mathematical Society, 11:181–182, 1919. 27

[125] G. Rasch. The poisson process as a model for a diversity of behavioral
phenomena. In International Congress of Psychology, 1963. 2.4.2

240

http://www.sciencedirect.com/science/article/pii/S0022000005800431
http://www.sciencedirect.com/science/article/pii/S0022000005800431
http://analysisofbooleanfunctions.org/
http://www.jstor.org/stable/321812

[126] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness
and reducing the error in trevisan’s extractors. In Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing, STOC ’99, pages 149–158,
New York, NY, USA, 1999. ACM. ISBN 1-58113-067-8. doi: 10.1145/301250.
301292. URL http://doi.acm.org/10.1145/301250.301292. 7.7.2, 7.7.2,
7.7.2, 7.7.2, 27, 7.7.4

[127] Vojtěch Rödl. On a packing and covering problem. European Journal of
Combinatorics, 6(1):69–78, 1985. 2.2

[128] Phillip Rogaway. Nonce-based symmetric encryption. In Fast Software En-
cryption, pages 348–358. Springer, 2004. 6.5

[129] Andy Ross. Random ink blot. http://demonstrations.wolfram.com/
RandomInkBlot/. 6.5

[130] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell.
Stronger password authentication using browser extensions. In Usenix secu-
rity, pages 17–32. Baltimore, MD, USA, 2005. 2.2

[131] Graig Sauer, Harry Hochheiser, Jinjuan Feng, and Jonathan Lazar. Towards
a universally usable captcha. In Proceedings of the 4th Symposium on Usable
Privacy and Security, 2008. 6.1.1

[132] K. Scarfone and M. Souppaya. Guide to enterprise password management
(draft). National Institute of Standards and Technology, 800-188(6):38, 2009. 1.1,
1.2, 2.1, 2.1

[133] Karen Scarfone and Murugiah. Souppaya. Nist special publication 800-118:
Guide to enterprise password management (draft), April 2009. 5.1.3, 6.1.1,
6.2.1

[134] S. Schechter, A.J.B. Brush, and S. Egelman. It’s no secret. measuring the
security and reliability of authentication via ‘secret’ questions. In 2009 30th
IEEE Symposium on Security and Privacy, pages 375–390. IEEE, 2009. 2.5

[135] S. Schechter, C. Herley, and M. Mitzenmacher. Popularity is everything: A
new approach to protecting passwords from statistical-guessing attacks. In
Proceedings of the 5th USENIX conference on Hot topics in security, pages 1–8.
USENIX Association, 2010. 5.1.3

241

http://doi.acm.org/10.1145/301250.301292
http://demonstrations.wolfram.com/RandomInkBlot/
http://demonstrations.wolfram.com/RandomInkBlot/

[136] D. Seeley. Password cracking: A game of wits. Communications of the ACM,
32(6):700–703, 1989. 1.7.1, 5.7, 6.1, 9.2

[137] R. Shaltiel. Recent developments in explicit constructions of extractors. Cur-
rent Trends in Theoretical Computer Science: The Challenge of the New Century,
2004. 7.3.3

[138] Adi Shamir. Ip= pspace. Journal of the ACM (JACM), 39(4):869–877, 1992. 12

[139] C.E. Shannon and W. Weaver. The mathematical theory of communication.
Citeseer, 1959. 7.4.2

[140] R. Shay, P.G. Kelley, S. Komanduri, M.L. Mazurek, B. Ur, T. Vidas, L. Bauer,
N. Christin, and L.F. Cranor. Correct horse battery staple: Exploring the
usability of system-assigned passphrases. In Proceedings of the Eighth Sym-
posium on Usable Privacy and Security, page 7. ACM, 2012. 1.2.1, 1.2.1, 2.2,
3.2

[141] Abe. Singer. No plaintext passwords. ;login: THE MAGAZINE OF USENIX
& SAGE, 26(7), November 2001. Retrieved 8/16/2011. 1.1, 2.1, 6.1.1

[142] Jonathan Sondow. Ramanujan primes and bertrand’s postulate. American
Mathematical Monthly, 116(7):630–635, 2009. 7.7.2, 23, 7.7.2

[143] J.D. Spence. The memory palace of Matteo Ricci. Penguin Books, 1985. 2.1,
2.3.1, 2.6

[144] L.R. Squire. On the course of forgetting in very long-term memory. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 15(2):241, 1989.
2.1, 2.4.1, 7.6

[145] L. STANDINGT. Learning 10,000 pictures. Quarterly Journal of Experimental
Psychology, 5(20):7–22, 1973. 2.1, 2.2, 2.4.1, 3.2, 4.2

[146] Joel. Stein. Pimp my password. Time, page 62, August 29 2011. 1.2, 2.1

[147] A. Stubblefield and D. Simon. Inkblot authentication. Technical report,
Technical Report MSR-TR-2004-85, 2004. 1.7.2

[148] Adam Stubblefield and Dan Simon. Inkblot authentication. Technical report,
2004. 6.1.1

242

[149] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001. 2.2, 7.7.2

[150] L.G. Valiant. Memorization and association on a realistic neural model.
Neural computation, 17(3):527–555, 2005. 2.1

[151] Hedderik van Rijn, Leendert van Maanen, and Marnix van Woudenberg.
Passing the test: Improving learning gains by balancing spacing and testing
effects. In Proceedings of the 9th International Conference of Cognitive Modeling,
2009. 2.4.1, 7.6.1

[152] L. Von Ahn, M. Blum, N. Hopper, and J. Langford. Captcha: Using hard
ai problems for security. Advances in CryptologyEUROCRYPT 2003, pages
646–646, 2003. 4, 1.7.2, 2.4.1, 6.1.1, 6.2

[153] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. recaptcha: Human-based character recognition via web se-
curity measures. Science, 321(5895):1465–1468, 2008. 6.1.1

[154] W.A. Wagenaar. Generation of random sequences by human subjects: A
critical survey of literature. Psychological Bulletin, 77(1):65, 1972. 3.2, 7.3.3

[155] Michael J Watkins and John M Gardiner. An appreciation of generate-
recognize theory of recall. Journal of Verbal Learning and Verbal Behavior,
18(6):687–704, 1979. 6.1.1

[156] M. Weir, S. Aggarwal, M. Collins, and H. Stern. Testing metrics for password
creation policies by attacking large sets of revealed passwords. In Proc. of
CCS, pages 162–175, 2010. 5.1.3

[157] DJ Willshaw and JT Buckingham. An assessment of marr’s theory of the
hippocampus as a temporary memory store. Philosophical Transactions of the
Royal Society of London. Series B: Biological Sciences, 329(1253):205, 1990. 2.1

[158] R.J. Witty, K. Brittain, and A. Allen. Justify identity management investment
with metrics. Gartner Group report, 2004. 1.3, 5.1, 6.1.1

[159] Robert Sessions Woodworth and Harold Schlosberg. Experimental psychology.
Oxford and IBH Publishing, 1954. 4.2

[160] PA Wozniak and Edward J Gorzelanczyk. Optimization of repetition spacing
in the practice of learning. Acta neurobiologiae experimentalis, 54:59–59, 1994.
1.2.1, 2.1, 2.4.1, 2.7, 4.1, 4.2, 7.6

243

[161] Piotr Wozniak. Supermemo 2004. TESL EJ, 10(4), 2007. 4.2

[162] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability
and security: Empirical results. Security & Privacy, IEEE, 2(5):25–31, 2004.
ISSN 1540-7993. 1.2, 2.1

[163] Andrew C Yao. Protocols for secure computations. In Proc. of FOCS, pages
160–164, 1982. 6.5

[164] Shikun Zhang. Bill gates kissing an igloo – a password management ap-
plication with provable security and minimal user effort. Carnegie Mellon
University: Senior Research Thesis, May 2014. Advised by Jeremiah Blocki,
Manuel Blum and Anupam Datta. 2.7

[165] Andrew Zonenberg. Distributed hash cracker: A cross-platform gpu-
accelerated password recovery system. Rensselaer Polytechnic Institute,
page 27, 2009. 1.7.1, 6.1, 6.1.1

244

	1 Overview
	1.1 Introduction
	1.2 Statement of Thesis
	1.2.1 User Models
	1.2.2 Quantitative Security Model
	1.2.3 Developing Human Authentication Schemes with Analyzable Security and Usability Properties

	1.3 Usable and Secure Password Management
	1.3.1 Overview

	1.4 Human Computable Passwords
	1.4.1 Overview

	1.5 Empirical Validation of User Model
	1.6 A Defense against Online Attacks
	1.6.1 Overview

	1.7 A Defense Against Offline Attacks
	1.7.1 Background
	1.7.2 GOTCHAs
	1.7.3 Overview

	2 Naturally Rehearsing Passwords
	2.1 Introduction
	2.2 Related Work.
	2.3 Definitions
	2.3.1 Associative Memory and Cue-Association Pairs
	2.3.2 Visitation Schedules and Rehearsal Requirements
	2.3.3 Password Management Scheme

	2.4 Usability Model
	2.4.1 Rehearsal Requirements
	2.4.2 Visitation Schedules.

	2.5 Security Model
	2.6 Our Construction
	2.6.1 Constructing (n,,)-sharing set families
	2.6.2 Shared Cues
	2.6.3 Usability and Security Analysis

	2.7 Discussion and Future Work

	3 Human Computable Passwords
	3.1 Introduction
	3.2 Related Work
	3.3 Definitions
	3.3.1 Notation
	3.3.2 Requirements for a Human Computable Function
	3.3.3 Password Unforgeability
	3.3.4 Security Parameters of f

	3.4 Statistical Adversaries and Lower Bounds
	3.4.1 Statistical Algorithms
	3.4.2 Statistical Dimension Lower Bounds

	3.5 Security Analysis
	3.5.1 Breaking UF-RCA is Equivalent to Secret Recovery
	3.5.2 Gaussian Elimination

	3.6 Candidate Secure Human Computable Functions
	3.6.1 Candidate Scheme 1
	3.6.2 Candidate Scheme 2
	3.6.3 Usability:
	3.6.4 Statistical Algorithms: Security Upper Bound

	3.7 Discussion
	3.7.1 Human Computable Passwords Challenge
	3.7.2 Security Under Continuous Leakage
	3.7.3 Open Questions

	4 Empirical Validation of User Model
	4.1 Introduction
	4.2 Related Work
	4.3 Study Design
	4.3.1 Recruitment Text
	4.3.2 Memorization Phase
	4.3.3 Rehearsal Phase
	4.3.4 Follow Up Survey
	4.3.5 Rehearsal Schedules
	4.3.6 List of People, Actions and Objects from the User Study

	4.4 Preliminary Results
	4.4.1 Discussion

	5 Password Composition Policies: A Defense Against Online Attacks
	5.1 Introduction
	5.1.1 Our Model
	5.1.2 Our Results
	5.1.3 Related Work

	5.2 A Model of Password Composition Policies
	5.3 Ranking Model: Complexity Results
	5.3.1 Positive Rules: Efficient Algorithm for Constant k
	5.3.2 Special Case k=1
	5.3.3 The General Case
	5.3.4 Singleton Rules: Hardness for Large k
	5.3.5 Negative Rules: Hardness of Approximation for k=1

	5.4 Normalization Model: Complexity Results
	5.4.1 Singleton Rules: Efficient Algorithm for large k
	5.4.2 Negative Rules: Hardness for k=1
	5.4.3 Positive Rules: Hardness of Approximation for Large k

	5.5 Efficient Sampling Algorithms
	5.6 Experiments
	5.6.1 Experiment Rules
	5.6.2 Baselines
	5.6.3 Performance

	5.7 Discussion

	6 GOTCHAs: A Defense Against Offline Attacks
	6.1 Introduction
	6.1.1 Related Work

	6.2 Definitions
	6.2.1 Password Storage and Offline Attacks

	6.3 Inkblot Construction
	6.3.1 GOTCHA Authentication
	6.3.2 User Study
	6.3.3 An Open Challenge to the AI Community

	6.4 Analysis: Cost of Offline Attacks
	6.5 Discussion

	7 Appendix: Naturally Rehearsing Passwords
	7.1 Missing Proofs
	7.2 Varying the Association Strength Constant
	7.3 Baseline Password Management Schemes
	7.3.1 Security Of Baseline Password Management Schemes
	7.3.2 Usability of Baseline Schemes
	7.3.3 Sources of Randomness

	7.4 Other Measures of Password Strength
	7.4.1 Password Strength Meters
	7.4.2 Entropy
	7.4.3 Minimum Entropy

	7.5 Economics
	7.5.1 Password Storage
	7.5.2 Attack Cost and Benefit
	7.5.3 Cost of Guessing
	7.5.4 Benefit

	7.6 Associative Memory and Sufficient Rehearsal Assumptions
	7.6.1 Squared Rehearsal Assumption

	7.7 (n,,)-sharing Set Families
	7.7.1 Improved Constructions
	7.7.2 Applications to Pseudorandom Number Generators
	7.7.3 Upper Bounds
	7.7.4 Open Questions

	8 Appendix: Human Computable Passwords
	8.1 Human Computable Passwords Challenge
	8.2 Statistical Dimension
	8.3 Security Proofs
	8.4 Proofs of Claims and Facts
	8.4.1 Security Upper Bounds

	9 Appendix: Password Composition Policies
	9.1 Optimizing Password Composition Policies: Missing Proofs
	9.2 Impossibility of constant-factor universal approximation

	10 Appendix: GOTCHA Password Hackers
	10.1 Missing Proofs
	10.2 HOSP: Pre-Generated CAPTCHAs

	Bibliography

