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Abstract

We present Coordinated Sampling, a new technique for improved flow-level monitoring. Our ap-

proach derives from three key design decisions: flow sampling instead of uniform packet sampling;

hash-based flow selection to achieve coordination between routers without needing explicit com-

munication channels; and an approach for distributing responsibilities across routers to achieve

network-wide monitoring objectives while taking into account resource constraints on each router.

We demonstrate that Coordinated Sampling presents an attractive solution for ISPs. First, it more

than doubles flow coverage to support security applications and does so without compromising the

accuracy of traditional traffic engineering applications. Second, it enables network operators to

directly specify and achieve fine-grained network-wide monitoring objectives. Third, it naturally

load balances monitoring responsibilities across routers and at the same time efficiently leverages

the available capacity on each router.





1 Introduction

Many network management and traffic engineering applications depend on flow-level [2] data col-

lected by routers. While prior work has demonstrated the benefits of using such measurements for

traffic engineering and customer accounting applications (e.g., [15, 14, 10]), there is still a fun-

damental disconnect between the goals of network management applications and the monitoring

primitives implemented in routers.

• First, network operators would like to specify and achieve network-wide monitoring objectives.

However, existing solutions, including recent work on data streaming algorithms (e.g., [23, 26]),

are designed as single router solutions. Since these solutions operate from the perspective of a

single vantage point, they do not provide a way for network operators to directly specify and

achieve network-wide measurement goals.

• Second, flow-level measurements are being increasingly used in many security applications

including network anomaly detection (e.g., [24]), identification of unwanted application traffic

(e.g., [8]), and the detection and forensic analysis of worm and DDoS attacks (e.g., [43, 38]). This

changing scope of the applications that use flow data has given rise to concerns (e.g., [32, 5]) re-

garding the fidelity of traditional packet sampling based techniques. Specifically, these applications

benefit from greater flow coverage. In contrast to traditional traffic engineering and accounting ap-

plications, which only need an aggregate traffic volume estimate, in these new applications it is

necessary to identify and analyze as many distinct flows that make up the total traffic as possible.

Current sampling techniques lack this ability.

• Third, the available monitoring capacity on each router is bound by technological resource con-

straints. Network operators would like to optimally leverage as much of the available monitoring

capacity on routers as possible. However, in existing solutions routers operate in isolation, with

each device independently recording a subset of the traffic it observes. Such an approach is not only

inefficient in terms of utilizing the router resources, but also raises concerns for network operators

in having to deal with redundant and possibly ambiguous measurements from multiple routers1.

We present Coordinated Sampling: a technique for efficient, network-wide flow-level moni-

toring. Coordinated Sampling allows operators to specify and achieve network-wide monitoring

goals while optimally leveraging the measurement capabilities of each router. Our approach de-

rives from the following design primitives: flow sampling [20], hash-based selection [47], and

network-wide optimization [7].

• By using flow sampling [20] instead of packet sampling, Coordinated Sampling provides better

flow coverage by avoiding the bias of packet sampling against small flows. At the same time,

using flow sampling does not affect the fidelity of traffic volume estimation, and thus does not

compromise the accuracy of traditional traffic engineering applications.

• Since both router memory and reporting bandwidth are scarce resources, coordinating mea-

surements along a single routing path can better utilize the available monitoring capacity in the

network by eliminating duplicated measurement effort. Coordinated Sampling uses hash-based

selection to coordinate measurements across routers without requiring explicit communication be-

tween routers.

1Some ISPs prefer to have Netflow-like capabilities enabled only in a small subset of routers for this reason [15].
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• Coordinated Sampling provides an optimization framework to specify and achieve network-wide

monitoring objectives under real-world resource constraints on routers. An optimal solution can

be directly translated into a sampling manifest for individual routers in the network. The sampling

manifest specifies the set of traffic flows that a router is required to record and report.

We evaluate the benefits of Coordinated Sampling over a wide range of network topologies.

We get a two-fold increase in flow coverage compared with uniform packet sampling. On a more

fine-grained flow coverage metric, the minimum fractional coverage per OD-flow (Section 3.3.1),

Coordinated Sampling provides an order of magnitude improvement over other sampling alter-

natives. We explore the robustness aspects of Coordinated Sampling and show that our scheme is

robust with respect to errors in input data and realistic changes and uncertainties in traffic demands.

ISPs can derive several additional operational benefits from Coordinated Sampling. Coor-

dinated Sampling naturally load balances monitoring functionality across the network, thereby

avoiding the occurrence of reporting hotspots. By minimizing duplicated measurements, Coordi-

nated Sampling reduces the management overhead of merging data collected from multiple mon-

itors [12]. We also show that our approach is general and flexible enough to facilitate a wide

variety of network management applications. The combination of design principles underlying

Coordinated Sampling has far-reaching implications for enabling more centralized management

and operations of ISPs [3, 6, 19].

The rest of the paper is organized as follows. We review related work in the next section.

In Sections 3 and 4 we present a detailed description of our approach (including the formulation

of the network-wide monitoring optimization problem and the implementation of such a coordi-

nated monitoring approach), and discuss some of the practical issues associated with deploying

our scheme. In Section 5 we demonstrate the benefits of Coordinated Sampling over currently

used sampling techniques and also show that our scheme is robust under real-world networking

conditions. We summarize our main results and discuss interesting avenues of future work in

Section 6.

2 Related Work

Prior work has stressed the need for taking a more network-wide approach for traffic engineer-

ing [15, 45] and network diagnosis [24, 25, 30].

Cantieni et al. [7] consider the problem of optimally configuring uniform packet sampling rates

in a network. The constrained optimization formulation in their work shares some structural simi-

larity to our approach in Section 3.3.1. However, there are two key differences in our approaches.

First, our focus on flow coverage is motivated by the security applications we envision, but does

not compromise or impair the accuracy of the resulting data for the more traditional traffic engi-

neering applications they consider. Second, while it is reasonable to assume that the probability

of a single packet being sampled multiple times across routers is negligible, the assumption is not

valid for flow-level monitoring. We rely on coordination as a design primitive to avoid duplicate

flow reporting to maximize flow coverage and to specify more fine-grained coverage objectives.

While coordination to minimize redundancy is a common high-level theme between Coordi-

nated Sampling and the approach of Sharma and Byers [39], our work differs in a number of
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significant ways. First, our network-wide approach is more general than the specific goal of mini-

mizing redundant monitoring. Second, by relying on hash-based sampling we achieve coordination

without explicit communication, while their approach potentially requires every pair of routers in

the network to periodically exchange snapshots of the set of flows they are currently monitoring.

Third, our formulation for obtaining the optimal sampling strategy takes into account resource

constraints on routers and can be generalized to handle heterogeneity across routers.

A well-known application of hash-based packet selection [47] is trajectory sampling [9, 27].

In the case of trajectory sampling, the measurement objective is to ensure that all routers observe

a specific subset of packets. Thus, all routers are assigned the same hash range to reveal packet

trajectories through the network. In contrast, Coordinated Sampling uses hash-based sampling for

exactly the opposite functionality: to ensure that different routers monitor different flows.

Other related efforts in this problem space concern improvements or redesigns of single-router

sampling algorithms: adapting the packet sampling rate to changing traffic conditions for tuning

the processing, memory, and reporting bandwidth overheads (e.g., [13, 22]); tracking flows with

high traffic counts (elephant flows) with high accuracy [14]; obtaining better traffic estimates from

sampled measurements [20, 10]; reducing the overall amount of measurement traffic [11]; and

data streaming algorithms for specific applications (e.g., [23, 26]). These approaches focus on

single-router solutions and lack the network-wide view that Coordinated Sampling provides. Ad-

ditionally, these solutions either lack generality across applications (e.g., different traffic metrics

require specialized streaming algorithms) or may in fact be counter-productive in the context of

flow coverage. For example, techniques for tracking flows with high traffic counts [14, 11] are at-

tractive single-router solutions for traffic engineering and customer accounting. However, keeping

track of elephant flows will increase redundant monitoring across routers (every router tracks the

same set of elephant flows), without increasing flow coverage.

3 Coordinated Sampling: Design

In this section, we present the three design primitives underlying Coordinated Sampling. Our

discussion assumes the common 5-tuple (srcIP, dstIP, srcport, dstport, protocol) notion of a IP

flow.

3.1 Flow sampling

Due to heavy-tailed flow-size distributions [23] observed in real traffic, the flow coverage provided

by uniform packet sampling is poor. Selecting random flows, rather than packets, can improve

flow coverage by avoiding sampling biases due to heavy-tailed distributions. For completeness,

we briefly describe the conceptual implementation of flow sampling [20]. As each packet arrives,

the router computes a flow label on the packet header. This flow label can be a hash function

computed on the 5-tuple used for identifying the flow. Each router maintains a table of the flows it

is currently monitoring in its Flowtable. If the flow already exists in the table, the router updates the

byte and packet counters corresponding to the entry. Otherwise, it is a previously unrecorded flow,

and the router selects it with sampling probability s (e.g., if the computed hash value falls within
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a range of size s). The implementation of flow sampling requires the same packet processing and

table lookup capabilities as Sample and Hold [14]. However, there is one key difference between

the two techniques. Since the focus of Sample and Hold is to identify and maintain near-exact

counts of elephant flows, the algorithm picks random packets from the packet stream to create a

new entry in the Flowtable. To obtain better flow coverage, flow sampling selects flows at random

with probability s.

3.2 Hash-based coordination

If each router operates in isolation, i.e., independently recording a subset of flows it observes, the

resulting measurements are likely to contain duplicates. This implies a potentially significant waste

of reporting bandwidth and the memory resources on routers2 and puts more stress on these already

constrained resources. Further, the resulting multiplicity can cause additional data management

overhead when merging or analyzing the information collected from multiple monitoring points.

By adopting coordination as a design primitive, we can largely eliminate these disadvantages. One

approach for coordination would be to enable explicit communication among the routers on the

same router-level path, either in the form of specialized inter-router message exchanges (e.g., [4,

33, 39]), or through packet marking schemes (e.g., [37, 28]).

We propose an alternative approach that relies on hash-based selection for implementing coor-

dination among routers without requiring explicit communication. Specifically, we use hash-based

selection so that different routers on the same router-level path (between a network ingress and

egress) select distinct flows. Typically, the hash function is computed on the invariant fields in

packet headers [9, 41]3. The key is to assign non-overlapping ranges of the hash-space to the dif-

ferent routers on the path. Each router computes the hash of the IP 5-tuple of the packet. The

router only selects and records flows that belong to its assigned hash-range. Since the hash-ranges

do not overlap, the sets of flows recorded across routers are mutually non-overlapping.

3.3 Network-wide optimization

The goal of a network monitoring system can be typically expressed as a network-wide objective;

for example, maximizing the total flow coverage or providing guarantees on flow coverage for spe-

cific subsets of the total traffic. By taking a network-wide approach, we can optimally satisfy an

ISP’s monitoring objective, while operating within the resource constraints of individual routers,

and taking into account possible heterogeneities in router capacities. We present an optimization

framework that allows network operators to directly translate their network-wide monitoring ob-

jectives into per-router configurations.

2As observed by Estan and Varghese [14] using flow-level sampling requires access to fast SRAM, as opposed to

uniform packet sampling which can work with slow DRAM.
3Invariant fields are those that do not change along a router-level path, e.g., the IP 5-tuple representing the flow

record; in contrast, fields such as the TTL and the checksum are not invariant.
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3.3.1 Assumptions and notation

Staying within the confines of an ISP, our proposed model of Coordinated Sampling assumes that

a centralized network operations center (NOC) has access to the ISP’s routing and traffic matrices.

Based on this information, the NOC computes the optimal sampling strategy and distributes sam-

pling manifests to individual routers. The sampling manifest is a configuration file that specifies

the subset of traffic flows (in terms of a hash output range) that the router is supposed to record and

report to the NOC. Note that such a centralized approach is consistent with the operating model of

modern ISPs, where operators push out router configuration files (e.g., routing tables, ACLs) and

collect information from the routers.

A natural formulation for such network management problems is in terms of Origin-Destination

(OD) flows. Each OD-flow is characterized by a network ingress point, a network egress point, the

total traffic (e.g., number of bytes, packets, or IP-level flows), and the router-level path(s) that the

OD-flow takes. We make two simplifying assumptions in our formulation. First, we assume that

the traffic matrix (number of IP flows per OD-flow) and routing information for the network are

given and that these change infrequently. Second, we assume that each OD-flow is characterized

by a single router-level path.

Let i = 1, . . . ,M denote the set of OD-flows in the network. Each OD-flow i is characterized

by its router-level path. The traffic on OD-flow i is given in terms of the number Pi of distinct

IP-level flows (e.g., per five minute interval) that make up the OD-flow. Let j = 1, . . . , N denote

the set of routers in the network. We introduce variables dij to denote the fraction of traffic (in

terms of IP-level flows) of OD-flow i that is monitored by router j. Note that if router j does not

lie on the path of OD-flow i, then the variable dij will not appear in the formulation.

3.3.2 Constrained optimization

The high-level goal of this optimization framework is to maximize the network-wide monitoring

objective (e.g., total flow coverage), subject to the per-router resource constraints.

As in Sample and Hold [14] and other approaches that are similar to flow sampling (e.g., [23]),

we do not model the packet processing constraints of routers, since we assume that by keeping the

flow counters in SRAM it is feasible to implement such capabilities. The only resource constraints

then are (a) memory (per-flow counters in SRAM) and (b) bandwidth for reporting the flow records

to a collection point (typically the NOC). We abstract (a) and (b) into a single resource constraint

Rj that represents the number of flows router j can record and report (again, per each five minute

measurement interval).

If Rj denotes the sampling load constraint for router j (j = 1, . . . , N ), then we want to ensure

that the total sampling load for router j, in terms of the total number of IP flows it is required to

monitor, does not exceed the load constraint Rj . That is,

∀j,
∑

i

(dij × Pi) ≤ Rj (1)

Next, for i = 1, . . . ,M , let Coverage i denote the fraction of traffic on OD-flow i that has been

monitored. We only consider sampling manifests that ensure that routers on the path of a given
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OD-flow will cover distinct IP-level flows. Thus, the fraction of traffic of OD-flow i that has been

covered throughout the network is simply the sum of the fractional coverages dij of the different

routers on the router-level path for OD-flow i,

∀i, Coverage i =
∑

j

dij (2)

Since the coverage values represent fractional quantities, we have the natural constraints:

∀i, Coverage i ≤ 1 (3)

Finally, since the dij define fractional coverages, they are constrained to be in the range [0, 1];
however, since the above constraints (Eq. 3) subsume the upper bound constraint on the dij , we are

left with the non-negativity constraints on the variables dij , i.e.,

∀i, ∀j, dij ≥ 0 (4)

Subject to these sets of constraints and given the input data Pi (i = 1, . . . ,M ) and Rj (j =
1, . . . , N ), our objective is to maximize the benefit we obtain from the individual flow coverage

values Coverage i. We can define this benefit in terms of either the total coverage across OD-flows

(
∑

i Pi × Coverage i) or the minimum fractional coverage per OD-flow (mini{Coverage i}). We

consider a combination of these two benefit functions and obtain a solution for our constrained

optimization problem that maximizes total coverage subject to ensuring the optimal minimum

fractional coverage.

We achieve this combined objective by first obtaining the solution (satisfying Eq. 1–4) that is

optimal for the minimum fractional coverage objective. Denoting this optimal objective function

value by OptMinFrac, we then introduce the additional constraints of the form

∀i, Coverage i ≥ OptMinFrac (5)

and proceed to obtain the solution that is optimal for the total traffic coverage objective under all of

(1)–(5). Performing this two-step optimization procedure yields a solution d∗ = 〈d∗
ij〉1≤i≤M,1≤j≤N

that maximizes the total flow coverage subject to achieving optimal minimum fractional coverage.4

3.3.3 Per-router sampling manifests

The final step of our approach consists of mapping the optimal solution into a sampling manifest

for each router that specifies the monitoring responsibility for the router. Figure 1 presents the

procedure for translating the optimal solution d∗ into a sampling manifest. The sampling manifest

specifies a distinct, non-overlapping, hash-range for each OD-flow traversing the router.

The resulting sampling manifests ensure that the set of IP-level flows monitored by each router

on the path of the corresponding OD-flow are necessarily distinct from one another. Once a router

4Theoretically, this two-step approach might provide lower total flow coverage than if we optimized the total traffic

coverage alone. However, in our evaluations, we find that this reduction is negligible (less than 0.1%).
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GENERATESAMPLINGMANIFEST(d∗ = 〈d∗
ij〉)

1 for i = 1, . . . ,M do

2 Range ← 0
3 for j = 1, . . . , N do

4 HashRange(i, j)← [Range,Range + d∗
ij]

5 Range ← Range + d∗
ij

6 ∀j,Manifest(j)← {〈i,HashRange(i, j)〉|d∗
ij > 0}

Figure 1: Translating the optimal solution into a sampling manifest for each router

COORDINATEDSAMPLING(pkt ,Manifest)

// j is the router identifier

// Manifest = 〈i,HashRange(i, j)〉
1 OD ← GETODFLOWID(pkt)

// HASH returns a value in [0, 1]
2 hpkt ← HASH(FLOWHEADER(pkt))
3 if hpkt ∈ Hashrange(OD, j)

then

4 Create an entry in Flowtable if none exists

5 Update byte and packet counters for the entry

Figure 2: Coordinated Sampling on each router

has received its sampling manifest, the algorithm for Coordinated Sampling that each router im-

plements is simple (Figure 2). For each packet it observes, the router first identifies the OD-flow.

Then, it computes a hash on the flow headers (e.g., the IP 5-tuple) and checks if the hash value

lies in the assigned hash range for the specific OD-flow the packet belongs to (the function HASH

returns a value in the range [0, 1]). Each router maintains a Flowtable of the set of flows it is

currently monitoring. If the packet has been selected, then the router either creates a new entry (if

none exists) or simply updates the counters for the corresponding entry in the Flowtable .

3.4 Generality of our approach

The optimization formulation offers much flexibility in terms of modeling router constraints, in-

corporating traffic and routing policies, and specifying objectives. It is easy to account for het-

erogeneity in routers in the network (in terms of capacity, memory, reporting bandwidth). Not

only is it possible to take into account that different versions of router software and hardware may

have different logging capabilities, but operators can also use the proposed formulation to specify

separate sampling regimes for different classes of routers in the network (e.g., access vs. edge vs.

backbone). Since our approach makes no a priori assumptions regarding the nature of the input

data (i.e., internal routing and OD-traffic demands), it is general enough to accommodate arbitrary

routing policies and OD-traffic matrices. For example, adding multi-path routing for each OD-flow

7



simply requires information about what fraction of a given OD-flow traverses each path. Also, our

framework can accommodate a wide range of benefit functions (e.g., weighted combinations of

the Coverage i values). However, in this paper, we restrict ourselves to the two-step combination

of the total and minimum fractional coverage discussed earlier.

4 Implementation Issues

In this section, we discuss a number of practical issues related to the implementation of Coordi-

nated Sampling.

4.1 OD-flow identification

We require that each router, on observing a packet, can identify the OD-flow to which the packet

belongs (Figure 2). To enable OD-flow identification, we envision that each packet carries as part

of its header its OD-flow identifier. In practice, an ISP’s border routers can mark each incoming

packet with this OD-flow information by determining the ingress and egress PoPs of the packet.

One concern is that techniques requiring modifying packet headers or adding information to the

IP-packet header (e.g., traceback [37, 28], capabilities [44]) have not been easy to deploy. The key

difference is that our approach is specifically designed for deployment within a single ISP. The

required OD-flow identifier modification to the packet header has only local significance within

the ISP and such information can be obtained with low computational overhead [15]. While this

a valid concern, we believe that the deployment barrier for Coordinated Sampling will be sub-

stantially lower compared to such schemes that require routers to perform moderately expensive

computations to determine packet markings and that the markings retain their semantics across ISP

boundaries [37, 28, 44].

4.2 Routing and Traffic Matrices

Prior work suggests that it is reasonable to assume that such routing information is available to

network operators [15]. Further, if we do observe a shift toward more centralized network man-

agement solutions [3, 6, 19], the problem of obtaining up-to-date routing information becomes

easier.

Similarly, there already exist known efficient methods for estimating traffic matrices [45, 46].

However, since these traffic matrices are estimated from possibly incomplete measurements they

are likely to have estimation errors. We address this issue in Section 4.5. Traffic matrices are also

known to change over time and we address this issue in Section 4.6.

4.3 Computing the optimal solution

The optimization is a linear programming formulation; obtaining an optimal solution is computa-

tionally tractable. For our evaluations, we relied on a commercial LP-solver (CPLEX) to compute

optimal solutions. The time taken to generate the optimal solution is small: only a few seconds for
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the PoP-level topologies we use in our evaluation. For example, with the largest PoP-level topol-

ogy in our evaluation with 115 nodes (AS 7018) it takes 3.9 seconds on a server-range machine

(Intel Xeon 2.80 GHz 4-CPU, 4 GB RAM) to generate the optimal solution. For larger router-level

topologies (both synthetic and inferred [42] topologies), of the order of 200-400 nodes, computing

the optimal solution takes between 30-90 seconds.

4.4 Per-router processing

One concern is the per-packet processing required on each router (e.g., computing the hash-

function, performing Flowtable lookups, and updating counters). However, prior work [14, 41, 40]

has demonstrated that it is indeed feasible to implement such per-packet processing capabilities in

router hardware without much overhead. Also, modern routers already perform many per-packet

operations for forwarding, and such processing functionality is typically implemented using highly

parallelized hardware circuitry.

Flow vs. Packet sampling: The requirements for flow sampling as opposed to packet sampling

are well understood in the literature [14]; packet sampling only needs to process a subset of packets

whereas flow sampling needs to process every packet. Netflow-style packet sampling is constrained

by packet processing capabilities since it uses (slow) DRAM for updating counters. However, by

using counters in (faster) SRAM flow sampling becomes feasible even at high line rates [14]. In our

evaluation, we assume that each PoP-level node can track 200,000 flow counters. Even assuming

a conservative estimate of 32 bytes for each flow entry [14], this translates into a requirement of

only 200, 000× 32 = 6.4 MB of SRAM per PoP, which is well within the reach of modern router

hardware.

Hash-functions: We use hash-based flow sampling to achieve coordination without explicit com-

munication. There are ongoing efforts between router vendors and IETF working groups [47] to

standardize hash-function implementations and support hash-based sampling as a basic primitive

in routers. Since the requirements on the type of hash-functions we desire are quite simple [41, 9]

(e.g., we need no strong cryptographic guarantees), they are amenable to fast hardware implemen-

tations [34]. In our current implementation we use the BOB hash function recommended by Zseby

et al. [47].

4.5 Robustness to input errors

Available OD-level traffic matrices are typically obtained using estimation techniques (e.g., [45,

46]) and as such represent only an approximation of the actual OD-traffic demands. Keeping the

rest of the assumptions the same, we are interested in the sensitivity of our approach to inaccuracies

of estimated OD-traffic matrices.

To be more specific, we assume that the estimation errors in the traffic matrix are bounded,

i.e., if Pi denotes the estimated traffic and P̂i denotes the actual traffic for OD-flow i, then we

have ∀i, Pi ∈ [P̂i(1 − ε), P̂i(1 + ε)]. ε quantifies the extent to which the estimated traffic matrix

(i.e., our input data) varies with respect to the true traffic matrix. Suppose the optimal sampling

strategy for P̂ = 〈P̂i〉1≤i≤M is d̂ = 〈d̂ij〉1≤i≤M,1≤j≤N , and that the optimal sampling strategy for

P = 〈Pi〉1≤i≤M is d∗ = 〈d∗
ij〉1≤i≤M,1≤j≤N .
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Let us consider β(d, P ) =
∑

i Pi×Coverage i =
∑

i Pi× (
∑

j dij), the total flow coverage for

a P -feasible vector d′ = 〈d′
ij〉1≤i≤M,1≤j≤N , i.e., satisfying conditions (1)–(4) for P . Our goal to

generate a sampling manifest that is robust to bounded error. In other words, we want to generate

a new sampling strategy d′ from the previously computed optimal solution d∗, and distribute d′ to

the routers in the network. We want d′ to satisfy two properties: (i) d′ is feasible for the true but

unknown traffic matrix P̂ , and (ii) β(d′, P̂ ) is close to the optimal value β(d̂, P̂ ).
To start, consider d̂ which satisfies the constraints

∀j,
∑

i

d̂ijP̂i ≤ Rj. (6)

Since Pi

1+ε
≤ P̂i, we also have the inequality,

∀j,
∑

i

d̂ij

Pi

1 + ε
≤ Rj. (7)

Setting d′′ = d̂
(1+ε)

, we note that by (7), d′′ is P -feasible. Therefore,

β(d∗, P ) ≥ β(d′′, P )

=
∑

i

Pi ×

(

∑

j

d′′
ij

)

=
∑

i

Pi ×

(

∑

j

d̂ij

1 + ε

)

≥
∑

i

P̂i(1− ε)

(

∑

j

d̂ij

1 + ε

)

=
1− ε

1 + ε
β(d̂, P̂ ). (8)

Next, consider d∗ which satisfies the constraints

∀j,
∑

i

d∗
ijPi ≤ Rj. (9)

Since P̂i(1− ε) ≤ Pi, the following inequality holds:

∀j,
∑

i

d∗
ij(1− ε)P̂i ≤ Rj. (10)
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Setting d′ = d∗(1− ε), we see that d′ is P̂ -feasible. Now,

β(d′, P̂ ) =
∑

i

P̂i ×

(

∑

j

d′
ij

)

=
∑

i

P̂i ×

(

∑

j

d∗
ij(1− ε)

)

≥
∑

i

Pi

1 + ε
×

(

∑

j

d∗
ij(1− ε)

)

=
1− ε

1 + ε
β(d∗, P )

≥

(

1− ε

1 + ε

)2

β(d̂, P̂ ) , From Eq 8. (11)

If we denote by α(d, P ) the minimum fractional coverage objective, we can show by a similar

argument that

α(d′, P̂ ) = (1− ε)α(d, P ) ≥
1− ε

1 + ε
α(d̂, P̂ ) (12)

We note that these bounds are conservative; we will revisit these bounds (particularly Eq. 11)

in Section 5.3.

4.6 Robustness to changing traffic matrices

OD-traffic matrices are known to be dynamic as a result of changes in the temporal and spatial

aspects of the traffic that traverses a network. These changes in traffic are generally not captured

by the bounded error model considered in Section 4.5. We outline our approach for handling such

changes.

Long-term variations: Measured backbone network traffic and OD-flows exhibit pronounced

but highly predictable time-of-day and day-of-week effects which constitute a major portion of

the variations associated with actual OD traffic matrices (e.g., [36]). A common approach for

handling these predictable traffic variations is the effective use of historical data. For example,

when computing the sampling manifest for, say, this week’s Fri. 9am-10am period, we use the OD

traffic matrix observed during the previous week’s Fri. 9am-10am period as input data.

Short-term variations: To handle less predictable short-term traffic variations, we observe that

using traffic matrices averaged over long periods (e.g., week) runs the risk of under-fitting; that is,

important structure that is present over shorter time scales gets lost due to averaging. On the other

hand, traffic matrices that are averaged over short periods (e.g., 5-min intervals) may result in over-

fitting; that is, accounting for details that are specific to the period in question. As a compromise,

we suggest a heuristic approach to handling short-term traffic variations that exploits two distinct

time sales. A coarse time scale (e.g., hour) for averaging historical data, and a fine time scale (e.g.,

5-min) for running the Coordinated Sampling scheme.
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Suppose we are interested in computing sampling manifests for every 5-min interval for the

Fri. 9am-10am period of the current week. To avoid over-fitting, we do not use the OD traffic

matrices observed during the corresponding 5-min intervals that make up the previous week’s Fri.

9am-10am period. Instead, we take the OD traffic matrix obtained by averaging over the previous

week’s Fri. 9am-10am period, divide it by 12 (the number of 5-min segments per hour), and use

the resulting OD traffic matrix P old as input data for computing the sampling manifest for the first

5-min period. At the end of this period, we collect flow data from the individual routers, and using

the observed measurements, we obtain the traffic matrix P obs . (For OD-flow i, if the fractional

coverage with the current sampling strategy is Coverage i and xi sampled flows are reported, then

P obs
i = xi

Coverage
i

, i.e., normalizing the number of sampled flows by the total flow sampling rate.)

We check if there exist significant differences between the observed traffic matrix P obs and the

input data P old . Let δi = abs((P obs
i − P old

i )/(P old
i )) denote the estimation error for OD-flow i. If

for some OD-flow i, δi exceeds a tolerance threshold ∆, then we compute a new traffic matrix entry

P new
i for this OD-flow. We use the resulting OD traffic matrix P new as the input for obtaining the

sampling manifest for the next 5-min period. We compute P new using the following conservative

update policy. If P obs
i is greater than P old

i then we set P new
i = P obs

i . If P obs
i is smaller than P old

i ,

then we check the resource utilization of the routers currently responsible for monitoring the OD-

flow i. If all these routers have residual resources available, we set P new
i = P obs

i ; otherwise we set

P new
i = P old

i .

The rationale behind this conservative update heuristic is that if a router runs out of memory, it

may result in underestimating OD-flows for which it is responsible (i.e., P obs is an under-estimate

of the actual OD traffic matrix). By updating P new with P obs for such OD-flows, it is likely we

would cause a recurrence of the same overflow condition in the next 5-min period. Instead, we err

on the side of over-estimating the traffic for each OD-flow. This ensures that the information we

obtain for the next period is more reliable and can help us make a better decision when computing

the sampling manifest for subsequent 5-min periods. The only caveat of such a heuristic is that we

may get a lower effective coverage because we are over-estimating the total traffic volume. Our

evaluations with real traffic traces (Section 5.3) show that this performance penalty is low and the

heuristic provides near-optimal traffic coverage.

5 Evaluation

In this section we first evaluate the benefits of Coordinated Sampling under ideal conditions (i.e.,

static network, exact knowledge of input data) and then study its robustness under dynamic traffic

conditions. We also describe three representative applications.

5.1 Input data

We implemented a packet-level network simulator to evaluate the performance of different sam-

pling approaches. The simulator takes in as input the sampling algorithm and associated parame-

ters, the network topology and routing matrix (for specifying the set of OD-flows and their routing

paths), the OD-level traffic matrix, and the IP flow-size distribution. We use real topologies from
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educational backbones [21, 18] and PoP-level topologies inferred from Rocketfuel [42]. For each

topology, we construct OD-flows by considering all possible PoP-pairs and determine for each pair

the corresponding PoP-level paths. For Internet2 and GÉANT we rely on the publicly available

static IS-IS weights and for the Rocketfuel-based topologies we use the inferred link weights [31]

to obtain the shortest-path route for each OD-flow.

Topology PoPs OD-flows Flows(×106) Pkts (×106)

AS7018 115 13225 80 320

AS2914 70 4900 51 204

AS3356 63 3969 46 196

AS1239 52 2704 37 148

AS1221 44 1936 32 128

AS3257 41 1681 32 218

GÉANT 22 484 16 64

Internet2 11 121 8 32

Table 1: Parameters for the experiments

Due to lack of publicly available traffic matrix and traffic volume information for the commer-

cial ISPs, we take the following approach. Taking 8 million IP flows (per 5-minute interval)5 as the

baseline traffic volume for Internet2, for each the other topologies, we scale the total traffic (num-

ber of IP flows) by the number of PoPs in the topology. We believe that these traffic volumes are of

the same order of magnitude as the estimates reported for Tier-1 backbones. Table 1 summarizes

the various topologies. To obtain the traffic matrices, we first annotate each PoP in the topology

with the population pi of the city it is located in. Then we use a simple gravity-model [39] to

obtain the traffic volume for each OD-flow; that is, we assume that the total traffic between PoPs

i and j is proportional to pi × pj . We assume that flow size measured in number of packets is

Pareto-distributed, i.e., Prob(Flowsize > x packets) = ( c
x
)α, x ≥ c with α = 1.8 and c = 4.6

5.2 Benefits of Coordinated Sampling

We compare the benefits of Coordinated Sampling against (i) uniform packet sampling, (ii) uniform

packet sampling at ingress and egress nodes only, (iii) random flow sampling, and (iv) optimal un-

coordinated flow sampling. Table 2 presents a taxonomy of the spectrum of sampling alternatives

we consider7.

Coordinated Sampling and flow sampling are constrained by the amount of SRAM on each

router8. We assume that each PoP in the network is provisioned hold up to 200,000 flow records.

5The weekly aggregate traffic on Internet2 is roughly 175TB. Ignoring time-of-day and effects, this translates into

0.08TB per 5-minute interval. Assuming an average flow size of 10KB, this translates into roughly 8 million flows.
6We use these as representative values. Our results are similar across a range of flow size parameters.
7We do not consider optimal network-wide uniform packet sampling [7]. Instead, we consider optimal uncoordi-

nated flow sampling as a hypothetical flow-sampling extension to Cantieni et al. [7].
8Since Sharma and Byers [39] assume flow-sampling without imposing any SRAM constraints, it is not possible

to present a direct quantitative comparison between Coordinated Sampling and their approach.
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Sampling Flow vs. Coordi- Resource Network

Method Packet -nated Limits Wide

Uniform packet Packet No No No

sampling

Edge Uniform Packet No No No

pkt sampling

Flow sampling Flow No Yes No

Optimal

uncoordinated Flow No Yes Yes

flow sampling

Coord. Sampling Flow Yes Yes Yes

Table 2: Taxonomy of sampling alternatives

Even assuming a conservative estimate of 32 bytes for each flow entry [14], this translates into

a requirement of only 200, 000 × 32 = 6.4MB of SRAM per PoP. For uniform packet sampling,

we assume a sampling rate of 0.01 and impose no memory constraints on the routers [14]. For

the edge-based uniform packet sampling case that may reflect a feasible and practical alternative

for some ISPs [15], we assume a sampling rate of 0.02 and impose no memory constraints on the

routers. For random flow sampling, we assume that every node uses a uniform flow-sampling rate

of 0.01. In the case of optimal uncoordinated flow sampling, the flow sampling rates are chosen

such that each node maximally utilizes its available memory.9

Coverage Benefits: Figure 3 compares the total flow-coverage obtained with the different sam-

pling schemes for the PoP-level topologies in Table 1. We observe that random flow sampling

results in less flow coverage than the uniform packet sampling alternatives (i) and (ii). This is a

direct consequence of the resource constraints associated with flow sampling. Also note that using

a higher sampling rate of 0.02 for edge-based uniform packet sampling only marginally improves

flow coverage over (i). Relying on the network-wide but uncoordinated sampling approach (iv)

for setting flow sampling rates can provide substantial improvements (up to 75%) over (i) and

(iii). However, we can boost these improvements even further (up to 100%) by using Coordinated

Sampling.

Figure 4 compares the minimum fractional coverage per OD-flow obtained by different sam-

pling strategies. We see that Coordinated Sampling outperforms all alternatives by a substantial

margin, including the optimized uncoordinated flow-sampling scheme (iv). This ability to specify

and attain network-wide monitoring objectives is a key strength of our approach. Two other ob-

servations are worth noting. First, the minimum fractional coverage is much less (more than 2×
in some cases) than the total coverage. Second, the differences between the various topologies in

terms of the minimum fractional coverage are more pronounced than in terms of total coverage.10

The reason for these observations is the structure of the traffic matrix. Specifically, we observe

9The flow sampling rate for a node is min(1, M
T

), where M = 200000 and T is the total number of flows the node

observes.
10Note that AS7018, Internet2, and GÉANT are distinctively better with respect to minimum fractional coverage

than AS1221 and AS3356, even though the traffic volumes scale linearly with the number of PoPs
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Figure 3: Total flow coverage

that the presence of disproportionately large diagonal and off-diagonal elements in a traffic matrix

becomes a dominant factor in determining the minimum fractional coverage that is feasible given

the resource constraints.11
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Figure 4: Min. fractional coverage per OD-flow

Reporting Benefits: In Figure 5, we show the wasted bandwidth as a fraction of the number of

duplicate flow reports (due to multiple routers monitoring the same flows) to the number of useful

(i.e., distinct) flow reports. The absence of an entry for Coordinated Sampling in Figure 5 reflects

our design: by assigning non-overlapping hash-ranges to individual monitors, we avoid duplicate

sampling of traffic flows. In addition to wasting reporting bandwidth, these duplicate reports can

also induce operational difficulties in managing and mining the data collected from multiple mon-

itors. We observe that network-wide uncoordinated flow sampling results in the largest amount of

duplicate flow-reports (as high as 30%), while uniform packet sampling can result in up to 14%

duplicate reports. Using edge-based uniform packet sampling can alleviate this waste to some

extent, since redundant reporting from non-terminal (i.e., transit) routers is avoided.

11As an example, AS1221 (Telstra) has PoPs in major Australian cities and in Los Angeles. The bias in the popula-

tion distribution across PoPs is such that the top-4 PoPs (Sydney, Melbourne, Los Angles, Sydney) account for more

than 60% of the total traffic volume and routes between these cities do not go through any other PoPs.
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Figure 5: Duplicate reporting bandwidth

The maximum reporting bandwidth on any single PoP is shown in Figure 6. We normalize the

reporting bandwidth by the bandwidth required for Coordinated Sampling. The reporting band-

width for Coordinated Sampling and flow sampling is bounded by the amount of memory that the

routers are provisioned with – memory relates directly to the number of flow-records that a router

needs to export. Figure 6 shows that the maximum reporting bandwidth for uniform packet sam-

pling can be as high as 7-10 times the reporting bandwidth required for Coordinated Sampling.

This suggests that our approach has the added benefit of avoiding reporting hotspots by efficiently

assigning monitoring responsibilities across routers in such way that each operates within the spec-

ified resource limits.
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5.3 Robustness Properties

Inaccurate traffic matrices: To study the robustness of Coordinated Sampling to inaccuracies in

traffic matrix estimates, we consider the Internet2 topology and use a gravity model as an approx-

imation of its exact but unknown baseline OD-level traffic matrix (e.g., see [35]). We use the error

model discussed in Section 4.5: if P̂i denotes the exact but unknown traffic volume (in number
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of IP-flows) for OD-flow i, then the estimated traffic volume Pi used as input to our approach is

drawn uniformly at random from the interval [P̂i(1− ε), P̂i(1 + ε)].
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Figure 7: Sensitivity of the total coverage as a function of the error in the input traffic matrix used

for computing a sampling strategy

We are interested in the relative error between the optimal sampling strategy (computed us-

ing the true but unknown traffic matrix P̂ ) and the sampling manifest derived using the inaccurate

estimated traffic matrix P . Figure 7 shows the mean and maximum relative error (over 20 indepen-

dent runs), as function of ε, for total flow coverage. The figure shows three relative error curves:

(i) theoretical upper bound from Section 4.512, (ii) performance of the sampling manifest based

on the inaccurate input data, and (iii) performance of the sampling strategy obtained by scaling

the sampling manifest in (ii) by a factor 1 − ε (Section 4.5). We observe that the total flow cover-

age provided by Coordinated Sampling is remarkably insensitive to inaccuracies in the input data;

even with errors as high as 30%, the relative error with respect to the optimal solution is less than

5%.13 The figure suggests that the lower bounds are conservative, and that we can expect much

better performance in practice. Also, since estimates of the large traffic matrix elements have been

shown to be significantly more accurate than estimates of the small elements [45], we expect the

robustness of Coordinated Sampling to errors associated with estimated OD-traffic matrices to be

even better in practice.

Changing Traffic matrices: To explore the robustness to realistic changes of traffic matrices, we

consider a two-week snapshot (Dec 1–14, 2006) of flow data from Internet2. The flow data is

collected using uniform packet sampling with a sampling rate of 1-in-100 packets. We map each

flow entry to the corresponding network ingress and egress points using the technique outlined in

12Eq. 11 proves β(d′, P̂ ) ≥ ( 1−ε
1+ε

)2β(d̂, P̂ ). The theoretical upper bound on the relative error will be

β(d̂,P̂ )−β(d′,P̂ )

β(d̂,P̂ )
≤ 4ε

(1+ε)2 .

13Similar results hold for the minimum fractional coverage metric, except that the worst case error can be quite

large (between 20-30% for errors in the 20-30% range).
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Feldmann et al. [15].14 We assume that there are no routing changes in the network, and that the

sampled flow records represent the actual traffic in the network (since Coordinated Sampling does

not suffer from flow size biases there is no need to renormalize the flow sizes by the sampling

rate). Since the sampled data contains only two million distinct flows on average, we scale down

the per-PoP memory by a factor of 4 from 200,000 (from Section 5.2) to 50,000 flow records.

To compute the sampling manifest for a particular period for the current week, we use the

previous week’s flow data measured for that same period to obtain the estimated OD traffic matrix.

Figure 8 compares the total flow coverage obtained with different strategies for using the historical

data to the optimal solution (i.e., assuming perfect traffic information in the sense that the traffic

matrix is computed with the actual flow data for the current interval). As expected, the optimal flow

coverage exhibits the same time-of-day and day-of-week effects as the traffic matrices themselves.

For example, during the weekend (day2 and day3), we can get up to 70% coverage compared to the

weekdays, when the coverage is typically in the 20-50% range. We also notice that using coarse-

grained historical information (i.e., daily or weekly averages) gives sub-optimal solutions. On the

other hand, relying on traffic matrices that are based on hourly averages from the previous week

gives near-optimal total flow coverage and seems to represent a time scale of practical interest that

avoids both the risk of over-fitting as well as the risk of under-fitting. In contrast, for the minimum

fractional coverage per OD-flow, Figure 9 shows that using the per-hour estimates, we get less

than half the optimal minimum fractional coverage for many of the 5-minute time-slots. This is

primarily because of short-term variations that the historical traffic matrices cannot account for.
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Figure 8: Comparing total traffic coverage with different approaches for selecting historical traffic

matrices for computing a Coordinated Sampling strategy.

Figures 8 and 9 also depict a curve labeled “Per-hour + Conservative update” that results from

using the heuristic for dealing with short-term traffic variations described in Section 4.6 (we use

∆ = 0.1). We observe that the heuristic can significantly improve the performance in the case

of the minimum fractional coverage metric, and achieves near-optimal performance for the total

traffic coverage as well. While our approach needs further analysis, these results demonstrate the

14Since IP-addresses are anonymized by zero-ing out the last 11 bits, there is some ambiguity associated with the

egress resolution, but this does not introduce a significant bias as less than 3% of the flows are affected.
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promise of using historical per-hour traffic matrices combined with a conservative update heuristic

for handling both the expected long-term and unexpected short-term traffic variations.
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Figure 9: Comparing the minimum fractional coverage to the optimal solution with the conserva-

tive update function.

5.4 Applications

To illustrate that Coordinated Sampling supports a wide range of tasks of interest to ISPs, we con-

sider three representative applications: traffic engineering (volume estimation), security (scanner

detection), and network provisioning.

Traffic Volume Estimation: Many traffic engineering and accounting applications are inter-

ested in the packet and byte volumes per OD-flow. Here, we focus on obtaining packet-count

estimates for each OD-flow. (We do not compare the byte counts since uniform packet sampling

has additional packet-size biases that flow sampling does not suffer from [14].) To this end, we

need accurate packet-level data, and since Internet2 flow data has biases due to packet sampling,

we use our simulation results for the Internet2 topology (Section 5.2). For both uniform packet

sampling and edge-based uniform packet sampling, the estimates are obtained using the method

suggested by Duffield et al. [12]. For Coordinated Sampling, we identify the fractional flow cov-

erage Coverage i =
∑

j dij for OD-flow i and renormalize the total packet volume by this factor

(this is an unbiased estimate of the total traffic volume). Figure 10 shows the CDF of the relative

error (we consider only the magnitude of the relative error, not whether it is positive or negative)

in estimating the traffic volume on each OD-flow. We observe that Coordinated Sampling results

in traffic volume estimates that are comparable to or even better than those obtained using uniform

packet sampling. This illustrates that Coordinated Sampling does not impair the accuracy required

by traditional traffic engineering applications.

Scanner Detection: We take a five-minute trace from the Internet2 dataset and treat each flow

record as a single packet. (Note that by ignoring flow sizes we can only overestimate the perfor-

mance of packet sampling.) Using this to serve as the background traffic, we inject traffic records

simulating the presence of 1000 scanners (distributed at random in the network) and consider a
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Figure 10: Relative error in volume estimation

threshold-based scan detection approach: we flag any host that contacts more than k distinct desti-

nation IP addresses in the sampled data. Figure 11 shows the ROC-curve for both uniform packet

sampling (with 1-in-50 sampling) and Coordinated Sampling for two scenarios. In the first sce-

nario, each scanner generates 100 scans (scan destinations are selected uniformly at random within

the trace) in the five-minute interval and in the second scenario each scanner generates 200 scans.

Each point on the ROC-curve represents the false positive and false negative rate for a fixed detec-

tion threshold k. We vary k between 1 and 80 in this experiment. For lower values of k we expect

the false negative rate (i.e., not detecting a scanner) to be low but the false positive rate (i.e., flag-

ging a host which is not one of the scanners) to be high. As k increases, the false positive decreases,

but there is an increase in the false negative rate. Ideally, we want the ROC-curve to have a low

false positive rate and a low false negative rate. We observe that the ROC-curves for Coordinated

Sampling show significantly better performance than those for uniform packet sampling (i.e., the

curves for Coordinated Sampling are closer to the origin).
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Figure 11: ROC-curve for scanner detection

Network provisioning: An alternative version of the network-wide formulation (Section 3.3.2)

can be posed as a capacity provisioning problem; i.e., how should a network operator invest re-

sources at routers (e.g., memory) to achieve a given target traffic coverage? To discuss such a

“what-if” scenario, we use the notation and formulation from Section 3.3.2 and let αi denote the

targeted fraction of traffic on OD-flow i to be monitored; that is,

∀i, Coverage i ≥ αi
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The monitoring load Lj on router j is given by

∀j, Lj =
∑

i

dij × Pi

and translates directly into the memory and reporting bandwidth that need to be provisioned on

the router. It also reflects the cost incurred by the operators (e.g., memory upgrades on router

hardware). We consider the following objective: minimizing the maximum load on any single

router in the network.
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Figure 12: Distribution of memory requirement across PoPs

Across the different PoP-level topologies we find that even with a target flow coverage of 90%,

the maximum memory required per PoP is of the order of a 1-3 million traffic records. Assuming a

32-byte flow record, this translates into a maximum memory requirement of 90MB per-PoP, which

is larger than the memory capacities on routers today, but not technologically inconceivable. This

is promising in view of certain applications for which near-complete traffic coverage is desirable

(e.g., forensic applications [43]). Figure 12 shows the distribution of the per-PoP memory require-

ment (in terms of number of flow records). We observe that the number of nodes that need very

high provisioning is small. This is consistent with the observations in Section 5.2 regarding the

structure of the underlying traffic matrix – dominant PoPs that carry a significant fraction of the

traffic naturally demand better provisioning than smaller PoPs.

6 Summary and Future Work

Compared to current solutions, Coordinated Sampling offers several advantages. First, by in-

creasing flow coverage more than two-fold, it provides high fidelity for new kinds of security

applications, without compromising the accuracy required by more traditional traffic engineering
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applications. Second, it allows operators to specify and achieve fine-grained network-wide moni-

toring objectives. For example, it allows operators to achieve an order of magnitude improvement

in the minimum fractional coverage per OD-flow thereby providing network-wide visibility. Third,

through hash-based coordination, it allows operators to efficiently leverage available monitoring

capacity in the network without requiring expensive distributed protocols and communication be-

tween routers.

Routers only need to implement a very simple algorithm (Figure 2) and do not have to engage

in distributed computations or communicate with each other to obtain their logging responsibil-

ities. The complexity is in obtaining the configuration files that spell out in detail the sampling

instructions for the different routers in the network. However, this decision logic will necessarily

be implemented in a centralized processing facility, similar in spirit to recent proposals that ar-

gue in favor of more centralized network management [6, 19, 3]. Coordinated Sampling thus also

matches well with the current trends toward a more centralized operation model of ISPs.

Our analysis and evaluations demonstrate that Coordinated Sampling possesses attractive ro-

bustness properties with respect to realistic network conditions (e.g., inaccuracies in the input data,

temporal and structural changes of network traffic). An aspect of robustness that has not been ad-

dressed in this paper concerns the number of reconfigurations under traffic dynamics. To reduce

management complexity, network operators may prefer sampling manifests that are stable over

time or require only a handful of reconfigurations in response to some of the typical events they

expect. Here, a reconfiguration refers to either (i) a non-zero dij value becoming zero in the new

sampling strategy recomputed after the traffic change, or (ii) a dij entry that was previously zero

becoming non-zero in the new sampling strategy. As a preliminary exploration, we augmented the

objective function with a reconfiguration cost term. The reconfiguration cost penalizes feasible

sampling strategies that, while optimal otherwise, require a large number of reconfigurations when

compared to the sampling strategy currently in use. Figure 13 shows the results of this preliminary

exploration using data from Internet2 (we only show the results for day2 from week2; results for

other days were similar). We see that the new sampling manifests are relatively stable throughout

the 24-hour period and require in general only a small number of reconfigurations (on average less

than 5% of entries). Moreover, this added robustness feature is achieved with negligible loss in

total flow coverage and minimum fractional coverage (0.5% and 3% respectively) (not shown).

These preliminary results are similar to prior work on configuring link weights in the context of

intra-domain routing [1, 17]. A promising avenue of future work is exploring this connection and

developing strategies that are explicitly designed to have as few reconfigurations as possible.
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Figure 13: Effect of introducing reconfiguration cost to the formulation
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The other dimension of robustness not addressed in this paper is with respect to routing dynam-

ics caused by node and link failures. Since our approach is ISP-centric, we propose the following

approach. One common network management task is to ensure smooth network operations in the

case of critical router or link failures. This is achieved by using the network configuration and

estimated traffic matrix, simulating particular failure events, and precomputing new set of link

weights in such a way that under the particular failure scenario, the remaining network can han-

dle the (rerouted) traffic without problems [16, 17]. As a by-product of this traffic engineering

exercise, we can precompute the optimal sampling scheme for the scenario corresponding to each

particular failure event (i.e., using the appropriate mapping of OD-flows to routers and the traffic

matrix that reflects the rerouting of traffic) and have it ready when this failure actually occurs.

A natural extension for exploring the virtues of Coordinated Sampling would be using router-

level ISP topologies, where the role (e.g., backbone, edge, access) and specifications of each indi-

vidual router are known. However, actual ISP router-level topologies are generally not available

and inferred topologies (e.g., [42]) lack the annotations necessary for our purposes (e.g., identify-

ing gateway and backbone routers). We expect the benefits of Coordinated Sampling compared to

alternative sampling strategies to be even better on router-level topologies for two reasons. First,

since router-level topologies are more fine-grained than PoP-level topologies we expect greater

benefits from coordination (e.g., more routers per-path). Second, our approach has the ability to

efficiently exploit the increased heterogeneity provided by router-level topologies as far as indi-

vidual router capabilities, OD route diversity, and OD traffic demand patterns are concerned. One

direction of future work is to build on the work of Li et al. [29] and study the properties of Coordi-

nated Sampling as a function of the granularity of the underlying topology.
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