Data-Intensive Supercomputing:
The case for DISC

Randal E. Bryant

May 10, 2007
CMU-CS-07-128

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Google and its competitors have created a new class of targle-computer systems to support In-
ternet search. These “Data-Intensive Super Computing3(@)Isystems differ from conventional
supercomputers in their focus on data: they acquire andtenaicontinually changing data sets, in
addition to performing large-scale computations over th dWith the massive amounts of data
arising from such diverse sources as telescope imagerycaieglcords, online transaction records,
and web pages, DISC systems have the potential to achiewe athjances in science, health care,
business efficiencies, and information access. DISC opemsany important research topics in
system design, resource management, programming modeddigbalgorithms, and applications.
By engaging the academic research community in these isseasan more systematically and in
a more open forum explore fundamental aspects of a sogi@tghortant style of computing.

Keywords: parallel computing, data storage, web search

When a teenage boy wants to find information about his idol 9igguGoogle
with the search query “Britney Spears,” he unleashes thegyoo¥ several hundred
processors operating on a data set of over 200 terabytes. tdrycan’t a scientist
seeking a cure for cancer invoke large amounts of computatie@r a terabyte-sized
database of DNA microarray data at the click of a button?

Recent papers on parallel programming by researchers atgi&o 3] and Mi-
crosoft [19] present the results of using up to 1800 procestbperform computations
accessing up to 10 terabytes of data. How can universityarebers demonstrate the
credibility of their work without having comparable comimgy facilities available?

1 Background

This document describes an evolving set of ideas about agrewdf high-performance computing
facility that places emphasis @ata rather than raw computation, as the core focus of the system
The system is responsible for the acquisition, updatingrisg, and archiving of the data, and

it supports sophisticated forms of computation over itaadatVe refer to such such system as
Data-Intensive Super Computsystems, or “DISC.” We believe that DISC systems could yield
breakthroughs in a number of scientific disciplines and rgpiheblems of societal importance.

Much of our inspiration for DISC comes from the server infrastures that have been developed
to support search over the worldwide web. Google and its etitaps have created DISC systems
providing very high levels of search quality, response fimed availability. In providing this
service, they have created highly profitable businesseshlieg them to build ever larger and
more powerful systems. We believe the style of computinghha evolved to support web search
can be generalized to encompass a much wider set of apphsaand that such systems should
be designed and constructed for use by the larger reseanmumgoity.

DISC opens up many important research topics in systemmlggigource management, program-
ming models, parallel algorithms, and applications. Byagigg the academic research commu-
nity in these issues, we can more systematically and in a moea forum explore fundamental
aspects of a societally important style of computing. Ursitg faculty members can also incor-
porate the ideas behind DISC into their courses, ensuriigsthdents will learn material that will
be increasingly important to the IT industry.

Others have observed that scientific research increagielig on computing over large data sets,
sometimes referring to this as “e-Science” [18]. Our clagthat these applications call for a
new form of system design, where storage and computatiooadoeated, and the systems are
designed, programmed, and operated to enable users tadtiety invoke different forms of
computation over large-scale data sets. In addition, otireeworld has been increasingly data
intensive, as sensor, networking, and storage technolaggesit possible to collect and store
information ranging from retail transactions to medicahgery. DISC systems will enable us
to create new efficiencies and new capabilities well beydrde already achieved by today’s
information technology.

This paper outlines the case for DISC as an important doedtr large-scale computing systems.
It also argues for the need to create university researcheduadational projects on the design,
programming, and applications of such systems. Many pduple contributed and helped refine
the ideas presented here, as acknowledged in Appendix A.

1.1 Motivation

The following applications come from very different fieldsit they share in common the central
role of data in their computation:

e Web search without language barriefBhe user can type a query in any (human) language.
The engine retrieves relevant documents from across thilwiole web in all languages
and translates them into the user’s preferred languagetd#e translation is the creation
of sophisticated statistical language models and traoslatgorithms. The language model
must be continuously updated by crawling the web for new andified documents and
recomputing the model. By this means, the translation engiti be updated to track newly
created word patterns and idioms, such as “improvised sy@alevices.”

Google already demonstrated the value of applying massneiats of computation to lan-
guage translation in the 2005 NIST machine translation @iitipn. They won all four
categories of the competition in the first year they enteranslating Arabic to English and
Chinese to English [1]. Their approach was purely staastithey trained their program us-
ing, among other things, multilingual United Nations do@mnts comprising over 200 billion
words, as well as English-language documents comprisieg @ve trillion words. No one
in their machine translation group knew either Chinese @#a. During the competition,
they applied the collective power of 1000 processors togoerthe translations.

¢ Inferring biological function from genomic sequencégreasingly, computational biology
involves comparing genomic data from different speciesfeord different organisms of the
same species to determine how information is encoded in DENAr larger data sets are be-
ing collected as new sequences are discovered, and newdbdesved data are computed.
The National Center for Biotechnology Innovation maingaihe GenBank database of nu-
cleotide sequences, which has been doubling in size evemyohhs. As of August, 2006,
it contained over 65 billion nucleotide bases from more thd®,000 distinct organisms.

Although the total volume of data is less than one terabfieecomputations performed are
very demanding. In addition, the amount of genetic infororativailable to researchers
will increase rapidly once it becomes feasible to sequeme®NA of individual organisms,
for example to enablpharmacogenomic¢gredicting a patient’s response to different drugs
based on his or her genetic makeup.

e Predicting and modeling the effects of earthqualk&sientists are creating increasingly de-
tailed and accurate finite-element meshes representimggtilegical properties of the earth’s
crust, enabling them to model the effect of a geologicaldisince and the probabilities of

earthquakes occurring in different regions of the world [[3jese models are continually up-
dated as actual earthquake data are analyzed and as moigtisapdd modeling techniques
are devised. The models are an important shared resouraggageologists, computational
scientists, and civil engineers.

e Discovering new astronomical phenomena from telescopgenyadata. Massive amounts
of imagery data are collected daily, and additional resaitts derived from computation
applied to that data [26]. Providing this information in floem of a shared global database
would reduce the redundant storage and computation reban@aintain separate copies.

e Synthesizing realistic graphic animationBhe system stores large amounts of motion cap-
ture data and uses this to generate high quality animatit8js Qver time, the motion data
can be expanded and refined by capturing more subjects penpmore tasks, yielding
richer and more realistic animations.

e Understanding the spatial and temporal patterns of braitndgor based on MRI data.
Information from multiple data sets, measured on differgritjects and at different time
periods, can be jointly analyzed to better understand hawnbrfunction [22]. This data
must be updated regularly as new measurements are made.

These and many other tasks have the properties that thely@wollecting and maintaining very
large data sets and applying vast amounts of computatiewapto the data. An increasing num-
ber ofdata-intensiveeomputational problems are arising as technology for cagjtand storing
data becomes more widespread and economical, and as theowitiegs a mechanism to retrieve
data from all around the world. Quite importantly, the raletvdata sets are not static. They must
be updated on a regular basis, and new data derived from ¢atigms over the raw information
should be updated and saved.

2 Data-Intensive Super Computing

We believe that these data-intensive computations call few class of machine we terndata-
intensive super computingystem, abbreviated “DISC”. A DISC system is a form of supere
puter, but it incorporates a fundamentally different sgirariciples than mainstream supercomput-
ers. Current supercomputers are evaluated largely on théewof arithmetic operations they can
supply each second to the application programs. This isfalusetric for problems that require
large amounts of computation over highly structured datéjtlalso creates misguided priorities
in the way these machines are designed, programmed, arategperhe hardware designers pack
as much arithmetic hardware into the systems they cangaisitang the importance of incorporat-
ing computation-proximate, fast-access data storageagtiet same time creating machines that
are very difficult to program effectively. The programs miostwritten in terms of very low-level
primitives, and the range of computational styles is rettd by the system structure. The systems
are operated using a batch-processing style, represemtiagle off that favors high utilization of
the computing resource over the productivity of the peoplagithe machines.

3

Below, we enumerate the key principles of DISC and how th#égrdirom conventional supercom-
puter systems.

1. Intrinsic, rather than extrinsic dataCollecting and maintaining data are the duties of the
system, rather than for the individual users. The systemt maiseve new and updated
information over networks and perform derived computatias background tasks. Users
can use rich queries based on content and identity to adeedata. Reliability mechanisms
(e.q., replication, error correction) ensure data intggund availability as part of the system
function. By contrast, current supercomputer centersigeoshort-term, large-scale storage
to their users, high-bandwidth communication to get datntbfrom the system, and plenty
of computing power, but they provide no support for data ngangent. Users must collect
and maintain data on their own systems, ship them to the sopguter for evaluation, and
then return the results back for further analysis and updatf the data sets.

2. High-level programming models for expressing computatiover the dataCurrent super-
computers must be programmed at a very low level to make naxise of the resources.
Wresting maximum performance from the machine requiresshottedious optimization.
More advanced algorithms, such as ones using sophistieatdregular data structures,
are avoided as being too difficult to implement even thougly ttould greatly improve ap-
plication performance. With DISC, the application deveops provided with powerful,
high-level programming primitives that express naturahfe of parallelism and that do not
specify a particular machine configuration (e.g., the nunobg@rocessing elements). It is
then the job of the compiler and runtime system to map thesgpatations onto the machine
efficiently.

3. Interactive accessDISC system users are able to execute programs intergctwel with
widely varying computation and storage requirements. iséesn responds to user queries
and simple computations on the stored data in less than @oadewhile more involved
computations take longer but do not degrade performanctnéogueries and simple com-
putations of others. By contrast, existing supercompuessoperated in batch mode to
maximize processor utilization. Consequently, users igdigemaintain separate, smaller
cluster systems to do their program development, wheraegregeraction is required. In-
herently interactive tasks, such as data visualizatiom,nat well supported. In order to
support interactive computation on a DISC system, theret ineisome over-provisioning
of resources. We believe that the consequent increaseafcosinputing resources can be
justified based on the increased productivity of the systsenau

4. Scalable mechanisms to ensure high reliability and avalitgb Current supercomputers
provide reliability mainly by periodically checkpointindpe state of a program, and then
rolling back to the most recent checkpoint when an error cclore serious failures re-
quire bringing the machine down, running diagnostic testslacing failed components, and
only then restarting the machine. This is an inefficient,suatable mechanism that is not
suitable for interactive use. Instead, we believe a DIS@esyshould employ nonstop reli-
ability mechanisms, where all original and intermediatedae stored in redundant forms,

4

and selective recomputation can be performed in event opooent or data failures. Fur-

thermore, the machine should automatically diagnose asabté failed components; these
would only be replaced when enough had accumulated to insgaiem performance. The

machine should be available on a 24/7 basis, with hardwatesaftware replacements and
upgrades performed on the live system. This would be passilth a more distributed and

less monolithic structure than is used with current supemders.

3 Comparison to Other Large-Scale Computer Systems

There are many different ways large-scale computer sysaesrganized, but DISC systems have
a unique set of characteristics. We compare and contrast ebthe other system types.

3.1 Current Supercomputers

Although current supercomputers have enabled fundamseiitific breakthroughs in many dis-
ciplines, such as chemistry, biology, physics, and astrontarge portions of the scientific world

really have not benefited from the supercomputers availablay. For example, most computer
scientists make use of relatively impoverished computalioesources—ranging from their lap-
tops to clusters of 8-16 processors. We believe that DIS@m\gscould serve a much larger part
of the research community, including many scientific araasyell as other information-intensive
disciplines, such as public health, political science, andnomics. Moreover, even many of
the disciplines that are currently served by supercompwteuld benefit from the flexible usage
model, the ease of programming, and the managed data asp&d&C.

3.2 Transaction Processing Systems

Large data centers, such as those maintained by finandiltiens, airlines, and online retailers,
provide another model for large-scale computing systems.will refer to these asransaction
processing systemsince the term “data center” is too generic. Like a DISCeaystthe creation
and maintenance of data plays a central role in how a transgatocessing system is conceived
and organized. High data availability is of paramount imt@oce, and hence the data are often
replicated at geographically distributed sites. Precisesistency requirements must be main-
tained, for example, so that only one person can withdravastelollar from a joint bank account.
The creation and accessing of data at transaction progesgitems occur largely in response to
single transactions, each performing limited computabieer a small fraction of the total data.

The strong set of reliability constraints placed on tratisacsystems [15], and the potentially
severe consequences of incorrect operation (e.g., if dotrehic banking system does not maintain
consistent account balances), tend to narrow the rangeé&mentation options and encourage
fairly conservative design approaches. Large amountsefireh have been done on increasing the
amount of concurrency through distribution and replicatbthe data, but generally very complex

and expensive systems are required to meet the combinesl @fdaigh capacity, availability, and
reliability.

Search engines have very different characteristics framsaction processing systems that make
it easier to get high performance at lower cost. A searchrnengeed not track every change to
every document on the web in real time. Users are satisfideeif have access to a reasonably
large fraction of the available documents, and that the ohaeus are reasonably up to date. Thus,
search can be performed on cached copies of the web, witlptheting of the caches performed
as a background activity. In addition, the updating of tlaesis not done in response to individual
transactions, but rather by an independent web crawlinggss This decoupling between the
agents that read data and those that update them makes iteasigh to scale the size of the
systems at a reasonable cost.

We envision that most DISC systems will have requirementsdmaracteristics more similar to
those of search engines than to transaction processirgnsysData sets for scientific applications
typically have higher needs for accuracy and consisterary tlo search engines, but we anticipate
they will not be updated as often or by as many agents as isageefor a transaction processing
system. In addition, many DISC applications may be able pdotirelaxed consistency constraints
similar to those found with web search. For those that eksitatistical patterns from massive data
sets, their outcomes will be relatively insensitive to draators or inconsistencies in the data.

On the other hand, in contrast to transaction processingy M#C operations will invoke large-
scale computations over large amounts of data, and so thieequire the ability to schedule and
coordinate many processors working together on a singl@atation. All of these differences will
lead to very different choices in DISC hardware, prograngmiodels, reliability mechanisms, and
operating policies than is is found in transaction processystems.

3.3 Grid Systems

Many research communities have embraged computingto enable a sharing of computational
resources and to maintain shared data repositories [7hoAgh the term “grid” means different
things to different people, its primary form isc@mputational gridenabling a number of com-
puters, often distributed geographically and organizetily, to work together on a single com-
putational task. The low-bandwidth connectivity betweesachines typically limits this style of
computation to problems that require little or no commutiarabetween the different subtasks.
In addition, adata gridenables a shared data repository to be distributed acrass\bar of ma-
chines, often in combination with a computational grid teigte on this data.

In many ways, our conception for DISC has similar objectitcea combined computational and
data grid: we want to provide one or more research commugnitith an actively managed repos-
itory of shared data, along with computational resourcas ¢hn create and operate on this data.
The main difference between DISC systems and grid systepiy/scal: we believe that a DISC
system benefits by locating substantial storage and cortmed power in a single facility, en-
abling much faster and much greater movement of data wikl@rsystem. This makes it possible
to support forms of computation that are completely impecatwvith grid systems. It also enables

the system to be much more aggressive in using differentd@frscheduling and load balanc-
ing to achieve interactive performance for many users, aquidvide higher degrees of reliability
and availability. We believe that we can provide more poulgsgfogramming models and better
economies of scale by taking the more centralized appra@adsburce location and management
represented by DISC.

Alex Szalay and Jim Gray stated in a commentary on 2020 Cangp|#5]:

“In the future, working with large data sets will typicallygan sending computa-
tions to the data, rather than copying the data to your watist.”

Their arguments were based on shear numbers: even the nmiwsistip predictions of network
bandwidth do not allow transferring petabyte data sets foom site to another in a reasonable
amount of time. The complexities of managing and computvey such data sets lend further
impetus to the need to build systems centered around speatiaepositories.

Over time, as multiple organizations set up DISC systems;oudd well imagine creating a grid
system with DISCs as the nodes. Through different forms td darroring and load sharing, we
could mitigate the impact of major outages due to power fegpyearthquakes, and other disasters.

4 Google: ADISC Case Study

We draw much of our inspiration for DISC from the infrasturet that companies have created
to support web search. Many credit Inktomi (later acquirgdYbBhoo) for initiating the trend
of constructing specialized, large-scale systems to supyeb search [9]. Their 300-processor
system in 1998 pointed the way to the much larger systemstosiag. Google has become the
most visible exemplar of this approach, and so we focus oin $iggtem as a case study. Their
system demonstrates how a DISC system can be designed kretiyalthough our view of DISC
is much broader and envisions a more complex usage modetGbagle’s. Our ideal system will
almost certainly not match all of the characteristics of (le®s.

Google has published a small, but high quality set of papeositatheir system design [6, 10, 13,
12, 14]. Although these papers set out a number of importamtepts in system design, Google
is fairly secretive about many specific details of their sgss. Some of what is stated below is
a bit speculative and may be wrong or out of date. Most likebth Yahoo and Microsoft have
comparable server infrastructure for supporting theirgdetools, but they are even more secretive
than Google.

Google does not disclose the size of their server infragtrac but reports range from 450,000
[21] to several million [20] processors, spread around astl®5 data centers worldwide. Ma-
chines are grouped into clusters of “a few thousand procgssath disk storage associated with
each processor. The system makes use of low-cost, comnpatity to minimize per unit costs,
including using processors that favor low power over maxmspeed. Standard Ethernet commu-
nication links are used to connect the processors. This sfytlesign stands in sharp contrast to
the exotic technology found in existing supercomputersyguthe fastest possible processors and

7

specialized, high-performance interconnection netwackasuming large amounts of power and
requiring costly cooling systems. Supercomputers havehnhigher interconnection bandwidth
between their processors, which can dramatically impr@réopmance on some applications, but
this capability comes at a very high cost.

The Google system actively maintains cached copies of el@yment it can find on the Internet
(around 20 billion), to make it possible to effectively sgathe entire Internet in response to each
guery. These copies must be updated on an ongoing basis mghhe systentrawl the web,
looking for new or updated documents. In addition to the raeuinents, the system constructs
complexindexstructures, summarizing information about the documerisrms that enable rapid
identification of the documents most relevant to a particgleery. When a user submits a query,
the front end servers direct the query to one of the clustdrere several hundred processors work
together to determine the best matching documents baséd amdex structures. The system then
retrieves the documents from their cached locations, esdatief summaries of the documents,
orders them with the most relevant documents first, and m@es which sponsored links should
be placed on the page.

Processing a single query requires a total of aroLtiél CPU cycles, not even counting the effort
spent for web crawling and index creation. This would regj@round 10 seconds of computer
time on a single machine (or more, when considering the tionalisk accesses), but by using
multiple processors simultaneously, Google generatesponse in around 0.1 seconds [6].

It is interesting to reflect on how the Google server strieegets used, as indicated by our ini-
tial observation about the level of resources Google apphieesponse to often-mundane search
queries. Some estimates say that Google earns an avera@@5fi$advertising revenue for every
guery to which it responds [17]. It is remarkable that they s®intain such a complex infrastruc-
ture and provide that level of service for such a low pricereBuwe could make it a national
priority to provide the scientific community with equallyywerful computational capabilities over
large data sets.

The Google hardware design is based on a philosophy of usimpanents that emphasize low
cost and low power over raw speed and reliability. They tgibycstay away from the highest speed
parts, because these carry a price premium and consumerggeater. In addition, whereas many
processors designed for use in servers employ expensige/ig@ mechanisms to ensure reliabil-
ity (e.g., the processors in IBM mainframes perform evempotation on two separate data paths
and compare the results), Google keeps the hardware asesamlossible. Only recently have
they added error-correcting logic to their DRAMSs. Instehey make extensive use of redundancy
and software-based reliability, following the lead set bigtbmi [9]. Multiple copies of all data
are stored, and many computations are performed redugdd@h# system continually runs diag-
nostic programs to identify and isolate faulty componemsriodically, these failed components
are removed and replaced without turning the system offth@noriginal server, the disk drives
were held in with Velcro to facilitate easy replacement.)sT$oftware-based reliability makes it
possible to provide different levels of reliability for tBfent system functions. For example, there
is little harm if the system occasionally fails to responad search query, but it must be meticulous
about accounting for advertising revenue, and it must enlsigih integrity of the index structures.

Google has significantly lower operating costs in terms afigroconsumption and human labor
than do other data centers.

Although much of the software to support web crawling anddes written at a low level, they
have implemented a programming abstraction, knowdagReduc¢l3], that supports powerful
forms of computation performed in parallel over large antewhdata. The user needs only specify
two functions: anapfunction that generates values and associated keys framdeacment, and a
reductionfunction that describes how all the data matching each pleslsey should be combined.
MapReduce can be used to compute statistics about docunterdeeate the index structures
used by the search engine, and to implement their PageRamikthim for quantifying the relative
importance of different web documents. The runtime systaplements MapReduce, handling
details of scheduling, load balancing, and error recov&®y. [

More recently, researchers at Google have devised progwagrsupport for distributed data struc-
tures they calBigTable[10]. Whereas MapReduce is purely a functional notationggating new
files from old ones, BigTable provides capabilities simitathose seen in database systems. Users
can record data in tables that are then stored and managée Bydtem. BigTable does not pro-
vide the complete set of operations supported by relatidatebases, striking a balance between
expressive power and the ability to scale for very largeluigas in a distributed environment.

In summary, we see that the Google infrastructure implesahthe features we have enumerated
for data-intensive super computing in a system tailoredvel search. More recently, they have
expanded their range of services to include email and odlicement creation. These applications
have properties more similar to transaction processing thaveb search. Google has been able
to adapt its systems to support these functions succegsdlihough it purportedly has been very
challenging for them.

5 Possible Usage Model

We envision that different research communities will engetg use DISC systems, each orga-
nized around a particular shared data repository. For el@mptural language researchers will
join together to develop and maintain corpora from a numbefiferent sources and in many

different languages, plus derived statistical and stmattonodels, as well as annotations relating
the correspondences between phrases in different langu&iber communities might maintain

finite-element meshes describing physical phenomenagsabiweb documents, etc. These dif-
ferent communities will devise different policies for howtd will be collected and maintained,

what computations can be performed and how they will be esgae, and how different people

will be given different forms of access to the data.

One useful perspective is to think of a DISC system as sujmgpat powerful form of database.
Users can invoke operations on the database that can beesgueties or can require complex
computations accessing large amounts of data. Some woutddakeonly, while others would
create or update the stored data. As mentioned earlier, Wapate that most applications of
DISC will not have to provide the strong consistency guagastfound in the database support for

transactions processing.

Unlike traditional databases, which support only limitediis of operations, the DISC operations
could include user-specified functions in the style of GetsgMapReduce programming frame-
work. As with databases, different users will be given défe authority over what operations can
be performed and what modifications can be made.

6 Constructing a General-Purpose DISC System

Suppose we wanted to construct a general purpose DISC sifséoould be made available to the
research community for solving data-intensive problenuehS system could range from modest,
say 1000 processors, to massive, say 50,000 processors@r Vi@ have several models for how
to build large-scale systems, including current superagerg, transaction processing systems,
and search-engine systems.

Assembling a system that can perform web search could boitddandard hardware and a growing
body of available software. The open source prdigatoopimplements capabilities similar to the

Google file system and support for MapReduce. Indeed, ategarproject to provide this capa-

bility as soon as possible would be worth embarking on, sttligauniversity research community
can become more familiar with DISC systems and their apptina. Beyond web search, a sys-
tem that performs web crawling and supports MapReduce waellgseful for many applications

in natural language processing and machine learning.

Scaling up to a larger and more general purpose machine wegldre a significant research
effort, but we believe the computer science community wenhtbrace such an effort as an exciting
research opportunity. Below we list some of the issues taloleessed

e Hardware DesignThere are a wide range of choices here, from assembling ansymit of
low-cost commodity parts, a la Google, to using off-thelsbystems designed for data cen-
ters, to using supercomputer-class hardware, with mormeegsing power, memory, and disk
storage per processing node, and a much higher bandwidticamnection network. These
choices could greatly affect the system cost, with pricegirag between around $2,000 to
$10,000 per node. In any case, the hardware building blaekalbavailable commercially.
One fundamental research question is to understand theoffadetween the different hard-
ware configurations and how well the system performs onmiffeapplications. Google has
made a compelling case for sticking with low-end nodes fob wearch applications, but
we need to consider other classes of applications as wediddiition, the Google approach
requires much more complex system software to overcomerttiiedl performance and re-
liability of the components. That might be fine for a companmgtthires computer science
PhDs at the rate Google does, and for which saving a few dgdkarnode can save the com-
pany millions, but it might not be the most cost-effectivéusion for a smaller operation
when personnel costs are considered.

e Programming Model.As Google has demonstrated with MapReduce and BigTables the

10

should be a small number of program abstractions that eneleles to specify their desired
computations at a high level, and then the runtime systeraldhwovide an efficient and
reliable implementation, handling such issues as schaglulbad balancing, and error re-
covery. Some variations of MapReduce and BigTable woulddm&l gstarts, but it is likely
that multiple such abstractions will be required to suppleetfull range of applications we
propose for the system, and for supporting active collactiod management of different
forms of data.

One important software concept for scaling parallel conmgubeyond 100 or so proces-
sors is to incorporate error detection and recovery intortimime system and to isolate
programmers from both transient and permanent failureswehras possible. Historically,
most work on and implementations of parallel programmirspages that the hardware op-
erates without errors. By assuming instead that every ctatipa or information retrieval
step can fail to complete or can return incorrect answers;amedevise strategies to correct
or recover from errors that allow the system to operate nantisly. Work on providing
fault tolerance in a manner invisible to the applicationgseanmer started in the context of
grid-style computing [5], but only with the advent of MapReeé [13] and in recent work by
Microsoft [19] has it become recognized as an importantlo#ipafor parallel systems.

We believe it is important to avoid the tightly synchronizeatallel programming notations
used for current supercomputers. Supporting these foheesytstem to use resource man-
agement and error recovery mechanisms that would be hantetgrate with the interactive
scheduling and flexible error handling schemes we envidimtead, we want programming
models that dynamically adapt to the available resourcdstlaat perform well in a more
asynchronous execution environment. Parallel prograrssdan a task queue model [8] do
a much better job of adapting to available resources, andehable error recovery by re-
execution of failed tasks. For example, Google’s impleragom of MapReduce partitions
a computation into a number of map and reduce tasks that enesttheduled dynamically
onto a number of “worker” processors. They cite as typicahpeeters having 200,000 map
tasks, 4,000 reduce tasks, and 2,000 workers [12].

Resource ManagemenA very significant set of issues concern how to manage the com-
puting and storage resources of a DISC system. We want it &avdiéable in an interactive
mode and yet able to handle very large-scale computing.tdaekaddition, even though it
would be feasible to provide multiple petabytes of storageje scientific applications, such
as astronomy, could easily soak up all of this. Differentrapphes to scheduling proces-
sor and storage resources can be considered, with the éplgnigions depending on the
programming models and reliability mechanisms to be supgor

As described earlier, we anticipate multiple, distinciesash communities to make use of
DISC systems, each centered around a particular colleofi@ata. Some aspects of the
system hardware and support software will be common amoegetbommunities, while
others will be more specialized.

Supporting Program DevelopmenbDeveloping parallel programs is notoriously difficult,
both in terms of correctness and to get good performance.eSurthese challenges can

11

be reduced by using and supporting high-level programmiosgractions, but some issues,
especially those affecting performance, affect how appibe programs should be written.

We must provide software development tools that allow abpeograms to be written easily,
while also enabling more detailed monitoring, analysisl, @ptimization of program perfor-
mance. Most likely, DISC programs should be written to bdf“sptimizing,” adapting
strategies and parameters according to the available gsincg storage, and communica-
tions resources, and also depending on the rates and nati@iény components. Hope-
fully, much of this adaptation can be built into the undertyiruntime support, but some
assistance may be required from application programmers.

e System SoftwardBesides supporting application programs, system softigarequired for
a variety of tasks, including fault diagnosis and isolatigystem resource control, and data
migration and replication. Many of these issues are beimyess$ed by the Self-* systems
project at Carnegie Mellon [2], but the detailed solutioni$aepend greatly on the specifics
of the system organization.

Designing and implementing a DISC system requires careiuicleration of a number of issues,

and a collaboration between a number of disciplines witlbimguter science and computer engi-
neering. We are optimistic that we can form a team of reseas@mnd arrive at a successful system
design. After all, Google and its competitors provide ars&rice proof that DISC systems can be
implemented using available technology.

Over the long term, there are many research topics that cemuddidressed by computer scientists
and engineers concerning DISC systems. The set of isstexhieviously will all require ongoing
research efforts. Some additional topics include:

e How should the processors be designed for use in cluster imegh Existing micropro-
cessors were designed to perform well as desktop machireae 8f the design choices,
especially the exotic logic used to exploit instructiomdeparallelism, may not make the
best use of hardware and energy for systems that can makergusa of data parallelism.
For example, a study by researchers at Google [6], indidhidheir most critical compu-
tations did not perform well on existing microprocessorsrhaps the chip area and power
budgets would be better served by integrating many simplecgssors cores on a single
chip [4].

e How can we effectively support different scientific commnesmin their data management
and applications™learly, DISC works for web search applications, but we rteezkplore
how far and how well these ideas extend to other data-interssciplines.

e Can we radically reduce the energy requirements for largales systemsThe power needs
of current systems are so high that Google has set up a majofacdity in Oregon, while
Microsoft and Yahoo are building ones in Eastern Washingtobe located near inexpensive
hydroelectric power [21]. Would a combination of betterdvaare design and better resource
management enable us to reduce the required power by a &ddtBror more?

12

e How do we build large-scale computing systems with an appatgbalance of performance
and cost?The IT industry has demonstrated that they can build andabpeery large and
complex data centers, but these systems are very expensiugld (both machines and
infrastructure) and operate (both personnel and energg)n&®d to create a framework by
which system designers can rigorously evaluate differesigh alternatives in terms of their
reliability, cost, and ability to support the desired foraisomputation.

e How can very large systems be constructed given the realitieccomponent failures and
repair times?Measurements indicate that somewhere between 4% and 7% disks in a
data center must be replaced each year [16, 24]. In a systdnb@000 disks, that means
that disks will be failing every few hours. Even once a new iminstalled, it can take
multiple hours to reconstruct its contents from the redabhdapies on other disks, and so
the system will always be involved in data recovery acegti Furthermore, we run the
risk that all copies of some data item could be lost or cogdmtue to multiple component
failures. Creating reliable systems of such scale will iegcareful analysis of failure modes
and frequencies, and devising a number of strategies fagatiing the effects of failures. We
will require ways to assess the levels of criticality of diffnt parts of the data sets in order
to apply differential replication and recovery strategies

e Can we support a mix of computationally intensive jobs withorequiring interactive re-
sponse?In describing our ideas to users of current supercomputeis,possibility has
proved to be the one they find the most intriguing. It requites ways of structuring and
programming systems, and new ways to schedule their resurc

e How do we control access to the system while enabling shar@gr system will provide
a repository of data that is shared by many users. We canmdement security by simply
imposing complete isolation between users. In additionywart more sophisticated forms
of access control than simply whether a user can read or swoitee part of the data, since
improper updating of the data could impede the efforts oéptlsers sharing the data. We
must guard against both accidental and malicious corraptio

e Can we deal with bad or unavailable data in a systematic wayRen operating on very
large data sets distributed over many disk drives, it isitable that some of the data will
be corrupted or will be unavailable in a timely manner. Mapplacations can tolerate small
amounts of data loss, and so they should simply skip oveupted records, as is done
in Google’s implementation of MapReduce [13], and they $ihdoe allowed to proceed
when enough data have been retrieved. Providing the riglafseechanisms to allow the
application programmer to implement such strategies whdataining acceptable accuracy
requires ways to quantify acceptable data loss and clewtgrlef the application-program
interface.

e Can high performance systems be built from heterogenoup@oemts?Traditionally, most
high-performance systems have been built using identicaigssors, disks, etc., in order
to simplify issues of scheduling, control, and maintenar8ech homogeneity is required

13

to support the tightly synchronized parallel programminggdeis used in these systems, but
would not be required for a more loosely coupled task queudemoAllowing heteroge-
nous components would enable incremental upgrading ofysters, adding or replacing a
fraction of the processors or disks at a time.

Although the major search engine companies are examinimy withese issues with their own

systems, it is important that the university research conitywgets involved. First, there are

many important disciplines beyond web search and relatettes that can benefit from the DISC

principles. Second, academic researchers are uniquelypsguto bring these issues into a public
forum where they can be systematically and critically extdd by scholars from around the world.
Companies are too driven by deadlines and too wary of piagetteir proprietary advantages to
serve this role.

In addition to being able to contribute to the progress of@I&cademics need to engage in this
area to guarantee their future relevance. It is importaaitdr students learn about the systems
they will encounter in their careers, and that our reseamtk\wddresses problems of real impor-
tance to the IT industry. There is a large and growing gap &éetvthe scale of systems found in
academia compared to those of the numerous data centechwaglsupporting web search, elec-
tronic commerce, and business processes. Although somersities have large-scale systems
in the form of supercomputers, only a small subset of acatlenmputer scientists are involved
in high performance computing, and these systems have Véeyetht characteristics from com-
mercial data centers. Bringing DISC projects into univgrenvironments would provide new
opportunities for research and education that would haestdielevance to the current and future
IT industry.

7 Turning ldeas into Reality

We are convinced that DISC provides an important area foreusity-based research and educa-
tion. It could easily spawn projects at multiple institutgoand involve researchers in computer
engineering, computer science, computational scienag,oétmer disciplines that could benefit
from the availability of DISC systems.

How then should we proceed? There are many possible patbkdw.finvolving efforts of widely
varying scale and scope. Choosing among these will depetige@vailability of research funding,
how many institutions will be involved, and how collabovattheir efforts will be. Rather than pin
down a specific plan, we simply describe possible options.her

One factor is certain in our planning—there are many reseascwho are eager to get involved.
| have spoken with researchers in a number of companies amdrsities, and there is a clear
consensus that there are ample opportunities for excitmg vanging across the entire spectrum
of computing research disciplines.

14

7.1 Developing a Prototype System

One approach is to start by constructing a prototype systeanomnd 1000 processing nodes.
Such a system would be large enough to demonstrate the parice potential of DISC and to

encounter some of the challenges in resource managemeatrandhandling. For example, if we

provision each node with at least one terabyte of storagahyée disks will be available within the

next year or so), the system would have a storage capacityeoiome petabyte. This would easily
provide enough storage to hold replicated copies of evecyihent available over the worldwide
web. By having two dual-core processors in each node, thatirgg machine would have 4,000

total processor cores.

In order to support both system and application researdengtaneously, we propose construct-
ing a system that can be divided into multiple partitionsevethe different partitions could operate
independently without any physical reconfiguration of thechines or interconnections.

Typically, we would operate two types of partitions: somedpplication development, focusing
on gaining experience with the different programming teghes, and others for systems research,
studying fundamental issues in system design. This maltitpn strategy would resolve the age-
old dilemma of how to get systems and applications reseesalierking together on a project.
Application developers want a stable and reliable machinesystems researchers keep changing
things.

For the program development partitions, we would initiake available software, such as the open
source code from the Hadoop project, to implement the filéesysand support for application
programming.

For the systems research partitions, we would create ourdasign, studying the different layers
of hardware and system software required to get high pegoom and reliability. As mentioned
earlier, there is a range of choices in the processor, sto@wyl interconnection network design
that greatly affects the system cost. During the prototypimases of the project, we propose using
relatively high-end hardware—we can easily throttle baskponent performance to study the
capabilities of lesser hardware, but it is hard to condupeerents in the reverse direction. As
we gain more experience and understanding of tradeoffsdegtiwardware performance and cost,
and as we develop better system software for load balancidg@aor handling, we may find that
we can build systems using lower-cost components.

Over time, we would migrate the software being developedaasqs the systems research to the
partitions supporting applications programming. In purguhis evolutionary approach, we must
decide what forms of compatibility we would seek to mainta®ur current thinking is that any
compatibility should only be provided at a very high levei¢cks that an application written in terms
of MapReduce and other high-level constructs can contmogérate with minimal modifications,
but complete compatibility is not guaranteed. Otherwise, systems researchers would be overly
constrained to follow nearly the exact same paths set byiegiprojects.

We can estimate the hardware cost of a prototype machinel lmesper-node costs. Our current
thinking is that it would be best to use powerful nodes, eattsisting of a high-end rack-mounted
server, with one or two multicore processors, several ty@esbof disk, and one or more high-

15

performance communications interfaces. Going toward itpe &nd would create a more general
prototyping facility. We estimate such nodes, plus the obshe high performance communica-
tion network, would cost around $10,000, yielding a harearst of around $10 million for the
machine.

In addition to the cost of procuring hardware, we would incosts for personnel, infrastructure,
and energy. Since one goal is to develop and maintain sateBsufficiently high quality to
provide a reliable computing platform, we must plan for géestaff (i.e., not just graduate students
and faculty), including software architects, programmprsject managers, and system operators.
The exact costs depend to a large extent on issues such astiveevork is performed, where the
system is located, and how many researchers get involved.

7.2 Jump Starting

Instead of waiting until hardware can be funded, procured, iastalled, we could begin appli-
cation development by renting much of the required computifrastructure. Recently, Amazon
has begun marketing network-accessible storage, viantpl8iStorage System (S3) service, and
computing cycles via its Elastic Computing Cloud (EC2) smy11]. The current pricing for stor-
age is $0.15 per gigabyte per day ($1,000 per terabyte pey, yath addition costs for reading or
writing the data. Computing cycles cost $0.10 per CPU ho87 {$per year) on a virtual Linux
machine. As an example, it would be possible to have 100 psace running continuously, main-
taining a 50 TB data set, updated at a rate of 1 TB per day attao€&214,185 per year. That,
for example, would be enough to collect, maintain, and perfoomputations over a substantial
fraction of the available web documents.

We view this rental approach as a stopgap measure, not agjddon solution. For one thing,
the performance of such a configuration is likely to be muel dan what could be achieved by
a dedicated facility. There is no way to ensure that the S8 datl the EC2 processors will be in
close enough proximity to provide high speed access. Irtiaddive would lose the opportunity to
design, evaluate, and refine our own system. Neverthelessigw this capability as an intriguing
direction for computing services and a way to move forwandy.

7.3 Scaling Up

An important goal in building a 1000-node prototype wouldtbaletermine the feasibility and
study the issues in constructing a much larger system, s@pQ@@o 50,000 nodes. Scaling up to
such a large system only makes sense if we can clearly deratmgte ability of such a system
to solve problems having high societal importance, and tsalmore effectively than would be
possible with other approaches. We would also need to utashelsvhether it is best to create a
small number of very large machines, a larger number of maréast machines, or some combi-
nation of the two. Having the 1000-node prototype would énab to study these issues and make
projections on the scalability and performance of our desig

16

8 Conclusion

As we have described the ideas behind DISC to other researetehave found great enthusiasm
among both potential system users and system developerbeNgge it is time for the computer
science community to step up their level of thinking aboetplower of data-intensive computing
and the scientific advances it can produce. Just as web deasdiecome an essential tool in the
lives of people ranging from schoolchildren to academieaeshers to senior citizens, we believe
that DISC systems could change the face of scientific reseaocdwide.

We are also confident that any work in this area would havet gmgaact on the many industries
that benefit from more powerful and more capable informatemhnology. In domains ranging
from retail services to health care delivery, vast amouhtiata are being collected and analyzed.
Information can be extracted from these data that makes aoiep better serve their customers
while running more efficiently and that detects long termltfettends in different populations.
The combination of sensors and networks to collect datapiesive disks to store data, and the
benefits derived by analyzing data causes our society todbeasingly data intensive. DISC will
help realize the potential all these data provides.

Universities cannot come close to matching the capitalsiments that industry is willing to un-
dertake. In 2006, Microsoft announced plans to invest $hiin server infrastructure for 2007
[21], and Google $1.5 billion. It should be realized, thouttat these companies are trying to
serve the needs of millions of users, while we are only supgphundreds or thousands. In addi-
tion, the federal government spends billions of dollarsygar for high-performance computing.
Over the long term, we have the opportunity to help that mdrmejnvested in systems that bet-
ter serve the needs of their users and our society. Thushgétt/olved in DISC is within the
budgetary reach of academic computer scientists.

In this research area, universities are in the unusualiposf following a lead set by industry,
rather than the more normal reverse situation. Google andoinpetitors have demonstrated a
new style of computing, and it is important for universitiesadopt and build on these ideas. We
have the ability to develop and evaluate ideas systemigti@atl without proprietary constraints.
We can apply these ideas to domains that are unlikely to pedmy commercial value in the
near term, while also generating technology that has leng-economic impact. We also have a
duty to train students to be at the forefront of computernebbgy, a task we can only do by first
moving to the frontier of computer systems ourselves.

References

[1] Google tops translation rankinglews@NaturgNov. 6, 2006.

[2] M. Abd-EI-Malek, W. V. Courtright Il, C. Cranor, G. R. Gaer, J. Hendricks, A. J. Kloster-
man, M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivann@asiohideen, J. D. Strunk,
E. Thereska, M. Wachs, and J. J. Wylie. Early experienceshenaurney towards self-*
storage.lEEE Data Eng. Bulletin29(3):55-62, 2006.

17

[3] V. Akcelik, J. Bielak, G. Biros, |. Epanomeritakis, A. fandez, O. Ghattas, E. J. Kim,
J. Lopez, D. R. O’Hallaron, T. Tu, and J. Urbanic. High resiolu forward and inverse
earthquake modeling on terasacale computerBrdceedings of SC200Blovember 2003.

[4] K. Asanovic, R. Bodik, B. C. Catanzo, J. J. Gebis, P. Humslsa K. Keutzer, D. A. Patter-
son, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. YelicRhe landscape of parallel
computing research: A view from Berkeley. Technical Rept®B/EECS-2006-183, U. C.,
Berkeley, December 18 2006.

[5] O.Babadglu, L. Alvisi, A. Amoroso, R. Davoli, and L. A. Giaioi. Paralex: an environment
for parallel programming in distributed systems. 6iin ACM International Conference on
Supercomputingpages 178-187, 1992.

[6] L. A. Barroso, J. Dean, and U. Holze. Web search for ag@iafhe Google cluster architec-
ture. IEEE Micro, 23(2):22-28, 2003.

[7] F. Berman, G. Fox, and T. Hey. The Grid: Past, present,fandge. In F. Berman, G. C.
Fix, and A. J. G. Hey, editor&rid Computing: Making the Global Infrastructure a Reality
pages 9-50. Wiley, 2003.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. LeisetdénH. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime systemACM SIGPLAN Notices30(8):207-216,
August 1995.

[9] E. A. Brewer. Delivering high availability for Inktomiesarch engines. In L. M. Haas and
A. Tiwary, editors,ACM SIGMOD International Conference on Management of Dpéaye
538. ACM, 1998.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WaJla¢hBurrows, T. Chandra,
A. Fikes, and R. E. Gruber. BigTable: A distributed storagstesm for structured data. In
Operating Systems Design and Implementat2io6.

[11] T. Claburn. In Web 2.0 keynote, Jeff Bezos touts Amagzam-demand servicegiformation
Week Apr. 17, 2007.

[12] J. Dean. Experiences with MapReduce, an abstractiolafge-scale computation. Inter-
national Conference on Parallel Architecture and CompdatTechniquesACM, 2006.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified dataepsong on large clusters. In
Operating Systems Design and Implementat&fi94.

[14] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google fisteam. InSymposium on
Operating Systems Principlgsages 29-43. ACM, 2003.

[15] J. Gray. The transaction concept: Virtues and limoiasi. InVery Large Database Confer-
ence pages 144-154, 1981.

18

[16] J. Gray and C. van Ingen. Empirical measurements of tlidire rates and error rates.
Technical Report MSR-TR-2005-166, Microsoft Researcl®520

[17] M. Helft. A long-delayed ad system has Yahoo crossiadiitgers.New York Timeseb. 5,
2007.

[18] T. Hey and A. Trefethen. The data deluge: an e-Sciencgppetive. In F. Berman, G. C.
Fix, and A. J. G. Hey, editor&rid Computing: Making the Global Infrastructure a Reality
pages 809-824. Wiley, 2003.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. ad: Distributed data-parallel
programs from sequential building blocks. BaroSys 200,/March 2007.

[20] J. Markoff. Sun and IBM offer new class of high-end sesvélew York TimgsApr. 26, 2007.

[21] J. Markoff and S. Hansell. Hiding in plain sight, Googkeeks more poweNew York Times
June 14, 2006.

[22] T. M. Mitchell, R. Hutchinson, R. S. Niculescu, F. PegiX. Wang, M. Just, and S. Newman.
Learning to decode cognitive states from brain imadaschine Learning57(1-2):145-175,
October 2004.

[23] L. Ren, G. Shakhnarovich, J. K. Hodgins, H. Pfister, and®a. Learning silhouette features
for control of human motionACM Transactions on Graphic84(4), October 2005.

[24] B. Schroeder and G. A. Gibson. Disk failures in the reafld: What does an MTTF of
1,000,000 hours mean to you? FAST'07: Fifth USENIX Conference on File and Storage
Technlogies2007.

[25] A. Szalay and J. Gray. Science in an exponential walature 440, March 23 2006.

[26] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutzd &. J. Brunner. Designing and
mining multi-terabyte astronomy archives: The Sloan Rigiky Survey. INSIGMOD In-
ternational Conference on Management of Dadages 451-462. ACM, 2000.

A Acknowledgments

A number of people have contributed their ideas and helpdereny ideas about DISC. The
following is a partial list of people who have been espegia#ipful.

e Carnegie Mellon University

— Guy Blelloch, for insights on parallel programming

— Jamie Callan and Jaime Carbonell, for explaining the reguénts and opportunities
for language translation and information retrieval.

19

— Greg Ganger and Garth Gibson, for all aspects of DISC sysesigd and operation
— Peter Lee, Todd Mowry, and Jeannette Wing, for high-levelguce and support
— Tom Mitchell, for insights into the needs and capabilitiésnachine learning

— David O’Hallaron, for devising the domain-specific databpsrspective of DISC op-
eration

— Anthony Tomasic, for information on current commercialadeg¢nters.

Other universities

— David Patterson (Berkeley), Ed Lazowska (Washington) meights into the role of
university research in this area.

— Tom Andersen (Washington), regarding how this projectesl#o the proposed GENI
project.

Google

— Urs Holzle, for convincing us that it would be feasible fanversities to build systems
capable of supporting web crawling and search.

— Andrew Moore, for advice on the resources required to craateoperate a DISC
system

Intel

— George Cox, for describing how important cluster compuliag become to Intel.

Microsoft

— Sailesh Chutani, for ideas on some major challenges faanggiscale system design,
such as the high power requirements.

— Tony Hey, for a perspective on scientific computing

— Roy Levin, for a historical perspective and for calling fomare precise characteriza-
tion of the nature of problems suitable for DISC.

— Rick Rashid, for a “reality check” on the challenges of crggind maintaining large-
scale computing facilities

e Sun

— Jim Waldo for encouraging us to think about heterogenougsys

o Elsewhere

— Bwolen Yang, for an appreciation of the need to create systéat are resilient to
failures.

— Tom Jordan (Southern California Earthquake Center), figints on operating a multi-
institutional, data and computation-intensive project.

20

