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Abstract

Google and its competitors have created a new class of large-scale computer systems to support In-
ternet search. These “Data-Intensive Super Computing” (DISC) systems differ from conventional
supercomputers in their focus on data: they acquire and maintain continually changing data sets, in
addition to performing large-scale computations over the data. With the massive amounts of data
arising from such diverse sources as telescope imagery, medical records, online transaction records,
and web pages, DISC systems have the potential to achieve major advances in science, health care,
business efficiencies, and information access. DISC opens up many important research topics in
system design, resource management, programming models, parallel algorithms, and applications.
By engaging the academic research community in these issues, we can more systematically and in
a more open forum explore fundamental aspects of a societally important style of computing.
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When a teenage boy wants to find information about his idol by using Google
with the search query “Britney Spears,” he unleashes the power of several hundred
processors operating on a data set of over 200 terabytes. Whythen can’t a scientist
seeking a cure for cancer invoke large amounts of computation over a terabyte-sized
database of DNA microarray data at the click of a button?

Recent papers on parallel programming by researchers at Google [13] and Mi-
crosoft [19] present the results of using up to 1800 processors to perform computations
accessing up to 10 terabytes of data. How can university researchers demonstrate the
credibility of their work without having comparable computing facilities available?

1 Background

This document describes an evolving set of ideas about a new form of high-performance computing
facility that places emphasis ondata, rather than raw computation, as the core focus of the system.
The system is responsible for the acquisition, updating, sharing, and archiving of the data, and
it supports sophisticated forms of computation over its data. We refer to such such system as
Data-Intensive Super Computersystems, or “DISC.” We believe that DISC systems could yield
breakthroughs in a number of scientific disciplines and other problems of societal importance.

Much of our inspiration for DISC comes from the server infrastructures that have been developed
to support search over the worldwide web. Google and its competitors have created DISC systems
providing very high levels of search quality, response time, and availability. In providing this
service, they have created highly profitable businesses, enabling them to build ever larger and
more powerful systems. We believe the style of computing that has evolved to support web search
can be generalized to encompass a much wider set of applications, and that such systems should
be designed and constructed for use by the larger research community.

DISC opens up many important research topics in system design, resource management, program-
ming models, parallel algorithms, and applications. By engaging the academic research commu-
nity in these issues, we can more systematically and in a moreopen forum explore fundamental
aspects of a societally important style of computing. University faculty members can also incor-
porate the ideas behind DISC into their courses, ensuring that students will learn material that will
be increasingly important to the IT industry.

Others have observed that scientific research increasinglyrelies on computing over large data sets,
sometimes referring to this as “e-Science” [18]. Our claim is that these applications call for a
new form of system design, where storage and computation arecolocated, and the systems are
designed, programmed, and operated to enable users to interactively invoke different forms of
computation over large-scale data sets. In addition, our entire world has been increasingly data
intensive, as sensor, networking, and storage technology makes it possible to collect and store
information ranging from retail transactions to medical imagery. DISC systems will enable us
to create new efficiencies and new capabilities well beyond those already achieved by today’s
information technology.
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This paper outlines the case for DISC as an important direction for large-scale computing systems.
It also argues for the need to create university research andeducational projects on the design,
programming, and applications of such systems. Many peoplehave contributed and helped refine
the ideas presented here, as acknowledged in Appendix A.

1.1 Motivation

The following applications come from very different fields,but they share in common the central
role of data in their computation:

• Web search without language barriers.The user can type a query in any (human) language.
The engine retrieves relevant documents from across the worldwide web in all languages
and translates them into the user’s preferred language. Keyto the translation is the creation
of sophisticated statistical language models and translation algorithms. The language model
must be continuously updated by crawling the web for new and modified documents and
recomputing the model. By this means, the translation engine will be updated to track newly
created word patterns and idioms, such as “improvised explosive devices.”

Google already demonstrated the value of applying massive amounts of computation to lan-
guage translation in the 2005 NIST machine translation competition. They won all four
categories of the competition in the first year they entered,translating Arabic to English and
Chinese to English [1]. Their approach was purely statistical. They trained their program us-
ing, among other things, multilingual United Nations documents comprising over 200 billion
words, as well as English-language documents comprising over one trillion words. No one
in their machine translation group knew either Chinese or Arabic. During the competition,
they applied the collective power of 1000 processors to perform the translations.

• Inferring biological function from genomic sequences.Increasingly, computational biology
involves comparing genomic data from different species andfrom different organisms of the
same species to determine how information is encoded in DNA.Ever larger data sets are be-
ing collected as new sequences are discovered, and new formsof derived data are computed.
The National Center for Biotechnology Innovation maintains the GenBank database of nu-
cleotide sequences, which has been doubling in size every 10months. As of August, 2006,
it contained over 65 billion nucleotide bases from more than100,000 distinct organisms.

Although the total volume of data is less than one terabyte, the computations performed are
very demanding. In addition, the amount of genetic information available to researchers
will increase rapidly once it becomes feasible to sequence the DNA of individual organisms,
for example to enablepharmacogenomics, predicting a patient’s response to different drugs
based on his or her genetic makeup.

• Predicting and modeling the effects of earthquakes. Scientists are creating increasingly de-
tailed and accurate finite-element meshes representing thegeological properties of the earth’s
crust, enabling them to model the effect of a geological disturbance and the probabilities of
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earthquakes occurring in different regions of the world [3]. These models are continually up-
dated as actual earthquake data are analyzed and as more sophisticated modeling techniques
are devised. The models are an important shared resource among geologists, computational
scientists, and civil engineers.

• Discovering new astronomical phenomena from telescope imagery data.Massive amounts
of imagery data are collected daily, and additional resultsare derived from computation
applied to that data [26]. Providing this information in theform of a shared global database
would reduce the redundant storage and computation required to maintain separate copies.

• Synthesizing realistic graphic animations.The system stores large amounts of motion cap-
ture data and uses this to generate high quality animations [23]. Over time, the motion data
can be expanded and refined by capturing more subjects performing more tasks, yielding
richer and more realistic animations.

• Understanding the spatial and temporal patterns of brain behavior based on MRI data.
Information from multiple data sets, measured on differentsubjects and at different time
periods, can be jointly analyzed to better understand how brains function [22]. This data
must be updated regularly as new measurements are made.

These and many other tasks have the properties that they involve collecting and maintaining very
large data sets and applying vast amounts of computational power to the data. An increasing num-
ber ofdata-intensivecomputational problems are arising as technology for capturing and storing
data becomes more widespread and economical, and as the web provides a mechanism to retrieve
data from all around the world. Quite importantly, the relevant data sets are not static. They must
be updated on a regular basis, and new data derived from computations over the raw information
should be updated and saved.

2 Data-Intensive Super Computing

We believe that these data-intensive computations call fora new class of machine we term adata-
intensive super computingsystem, abbreviated “DISC”. A DISC system is a form of supercom-
puter, but it incorporates a fundamentally different set ofprinciples than mainstream supercomput-
ers. Current supercomputers are evaluated largely on the number of arithmetic operations they can
supply each second to the application programs. This is a useful metric for problems that require
large amounts of computation over highly structured data, but it also creates misguided priorities
in the way these machines are designed, programmed, and operated. The hardware designers pack
as much arithmetic hardware into the systems they can, disregarding the importance of incorporat-
ing computation-proximate, fast-access data storage, andat the same time creating machines that
are very difficult to program effectively. The programs mustbe written in terms of very low-level
primitives, and the range of computational styles is restricted by the system structure. The systems
are operated using a batch-processing style, representinga trade off that favors high utilization of
the computing resource over the productivity of the people using the machines.
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Below, we enumerate the key principles of DISC and how they differ from conventional supercom-
puter systems.

1. Intrinsic, rather than extrinsic data.Collecting and maintaining data are the duties of the
system, rather than for the individual users. The system must retrieve new and updated
information over networks and perform derived computations as background tasks. Users
can use rich queries based on content and identity to access the data. Reliability mechanisms
(e.g., replication, error correction) ensure data integrity and availability as part of the system
function. By contrast, current supercomputer centers provide short-term, large-scale storage
to their users, high-bandwidth communication to get data toand from the system, and plenty
of computing power, but they provide no support for data management. Users must collect
and maintain data on their own systems, ship them to the supercomputer for evaluation, and
then return the results back for further analysis and updating of the data sets.

2. High-level programming models for expressing computations over the data.Current super-
computers must be programmed at a very low level to make maximal use of the resources.
Wresting maximum performance from the machine requires hours of tedious optimization.
More advanced algorithms, such as ones using sophisticatedand irregular data structures,
are avoided as being too difficult to implement even though they could greatly improve ap-
plication performance. With DISC, the application developer is provided with powerful,
high-level programming primitives that express natural forms of parallelism and that do not
specify a particular machine configuration (e.g., the number of processing elements). It is
then the job of the compiler and runtime system to map these computations onto the machine
efficiently.

3. Interactive access.DISC system users are able to execute programs interactively and with
widely varying computation and storage requirements. The system responds to user queries
and simple computations on the stored data in less than one second, while more involved
computations take longer but do not degrade performance forthe queries and simple com-
putations of others. By contrast, existing supercomputersare operated in batch mode to
maximize processor utilization. Consequently, users generally maintain separate, smaller
cluster systems to do their program development, where greater interaction is required. In-
herently interactive tasks, such as data visualization, are not well supported. In order to
support interactive computation on a DISC system, there must be some over-provisioning
of resources. We believe that the consequent increased costof computing resources can be
justified based on the increased productivity of the system users.

4. Scalable mechanisms to ensure high reliability and availability. Current supercomputers
provide reliability mainly by periodically checkpointingthe state of a program, and then
rolling back to the most recent checkpoint when an error occurs. More serious failures re-
quire bringing the machine down, running diagnostic tests,replacing failed components, and
only then restarting the machine. This is an inefficient, nonscalable mechanism that is not
suitable for interactive use. Instead, we believe a DISC system should employ nonstop reli-
ability mechanisms, where all original and intermediate data are stored in redundant forms,
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and selective recomputation can be performed in event of component or data failures. Fur-
thermore, the machine should automatically diagnose and disable failed components; these
would only be replaced when enough had accumulated to impairsystem performance. The
machine should be available on a 24/7 basis, with hardware and software replacements and
upgrades performed on the live system. This would be possible with a more distributed and
less monolithic structure than is used with current supercomputers.

3 Comparison to Other Large-Scale Computer Systems

There are many different ways large-scale computer systemsare organized, but DISC systems have
a unique set of characteristics. We compare and contrast some of the other system types.

3.1 Current Supercomputers

Although current supercomputers have enabled fundamentalscientific breakthroughs in many dis-
ciplines, such as chemistry, biology, physics, and astronomy, large portions of the scientific world
really have not benefited from the supercomputers availabletoday. For example, most computer
scientists make use of relatively impoverished computational resources—ranging from their lap-
tops to clusters of 8–16 processors. We believe that DISC systems could serve a much larger part
of the research community, including many scientific areas,as well as other information-intensive
disciplines, such as public health, political science, andeconomics. Moreover, even many of
the disciplines that are currently served by supercomputers would benefit from the flexible usage
model, the ease of programming, and the managed data aspectsof DISC.

3.2 Transaction Processing Systems

Large data centers, such as those maintained by financial institutions, airlines, and online retailers,
provide another model for large-scale computing systems. We will refer to these astransaction
processing systems, since the term “data center” is too generic. Like a DISC system, the creation
and maintenance of data plays a central role in how a transaction processing system is conceived
and organized. High data availability is of paramount importance, and hence the data are often
replicated at geographically distributed sites. Precise consistency requirements must be main-
tained, for example, so that only one person can withdraw thelast dollar from a joint bank account.
The creation and accessing of data at transaction processing systems occur largely in response to
single transactions, each performing limited computationover a small fraction of the total data.

The strong set of reliability constraints placed on transaction systems [15], and the potentially
severe consequences of incorrect operation (e.g., if the electronic banking system does not maintain
consistent account balances), tend to narrow the range of implementation options and encourage
fairly conservative design approaches. Large amounts of research have been done on increasing the
amount of concurrency through distribution and replication of the data, but generally very complex
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and expensive systems are required to meet the combined goals of high capacity, availability, and
reliability.

Search engines have very different characteristics from transaction processing systems that make
it easier to get high performance at lower cost. A search engine need not track every change to
every document on the web in real time. Users are satisfied if they have access to a reasonably
large fraction of the available documents, and that the documents are reasonably up to date. Thus,
search can be performed on cached copies of the web, with the updating of the caches performed
as a background activity. In addition, the updating of the state is not done in response to individual
transactions, but rather by an independent web crawling process. This decoupling between the
agents that read data and those that update them makes it mucheasier to scale the size of the
systems at a reasonable cost.

We envision that most DISC systems will have requirements and characteristics more similar to
those of search engines than to transaction processing systems. Data sets for scientific applications
typically have higher needs for accuracy and consistency than do search engines, but we anticipate
they will not be updated as often or by as many agents as is the case for a transaction processing
system. In addition, many DISC applications may be able to exploit relaxed consistency constraints
similar to those found with web search. For those that extract statistical patterns from massive data
sets, their outcomes will be relatively insensitive to small errors or inconsistencies in the data.

On the other hand, in contrast to transaction processing, many DISC operations will invoke large-
scale computations over large amounts of data, and so they will require the ability to schedule and
coordinate many processors working together on a single computation. All of these differences will
lead to very different choices in DISC hardware, programming models, reliability mechanisms, and
operating policies than is is found in transaction processing systems.

3.3 Grid Systems

Many research communities have embracedgrid computingto enable a sharing of computational
resources and to maintain shared data repositories [7]. Although the term “grid” means different
things to different people, its primary form is acomputational gridenabling a number of com-
puters, often distributed geographically and organizationally, to work together on a single com-
putational task. The low-bandwidth connectivity between machines typically limits this style of
computation to problems that require little or no communication between the different subtasks.
In addition, adata gridenables a shared data repository to be distributed across a number of ma-
chines, often in combination with a computational grid to operate on this data.

In many ways, our conception for DISC has similar objectivesto a combined computational and
data grid: we want to provide one or more research communities with an actively managed repos-
itory of shared data, along with computational resources that can create and operate on this data.
The main difference between DISC systems and grid systems isphysical: we believe that a DISC
system benefits by locating substantial storage and computational power in a single facility, en-
abling much faster and much greater movement of data within the system. This makes it possible
to support forms of computation that are completely impractical with grid systems. It also enables
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the system to be much more aggressive in using different forms of scheduling and load balanc-
ing to achieve interactive performance for many users, and to provide higher degrees of reliability
and availability. We believe that we can provide more powerful programming models and better
economies of scale by taking the more centralized approach to resource location and management
represented by DISC.

Alex Szalay and Jim Gray stated in a commentary on 2020 Computing [25]:

“In the future, working with large data sets will typically mean sending computa-
tions to the data, rather than copying the data to your workstation.”

Their arguments were based on shear numbers: even the most optimistic predictions of network
bandwidth do not allow transferring petabyte data sets fromone site to another in a reasonable
amount of time. The complexities of managing and computing over such data sets lend further
impetus to the need to build systems centered around specificdata repositories.

Over time, as multiple organizations set up DISC systems, wecould well imagine creating a grid
system with DISCs as the nodes. Through different forms of data mirroring and load sharing, we
could mitigate the impact of major outages due to power failures, earthquakes, and other disasters.

4 Google: A DISC Case Study

We draw much of our inspiration for DISC from the infrastructure that companies have created
to support web search. Many credit Inktomi (later acquired by Yahoo) for initiating the trend
of constructing specialized, large-scale systems to support web search [9]. Their 300-processor
system in 1998 pointed the way to the much larger systems usedtoday. Google has become the
most visible exemplar of this approach, and so we focus on their system as a case study. Their
system demonstrates how a DISC system can be designed and utilized, although our view of DISC
is much broader and envisions a more complex usage model thanGoogle’s. Our ideal system will
almost certainly not match all of the characteristics of Google’s.

Google has published a small, but high quality set of papers about their system design [6, 10, 13,
12, 14]. Although these papers set out a number of important concepts in system design, Google
is fairly secretive about many specific details of their systems. Some of what is stated below is
a bit speculative and may be wrong or out of date. Most likely,both Yahoo and Microsoft have
comparable server infrastructure for supporting their search tools, but they are even more secretive
than Google.

Google does not disclose the size of their server infrastructure, but reports range from 450,000
[21] to several million [20] processors, spread around at least 25 data centers worldwide. Ma-
chines are grouped into clusters of “a few thousand processors,” with disk storage associated with
each processor. The system makes use of low-cost, commodityparts to minimize per unit costs,
including using processors that favor low power over maximum speed. Standard Ethernet commu-
nication links are used to connect the processors. This style of design stands in sharp contrast to
the exotic technology found in existing supercomputers, using the fastest possible processors and
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specialized, high-performance interconnection networks, consuming large amounts of power and
requiring costly cooling systems. Supercomputers have much higher interconnection bandwidth
between their processors, which can dramatically improve performance on some applications, but
this capability comes at a very high cost.

The Google system actively maintains cached copies of everydocument it can find on the Internet
(around 20 billion), to make it possible to effectively search the entire Internet in response to each
query. These copies must be updated on an ongoing basis by having the systemcrawl the web,
looking for new or updated documents. In addition to the raw documents, the system constructs
complexindexstructures, summarizing information about the documents in forms that enable rapid
identification of the documents most relevant to a particular query. When a user submits a query,
the front end servers direct the query to one of the clusters,where several hundred processors work
together to determine the best matching documents based on the index structures. The system then
retrieves the documents from their cached locations, creates brief summaries of the documents,
orders them with the most relevant documents first, and determines which sponsored links should
be placed on the page.

Processing a single query requires a total of around10
10 CPU cycles, not even counting the effort

spent for web crawling and index creation. This would require around 10 seconds of computer
time on a single machine (or more, when considering the time for disk accesses), but by using
multiple processors simultaneously, Google generates a response in around 0.1 seconds [6].

It is interesting to reflect on how the Google server structure gets used, as indicated by our ini-
tial observation about the level of resources Google applies in response to often-mundane search
queries. Some estimates say that Google earns an average of $0.05 in advertising revenue for every
query to which it responds [17]. It is remarkable that they can maintain such a complex infrastruc-
ture and provide that level of service for such a low price. Surely we could make it a national
priority to provide the scientific community with equally powerful computational capabilities over
large data sets.

The Google hardware design is based on a philosophy of using components that emphasize low
cost and low power over raw speed and reliability. They typically stay away from the highest speed
parts, because these carry a price premium and consume greater power. In addition, whereas many
processors designed for use in servers employ expensive hardware mechanisms to ensure reliabil-
ity (e.g., the processors in IBM mainframes perform every computation on two separate data paths
and compare the results), Google keeps the hardware as simple as possible. Only recently have
they added error-correcting logic to their DRAMs. Instead,they make extensive use of redundancy
and software-based reliability, following the lead set by Inktomi [9]. Multiple copies of all data
are stored, and many computations are performed redundantly. The system continually runs diag-
nostic programs to identify and isolate faulty components.Periodically, these failed components
are removed and replaced without turning the system off. (Inthe original server, the disk drives
were held in with Velcro to facilitate easy replacement.) This software-based reliability makes it
possible to provide different levels of reliability for different system functions. For example, there
is little harm if the system occasionally fails to respond toa search query, but it must be meticulous
about accounting for advertising revenue, and it must ensure high integrity of the index structures.
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Google has significantly lower operating costs in terms of power consumption and human labor
than do other data centers.

Although much of the software to support web crawling and search is written at a low level, they
have implemented a programming abstraction, known asMapReduce[13], that supports powerful
forms of computation performed in parallel over large amounts of data. The user needs only specify
two functions: amapfunction that generates values and associated keys from each document, and a
reductionfunction that describes how all the data matching each possible key should be combined.
MapReduce can be used to compute statistics about documents, to create the index structures
used by the search engine, and to implement their PageRank algorithm for quantifying the relative
importance of different web documents. The runtime system implements MapReduce, handling
details of scheduling, load balancing, and error recovery [12].

More recently, researchers at Google have devised programming support for distributed data struc-
tures they callBigTable[10]. Whereas MapReduce is purely a functional notation, generating new
files from old ones, BigTable provides capabilities similarto those seen in database systems. Users
can record data in tables that are then stored and managed by the system. BigTable does not pro-
vide the complete set of operations supported by relationaldatabases, striking a balance between
expressive power and the ability to scale for very large databases in a distributed environment.

In summary, we see that the Google infrastructure implements all the features we have enumerated
for data-intensive super computing in a system tailored forweb search. More recently, they have
expanded their range of services to include email and onlinedocument creation. These applications
have properties more similar to transaction processing than to web search. Google has been able
to adapt its systems to support these functions successfully, although it purportedly has been very
challenging for them.

5 Possible Usage Model

We envision that different research communities will emerge to use DISC systems, each orga-
nized around a particular shared data repository. For example, natural language researchers will
join together to develop and maintain corpora from a number of different sources and in many
different languages, plus derived statistical and structural models, as well as annotations relating
the correspondences between phrases in different languages. Other communities might maintain
finite-element meshes describing physical phenomena, copies of web documents, etc. These dif-
ferent communities will devise different policies for how data will be collected and maintained,
what computations can be performed and how they will be expressed, and how different people
will be given different forms of access to the data.

One useful perspective is to think of a DISC system as supporting a powerful form of database.
Users can invoke operations on the database that can be simple queries or can require complex
computations accessing large amounts of data. Some would beread-only, while others would
create or update the stored data. As mentioned earlier, we anticipate that most applications of
DISC will not have to provide the strong consistency guarantees found in the database support for
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transactions processing.

Unlike traditional databases, which support only limited forms of operations, the DISC operations
could include user-specified functions in the style of Google’s MapReduce programming frame-
work. As with databases, different users will be given different authority over what operations can
be performed and what modifications can be made.

6 Constructing a General-Purpose DISC System

Suppose we wanted to construct a general purpose DISC systemthat could be made available to the
research community for solving data-intensive problems. Such a system could range from modest,
say 1000 processors, to massive, say 50,000 processors or more. We have several models for how
to build large-scale systems, including current supercomputers, transaction processing systems,
and search-engine systems.

Assembling a system that can perform web search could build on standard hardware and a growing
body of available software. The open source projectHadoopimplements capabilities similar to the
Google file system and support for MapReduce. Indeed, a near-term project to provide this capa-
bility as soon as possible would be worth embarking on, so that the university research community
can become more familiar with DISC systems and their applications. Beyond web search, a sys-
tem that performs web crawling and supports MapReduce wouldbe useful for many applications
in natural language processing and machine learning.

Scaling up to a larger and more general purpose machine wouldrequire a significant research
effort, but we believe the computer science community wouldembrace such an effort as an exciting
research opportunity. Below we list some of the issues to be addressed

• Hardware Design.There are a wide range of choices here, from assembling a system out of
low-cost commodity parts, à la Google, to using off-the-shelf systems designed for data cen-
ters, to using supercomputer-class hardware, with more processing power, memory, and disk
storage per processing node, and a much higher bandwidth interconnection network. These
choices could greatly affect the system cost, with prices ranging between around $2,000 to
$10,000 per node. In any case, the hardware building blocks are all available commercially.
One fundamental research question is to understand the tradeoffs between the different hard-
ware configurations and how well the system performs on different applications. Google has
made a compelling case for sticking with low-end nodes for web search applications, but
we need to consider other classes of applications as well. Inaddition, the Google approach
requires much more complex system software to overcome the limited performance and re-
liability of the components. That might be fine for a company that hires computer science
PhDs at the rate Google does, and for which saving a few dollars per node can save the com-
pany millions, but it might not be the most cost-effective solution for a smaller operation
when personnel costs are considered.

• Programming Model.As Google has demonstrated with MapReduce and BigTable, there
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should be a small number of program abstractions that enableusers to specify their desired
computations at a high level, and then the runtime system should provide an efficient and
reliable implementation, handling such issues as scheduling, load balancing, and error re-
covery. Some variations of MapReduce and BigTable would be good starts, but it is likely
that multiple such abstractions will be required to supportthe full range of applications we
propose for the system, and for supporting active collection and management of different
forms of data.

One important software concept for scaling parallel computing beyond 100 or so proces-
sors is to incorporate error detection and recovery into theruntime system and to isolate
programmers from both transient and permanent failures as much as possible. Historically,
most work on and implementations of parallel programming assumes that the hardware op-
erates without errors. By assuming instead that every computation or information retrieval
step can fail to complete or can return incorrect answers, wecan devise strategies to correct
or recover from errors that allow the system to operate continuously. Work on providing
fault tolerance in a manner invisible to the application programmer started in the context of
grid-style computing [5], but only with the advent of MapReduce [13] and in recent work by
Microsoft [19] has it become recognized as an important capability for parallel systems.

We believe it is important to avoid the tightly synchronizedparallel programming notations
used for current supercomputers. Supporting these forces the system to use resource man-
agement and error recovery mechanisms that would be hard to integrate with the interactive
scheduling and flexible error handling schemes we envision.Instead, we want programming
models that dynamically adapt to the available resources and that perform well in a more
asynchronous execution environment. Parallel programs based on a task queue model [8] do
a much better job of adapting to available resources, and they enable error recovery by re-
execution of failed tasks. For example, Google’s implementation of MapReduce partitions
a computation into a number of map and reduce tasks that are then scheduled dynamically
onto a number of “worker” processors. They cite as typical parameters having 200,000 map
tasks, 4,000 reduce tasks, and 2,000 workers [12].

• Resource Management.A very significant set of issues concern how to manage the com-
puting and storage resources of a DISC system. We want it to beavailable in an interactive
mode and yet able to handle very large-scale computing tasks. In addition, even though it
would be feasible to provide multiple petabytes of storage,some scientific applications, such
as astronomy, could easily soak up all of this. Different approaches to scheduling proces-
sor and storage resources can be considered, with the optimal decisions depending on the
programming models and reliability mechanisms to be supported.

As described earlier, we anticipate multiple, distinct research communities to make use of
DISC systems, each centered around a particular collectionof data. Some aspects of the
system hardware and support software will be common among these communities, while
others will be more specialized.

• Supporting Program Development.Developing parallel programs is notoriously difficult,
both in terms of correctness and to get good performance. Some of these challenges can
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be reduced by using and supporting high-level programming abstractions, but some issues,
especially those affecting performance, affect how application programs should be written.

We must provide software development tools that allow correct programs to be written easily,
while also enabling more detailed monitoring, analysis, and optimization of program perfor-
mance. Most likely, DISC programs should be written to be “self-optimizing,” adapting
strategies and parameters according to the available processing, storage, and communica-
tions resources, and also depending on the rates and nature of failing components. Hope-
fully, much of this adaptation can be built into the underlying runtime support, but some
assistance may be required from application programmers.

• System Software.Besides supporting application programs, system softwareis required for
a variety of tasks, including fault diagnosis and isolation, system resource control, and data
migration and replication. Many of these issues are being addressed by the Self-* systems
project at Carnegie Mellon [2], but the detailed solutions will depend greatly on the specifics
of the system organization.

Designing and implementing a DISC system requires careful consideration of a number of issues,
and a collaboration between a number of disciplines within computer science and computer engi-
neering. We are optimistic that we can form a team of researchers and arrive at a successful system
design. After all, Google and its competitors provide an existence proof that DISC systems can be
implemented using available technology.

Over the long term, there are many research topics that couldbe addressed by computer scientists
and engineers concerning DISC systems. The set of issues listed previously will all require ongoing
research efforts. Some additional topics include:

• How should the processors be designed for use in cluster machines? Existing micropro-
cessors were designed to perform well as desktop machines. Some of the design choices,
especially the exotic logic used to exploit instruction-level parallelism, may not make the
best use of hardware and energy for systems that can make greater use of data parallelism.
For example, a study by researchers at Google [6], indicatedthat their most critical compu-
tations did not perform well on existing microprocessors. Perhaps the chip area and power
budgets would be better served by integrating many simpler processors cores on a single
chip [4].

• How can we effectively support different scientific communities in their data management
and applications?Clearly, DISC works for web search applications, but we needto explore
how far and how well these ideas extend to other data-intensive disciplines.

• Can we radically reduce the energy requirements for large-scale systems?The power needs
of current systems are so high that Google has set up a major new facility in Oregon, while
Microsoft and Yahoo are building ones in Eastern Washington, to be located near inexpensive
hydroelectric power [21]. Would a combination of better hardware design and better resource
management enable us to reduce the required power by a factorof 10 or more?
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• How do we build large-scale computing systems with an appropriate balance of performance
and cost?The IT industry has demonstrated that they can build and operate very large and
complex data centers, but these systems are very expensive to build (both machines and
infrastructure) and operate (both personnel and energy). We need to create a framework by
which system designers can rigorously evaluate different design alternatives in terms of their
reliability, cost, and ability to support the desired formsof computation.

• How can very large systems be constructed given the realities of component failures and
repair times?Measurements indicate that somewhere between 4% and 7% of the disks in a
data center must be replaced each year [16, 24]. In a system with 50,000 disks, that means
that disks will be failing every few hours. Even once a new unit is installed, it can take
multiple hours to reconstruct its contents from the redundant copies on other disks, and so
the system will always be involved in data recovery activities. Furthermore, we run the
risk that all copies of some data item could be lost or corrupted due to multiple component
failures. Creating reliable systems of such scale will require careful analysis of failure modes
and frequencies, and devising a number of strategies for mitigating the effects of failures. We
will require ways to assess the levels of criticality of different parts of the data sets in order
to apply differential replication and recovery strategies.

• Can we support a mix of computationally intensive jobs with ones requiring interactive re-
sponse? In describing our ideas to users of current supercomputers,this possibility has
proved to be the one they find the most intriguing. It requiresnew ways of structuring and
programming systems, and new ways to schedule their resources.

• How do we control access to the system while enabling sharing? Our system will provide
a repository of data that is shared by many users. We cannot implement security by simply
imposing complete isolation between users. In addition, wewant more sophisticated forms
of access control than simply whether a user can read or writesome part of the data, since
improper updating of the data could impede the efforts of other users sharing the data. We
must guard against both accidental and malicious corruption.

• Can we deal with bad or unavailable data in a systematic way?When operating on very
large data sets distributed over many disk drives, it is inevitable that some of the data will
be corrupted or will be unavailable in a timely manner. Many applications can tolerate small
amounts of data loss, and so they should simply skip over corrupted records, as is done
in Google’s implementation of MapReduce [13], and they should be allowed to proceed
when enough data have been retrieved. Providing the right set of mechanisms to allow the
application programmer to implement such strategies whilemaintaining acceptable accuracy
requires ways to quantify acceptable data loss and clever design of the application-program
interface.

• Can high performance systems be built from heterogenous components?Traditionally, most
high-performance systems have been built using identical processors, disks, etc., in order
to simplify issues of scheduling, control, and maintenance. Such homogeneity is required
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to support the tightly synchronized parallel programming models used in these systems, but
would not be required for a more loosely coupled task queue model. Allowing heteroge-
nous components would enable incremental upgrading of the system, adding or replacing a
fraction of the processors or disks at a time.

Although the major search engine companies are examining many of these issues with their own
systems, it is important that the university research community gets involved. First, there are
many important disciplines beyond web search and related services that can benefit from the DISC
principles. Second, academic researchers are uniquely equipped to bring these issues into a public
forum where they can be systematically and critically evaluated by scholars from around the world.
Companies are too driven by deadlines and too wary of protecting their proprietary advantages to
serve this role.

In addition to being able to contribute to the progress of DISC, academics need to engage in this
area to guarantee their future relevance. It is important that our students learn about the systems
they will encounter in their careers, and that our research work addresses problems of real impor-
tance to the IT industry. There is a large and growing gap between the scale of systems found in
academia compared to those of the numerous data centers worldwide supporting web search, elec-
tronic commerce, and business processes. Although some universities have large-scale systems
in the form of supercomputers, only a small subset of academic computer scientists are involved
in high performance computing, and these systems have very different characteristics from com-
mercial data centers. Bringing DISC projects into university environments would provide new
opportunities for research and education that would have direct relevance to the current and future
IT industry.

7 Turning Ideas into Reality

We are convinced that DISC provides an important area for university-based research and educa-
tion. It could easily spawn projects at multiple institutions and involve researchers in computer
engineering, computer science, computational science, and other disciplines that could benefit
from the availability of DISC systems.

How then should we proceed? There are many possible paths to follow, involving efforts of widely
varying scale and scope. Choosing among these will depend onthe availability of research funding,
how many institutions will be involved, and how collaborative their efforts will be. Rather than pin
down a specific plan, we simply describe possible options here.

One factor is certain in our planning—there are many researchers who are eager to get involved.
I have spoken with researchers in a number of companies and universities, and there is a clear
consensus that there are ample opportunities for exciting work ranging across the entire spectrum
of computing research disciplines.
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7.1 Developing a Prototype System

One approach is to start by constructing a prototype system of around 1000 processing nodes.
Such a system would be large enough to demonstrate the performance potential of DISC and to
encounter some of the challenges in resource management anderror handling. For example, if we
provision each node with at least one terabyte of storage (terabyte disks will be available within the
next year or so), the system would have a storage capacity of over one petabyte. This would easily
provide enough storage to hold replicated copies of every document available over the worldwide
web. By having two dual-core processors in each node, the resulting machine would have 4,000
total processor cores.

In order to support both system and application researcherssimultaneously, we propose construct-
ing a system that can be divided into multiple partitions, where the different partitions could operate
independently without any physical reconfiguration of the machines or interconnections.

Typically, we would operate two types of partitions: some for application development, focusing
on gaining experience with the different programming techniques, and others for systems research,
studying fundamental issues in system design. This multi-partition strategy would resolve the age-
old dilemma of how to get systems and applications researchers working together on a project.
Application developers want a stable and reliable machine,but systems researchers keep changing
things.

For the program development partitions, we would initiallyuse available software, such as the open
source code from the Hadoop project, to implement the file system and support for application
programming.

For the systems research partitions, we would create our owndesign, studying the different layers
of hardware and system software required to get high performance and reliability. As mentioned
earlier, there is a range of choices in the processor, storage, and interconnection network design
that greatly affects the system cost. During the prototyping phases of the project, we propose using
relatively high-end hardware—we can easily throttle back component performance to study the
capabilities of lesser hardware, but it is hard to conduct experiments in the reverse direction. As
we gain more experience and understanding of tradeoffs between hardware performance and cost,
and as we develop better system software for load balancing and error handling, we may find that
we can build systems using lower-cost components.

Over time, we would migrate the software being developed as part of the systems research to the
partitions supporting applications programming. In pursuing this evolutionary approach, we must
decide what forms of compatibility we would seek to maintain. Our current thinking is that any
compatibility should only be provided at a very high level, such that an application written in terms
of MapReduce and other high-level constructs can continue to operate with minimal modifications,
but complete compatibility is not guaranteed. Otherwise, our systems researchers would be overly
constrained to follow nearly the exact same paths set by existing projects.

We can estimate the hardware cost of a prototype machine based on per-node costs. Our current
thinking is that it would be best to use powerful nodes, each consisting of a high-end rack-mounted
server, with one or two multicore processors, several terabytes of disk, and one or more high-
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performance communications interfaces. Going toward the high end would create a more general
prototyping facility. We estimate such nodes, plus the costof the high performance communica-
tion network, would cost around $10,000, yielding a hardware cost of around $10 million for the
machine.

In addition to the cost of procuring hardware, we would incurcosts for personnel, infrastructure,
and energy. Since one goal is to develop and maintain software of sufficiently high quality to
provide a reliable computing platform, we must plan for a large staff (i.e., not just graduate students
and faculty), including software architects, programmers, project managers, and system operators.
The exact costs depend to a large extent on issues such as where the work is performed, where the
system is located, and how many researchers get involved.

7.2 Jump Starting

Instead of waiting until hardware can be funded, procured, and installed, we could begin appli-
cation development by renting much of the required computing infrastructure. Recently, Amazon
has begun marketing network-accessible storage, via its Simple Storage System (S3) service, and
computing cycles via its Elastic Computing Cloud (EC2) service [11]. The current pricing for stor-
age is $0.15 per gigabyte per day ($1,000 per terabyte per year), with addition costs for reading or
writing the data. Computing cycles cost $0.10 per CPU hour ($877 per year) on a virtual Linux
machine. As an example, it would be possible to have 100 processors running continuously, main-
taining a 50 TB data set, updated at a rate of 1 TB per day at a cost of $214,185 per year. That,
for example, would be enough to collect, maintain, and perform computations over a substantial
fraction of the available web documents.

We view this rental approach as a stopgap measure, not as a long-term solution. For one thing,
the performance of such a configuration is likely to be much less than what could be achieved by
a dedicated facility. There is no way to ensure that the S3 data and the EC2 processors will be in
close enough proximity to provide high speed access. In addition, we would lose the opportunity to
design, evaluate, and refine our own system. Nevertheless, the view this capability as an intriguing
direction for computing services and a way to move forward quickly.

7.3 Scaling Up

An important goal in building a 1000-node prototype would beto determine the feasibility and
study the issues in constructing a much larger system, say 10,000 to 50,000 nodes. Scaling up to
such a large system only makes sense if we can clearly demonstrate the ability of such a system
to solve problems having high societal importance, and to doso more effectively than would be
possible with other approaches. We would also need to understand whether it is best to create a
small number of very large machines, a larger number of more modest machines, or some combi-
nation of the two. Having the 1000-node prototype would enable us to study these issues and make
projections on the scalability and performance of our designs.

16



8 Conclusion

As we have described the ideas behind DISC to other researchers, we have found great enthusiasm
among both potential system users and system developers. Webelieve it is time for the computer
science community to step up their level of thinking about the power of data-intensive computing
and the scientific advances it can produce. Just as web searchhas become an essential tool in the
lives of people ranging from schoolchildren to academic researchers to senior citizens, we believe
that DISC systems could change the face of scientific research worldwide.

We are also confident that any work in this area would have great impact on the many industries
that benefit from more powerful and more capable informationtechnology. In domains ranging
from retail services to health care delivery, vast amounts of data are being collected and analyzed.
Information can be extracted from these data that makes companies better serve their customers
while running more efficiently and that detects long term health trends in different populations.
The combination of sensors and networks to collect data, inexpensive disks to store data, and the
benefits derived by analyzing data causes our society to be increasingly data intensive. DISC will
help realize the potential all these data provides.

Universities cannot come close to matching the capital investments that industry is willing to un-
dertake. In 2006, Microsoft announced plans to invest $2 billion in server infrastructure for 2007
[21], and Google $1.5 billion. It should be realized, though, that these companies are trying to
serve the needs of millions of users, while we are only supporting hundreds or thousands. In addi-
tion, the federal government spends billions of dollars peryear for high-performance computing.
Over the long term, we have the opportunity to help that moneybe invested in systems that bet-
ter serve the needs of their users and our society. Thus, getting involved in DISC is within the
budgetary reach of academic computer scientists.

In this research area, universities are in the unusual position of following a lead set by industry,
rather than the more normal reverse situation. Google and its competitors have demonstrated a
new style of computing, and it is important for universitiesto adopt and build on these ideas. We
have the ability to develop and evaluate ideas systematically and without proprietary constraints.
We can apply these ideas to domains that are unlikely to produce any commercial value in the
near term, while also generating technology that has long-term economic impact. We also have a
duty to train students to be at the forefront of computer technology, a task we can only do by first
moving to the frontier of computer systems ourselves.
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