
Dynamic Mesh Refinement with Quad Trees and
Off-Centers

Umut A. Acar † Benôıt Hudson

April 20, 2007
CMU-CS-07-121

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Many algorithms exist for producing quality meshes when theinput point cloud is knowna priori. However,
modern finite element simulations and graphics applications need to change the input set during the sim-
ulation dynamically. In this paper, we show a dynamic algorithm for building and maintaining a quadtree
under insertions into and deletions from an input point set in any fixed dimension. This algorithm runs in
O(lg L/s) time per update, whereL/s is the spread of the input. The result of the dynamic quadtreecan be
combined with a postprocessing step to generate and maintain a simplicial mesh under dynamic changes in
the same asymptotic runtime. The mesh output by the dynamic algorithm is of good quality (it has no small
dihedral angle), and is optimal in size. This gives the first time-optimal dynamic algorithm that outputs
good quality meshes in any dimension. As a second result, we dynamize the quadtree postprocessing tech-
nique of Har-Peled and̈Ungör for generating meshes in two dimensions. When composed with the dynamic
quadtree algorithm, the resulting algorithm yields quality meshes that are the smallest known in practice,
while guaranteeing the same asymptotic optimality guarantees.

† Toyota Technological Institute at Chicago

This work was supported in part by the National Science Foundation under grants ACI 0086093, CCR-0085982 and CCR-
0122581.

Keywords: Computational Geometry, Mesh Refinement, Dynamic Algorithms, Self-Adjusting Compu-
tation

1 Introduction

In many applications, we need tomeshor a triangulatea domain consisting of points and features by split-
ting it into triangles such that all elements of the domain are covered by a union of triangles. Meshes
are typically used to interpolate a continuous function forany of various purposes such as finite element
simulations or graphics. A subtantial amount of research has been performed on thestatic meshing prob-
lem [Che89, BEG90, MV92, Rup95, She98, . . .] which assumes that the input domain is known a priori.
We are interested in thedynamic meshing problemwhich permits the input to be changed. For the purpose
of this paper, we assume that the input consists of points andthat the input can be changed by inserting new
points and deleting existing points.

To be broadly applicable, a dynamic meshing algorithm must satisfy the properties satisifed by state-
of-the artstatic meshing algorithms; the dynamic setting in turn imposes additional requirements. These
properties concern the relationship between input, and theoutput, the quality of the output, and work effi-
ciency. First the algorithm must yieldconformingmeshes,i.e., all points in the input must appear as a corner
of a triangle in the ouput. Second, the output must begood quality, i.e., the internal angles of the triangles
in the output must be bounded away from 180◦. Third, the ouput must besize competitive, i.e., the number
of triangles in the output must be as small as possible. Fourth, the algorithm must be(work) efficient, i.e.,
it should preprocess the input quickly. Fifth, the algorithm must beresponsive, i.e., it should respond to in-
sertions and deletions by updating its output quickly. Finally, it is often desired that the output of a dynamic
meshing algorithm behistory independent, i.e., the output mesh is equal to a mesh of the current input set
and does not depend on the history of the operations (insertion and deletions performed).

These properties can be broadly placed in two categories: those required by the application (conformity,
good quality output, size optimality, and history independence) and those that concern performance (work
efficiency and size optimiality). One major application for meshing is in the Finite Element Method (FEM)
of scientific computing [Joh87, for example]. In FEM simulations, mesh quality is important because it
determines the simulation error [BA76]; the number of elements in the mesh is important because it deter-
mines the simulation runtime; the size of the smallest element is important because it defines the length of
the timestep. Furthermore, some applications [HPÜ05] require that the size of mesh elements be locally
determined by the properties of the input such as the local feature size; it is then important that the output be
faithful to the input. The last two concerns motivate a need for history independence: that the output depend
only on the current set of points and not the sequence of operations performed to obtain that input set.

The meshing problem has been studied extensively since 1950s. The first meshing algorithms that
could generate provably good quality meshes using only a constant factor more elements (e.g., simplices)
than optimal only emerged in the early 1990s, with work from Bern, Eppstein, and Gilbert [BEG90]. The
Bern-Eppstein-Gilbert algorithm was later extended to three and higher dimensions by Mitchell and Vava-
sis [MV92, MV00]. Both these solutions run in timeO(n lg n+m), wheren is the number of input points,
andm is the number of output elements in the optimal result. The technique uses aquadtree subdivision,
and warps the vertices of the mesh in a postprocess, triangulating in a final step. A number of postpro-
cesses have been conceived, the most recent of which produces meshes smaller than any other published
technique [HP̈U05]. The time bound is optimal, due to a sorting lower bound.The size of the mesh they
output is also provably within a constant factor of optimal.

Our results. To state our results, we start with a few definitions for characterizing the input. As usual,
n is the number of points in the input (in the dynamic case, it isthe number of points in the current input,
irrespective of history and future). We assume that the smallest possible mesh has exactlym vertices in the

1

output. L is the diameter of the point set, ands is the distance between the closest pair, so thatL/s is the
spreadof the input. Finally,d is the dimensionality of space. We considerd to be a constant, which allows
us to hide terms exponential in the dimension from the asymptotics; none of the results mentioned in this
paper or its references directly apply to high-dimensionalproblems. Generally,d will be 2 or 3; however,
our results apply in any fixed dimension.

We give a mesh refinement algorithm that runs inO(n lg L/s) time to preprocess a static point set withn
points. The preprocessing step yields a quality mesh, as described above. After the preprocessing step, the
input can be changed by inserting new points and deleting existing points. To each such change, the algo-
rithm responds inO(lg L/s) time by updating the output mesh. The algorithm is history independent with
respect to the preprocessing-step: the output mesh is identical to the mesh that would have been obtained by
performing a preprocessing step from scratch. The algorithm thus guarantees that the output retains all its
guarantees regardless of the operation sequence.

The response time ofO(lg L/s) is optimal in two senses: first, the output mesh may, in the worst case,
change byO(lg L/s). Second, under the assumption that the input has polynomial spread, the response time
is O(lg n), matching the lower bound based on sorting. We believe thatthe proposed algorithm is the first
optimal-time dynamic mesh refinement algorithm with outputquality and size guarantees.

To solve the dynamic meshing problem, we first show how to dynamize the construction of a so-called
balanced quad-tree[BEG90]. Having produced a dynamic balanced quad-tree algorithm, we show how
to dynamize a postprocess to produce a quality simplicial mesh. The original post-processes described in
the early quad-tree papers produce meshes that, in practice, are larger than subsequently discovered mesh
refinement approaches based on Delaunay refinement [She98, Rup95]. For two dimensions, a recent result
of Har-Peled and̈Ungör [HPÜ05] describes a more complicated post-process that achieves the smallest
meshes known—Shewchuk has integratedÜngör’s technique in recent versions of his well-known Triangle
software and finds it reduces the mesh size by another 40% overthe usual approach [Üng04]. Our history-
independent dynamization simulates this algorithm exactly, and thus will achieve the same output size.

In order to dynamize the algorithms, we make very minor modifications to them – we specify the order of
some operations that the original authors left arbitrary – then applyself-adjusting computation[Aca05a]. In
self-adjusting computation, after a static algorithm is executed with some input, any of the computation data
can be changed and the output can be updated by running achange propagationalgorithm. At a high-level,
the change-propagation algorithm updates the output as though the algorithm is executed from-scratch on the
changed input, but only re-executes the parts of the computation that depend on the changed data. Previously
the approach has been applied to a reasonably broad range of problems for both dynamizing and kinetizing
various algorithms [ABT07, ABTV06, ABBT06]. Self-adjusting-computation yields a dynamic algorithm
that guarantees that dynamized algorithm is correct, history-independent, and composable. Composibility
and history-independence are critical to combining our dynamic quadtree algorithm with the postprocessing
technique for Har-Peled and̈Ungör: without these the bounds would break. For programs that satisfy
a so-calledmonotonicitycondition, the time for dynamic changes depends on thetrace stabilityof the
algorithm. To obtain our results, we show that both the quad-tree algorithm and the postprocesses satisfy
the monotonicity conditions, and we bound their trace stability.

Related work. A number of authors have considered the dynamic mesh refinement problem [NvdS04,
MBF04, CGS06, and references, for example], especially forsurgical simulation applications (where a
scalpel cut introduces new features) and in fracture simulations. Published solutions either either do not
guarantee mesh size, or do not guarantee quality. None of them guarantee runtime, though for some solutions
it is, at least in practice, faster than linear time to changethe topology of the mesh. The relatedmoving mesh

2

Input Balanced quad-tree Off-center mesh

Figure 1: An illustration of our dynamized quadtree algorithm, showing the differences between two static
runs. Under self-adjusting computation, the total work done to update from one input to the other is linear
in the change between the two. Section 4 bounds the change in the balanced quad-tree, whereas Section 5
bounds the change in the output mesh. Both are inO(lg L/s), whereL is the diameter of the space ands is
the distance between the nearest pair of input points.

problem, where all the points in the mesh move through time, has been attacked both in practice [Bak01,
e.g.] and theoretically [LT̈U98, e.g.] in a huge number of works, mostly with applicationto computational
fluid dynamics. However, all current moving mesh approachestake at least linear time.

We apply self-adjusting computation [Aca05a] to dynamize astatic algorithm. Our algorithms could
be dynamized using other techniques instead. For example, deletions can be handled lazily by delaying
the removal of the deleted point until a sufficiently large (near-linear) number of points are deleted, and
then remeshing from scratch. Such an algorithm can be made tobe size-optimal and, in an amortized
sense, has near-optimal response time. However, it is of course not history independent. Even if this is
appropriate for the reader’s application (it is not for those we have in mind), the reader will be interested in
our analysis to bound the time to perform a dynamic insertion. Another class of dynamization techniques
include those for order-decomposable search problems [Ove81]. This approach, however, only applies to
divide-and-conquer algorithms. It is not clear how to restate the algorithms we dynamize here in a divide-
and-conquer framework: splitting a cell can cause splitting another cell that is arbitrarily far away, which
seems to contravene any division possibilities.

Eppsteinet al. reported on the dynamization of a quad-tree [EGS05] using skip quadtrees. To establish
their fast query and update times, they must cleverly compress away uninteresting quad-tree cells and main-
tain a hierarchy of trees. However, even if we used skip quadtrees as our backing data structure, we would
still need the analysis in this paper to show we can quickly maintain the balance condition on the quadtree,
and to show how to update the output mesh: dynamizing the underlying data structures is not the hard part
of dynamic mesh refinement.

3

QuadTreeRefine(P: point set, L: real, d: int)

1 Associate P with the cell [0, L]d

2 If [0, L]d is crowded then { addWork([0, L]d) }
3 l ← lg L
4 while (|W| > 0) do
5 while (|Wl | = 0) do { decrement l }
6 splitAll(Wl)

7 increment l

split(c: cell)

8 Split c into 2d new, smaller cells {ci}
9 for (each point p contained by c) do
10 associate p with the ci that contains it

11 return {ci}

addWork(c: cell)

1 Append c to Wlg |c|

splitAll(Wl: cell set)

2 newcells ← ∅
3 while (Wl not empty) do
4 dequeue c from Wl

5 {ci} ← split(c)
6 append each ci to newcells

7 while (newcells not empty) do
8 dequeue ci from newcells

9 if (ci is crowded) then { addWork(ci) }
10 for (each neighbour c′i of ci) do
11 if (|c′i | ≥ 4|ci |) then { addWork(c′i) }

Figure 2: The quadtree refinement algorithm, modified from Bern, Eppstein, and Gilbert [BEG90].

2 Balanced Quadtrees

Balanced quadtrees yield a hierachical subdivision of the space intocells, i.e., hypercubes in the specified
dimension. Having created a balanced quadtree of a set of inputs, a post-processing step can be applied to
produce a good-quality mesh of the input. In this section, wepresent a modification of the original algorithm
of Bern, Eppstein, and Gilbert [BEG90].

A cell is a hypercube in the specified dimension. Importing the definitions of Bernet al., we say that
a cell c is self-crowdedif it contains two or more input point. A cellc is crowded by a neighbour c′ if c
contains exactly one point, andc′ contains are least one point. We say that a cell iscrowdedif it is self-
crowded or is crowded by a neighbor. We say that a cellc is unbalancedif it has a neighbourc′ such that
|c|/|c′ | ≥ 4. We say that a quadtree isbalancedif all unsplit cell are balanced and are not self-crowded or
crowded.

Figure 2 shows our quadtree algorithm. In essence, our algorithm is a restatement of Bernet al. in which
we more carefully specify the ordering of some operations that was left undefined in the original work. The
ordering was unimportant to their setting, but it is critical for our proof of the response time bounds. The
algorithm starts with a bounding box (square) of the the point set, with side lengthL. It maintains a setW
of work items, i.e., cells to split, and a mapping from each cell to the set of input points that it contains. The
work-setW is partitioned into lgL buckets such that the bucketWi is a queue containing the cells of size
exactly 2i . The main loop maintains a fingerl in order to quickly find the largest non-empty bucket.

The algorithm proceeds in rounds. In each round, it chooses the set of the largest cells on the workset
and splits all of them using theA function. TheA first splits each cell in the bucked by
calling . The function splits the cell into 2d sub-cells and updates the cell-to-points mapping. The
A function then enqueues the newly-created crowded or unbalanced cells into the work set by calling
W, which is only a function in order for us to easily refer to it throughout the paper. The function
W is the only operation that causes communication across cells: indeed, only an unbalanced cell can
be added more that once to the workset (by different neighbours). We discuss later the implications of this
operation. At the end of one round of split operations performed byA the algorithm increments the
main loop’s finger, sinceA may have unbalanced some cells that are larger than the cellspreviously
being processed.

4

2.1 Structural Results

Lemma 2.1 During the algorithm, unprocessed crowded cells (if any exist) are all of the size of the smallest
cells in the mesh.

Proof Initially, this is trivially true (there is only one cell in the mesh). Later, consider the cellc+ that
was split to create a crowded cellc. Clearly,c+ was itself crowded, and thus by induction was the smallest
cell in the mesh. Now, we have destroyedc+ and all its equally-sized cells, and replaced them with cells of
half the size. These new cells must be the smallest cells in the mesh. Until we split these crowded cells,
any further splits must all be balance splits. A cell can onlybe unbalanced if it is four times larger than its
neighbour, thus balance splits cannot reduce the size of thesmallest cell.

Lemma 2.2 After a round of splitting crowded cells, until the next round of splitting crowded cells, l in-
creases by exactly one every round.

Proof When splitting the crowded cells, we know that all cells in the mesh are balanced: there are no
smaller cells, and any larger cells, if unbalanced, would imply a work setWl′ with l′ > l was non-empty, a
contradiction. The crowded cells may cause unbalanced cells, with size corresponding tol + 1, but not of
sizel + 2 because such cells would already be unbalanced, a contradiction.

Lemma 2.3 At all points in the algorithm, every cell c has at most O(1) neighbours c′ of size4|c′| ≤ |c| ≤
0.25|c′ |.

Proof The proof that the size does not differ much is immediate from the prior lemma. The proof that
this implies a bounded number of neighbours is by a volume packing argument. The constant is precisely
6d − 4d.

2.2 Size and quality guarantees

To obtain the size and quality guarantees, we can use any of the standard postprocesses published in Bernet
al. or Mitchell and Vavasis [BEG90, MV00]. Given that our algorithm is just a specific ordering consistent
with the schema given by the prior results, we inherit the size and quality guarantees. For example, we
can show that all the simplices have aspect ratio at least some constant that depends only on the dimension,
and not on the input point set. Furthermore, we can show that among all Steiner triangulations that respect
that aspect ratio bound and in which all the input points appear, the size of the triangulation output by the
quadtree algorithm and its postprocess is within a constantfactor of optimal. In fact, the bound is stronger:
at any pointp in the domain, we know that the cell that containsp has size within a constant factor of the
local feature size atp (the distance fromp to the second-nearest input point).

2.3 Blame argument

Definition 2.4 If a new cell ci is crowded by a point p in ci or in a neighbour of ci , then weblame the split
of ci on p. Inductively, if a split of a cell c′ blamed on p causes a cell c′′ to become unbalanced, we blame
the split of c′′ on p.

Note that a cell may blame its splitting on many points; indeed, it will always blame at least two points.

Lemma 2.5 Assume p is blamed for the split of a cell c. Then||pc|| ∈ O(|c|).

5

Proof If c is being split for crowding, thenp is either withinc or is in a neighbourc′ of c, and|c′| = |c|.
Thus||pc|| ≤ |c|.

If c is being split for balance, then we can follow the causal chain that leads to a cellc′ that was split for
crowding byp. Label the chainci with c0 = c andck = c′. Because of the balance condition, we know that
|ci | = 2|ci+1| and thus|c| = 2k|c′|.

The distance we can travel along the chain is maximized if thechain follows the diagonal of the cells,
a total distance of 2k

√
2|c′|. Finally, c′ either containsp or neighbours an equal-sized cell that containsp.

Thus the distance fromp to c is at most (2k
√

2+ 1)|c′|.
In other words,||pc|| < (

√
2+ 1)|c|.

Lemma 2.6 Any point p is blamed for at most O(lg L/s) splits.

Proof Given a size classl, we know that any cell of size 2l that is blamed onp must have distance at
mostO(2l). A simple packing argument shows that there must thus be only O(1) splits in size classl that are
blamed onp. Because the algorithm does not overrefine, there areO(lg L/s) size classes.

2.4 Runtime

There are two components to the runtime of the algorithm: thecost of splitting the cells, and the cost of
maintaining the mapping between points and cells. Each point is blamed forO(lg L/s) splits, so there are a
total of at mostO(n lg L/s) splits. If a split relocates a point, there are two possibilities: the split is due to
crowding, in which case the point is blamed for the split; or the split is due to balance, in which case there
is at most one point in the cell. In the former case, the cost ofthe relocation can be charged to the point in
the usual manner. In the latter case, the cost can be charged to the split itself since it is only constant extra
work.

3 Self-Adjusting Computation

Theself-adjusting computation(SAC) model [Aca05a] enables dynamizing static algorithmsautomatically
by relying on achange-propagation algorithmto update the output when the input changes. The asymptotic
complexity of change propagation can be bound by analyzing the trace stabilityof the algorithm under a
change—in this paper , we consider inserting or deleting onepoint from the input. In this section, we state
some definitions that our analysis (Section 4.2) relies on. For brevity and to draw on the reader’s intuition, we
paraphrase from the more precise definitions in Acar’s presentation [Aca05a] and present the main stability
or update theorem that change propagation time can be bound by stability and a priority-queue overhead for
certain programs.

Definition 3.1 (Traces [Aca05a, Definition 8])Thetrace is an ordered, rooted tree that describes the ex-
ecution of a program P on an input. Every node corresponds to afunction call, and is labeled with the
name of the function; its arguments; the values it read from memory; and the return values of its children.
A parent-child relationship represents a caller-callee relationship.

Definition 3.2 (Cognates and Trace Distance [Aca05a, Definition 12]) Given two traces T and T′ of a
program P, a node u∈ T is a cognate of a node v∈ T′ if u and v have equal labels. Thetrace distance
between T and T′ is equal to the symmetric difference between the node-sets of T and T′, i.e., distance is
|T | + |T′| − 2|C| where C is the set of cognates of T and T′.

6

Definition 3.3 (Monotone Programs [Aca05a, Definition 15])Let T and T′ be the trace of a program
with inputs that differ by a single insertion or deletion. We say P ismonotone if operations in T happen in
the same order as their cognates in T′ during a pre-order traversal of the traces.

The change-propagation algorithm relies on a priority queue to propagate the change in the correct order.
The main theorem of Acar [Aca05b] states that for monotone programs, the time for change-propagation is
the same as the trace distance if the priority-queue overhead can be bounded by a constant. For the theorem,
we say that a program isO(f (n))-stable for some input change, if the distance between the tracesT, T′ of
the program with inputsI andI ′, whereI ′ is obtained fromI by applying the change, is bounded byO(f (n)).
Note that stability is symmetric: insertions and deletionsare indistinguishable.

Theorem 3.4 (Update time [Aca05a, Theorem 34])If a program P is monotone under a single inser-
tion/deletion, and is O(f (n))-stable, and if the priority queue can be maintained in O(1) time per operation,
then change-propagation after an insertion/deletion takes O(f (n)) time.

4 Dynamic Quad-Tree Analysis

The remainder of the analysis is devoted to showing that under single-point insertions and deletions, our Par-
allel Quad-Tree Refinement algorithm is monotone andO(lg L/s)-stable, and that using a standard priority
queue will takeO(1) time per PQ operation under these updates.

4.1 Monotonicity

Before proceeding to establish monotonicity, we must first detour to noticing that the same unbalanced cell
can be added to the queue repeatedly, by several neighbours;across traces, it may be added by the same
neighbour but in a different round. To sidestep these issues, we tag the theW call with distinguishing
information: the name of the cell that witnessed the imbalance, and the number of the round.

Throughout this section,T0 andT1 are two traces of QTR; u andv are nodes ofT0, with
round-pairr andr′ respectively; and finally ¯u andv̄ are their cognates inT1 (if any). We need to prove that
if u ≺ v thenū ≺ v̄.

Lemma 4.1 Trace nodes from different rounds are processed in monotone order across traces.

Proof Given thatu andv are cognates, they share roundr; similarly ū and v̄ share roundr′. Sinceu
precedesv, r < r′.

The only question remaining is the order of items within a round r. We show by an inductive argument
that it is also monotone:

Lemma 4.2 Trace nodes from the same round occur in monotone order across traces.

Proof The order of trace nodes within a round is defined by the order of cells on theWl queue being
processed. The order of cells in round 0 is clearly monotone:there is only one initial cell to split. Inductively,
assume all cells in all prior rounds were processed monotonically between tracesT0 andT1. Then their
correspondings were called in the same order in both traces. Therefore, thechildren generated by the
splits were processed (inA) in the same order in both traces. Finally, their corresponding W
calls occurred in the same order in both traces. Note that this last statement uses the fact that we only count
as cognatesW calls with the same causer.

7

4.2 Trace Stability

Assume the inputs to tracesT0 and T1 differ only in that traceT1 has one additional pointp. We want
to show that onlyO(lg L/s) trace nodes differ between the two traces. There are two interesting kinds of
nodes:W and point relocation (from Line 10 of). Any other kind of node is in one-to-one
correspondence with anW node, so counting those two types is sufficient.

Lemma 4.3 The set ofW calls is O(lg L/s)-stable.

Proof If an W call is being executed inT1 but notT0, then a cellc was split, which then caused
the algorithm to find either (a) a childci of c is crowded that was not previously crowded, or (b) a neighbour
c′i of c is unbalanced that was not previously unbalanced. In case (a), ci either containsp or is a neighbour
of a cell that containsp. Thusci can be blamed onp. In case (b), eitherc was a newly crowded cell (in
which casec is blamed onp as per case (a)), orc was unbalanced by another cellc′. By induction,c′ must
have been blamed onp, and soc is. Therefore,c′i is blamed onp.

Any cell c is only named inO(1) calls toW: if c is crowded, there is exactly one call; ifc is
unbalanced, there may be up to one per neighbour, but there are O(1) neighbours ofc throughout the life of
the algorithm.

Finally, Lemma 2.6 shows thatp can only be blamed forO(lg L/s) splits; thus it can only be blamed for
O(lg L/s) new calls toW.

Conversly, anW call executed inT0 but not inT1 can only be because the corresponding cell was
split in T1 earlier than inT0. We know can blame the earlier split onp, and again this can only happenO(1)
times sincec hasO(1) neighbours.

Lemma 4.4 Point relocation work is O(lg L/s)-stable.

Proof Every point is reassigned at mostO(lg L/s) times during the algorithm. Therefore, the computa-
tion to reassign the pointp being added or removed isO(lg L/s)-stable.

There are two reasons a point can be reassigned: either it is in a crowded cell being split, or it is in an
uncrowded but unbalanced cell being split. A reassignment due to a crowded cellc can only be re-executed
if the point p was either in the cellc or in a neighbourc′ of c. Furthermore, we know that there was exactly
one other point inc or c′ — otherwise the algorithm would split regardless of the presence or absence ofp,
and the call would be a cognate, not re-executed. Meanwhile, any unbalanced cell can only reassign at
most one point.

In other words, if a split reassigns any points, it reassignsexactly one point. The set of splits isO(lg L/s)-
stable, and thus so is the set of point reassignments.

4.3 Priority Queue costs

Finally, we need to show that onlyO(1) trace nodes are in the change propagation priority queueat any
time. We know from prior proofs that during change propagation, onlyO(1) trace nodes are processed in
any size class. Furthermore, at most 3 size classes are in thequeue at any one time: the current size class;
unbalanced cells in one size class larger, if any; and crowded cells which may be in a smaller size class.

4.4 Main Result

Theorem 4.5 TheQTR algorithm, sequentialized and dynamized as described, canmaintain a
balanced quad-tree over a point set in any fixed dimension under any sequence of single-point additions

8

and removals. LetP0 andP1 be the point sets before and after an update; let s= min(s0, s1) and n =
max(|P0|, |P1|). Then our dynamic algorithm runs in time O(lg L/s) and uses a history-independent data
structure of size O(n lg L/s).

Proof The Lemmata of the present Section show that QTR is O(lg L/s)-stable, monotone,
and can be dynamized using a constant-time priority queue for the change propagation algorithm. Therefore,
Theorem 3.4 applies and yields the time bound and history independence.

History-independence further implies that the data structure is topologically identical to one that results
from inserting then points ofP1 one by one. Give our time bound, we know that we can don insertions in
O(n lg L/s) time. Clearly, we cannot use more space than time, which yields our space bound.

5 Generating small meshes in 2d

The meshes output by the postprocess described in Section 2.2 are within a constant factor of optimal size
and of the best possible quality. In practice however, they are substantially larger than than those output
by Ruppert refinement [Rup95], and unlike in Ruppert refinement, they do not offer the user of the mesh
any control of the desired quality bound.Üngör [Üng04] described a way of choosing what he called an
off-center: given a bad-quality triangle (one with a small angle), we can insert a Steiner point so that the
shortest edge of the triangle forms a triangle with the off-center that exactly achieves the quality threshhold.
In theory, off-centers yield optimal-size meshes. In practice, off-center meshes are the smallest known. Har-
Peled and̈Ungör [HPÜ05] then showed how to use off-centers to post-process a balanced quad-tree in order
to simultaneously achieve the time bounds from quadtree meshing and the small output size from off-center
meshing. We show here how to dynamize the Har-Peled andÜngör postprocess. Due to space constraints,
we leave the full details to the Appendix A.

The algorithm proceeds as follows: iteratively, in order from smallest to largest quadtree cell, the algo-
rithm considers every input pointp in a given cell, then searches neighbouring cells for an input point q.
Having found such a pair of points, it checks whether there isa third pointr such thatpqr is a Delaunay
triangle, andpqr has good quality. If there is no suchr, then pq is a termedloosepair. The algorithm
constructs an appropriater using the off-center, and inserts thisr, which is now treated as an input point.
During this routine, the quadtree serves the purpose of performing the point location (forp andq) and range
queries (forr, if it exists).

As a final post-process, we can again use the technique of starting from the smallest cell to the largest
and using the quadtree for point location to compute the Delaunay triangulation in linear time.

We deviate in only one respect from the original algorithm ofHar-Peled and̈Ungör: they left undefined
the order of operations pairs within a size class. To establish our stability bounds, we require that they be
done in FIFO order. This should be reminiscent of our modification of the Bernet al.algorithm.

Given that our algorithm performs the same steps as the original algorithm, the correctness, size optimal-
ity (and in-practice performance), and static runtime of our modified HPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argument (detailed in the Appendix) is reminiscent of
the dynamic stability argument for the quadtree itself: we define a notion ofblamefor off-centers upon input
points, and prove a packing lemma:

Lemma 5.1 (Off-centers pack) Let r be an off-center that blames an input point p. Then|rp| ∈ Θ(NN(r))
where NN(r) is the nearest neighbour of r when r is inserted.

9

Theorem 5.2 Given a dynamic point setP ∈ [1/3, 2/3]2 and a radius/edge ratioρ > 1, we can dynamically
maintain a mesh of the desired quality using within a (in practice small) constant factor of the optimal
number of Steiner vertices. Each addition to or deletion from the input point set can be performed in
O(lg L/s) time.

Proof Using self-adjusting computation, run the dynamically-stable quadtree algorithm described ear-
lier, and use that as input to the dynamically-stable HPU postprocess described in this section. Upon a point
addition or deletion, we know from Theorem 4.5 that the quadtree updates inO(lg L/s) time. Each cell is
only readO(1) times by the postprocess, so propagating the quadtree changes through the postprocess is
fast. Finally, HPU is itselfO(lg L/s)-stable, by the previous packing lemma. We omit the monotonicity and
priority queue arguments for brevity.

6 Conclusions

In this paper, we showed a dynamic algorithm, for maintaining a balanced quadtree in arbitrary dimension.
The algorithm is optimal for a large class of inputs (inputs with polynmomial spread), yields size-optimal
meshes, and is history-independent. The algorithm is obtained by applying self-adjusting-computation tech-
niques to dynamize an algorithm for generating quadtrees. We believe this is the first dynamic algorithm for
computing meshes in optimal time. As a second result, we gavea dynamization of the Har-Peled andÜngör
technique for postprocessing quadtrees [HPÜ05] to obtain size-optimal meshes that are the smallest known
in practice. Based on the history independence, and composibility properties of our dynamic quadtree algo-
rithm, composing the two results yield a technique for dynamically generating and maintaining practically
small 2-d meshes in optimal time for inputs with polynomial spread. Since meshes are required in many
application domains, we expect that our results will find applications in a number of aread (e.g., scientific
computing, CAD design, and streaming/out-of-core meshing).

The algorithm that we give here only handles inputs points but not input-features such as segments or
polygons. Even in the static case, handling input features is difficult: the first time-optimal algorithm that
can handle features was discovered very recently [HMP06, HMP07]. As with the quadtree algorithm, this
algorithm has a data dependency depth ofO(lg L/s). We therefore hope to be able to use the techniques in
this paper to dynamize that algorithm and thus handle more complicated geometries.

References

[ABBT06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental
analysis of self-adjusting computation. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2006.

[ABT07] Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan. Kinetic 3d convex hulls via self-
adjusting computation (an illustration). InACM Symposium on Computational Geometry
(SCG), 2007.

[ABTV06] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic algorithms
via self-adjusting computation. Technical Report CMU-CS-06-115, Department of Computer
Science, Carnegie Mellon University, March 2006.

10

[Aca05a] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

[Aca05b] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

[BA76] Ivo Babuška and A. K. Aziz. On the Angle Condition in the Finite Element Method.SIAM
Journal on Numerical Analysis, 13(2):214–226, April 1976.

[Bak01] Timothy J. Baker. Mesh movement and metamorphosis.In 10th International Meshing
Roundtable, pages 387–396, 2001.

[BEG90] Marshall Bern, David Eppstein, and John R. Gilbert.Provably Good Mesh Generation. In
31st Annual Symposium on Foundations of Computer Science, pages 231–241. IEEE Computer
Society Press, 1990.

[CGS06] Narcis Coll, Marité Guerrieri, and J. Antoni Sellarès. Mesh modification under local domain
changes. In15th International Meshing Roundtable, pages 39–56, 2006.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report 89–983, Department of
Computer Science, Cornell University, 1989.

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Zheng Sun. The skip quadtree: a sim-
ple dynamic data structure for multidimensional data. In21st Symposium on Computational
Geometry, pages 296–305, 2005.

[HMP06] Benoı̂t Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. InProceedings of
the 15th International Meshing Roundtable, pages 339–356, Birmingham, Alabama, 2006.

[HMP07] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Refinement. In
19th ACM Symposium on Parallelism in Algorithms and Architectures, 2007.

[HPÜ05] Sariel Har-Peled and Alper̈Ungör. A time-optimal Delaunay refinement algorithm in twodi-
mensions. In21st Symposium on Computational Geometry, pages 228–236, 2005.

[Joh87] Claes Johnson.Numerical solutions of partial differential equations by the finite element
method. Cambridge University Press, 1987.

[LTÜ98] X.-Y. Li, S.-H. Teng, and A.̈Ungör. Simultaneous refinement and coarsening: adaptive meshing
with moving boundaries. In7th International Meshing Roundtable, pages 201–210, Dearborn,
Mich., 1998.

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing mesh
topology during simulation. InSIGGRAPH, 2004.

[MV92] Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generation in Three Dimensions. In
Proceedings of the Eighth Annual Symposium on Computational Geometry, pages 212–221,
1992.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimensions.SIAM
Journal on Computing, 29(4):1334–1370, 2000.

11

[NvdS04] Han-Wen Nienhuys and A. Frank van der Stappen. A Delaunay approach to interactive cutting in
triangulated surfaces. InFifth International Workshop on Algorithmic Foundations of Robotics,
2004.

[Ove81] Mark H. Overmars. Dynamization of order decomposable set problems. J. Algorithms,
2(3):245–260, 1981.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.J.
Algorithms, 18(3):548–585, 1995.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refinement. InPro-
ceedings of the Fourteenth Annual Symposium on Computational Geometry, pages 86–95, Min-
neapolis, Minnesota, June 1998. Association for ComputingMachinery.

[Üng04] Alper Üngör. Off-centers: A new type of Steiner point for computing size-optimal quality-
guaranteed Delaunay triangulations. InLATIN, pages 152–161, 2004.

12

DynHPU(P ∈ [1/3, 2/3]2, ρ)
1 Construct a balanced quadtree QT
2 Rescale so that the size of the smallest cell is 1; let L be the largest cell.
3 for (i = 0 to lg L) do
4 enqueue all cells of size 2i into Qi

5 for (i = 0 to lg L) do
6 while (Qi is non-empty)

7 collect all loose pairs pq where p is an active vertex in a cell on Qi

8 empty Qi

9 for each collected pq
10 if pq is no longer loose then skip pq
11 compute the off-center r of pq
12 add r to the smallest cell c such that (a) c contains r, (b) |c| ≥ 2i, (c) clow|c| ≤ ||pr|| ≤ cup|c|
13 append c to Qlg |c|
14 if pq is still loose, repeat
15

Figure 3: A dynamically-stable version of the Har-Peled andÜngör [HPÜ05] algorithm. The key difference
is that we define more carefully the ordering of items on the work queue. We also require the use of a
dynamically-stable balanced quadtree algorithm such as DQT. Note that Line 14 is triggered only ifpq is
loose from both left and right.

A Generating small meshes in 2d

We use the following terms from Har-Peled andÜngör. Most of the following definitions define an orien-
tation; we write the definitions for the counterclockwise (ccw) orientation and leave the reader to perform
appropriate substitutions to define the clockwise (cw) equivalent.

Definition A.1 (Leaf) Given a pair of points p and q, take a point c such that|cp| = |cq| = ρ|pq|, and |pqc|
forms a counterclockwise cycle. Theccw-leaf of pq is the disc D(c, ρ|pq|).

Definition A.2 (Loose pair) A pair pq isccw-loose if the ccw-leaf is empty of any points. A pair pq is
loose if it is either ccw-loose or cw-loose.

Definition A.3 (Crescent) Given a pair pq, let c be the point on the ccw-leaf of pq that is farthest from p
and q. Theccw-crescent of pq is the portion of the disc D(c, |pc|) with the ccw-leaf removed.

Definition A.4 (Off-center) Let pq be a ccw-loose pair pq. If the ccw-crescent of pq is empty, then the
ccw-offcenter of pq is the point c from the definition of the crescent. If the ccw-crescent is non-empty, take
the point p′ such that disc that circumscribes p, p′, and q is empty. Theccw-offcenter is the center of that
disc.

Definition A.5 (Active point) A point p isactive if it may form a loose pair with another active point. See
[HPÜ05, Lemmata 4.8–4.11] for proofs and technical definitions. Only O(1) points are active in any cell of
a balanced quadtree.

We present our modification of the Har-Peled andÜngör algorithm in Figure 3. DHPU takes as input
the point set, a radius/edge quality boundρ >

√
2, and a dynamic quadtree. It produces as output a list of

points. We can use a modification of DHPU to produce the Delaunay triangulation in time linear in the

13

output size: to decide that a pairpq is not loose requires finding a pointt in the leaf ofpq such thatpqt is
Delaunay.

The algorithm proceeds as follows: iteratively, roughly inorder from smallest to largest loose pair, the
algorithm identifies a loose pair and inserts its off-center (or both off-centers, if it is loose from both sides).
It uses the quadtree for two purposes: to order the loose pairs (to within a constant factor), and to test
for looseness. We deviate in one respect from the original algorithm of Har-Peled and̈Ungör: they left
undefined the order of loose pairs within a size classi (Lines 7–15), whereas to establish Lemma A.8 we
require that they be done in FIFO order. In essence, we simulate processingQi in parallel.

Given that our algorithm performs the same steps as the original algorithm, the correctness, size op-
timality (and in-practice performance), and static runtime of our DHPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argument will be reminiscent of the dynamic stability
argument for DQT: we show that any input pointp can only be blamed onO(1) off-center insertions for
any value ofi.

Definition A.6 (Insertion radius) The insertion radius of an off-center r, denotedIR(r), is the distance
from r to its nearest neighbour at the time r was inserted.

Lemma A.7 (The insertion radius is large) Consider a loose pair pq and their off-center r. Then the
insertion radius of r follows2ρ|pq| > IR(r) ≥ ρ|pq|.

Proof There are two cases: (1) if there is a vertext in the crescent, thenr is the circumcenter ofpqt. By
definition, pqt is Delaunay: its circumdisc is empty of any other points. Therefore, IR(r) = R(pqt). Also,
becausepq is loose,pqt must have bad radius/edge ratio:R(pqt)/|pq| > ρ, or equivalently IR(r) > ρ|pq|.

If instead the crescent is empty, thenr is the farthest point on the flower ofpq, and we know that the
crescent ofpq is empty of points. The crescent ofpq has radius|pr|, which shows that IR(r) = |pr|. From
the Pythagorean theorem, we can compute IR(r) = |pr| > ρ|pq|.

In either case,r, p, andq all lie on a circle of radius at mostρ|pq|, and thus can be separated by no more
than twice that distance.

Lemma A.8 (Loose pairs grow geometrically)After every iteration of theDHPUwhile loop, the size of
the smallest remaining loose pair in iteration i of the for loop grows by a factor at leastρ.

Proof Let si j be the length of the shortest loose pair at the beginning of the jth iteration of the while
loop in iterationi of the for loop. Consider a loose pair seen at the end of iteration i j , but not seen at the
beginning of the iteration. Such a loose pair must include atleast one new off-centerr; if it is a pair made
of two new off-centers, letr be the newer one. That off-center issued from a loose pair of length at leastsi j .
By Lemma A.7, the nearest neighbour ofr is at distance at leastρsi j ; in particular, its partner in the loose
pair must be at least that far.

Lemma A.9 (Loose pairs don’t grow too fast) All loose pairs processed in iteration i of the for loop have
length inΘ(2i).

Proof The upper and lower bounds were proven before [HPÜ05, Lemmata 4.3, 4.7].

Definition A.10 (Blame for off-centers) An off-center rdirectly blames a point p if r issues from a loose
pair around p. Transitively, rindirectly blames those that p blames.

14

Lemma A.11 (Off-centers pack) Let r be an off-center that blames a point p. Then|rp| ∈ Θ(IR(r)).

Proof That IR(r) ≤ |rp| is trivial: the insertion radius ofr is empty of points.
If r directly blamesp, then this is restating Lemma A.7.
If r directly blames a pointq that transitively blamesp, then by the triangle inequality, we have|rp| ≤

|rq|+ |qp|. We know that|rq| = IR(r) by definition. We can inductively assume that there is a constantk such
that |pq| ≤ k IR(q). Thus,|rp| ≤ IR(r) + k IR(q). It remains to bound IR(q) in terms of IR(r); this follows
from Lemma A.7. Thus,|rp| ≤ (1+ k/ρ) IR(r). For anyρ ≥ 1, k is a constant withk = ρ/(ρ − 1).

Finally, we can state the overall result:

Theorem A.12 Under self-adjusting computation,DHPU runs in O(lg L/s) time per addition to or re-
moval from the input point set.

Proof By Theorem 4.5, maintaining the dynamic quad tree takesO(lg L/s) time per update.
Using Lemma A.11 in an area packing argument, at mostO(1) off-centers in iterationi blame any input

point p. Therefore, at mostO(lg L/s) off-centers of any iteration blamep. Every off-center insertion reads
at mostO(1) input or Steiner points, andO(1) cells of the quadtree.

For brevity, we elide the monotonicity argument, which is essentially identical to that in Section 4.1.
Again using the fact that every while loop iteration isO(1)-stable, and using the fact (derived from

Lemma A.9) that we only affectO(1) iterations of DHPU at a time, the priority queue costs of DHPU
areO(1) per operation.

15

