Alias Analysis for Assembly

David Brumley and James Newsome

December 15, 2006
CMU-CS-06-180R

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We propose using Datalog for alias analysis of binary programs. Our alias
analysis reasons about whether two memory references may access the
same memory cell.

Keywords: assembly alias, x86 alias, datalog

Alias Analysis for Assembly 1/24

1 Introduction

In order to reason about a program accurately, it is important to be able
to reason about memory operations. While many tools exist for accurately
analyzing programs written in high level languages, almost none exist for
analyzing low-level assembly. However, most users only have access to the
program assembly code (via the program binary). Some common scenarios
in which a user would like to accurately analyze assembly include:

¢ Generating vulnerability signatures. A vulnerability signature matches

all exploits of a given vulnerability, even polymorphic variants. Two
exploits are polymorphic variants if they are syntactically different
yet exploit the same underlying vulnerability. Previously, we have
shown how to generate vulnerability signatures based upon the pro-
gram binary [3]. Our techniques allow users to generate accurate sig-
natures without involving the software vendor. However, in order to
generate an accurate signature, we must reason about memory reads
and writes. Previously, we have relied upon a general-purpose theo-
rem prover to resolve potential alias relationships. A general purpose
alias analysis would allow our techniques to scale to larger programs
and generate signatures more efficiently.

e Application replay. The ability to accurately replay application di-
alogs is useful in many applications, such as replaying an exploit for
forensic analysis or demonstrating an exploit to a third party. A cen-
tral challenge in application dialog replay is that the dialog intended
for the original host will likely not be accepted by another without
modification. For example, the dialog may include or rely on state
specific to the original host such as its host-name, a known cookie, etc.
In such cases, a straight-forward byte-by-byte replay to a different
host with a different state (e.g., different host-name) than the original
observed dialog participant will likely fail. These state-dependent
protocol fields must be updated to reflect the different state of the
different host for replay to succeed. We have previously shown one
method for sound application dialog replay can be accomplished via
binary program analysis [12]. As in signature generation, the effi-
ciency and scalability of our approach could greatly benefit from ac-
curate alias analysis.

e Detecting trigger-based behavior. Software logic and time bombs, as
well as Trojan horses, are often triggered based upon specified inputs

Alias Analysis for Assembly 2/24

such as the current time of the day or given password. We have devel-
oped techniques which automatically determine such triggers, e.g.,
discovering malware will launch a denial-of-service attack on a par-
ticular date. However, our techniques are not sound, which means
when our analysis discovers a potential trigger, we must then verify
it with other means such as resetting the system date and looking for
the malicious behavior. Accurate alias analysis would not only im-
prove the efficiency and scalability of our approach, but it would also
help towards proving soundness of our techniques.

e Disassembly. Disassembly involves reading the bits from a program
binary and interpreting them as assembly instructions that the CPU
would execute. In modern architectures, a central problem for cor-
rect disassembly is dealing with indirect jumps. An indirect jump is
of the form jmp *eax, where eax is a register that holds a computed
value. Indirect jump operands are often derived via memory opera-
tions, e.g., a return instruction first loads an address from the stack
into a register, then jumps to the target. Thus, we must know the tar-
get of the indirect jump in order to know which bits to interpret as
assembly instructions.

Without alias analysis, in each of the above scenario when a memory
read or write is encountered we must consider it a possible alias with all
other memory operations. This prevents efficient whole-program analysis.

1.1 Source code analysis techniques are insufficient

Naively, one may think that techniques for analyzing source code are suf-
ficient for analyzing an executable. However, analyzing binary machine
code presents many challenges, including:

e Assembly lacks expressive types. At best, types are n-bit integers
where n is the length of the register holding the value during com-
putation. Traditional analysis often uses types to prune out irrelevant
statements, i.e., if an operation is of a different type than our subject
of interest, we need not consider it. The lack of types in assembly
means we often must consider every statement.

e Lack of function abstractions. Assembly control flow is simple: un-
conditional and conditional jumps to locations. Higher-order abstrac-
tions such as functions do not necessarily exist, even when the ma-

Alias Analysis for Assembly 3/24

chine code is produced from higher level languages with such ab-
stractions!

e Memory is treated as one contiguous chunk. This introduces a num-
ber of challenges. First, it is often difficult to tell where one object
ends and one begins. Second, allocation and deallocation sites may
be implicit, e.g., after a function returns it is still possible to refer to
variables in “deallocated” frame. Third, memory is byte-accessible
though code-pointers are word size. Thus, in IA32 we may store 2
code pointers on the stack, and forge a new pointer by reading 2 bytes
from the first stored pointer and two bytes from the second stored
pointer.

e Memory addresses are reused for different purposes. For example,
memory cells on the stack are reused for different purposes in differ-
ent functions. Even within a single function, stack slots may be used
as generic locations for register spills.

e Many pointers require expression evaluation. Many source-based
alias analysis work best when address arithmetic is limited or need
not be considered. At the assembly level, almost all memory deref-
erences involve arithmetic. For example, arguments passed on the
stack are known via a positive offset in the caller, and via a negative
offset in the callee.

e Control flow analysis is hampered by the widespread use of indirect
jumps. In the worst case, jump targets can be code created on the
fly or to the middle of previously dissassembled instructions, making
control-flow analysis nearly impossible. Even if we assume a normal
compiler produces the code in the first place, many typical optimiza-
tions can result in hard-to-predict code flow.

Thus, although there are many important applications of binary analy-
sis, the above challenges makes such analysis quite difficult.

1.2 Related work

Our work proposes alias analysis for assembly. The most closely related
work is that of Balakrishnan and Reps [1, 13, 2], propose value set analysis
(VSA). The information VSA discovers allows two memory references at
a given point P to be interpreted with respect to the set of possible states
that can arise at P, which makes it possible to determine (i) whether they

Alias Analysis for Assembly 4/24

definitely cannot access the same memory cell, or (ii) whether they might
access the same memory cell (and thus provides a way to answer may-alias
queries). At a high level, our work takes a logic-based approach where we
use Datalog to derive all possible alias relationships, and use the Datalog
rules as a foundation for a formal correctness proof. Debray et al [15] and
Cifuentes and Fraboulet [6] both present methods that reason about values
a register can hold, but unlike our approach, do not reason across memory
operations.

There is a long history of projects which disassemble and analyze exe-
cutables. Notable recent work which disassembles executables and trans-
lates to an intermediate representation for further analysis include that of
Microsoft Phoenix [11], Vulcan [8], and Boomerang [9]. Our alias analysis
could be implemented on top of these platforms.

Our approach using Datalog is motivated by the success of Whaley et al.
using a BDD-based Datalog database to scale Java points-to analysis [18].

1.3 Paper Overview

At a high level, we develop techniques for alias analysis of assembly code.
We disassemble and translate a program into a unambiguous IR. The alias
analysis is expressed in Datalog over the IR. The resulting saturated database
contains all alias relationships. Subsequent program analysis queries the
database.

In this paper, we first describe our RISC-like assembly language, and
give its operation semantics (Section 2). We also describe some important
assumptions about the semantics of the program (Section 2.3). We then
provide a correctness proof sketch (Section 4). We then describe our im-
plementation and initial results (Section 5 and Section 6). We finish future
directions and conclusions.

2 Alias Analysis Overview

In this section, we first present the assembly language for which we per-
form alias analysis. We then present our approach for alias analysis using
Datalog.

2.1 The Assembly Language

We consider alias analysis for the RISC-like assembly language shown in
Table 1. We are able to convert typical x86 programs into this language

Alias Analysis for Assembly 5/24

Instructions i = k(1) = ol i= x(ro)|r i=v|r := r1Opre
|r := O,rq | label [; | nop |halt
| jmp ¢ | ijmpr |if r jmp ¢ else jmp /o

Operations O, o= +,—,%/,<,>,&,|,®,=,#, <, < (Binary operations)
O, == -—,!(unary operations)
Operands v == n(aninteger literal)
r (a register)
¢ (a label)
Instructions I u= n — i (Maps instruction number to instruction)
Memory M = n+— n(Maps address to numeric value)
Register R == 7r;— n(Maps register name to numeric value)
Labels L u= I, — pc(Maps label to instruction address pc)
Machine state S = (T,LM,R,pc,i)

Table 1: Abstract Machine Syntax

(we omit the details for some features such as system calls). Programs are
written imperatively as a sequence of instructions. Instruction operands
are either integer literals n, registers r, or labels ¢. There are three basic
kinds of instructions: a) memory operations, b) assignments, and c) control
flow.

Table 1 also shows the abstract machine syntax. In addition to instruc-
tions, we maintain a mapping from instruction numbers to instructions Z,
a memory M, a register file R, and a map from labels to instruction ad-
dresses L. The machine state is given by the tuple (Z, £, M, R, pc, i), where
pc is the program counter and i is the current instruction.

Our operational semantics are given in Table 2. A machine step is a
transition (Z, £, M, R,pc, i) — (Z,L, M', R/, pc,i’). For sequential control
flow, executing ¢ will advance the program counter p¢’ = pc + 1 and load
the instruction ¢’ at pc/. For jump instructions, we use an auxiliary label
map £ which maps the jump target to a new program counter. We use the
notation R(r) +— n to indicate R maps the register r to the value n (and
similarly for M). We use the notation R[r = n| to mean the mapping R,
with key r remapped to value n (and similarly for M). We assume that 7
and £ are immutable throughout execution. One important implication is
this means our machine cannot create new code and transfer control to it
on the fly. We leave such extensions to future work.

Memory operations are either loads or stores; load 7 = *ry loads into
register r; the value in memory addressed by r3, and store xr; = ry which

Alias Analysis for Assembly 6/24

L) — pcd I(pd)r label ¢ I
MP
(Iv E) Ma R7pcvjmp é) - (I7 £7 M7 R,pC,, label é)

R(r)—n L(n)— Ll L) —pd I(pd)— label £
(Z,L, M, R,pc,ijmp 1) — (Z,L, M, R, pc ,label ¢)

IJMP

R(r)—0 L(t)— pd Z(pd)+— label ¢,
(Z, L, M, R, pe,if r jmp ¢ else jmp ¢2) — (Z,L, M, R, pc ,label ¢;)

CJmp-T

R(r)#0 L) — pd ZI(pd)+ label o

CJmpr-F
(Z,L, M, R,pc,if rjmp 41 else jmp l3) — (Z, L, M, R,pc,label ¢5)
Z(pc+1)—1
— LABEL
(Z,L£, M,R,pc,label ¢) — (Z,L, M, R,pc+ 1,17)
I(pc+1)—i
— Nor
(I7£7M7R7pc7nop) - (I7£7M7R7pc+ 17Z)
R(r1) —mn1 R(ra) —n2 nz3=n10png Z(pc+1)+—1i
— BINOP
(Z,L, M, R,pe,r3 :=r10p12) — (Z,L, M, R[rs = na], pc + 1,1)
R(ri)—mn1 ny=0un1 Z(pc+1)+—i
— UNOP
(Z,L, M, R, pe,re := Oyr1) — (Z,L, M, R[ry = na],pc + 1,14)
R(ri)—n ZI(pc+1)—i
MOVE
(I,ﬁ,M,R,pC,T‘Q = Tl) - (I7£7M7R[T2 = n]ypc_‘_ 17i)
Z(pc+1)—1
— MOVEC
(I7 £7M7R7pc7r = n) - (I7 ‘C?M?R[T = n]7pc+ 17Z)
R(rz) —mni M(ni)—=n2 Z(pc+1) i
— LOAD
(17£7M7R7p67 T = *(T2) - (I,E,M,R[Tl = n2]7p6+ 172)
R(Tl) — N1 R(Tz) — N9 I(pc—i— 1) — 9
STORE

(Z,L, M,R,pc,x(r1) =r2) — (Z,L, M[ny = ns], R,pc+ 1,1)

Table 2: Operational Semantics. L lifts a value to a label.

Alias Analysis for Assembly 7/24

stores the value in register ry into the memory location addressed by ;.
We have two different move statements, one for register to register moves
(r = 71), and one to initialize a register with a constant (r = n). Control
flow statements are either unconditional jumps (jmp/ijmp) or conditional
jumps of the form if r then jmp ¢; else /{y where if R[r] = 0 we jump
to label /; else /5. Note an indirect jump ijmp 7 uses a function L which
converts the numeric value in register r to a label.
The machine is initialized with:

(Z,£, M, R,0,jmp start)

We assume the program is well-formed. In our scenario, the program is
automatically derived from valid x86 assembly. In Appendix B, we give an
example program and its execution trace.

2.2 Assembly Aliases: Our High Level Approach

If 11 = ro(mod23?), then the expressions *r; and 7 refer to the memory
cell, and r; and ry are called aliases. Our goal is to statically find all alias
relationships. However, since this type of static analysis is well-known
to be undecidable, we can only produce approximate results. A may-alias
algorithm computes all pairs r; and ro which may be aliases. A must-alias
computes all pairs r; and 7, which must be aliases.

We focus on performing a may-alias analysis. One goal for our analysis
to be conservative; that is, if an alias relationship is possible, our analysis
includes it. As mentioned in the introduction, one key problem in com-
puting may-alias relationships is reasoning about the values registers may
hold.

Our high level idea is to perform abstract interpretation on the program
to determine the possible values each register may hold at each program
point. If we can determine a register r can hold values v, v2, v3, we know
any memory operation *r will reference the address v; or vy or vs.

2.3 Assumptions

There are several possible assumptions that can affect the efficiency and
accuracy of our alias analysis. Throughout the rest of the paper, we make
the following assumptions:

1. All memory and registers are initialized prior to any reads. This re-
quirement is normally satisfied since operating systems typically zero

Alias Analysis for Assembly 8/24

all memory and registers before beginning program execution. Alter-
natively, we could defined a special syntactic category for uninitial-
ized values.

2. All instructions which may be executed are given in Z, and all jumps
are to labels in £. This assumption is needed for the abstract ma-
chine to be well defined, e.g., that we know the total set of instruc-
tions which may execute.

3. All memory cells and register locations are of a single fixed width,
and reads and writes do not overlap. This assumption simplifies the
correctness proof: allowing several different widths adds a few more
otherwise uninteresting cases to consider at each step in the induc-
tion.

In our implementation, we meet our assumptions by pre-processing the
binary and assembly to not include floating point operations and reducing
all integer operations to byte-level operations. In the rest of this subsection,
we consider these assumptions and possible alternatives. We came across
the need for many of these assumptions while trying to prove correctness of
our alias analysis. Thus, correctness proofs are useful not just for showing
correctness, but also understanding the space of possible assumptions an
analysis can make.

Memory and Register Initialization One important issue we must ad-
dress is the semantics of reading an uninitialized value, either from mem-
ory or from a register. An uninitialized value is a value (e.g., a memory
cell) that has not been previously written to by the program. We consider
several possibilities.

Assumption 1:All value locations such as registers and memory locations are
initialized to .

With this assumption, a load from an address not previously stored to
always returns the same value x. This assumption mimics the fact that
many OS’s zero-fill memory and registers, i.e., x = 0. OS’s zero-fill memory
to prevent information leakage; if they did not initialize memory somehow,
then the values from previous allocations (perhaps in another process) may
be visible, e.g., process A could read process B’s freed password memory.

For example, suppose at some point you have a store instruction *r = v
and we know r = 0, 1, and m[0] and m[1] have never been written to. With
this assumption, the state after the store is m[0] = {0,v} and m[1] = {0, v}.
Note we can refine assumption 1 to include the case that different locations

Alias Analysis for Assembly 9/24

are initialized differently. For example, the instruction pointer is set by the
operating system, the data memory segment is initialized with the data
segment of the executable, etc.

A different assumption we could make is:

Assumption 1’ (alternate): Reading an uninitialized value returns L.

The alternate assumption 1’ is more conservative than assumption 1,
and is intended to mimic the operational behavior of the raw x86 platform.
We introduce a new value L (bottom) which represents an unknown inte-
ger. We augment the semantics of integer binary and unary operations to
include 1 by assuming any operation with | as an operand returns L, i.e.,
1l=0,1,1L=10w, L =r0,L,and L = 10O,1.

If we adopt assumption 1, our analysis will be very imprecise when
a store can be to multiple addresses. For example, suppose at some point
you have a store instruction *r = v and we know r = 0,1, and m[0] =
1,m[l] = L. With assumption 1’, this store instruction gives us no useful
information. Since we cannot say for certain which memory address is
written to, after this instruction we must say both memory cells can still
have value called L. Note that L is not a single integer, but any possible
integer in the domain, so the values at m|[0] are m][1] possibility distinct
integers.

In general, it seems difficult to tell exactly when a memory cell has been
initialized to a computed value. This effect will propagate through the pro-
gram, e.g., a subsequent read of m[0] or m[1] will result in L, likely leading
to another store at location L.

Control-Flow Assumptions We already mentioned that we assume code
is not created on the fly. More specifically:

Assumption 2: All instructions which may be executed are given in I, and
all jumps are to labels in L.

In order to understand the significance of this assumption, consider
how a program is interpreted by the CPU. The CPU begins reading in a
sequence of bytes pointed to by the instruction pointer. The CPU contin-
ues to read bytes until either a complete instruction including opcode and
operands is decoded, or the CPU can determine the bytes do not represent
any instruction. After decoding, the CPU executes the instruction.

Now suppose we decode a move instruction from bytes 0-4. Later
on, an indirect jump can jump to address 1 — the middle of a previously
decoded instruction! Now the CPU decodes starting at byte 1, and will
execute a completely different instruction. We call this instruction pack-

Alias Analysis for Assembly 10/24

ing, since a sequence of bytes can represent many different instruction se-
quences.

Our assumption means that not only do we assume code isn’t created,
modified, or deleted on the fly, but also that there is no instruction packing.
In practice, if such instructions were encountered we would stop the alias
analysis, decode and add the new instructions to our program, and restart
the analysis from the beginning.

Integers are a fixed width. Modern architectures, and in particular the
x86 platform we focus on, supports 8, 16, and 32-bit integers, as well as a
number of floating point sizes and representations. To simplify matters, in
our analysis we assume:

Assumption 3: All memory cells and register locations are of a single fixed
width, and reads and writes do not overlap.

In real assembly memory pointers are 32-bits for IA32, but registers can
be variable width. Memory itself is addressable at the byte addressable, i.e.,
2 32-bit integers can be written to the stack at bytes [mg, m7|, and a single
32-bit integer can be read from bytes [mg, ms]. In addition, registers may
have different sizes and overlap: %eax and %al overlap on the low 8 bits.

3 Alias Analysis in Datalog

We perform our alias analysis in Datalog. At a high level, the Datalog EDB
predicates are derived from program statements. The IDB predicates com-
pute the possible values each register may hold via symbolic execution of
the EDB predicates. After saturation, a user can query the database to dis-
cover alias relationships. Two register variables r; and 7, are aliases at
statement pc if:

points_to(pc, r1,) ﬂ points_to(pc, 12, -) # 0

3.1 EDB Rules

Our EDB predicates are shown in Table 3. They encode the language from
Table 1 into an 6-positioned tuple. The first position is the statement num-
ber. The second position is the type of operation, and the remaining 4 posi-
tions interpretation is determined by the operation type.

If we adopt Assumption 1 (Section 2.3), we can initialize registers and
memory locations by prepending a const predicate for each register used,

Alias Analysis for Assembly 11/24

Predicate Statement

inst(pc, const, 1, n, none, none). pc:r=n

inst(pc, binop,r, bop, r1, 12). pc: r =11 bop 12

inst(pc, unop, r, uop, r1, none). pc:r=uoprl

inst(pc, move, 1, r1, none, none). pc:r=rl

inst(pc, load, r, r1, none, none). pc:r="rl

inst(pc, store, 1, r1, none,none). pc: *(x) =rl

inst(pc, jmp, name, 1, none, none). pc: jmp 1

inst(pc, ijmp, lval, r , none, none). pc: ijmp r

inst(pc, ¢jmp, 1, 11, 12,none). pc: if r then jmp 11 else jmp 12

inst(pc,nop,none,none,none,none). pc: nop

Table 3: Our initial EDB predicates. The predicate given on the left is gen-
erated for statements of the form on the right. pc is always the statement
number in the program.

e.g., inst(0, const, r, x, none, none) initializes r to x. Memory can be initial-
ized by adding a similar rule for each memory address calculate.

3.2 IDB Rules

Our IDB predicates are given in Table 4. We adopt the more succient no-
tation pc: i for instruction i on line pc instead of the more cumbersome 6-
tuple of the corresponding EDB predicate. The succ(A,B) predicate is true
if statement B is a successor of A. We use an auxiliary predicate defined(pc,
r) which is not shown, but simply returns true if register r is assigned to by
statement pc.

There are two types of predicates: predicate names prefixed with Vv cal-
culate the value(pc,r,v) predicate is true if at statement pc register r may
hold value v. Predicate names prefixed with P calculate the points_to(pc,i,v)
which is true if at statement pc the memory at index i may hold value v.

V-CONST initializes a register to a constant. V-MOVE and P-PROP are
transitive relationships, propagating values if the register is not redefined
or the instruction is not a memory operation. V-BINOP and V-UNOP calcu-
late the values a register may hold. The calculation is done via an external
oracle, prefixed with a hash (#). The #binop oracle calculates V = X0O,Y.
Since we assume all registers are initialized before being read, we can al-
ways calculate #binop (and similarly #unop).

The P-STORE instruction adds a new points-to relationship. Note we do
not model destructive updates of memory: if two statements write to the

Alias Analysis for Assembly 12/24

succ(PPC) P:R:=N succ(PPC) P:R=R1 value(PR1,V)

value(PC,R,V)

V-CONST

V-MOVE
value(PC,R,N)

succ(PPC) value(PR,V) not defined(PC,R)
V-PROP
value(PC,R,V)

succ(PPC) P:R=R1O0pR2 value(PR1,X) value(PR2Y) #binop(Op,X,Y,V)
V-BINOP
value(PC,R,V)

succ(PPC) P:R=OpR1 value(PR1,X) #unop(Op,X,V)

V-UNOP
value(PC,R,V)

succ(P, PC) P:R=*R1 value(P,R1,1V) points_to(P1V, V)

V-LOAD
value(PC,R,V)

succ(P, PC) points_to(PL V)

P-PROP
points_to(PC, I, V)

succ(PPC) P:*R=R1 value(P,R,I) value(PR1,V)
P-STORE
points_to(PC,1,V)

A:jmp L B:label L
succ(A,B)

SUCC-JMP

A:ijmp R value(A,R,V) B:labelL #lhat(V,L)

SUCC-IJMP
succ(A,B)

A:if Rjmp L1 else jmp L2 B:label L1
succ(A,B)

SUCC-CJMP-T

A:if Rjmp L1 else jmp L2 B:label L2

SUCC-CJMP-F
succ(A,B)

A:OP OP#jmp OP#imp OP#cmp B=A+1
SUCC-INC
succ(A,B)

Table 4: IDB inference rules.

Alias Analysis for Assembly 13/24

same cell, then our semantics say the memory cell could have either value
after the second write. If we wanted to model destructive updates, then we
would have to model when a cell was definitely overwritten vs. possibly
overwritten. We leave this extension as future work.

Our rules take care of resolving indirect jumps via the succ-ijmp predi-
cate. We can infer the destination of an indirect jump is label / if the target
registers value corresponds to the pc for /. The #lhat predicate takes care
of converting the register value to a label. This rule highlights one of the
potential applications from Section 1: alias analysis can be used to aid dis-
assembly by providing information about indirect jump targets.

4 Correctness Proof

In this section we prove that for every possible value that a variable or
memory location can take on at a particular point in the program, we will
have a corresponding fact in our database. This is trivially true before
the machine starts executing, because there are not yet any assignments
to memory or registers.

What we prove here is that this statement holds for every possible tran-
sition of the machine state.

Theorem 4.1 Given a machine state transition:
(Z,L, M,R,pc,i) — (Z,L, MR pc,i)

If we have the facts corresponding to the register and memory assignments of
the starting state:

Aq Yr € dom(R)s.t.R(r) — vy : value(pe,r,v2)
Ao Vn € dom(M)s.t. M(n) — vy : points_to(pc,n,vy)

and the facts corresponding to the beginning and ending instruction:

Az pc:i
Ay pd 7
Then we can derive the facts corresponding to the register and memory assign-
ments of the next state:

Vr € dom(R")s.t. R (r) — vy : value(pd 1, v3)
Vn € dom(M’)s.t. M'(n) — vy : points_to(pc,n,vy)

Alias Analysis for Assembly 14/24

Proof: We perform inversion over the transition. Hence, we must consider
each possible transition rule from Table 2.

I(pc+1) =i
Case: Nor
(I7£7'M7R7pc7nop) - (I7£7M7R7pc+17i)
with M’ = M, R' =R, pc’ =pc+1

pc: nop assumption Az
A:OP with A=pc and OP=nop
OP # jmp OP=nop
OP # ijmp OP=nop
OP # gmp OP=nop
B=A+1 with A=pc, B=pc/
succ(pe,pc’) Succ-INC
value(pc,R,V) VR € dom(R)s.t. R(R) — V assumption Ay
VR € dom(R) not defined(pc,R) construction of edb
value(pcd ,R,V) VR € dom(R')s.t. R'(R) — V' V-PrROP
points_to(pc,I,V) VI € dom(M)s.t. M(I) — V assumption Ao
points_to(pc/,L,V) VI € dom(M’)s.t. M'(I) — V P-PrOP
I(pc+1) =i
Case: LABEL

(Z,L, M,R,pc,label ¢) — (Z,L, M, R,pc+ 1,1)
with M' = M, R' =R, pd =pc+1

value(pcd ,R,V) VR € dom(R')s.t. R'(R) — V' symmetric to NOP
points_to(pc,I,V) VI € dom(M)st. M'(I) — V symmetric to NOP

R(Tl) = nq R(Tz) —ng9 n3g = ni0yng I(pC—l- 1) =1
Case: — BINOP
(Z,L, M,R,pc,rg :=r10pra) — (Z,L, M, R[rs = ng],pc + 1,1)
with M" = M, R = R[r3 = n3|, pd =pc+1

pc:ry =rityr assumption Ag
R(r1) — nq BINOP inversion
value(pc,ry, n1) assumption Ay
R(rq) — ng BINOP inversion
value(pc,ra, n2) assumption A;

ng = niUyng BINOP inversion

Alias Analysis for Assembly 15/24

Case:

Case:

Case:

#vbinop(Oyp, n1, na, n3) by def.
succ(pe,pc’) Succ-INC (symmetric to NOP)
value(pc/, r3, n3) V-BINOP
value(pc,R,V) VR € dom(R)s.t.R(R) — V assumption A;
VR € dom(R),s.t.R # r3 not defined(pc,R) construction of edb
value(pcd ,R,V) VR € dom(R’),s.tR # rsandR'(R) — V V-ProP
points_to(pc,I,V) VI € dom(M)s.t M(I) — V assumption Ao
points_to(pc’,1,V) VI € dom(M’)s.t. M'(I) — V P-PrOP

R(r1) —n1 ne=0yn1 Z(pc+1)—1

(I,E,M,R,pc, ro = Durl) - (I,E,M,R[Tg = 7”L2],pC—|— 172)
with M’ = M, R' = R[ry = nsl, pd = pc+1

UNOP

value(pc/, ra, no) symmetric to BINOP
value(pc,R,V) VR € dom(R'),s.t.R # rsandR/(R) — V Symmetric to BINOP
points_to(pc,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to BINOP

R(ri) —n ZI(pc+1)—i

— MOVE
(Z,L, M,R,pc,ro :=11) — (Z,L, M, R[ro = n],pc+ 1,7)
with M' = M, R = R[ra =n], pd =pc+1
value(pc, ry, n) symmetric to BINOP

value(pc,R,V) VR € dom(R'),s.t.R # rsandR/(R) — V Symmetric to BINOP
points_to(pc,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to BINOP

I(pe+1)

(pc
(Z,L, M,R,pc,T :=n) — (IEMR[r—n] pc+ 1,14)
with M' = M, R' = R[r = n], pd =pc+1

MOVEC

value(pc, r, n) symmetric to BINOP
value(pc,R,V) VR € dom(R’),s.t.R # randR/(R) — V Symmetric to BINOP
points_to(pc’,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to BINOP

Alias Analysis for Assembly 16/24

R(ra) —mny M(ny)—mny Z(pc+1)+—i
Case: LOAD
(Z,L,M,R,pc,r1 = *(r2) — (Z,L, M, R[r1 = nal,pc+ 1,1)
with M' = M, R’ = R[r1 = na|, pd =pc+1

pe Ty = *ry assumption As
R(r2) — nq LOAD inversion
value(pc, ro, n1) assumption A;
M(ny) — ngy LOAD inversion
points_to(pc, n1, n2) assumption Ay
succ(pc, pc) symmetric to NOP
value(pc/, r1, ng) V-LOAD

value(pc,R,V) VR € dom(R'),s.t.R # rjandR/(R) — V Symmetric to BINOP
points_to(pc/,I,V) VI € dom(M’)s.t. M'(I) — V symmetric to BINOP

R(Tl) — Ny R(TQ) — N9 I(pc—l— 1) — 7
Case: — STORE
(I7£7M7R7pcy*(rl) = 7"2) i (I,E,M[nl = ng],R,pc—l— 1,2)
with M’ = M[ny =ng], R =R, pd =pc+1

pe kT = 1o assumption As
R(r1) — nq STORE inversion
value(pc, r1, n1) assumption Ay
R(r2) — na STORE inversion
value(pc, r2, n3) assumption Ay
succ(pc, pc) symmetric to NOP
points_to(pc, ni, na) V-STORE
value(pcd, R,V) VR € dom(R’),s.t. R'(R) — V symmetric to NOP

points_to(pc,I,V) VI € dom(M)st. M'(I) — V symmetric to NOP

L) =pcd ZI(pd)=1i
Case: JmMP
(I7 ‘Cv M7 RapC,ij E) - (Iv ‘67 Ma R7pcl7 Z)
withM' =M, R' =R

pc: jmp £ assumption Az
pc’: label £ assumption A4
succ(pe, pd) succ-Jmp
value(pc,R,V) VR € dom(R'),s.t.R'(R) — V symmetric to NOP

points_to(pc/,I,V) VI € dom(M')s.t. M'(I) — V symmetric to NOP

Alias Analysis for Assembly 17/24

R(r)=n L(n)—Ll LFL) —pd I(pd)=i
Case: IJmp
(I7 £7 M7 R,pC, 1]mpr) - (-'Z'-v £7 M7 R7pcla Z)
withM' =M, R' =R

pc: ijmp r assumption A3
R(r)—n IJMP inversion
value(pc,r,n) assumption Ay
L(n)—¢ IJMP inversion
#lhat(n, ¢) definition of #lhat
L(0) — pd [JMP inversion
pc’: label £ assumption A4
succ(pe, pd) succ-IJmp
value(pc,R,V) VR € dom(R'),s.t.R'(R) — V symmetric to NOP

points_to(pc’,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to NOP

R(r)—n n=0 L{)—pd I(pd)i
Case: CJMmP-T
(Z,L, M,R,pc, 1fr]rnp ¢y else jmp l9) — (Z,L, M, R,pc i)
with /\/l’ M, R =

value(pcd , R,V) VR € dom(R'),s.t.R'(R) — V symmetric to JMP
points_to(pc,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to JMP

R(r)—n n#0 L) —pd Z(pd)w—i
Case: CJmpr-F
(Z,L, M, R,pc,if rjmp ¢4 else jmp l3) — (Z, L, M, R,pc i)
withM' =M, R' =R

value(pc,R,V) VR € dom(R'),s.t.R'(R) — V symmetric to JMP
points_to(pc’,1,V) VI € dom(M’)s.t. M'(I) — V symmetric to JMP

5 Implementation

We have implemented a tool which performs alias analysis on x86 executa-
bles. Our tool:

Alias Analysis for Assembly 18/24

Disassembles the executable to a sequence of assembly statements.

Translates the assembly code into an intermediate representation (IR).

Translates the IR into the EDB predicates in Section 3.1.

Runs the Datalog implementation with the IDB predicates from Sec-
tion 3.2.

For this project, we wrote about 1100 lines of OCaml and about 250 lines
of C++. All in all, our tool consists of about 4500 lines of OCaml and 20000
lines of C++. There are 41 lines of Datalog.

VINE: Disassembly and Converting to the IR. We have developed an
infrastructure, called VINE, which disassembles a program and converts
each assembly statement to a series of IR instructions. Our IR syntax is
given in Appendix A.

Translating an x86 instruction into a sequence of IR statements is ac-
tually quite tricky. Since x86 is CISC, a single instruction may perform a
complex operation, e.g., the rep family of instructions are single-instruction
loops which continue to execute until a stop condition is met. For example,
rep stosd addr stores the word in the %eax register in %ecx words starting
at address addr. Note that in this example, a) the single assembly instruc-
tion translates into a sequence of IR statements, b) the translated IR contain
a loop, even though it is for a single instruction, and c) the assembly does
not mention %ecx and %eax explicitly. Thus, the translation engine pro-
duces a series of IR statements 5 =< sg, 51, 52, ..., 5, > for each assembly
statement.

Translating the IR into EDB Predicates. Each IR statement is translated
into an EDB predicate. The translation essentially simplifies expressions
such that each statement conforms to the grammar in Table 1, then writes
out the corresponding EDB predicate.

Analysis Implementation. A key problem that we needed to address in
this project was which Datalog implementation to use to perform the analy-
sis. Our main requirement was a Datalog implementation which supported
binary operations over integers in [0, 23?], i.e., the size of IA32 registers. We
surveyed several Datalog implementations, including:

e bddbddb [16, 17], a Datalog implementation which uses BDD’s.

Alias Analysis for Assembly 19/24

e DES [14], a Datalog implementation written in Prolog.

e DLV [10, 7] (Disjunctive Datalog), a research Datalog system for dis-
junctive Datalog with constraints and “true” negation.

Of these systems, only DLV supported native arithmetic. However,
DLV arithmetic is constrained to the domain [0,999999999]. DLV also only
supports addition and multiplication, and not other operations such as di-
vision or Xor.

After emailing the authors, we discovered a variant of DLV called DLV-
Ex [5, 4]. DLV-Ex extends DLV with external predicates. The external pred-
icates are implemented in C++. External predicates are referenced in rule
bodies using a hash (#). For example, the rule:

sum(X,Y,Z) :- integer(X), integer(Y), integer(Z),
#binop(plus, X,Y,Z)

uses an external predicate named binop. The binop predicate has several
different implementations: one which returns true if X + Y = Z when all
are ground, one which instantiates Z when X and Y are ground but Z is free,
etc.

We implemented the binary and unary evaluation using the external
predicate mechanism. The resulting queries are still safe since arithmetic
is performed over a finite domain. One small issue is that DLV-Ex is also
limited to integers less than 999999999. In order to get around this issue,
we encode each integer as a string atom. Our external predicate converts
the string to an integer, performs the requested operation, and converts the
resulting integer back to a string atom.

6 Evaluation

We have begun evaluation of our prototype. We have created several small
examples and performed points-to analysis on the result.

We have also begun testing our points-to analysis on real programs. We
have tested our implementation on several variants of the following C test
program:

Alias Analysis for Assembly 20/24

int g(int x)
return x;

void f(int x)
g(x);

void main()
£(0x2);

We compile the program using gcc, then use our tool to disassemble
the source, convert to the VINE IR, convert the vine IR to EDB predicates,
and saturate the Datalog database. For this program, the EDB contains 356
predicates. Saturation takes 1.8 seconds inside a VM on a Pentium 1.7 GhZ
machine. Our example generates 2 indirect jumps: one for each return from
the calling function. We resolve the 2 indirect jump returns correctly. There
are 7 different points-to relationships from the example corresponding to
placing return addresses on the stack and passing arguments.

7 Future Work and Conclusion

Our immediate future work is to re-implement our system using bddbddb.
There are two reasons for doing this. First, we can more efficiently initial-
ize all memory prior to analysis. Our current implementation assumes all
memory is initialized by the program itself before any reads. However,
a program may load a value it has never written. To accurately describe
these semantics, we need to initialize all memory locations as part of the
EDB. BDD’s seem a good approach. Second, we may want to efficiently
clone our database as allowed by BDD implementations. Whaley et al [18]
has previously shown that cloning is important to scaling inter-procedural
alias analysis. In our setting, we initially do not have procedures. How-
ever, our alias analysis allows us infer when a chunk of assembly will act
like a procedure. Thus, we too may be able to do a type of inter-procedural
(or inter-chunk) analysis where cloning would be useful.

We also need to perform more tests on real programs. We expect we
will need more intelligent support for loops. Our current analysis will iter-
ate over loops until the database is saturated, which may take a very long
time given the domain for each input variable is |232|. We are currently
investigating how best to introduce widening into our semantics.

Our primary goal in this project was to develop a firm foundation for re-
search on assembly alias analysis. We have developed an initial alias anal-
ysis for assembly, and built a prototype system to test some of our ideas

Alias Analysis for Assembly 21/24

for alias analysis. We have also shown our approach produces a conser-
vative approximation of possible alias relationships. We believe these are
important first steps towards accurate and efficient alias analysis of assem-
bly programs.

Acknowledgments

We would like to thank Frank Pfenning for his helpful comments and thoughts
while performing this research, as well as Gogul Balakrishnan and Thomas
Reps for their comments on a previous version of this paper.

8 References

[1] G Balakrishnan and T Reps. Analyzing memory accesses in x86 exe-
cutables. In Proceedings of the International Conference on Compiler Con-
struction, pages 5-23. Springer-Verilag, 2004.

[2] G Balakrishnan and T Reps. DIVINE: DIscovering Variables IN eXe-
cutables. In Proceedings for the Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI), 2007.

[3] David Brumley, James Newsome, Dawn Song, Hao Wang, and
Somesh Jha. Towards automatic generation of vulnerability-based sig-
natures. In Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy, pages 2-16, 2006.

[4] F. Calimeri and G. Ianni. External sources of computation for answer
set solvers. In Proceedings of the 8th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pages 105-118, 2005.

[5] Francesco Calimeri, Giovambattista Ianni, and Susanna Cozza. Dlv-
ex. Software available at: http://www.mat.unical.it/ianni/wiki/
dlvex.

[6] C Cifuentes, D Simona, and A Fraboulet. Intraprocedural static slic-
ing of binary executables. In International Conference on Software Main-
tenence, pages 188-195, 1997.

[7] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and
Gerald Pfeifer. System description: DLV with aggregates. In Vladimir
Lifschitz and Ilkka Niemela, editors, Proceedings of the 7th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR), volume 2923, pages 326-330.

Alias Analysis for Assembly 22/24

[8] Andrew Edwards, Amitabh Srivastava, and Hoi Vo. Vulcan: Binary
transformation in a distributed environment. Technical Report MSR-
TR-2001-50, Microsoft Research, 2001.

[9] M. Van Emmerik and T Waddington. Using a decompiler for real-
world source recovery. In Proceedings of 11th Working Conference on
Reverse Engineering, pages 27-36, 2004.

[10] Nicola Leone, Gerald Pfeifer, and Wolfgang Faber. The dlv project.
Software available at: http://www.dbai.tuwien.ac.at/proj/dlv/.

[11] Microsoft. Phoenix framework. http://research.microsoft.com/
phoenix/.

[12] James Newsome, David Brumley, Jason Franklin, and Dawn Song.
Replayer: Automatic protocol replay by binary analysis. In Rebecca
Write, Sabrina De Capitani di Vimercati, and Vitaly Shmatikov, edi-
tors, In the Proceedings of the 13" ACM Conference on Computer and and
Communications Security (CCS), pages 311-321, 2006.

[13] T Reps, G Balakrishnan, and J Lim. Intermediate-representation re-
covery from low-level code. In Proceedings of the Workshop on Partial
Evaluation and Program Manipulation (PEPM), 2006.

[14] Fernando Saenz. Datalog educational system (DES). Software avail-
able at: http://www.fdi.ucm.es/professor/fernan/DES.

[15] S.K.Debray, R Muth, and M Weippert. Alias analysis of executable
code. In Proceedings of the 1988 Principles of Programming Languages
Conference (POPL), pages 12-24, 1988.

[16] John Whaley. bddbddb. Software available at: bddbddb. sf .net.

[17] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
Using datalog with binary decision diagrams for program analysis. In
Kwangkeun Yi, editor, Proceedings of Programming Languages and Sys-
tems: Third Asian Symposium (APLAS), volume 3780, pages 97-118, nov
2005.

[18] John Whaley and Monica Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In In Proceed-
ings of Program Language Design and Implementation (PLDI), pages 131—
144, 2004.

Alias Analysis for Assembly 23/24

stmt == Jmp of exp | CImp of exp * exp * exp
| Move of lvalue * exp | Label of label | Stop
exp = BinOp of binop_type * exp * exp | UnOp of unop_type * exp

| Name of label |Constant of reg_t * value
| Lval of lvalue | Let of lvalue * exp * exp

lvalue = Temp of var * typ | Mem of var * typ * exp
binop_type = +|—|*x|/|%|<|>|A|V|®|=]|<>]|<]|<
unop_type = !

typ u= reg_t|Array of typ * typ

reg_t == REG_.64 | REG_32 | REG_16 | REG_8 | REG_1

Table 5: Our internal representation (IR) for assembly language.

A The VINE IR

Table 5 shows the IR produced by the VINE infrastructure. Note that a
since x86 instruction will likely correspond to a series of IR instructions.

B Example Program Execution in our Language.

An example program which computes the factorial of register r0 is:

1 label start

2 rl :=0

3 r2 :=1

4. r3 :=r0 -rl

5. if r3 then jmp done else jmp fact
6 label fact:

7 rl :=rl +1

8 r2 :=r2 *xrl

9. r3 :=r0 -1l

10. if r3 then jmp done else jmp fact
11. 1label done:

12. halt

Alias Analysis for Assembly 24/24

If we assume r0 = 2, then the execution is:

(1, [0 = 2],0,jmp start) —

(I, [r0 = 2], 1,label start) —

(ILMR[ro 9),2,11 :=0) —

(1, [r0=2,71=0],3,12:=1) —

(1, [r0=2,71=0,r2=1],4,13:=r0-rl) —
(ILMR[r0—2r1—O r2 = 1,73 = 2|, 5, if r3 then jmp done else jmp fact) —
(I,L,M,R[r0=2,71=0,r2=1,r3 = 2],6,label fact) —
(I,L,M,R[r0=2,71=0,r2=1,r3=2],7,rl:=rl +1) —
(I,L,M,R[r0=2,7r1=1,r2=1,r3=2],8,12:=12*rl) —
(I,L,M,R[r0=2,r1=1,r2=1,r3=2],9,r3:=r0-rl) —
(I,L,M,R[r0=2,r1=1,r2=1,r3 =1],10,r3 :=r0-rl) —
(I,L,M,R[r0=2,71=1,r2 =1,r3 = 1], 11, if 13 then jmp done else jmp fact) —
(I,L,M,R[r0=2,r1 =1,r2 =1,r3 = 1], 6, label fact) —
(I,L,M,R[r0=2,r1=1,r2=1,r3=1],7,rl :=r1 +1) —
(I,L,M,R[r0=2,r1=2,r2=1,r3 =1],8,12:=r2*rl) —

(I, L,M,R[r0=2,7r1=2,r2=2,1r3=1],9,13:=1r0-rl) —
(I,L,M,R[r0 =2,r1 =2,r2 =2,r3 = 0], 10, if r3 then jmp done else jmp fact) —
(I,L,M,R[r0=2,71=2,r2=2,r3 = 0], 11, label done)
(I,L,M,R[r0=2,r1 =2,r2 = 2,73 = 0], 12, halt)

