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Abstract

We apply the derivational method of protocol verification to key distribution protocols. This method
assembles the security properties of a protocol by composing the guarantees offered by embedded
fragments and patterns. It has shed light on fundamental notions such as challenge-response and fed
a growing taxonomy of protocols. Here, we similarly capture the essence of key distribution, authen-
tication timestamps and key confirmation. With these building blocks, we derive the authentication
properties of the Needham-Schroeder shared-key and the Denning-Sacco protocols, and of the cores
of Kerberos 4 and 5.

The main results of this research were obtained in 2003-04 and appeared in [3]. The present document
collects proofs omitted for space reasons and unpublished background material.
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1 Introduction

Key distribution is one of the most studied themes in security. The problem and the basic ideas for the
solutions were first described in Needham and Schroeder’s seminal 1978 paper [13]. On a network
of computers, the users and processes often need to access remote resources. In order to prevent
unauthorized use, these accesses need to be authenticated, and often protected by encryption. Key
distribution protocols cater to this need by providing participating entities with a fresh shared key for
direct and secure communication.

The most popular key distribution protocol is Kerberos. It was designed at MIT, originally just
to protect the network services provided by Project Athena, an initiative developed in the eighties
to integrate computers in the MIT curricula [18]. Distributed for free, it subsequently achieved a
widespread use beyond MIT. While its earlier versions were not always suitable for large scale appli-
cations, versions 4 and now 5 have been redesigned for large systems [15, 16].

In the present paper, we present a formal reconstruction of the developments leading up to the
Kerberos protocols. The starting point can be found in the original Needham-Schroeder Shared Key
(NSSK) protocol, proposed in [13], which motivated the very idea of the Authentication Server.
Along the way, the Denning-Sacco attack and protocol [5] championed timestamp-based $e¥urity.
their core, Kerberos 4 and 5 combine and extend these ideas into an industrial-strength single-logon
authentication infrastructures [15, 16].

We recast these conceptual steps in the formal framework of the protocol derivation system, that
evolved through [4, 11]. Such logical reconstructions of development histories allow classifying pro-
tocols according to the underlying security components and concepts. The resulting taxonomies then
provide a foundation for a practical framework for secure reasoning, where the results of previously
achieved protocol development efforts are available for reuse, refinement and composition. One such
framework is being implemented as a tool, the Protocol Derivation Assistant, with all such recon-
structions available as reusable libraries. In previous work, we have looked at electronic commerce
protocols [4] and group protocols [11]. The protocol taxonomy obtained for them summarized recur-
rent security practices and supported recombining them to derive further protocols.

Presently, we only derive the basic components of the Kerberos protocols and their authenticity
properties. The actual deployed protocols chains several (at least two) rounds of such components,
bound together by secret data. The issues leading up to this composition, and arising from it, will be
studied in a sequel paper.

This work is organized as follows: in Section 2 we explain the protocol derivation infrastructure.
We use it to express the basic key distribution mechanism in Section 4. We extend in the direction of
NSSK in Section 4 with nonce-based recency and key confirmation. We extend in a different direction
with timestamp-based recency in section 5 obtaining the Denning-Sacco protocol as well as Kerberos
4 and 5.

2 Protocol Composition System

We outline the methodology underlying our analysis in Section 2.1 and formalizes the resulting frame-
work, that we call theProtocol Composition Systerm Sections 2.2-2.5. It should be noted that,
while the Protocol Composition System is clearly inspired by our previous work [4, 11], a number

!Needham and Schroeder proposed an alternative fix to NSSK that does not rely on timestamps in [14].
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Figure 1: Overview of the Derivation of Key-Distribution Protocols

of notions are novel. Therefore, the following material provides more than a review of established
concepts.

2.1 Overview

As a principalA executes a protocdP, the events she observes locally (receiving a messages, com-
paring a component with an expected value, etc) allow her to make deductions about the actions of
the principals she is interacting with. This implicitly identifies a cl&s of possible runs, each of
which intersperses her own actions with compatible actions by the other participants. As an authenti-
cation propertyProp also identifies a claskp,., Of legal runs forP, the verification task traditionally
reduces to showing tha& 4 is contained irfRp,op, and similarly for the other parties in the protocol.
Every run inR 4 but not inRp.p is an attack oml with respect tdProp.

We take a different approach: rather than compamngwith the legal runs of a given authenti-
cation property, we synthesize a logical expres@andescribingR 4. This explicit representation is
carefully engineered to be compositional: we dissé&stobservations into elementary components



and give a logical representation of the property they each realize #igan d&trein a protocol).

We similarly give a logical justification of the various mechanisms that allow combining components
into bigger protocol fragments, and in particular of what properties emerge from the properties of the
parts. By iterating this process all the wayA® original observations, we derive a formudg, that

in a strong sense describé properties ofR 4. Indeed, this constructions provides us with a clear
view of the properties contributed by each component and whether they propadeie We often

restrict our attention to interesting scenarios by assuming, for example, that other principals behave
honestly, or that a certain key has not been compromised. Note that these assumptions are elective.

Rather than checking that a protocols satisfies a given propesty, our approach enumerates
the properties supported by a protocol based on its construction. Whenever an expected property is
not manifested, we can rapidly point to a missing component or a composition mechanism failing
to propagate it, and produce a counterexample, as done in [11]. We can also scrutinize the formula
® 4 summarizing the possible runs of each princidain the light of a well-known authentication
property, such as matching histories [6] or agreement [10]. We do not, however, formalize traditional
propertiesProp as formulas in our logic for formal comparison with the deduced formélagthis
will be for another paper).

A crucial aspect of our approach is that component-formulas pairs can be reused whenever they
occur in another protocols. Even more interesting is the fact that the composition operations for
fragments and properties can be made systematic, which gives rise to protocol taxonomies [4]: a
rational classification of protocols that not only aides our understanding of these complex objects, but
also helps choosing or devising a protocol based on desired features and properties. We are working
on a tool that will assist us building taxonomies that are much larger than what we have so far been
able to construct by hand.

Below, we give the necessary definitions to formalize the notions leading to the set of possible runs
‘R 4 deducible by a principall and the corresponding formuies. We define the basic vocabulary
of terms, actions and protocol specifications in Section 2.2. We introduce dynamic concepts such
as runs and observations in Section 2.3. Section 2.4 sets the stage for the logical expression of the
set of possible runs deducible from an observation, while Section 2.5 provides the logical means to
perform such deductions. The remainder of this paper will apply these definitions in the study of key
distribution protocols, starting from basic concepts all the way to Kerberos.

2.2 Syntactic Categories

In this section, we present the formal syntax used in the Protocol Composition System. In particular,
we define principals, terms, patterns, actions, roles and protocols. These notions will be used in the
sequel to define dynamic notions such as runs and local observations, and deductive reasoning will
operate on them.

Principals We modelprincipalsas a partially ordered set, or posgty, €), where)’V enumerates

the principals we are working with and teebprincipalrelation& is a reflexive partial order on them.

The subprincipal relation can represent, as needed, access to information or resources, or subsume
e.g. the relations “speaks for” [1, 9], or “acts for” [12], or model groups and coalitions of principals.

We will make limited use of this relation in this paper. We denote the class of variables ranging over
principals withVaryy,. We write A, B, S, . . . for generic principals, and use capital letters towards the

end of the alphabet for elements\édry, .



Terms The set7 of termsis an abstract term algebra constructed over a set of varighles

and a set of operatof8p, (some of which may be constants). Principals are a subclass of terms,
i.e. W — T (and similarly for principal variables). We also assume the standard classes used in
modeling cryptographic protocolfNnc, Key, Time... — 7 for nonces, keys, timestamps, and so
on. We writem for a generic message, but usen, t, etc, for keys, nonces, timestamps and other
specialized messages. The lettery, z, ... will denote variables. In this paper, we will rely on two
specific constructors:

__:Key x T — T (kmisthe encryption ofn with k)
T xT—T (m,misthe concatenation of. andm’)

-

but7 may contain more. The standasdbternrelation endows terms with the structure of a poset
(7,0).

Patterns A patternis a termp together with a list of distinguished variabl€soccurring exactly
once inp that will be interpreted abinders— p may contain other variables. We mnemonically
write this pattern ag(z) but will often keepz implicit when clear from the context. The sBt of
patterns ort is therefore defined as

Pr=J (T x Vary)

neN

We further restrict the class of admissible patterns to account for non-invertible cryptographic opera-
tions: for example, we reject patterns of the formw#” which would allow extracting the key used
to encrypt the termm.

Actions Principals participate in a protocol by performing atoraations The set of actions is
generated from the set of terrisand the set of principalg) by the following constructors:

| Action || Constructor | Form | Informal meaning \
send T x W? & by (m: A — B) | The termm is sent, purportedly fron
AtoB

receive || Vary x Var}, U, Y| (z:Y — Z) | Aterm, source and destination are re-
ceived into the variables, Y, andZ

match T X Pr L b (m/p(Z)) | The termm is matched with the pat-
ternp(¥), bindingZ

new Vary <& % (v x) A fresh value is created and stored|in
the variabler

now Vary <& % (T x) The system time is read and stored|in
the variabler

These actions will take the center stage in this paper. We will occasionally introduce internal actions to

model protocol specific operations (e.g., looking up an internal table). Other actions can be added as
needed. The variablesY, Z in receive Z in match, andx in newandnow are binding occurrences,

so that any subsequent mention in an expression involving actions (e.g., roles below) are interpreted
as bound by them. We adopt the standard definitions of free and bound variables in an action. We

4



will often use partial descriptions of actions, and elide e.g., the source and the destinatiopnas in
or (y), or other parts, as itAd — C), or (z : A —).

We will formalize the meaning of these actions in the next section, where we present the execution
model of the Protocol Composition System.

Roles A roleis the complete code that a principal executes on her host to engage in a given protocol.
We model a role as a collection of actions performed by a principal. We allow actions to be composed
either sequentially (using™as a role constructor) or concurrently (using™. The setR of roles is

then defined a® = W x ©(®), where the second component is the algebra stemming ¥ramd
operations !” and “®". We tacitly use " as an associative operator, whil@* will be viewed as
associative and commutative.

Sequential composition™ orders the actions in a role, whilex” specifies clusters that can be
executed in parallel. A binder occurring in an action has scope over the actions in all paths stemming
from it. Care should be taken so that no variable is in the scope of more than one homonymous
binder when disambiguation is not possible: we avoid this problem completely by requiring that every
binder uses a different variable name. The free variables of a role are its parameters, and should be
instantiated prior to executing the role. The principal executing the role is a distinguished parameter.

As an example, we show the server role of the Denning-Sacco protocol, further explored in Sec-

tion 5:

DS _Server[S] = (mo:A— So);(S0/5); (mo/A, B);
(getKey (4, KA5) @ getKey (B, KP9));
(vk®Tt);

(KA3(B, k,t, KP5(k, A1) : S — A)

This role has one parameter, the name of the sef\@tecuting it. With the actions on the first line,

S receives a messagey, purportedly from some principal (this is the binding occurrence for this
variable), he verifies that he was indeed the intended recipient, aneighata pair withA as its first
component (this occurrence is in the scope of thim the receive action) and some narBeas its
second component. The second line invokes some internal actions to retrieve titedteyres with

A andB, and bind them to the variablgs*° and K 25 respectively. Notice that this specification
allows the concurrent execution of these two actions. On the thirddigenerates a key, binding it to

k, and looks up the current time intpagain concurrently. The last action sends the shown message.

Protocols A protocolis a collection of roles that covers the actions of all parties involved in the
protocol. In the case of Denning-Sacco, the protocol consists of three roles: the above server role, an
initiator, and a responder.

2.3 Execution Model

This section defines the dynamic concepts of runs and local observations. We start with the prelimi-
nary notions of processes (a minimally connected collection of actions), then associate every receive
action with a send action in the notion of run, then target the proper instantiation of variables by
defining execution, and finally distill the local observation of principal from an executable run.

Events An eventassociates an action to a principal, that we will understand has having executed
this action. We denote an event by subscripting the action with the principal in question, writing for
example(m : A — B) 4 for the event of principal performing the actiogm : A — B).

5



Processes A processis a partially ordered multiset (pomset) of events, i.e., actions attributed to
principals. More precisely, given a set of action laldels procesd. is an assignment

L% % xw
such that
e (L, <) is awell-founded partial order.
o (< {'impliesLyy(¢) € Ly (¢') or Ly(£) Ly (¢).

whereLyy(¢) is the name of the principal in even{?).

The relation< orders the events in a process so that one event can be described as occurring
before another in an abstraction of the temporal dimension of execution. Events that are not related
by < can have occurred in arbitrary order. The first condition simply prevents cycles.

The second condition specifies that only actions pertaining to the same principal, or one of its
sub-/super-principals, can be ordered in this way (we will extend this ordering across principal cliques
shortly). Like strands [8], related events in a process pertain to a single principal (or group of related
principals). Unlike strands, processes are not bound to a single protocol execution, but may order
events executed by a principal in several instances of the same protocol, possibly in several roles, and
even while executing several different protocols. The idea is that a principal will know in what order
she has executed actions, even when several protocols are involved. However, notice that the events
of a principal do not need to be totally ordered: events can be unrelated if their exact order does
not matter, or if the underlying execution model is actually parallel. Finally, processes may contain
variables bound by new, receive and match actions, while strands are always ground.

In the sequel, processes and related notions will generally arise out of instantiated protocol roles.
This will always be the case when reasoning about the observations of a principal, or when assuming
that a principal is honest. However, the actions attributed to a principal that is not assumed to be
honest may live outside of any role.

Before moving on, a few notational conventions will prove enormously helpful. We will often
abuse notation and denote a labet L in a procesd. by the eventL(¢) it points to. Furthermore,
we will often speak, for example, of “the evefih : A — B)4” in the context of a process,
although there may, of course, be several events of this form itMe will resurrect labels only in
case of ambiguity. We will also sometimes blur the distinction between an action and an event when
the associated principal can easily be reconstructed, and speak of “the(eventl — B)” for
example. Finally, we will make liberal use of the convention of dropping parts of an action that can
be reconstructed, and therefore may further streamline this example by speaking of “th@revent

Several representations of processes and derived notions will prove convenient in different cir-
cumstance. Of course, a process is a directed acyclic graph (DAG) with events as nodeasand
edges. Here is a simple example:

(vy)a ———=(f(z,9)a

(vz)a (2)a (f(z,9))a



where the arrows flow in the opposite direction<ofand we assumd’ € A. We will sometimes
explicitly render the ordering:, obtaining

(vz) 4 < (vy)ar < (f(z,y))a < (f(z,9))a

for the above example. Finally, we will occasionally use the conventions outlined in Section 2.2 to
express roles, rendering as *” and using ®" to denote the absence of an ordering. The above
example takes the following succinct form:

((va) a; ((vy) ars (2, 9)) ar) ® (2)a); (f(2,9)) 4) © (u) B

It should be noted that not every DAG can be expressed in either of the last two not&- b
tions (unless one is willing to repeat nodes, which would clash with our conventions).
For example, the DAG at right cannot be rendered in these ways. c—=d

Runs A run of a procesd. assigns to each of its receive events a corresponding send event. For-
mally, a run is thus a pair

(L, \/ : recvs(L) — sends(L))

(:Y—=Z)p +— (m:S—R)p

such that

V(@) # (2)

The condition forces the send event mapped to a receive event to have occurred before this event. It
prevents deadlocks, and protects the scope of the receiving variables (which is to the right, i.e., up in
the partial order).

A run can also be viewed as an extension of the otdef events in a process by addiRg(z) <
(x) for every receive actiofiz) € L. We shall thus represent a ryh, /) simply by a procesd.
where each receive evefit) has a unique predecesson) = /(z). A run of a process thus boils
down to a Lamport order of actiors.

We pointed out earlier that a process corresponds to a collection of strands. In the same vein, a
run is akin to a bundle in the strand world [8]. The main difference between our runs and bundles is
that in the present framework, the variables can be used to folloexbeutiorof the run, and track
the data as it flows through§t.

2This is in contrast with the representation of runs as process reduétian€hemical Abstract Machine, used in the
cord calculus [4, 7].

3If in a bundle a principal receives, say, the number 2, and then sends out the number 3, it is impossible to tell whether
his program says to receiveand then send: + 1, or to send2z — 1, or perhaps to sengl independently on what he
receives.



Execution The above definition falls short of capturing the intuitive notion of a run as a snapshot of
the execution of a protocol. Indeed, while our runs correctly map receives to sends, they do not ensure
that variables are properly handled. In particular, they allow events to take place past a failed match.
Rather than giving syntactic restrictions to characterize a well-formed executable run, we keep our
runs the way they are and define a notioerécutioron them.

A slice (L, L") is an order-conscious partition of a ryd, /), i.e., for everyl; € L* and
lo € L™, itis notthe case thdt < [1. Every path inl. will have a prefix inL~ and the restir.”. We
mark the meeting point witf.

Executing a run will consist of moving the marké&rsightward starting from an initial slicéd, L)
where there is a marker at the beginning of every path. The events in a run are executed in order: each
a € L can be executed only after @l < a have been executed. Execution on any given path is
specified by the following table:

| Action || Form [ If... | ...thendo... | ...andwrite |
send Yim:A— B)e | FV(m)=10 (m:A— B)L
receive || Y(z:Y — Z)p (x:Y—=Z)p |inala > (x:Y — Z)pset| (z:Y — 2)),
=(m:A— B)e | alzx:=m,Y :=A,Z:=DB)
- — (it i = 2. Y
match Y (m/p(E))p Jis.t.m = p(@) inall a > (m/p(m)) seta(Z := u) (m/p(Z))},
...otherwise ... ... halt on this path Y(m/p(x))p
new Y(vz)p (vx)Y,
now Y(rz)p (t2)Y,

Note that execution on a path will stop when a match fails. It can however proceed on other paths.

Remark 1 In principle, a run all of whose actions have been successfully executed records all of
the executed assignments. This distinguishes the computational assignment operationfrom
the algebraic substitution operatiapn/x). When substituting: for a variablez in a terma, we
simply replace the occurrences:oby m; the resulta(m/x) generally bears no trace af (unless it
occurred inm). In contrast, when assigning to z, we linkx to m, thereby destroying any previous
links of z, yet we do not erase the namexoitself. Indeed, in computatior, can later be reassigned
to another termm/.

When executing a run, the variables are assigned, but not destroyed. In this way, the data flow of a
run is completely recorded, since each binding actions just performs assignments on some previously
unassigned variables.

Executable Runs The left componenL ™ of a slice(L~, L") of a run(L, /) satisfies the intuitive
notion of run as a snapshot of the execution of a protocol. We adopt it as the definitioexa&@rnable
run, and will denote such entities with the leti@r variously annotated. From now on, all the runs
we will be working with will be executable and we thus will generally drop this qualifier.

Local Observations Thelocal observatiorof a principalA consists of all the events performed by
Ainarun@. Itis simply defined as the projection &f with respect tad together with the binding
of all mentioned variables:

Qa = {LeQ|Lw(l) = A}



2.4 Logical Annotations

Having defined the notions of (executable) run and observation, we will now define a logical language
to talk about these entities. This language applies the connectives and quantifiers of first-order logic
to a base set of predicates. We will then be able to define a judgment that verifies that a formula
constructed in this way is valid with respect to a run. It will then be a short step to use a formula to
characterize all the runs in which it is valid, and to anchor it to the local observations of a principal.

Predicates Our logical language contains just enough tools to query a rurevéet predicatewe
will be relying on are

a Eventa has occurred
a<b Eventa has occurred before evebt
a=15b a andb are the same event

We will also admit the various relations participating in the definition of principals (é.gs B),
terms (e.g.;n C m’), etc, as additional predicates. f@rmulacombines these atomic predicates by
means of the traditional connectives and quantifiers of first-order logic. We will allow quantification
over terms and principals appearing in an event, and, with a slight abuse of notation, over events
themselves.

Formulas can be used to describe runs or portions of runs: simply turn a pair of connected events
“a — b” into the atomic predicate < b, add the occurrence predicatdor any isolated eventd”,
and glue them together with. We write @ for the formula obtain in this way from a rug. For
example, the following formula captures the first few steps of an instance of the Denning-Sacco server
role from Section 2.2 for a given servér

(mp: A — Sp)s < (So/S)s A (So/S)s < (mo/A,B)s
(mO/Aa B)S < getKGY(A>KAS)S

(mO/A7 B)S' < getKeY(BﬂKBS)S

getKey (A, K4%) g < (v k)g A getKey (A, K4%)g < (1t)g
getKey (B, KB%) g < (v k)s A getKey(B, KP%)g < (1t)s

> > >

>

An automated theorem prover can make use of this formula, but it looks rather obscure to a human.
For this reason, we will rely on generous notational conventions and express it in the more readable

format: ( AS )
' getKey (A, K7°)g vk)s
(4B 4= 5)s < getkey(B, K5%)5| < | (r1)s

The following table lists some of the least obvious abbreviations we use:

| This ... | ...abbreviates ... | Notes
(p)a ()a < (z/p)a Binders inp usually implicit
(p)a (x)a < (z/p)anp Same binders ip andp’
{ {

(m)) 4 mYa AmEm/
(m)ac | Ja=(m)a A¥b= (m)p.a <b |whereB is arbitrary
{(m)a< | Ja = {(mPYa AVb= (m))p.a <b | whereB is arbitrary
a<b b=a<b

Especially in logical statements, we will often omit the intended sender and recipient in a send or
receive action when unimportant or easily reconstructible from the context.
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Validation Given a run@ and a formula®, a first task is to verify if® is valid in Q. We express
this classical model checking problem by means of the judgment

Q] @

where( is ground andb is closed. As usual, the definition of validity is inductive, with the following
table expressing the validity of our basic event predicates:

| Predicate]| Judgment| If and only if | Meaning \

event Q] a a€eq a has occurred i@
order Qla<b|a<be a has occurred beforéin
equality || [Qla=1b a andb are the same event i@

The relational predicates on terms and principals are self-validating. The logical connectives and
guantifiers are processed in the usual way.

Statements If only a formula® is given, the above judgment can be used to implicitly define the
set of all the runs that satisfy:

Re = {q:[q] 2}

In particular, if® describes the observatio§s, of a principalA in a given runQ, a formula we wrote
@, earlier, the above definition allows us to characterize all the guhat are compatible witt 4:

Ra=1{q:[q] Pq,}

While this satisfies the requirement at the beginning of this section, exprégsimgthis way sheds
little light on the structure that a run must have to be compatible withobservations. In the
next section, we will instead strive to explicitly characterize these runs by means of a febrofila
maximal generality® will be such that:

Ra={q:lad q.} ={q:[qd Pq, N ?}

We will generally keepbg , explicit by expressing as the logically equivalerkg,, = (9, A P).

We will deduce this formula from the axioms and inference rules described in the next section to
get as clear a picture as possiblgdf. By having® be an implicationd’ = ®”, we can characterize
important or interesting portions & 4 that satisfy the assumptich(: we will typically assume the
honesty of principals or the fact that a key has not been compromise. Notethat (®g, A (P =
")) is logically equivalent tq®g, A ®') = (g, A ®”). Given the prominence of this notion in
the rest of our work, we will abbreviateg, A ¢ as

A:d

® is then a description of the runs compatible witls observations. We will often cadb the knowl-
edgeof A. As we said® will generally have the forn®g, A @' = 0o, A D”.

10



2.5 Axioms and Rules

Let A be a principal executing the rojeof a protocolP. Given a run and local observatioy 4

for A’s execution ofp, this section presents the tools to synthesize a formbutaich thatA : &,

i.e., that characterizes the runs compatible wjth (possibly restricted by appropriate assumptions).

In order to do so, we isolate the elementary constituent® of(for example challenge-response
exchanges) and produce formulas that describe the runs compatible with them (the necessary behavior
of a counterpart in the case of challenge-response). We then combine these formulas into larger
formulas corresponding to bigger parts@f;, all the way toQ 4 itself. An intuitive picture of this

process is given below:

Q! /QA\Q2 cbl/(b\qﬂ
AN N A

hl QA ?41 Q2A? Pl pl12 P13 P21 H22

— 7 7 7

More precisely, the derivation of a formuta characterizing the runs compatible with a local
observation() 4 draws from two ingredients:

Axioms An axiom maps an elementary observation with a formula expressing the necessary behav-
iors of the interacting parties. Axioms are universal predications about basic patterns of events.
In the illustration above, the axioms corresponds to the single arrows connecting the leaves of
the trees. We will spend the rest of this section justifying a number of common axioms.

Transformations A transformation maps a method for building a complex observation from simpler
ones to a method for upgrading the formulas associated with them to a formula describing the
resulting observation. A transformation may extend a partial observation with additional events,
or enrich individual events with new components, or combine events by merging common
terms. We will see several transformations in the sections to come. Had we found a good way
to draw transformations in the above illustration, they would relate the branches exiting an inner
node on the left-hand side to the branches entering the corresponding node on the right-hand
side.

Before we describe some of the most fundamental axioms of the Protocol Composition System,
a few definitions will save us some space.

Honesty Assumption In the sequel, we will occasionally need a principadeducingA : & to
assume that another princip@lis honestin order to draw interesting or meaningful conclusions. By
this, we mean thaB does not deviate from his assigned rpleas he interacts withl. For the sake
of illustration, letp’ be completely sequential:

P[B] = bl b b

11



Therefore, ifA is able to deduce that an hondsthas executed any given actiénin this role, she
can safely infer that he has executed all the actions leadibgimop’ as well. The resulting formula
for the above example is as follows:

Honest, B £ (b)p<...<(b)p <... < ("B

(Recall thata < b abbreviated = a < b.) We will generally keep the rolg’ implicit. Clearly,
honesty formulas are associated with every role, not just the sequential ones. For example, the honesty
definition for the server role of the Denning-Sacco protocol in Section 2.2 is as follows:

, getKey(A, K4%)s (vk)s
(A,B: A— 5)s < cetKey (B, K5S)g < <

< (KA%(B, k,t, KBS (k,A,t)) : S — A)g

(We are relying on the abbreviations in Section 2.4 for succinctness.)

The honesty definition will be used exclusively as an assumption sodtha® will often have
the form A : Honest B = ®'. We will see that some principals need to be assumed honest for the
formula inferred fromA’s observations to be compatible with the legal runs of the protocol, while
other principals may be dishonest and yet cannot substantially deviate from the protocallgiven
observations.

Uncompromised Key Assumption Another important assumption we will need to make is that
certain keys have not been compromised. A sharedckeyuncompromised for a grou@ of agents
if the only principals that can perform an encryption or a decryption ukiage the members af.
In symbols,
uncompromised(k, G) = (km)x = X €q@
A (z/ky)x = XeG

where the universal quantification over, z andy has been kept implicit for clarity. Notice that the

body of this definition expresses the semantics of shared-key cryptography: the first line says that
only members of can produce an encryption usih@nd send it in a message, while the second line
says that only these principals can use the pattgrio access the contents of a term encrypted with

k. Notice also that this expression defines the binding between a key and the principals who can use
it.

In this paper, we will use@ncompromised exclusively as an assumption. Moreover, we will make
such an assumption for every key we need to believe is not compromised as our system does not
contain any axiom explaining how shared keys ought to be used.

The reasons for this choice are rather subtle and deserve further explanation. Key distribution pro-
tocols juggle two long-scrutinized properties: secrecy and authentication. The distributed key can be
secret only if it is transmitted inside authenticated messages. In turn, a message can be authenticated
only if it protects its contents using a secret key, which brings us back to the problem of distributing
this secret key. This is a chicken and egg situation. The only way to break this circularity is to assume
either the existence of a shared secret key or the existence of an authenticated channel. We choose
the first alternative, although the second option (e.g., using a private communication medium) would
be equally valid. Assuming certain long-term keys to be secret (i.e., uncompromised) immediately
yields that any message they encrypt are authenticated.

12



Now, a key distribution protocol transmits a freshly generatedkeyong these authenticated
channels to some principald and B. The next question becomes how to prove that the pro-
tocol ensures the secrecy bf i.e., thatuncompromised(k, [4, B]) holds. This question will be
the focus of a sequel to this paper, and we shall not address it further here. Theoaf @f
uncompromised (k, [A, B]) will permit discharging assumptiomf uncompromised(k, [A, B]), which
is very useful for staged protocols such as Kerberos, where a key is distributed for the purpose to pro-
tecting another key.

A number of authors have proposed technigues to prove secrecy properties, e.g., Schneider’s rank
functions [17] and Thayeet al's ideals [19] just to cite a few. At heart, they are all based on a form
of closed-word assumption which limits the class of available actions and then rely on an inductive
argument to prove that the key cannot be revealed. The present paper is instead open-ended: all events
are allowed unless expressly forbidden (e.g., by@ompromised assumption).

We will now discuss a number of axioms and axiom schemas that will provide some of the foun-
dation for the rest of the paper.

Freshness axiom We start with a general axiom describing the behavior of (the:) action in
logical terms:

(vn)pNaga= (ne€ FV(a) = (vn)p < aa
AN (A# B= (vn)p < (n)p < (n)a < aa)) (new)

The first partimplies that is a binder, which means that any evemhentioningn necessarily occurs
after (v n) (recall that we required binders not to recycle variable names for simplicity). The second
line requires that if the ager® executing(v n) and the principal executinga are different, therB

must have used a send action to transmand A must have acquired it by means of a receive action;
said in other words, values freshly generated usirmgin only be transmitted using the send/receive
mechanism.

“Not Me!” Axiom  The next axiom is equally general: it says that if an obser/és aware that
someX has executed an actiaf) but A never executed any such action, th€rcannot beA:

A:axN-apg— X #A (notme)

This axiom relies on the fact that an observer is aware of all of its actions. It will turn useful, for
example, in conjunction with thencompromised assumption forA to deduce that an encrypted
message originated by the principal she is sharing the key with (and not herself).

Send-Receive Axiom SchemasNext, we examine a general class of axioms allowing a principal
A to infer the existence of a specific send event matching a receive she has observed. They are all
subsumed by the following schema:

A+ 3X. V. (F**@))a A (X, 9)
= (FY D x< < (FF@)a A V(X5 (sn)
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It says thatA knows that, for some principaX, the message structugg® assures that, if she
receives a message containifig™ (i), whereX andj/ satisfy some preconditiof, then X must
have originated X (i), and moreoveX ands/ do satisfy some postconditioh.

A number of important axioms capturing the semantics of interaction through send and receive
events are subsumed under this schema, by instantififig® and¥. We will now examine a few.

Receive Axiom. In the simplest case, wher® and U are taken to be trivially true, ang*¥X is
arbitrary, the axiom just says that everything that is received must have been sent by someone:

A: (m)a= 3X. (mhx< < (m).a (rcv)

Challenge-Response Axiom SchemBerhaps the most useful instance(sf) is another axiom
schema describing the requirements for nonce-based challenge-response exchanges. It is obtained
for:

) = Xy
O(X,y) = YA @wya<@F@Nac < (¥ (y)a
V(X,y) = y)a < (™ WNac < (@ @))x < (r* () x<

wherec?X is the challenge structure issuedbyr“¥ is the corresponding response originatediy
and®’ represents some additional precondition, usually an honestycompromised assumption.
Simplifying yields:

A A (vy)a < (M) ac < (" y)a
= (ry)a < (M yhac < (N y)x < (M yhxe < (N y)a (cr)

where we have again kept the existential quantification &ver

As an example of an actual instance of this axiom, we consider the case in whicls the
identity (the nonce is sent in the clear), the response encrypts the nonce with/aKeyshared
betweend and X, and®’ requiresk “X not to be compromised fot and X. We obtain

A: uncompromised( K 4% [A, X]) A

(vy)a < (y)a< < (K™ y)a
= (ry)a < (Wha< < (W)x < (B yhx< < (BN y)a

A proof of this axiom goes as follows: starting frosis own observations (the second line above),
axiomrcv entails that some agefit has originated(K4X ). By theuncompromised assumption,
Y must be eitheX or A, with axiomnotme excluding the latter possibility. Axiomew completes
the second line by sandwiching's reception ofy betweenA’s transmission of the nonce add's
issuing of (( KAX y)).

In the sequel, we will represent a run of this challenge-response exchange by means of the fol-
lowing diagram:

A X
o
Vy¢/ ”
O o
v
o o




Timestamps. Other useful instances of tlse axiom schema describe the semantics of timestamps.
Here is one possibility. Consider the following values for our various meta-variables:

A =t
(X, t) = (thx<
W(X,t) = honest X = ((t)a < (1t)x < (thx< A (t)a < (Tt)a)

Let us instantiate and simplifsr before commenting on it:

A: honest X A (thx< <(t)a
= (Tt)a < (1t)x < {thx< <(¥Na < (T1)a (ts)

The antecedent of this formula assumes &ia$ honest (which here means that his expected behavior
is to look up a timestamp and send it ou)receives a message containing an acceptable timestamp
t, and she has the certainty th¥thas originated(t)). Given these hypotheses, she can deduce that
X had indeed looked upand sent it out, and that these actions took place within what she regards
as the window of validity of this timestamp. Hefg, ) 4 is the earliest point in time wheté would
acceptt as valid, and(T t) 4 is the dual upperbound. They are events internafl teepresenting
time points calculated frorhby considering what she deems as acceptable clock skews and network
delays. What is important here is that they boutig actions by events undet’s control. In the
sequel, we will discharge the assumption tHais certain thatX has sent this timestamp whenever
the message is authenticated.

Note that there are other options for giving the semantics of timestamps as an instandhef
above approach will however prove particularly convenient in the sequel.

Diffie-Hellman. Although we will not make use of this mechanism in this paper, it is interesting to
note that thesr axiom schema also specializes to a crude logical description of the Diffie-Hellman
exchange (where, for simplicity, we have the responder transmit the shared secret in some message).
We instantiate the various schematic variables as follows:

g uy) =
(I)(ngvuﬂ y) = (V y)A < <gy>A< < (U)A A _'<y>A
U(X,g,u,y) = (ux<A(=(ogu)x = (9¥)x < (u’)x<)

for appropriate term constructors for exponentiation and discrete logarithm. ¢gHeréhe group
generatory is A’s random numbery is X's returned valuey = ¢* wherez is X'’s random number),
and therefore¥ = ¢¥* is the shared secret. Simplifying and rearranging this time yields:

A —(y)a A =(logu)z A

()4 < (g 1< <[ (ah)

y Y (u)x< (u)a
= 3X. (vy)a < (¢¥)a< < (¢")x < [<<Uy>>x<] < {((uy))A]

This formula states that ifl receives her counterpart’'s share of the secret and a message containing
the secret, and neither exponent has been leaked, then she can rest assured tRNahasmezeived
her owng? and send those two messages.
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3 Basic Key Distribution

In this section, we apply the methodology just outlined to obtain the core protocols and logical guar-

antees for key distribution. For the time being, we are only interested in the manner a key server can

distribute a fresh key to clients. We will examine other important aspects of key distribution, namely

recency and key confirmation, in Sections 4 and 5, where we derive NSSK and Kerberos, respectively.
We warm up in Section 3.1 with an illuminating exercise in futility: having a server distribute

a fresh key to a single principal. We take it as a template for the more useful two-client setting in

Section 3.2.

3.1 One-Party Key Distribution

We begin with a very simple setup consisting of a key sefvand one clientd. While the resulting
protocol, which distributes a secret key to a single principal, makes little sense in practice, it will serve
as a useful illustration of the concepts introduced so far and help gain familiarity with transformations.
Later, when applying these techniques to more realistic protocols, we will be able to concentrate on
the derived properties rather than on minor technicalities.

In our initial version of this protocol, both the key server and the client are given each other’s
name as a parameter to their respective roles. A fully spelled-out specification of these roles is as
follows:

KDY server[S; A] = getKey(A,K2%); vk; (KAk:S — A)
KD{ client[4;S] = (mo: S0 — Ao) ; (Ao/A); (So/S);
getKey(S, K4%) ; (mo/K4% k)

(We will abbreviate it shortly.) The server “knows” it should send the new kég A becaused
appears in its parameter list.

A process involving one instance of each of these roles is given by the nodes and solid lines in the
graph below (please ignore everything else for now). We have writtandS for the instantiating
values of the parametersandS, and distinguished binders with the same name in the two roles by
means of primes. The expected run of this protocol bridges these two halves by means of the dashed
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alrrow.
getKey (A, KA5)s

\L{KAS:kAS}
(vk)s
(’ITL()ZSO—>A0)A<————<KAS]€:S—>A>S
{...,mo:=K45 k,50:=S,A0:=A}
(Ao/A)A
(50/S)a

getKey (S, K'4%)a

{.“’K/AS::kAS}

(mo/K/AS kl)A
{o k' =k}Y

Another expression for this process is

getKey(A, KA9); vk; (KA5k:S — A)
® (mo:So— Ao); (Ao/A); (S0/S); getKey(S, K'4%); (mo/K'45 k')

The run assigng/(mo : So — Ag)a = (K54 k:S — As.

An execution of this run accumulates binding variable assignments in an environment that we
have expressed above as annotation to the arrows. By the time the last action has been executed, this
environment contains:

{KAS = KM, mg = K%k, So:=S, Ag:=A, K'Y =K, Ik = k}
By the end of this run, the observatios and@s of A andS correspond to the left and right column
of the above figure, respectively.

While we hope this demonstrated the definitions in Section 2.3, the remainder of this paper will
use a leaner notation based on the conventions introduced in the previous section. This will make our
treatment more readable and save space. In particular, we will liberally fold matches inside receive
actions, occasionally omit senders and receivers, and keep the internal getiiag implicit. The
roles in this example then reduces to:

KDY server[S; A] = vk; (KA5k:S — A)
KDY client[A;S] = (KA%k:S — A)
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We also summarize the above run in the following strand-like picture:

A S

o
KAS L. ¢Vk
o

We are now ready to take the point of view of each principal and infer a formula representing
the runs that are compatible with its observations. Let us take the pdrfioft. In our abbreviated
notation, the only event she observeg’§4 k : S — A). Under the assumptions thaf4S
is uncompromised ford and .S and the honesty of (derived from his role),A can completely
reconstruct the expected run. In symbols:

A uncompromised(K 45, [A, S]) A honest S A
(KA k: 8 — A)y,
= Wk)s < (Kk:8 - Age < (KAk:5— A),

This formula means that, under the stated hypotheses, all runs that are compatiiéswitiserva-
tion must include the shown actions 8f and in the prescribed order.
Theuncompromised hypothesis identifie§ as the originator of the transmitted messageés(ex-
cluded thanks to theotme axiom) while the honesty assumption completes the sequence of messages
that preceded this send. A more formal derivation is given by:

Qa : (K54 k:S — Ay
(rev) @ (K54 E) xe < (K54 K:S — A)y
uncompromised(K4%[4,5]) : X =AorX =S
(notme) : X # A
honest S : (vk)s < (K34(k): S — A)g

(Vk)s < (K54 k:S — A)ge < (K54 k)4

On the other handS does not conclude more than he observes since he is the recipient of no
message.

In this example A is a parameter it$’s role andsS is a parameter ild’s. In a real system, this
would mean that these values appear in some configuration file on the client and server’'s machines.
While the former may be acceptable if there is only one server in the system, the latter is certainly not
as a server should be able to distribute keys to more than one client.

We introduce thealischarging transformatiofC to transform a role that gets a value from a
parameter into a role that acquires this value as part of the protocol run. This transformation simply
turns a parameter into a bindeFor simplicity, take a sequential role]p; p'(z) with parameterr,
an action prefix that does not refer to, and remaining actiong'(x) that may reference. Then,

DC is defined as follows on this role:

DC[[z]p; p'(z)] £ p; a®;p'(x)

“There are other ways to discharge a parametdor example another useful transformation removes a matgf:)
against: and replaces other occurrences with This would be how to discharggin KD _client above.

18



wherea” is some action that bindg (most interesting is a receive). The generalization to non-
sequential roles is trivial, but harder to typeset.

For example, an instance BIC dischargesi in KD§ _server above by havingd send her name to
S in a request message:

S
A

0]

o
KAS L. ¢Vk
o o

The roles give a more precise account of the operatiofsbf
KD1 server[S] = (A:A=8);vk; (K¥k:S — A)
KD} client[4;S] = (A:A—S); (KA5k:S8 — A)

Observe thakD1 server does not havel as a parametef obtainsA’s name from the first message,
either from the body or from its putative sender at the implementor’s choice. A simple prefixing
transformation is used to have the client send this message, upgtébfglient to KD} client.

Note that it does not dischargeas a parameter.

A transformation operates not only on the syntactic specification of a role, but also on its inferable
properties. In its generality, the transformatib is rather limited in this respect: it extends the
observations of principal executing the affected role with the acetion- here(A : A — S) — and
only influences the deductions of other principals through its altered honesty assumption. From the
point of view of the principal executing the transformed r@}; operates as follow on the sequential
illustration above, where we make an intuitive use of the symbols.

A: ©, <Dy AT — <I);)<<I>;,//\\I/'

|pe

A: 9, <a® <Py AT — P <a® <P AT

We will see transformations that have more interesting effects shortly. Note however that the presence
of eventa® may enable further inferences.

This makesS’s point of view marginally more interesting than in the first version of this protocol:
upon receiving the first message, he can use axwnto infer that someone sent it, although not
necessarilyA:

S (A:A—>S)S < (l/k‘)s < <KASk'>S
(A:A—S)xe < (A:A—98)s < (vk)s < (K¥k)g

We next examine the property deducible Ay it illustrates the effect oDC on the other party,
and describe the effect of the prefixing transformation. Her view is summarized by the following
formula:

A uncompromised(K 45, [A, S]) A honest S A
<A:A—>S>A < (KASk)A
N <AA—>S>A < (KAS]{I)A

(A:A—>S)S < (Vk)s < <KAS k’>5<

The two occurrences afd : A — S) 4 are the result of the prefixing transformation on the client’s
role. The matching receive actigal : A — S)g is deduced from the honesty 8f Observe thatl
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is unable to correlate her sending of this message $igheception. IndeedS will perform its role

not in response tel’s request but following the reception of any message of the fotm A — 5),
whoever the actual sender is. Of courdewill not accept an unsolicited key, but if she sent a request
there is no guarantee thats response has any relation to it. While this property does not exactly
match the expected run of this updated protocol, it may be acceptable A4istik gets what she
asked for (even if she was not heard). We will examine variants of this protocol that enforce stronger
guarantees between request and response.

3.2 Two-Party Key Distribution

With this exercise under our belt, we will now examine protocols in which a sérgemerates a key

k and distributes it to two partied andB. This is the setting underlying NSSK and Kerberos, which

we will study in sections to come. Note that our analysis generalizes to an arbitrary number of parties.
We start with the 2-party variant of the basic scheme presented in Section 3.1. The expected run

is as follows:

A S B
KAS & fvk KBSk
(@] (@] (@]

While we take it as primitive for simplicity, it is easy to define a transformation that produces an
n-party variant of that basic protocol in Section 3.1 for any given number

The roles of this protocol are defined next. Notice that the action$ afid B are totally sym-
metric at this stage (onlyl’s role is shown).

KD9server[S; A;B] = vk; (K4k:S — A) @ (KB9k:S — B)
KDY client[4;S,B] = (KA%k:S — A)

Next we take the point of view of a clien#i(for example) and follow our footprints from Section 3.1
to derive the property characterizing her observations:

A: uncompromised(K 4%, [A, S]) A honest S A

(KA k: S — A)ge

AS
(KBSk:§ — B)s.| = 77k

= (l/ k‘)s <

Next we use the discharging transformatid@ to haveA pass the names of the two clientsp
dischargingA and B as parameters iKD3_server. The resulting run is given by:

A S B
A,B
o
KAS \LV’“ KBSk
o o o

and the roles by:

KD1 server[S] = (ALB:A—S);vk;

(

(KASk: S — A (KBSk::S—>B>
KD3.iclient[4;S,B] = (A,B:A— S); (Kk:8 — A)
KDJ rclient[B; S, A] = (KB%k:S — B)
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Observe that the roles of and B are not symmetric any more. Note also that it would make little
difference if A transmitted just B” as her first message since her name is present in the “from” field
of this action.

The properties characterizing's and B’s views are derived as in the previous section. Let us
examine them:

A:  uncompromised(K4% [A,S]) A honest S A

<A, B>A < (KAS k)A
(A, B)a s p
- (A, X)s < (vk)s < [égxszzgiﬁgij < (K™ k)a

B: uncompromised(K?% [B,S]) A honest S A

< (KBS kZ)B
<KXS k>S< B
(KPS kysc| = S
Observe thatl has no way to determine whethgitransmitted the key to B or to some other party
X. Indeed, she can only infer thatreceived a request for a key involving herself and sokhe
not necessarily3. By a similar argumentB cannot ascertain to whomwas distributed, even ifl

appears among the parameters of his role.

= (X,B:X—-9gs < (vk)s < {

This problem is traditionally solved by havirffjinclude B’s name into the message directed to
A, andA’s name intoB’s message. In our setting, this is achieved by a transform@tiothat inserts
a new term into an existing encryption:

CAplkm] & k(m,m)

This has the effect of cryptographically authenticating(hence the nam€&A) to any party entitled
to access the ciphertext. It operates as follows on a property derivable to a party receiving this message
(we omit additional formulas that may occur in the antecedant or consequent):

A uncompromised(k, [A, B]) A (km))a
= (km))p< < (km))a

|t

A: uncompromised(k, [A, B]) A (k (m,m))) a
= (& (m,m"))p< < ((k (m,m))a

The transformation simply extends to the added compomnéttie fact that a message encrypted with
an uncompromised key is authenticated. Note #athonesty is not required as long Ads not
compromised.

By applying this transformation twice (once farand once forB), S can inform A and B of
whom it created: for. This also allows us to dischargeas a parameter iB’s role. The expected
run is now given by the following diagram:

A S B
AB
(] (@]
KAS (B,k) 7z KBS (A k)
[0} o (o)




while the roles become:

KD3 server[S] = (ALB:A—S);vk;

(
(K49 (B,k): S — A)® (KBY (Ak): S — B)
KD3 iclient[4;S,B] = (A,B:A—S); (K45 (B,k):S — A)
KD3.rclient[B;S] = (KB%(A,k):S — B)

It is easy to see that the application@A solves the problem outlined earlier. Indegdand B can
derive the following properties:

A:  uncompromised(K4% [A,S]) A honest S A
< B)a < (K4 (B,k))a
B)

= (K45 (B, k)) ]] < (K49 (B,k))a

A
|:(A,B)S < V]{IS < |:KBS A ]{7

B: uncompromised( K29 [B,S]) A honest S A
(KPS (A, k)5
AS
<K (B,k)>S<:| < (KBS (A, k))B

(KP% (A, k))s<

While these formulas are very similar to what we derived for protéd}, A and B now know that

the keyk is intended for the two of them to communicate, not a third party (assuming, of course that
S is honest and that the key§4° and K 2° are not compromised). Clearly, this correction becomes
crucially important whem and B attempt to usé.

= (A,B)s < (vk)s < |:

While KD3 achieves a minimal form of key distribution (we will soon extend this basic function-
ality with additional guarantees), few actual protocols have this message structure. Indeed, with the
exception of recent group protocols [11], nearly all key distribution protocols based on shared keys
have the server send both componédiits® (B, k) and K 2% (A, k) to one principal, who then relays
the part he does not understand to the other.

Appendix A describes the relay transformati®ff that has the ability to turiKD3 into a more
common form of key distribution. The resulting run is as follows:

A S B
A,B
O

KAS (B.k), KBS (Ak) J/V’f

[e]
v KBS (Ak)
O

(@]

In this protocol, which we will calKD3, S concatenate&“° (B, k) and K29 (A, k), and sends
the resulting message t, who then forwardss 2% (A, k) to B. Several academic and industrial
protocols, e.g., Kerberos 5, follow this pattern. The role specification is as follows:

KD3 server[S] = (ALB:A—=9);vk;
(K49 (B, k), KBS (Ak): 5 — A)
KD3.iclient[A;S,B] = (A,B:A—S); (KA (B,k),M :S — A);
(M : A— B)
KD3 rclient[B; S] = (KBS (Ak): A— B)
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Clearly, the componeri 25 (A, k) is opaque tod. Hence her role mentions a generic message
TransformatioRT alters the properties derivable foand B in a rather subtle way. We examine
its effect one principal at a time.

A:  uncompromised(K45 [A,S]) A honest S A
(A,BYa < (KA (B,k), M)4 < (M)a

<A7 B>A

- [(A,B>s < wh)s < (K% (8,1, [KP% (4, W) | =

< <KAS (B7k)7> < (KAS (ka)v)A < <M>A

Compared to the analogous propertykd3, A’s receive action contains a genefit, and the server
sends a concatenated message rather than the two components separately. This has two major impli-
cations. We highlighted them using boxes:

1. While, by the honesty assumptiaa,knows thatS has sentx4° (B, k), KB (A, k), she has
no means to ascertain that the generic mesaage receives is indedd?° (A, k).

2. Since K4S is uncompromised4 knows thatS has originated<4* (B, k), but she cannot be
sure of who originated the messalie'® (B, k), M she received: hence the variatiefor its
originator, and the< relation, a direct result of applying axiomav. Indeed an attacker could
have replaced(?? (A, k) with an arbitrary message in an undetectable way. Such a behavior
has been documented for Kerberos 5 [2].

Additionally, observe thatl's last send has little bearing on the overall property and could be dropped
without significant consequences (it is the same underlying reason that makes the property derivable
by the server so uninteresting).

For similar reasons3 has no way to know who forwarded the message he receives.

B: uncompromised(KB% [B,S]) A honest S A
(KP (A K))B
= (A,B)s < (vk)s < (K4 (B,k), KB5 (A,k))s< <
< (KP5 (A k) x< < (K% (A K))p

Note that if B were able to infer thak is indeedA, he would also reach the certainty thaknows
the keyk.

We conclude this section by deriving a popular varianket, in which B’s component is em-
bedded inA’s rather than concatenated with it. Actual protocol that follow this approach include
NSSK, Denning-Sacco and Kerberos 4.

The transformatiofit A that produces this modified protocol is similar@a@.:

EA[(km), m'] £ k(m,m)

It pushes an existing message into an encrypted component it is concatenated with. The Bffect of
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over properties is to authenticat€ in addition tom:

A: uncompromised(k, [A, B]) A (km, m')) 4
— (km)p< < {km, m)x< < (km, m)a

|a

A: uncompromised(k, [A, B]) (k (m,m")))a
= (& (m,m)) p< < (K (m,m)))a

Notice the relatiof(k m)) s < (km, m')) x - before applying the transformation: it says tfiahas
originated a message containihAgn, which may or may not bé m, m’, and that wha®3 received
may have been put together by a principal Recall that we ran into this issue several times while
examiningkKD3. This transformation removes this source of uncertainty.

Applying EA to KD3 yields protocoKD$, which has the following expected run:

A S B
AB
o]

KAS Bk KPS (Ak)) VVE
(@]

O
' KBS (Ak)
O

KD4 is more formally defined by the following roles:

KD} server[S] = (AAB:A—S); vk,
(K45 (B, k, KP% (A,k)) 1 S — A)

KD% iclient[4;S,B] = (A,B:A— S); (K45 (B,k,M):S — A);
(M : A— B)

KD4 _rclient[ B; S] = (KBS (Ak): A— B)

A’s resulting property enhances what she could deduce KBfwith the certainty that the opaque
submessag#/ she receives is precisely?° (A, k):

A:  uncompromised(K 4% [A,S]) A honest S A

(A,B)a < (K" (B,k,M))a < (M)a
(A, B)a
< A3 (kaﬂKBS(Avk))>S<

< (
< (KA (B, k,[KP% (A k))a = (KA (B,k,[M)a < (M)a
A

<

At first sight, B’s view does not significantly differ from what he could inferdid3:

B: uncompromised(KB% [B,S]) A honest S A
(KP (A K))B
= (A,B)s < (vk)s < (K4 (B, k, KB (Ak)))s< <
< (KP% (A k)x< < (KP% (A K))p
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Indeed, assuming§ honest ands % uncompromised, he can deduce thalid its part in the protocol,
and that some principal’ (not necessarilyl) forwardedk %% (A, k) to him.

However, under the additional assumption that® is not compromised eitheR can infer that
itis A who forwarded this message to him. In particular, this tBlthat A knowsk.

B: uncompromised(KB% [B,S]) A honest S A
uncompromised(K 45 [A, S]) A (KB (A k))p
= (A,B)s < (vk)s < (K4 (B, k,KB%(Ak)))s< <
< (KPS (A k))ac < (KBS (Ak): X — B)g

Note that the assumption oficompromised (K4, [A, S]) would be irrelevant in any aB’s previous
inferences: onlyA could decryptk 4% (B, k, K55 (A, k)) to forward K25 (A, k), hence accessing
k. Note also that the assumption tH&t® is uncompromised does not mean thiais bound to be
honest: she could indeed deviate substantially from the protocol, passing information (Bt ot
to arbitrary parties, but she certainly has decrypi&sdmessage and certainly sent dif® (A, k)
(although not necessarily 18).

While most academic and industrial key distribution protocols based on shared keys are derived
from eitherkD3 or KD3, these fragments lack two important guarantees: recency and key confirma-
tion. Indeed, bothKD3 andK D% give the clients4 and B assurance that the kéyhas been generated
by the server for their exclusive communication needs, but they provide no verifiable guarankee that
was generated recently: an dids more likely to have been compromised than one produced within
a short time frame. None of the properties in this section binds the generatioiyfny event
controlled by the client receiving it. Key confirmation is about a client having some reason to believe
that his counterpart has knowledgekohs well: onlyKD3's B is able to gather this type of evidence
(under assumptions). In the next sections, we will follow the development of two known families of
protocols and observe how they address these issues.

4 Derivations of NSSK

This section extends the results we just obtained in the direction of the Needham-Schroeder shared-
key protocol (NSSK) [13]. In Section 4.1, we describe how a challenge-response exchange is used to
guarantee the recency of the key, but also point out how a partial application of this technique leads
to Denning and Sacco’s classical attack on NSSK [5]. We then show how Needham and Schroeder’s
subsequent fix to the original NSSK [14] essentially completes the application of nonce-based recency
in Section 4.2. Finally, we address key confirmation as implemented in most protocols in Section 4.3.

4.1 Guaranteeing Recency with Nonces

As mentioned earlier, the core key distribution protocols derived in Section 3 do not guarantee to the
clients that the server has generated the key recently. Indeed, none of the formulas we have derived
for any of our clients bounds the actions of an honest server so that it follows that the key could not
have been produced at an arbitrary moment in the past. Note that this is not a failure of honesty: the
server may have received a fake request long before our clients felt any need to communicate; the
response could have been cached by a dishonest agent, who also intercepted the clients’ request and
replayed that response in a timely manner.
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A controllable way for a client to ensure that the key is recent is to bracket its generation between
two of its own events. One approach to doing so is using the challenge-response mechanism: the
client issues a fresh challenge at the time she sends the key distribution request to the server. The
server cryptographically binds the response to the challenge and the response to the key distribution
request. We dedicate this section to examining one of the possible concrete realizations of this idea,
adopted in NSSK and other protocols. A different approach, using time-stamps, will be examined in
Section 5 when analyzing the Kerberos family.

We use a specific instance of theaxiom from Section 2.5 which sends the challenge in the clear
(the challenge function is the identity) and returns the response encrypted with an uncompromised
shared key: we have used it as an example in Section 2.5. As a refresher, the run of this protocol is as
follows, where we write the parameters as we will use them:

A S
o)
vrn
i . :
KASn ¢/
0] (¢]

The specific guarantees of this protocol are the following:

A: uncompromised( K49 [A, S]) A
(vn)a < (n)a < (KASn)A
= (n)a < (Ma < (n)s < (E¥n)sc < (K*n)s

The transformation allowing to embed a challenge-response exchange in another protocol has
been extensively discussed in [11]. We present it only informally here, using prat@phs our
case study since it is at the core of NSSK. The following diagram intuitively renders the overall effect
of this transformation:

A S A S B
o
Vn\L AB
O —>20 (o] @]
as, v KAS (BJo, KBS (A k) VW
O<—O0 o o)
¢ KBS (Ak)
o (o]
MC
o
VTW n,A,B
o O
KAS n,KAS (B k, KBS (A,k)) Yk
o o
v KBS (Ak)
o o
MA
(@]
Vn\b n,A,B

o

[e]
KAS (n,BR KBS (AR))  VVF
O

[e)
| KBS (Ak)
o
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Intuitively, the transformatioIC has the effect of merging two independent protocols by identifying
some sends and receives between the same principals and fusing them through concatenation. Events
that do not involve communication are compounded. Here, the challenge message-t S) is
concatenated withl’s request taS (A, B : A — S) into the message:( A, B : A — S). The two
responses are processed similarly. The properties induced by this transformation are little more than
what holds of the two protocols separately. Transformalidh consolidates the two encryptions
with K49 into one. It has a similar binding power B\ from section 3.2.

The resulting protocol includes the first three steps of NSSK (the addition of key-confirmation
will complete it in Section 4.3). We formalize by presenting its roles.

NSSKo_server[S] = n,A,B:A—S); vk;

(KAS (n, B, k, KBS (A1) : S — A)
NSSKo.iclient[4;S,B] = vn; (n,A,B: A—S);

(KA (n,B,k,M):S — A); (M:A— B)
NSSKo_rclient[B; S| = (KBS (Ak): A— B)

B’s role does not change at all frokD3, the server’s changes only marginally, while most changes
occur inA’s role.

It is particularly interesting to compare how the properties derivabld end B change from
what we obtained foKD3. Becaused created the nonce fresh and it is returned cryptographically
authenticated together with the kiegyA can be certain that the server has generatter her request.
The analogous property f¢¢D% left the relation between the (actual) request and the generation of
the key totally open. Thus, NSSK ensures the recency of the kdy to

A: uncompromised( K4 [A, S]) A honest S A
(vn)a < (n,A,B)a < (K4 (n,B,k,M))a

= (vn)a < n,A,B)a < (n,A,B)s < (vk)s <
< (K49 (n, B,k, KPS (A,k)))s< < (K% (n, B,k, KPS (A, k))a

We have dropped the last messag¥{ 4) since it does not influence the resulting property.

The guarantees derivable Bbare however pretty much the same a&kDj: B gets to deduce that
some nonce: has been exchanged fraff's honesty. However, no event controlled Bynecessarily
precedes the generation/afWe use the stronger version, in whigh'S is assumed uncompromised.

B: uncompromised(K?% [B,S]) A honest S A
uncompromised(K4% [A, S]) A (KB (Ak))p
= (n,A,B)s < (vk)s < (K45 (n,B,k, KB (A,k)))s< <
< (KP5 (A k))ac < (KP% (A k): X — B)p

Therefore, NSSK does not ensures the recency of the kdy. td'his is the gist of Denning and
Sacco’s attack on NSSK [5].
4.2 NSSK-fix

A few years after Denning and Sacco pointed out the absence of recency guarantees for the respon-
der [5], Needham and Schroeder came forth with a “fix” for their original protocol [14]. This ad-
justment simply inserts an additional challenge response, betWesmd the server, to provide the
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required assurance. Minor complications are called for in order to maidtais the initiator and
avoid message confusion. We will now examine this amended protocol.

B’s challenge response differs frodis in order to avoid confusionB generates a nonoes
(for symmetry we renamd’s noncen 4), sends it encrypted to the responder and expects it back also
encrypted, but somehow transformed. The expected run is as follows:

S B

O
KBS (f(ng)) i” "

VRS (g(np))
O O

with f andg two different message structures parameterized pyThe properties of this exchange,
from the point of view ofB are typical of a challenge-response with shared keys:

B : uncompromised(K 5%, [B, S]) A

(vnp)p < (KP°(f(ng)))p < (KP%(g(np)))B
— (vnp)p < (KP%(f(np)))n

< (KP%(f(np)))s < <<KBS( (nB)))s< < (KP%(g(np)))s

The proof is similar to what we saw in Section 2.5.

The specific instance used in NSSK-fix takéag) = (A, ng) andg(ng) = (ng), although any
functions would do, as long as they are not identical and they truly depeng oNSSK-fix itself is
obtained by applying a series of transformations to NSSK and this challenge-response exchange:

e Two applications of the routing transformati®i modify the challenge-response so tliat
andS communicate through.

e Similarly to Section 4.1, transformatiobC andMA merge this modified challenge-response
andNSSKy, and cryptographically bind’s nonce within the the key distribution submessage
S intends forB.

¢ Finally, transformatiorC dischargesi from B’s roles, allowing that principal to remain the
initiator of the final protocol.
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The overall transformation is summarized in the following diagram:

A S B

¢/ KBS ng
O ——>20
A IS B . 2RT
KBS(Anp) yvns
O O (@]
vna) nAAB VKBS (Ang)
(] [e] O —> 0
KAS (n4, Bk, KBS (A k) Y7k KBS py Y
O O O=<—O0
¢/ KBS (AJi‘) \L KBS np
[e] (o) (e] (e]
MC + MA
(@]
KPS (Anp) fvns
O (@]
VnAi/ nA7A7B7KBS(A7nB)
(] (]
KAS (na,Bk, KBS (Akng)) Yk
O O
i/ KBS (Aknp)
(] (o]
DC
] A (o]
KBS(Ang) Vv s
[e] (o]
vnay na,ABKBS(Anp)
O

O
KAS (na,Bk, KBS (Akng)) Yk
(]

o
il KBS (A,k,TLB)
O (e)

Observe that the resulting protocol is substantially more complex ®&5K, (in the upper left
corner): it contains two additional steps and one more cryptographic operation. Note that it may be
rather complicated to extend this protocol toraparty key distribution.

This protocol differs from NSSK-fix only by the absence of the final key-confirmation steps. They
will be added in Section 4.3. Its roles are given next.

NSSKfixg_server|[S] = (na, A,B,KB%(A,ng): A— 8); vk;

(
(K45 (ny, B, k, KBS (A, k,np)) : S — A)
(A:A—B); (M':B— A);

vna; (na, A,B,M': A— S);

(KA% (na, B,k,M):S — A); (M:A— B)
NSSKfixg_rclient[B; S] = (A:A—B);vnp; (KBS(A,npg): B — A);
(KBS (A, k,np): A— B)

NSSKfixg-iclient[4; S, B] =

We now turn to the properties that each principal can deri/s.deduction differ fromNSSKq
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only by the presence of her two extra actions, and by the fact that an honest server will correctly inter-
pret the added fields, both in her request and in its response. In partitidgrerfectly aware that the
component she forwards 1 in her last message (omitted below) has the strudiif€ (A, k,np)

for some valuer . The logical statement is as follows:

A: uncompromised(K“4% [A,S]) A honest S A
<A>A < (MI)A < (l/nA)A < <TLA,A,B,M/>A <
< (K9 (na,B,k,M))a

- <A>A < (MI)A < (l/nA)A < <TLA,A,B,M/>A <
(nA,A,B,KBS(A,nB))S < (I/k)s <
(K29 (nyg, B, k, KBS (A, k,np)))s« <

< (KAS (nA,B,k’,KBS (A,k,nB))A

<
<

Since A now supposedly receives a message fi@nit makes sense to ask what would be the effect
of strengthening the assumptions of this property withompromised( K29, [B, S]). This brings
no advantage sincd simply forwardsB’s first message and has no way to inspect or verify its
contents, even indirectly. The additional assumption that honest brings some marginal additional
insight, namely, thaB performed its initial three actions (with the right parameters) befostarted
processing, but she has no way of ordering these added events with respect to her own initial actions.
The interesting changes occur froRis perspective. As id’s case iNnNSSKy, B’s nonce is
cryptographically bound to the kely he receives by protocol's end. Since an honest server will
construct this key only after retrieving this nonce frd@#s encrypted message, the generation of the
key is sandwiched between two events un@& control, hence ensuring its recency. The rest of
this property allows him to draw similar conclusions adNitSKy, namely thatS produced the key,
forwarded it toA who learned it and forwarded it 8. This is summarized in the following property.

B: uncompromised(K 2% [B,S]) A honest S A

uncompromised (K49, [A, S]) A

(A)B < (V nB)B < <KBS (A,nB)>B < (KBS (A,k,nB))B
(A)B < (V TLB)B < <KBS (A,TLB)>B <

< (na, A, B, KBS (A, TLB))S < (vk)s <

< (K49 (na, Bk, KBS (A k,np)))s< <

< <KBS (A7k7nB)>A< < (KBS (A,k',TLB))B

As in NSSKg, dropping the assumption th&tS is uncompromised simply implies th& does not
know who has originated the messagé® (A, k,ng) and that he cannot be certain tknowstk.

4.3 Key Confirmation

The previous two sections have shown how to extend the core key distribution pris@ah with
the recency guarantees of NSSK(-fix). The remaining issue to address is ensuring to both recipients
that their counterpart also knows the new shared key. As we observed, under assumptions, these
protocols already guarantee thisio but A has no means to be sure tliaever learned:.

In order to make this concept more explicit, we define the predicated, m) that holds only if
principal A has seen termm. Intuitively, this is the case whenever we know tiahas performed an
action onm. Here is a partial definition, incomplete but sufficient for our needs. It could clearly be
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extended with additional cases.

The first two cases describe situations wherés encrypted with a shared kdy. In the first line,

A decrypt a message containing thus exposing this term, in the second she builds such a term for
export. The last two cases are similar, except thas the key itself. Note that in all cases, the action
is known to have been performed by For this reason, there is ho need to assume the key to be
uncompromised. It is a simple exercise to verify that the propositisf.X, &) holds in exactly the
three situations below, with respect to all the formulas we have derived in this paper:

1. X = S, i.e., the servef who generated knowsk.
2. X is the observer of the formula, obviously.

3. X = A, the observer if3, the key distribution protocol is a descendenkd¥? (i.e., S sends
k to B cryptographically embedded in the messageAprand the keyk 49 is assumed to be
uncompromised.

In particular, it has never been the case that B, k) from the point of view ofA.

Sincek is now a shared secret betwednand B (supposedly), the easiest way to provide the
missing guarantee is fdp to sendA a pre-agreed message encrypted witiConsider the following
protocol fragment:

B
km
O (¢]
wherem is arbitrary. The two simple roles are as follows:
enc_to[A; B, k,m)| = (k,m:B — A)
enc_from[B; A, k,m| = (k,m:B — A)

B is unable to infer anything interesting from his observations since he never receives anything from
A. On the other hand, under the assumption thiet uncompromisedA deduces that it i3 who
sent this message:
A: uncompromised(k, [A, B]) (km)a
= (km)p< < (km)a

Notice that, in this formula, the proposititias(A, k) now holds.

At this point, we can simply use the extending transformaldh(which simply adds an action
at the end of a protocol) and, by a number of applications of the discharging transforin&tjave
can augmeniSSKy andNSSKfixy with a send action intended fd@ to confirm toA that he knows
the key. The message can be arbitrary, for exampld, B. The resulting run in the case of (the
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shorter) NSSK is as follows:

A S B
]
v n¢/ n,A,B
O O
KAS (n,B,k, KBS (A,k)) Yk

] (]

V KBS (Ak)

O O
k(A,B) v

(] ]

Let us call this protocoNSSK;. A’s observations lead her to conclude:

A: uncompromised( K4 [A, S]) A honest S A
luncompromised(k, [A, B]| A
(VTL)A < (TL,A,B)A < (KAS (n,B,k,M))A <
< [(M)a < (k(A B))4l

— (vn)a < (n,A,B)4 <
< (n,A,B)s < (vk)s < (KA (n,B,k, K9 (A, k)))s< <
< (K49 (n, Bk, KBS (A, k)4 <
< (KPS (A k)a < (KPS (Ak)p < k(A B)pe < (k(A B))Al

We have highlighted the additions with respectNB8SK, (see Section 4.1) by enclosing them in
boxes. Recall that we had omitted the then trailidd) » and (K5 (A, k))4 since they did not
add substantial information. Now they clearly do, as they allbto infer thatB has received this
message and originatéd A, B). It is easy to verify that within this formul&as(B, k) holds, which
achieves our goal.

The last additionuncompromised(k, [A, B]), deserves some discussion. Clearly, we need to
know thatk is uncompromised to infer anything useful involving it. However, most formal systems
would derivethis fact rather thanssumet. This may be where the strict separation between authenti-
cation and secrecy is most evident in this work. Recall that our logical system is just powerful enough
to reason about the order of actions, the structure underlying authentication. In particular it does not
embed the closed-world assumption, nor the induction principles to reason about it. Derivihg that
must indeed be secret would rely on such devices. We intend to develop the secrecy facet of this logic
in future work. The assumptiamcompromised(k, [A, B]) is an interface to this future extension.

Applying the above extension t8SSKfixg yields NSSKfix;. This protocol has then the typical
properties of a key distribution protocol: both clients receive assurance that the key has been generated
by the expected server, that this key is controllably recent, and that they both know the key. However,
the actual NSSK-fix is differentB encrypts a new nonce with and sends it tod, and expect this
same nonce back from, transformed in a predictable way. We will now analyze what additional
properties are achieved by doing so. For the sake of succinctness, we opét&&kanwhich differs
from the original NSSK in precisely the same wayN§sSKfix; is different from NSSK-fix. Here is
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the expected run of NSSK:

A S B
(@]
vny n,A,B
(] (@]
KAS (n,B kKBS (AR) VUK
[e] (@]
v KBS (Ak)
(] ]
e ¢zun’
[e] [e]
v k(n/+1)
O O

First, notice that havingl send something encrypted withback toB does not produce any new
knowledge (besides the obvious, i.e., that a new message has been transmitted). It does make the
hypothesis thaff 45 was uncompromised (which ultimately was the reason Whyould conclude
thatA had knowledge of) unnecessary, but the gain is rather slim: a compromigéd immediately
allows compromising:. These two propositions are however distinct in our logic since we never
derive anuncompromised fact.

It should however be observed that, from the point of viewBofthe last two messages NSSK
implement a challenge-response exchangeenerates the noneg, sends it tod encrypted (with
k), and expected it back from her transformed. By doingiB@scertains thatl in indeed alive at
this particular point of the protocol. Note th&tcould repeat this same exchange an arbitrary number
of times (each with a new nonce) and obtain the same guaranteed ihas recently alive. I11B’s
challenges include a request for a service (e.g., retrieving a filel@m@sponses embed an outcome
for this service (e.g., the file itself, or an error message), this protocol implements a crude (and rather
lopsided) single-authentication, repeated-request client-server mech&lsiSig realizes the initial
authentication and key distribution, the added challenge-response forms the basis of each instance of a
subsequent client-server exchange, protected by the key obtained in the first phase. This interpretation
of NSSK is clearly not realistic since it implies that the service providBrifitiates the exchange
while the client () just gets to issues the requests for service. However, we will see in Section 5
that a nearly identical mechanism is used in Kerberos to support repeated service requests based on a
single initial key distribution.

In summary, our analysis shows that NSSK-fix achieves key distribution with recency guarantees
and key confirmation for both parties. NSSK provides recency assurance only to the initiator. Our
work also shows that the same guarantees are also supported by simpler protocols that drop the last
message and rely on any pre-arranged message instead of the final nonce. How they stand now, both
NSSK and NSSK-fix have a flavor of repeated client-server protocols with the initiator and responder
roles inverted.

5 Derivations of Kerberos

Kerberos is a complex and versatile protocol that has been the subject of intense scrutiny over the
years [15, 16]. In this section, we will apply the methods outlined above to derive the core authentica-
tion functionalities of versions 4 and 5 of this protocol. We concentrate on the basic key distribution
exchange of which each version contains two instances. As a preparatory step, we formalize the use
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of timestamps for authentication and apply it to the derivation of the Denning-Sacco protocol, a core
component of Kerberos 4.

5.1 Guaranteeing Recency with Timestamps

Timestamps have a number of applications in cryptographic protocols. In this section, we examine
and formalize their use for the purpose of guaranteeing the recency of an already authenticated mes-
sage. Consider a principa receiving a messagg S m from an honest agerfi: if the key is
uncompromisedA can only deduce thaf originated this message in the (possibly distant) past; if
howeversS includes a timestampwithin the encryption and sends“®(m, t), A can assess the age
of the message and reject it if it falls outside of her window of valiglity.

We formalize this intuition as a transformati@$. We define it by describing how it operates on
a process’, how it consequently alters the representation of the honesty of the participants, and how
their knowledge gets upgraded.

Roles Given a rolesp andp’ embedding the sending and receivingi6f'® m, respectively, the
transformatiori'S is described as follows:

TS[(KA9m:S — A)] = (rt); (KA¥(m,t): S — A))
TS[(KAm: S — A)] = (KAS(m,t) : S — A))
Recall that the everitr ¢) represents$’s looking up of his current local time and instantiatintp it.
Honesty The honesty formula of both principals is derived from the transformed process. In partic-
ular S’s honesty formula is updated as follows:

< (KA m S — A)ge < -

ﬂ’H‘S(P)

< (Tt)s < (KA9(m,t): § — A)ge < -+

A’s honesty is updated similarly (but it will not play any role in the sequel).

Knowledge More interesting is the description of hdils alters the guarantees that each principal
can deduce. Given the particular format of this transformatibddes not receive a message back),
we concentrate on the knowledge accessiblé.to

In the interest of space, we elide the source and destination directives.

A uncompromised(k, [A, B]) A (K4 m))a
— (KA¥m)s< < (KA m)a
HTS(P)

A:  uncompromised(k, [A, B]) A honest S A (K4%(m,t))a
= (tt)a < (Tt)s < (KA (m,t))s< < (K4 (m,1))a

5This assessment takes into considerations clock skews between hosts, typical network delays, etc.
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The top formula describes how can extend her knowledge after receiviig'® m whenever the
original protocol guarantees the authenticitynef note that, as long a&“*° is not compromiseds
is not required to be honest. The bottom lines show the upgraded formula. Recall thaethuo-
event(r t) represents the earliest point #is local time where she will accept the timeas valid
i.e., “recent enough” in our context. Notice that it is now important thad believed to be honest:
without this,S could guess an appropriate value foather than looking it up from its clock.

We obtain this formula by homomorphically replacifg"® m with K4%(m, t) in the derivation
of the top formula. The atonir ¢)s comes from the upgraded honesty axiom. The token) 4
representsi’s acceptance of the validity of

We schematically represent this transformation by the inference A KAS(m) 8

rule at right. The dotted arrow links the pseudo-eventto the R
beginning of the protocol iM’s view. This transformation is Tto >0
closely related t@_A from Section 3.2. KAS (m,t) Wt

O<—0O

5.2 The Denning-Sacco Protocol

The Denning-Sacco protocol [5] applies the transformaiiS@njust described to the basic key dis-
tribution protocol with nested encryptideD3 where the authenticated messagedbove) isk, X,

wherek is the newly generated key and is either A or B. S applies this transformation twice,

adding the same timestamp next to each key distribution submessage. As a consequence, by the com-
pletion of the protocol, each principal has the certainty $haas generate# recently. As inKD3,

because of the nested encryptidhadditionally knows thatd has seerk (but A cannot be certain

that B ever receive%). This derivation is summarized as follows:

A S B
A,B
O
KAS (B k, KBS (A,k)) 2
o o
¢' KBSk
° ° 9TS
A,B
KAS(B,kt, KBS (A k,t)) Tt
O o
v KBS (A k1)
O O
The Denning-Sacco is therefore characterized by the following roles:
NS_server[S] = (ALB:A—S8); vk ® 1t);
<KAS(B k,t KBS(A k,t)):S — A)
NS_iclient[A4; S,B] = (A,B:A— S); (KA (B, k,t,M):S — A);
<M A — B)
NS_rclient[B; 5] = (KBS (Ak,t): A— B)

The verification of the timestampoccurs in the implicit match. This is from this operation that the
pseudo-events ¢t stem.
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As usual, we summarize next the information gained by each principal as she reaches the end of
her run. From the sole observation of her actions and the honesty of the skpaer,reconstruct the
whole protocol, save foB’s reception of her last message:

A: honest S A uncompromised(K45 A, S]) A
(A,B)4 < (KA5(B,k,t,M))a
(A,B)a < (A,B)s (vEk)s
(1) } = [m)J =
< (KA%(B,k,t, KBS (A k1)) s« < (KA5(B,k,t, KP%(A, k,1)))a

=

We have elided!’s final send action as it does not contribute added knowledge. Not&thgéener-
ation of k£ is now bounded by ¢, which is under the control od.
B’s conclusions merge the recency assurance provided by timestamps with what he could infer
by means oKD3, i.e., thatS has generated and that4 has seen it in order to forward the message
he receives.

B: honest S A uncompromised(K 5% [B, S]) A
A uncompromised(K4% (A, S]) A (KBS(A,k,t))p

(A,B)s (vk)s S <
- [(Tt)B] - [(Tt)s] < (KB, k, t, KB (A ks 1)) s< <

< (KB (A k, ) ac < (KBS(Ak,t)p

Denning and Sacco prominently pointed out in their original paper [5] that this protocol provides
full recency guarantees with a minimum number of messages.

5.3 Kerberos 4

We will now see that the core authentication functionalities of Kerberos 4 [15] are obtained by simply
extending the Denning-Sacco protocol by means of a key confirmation exchange similar to the way
we obtained NSSK(-fix) in Section 4.3.

Adding key confirmation In Section 5.2, we observed that, by the protocol's eRds able to
determine thatd knows the distributed ke, but thatA has no such certainty. In our first step, we
simply use the transformatia®T from Section 4.3 in order foB to acknowledge the receipt df's
last transmission by sending her some (recognizable) messagerypted witht. The resulting run

is as follows:

A S B
A,B
(o) o)
vk
K43 (B,k,t, KBS (Ak,t)) rt
(@] (@]
¢ KBS(Ak,t)
o (o)
km ¢
(o] (@]

The corresponding protocol is a simple extensioD6f
As in the case oNSSK1, A’s knowledge is extended with the certainty ti#ahas seen (actually
used)k, under the assumption that the master keys are not compromised. The following formula
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makes this intuition precise:

A: uncompromised(K 4 [A,S]) A honest S A
uncompromised(k, [4, B]) A
(A,B)a < (K4 (B,k,t,M))a < (M)a < (km)a

[(é’gﬂ < {((’;]Z))ﬂ < (KAS(B,k,t, KPS (A, k,1)))s< <

< (KBS (A k,t))a < (KBS (A k,t)p < (km)pe < (km)a

The other remarks abotMSSK; andNSSKfix; from Section 4.3 hold here as well.

Adding repeated authentication Kerberos was designed asspeatedauthentication protocol: each
time A presents théicket K 29(A, k, t), B will provide some predetermined service (up to an end-
date that we can abstractly think of as a functiont)of The protocol we just derived is clearly
inadequate for this purpose as anybody can replay the ticket(A, k,t). B needs to authenticate
that a subsequent request comes frdpand assess that it was made recently enough. Kerberos 4
realizes these two goals by haviaggenerate a timestamip just prior to issuing a new request,
and embedding into it aauthenticatork (A, t4) (any message mentionirig and encrypted witlk
would do). The intended run of the resulting protocol is as follows:

A B S B
o ’ o
vk
K43 (B,k,t, KBS (A k,t)) rt
o
Tta \L KBS(Avkvt)7k(A7tA)
o o
km[tA] i’
o o

where the last message is made dependent qalthough Kerberos does not always enforce this).
Technically, this protocol is obtained by first extending the third message with the daltgmvhich

is completely redundant at this point) using transformalid@ and then applying the transformation
TS to it, and possibly pushingy into m. Note that ift 4 is indeed returned in the last message, this
extension can be seen as a timestamp-based challenge-response.

Observe that, differently from NSSK(-fix), it is the initiator of the protocol (the cliefitthat
requests the service provided by the responddr (Indeed,A generates the timestanip that is
included in the authenticator.

Kerberos 4 [15] extends this core protocol with numerous fields primarily meant to negotiate
parameters of the resulting authentication: added timestamps, options and flags, access control infor-
mation, etc. For maximum flexibility, Kerberos chains two instances of the core protocol, by which
a client (A) first obtains a master ticket (TGT) which simplifies the issuance of tickets for individual
services.

5.4 Kerberos5

As far as authentication is concerned, Kerberos 5, the most recent version of this protocol [15, 16],
differs from Kerberos 4 only by the form of the basic key distribution mechanism it relies on: while
version 4 was built up from the nested vari&M?} , Kerberos 5 starts with the concatenated variant
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KD3. Given this different starting point, the core protocol is however derived by applying the exact
same steps as in Kerberos 4. 1t is interesting to examine them as the conclusions available to the
various principals are not the same throughout.

The derivation of the analogous of the Denning-Sacco protocol is summarized as follows:

A S B
AB
]

(@]
KAS (Bk), KBS (Ak) Vb
(@]

o
v KBS (Ak)
o o
2TS
A,B
O s B O e O
vk

KAS(Bk,t),KBS(Ak,t) Yrt
o

(]
v KBS (A k1)
[e]

The knowledge derivable by is similar to the Denning-Sacco protocol, except that she can never
be certain that the encrypted component she receives corresponds t6 sdrdt

A: honest S A uncompromised(K45,[A, S]) A
<AaB>A < (KAS(Bakat)>M)A

<Aa B>A < (A>B)S (V k)S
(rt)a } = [WJ =
< (K49(B,k,t), KBS(A, k,t))s« < (KA5(B,k,t), M),

More interesting is the knowledge inferable By differently from the Denning-Sacco proto-
col, B cannot reach any conclusion on whethérever saw the key:: indeed, the assumption
uncompromised(K 4%, [A, S]) becomes irrelevant3 knows that the server sent the appropriate mes-
sages and that some principalforwarded the correct component to him. This makésknowledge
very similar toA’s.

B: honest S A uncompromised( K25 [B,S]) A (KBS(A,k,t))p

<A,B>A < (A, B)S (V k)g

()5 ] < [(Tt)s] <
< (KA9(B,k,t), KBS (A k,t)) s« < (KBY(A, k,t))x <
< (KBS(Ak,t)p

Adding key confirmation With both A and B unaware of whether its counterpart has skgeach
party needs to inform the other of its knowledge:ofVe rely on the device already used in Kerberos
4 to accomplish thisA will concatenate the componeht4 (any message encrypted withwill do,

but this happens to be the core of the Kerberos authenticator) as she fof#&tds, k, t) to B. As

in version 4,B will confirm k with a responsé m for some recognizable.. We obtain the following
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exchange:

A S B
AB
o o)
vk
KAS(B,k,t), KBS (A k,t) Tt
o o)
¢ KBS(Ak,t),k A
o (o)
km \l/
o (o)

This protocol fragment is extended to allow repeated authentication ksexgctly as for Ker-
beros 4:A generates a timestanig and includes it in her authenticatds; optionally returns 4 in
the last message.

This is the authentication core of Kerberos 5. As in its predecessor, two instances of this frag-
ment are chained together, and numerous fields add a great deal of flexibility [15, 16]. It should be
noted that, in Kerberos 5, the timestamp-based recency assessment)usisagpplemented with
a nonce-based guarantee by whitlsendsS a noncen with her initial request and expects it back
within K45(B, k,t). As we saw in Section 4.1, certain nonce-based challenge-response exchanges
are alternative mechanisms for ensuring the recency of an action. They do not rely on loosely syn-
chronized clocks, but generally involve communication overhead (this isiiecency guarantees
do not rely on nonces).
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A Relays and the equivalence of runs

Two processes should be considered indistinguishable if they have the same executgbRutifos.
processes that run on a network with routers and relays, arun\heté — B)gand(t : A — B)4
interact directly, i.e./(z: A — B)p = (t : A — B)4 is indistinguishable from the runs where of
these two actions interact through any number of relays in the formy” — Z)¢o; (z : Y — Z)¢,

sothaty/(zr: A— B)p=(x:Y — Z)cand\/(z:Y — Z)c = (t: A — B)4.

The consequence of this is that the process

(t:5— Ag (x:8—A)a
® j ®
(u: S — B)g (x:S— B)p

®A finer equivalence would also require that their non-executable runs fail in the same ways. The whole linear-time
branching-time spectrum of concurrent systems opens up.
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can be reasonably viewed as equivalent with

((t:S—>A>5) ((:c:S—>A)A;(y:S—>B)A;(y:S—>B)A)
® ; ®
(u: S — B)g (x:S— B)p

By bundling the two interactions betwe&rand 4, , we get the process

((x,y:S—>A)A; (y:S—>B>A)
(tyu: S — A)g; ®
(.’L’ZS—>B)B

which is still equivalent with the ones above, but one interaction has been moved ftom. This
explains the transformation

A S B A S B
6] (@]
f@) ¥ () F(@)a(@) ¥
(@] O=<—— 0O
! .
g(x)
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