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Abstract

We apply the derivational method of protocol verification to key distribution protocols. This method
assembles the security properties of a protocol by composing the guarantees offered by embedded
fragments and patterns. It has shed light on fundamental notions such as challenge-response and fed
a growing taxonomy of protocols. Here, we similarly capture the essence of key distribution, authen-
tication timestamps and key confirmation. With these building blocks, we derive the authentication
properties of the Needham-Schroeder shared-key and the Denning-Sacco protocols, and of the cores
of Kerberos 4 and 5.

The main results of this research were obtained in 2003-04 and appeared in [3]. The present document
collects proofs omitted for space reasons and unpublished background material.
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1 Introduction

Key distribution is one of the most studied themes in security. The problem and the basic ideas for the
solutions were first described in Needham and Schroeder’s seminal 1978 paper [13]. On a network
of computers, the users and processes often need to access remote resources. In order to prevent
unauthorized use, these accesses need to be authenticated, and often protected by encryption. Key
distribution protocols cater to this need by providing participating entities with a fresh shared key for
direct and secure communication.

The most popular key distribution protocol is Kerberos. It was designed at MIT, originally just
to protect the network services provided by Project Athena, an initiative developed in the eighties
to integrate computers in the MIT curricula [18]. Distributed for free, it subsequently achieved a
widespread use beyond MIT. While its earlier versions were not always suitable for large scale appli-
cations, versions 4 and now 5 have been redesigned for large systems [15, 16].

In the present paper, we present a formal reconstruction of the developments leading up to the
Kerberos protocols. The starting point can be found in the original Needham-Schroeder Shared Key
(NSSK) protocol, proposed in [13], which motivated the very idea of the Authentication Server.
Along the way, the Denning-Sacco attack and protocol [5] championed timestamp-based security.1 At
their core, Kerberos 4 and 5 combine and extend these ideas into an industrial-strength single-logon
authentication infrastructures [15, 16].

We recast these conceptual steps in the formal framework of the protocol derivation system, that
evolved through [4, 11]. Such logical reconstructions of development histories allow classifying pro-
tocols according to the underlying security components and concepts. The resulting taxonomies then
provide a foundation for a practical framework for secure reasoning, where the results of previously
achieved protocol development efforts are available for reuse, refinement and composition. One such
framework is being implemented as a tool, the Protocol Derivation Assistant, with all such recon-
structions available as reusable libraries. In previous work, we have looked at electronic commerce
protocols [4] and group protocols [11]. The protocol taxonomy obtained for them summarized recur-
rent security practices and supported recombining them to derive further protocols.

Presently, we only derive the basic components of the Kerberos protocols and their authenticity
properties. The actual deployed protocols chains several (at least two) rounds of such components,
bound together by secret data. The issues leading up to this composition, and arising from it, will be
studied in a sequel paper.

This work is organized as follows: in Section 2 we explain the protocol derivation infrastructure.
We use it to express the basic key distribution mechanism in Section 4. We extend in the direction of
NSSK in Section 4 with nonce-based recency and key confirmation. We extend in a different direction
with timestamp-based recency in section 5 obtaining the Denning-Sacco protocol as well as Kerberos
4 and 5.

2 Protocol Composition System

We outline the methodology underlying our analysis in Section 2.1 and formalizes the resulting frame-
work, that we call theProtocol Composition System, in Sections 2.2–2.5. It should be noted that,
while the Protocol Composition System is clearly inspired by our previous work [4, 11], a number

1Needham and Schroeder proposed an alternative fix to NSSK that does not rely on timestamps in [14].
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Figure 1: Overview of the Derivation of Key-Distribution Protocols

of notions are novel. Therefore, the following material provides more than a review of established
concepts.

2.1 Overview

As a principalA executes a protocolP , the events she observes locally (receiving a messages, com-
paring a component with an expected value, etc) allow her to make deductions about the actions of
the principals she is interacting with. This implicitly identifies a classRA of possible runs, each of
which intersperses her own actions with compatible actions by the other participants. As an authenti-
cation propertyProp also identifies a classRProp of legal runs forP , the verification task traditionally
reduces to showing thatRA is contained inRProp, and similarly for the other parties in the protocol.
Every run inRA but not inRProp is an attack onA with respect toProp.

We take a different approach: rather than comparingRA with the legal runs of a given authenti-
cation property, we synthesize a logical expressionΦA describingRA. This explicit representation is
carefully engineered to be compositional: we dissectA’s observations into elementary components
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and give a logical representation of the property they each realize (theirraison d’̂etre in a protocol).
We similarly give a logical justification of the various mechanisms that allow combining components
into bigger protocol fragments, and in particular of what properties emerge from the properties of the
parts. By iterating this process all the way toA’s original observations, we derive a formula,ΦA, that
in a strong sense describestheproperties ofRA. Indeed, this constructions provides us with a clear
view of the properties contributed by each component and whether they propagate toΦA. We often
restrict our attention to interesting scenarios by assuming, for example, that other principals behave
honestly, or that a certain key has not been compromised. Note that these assumptions are elective.

Rather than checking that a protocols satisfies a given propertyProp, our approach enumerates
the properties supported by a protocol based on its construction. Whenever an expected property is
not manifested, we can rapidly point to a missing component or a composition mechanism failing
to propagate it, and produce a counterexample, as done in [11]. We can also scrutinize the formula
ΦA summarizing the possible runs of each principalA in the light of a well-known authentication
property, such as matching histories [6] or agreement [10]. We do not, however, formalize traditional
propertiesProp as formulas in our logic for formal comparison with the deduced formulasΦA (this
will be for another paper).

A crucial aspect of our approach is that component-formulas pairs can be reused whenever they
occur in another protocols. Even more interesting is the fact that the composition operations for
fragments and properties can be made systematic, which gives rise to protocol taxonomies [4]: a
rational classification of protocols that not only aides our understanding of these complex objects, but
also helps choosing or devising a protocol based on desired features and properties. We are working
on a tool that will assist us building taxonomies that are much larger than what we have so far been
able to construct by hand.

Below, we give the necessary definitions to formalize the notions leading to the set of possible runs
RA deducible by a principalA and the corresponding formulaΦA. We define the basic vocabulary
of terms, actions and protocol specifications in Section 2.2. We introduce dynamic concepts such
as runs and observations in Section 2.3. Section 2.4 sets the stage for the logical expression of the
set of possible runs deducible from an observation, while Section 2.5 provides the logical means to
perform such deductions. The remainder of this paper will apply these definitions in the study of key
distribution protocols, starting from basic concepts all the way to Kerberos.

2.2 Syntactic Categories

In this section, we present the formal syntax used in the Protocol Composition System. In particular,
we define principals, terms, patterns, actions, roles and protocols. These notions will be used in the
sequel to define dynamic notions such as runs and local observations, and deductive reasoning will
operate on them.

Principals We modelprincipalsas a partially ordered set, or poset,(W,b), whereW enumerates
the principals we are working with and thesubprincipalrelationb is a reflexive partial order on them.
The subprincipal relation can represent, as needed, access to information or resources, or subsume
e.g. the relations “speaks for” [1, 9], or “acts for” [12], or model groups and coalitions of principals.
We will make limited use of this relation in this paper. We denote the class of variables ranging over
principals withVarW . We writeA,B, S, . . . for generic principals, and use capital letters towards the
end of the alphabet for elements ofVarW .
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Terms The setT of terms is an abstract term algebra constructed over a set of variablesVarT
and a set of operatorsOpT (some of which may be constants). Principals are a subclass of terms,
i.e. W ↪→ T (and similarly for principal variables). We also assume the standard classes used in
modeling cryptographic protocols:Nnc,Key,Time . . . ↪→ T for nonces, keys, timestamps, and so
on. We writem for a generic message, but usek, n, t, etc, for keys, nonces, timestamps and other
specialized messages. The lettersx, y, z, . . . will denote variables. In this paper, we will rely on two
specific constructors:

: Key × T → T (k m is the encryption ofm with k)
, : T × T → T (m,m′ is the concatenation ofm andm′)

butT may contain more. The standardsubtermrelation@ endows terms with the structure of a poset
(T ,@).

Patterns A pattern is a termp together with a list of distinguished variables~x occurring exactly
once inp that will be interpreted asbinders— p may contain other variables. We mnemonically
write this pattern asp(~x) but will often keep~x implicit when clear from the context. The setPT of
patterns onT is therefore defined as

PT =
⋃
n∈N

(T × VarnT )

We further restrict the class of admissible patterns to account for non-invertible cryptographic opera-
tions: for example, we reject patterns of the form “x m” which would allow extracting the key used
to encrypt the termm.

Actions Principals participate in a protocol by performing atomicactions. The setΣ of actions is
generated from the set of termsT and the set of principalsW by the following constructors:

Action Constructor Form Informal meaning

send T ×W2
〈〉
↪→ Σ 〈m : A → B〉 The termm is sent, purportedly from

A to B

receive VarT × Var2W
()
↪→ Σ (x : Y → Z) A term, source and destination are re-

ceived into the variablesx, Y , andZ

match T × PT
/

↪→ Σ (m/p(~x)) The termm is matched with the pat-
ternp(~x), binding~x

new VarT
ν

↪→ Σ (ν x) A fresh value is created and stored in
the variablex

now VarT
τ

↪→ Σ (τ x) The system time is read and stored in
the variablex

These actions will take the center stage in this paper. We will occasionally introduce internal actions to
model protocol specific operations (e.g., looking up an internal table). Other actions can be added as
needed. The variablesx, Y, Z in receive, ~x in match, andx in newandnow are binding occurrences,
so that any subsequent mention in an expression involving actions (e.g., roles below) are interpreted
as bound by them. We adopt the standard definitions of free and bound variables in an action. We
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will often use partial descriptions of actions, and elide e.g., the source and the destination, as in〈m〉,
or (y), or other parts, as in〈A → C〉, or (x : A →).

We will formalize the meaning of these actions in the next section, where we present the execution
model of the Protocol Composition System.

Roles A role is the complete code that a principal executes on her host to engage in a given protocol.
We model a role as a collection of actions performed by a principal. We allow actions to be composed
either sequentially (using “;” as a role constructor) or concurrently (using “⊗”). The setR of roles is
then defined asR = W × Σ(;⊗), where the second component is the algebra stemming fromΣ and
operations “;” and “⊗”. We tacitly use “;” as an associative operator, while “⊗” will be viewed as
associative and commutative.

Sequential composition “;” orders the actions in a role, while “⊗” specifies clusters that can be
executed in parallel. A binder occurring in an action has scope over the actions in all paths stemming
from it. Care should be taken so that no variable is in the scope of more than one homonymous
binder when disambiguation is not possible: we avoid this problem completely by requiring that every
binder uses a different variable name. The free variables of a role are its parameters, and should be
instantiated prior to executing the role. The principal executing the role is a distinguished parameter.

As an example, we show the server role of the Denning-Sacco protocol, further explored in Sec-
tion 5:

DS Server [S] = (m0 : A → S0); (S0/S); (m0/A, B);
(getKey(A,KAS)⊗ getKey(B,KBS));
(ν k ⊗ τ t);
〈KAS(B, k, t,KBS(k,A, t)) : S → A〉

This role has one parameter, the name of the serverS executing it. With the actions on the first line,
S receives a messagem0, purportedly from some principalA (this is the binding occurrence for this
variable), he verifies that he was indeed the intended recipient, and thatm0 is a pair withA as its first
component (this occurrence is in the scope of theA in the receive action) and some nameB as its
second component. The second line invokes some internal actions to retrieve the keysS shares with
A andB, and bind them to the variablesKAS andKBS respectively. Notice that this specification
allows the concurrent execution of these two actions. On the third line,S generates a key, binding it to
k, and looks up the current time intot, again concurrently. The last action sends the shown message.

Protocols A protocol is a collection of roles that covers the actions of all parties involved in the
protocol. In the case of Denning-Sacco, the protocol consists of three roles: the above server role, an
initiator, and a responder.

2.3 Execution Model

This section defines the dynamic concepts of runs and local observations. We start with the prelimi-
nary notions of processes (a minimally connected collection of actions), then associate every receive
action with a send action in the notion of run, then target the proper instantiation of variables by
defining execution, and finally distill the local observation of principal from an executable run.

Events An eventassociates an action to a principal, that we will understand has having executed
this action. We denote an event by subscripting the action with the principal in question, writing for
example〈m : A → B〉A for the event of principalA performing the action〈m : A → B〉.
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Processes A processis a partially ordered multiset (pomset) of events, i.e., actions attributed to
principals. More precisely, given a set of action labelsL, a processL is an assignment

L L=⇒ Σ×W

such that

• (L, <) is a well-founded partial order.

• ` < `′ impliesLW(`) b LW(`′) or LW(`) c LW(`′).

whereLW(`) is the name of the principal in eventL(`).
The relation< orders the events in a process so that one event can be described as occurring

before another in an abstraction of the temporal dimension of execution. Events that are not related
by < can have occurred in arbitrary order. The first condition simply prevents cycles.

The second condition specifies that only actions pertaining to the same principal, or one of its
sub-/super-principals, can be ordered in this way (we will extend this ordering across principal cliques
shortly). Like strands [8], related events in a process pertain to a single principal (or group of related
principals). Unlike strands, processes are not bound to a single protocol execution, but may order
events executed by a principal in several instances of the same protocol, possibly in several roles, and
even while executing several different protocols. The idea is that a principal will know in what order
she has executed actions, even when several protocols are involved. However, notice that the events
of a principal do not need to be totally ordered: events can be unrelated if their exact order does
not matter, or if the underlying execution model is actually parallel. Finally, processes may contain
variables bound by new, receive and match actions, while strands are always ground.

In the sequel, processes and related notions will generally arise out of instantiated protocol roles.
This will always be the case when reasoning about the observations of a principal, or when assuming
that a principal is honest. However, the actions attributed to a principal that is not assumed to be
honest may live outside of any role.

Before moving on, a few notational conventions will prove enormously helpful. We will often
abuse notation and denote a label` ∈ L in a processL by the eventL(`) it points to. Furthermore,
we will often speak, for example, of “the event〈m : A → B〉A” in the context of a processL,
although there may, of course, be several events of this form inL. We will resurrect labels only in
case of ambiguity. We will also sometimes blur the distinction between an action and an event when
the associated principal can easily be reconstructed, and speak of “the event〈m : A → B〉” for
example. Finally, we will make liberal use of the convention of dropping parts of an action that can
be reconstructed, and therefore may further streamline this example by speaking of “the event〈m〉”.

Several representations of processes and derived notions will prove convenient in different cir-
cumstance. Of course, a process is a directed acyclic graph (DAG) with events as nodes and< as
edges. Here is a simple example:

(νy)A′ // 〈f(x, y)〉A′

((QQQQQQQQ

(νx)A

99ssssss
// (z)A

// 〈f(x, y)〉A

(u)B

6



where the arrows flow in the opposite direction of< and we assumeA′ b A. We will sometimes
explicitly render the ordering<, obtaining (νx)A <

[
(νy)A′ < 〈f(x, y)〉A′

(z)A

]
< 〈f(x, y)〉A

(u)B


for the above example. Finally, we will occasionally use the conventions outlined in Section 2.2 to
express roles, rendering< as “;” and using “⊗” to denote the absence of an ordering. The above
example takes the following succinct form:

((νx)A; (((νy)A′ ; 〈f(x, y)〉A′)⊗ (z)A); 〈f(x, y)〉A)⊗ (u)B

It should be noted that not every DAG can be expressed in either of the last two nota-
tions (unless one is willing to repeat nodes, which would clash with our conventions).
For example, the DAG at right cannot be rendered in these ways.

a // b

c

==zzzzzz // d

Runs A run of a processL assigns to each of its receive events a corresponding send event. For-
mally, a run is thus a pair

〈L,
√

: recvs(L) −→ sends(L)〉
(x:Y→Z)A 7→ 〈m:S→R〉B

such that √
(x) 6> (x)

The condition forces the send event mapped to a receive event to have occurred before this event. It
prevents deadlocks, and protects the scope of the receiving variables (which is to the right, i.e., up in
the partial order).

A run can also be viewed as an extension of the order< of events in a process by adding
√

(x) <
(x) for every receive action(x) ∈ L. We shall thus represent a run〈L,

√
〉 simply by a processL

where each receive event(x) has a unique predecessor〈m〉 =
√

(x). A run of a process thus boils
down to a Lamport order of actions.2

We pointed out earlier that a process corresponds to a collection of strands. In the same vein, a
run is akin to a bundle in the strand world [8]. The main difference between our runs and bundles is
that in the present framework, the variables can be used to follow theexecutionof the run, and track
the data as it flows through it.3

2This is in contrast with the representation of runs as process reductionsà la Chemical Abstract Machine, used in the
cord calculus [4, 7].

3If in a bundle a principal receives, say, the number 2, and then sends out the number 3, it is impossible to tell whether
his program says to receivex and then sendx + 1, or to send2x − 1, or perhaps to send3 independently on what he
receives.

7



Execution The above definition falls short of capturing the intuitive notion of a run as a snapshot of
the execution of a protocol. Indeed, while our runs correctly map receives to sends, they do not ensure
that variables are properly handled. In particular, they allow events to take place past a failed match.
Rather than giving syntactic restrictions to characterize a well-formed executable run, we keep our
runs the way they are and define a notion ofexecutionon them.

A slice (L�, L�) is an order-conscious partition of a run〈L,
√
〉, i.e., for everyl1 ∈ L� and

l2 ∈ L�, it is not the case thatl2 < l1. Every path inL will have a prefix inL� and the rest inL�. We
mark the meeting point withH.

Executing a run will consist of moving the markersH rightward starting from an initial slice(∅, L)
where there is a marker at the beginning of every path. The events in a run are executed in order: each
a ∈ L can be executed only after allb < a have been executed. Execution on any given path is
specified by the following table:

Action Form If . . . . . . then do . . . . . . and write

send H〈m : A → B〉C FV (m) = ∅ 〈m : A → B〉HC
receive H(x : Y → Z)D

√
(x : Y → Z)D

= 〈m : A → B〉C
in all a > (x : Y → Z)D set
a(x := m,Y := A,Z := B)

(x : Y → Z)H
D

match H(m/p(~x))D
∃~u s.t.m = p(~u) in all a > (m/p(~x)) seta(~x := ~u) (m/p(~x))H

D

. . . otherwise . . . . . . halt on this path H(m/p(x))D

new H(νx)D (νx)H
D

now H(τx)D (τx)H
D

Note that execution on a path will stop when a match fails. It can however proceed on other paths.

Remark 1 In principle, a run all of whose actions have been successfully executed records all of
the executed assignments. This distinguishes the computational assignment operationx := m from
the algebraic substitution operation(m/x). When substitutingm for a variablex in a terma, we
simply replace the occurrences ofx bym; the resulta(m/x) generally bears no trace ofx (unless it
occurred inm). In contrast, when assigningm to x, we linkx to m, thereby destroying any previous
links ofx, yet we do not erase the name ofx itself. Indeed, in computation,x can later be reassigned
to another termm′.

When executing a run, the variables are assigned, but not destroyed. In this way, the data flow of a
run is completely recorded, since each binding actions just performs assignments on some previously
unassigned variables.

Executable Runs The left componentL� of a slice(L�, L�) of a run〈L,
√
〉 satisfies the intuitive

notion of run as a snapshot of the execution of a protocol. We adopt it as the definition of anexecutable
run, and will denote such entities with the letterQ, variously annotated. From now on, all the runs
we will be working with will be executable and we thus will generally drop this qualifier.

Local Observations The local observationof a principalA consists of all the events performed by
A in a runQ. It is simply defined as the projection ofQ with respect toA together with the binding
of all mentioned variables:

QA = {` ∈ Q | LW(`) = A}

8



2.4 Logical Annotations

Having defined the notions of (executable) run and observation, we will now define a logical language
to talk about these entities. This language applies the connectives and quantifiers of first-order logic
to a base set of predicates. We will then be able to define a judgment that verifies that a formula
constructed in this way is valid with respect to a run. It will then be a short step to use a formula to
characterize all the runs in which it is valid, and to anchor it to the local observations of a principal.

Predicates Our logical language contains just enough tools to query a run: theevent predicateswe
will be relying on are

a Eventa has occurred
a < b Eventa has occurred before eventb
a = b a andb are the same event

We will also admit the various relations participating in the definition of principals (e.g.,A b B),
terms (e.g.,m @ m′), etc, as additional predicates. Aformulacombines these atomic predicates by
means of the traditional connectives and quantifiers of first-order logic. We will allow quantification
over terms and principals appearing in an event, and, with a slight abuse of notation, over events
themselves.

Formulas can be used to describe runs or portions of runs: simply turn a pair of connected events
“a → b” into the atomic predicatea < b, add the occurrence predicatea for any isolated event “a”,
and glue them together with∧. We writeΦQ for the formula obtain in this way from a runQ. For
example, the following formula captures the first few steps of an instance of the Denning-Sacco server
role from Section 2.2 for a given serverS:

(m0 : A → S0)S < (S0/S)S ∧ (S0/S)S < (m0/A, B)S

∧ (m0/A, B)S < getKey(A,KAS)S

∧ (m0/A, B)S < getKey(B,KBS)S

∧ getKey(A,KAS)S < (ν k)S ∧ getKey(A,KAS)S < (τ t)S

∧ getKey(B,KBS)S < (ν k)S ∧ getKey(B,KBS)S < (τ t)S

An automated theorem prover can make use of this formula, but it looks rather obscure to a human.
For this reason, we will rely on generous notational conventions and express it in the more readable
format:

(A,B : A → S)S <

[
getKey(A,KAS)S

getKey(B,KBS)S

]
<

[
(ν k)S

(τ t)S

]
The following table lists some of the least obvious abbreviations we use:

This . . . . . . abbreviates . . . Notes

(p)A (x)A < (x/p)A Binders inp usually implicit

((p))A (x)A < (x/p′)A ∧ p v p′ Same binders inp andp′

〈〈m〉〉A 〈m′〉A ∧m v m′

〈m〉A< ∃a = 〈m〉A ∧ ∀b = 〈〈m〉〉B. a ≤ b whereB is arbitrary
〈〈m〉〉A< ∃a = 〈〈m〉〉A ∧ ∀b = 〈〈m〉〉B. a ≤ b whereB is arbitrary
a ≺ b b ⇒ a < b

Especially in logical statements, we will often omit the intended sender and recipient in a send or
receive action when unimportant or easily reconstructible from the context.
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Validation Given a runQ and a formulaΦ, a first task is to verify ifΦ is valid in Q. We express
this classical model checking problem by means of the judgment

[Q] Φ

whereQ is ground andΦ is closed. As usual, the definition of validity is inductive, with the following
table expressing the validity of our basic event predicates:

Predicate Judgment If and only if Meaning

event [Q] a a ∈ Q a has occurred inQ
order [Q] a < b a < b ∈ Q a has occurred beforeb in Q

equality [Q] a = b a andb are the same event inQ

The relational predicates on terms and principals are self-validating. The logical connectives and
quantifiers are processed in the usual way.

Statements If only a formulaΦ is given, the above judgment can be used to implicitly define the
set of all the runs that satisfyΦ:

RΦ = {q : [q] Φ}

In particular, ifΦ describes the observationsQA of a principalA in a given runQ, a formula we wrote
ΦQA

earlier, the above definition allows us to characterize all the runsq that are compatible withQA:

RA = {q : [q] ΦQA
}

While this satisfies the requirement at the beginning of this section, expressingRA in this way sheds
little light on the structure that a run must have to be compatible withA’s observations. In the
next section, we will instead strive to explicitly characterize these runs by means of a formulaΦ of
maximal generality.Φ will be such that:

RA = {q : [q] ΦQA
} = {q : [q] ΦQA

∧ Φ}

We will generally keepΦQA
explicit by expressingΦ as the logically equivalentΦQA

⇒ (ΦQA
∧Φ).

We will deduce this formula from the axioms and inference rules described in the next section to
get as clear a picture as possible ofRA. By havingΦ be an implicationΦ′ ⇒ Φ′′, we can characterize
important or interesting portions ofRA that satisfy the assumptionΦ′: we will typically assume the
honesty of principals or the fact that a key has not been compromise. Note thatΦQA

⇒ (ΦQA
∧(Φ′ ⇒

Φ′′)) is logically equivalent to(ΦQA
∧ Φ′) ⇒ (ΦQA

∧ Φ′′). Given the prominence of this notion in
the rest of our work, we will abbreviateΦQA

∧ Φ as

A : Φ

Φ is then a description of the runs compatible withA’s observations. We will often callΦ theknowl-
edgeof A. As we said,Φ will generally have the formΦQA

∧ Φ′ ⇒ ΦQA
∧ Φ′′.
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2.5 Axioms and Rules

Let A be a principal executing the roleρ of a protocolP . Given a runQ and local observationQA

for A’s execution ofρ, this section presents the tools to synthesize a formulaΦ such thatA : Φ,
i.e., that characterizes the runs compatible withQA (possibly restricted by appropriate assumptions).
In order to do so, we isolate the elementary constituents ofQA (for example challenge-response
exchanges) and produce formulas that describe the runs compatible with them (the necessary behavior
of a counterpart in the case of challenge-response). We then combine these formulas into larger
formulas corresponding to bigger parts ofQA, all the way toQA itself. An intuitive picture of this
process is given below:
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More precisely, the derivation of a formulaΦ characterizing the runs compatible with a local
observationQA draws from two ingredients:

Axioms An axiom maps an elementary observation with a formula expressing the necessary behav-
iors of the interacting parties. Axioms are universal predications about basic patterns of events.
In the illustration above, the axioms corresponds to the single arrows connecting the leaves of
the trees. We will spend the rest of this section justifying a number of common axioms.

Transformations A transformation maps a method for building a complex observation from simpler
ones to a method for upgrading the formulas associated with them to a formula describing the
resulting observation. A transformation may extend a partial observation with additional events,
or enrich individual events with new components, or combine events by merging common
terms. We will see several transformations in the sections to come. Had we found a good way
to draw transformations in the above illustration, they would relate the branches exiting an inner
node on the left-hand side to the branches entering the corresponding node on the right-hand
side.

Before we describe some of the most fundamental axioms of the Protocol Composition System,
a few definitions will save us some space.

Honesty Assumption In the sequel, we will occasionally need a principalA deducingA : Φ to
assume that another principalB is honestin order to draw interesting or meaningful conclusions. By
this, we mean thatB does not deviate from his assigned roleρ′ as he interacts withA. For the sake
of illustration, letρ′ be completely sequential:

ρ′[B] = b1; . . . ; bi; . . . ; bn
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Therefore, ifA is able to deduce that an honestB has executed any given actionbi in this role, she
can safely infer that he has executed all the actions leading tobi in ρ′ as well. The resulting formula
for the above example is as follows:

Honestρ′ B , (b1)B ≺ . . . ≺ (bi)B ≺ . . . ≺ (bn)B

(Recall thata ≺ b abbreviatesb ⇒ a < b.) We will generally keep the roleρ′ implicit. Clearly,
honesty formulas are associated with every role, not just the sequential ones. For example, the honesty
definition for the server role of the Denning-Sacco protocol in Section 2.2 is as follows:

(A,B : A → S)S ≺
[
getKey(A,KAS)S

getKey(B,KBS)S

]
≺

[
(ν k)S

(τ t)S

]
≺

≺ 〈KAS(B, k, t,KBS(k, A, t)) : S → A〉S

(We are relying on the abbreviations in Section 2.4 for succinctness.)
The honesty definition will be used exclusively as an assumption so thatA : Φ will often have

the formA : Honest B ⇒ Φ′. We will see that some principals need to be assumed honest for the
formula inferred fromA’s observations to be compatible with the legal runs of the protocol, while
other principals may be dishonest and yet cannot substantially deviate from the protocol givenA’s
observations.

Uncompromised Key Assumption Another important assumption we will need to make is that
certain keys have not been compromised. A shared keyk is uncompromised for a groupG of agents
if the only principals that can perform an encryption or a decryption usingk are the members ofG.
In symbols,

uncompromised(k, G) , 〈〈k m〉〉X< ⇒ X ∈ G
∧ (x/k y)X ⇒ X ∈ G

where the universal quantification overm, x andy has been kept implicit for clarity. Notice that the
body of this definition expresses the semantics of shared-key cryptography: the first line says that
only members ofG can produce an encryption usingk and send it in a message, while the second line
says that only these principals can use the patternk y to access the contents of a term encrypted with
k. Notice also that this expression defines the binding between a key and the principals who can use
it.

In this paper, we will useuncompromised exclusively as an assumption. Moreover, we will make
such an assumption for every key we need to believe is not compromised as our system does not
contain any axiom explaining how shared keys ought to be used.

The reasons for this choice are rather subtle and deserve further explanation. Key distribution pro-
tocols juggle two long-scrutinized properties: secrecy and authentication. The distributed key can be
secret only if it is transmitted inside authenticated messages. In turn, a message can be authenticated
only if it protects its contents using a secret key, which brings us back to the problem of distributing
this secret key. This is a chicken and egg situation. The only way to break this circularity is to assume
either the existence of a shared secret key or the existence of an authenticated channel. We choose
the first alternative, although the second option (e.g., using a private communication medium) would
be equally valid. Assuming certain long-term keys to be secret (i.e., uncompromised) immediately
yields that any message they encrypt are authenticated.
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Now, a key distribution protocol transmits a freshly generated keyk along these authenticated
channels to some principalsA and B. The next question becomes how to prove that the pro-
tocol ensures the secrecy ofk, i.e., thatuncompromised(k, [A,B]) holds. This question will be
the focus of a sequel to this paper, and we shall not address it further here. There, aproof of
uncompromised(k, [A,B]) will permit discharging anassumptionof uncompromised(k, [A,B]), which
is very useful for staged protocols such as Kerberos, where a key is distributed for the purpose to pro-
tecting another key.

A number of authors have proposed techniques to prove secrecy properties, e.g., Schneider’s rank
functions [17] and Thayeret al’s ideals [19] just to cite a few. At heart, they are all based on a form
of closed-word assumption which limits the class of available actions and then rely on an inductive
argument to prove that the key cannot be revealed. The present paper is instead open-ended: all events
are allowed unless expressly forbidden (e.g., by anuncompromised assumption).

We will now discuss a number of axioms and axiom schemas that will provide some of the foun-
dation for the rest of the paper.

Freshness axiom We start with a general axiom describing the behavior of the(ν n) action in
logical terms:

(ν n)B ∧ aA ⇒ (n ∈ FV (a) ⇒ (ν n)B < aA

∧ (A 6= B ⇒ (ν n)B < 〈〈n〉〉B < ((n))A ≤ aA)) (new)

The first part implies thatν is a binder, which means that any eventa mentioningn necessarily occurs
after (ν n) (recall that we required binders not to recycle variable names for simplicity). The second
line requires that if the agentB executing(ν n) and the principalA executinga are different, thenB
must have used a send action to transmitn andA must have acquired it by means of a receive action;
said in other words, values freshly generated usingν can only be transmitted using the send/receive
mechanism.

“Not Me!” Axiom The next axiom is equally general: it says that if an observerA is aware that
someX has executed an actiona, butA never executed any such action, thenX cannot beA:

A : aX ∧ ¬aA → X 6= A (notme)

This axiom relies on the fact that an observer is aware of all of its actions. It will turn useful, for
example, in conjunction with theuncompromised assumption forA to deduce that an encrypted
message originated by the principal she is sharing the key with (and not herself).

Send-Receive Axiom SchemasNext, we examine a general class of axioms allowing a principal
A to infer the existence of a specific send event matching a receive she has observed. They are all
subsumed by the following schema:

A : ∃X. ∀~y. ((fAX(~y)))A ∧ Φ(X, ~y)

⇒ 〈〈fAX(~y)〉〉X< < ((fAX(~y)))A ∧ Ψ(X, ~y) (sr)
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It says thatA knows that, for some principalX, the message structurefAX assures that, if she
receives a message containingfAX(~y), whereX and~y satisfy some preconditionΦ, thenX must
have originatedfAX(~y), and moreoverX and~y do satisfy some postconditionΨ.

A number of important axioms capturing the semantics of interaction through send and receive
events are subsumed under this schema, by instantiatingfAX , Φ andΨ. We will now examine a few.

Receive Axiom. In the simplest case, whereΦ and Ψ are taken to be trivially true, andfAX is
arbitrary, the axiom just says that everything that is received must have been sent by someone:

A : ((m))A ⇒ ∃X. 〈〈m〉〉X< < ((m))A (rcv)

Challenge-Response Axiom Schema.Perhaps the most useful instance of(sr) is another axiom
schema describing the requirements for nonce-based challenge-response exchanges. It is obtained
for:

fAX(y) = rAX(y)
Φ(X, y) = Φ′ ∧ (ν y)A < 〈〈cAX(y)〉〉A< < ((rAX(y)))A

Ψ(X, y) = (ν y)A < 〈〈cAX(y)〉〉A< < ((cAX(y)))X < 〈〈rAX(y)〉〉X<

wherecAX is the challenge structure issued byA, rAX is the corresponding response originated byX,
andΦ′ represents some additional precondition, usually an honesty oruncompromised assumption.

Simplifying yields:

A : Φ′ ∧ (νy)A < 〈〈cAXy〉〉A< < ((rAXy))A

⇒ (νy)A < 〈〈cAXy〉〉A< < ((cAXy))X < 〈〈rAXy〉〉X< < ((rAXy))A (cr)

where we have again kept the existential quantification overX.
As an example of an actual instance of this axiom, we consider the case in whichcAX is the

identity (the nonce is sent in the clear), the response encrypts the nonce with a keyKAX shared
betweenA andX, andΦ′ requiresKAX not to be compromised forA andX. We obtain

A : uncompromised(KAX , [A,X]) ∧
(νy)A < 〈〈y〉〉A< < ((KAXy))A

⇒ (νy)A < 〈〈y〉〉A< < ((y))X < 〈〈KAX y〉〉X< < ((KAX y))A

A proof of this axiom goes as follows: starting fromA’s own observations (the second line above),
axiom rcv entails that some agentY has originated〈〈KAX y〉〉. By theuncompromised assumption,
Y must be eitherX or A, with axiomnotme excluding the latter possibility. Axiomnew completes
the second line by sandwichingX ’s reception ofy betweenA’s transmission of the nonce andX ’s
issuing of〈〈KAX y〉〉.

In the sequel, we will represent a run of this challenge-response exchange by means of the fol-
lowing diagram:

A X
◦

νy ��
◦ y // ◦

��
◦ ◦

KAX y
oo
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Timestamps. Other useful instances of thesr axiom schema describe the semantics of timestamps.
Here is one possibility. Consider the following values for our various meta-variables:

fAX(t) = t

Φ(X, t) = 〈〈t〉〉X<

Ψ(X, t) = honest X ⇒
(
(τ t)A < (τt)X < 〈〈t〉〉X< ∧ ((t))A < (τ t)A

)
Let us instantiate and simplifysr before commenting on it:

A : honest X ∧ 〈〈t〉〉X< < ((t))A

⇒ (τ t)A < (τt)X < 〈〈t〉〉X< < ((t))A < (τ t)A (ts)

The antecedent of this formula assumes thatX is honest (which here means that his expected behavior
is to look up a timestamp and send it out),A receives a message containing an acceptable timestamp
t, and she has the certainty thatX has originated〈〈t〉〉. Given these hypotheses, she can deduce that
X had indeed looked upt and sent it out, and that these actions took place within what she regards
as the window of validity of this timestamp. Here,(τ t)A is the earliest point in time whereA would
acceptt as valid, and(τ t)A is the dual upperbound. They are events internal toA representing
time points calculated fromt by considering what she deems as acceptable clock skews and network
delays. What is important here is that they boundX ’s actions by events underA’s control. In the
sequel, we will discharge the assumption thatA is certain thatX has sent this timestamp whenever
the message is authenticated.

Note that there are other options for giving the semantics of timestamps as an instance ofsr: the
above approach will however prove particularly convenient in the sequel.

Diffie-Hellman. Although we will not make use of this mechanism in this paper, it is interesting to
note that thesr axiom schema also specializes to a crude logical description of the Diffie-Hellman
exchange (where, for simplicity, we have the responder transmit the shared secret in some message).
We instantiate the various schematic variables as follows:

fAX(g, u, y) = uy

Φ(X, g, u, y) = (ν y)A < 〈gy〉A< < (u)A ∧ ¬〈y〉A
Ψ(X, g, u, y) = 〈u〉X< ∧ (¬〈log u〉X ⇒ (gy)X < 〈〈uy〉〉X<)

for appropriate term constructors for exponentiation and discrete logarithm. Hereg is the group
generator,y is A’s random number,u is X ’s returned value (u = gz wherez is X ’s random number),
and thereforeuy = gyz is the shared secret. Simplifying and rearranging this time yields:

A : ¬〈y〉A ∧ ¬〈log u〉Z ∧

(νy)A < 〈gy〉A< <

[
(u)A

((uy))A

]
(dh)

⇒ ∃X. (νy)A < 〈gy〉A< < (gy)X <

[
〈u〉X<

〈〈uy〉〉X<

]
<

[
(u)A

((uy))A

]
This formula states that ifA receives her counterpart’s share of the secret and a message containing
the secret, and neither exponent has been leaked, then she can rest assured that someX has received
her owngy and send those two messages.
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3 Basic Key Distribution

In this section, we apply the methodology just outlined to obtain the core protocols and logical guar-
antees for key distribution. For the time being, we are only interested in the manner a key server can
distribute a fresh key to clients. We will examine other important aspects of key distribution, namely
recency and key confirmation, in Sections 4 and 5, where we derive NSSK and Kerberos, respectively.

We warm up in Section 3.1 with an illuminating exercise in futility: having a server distribute
a fresh key to a single principal. We take it as a template for the more useful two-client setting in
Section 3.2.

3.1 One-Party Key Distribution

We begin with a very simple setup consisting of a key serverS and one clientA. While the resulting
protocol, which distributes a secret key to a single principal, makes little sense in practice, it will serve
as a useful illustration of the concepts introduced so far and help gain familiarity with transformations.
Later, when applying these techniques to more realistic protocols, we will be able to concentrate on
the derived properties rather than on minor technicalities.

In our initial version of this protocol, both the key server and the client are given each other’s
name as a parameter to their respective roles. A fully spelled-out specification of these roles is as
follows:

KD0
1 server[S;A] = getKey(A,KAS) ; ν k ; 〈KAS k : S → A〉

KD0
1 client[A;S] = (m0 : S0 → A0) ; (A0/A) ; (S0/S) ;

getKey(S, KAS) ; (m0/KAS k)

(We will abbreviate it shortly.) The server “knows” it should send the new keyk to A becauseA
appears in its parameter list.

A process involving one instance of each of these roles is given by the nodes and solid lines in the
graph below (please ignore everything else for now). We have writtenA andS for the instantiating
values of the parametersA andS, and distinguished binders with the same name in the two roles by
means of primes. The expected run of this protocol bridges these two halves by means of the dashed
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arrow.
getKey(A,KAS)S

{KAS :=kAS}
��

(νk)S

��
(m0 : S0 → A0)A

{...,m0:=KAS k,S0:=S,A0:=A}
��

〈KAS k : S → A〉Soo_ _ _ _ _

(A0/A)A

��
(S0/S)A

��
getKey(S,K ′AS)A

{...,K′AS :=kAS}
��

(m0/K ′AS k′)A
{...,k′:=k}H

Another expression for this process is

getKey(A,KAS) ; ν k ; 〈KAS k : S → A〉
⊗ (m0 : S0 → A0) ; (A0/A) ; (S0/S) ; getKey(S,K ′AS) ; (m0/K ′AS k′)

The run assigns
√

(m0 : S0 → A0)A = 〈KSA k : S → A〉S.
An execution of this run accumulates binding variable assignments in an environment that we

have expressed above as annotation to the arrows. By the time the last action has been executed, this
environment contains:

{KAS := kAS, m0 := KAS k, S0 := S, A0 := A, K ′AS := kAS, k′ := k}

By the end of this run, the observationsQA andQS of A andS correspond to the left and right column
of the above figure, respectively.

While we hope this demonstrated the definitions in Section 2.3, the remainder of this paper will
use a leaner notation based on the conventions introduced in the previous section. This will make our
treatment more readable and save space. In particular, we will liberally fold matches inside receive
actions, occasionally omit senders and receivers, and keep the internal actionsgetKey implicit. The
roles in this example then reduces to:

KD0
1 server[S;A] = ν k ; 〈KAS k : S → A〉

KD0
1 client[A;S] = (KAS k : S → A)
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We also summarize the above run in the following strand-like picture:

A S
◦

νk��
◦ ◦KAS koo

We are now ready to take the point of view of each principal and infer a formula representing
the runs that are compatible with its observations. Let us take the part ofA first. In our abbreviated
notation, the only event she observes is(KAS k : S → A). Under the assumptions thatKAS

is uncompromised forA and S and the honesty ofS (derived from his role),A can completely
reconstruct the expected run. In symbols:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(KAS k : S → A)A

⇒ (ν k)S < 〈KAS k : S → A〉S< < (KAS k : S → A)A

This formula means that, under the stated hypotheses, all runs that are compatible withA’s observa-
tion must include the shown actions ofS, and in the prescribed order.

Theuncompromised hypothesis identifiesS as the originator of the transmitted message (A is ex-
cluded thanks to thenotme axiom) while the honesty assumption completes the sequence of messages
that preceded this send. A more formal derivation is given by:

QA : (KSA k : S → A)A

(rcv) : 〈〈KSA k〉〉X< < (KSA k : S → A)A

uncompromised(KAS , [A,S]) : X = A or X = S
(notme) : X 6= A
honest S : (νk)S ≺ 〈KSA(k) : S → A〉S

(νk)S < 〈KSA k : S → A〉S< < (KSA k)A

On the other hand,S does not conclude more than he observes since he is the recipient of no
message.

In this example,A is a parameter inS’s role andS is a parameter inA’s. In a real system, this
would mean that these values appear in some configuration file on the client and server’s machines.
While the former may be acceptable if there is only one server in the system, the latter is certainly not
as a server should be able to distribute keys to more than one client.

We introduce thedischarging transformationDC to transform a role that gets a value from a
parameter into a role that acquires this value as part of the protocol run. This transformation simply
turns a parameter into a binder.4 For simplicity, take a sequential role[x]ρ; ρ′(x) with parameterx,
an action prefixρ that does not refer tox, and remaining actionsρ′(x) that may referencex. Then,
DC is defined as follows on this role:

DC[ [x]ρ; ρ′(x) ] , ρ; ax; ρ′(x)

4There are other ways to discharge a parameterx: for example another useful transformation removes a match(x0/x)
againstx and replaces other occurrences withx0. This would be how to dischargeS in KD0

1 client above.
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whereax is some action that bindsx (most interesting is a receive). The generalization to non-
sequential roles is trivial, but harder to typeset.

For example, an instance ofDC dischargesA in KD0
1 server above by havingA send her name to

S in a request message:
A S
◦ A // ◦

νk��
◦ ◦KAS koo

The roles give a more precise account of the operations ofDC:

KD1
1 server[S] = (A : A → S) ; ν k ; 〈KAS k : S → A〉

KD1
1 client[A;S] = 〈A : A → S〉 ; (KAS k : S → A)

Observe thatKD1
1 server does not haveA as a parameter.S obtainsA’s name from the first message,

either from the body or from its putative sender at the implementor’s choice. A simple prefixing
transformation is used to have the client send this message, upgradingKD0

1 client to KD1
1 client.

Note that it does not dischargeS as a parameter.
A transformation operates not only on the syntactic specification of a role, but also on its inferable

properties. In its generality, the transformationDC is rather limited in this respect: it extends the
observations of principal executing the affected role with the actionax — here(A : A → S) — and
only influences the deductions of other principals through its altered honesty assumption. From the
point of view of the principal executing the transformed role,DC operates as follow on the sequential
illustration above, where we make an intuitive use of the symbols.

A : Φρ < Φρ′ ∧Ψ → Φ′
ρ < Φ′

ρ′ ∧Ψ′www�DC

A : Φρ < ax < Φρ′ ∧Ψ → Φ′
ρ < ax < Φ′

ρ′ ∧Ψ′

We will see transformations that have more interesting effects shortly. Note however that the presence
of eventax may enable further inferences.

This makesS’s point of view marginally more interesting than in the first version of this protocol:
upon receiving the first message, he can use axiomrcv to infer that someone sent it, although not
necessarilyA:

S : (A : A → S)S < (ν k)S < 〈KAS k〉S
〈A : A → S〉X< < (A : A → S)S < (ν k)S < 〈KAS k〉S

We next examine the property deducible byA: it illustrates the effect ofDC on the other party,
and describe the effect of the prefixing transformation. Her view is summarized by the following
formula:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A : A → S〉A < (KAS k)A

⇒
[

〈A : A → S〉A
(A : A → S)S < (ν k)S < 〈KAS k〉S<

]
< (KAS k)A

The two occurrences of〈A : A → S〉A are the result of the prefixing transformation on the client’s
role. The matching receive action(A : A → S)S is deduced from the honesty ofS. Observe thatA
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is unable to correlate her sending of this message withS’s reception. Indeed,S will perform its role
not in response toA’s request but following the reception of any message of the form(A : A → S),
whoever the actual sender is. Of course,A will not accept an unsolicited key, but if she sent a request
there is no guarantee thatS’s response has any relation to it. While this property does not exactly
match the expected run of this updated protocol, it may be acceptable sinceA still gets what she
asked for (even if she was not heard). We will examine variants of this protocol that enforce stronger
guarantees between request and response.

3.2 Two-Party Key Distribution

With this exercise under our belt, we will now examine protocols in which a serverS generates a key
k and distributes it to two partiesA andB. This is the setting underlying NSSK and Kerberos, which
we will study in sections to come. Note that our analysis generalizes to an arbitrary number of parties.

We start with the 2-party variant of the basic scheme presented in Section 3.1. The expected run
is as follows:

A S B
◦

νk��
◦ ◦KAS koo KBS k // ◦

While we take it as primitive for simplicity, it is easy to define a transformation that produces an
n-party variant of that basic protocol in Section 3.1 for any given numbern.

The roles of this protocol are defined next. Notice that the actions ofA andB are totally sym-
metric at this stage (onlyA’s role is shown).

KD0
2 server[S;A;B] = ν k ; 〈KAS k : S → A〉 ⊗ 〈KBS k : S → B〉

KD0
2 client[A;S, B] = (KAS k : S → A)

Next we take the point of view of a client (A for example) and follow our footprints from Section 3.1
to derive the property characterizing her observations:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(KAS k)A

⇒ (ν k)S <

[
〈KAS k : S → A〉S<

〈KBS k : S → B〉S<

]
< (KAS k)A

Next we use the discharging transformationDC to haveA pass the names of the two clients toS,
dischargingA andB as parameters inKD0

2 server. The resulting run is given by:

A S B
◦ A,B // ◦

νk��
◦ ◦KAS koo KBS k // ◦

and the roles by:

KD1
2 server[S] = (A,B : A → S) ; ν k ;

〈KAS k : S → A〉 ⊗ 〈KBS k : S → B〉
KD1

2 iclient[A;S, B] = 〈A,B : A → S〉 ; (KAS k : S → A)

KD1
2 rclient[B;S, A] = (KBS k : S → B)
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Observe that the roles ofA andB are not symmetric any more. Note also that it would make little
difference ifA transmitted just “B” as her first message since her name is present in the “from” field
of this action.

The properties characterizingA’s andB’s views are derived as in the previous section. Let us
examine them:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS k)A

⇒

 〈A,B〉A

(A,X)S < (ν k)S <

[
〈KAS k : S → A〉S<

〈KXS k : S → X〉S<

] < (KAS k)A

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
< (KBS k)B

⇒ (X, B : X → S)S < (ν k)S <

[
〈KXS k〉S<

〈KBS k〉S<

]
< (KBS k)B

Observe thatA has no way to determine whetherS transmitted the keyk to B or to some other party
X. Indeed, she can only infer thatS received a request for a key involving herself and someX,
not necessarilyB. By a similar argument,B cannot ascertain to whomk was distributed, even ifA
appears among the parameters of his role.

This problem is traditionally solved by havingS includeB’s name into the message directed to
A, andA’s name intoB’s message. In our setting, this is achieved by a transformationCA that inserts
a new term into an existing encryption:

CAm′ [ k m ] , k (m,m′)

This has the effect of cryptographically authenticatingm′ (hence the nameCA) to any party entitled
to access the ciphertext. It operates as follows on a property derivable to a party receiving this message
(we omit additional formulas that may occur in the antecedant or consequent):

A : uncompromised(k, [A,B]) ∧ ((k m))A

=⇒ 〈〈k m〉〉B< < ((k m))Awww�CAm′

A : uncompromised(k, [A,B]) ∧ ((k (m,m′)))A

=⇒ 〈〈k (m,m′)〉〉B< < ((k (m,m′)))A

The transformation simply extends to the added componentm′ the fact that a message encrypted with
an uncompromised key is authenticated. Note thatB’s honesty is not required as long ask is not
compromised.

By applying this transformation twice (once forA and once forB), S can informA andB of
whom it createdk for. This also allows us to dischargeA as a parameter inB’s role. The expected
run is now given by the following diagram:

A S B
◦ A,B // ◦

νk��
◦ ◦KAS (B,k)oo KBS (A,k) // ◦

21



while the roles become:

KD2
2 server[S] = (A,B : A → S) ; ν k ;

〈KAS (B, k) : S → A〉 ⊗ 〈KBS (A, k) : S → B〉
KD2

2 iclient[A;S, B] = 〈A,B : A → S〉 ; (KAS (B, k) : S → A)

KD2
2 rclient[B;S] = (KBS (A, k) : S → B)

It is easy to see that the application ofCA solves the problem outlined earlier. Indeed,A andB can
derive the following properties:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k))A

⇒

 〈A,B〉A

(A,B)S < (ν k)S <

[
〈KAS (B, k)〉S<

〈KBS (A, k)〉S<

] < (KAS (B, k))A

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S <

[
〈KAS (B, k)〉S<

〈KBS (A, k)〉S<

]
< (KBS (A, k))B

While these formulas are very similar to what we derived for protocolKD1
2, A andB now know that

the keyk is intended for the two of them to communicate, not a third party (assuming, of course that
S is honest and that the keysKAS andKBS are not compromised). Clearly, this correction becomes
crucially important whenA andB attempt to usek.

While KD2
2 achieves a minimal form of key distribution (we will soon extend this basic function-

ality with additional guarantees), few actual protocols have this message structure. Indeed, with the
exception of recent group protocols [11], nearly all key distribution protocols based on shared keys
have the server send both componentsKAS (B, k) andKBS (A, k) to one principal, who then relays
the part he does not understand to the other.

Appendix A describes the relay transformationRT that has the ability to turnKD2
2 into a more

common form of key distribution. The resulting run is as follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k), KBS (A,k)oo

◦ KBS (A,k) // ◦

In this protocol, which we will callKD3
2, S concatenatesKAS (B, k) andKBS (A, k), and sends

the resulting message toA, who then forwardsKBS (A, k) to B. Several academic and industrial
protocols, e.g., Kerberos 5, follow this pattern. The role specification is as follows:

KD3
2 server[S] = (A,B : A → S) ; ν k ;

〈KAS (B, k), KBS (A, k) : S → A〉
KD3

2 iclient[A;S, B] = 〈A,B : A → S〉 ; (KAS (B, k),M : S → A) ;
〈M : A → B〉

KD3
2 rclient[B;S] = (KBS (A, k) : A → B)
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Clearly, the componentKBS (A, k) is opaque toA. Hence her role mentions a generic messageM .
TransformationRT alters the properties derivable toA andB in a rather subtle way. We examine

its effect one principal at a time.

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k), M)A < 〈M〉A

⇒

[
〈A,B〉A

(A,B)S < (ν k)S < 〈KAS (B, k), KBS (A, k) 〉S<

]
≤

≤ 〈KAS (B, k), M 〉X< < (KAS (B, k), M )A < 〈M〉A

Compared to the analogous property ofKD2
2, A’s receive action contains a genericM , and the server

sends a concatenated message rather than the two components separately. This has two major impli-
cations. We highlighted them using boxes:

1. While, by the honesty assumption,A knows thatS has sentKAS (B, k),KBS (A, k), she has
no means to ascertain that the generic messageM she receives is indeedKBS (A, k).

2. SinceKAS is uncompromised,A knows thatS has originatedKAS (B, k), but she cannot be
sure of who originated the messageKAS (B, k),M she received: hence the variableX for its
originator, and the≤ relation, a direct result of applying axiomrcv. Indeed an attacker could
have replacedKBS (A, k) with an arbitrary message in an undetectable way. Such a behavior
has been documented for Kerberos 5 [2].

Additionally, observe thatA’s last send has little bearing on the overall property and could be dropped
without significant consequences (it is the same underlying reason that makes the property derivable
by the server so uninteresting).

For similar reasons,B has no way to know who forwarded the message he receives.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k), KBS (A, k)〉S< <
< 〈KBS (A, k)〉X< < (KBS (A, k))B

Note that ifB were able to infer thatX is indeedA, he would also reach the certainty thatA knows
the keyk.

We conclude this section by deriving a popular variant ofKD3
2, in whichB’s component is em-

bedded inA’s rather than concatenated with it. Actual protocol that follow this approach include
NSSK, Denning-Sacco and Kerberos 4.

The transformationEA that produces this modified protocol is similar toCA:

EA[ (k m), m′ ] , k (m,m′)

It pushes an existing message into an encrypted component it is concatenated with. The effect ofEA
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over properties is to authenticatem′ in addition tom:

A : uncompromised(k, [A,B]) ∧ ((k m, m′))A

=⇒ 〈〈k m〉〉B< ≤ 〈〈k m, m′〉〉X< < ((k m, m′))Awww�EA

A : uncompromised(k, [A,B]) ∧ ((k (m,m′)))A

=⇒ 〈〈k (m, m′)〉〉B< < ((k (m,m′)))A

Notice the relation〈〈km〉〉B< ≤ 〈〈km, m′〉〉X< before applying the transformation: it says thatB has
originated a message containingk m, which may or may not bek m, m′, and that whatB received
may have been put together by a principalX. Recall that we ran into this issue several times while
examiningKD3

2. This transformation removes this source of uncertainty.
Applying EA to KD3

2 yields protocolKD4
2, which has the following expected run:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦

KD4
2 is more formally defined by the following roles:

KD4
2 server[S] = (A,B : A → S) ; ν k ;

〈KAS (B, k, KBS (A, k)) : S → A〉
KD4

2 iclient[A;S, B] = 〈A,B : A → S〉 ; (KAS (B, k, M) : S → A) ;
〈M : A → B〉

KD4
2 rclient[B;S] = (KBS (A, k) : A → B)

A’s resulting property enhances what she could deduce fromKD3
2 with the certainty that the opaque

submessageM she receives is preciselyKBS (A, k):

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k, M))A < 〈M〉A

⇒
[

〈A,B〉A
(A,B)S < (ν k)S < 〈KAS (B, k, KBS (A, k))〉S<

]
<

< (KAS (B, k, KBS (A, k) )A = (KAS (B, k, M ))AOO

=

OO
< 〈M〉A

At first sight,B’s view does not significantly differ from what he could infer inKD3
2:

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k, KBS (A, k))〉S< <
< 〈KBS (A, k)〉X< < (KBS (A, k))B
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Indeed, assumingS honest andKBS uncompromised, he can deduce thatS did its part in the protocol,
and that some principalX (not necessarilyA) forwardedKBS (A, k) to him.

However, under the additional assumption thatKAS is not compromised either,B can infer that
it is A who forwarded this message to him. In particular, this tellsB thatA knowsk.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k, KBS (A, k))〉S< <
< 〈KBS (A, k)〉A< < (KBS (A, k) : X → B)B

Note that the assumption ofuncompromised(KAS , [A,S]) would be irrelevant in any ofB’s previous
inferences: onlyA could decryptKAS (B, k, KBS (A, k)) to forwardKBS (A, k), hence accessing
k. Note also that the assumption thatKAS is uncompromised does not mean thatA is bound to be
honest: she could indeed deviate substantially from the protocol, passing information (but notKAS)
to arbitrary parties, but she certainly has decryptedS’s message and certainly sent outKBS (A, k)
(although not necessarily toB).

While most academic and industrial key distribution protocols based on shared keys are derived
from eitherKD3

2 or KD4
2, these fragments lack two important guarantees: recency and key confirma-

tion. Indeed, bothKD3
2 andKD4

2 give the clientsA andB assurance that the keyk has been generated
by the server for their exclusive communication needs, but they provide no verifiable guarantee thatk
was generated recently: an oldk is more likely to have been compromised than one produced within
a short time frame. None of the properties in this section binds the generation ofk by any event
controlled by the client receiving it. Key confirmation is about a client having some reason to believe
that his counterpart has knowledge ofk as well: onlyKD4

2’s B is able to gather this type of evidence
(under assumptions). In the next sections, we will follow the development of two known families of
protocols and observe how they address these issues.

4 Derivations of NSSK

This section extends the results we just obtained in the direction of the Needham-Schroeder shared-
key protocol (NSSK) [13]. In Section 4.1, we describe how a challenge-response exchange is used to
guarantee the recency of the key, but also point out how a partial application of this technique leads
to Denning and Sacco’s classical attack on NSSK [5]. We then show how Needham and Schroeder’s
subsequent fix to the original NSSK [14] essentially completes the application of nonce-based recency
in Section 4.2. Finally, we address key confirmation as implemented in most protocols in Section 4.3.

4.1 Guaranteeing Recency with Nonces

As mentioned earlier, the core key distribution protocols derived in Section 3 do not guarantee to the
clients that the server has generated the key recently. Indeed, none of the formulas we have derived
for any of our clients bounds the actions of an honest server so that it follows that the key could not
have been produced at an arbitrary moment in the past. Note that this is not a failure of honesty: the
server may have received a fake request long before our clients felt any need to communicate; the
response could have been cached by a dishonest agent, who also intercepted the clients’ request and
replayed that response in a timely manner.
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A controllable way for a client to ensure that the key is recent is to bracket its generation between
two of its own events. One approach to doing so is using the challenge-response mechanism: the
client issues a fresh challenge at the time she sends the key distribution request to the server. The
server cryptographically binds the response to the challenge and the response to the key distribution
request. We dedicate this section to examining one of the possible concrete realizations of this idea,
adopted in NSSK and other protocols. A different approach, using time-stamps, will be examined in
Section 5 when analyzing the Kerberos family.

We use a specific instance of thecr axiom from Section 2.5 which sends the challenge in the clear
(the challenge function is the identity) and returns the response encrypted with an uncompromised
shared key: we have used it as an example in Section 2.5. As a refresher, the run of this protocol is as
follows, where we write the parameters as we will use them:

A S
◦

ν n ��
◦ n // ◦

��
◦ ◦KAS noo

The specific guarantees of this protocol are the following:

A : uncompromised(KAS , [A,S]) ∧
(νn)A < 〈n〉A < (KAS n)A

=⇒ (νn)A < 〈n〉A < ((n))S < 〈〈KAS n〉〉S< < (KAS n)A

The transformation allowing to embed a challenge-response exchange in another protocol has
been extensively discussed in [11]. We present it only informally here, using protocolKD4

2 as our
case study since it is at the core of NSSK. The following diagram intuitively renders the overall effect
of this transformation:

A S
◦

ν n ��
◦ n // ◦

��
◦ ◦KAS noo

A S B
◦

◦ A,B // ◦
νk��

◦
��

◦KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦ MC
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS n,KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦ MA
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦
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Intuitively, the transformationMC has the effect of merging two independent protocols by identifying
some sends and receives between the same principals and fusing them through concatenation. Events
that do not involve communication are compounded. Here, the challenge message (n : A → S) is
concatenated withA’s request toS (A,B : A → S) into the message (n, A,B : A → S). The two
responses are processed similarly. The properties induced by this transformation are little more than
what holds of the two protocols separately. TransformationMA consolidates the two encryptions
with KAS into one. It has a similar binding power toEA from section 3.2.

The resulting protocol includes the first three steps of NSSK (the addition of key-confirmation
will complete it in Section 4.3). We formalize by presenting its roles.

NSSK0 server[S] = (n, A,B : A → S) ; ν k ;
〈KAS (n, B, k,KBS (A, k)) : S → A〉

NSSK0 iclient[A;S, B] = ν n ; 〈n, A,B : A → S〉 ;
(KAS (n, B, k,M) : S → A) ; 〈M : A → B〉

NSSK0 rclient[B;S] = (KBS (A, k) : A → B)

B’s role does not change at all fromKD4
2, the server’s changes only marginally, while most changes

occur inA’s role.
It is particularly interesting to compare how the properties derivable toA andB change from

what we obtained forKD4
2. BecauseA created the noncen fresh and it is returned cryptographically

authenticated together with the keyk, A can be certain that the server has generatedk after her request.
The analogous property forKD4

2 left the relation between the (actual) request and the generation of
the key totally open. Thus, NSSK ensures the recency of the key toA.

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(ν n)A < 〈n, A,B〉A < (KAS (n, B, k,M))A

=⇒ (ν n)A < 〈n, A,B〉A < (n, A,B)S < (ν k)S <
< 〈KAS (n, B, k,KBS (A, k))〉S< < (KAS (n, B, k,KBS (A, k))A

We have dropped the last message (〈M〉A) since it does not influence the resulting property.
The guarantees derivable toB are however pretty much the same as inKD4

2: B gets to deduce that
some noncen has been exchanged fromS’s honesty. However, no event controlled byB necessarily
precedes the generation ofk. We use the stronger version, in whichKAS is assumed uncompromised.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (n, A,B)S < (ν k)S < 〈KAS (n, B, k,KBS (A, k))〉S< <
< 〈KBS (A, k)〉A< < (KBS (A, k) : X → B)B

Therefore, NSSK does not ensures the recency of the key toB. This is the gist of Denning and
Sacco’s attack on NSSK [5].

4.2 NSSK-fix

A few years after Denning and Sacco pointed out the absence of recency guarantees for the respon-
der [5], Needham and Schroeder came forth with a “fix” for their original protocol [14]. This ad-
justment simply inserts an additional challenge response, betweenB and the server, to provide the
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required assurance. Minor complications are called for in order to maintainA as the initiator and
avoid message confusion. We will now examine this amended protocol.

B’s challenge response differs fromA’s in order to avoid confusion.B generates a noncenB

(for symmetry we renameA’s noncenA), sends it encrypted to the responder and expects it back also
encrypted, but somehow transformed. The expected run is as follows:

S B
◦

ν nB��
◦
��

◦KBS (f(nB))oo

◦ KBS (g(nB)) // ◦

with f andg two different message structures parameterized bynB. The properties of this exchange,
from the point of view ofB are typical of a challenge-response with shared keys:

B : uncompromised(KBS , [B,S]) ∧
(νnB)B < 〈KBS (f(nB))〉B < (KBS (g(nB)))B

=⇒ (νnB)B < 〈KBS (f(nB))〉B <
< ((KBS (f(nB))))S < 〈〈KBS (g(nB))〉〉S< < (KBS (g(nB)))B

The proof is similar to what we saw in Section 2.5.
The specific instance used in NSSK-fix takesf(nB) , (A,nB) andg(nB) , (nB), although any

functions would do, as long as they are not identical and they truly depend onnB. NSSK-fix itself is
obtained by applying a series of transformations to NSSK and this challenge-response exchange:

• Two applications of the routing transformationRT modify the challenge-response so thatB
andS communicate throughA.

• Similarly to Section 4.1, transformationsMC andMA merge this modified challenge-response
andNSSK0, and cryptographically bindB’s nonce within the the key distribution submessage
S intends forB.

• Finally, transformationDC dischargesA from B’s roles, allowing that principal to remain the
initiator of the final protocol.
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The overall transformation is summarized in the following diagram:

A S B

◦
ν nA ��

◦ nA,A,B // ◦
νk��

◦
��

◦KAS (nA,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦

A S B
◦

ν nB��
◦
��

◦KBS(A,nB)oo

◦ KBS nB // ◦
2RT

◦
ν nB��

◦
��

◦KBS(A,nB)oo

◦ KBS(A,nB) // ◦
��

◦
��

◦KBS nBoo

◦ KBS nB // ◦ MC + MA
◦

ν nB��
◦

ν nA ��

◦KBS(A,nB)oo

◦ nA,A,B,KBS(A,nB) // ◦
νk��

◦
��

◦KAS (nA,B,k,KBS (A,k,nB))oo

◦ KBS (A,k,nB) // ◦ DC
◦ A // ◦

ν nB��
◦

ν nA ��

◦KBS(A,nB)oo

◦ nA,A,B,KBS(A,nB) // ◦
νk��

◦
��

◦KAS (nA,B,k,KBS (A,k,nB))oo

◦ KBS (A,k,nB) // ◦

Observe that the resulting protocol is substantially more complex thanNSSK0 (in the upper left
corner): it contains two additional steps and one more cryptographic operation. Note that it may be
rather complicated to extend this protocol to ann-party key distribution.

This protocol differs from NSSK-fix only by the absence of the final key-confirmation steps. They
will be added in Section 4.3. Its roles are given next.

NSSKfix0 server[S] = (nA, A, B,KBS(A,nB) : A → S) ; ν k ;
〈KAS (nA, B, k,KBS (A, k, nB)) : S → A〉

NSSKfix0 iclient[A;S, B] = 〈A : A → B〉 ; (M ′ : B → A) ;
ν nA ; 〈nA, A, B,M ′ : A → S〉 ;
(KAS (nA, B, k,M) : S → A) ; 〈M : A → B〉

NSSKfix0 rclient[B;S] = (A : A → B) ; ν nB ; 〈KBS(A,nB) : B → A〉 ;
(KBS (A, k, nB) : A → B)

We now turn to the properties that each principal can derive.A’s deduction differ fromNSSK0
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only by the presence of her two extra actions, and by the fact that an honest server will correctly inter-
pret the added fields, both in her request and in its response. In particular,A is perfectly aware that the
component she forwards toB in her last message (omitted below) has the structureKBS (A, k, nB)
for some valuenB. The logical statement is as follows:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A〉A < (M ′)A < (ν nA)A < 〈nA, A, B,M ′〉A <
< (KAS (nA, B, k,M))A

=⇒ 〈A〉A < (M ′)A < (ν nA)A < 〈nA, A, B,M ′〉A <
< (nA, A, B,KBS(A,nB))S < (ν k)S <
< 〈KAS (nA, B, k,KBS (A, k, nB))〉S< <

< (KAS (nA, B, k,KBS (A, k, nB))A

SinceA now supposedly receives a message fromB, it makes sense to ask what would be the effect
of strengthening the assumptions of this property withuncompromised(KBS , [B,S]). This brings
no advantage sinceA simply forwardsB’s first message and has no way to inspect or verify its
contents, even indirectly. The additional assumption thatB is honest brings some marginal additional
insight, namely, thatB performed its initial three actions (with the right parameters) beforeS started
processing, but she has no way of ordering these added events with respect to her own initial actions.

The interesting changes occur fromB’s perspective. As inA’s case inNSSK0, B’s nonce is
cryptographically bound to the keyk he receives by protocol’s end. Since an honest server will
construct this key only after retrieving this nonce fromB’s encrypted message, the generation of the
key is sandwiched between two events underB’s control, hence ensuring its recency. The rest of
this property allows him to draw similar conclusions as inNSSK0, namely thatS produced the key,
forwarded it toA who learned it and forwarded it toB. This is summarized in the following property.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧
(A)B < (ν nB)B < 〈KBS (A,nB)〉B < (KBS (A, k, nB))B

⇒ (A)B < (ν nB)B < 〈KBS (A,nB)〉B <
< (nA, A, B,KBS (A,nB))S < (ν k)S <
< 〈KAS (nA, B, k,KBS (A, k, nB))〉S< <
< 〈KBS (A, k, nB)〉A< < (KBS (A, k, nB))B

As in NSSK0, dropping the assumption thatKAS is uncompromised simply implies thatB does not
know who has originated the messageKBS (A, k, nB) and that he cannot be certain thatA knowsk.

4.3 Key Confirmation

The previous two sections have shown how to extend the core key distribution protocolKD4
2 in with

the recency guarantees of NSSK(-fix). The remaining issue to address is ensuring to both recipients
that their counterpart also knows the new shared key. As we observed, under assumptions, these
protocols already guarantee this toB, butA has no means to be sure thatB ever learnedk.

In order to make this concept more explicit, we define the predicatehas(A,m) that holds only if
principalA has seen termm. Intuitively, this is the case whenever we know thatA has performed an
action onm. Here is a partial definition, incomplete but sufficient for our needs. It could clearly be
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extended with additional cases.

has(A,m) ,


(x/K (m,m′))A

〈〈K (m,m′)〉〉A<

(x/mm′)A

〈〈m m′〉〉A<

The first two cases describe situations wherem is encrypted with a shared keyK. In the first line,
A decrypt a message containingm, thus exposing this term, in the second she builds such a term for
export. The last two cases are similar, except thatm is the key itself. Note that in all cases, the action
is known to have been performed byA. For this reason, there is no need to assume the key to be
uncompromised. It is a simple exercise to verify that the propositionhas(X, k) holds in exactly the
three situations below, with respect to all the formulas we have derived in this paper:

1. X = S, i.e., the serverS who generatedk knowsk.

2. X is the observer of the formula, obviously.

3. X = A, the observer isB, the key distribution protocol is a descendent ofKD4
2 (i.e.,S sends

k to B cryptographically embedded in the message forA), and the keyKAS is assumed to be
uncompromised.

In particular, it has never been the case thathas(B, k) from the point of view ofA.
Sincek is now a shared secret betweenA andB (supposedly), the easiest way to provide the

missing guarantee is forB to sendA a pre-agreed message encrypted withk. Consider the following
protocol fragment:

A B
◦ ◦k moo

wherem is arbitrary. The two simple roles are as follows:

enc to[A;B, k, m] = (k, m : B → A)

enc from[B;A, k,m] = 〈k, m : B → A〉

B is unable to infer anything interesting from his observations since he never receives anything from
A. On the other hand, under the assumption thatk is uncompromised,A deduces that it isB who
sent this message:

A : uncompromised(k, [A,B]) (k m)A

=⇒ 〈k m〉B< < (k m)A

Notice that, in this formula, the propositionhas(A, k) now holds.
At this point, we can simply use the extending transformationXT (which simply adds an action

at the end of a protocol) and, by a number of applications of the discharging transformationDC, we
can augmentNSSK0 andNSSKfix0 with a send action intended forB to confirm toA that he knows
the key. The messagem can be arbitrary, for exampleA,B. The resulting run in the case of (the
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shorter) NSSK is as follows:

A S B
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦
��

◦ ◦k (A,B)oo

Let us call this protocolNSSK1. A’s observations lead her to conclude:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
uncompromised(k, [A,B] ∧

(ν n)A < 〈n, A,B〉A < (KAS (n, B, k,M))A <

< 〈M〉A < (k (A,B))A

=⇒ (ν n)A < 〈n, A,B〉A <
< (n, A,B)S < (ν k)S < 〈KAS (n, B, k,KBS (A, k))〉S< <

< (KAS (n, B, k,KBS (A, k))A <

< 〈KBS (A, k)〉A < (KBS (A, k))B < 〈k (A,B)〉B< < (k (A,B))A

We have highlighted the additions with respect toNSSK0 (see Section 4.1) by enclosing them in
boxes. Recall that we had omitted the then trailing〈M〉A and 〈KBS (A, k)〉A since they did not
add substantial information. Now they clearly do, as they allowA to infer thatB has received this
message and originatedk (A,B). It is easy to verify that within this formula,has(B, k) holds, which
achieves our goal.

The last addition,uncompromised(k, [A,B]), deserves some discussion. Clearly, we need to
know thatk is uncompromised to infer anything useful involving it. However, most formal systems
wouldderivethis fact rather thanassumeit. This may be where the strict separation between authenti-
cation and secrecy is most evident in this work. Recall that our logical system is just powerful enough
to reason about the order of actions, the structure underlying authentication. In particular it does not
embed the closed-world assumption, nor the induction principles to reason about it. Deriving thatk
must indeed be secret would rely on such devices. We intend to develop the secrecy facet of this logic
in future work. The assumptionuncompromised(k, [A,B]) is an interface to this future extension.

Applying the above extension toNSSKfix0 yieldsNSSKfix1. This protocol has then the typical
properties of a key distribution protocol: both clients receive assurance that the key has been generated
by the expected server, that this key is controllably recent, and that they both know the key. However,
the actual NSSK-fix is different:B encrypts a new nonce withk and sends it toA, and expect this
same nonce back fromA, transformed in a predictable way. We will now analyze what additional
properties are achieved by doing so. For the sake of succinctness, we operate onNSSK1, which differs
from the original NSSK in precisely the same way asNSSKfix1 is different from NSSK-fix. Here is
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the expected run of NSSK:

A S B
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦
ν n′��

◦
��

◦k n′
oo

◦ k (n′+1) // ◦

First, notice that havingA send something encrypted withk back toB does not produce any new
knowledge (besides the obvious, i.e., that a new message has been transmitted). It does make the
hypothesis thatKAS was uncompromised (which ultimately was the reason whyB could conclude
thatA had knowledge ofk) unnecessary, but the gain is rather slim: a compromisedKAS immediately
allows compromisingk. These two propositions are however distinct in our logic since we never
derive anuncompromised fact.

It should however be observed that, from the point of view ofB, the last two messages NSSK
implement a challenge-response exchange:B generates the noncen′, sends it toA encrypted (with
k), and expected it back from her transformed. By doing so,B ascertains thatA in indeed alive at
this particular point of the protocol. Note thatB could repeat this same exchange an arbitrary number
of times (each with a new nonce) and obtain the same guarantee: thatA was recently alive. IfB’s
challenges include a request for a service (e.g., retrieving a file) andA’s responses embed an outcome
for this service (e.g., the file itself, or an error message), this protocol implements a crude (and rather
lopsided) single-authentication, repeated-request client-server mechanism:NSSK0 realizes the initial
authentication and key distribution, the added challenge-response forms the basis of each instance of a
subsequent client-server exchange, protected by the key obtained in the first phase. This interpretation
of NSSK is clearly not realistic since it implies that the service provider (A) initiates the exchange
while the client (B) just gets to issues the requests for service. However, we will see in Section 5
that a nearly identical mechanism is used in Kerberos to support repeated service requests based on a
single initial key distribution.

In summary, our analysis shows that NSSK-fix achieves key distribution with recency guarantees
and key confirmation for both parties. NSSK provides recency assurance only to the initiator. Our
work also shows that the same guarantees are also supported by simpler protocols that drop the last
message and rely on any pre-arranged message instead of the final nonce. How they stand now, both
NSSK and NSSK-fix have a flavor of repeated client-server protocols with the initiator and responder
roles inverted.

5 Derivations of Kerberos

Kerberos is a complex and versatile protocol that has been the subject of intense scrutiny over the
years [15, 16]. In this section, we will apply the methods outlined above to derive the core authentica-
tion functionalities of versions 4 and 5 of this protocol. We concentrate on the basic key distribution
exchange of which each version contains two instances. As a preparatory step, we formalize the use
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of timestamps for authentication and apply it to the derivation of the Denning-Sacco protocol, a core
component of Kerberos 4.

5.1 Guaranteeing Recency with Timestamps

Timestamps have a number of applications in cryptographic protocols. In this section, we examine
and formalize their use for the purpose of guaranteeing the recency of an already authenticated mes-
sage. Consider a principalA receiving a messageKAS m from an honest agentS: if the key is
uncompromised,A can only deduce thatS originated this message in the (possibly distant) past; if
howeverS includes a timestampt within the encryption and sendsKAS(m, t), A can assess the age
of the message and reject it if it falls outside of her window of validity.5

We formalize this intuition as a transformationTS. We define it by describing how it operates on
a processP , how it consequently alters the representation of the honesty of the participants, and how
their knowledge gets upgraded.

Roles Given a rolesρ andρ′ embedding the sending and receiving ofKAS m, respectively, the
transformationTS is described as follows:{

TS[ 〈〈KAS m : S → A〉〉 ] = (τ t) ; 〈〈KAS(m, t) : S → A〉〉

TS[ ((KAS m : S → A)) ] = ((KAS(m, t) : S → A))

Recall that the event(τ t) representsS’s looking up of his current local time and instantiatingt to it.

Honesty The honesty formula of both principals is derived from the transformed process. In partic-
ularS’s honesty formula is updated as follows:

· · · ≺ 〈〈KAS m : S → A〉〉S< ≺ · · ·www�TS(P )

· · · ≺ (τ t)S ≺ 〈〈KAS(m, t) : S → A〉〉S< ≺ · · ·

A’s honesty is updated similarly (but it will not play any role in the sequel).

Knowledge More interesting is the description of howTS alters the guarantees that each principal
can deduce. Given the particular format of this transformation (S does not receive a message back),
we concentrate on the knowledge accessible toA.

In the interest of space, we elide the source and destination directives.

A : uncompromised(k, [A,B]) ∧ ((KAS m))A

=⇒ 〈〈KAS m〉〉S< < ((KAS m))Awww�TS(P )

A : uncompromised(k, [A,B]) ∧ honest S ∧ ((KAS(m, t)))A

=⇒ (τ t)A < (τ t)S < 〈〈KAS(m, t)〉〉S< < ((KAS(m, t)))A

5This assessment takes into considerations clock skews between hosts, typical network delays, etc.
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The top formula describes howA can extend her knowledge after receivingKAS m whenever the
original protocol guarantees the authenticity ofm: note that, as long asKAS is not compromised,S
is not required to be honest. The bottom lines show the upgraded formula. Recall that thepseudo-
event(τ t) represents the earliest point inA’s local time where she will accept the timet as valid
i.e., “recent enough” in our context. Notice that it is now important thatS is believed to be honest:
without this,S could guess an appropriate value fort rather than looking it up from its clock.

We obtain this formula by homomorphically replacingKAS m with KAS(m, t) in the derivation
of the top formula. The atom(τ t)S comes from the upgraded honesty axiom. The token(τ t)A

representsA’s acceptance of the validity oft.

We schematically represent this transformation by the inference
rule at right. The dotted arrow links the pseudo-event(τ) to the
beginning of the protocol inA’s view. This transformation is
closely related toCA from Section 3.2.

A S
◦ ◦KAS(m)oo

TS
τ t ◦ // ◦

τ t��
◦ ◦KAS(m,t)oo

5.2 The Denning-Sacco Protocol

The Denning-Sacco protocol [5] applies the transformationTS just described to the basic key dis-
tribution protocol with nested encryptionKD4

2 where the authenticated message (m above) isk, X,
wherek is the newly generated key andX is eitherA or B. S applies this transformation twice,
adding the same timestamp next to each key distribution submessage. As a consequence, by the com-
pletion of the protocol, each principal has the certainty thatS has generatedk recently. As inKD4

2,
because of the nested encryption,B additionally knows thatA has seenk (but A cannot be certain
thatB ever receivesk). This derivation is summarized as follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS(B,k,KBS (A,k))oo

◦ KBS k // ◦
2TS

◦ A,B // ◦
νk
τ t��

◦oo

◦
��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t) // ◦

The Denning-Sacco is therefore characterized by the following roles:

NS server[S] = (A,B : A → S) ; (ν k ⊗ τ t) ;
〈KAS (B, k, t,KBS (A, k, t)) : S → A〉

NS iclient[A;S, B] = 〈A,B : A → S〉 ; (KAS (B, k, t,M) : S → A) ;
〈M : A → B〉

NS rclient[B;S] = (KBS (A, k, t) : A → B)

The verification of the timestampt occurs in the implicit match. This is from this operation that the
pseudo-eventsτ t stem.
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As usual, we summarize next the information gained by each principal as she reaches the end of
her run. From the sole observation of her actions and the honesty of the server,A can reconstruct the
whole protocol, save forB’s reception of her last message:

A : honest S ∧ uncompromised(KAS , [A,S]) ∧
〈A,B〉A < (KAS(B, k, t,M))A

=⇒
[
〈A,B〉A < (A,B)S

(τ t)A

]
<

[
(ν k)S

(τ t)S

]
<

< 〈KAS(B, k, t,KBS(A, k, t))〉S< < (KAS(B, k, t,KBS(A, k, t)))A

We have elidedA’s final send action as it does not contribute added knowledge. Note thatS’s gener-
ation ofk is now bounded byτ t, which is under the control ofA.

B’s conclusions merge the recency assurance provided by timestamps with what he could infer
by means ofKD4

2, i.e., thatS has generatedk and thatA has seen it in order to forward the message
he receives.

B : honest S ∧ uncompromised(KBS , [B,S]) ∧
∧ uncompromised(KAS , [A,S]) ∧ (KBS(A, k, t))B

=⇒
[
(A,B)S

(τ t)B

]
<

[
(ν k)S

(τ t)S

]
< 〈KAS(B, k, t,KBS(A, k, t))〉S< <

< 〈KBS(A, k, t)〉A< < (KBS(A, k, t))B

Denning and Sacco prominently pointed out in their original paper [5] that this protocol provides
full recency guarantees with a minimum number of messages.

5.3 Kerberos 4

We will now see that the core authentication functionalities of Kerberos 4 [15] are obtained by simply
extending the Denning-Sacco protocol by means of a key confirmation exchange similar to the way
we obtained NSSK(-fix) in Section 4.3.

Adding key confirmation In Section 5.2, we observed that, by the protocol’s end,B is able to
determine thatA knows the distributed keyk, but thatA has no such certainty. In our first step, we
simply use the transformationXT from Section 4.3 in order forB to acknowledge the receipt ofA’s
last transmission by sending her some (recognizable) messagem encrypted withk. The resulting run
is as follows:

A S B
◦ A,B // ◦

νk
τ t��

◦
��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t) // ◦
��

◦ ◦k moo

The corresponding protocol is a simple extension ofDS.
As in the case ofNSSK1, A’s knowledge is extended with the certainty thatB has seen (actually

used)k, under the assumption that the master keys are not compromised. The following formula
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makes this intuition precise:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
uncompromised(k, [A,B]) ∧
〈A,B〉A < (KAS (B, k, t,M))A < 〈M〉A < (k m)A

=⇒
[
(A,B)S

(τ t)B

]
<

[
(ν k)S

(τ t)S

]
< 〈KAS(B, k, t,KBS(A, k, t))〉S< <

< 〈KBS (A, k, t)〉A < (KBS (A, k, t))B < 〈k m〉B< < (k m)A

The other remarks aboutNSSK1 andNSSKfix1 from Section 4.3 hold here as well.

Adding repeated authentication Kerberos was designed as arepeatedauthentication protocol: each
time A presents theticketKBS(A, k, t), B will provide some predetermined service (up to an end-
date that we can abstractly think of as a function oft). The protocol we just derived is clearly
inadequate for this purpose as anybody can replay the ticketKBS(A, k, t). B needs to authenticate
that a subsequent request comes fromA, and assess that it was made recently enough. Kerberos 4
realizes these two goals by havingA generate a timestamptA just prior to issuing a new request,
and embedding into it anauthenticatork (A, tA) (any message mentioningtA and encrypted withk
would do). The intended run of the resulting protocol is as follows:

A S B
◦ A,B // ◦

νk
τ t��

◦
τ tA ��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t),k(A,tA) // ◦
��

◦ ◦k m[tA]oo

where the last message is made dependent ontA (although Kerberos does not always enforce this).
Technically, this protocol is obtained by first extending the third message with the tokenk A (which
is completely redundant at this point) using transformationMC and then applying the transformation
TS to it, and possibly pushingtA into m. Note that iftA is indeed returned in the last message, this
extension can be seen as a timestamp-based challenge-response.

Observe that, differently from NSSK(-fix), it is the initiator of the protocol (the client,A) that
requests the service provided by the responder (B). Indeed,A generates the timestamptA that is
included in the authenticator.

Kerberos 4 [15] extends this core protocol with numerous fields primarily meant to negotiate
parameters of the resulting authentication: added timestamps, options and flags, access control infor-
mation, etc. For maximum flexibility, Kerberos chains two instances of the core protocol, by which
a client (A) first obtains a master ticket (TGT) which simplifies the issuance of tickets for individual
services.

5.4 Kerberos 5

As far as authentication is concerned, Kerberos 5, the most recent version of this protocol [15, 16],
differs from Kerberos 4 only by the form of the basic key distribution mechanism it relies on: while
version 4 was built up from the nested variantKD4

2 , Kerberos 5 starts with the concatenated variant
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KD3
2. Given this different starting point, the core protocol is however derived by applying the exact

same steps as in Kerberos 4. It is interesting to examine them as the conclusions available to the
various principals are not the same throughout.

The derivation of the analogous of the Denning-Sacco protocol is summarized as follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k), KBS (A,k)oo

◦ KBS (A,k) // ◦
2TS

◦ A,B // ◦
νk
τ t��

◦oo

◦
��

◦KAS(B,k,t),KBS(A,k,t)oo

◦ KBS(A,k,t) // ◦

The knowledge derivable byA is similar to the Denning-Sacco protocol, except that she can never
be certain that the encrypted component she receives corresponds to whatS sent.

A : honest S ∧ uncompromised(KAS , [A,S]) ∧
〈A,B〉A < (KAS(B, k, t),M)A

=⇒
[
〈A,B〉A < (A,B)S

(τ t)A

]
<

[
(ν k)S

(τ t)S

]
<

< 〈KAS(B, k, t),KBS(A, k, t)〉S< < (KAS(B, k, t),M)A

More interesting is the knowledge inferable byB: differently from the Denning-Sacco proto-
col, B cannot reach any conclusion on whetherA ever saw the keyk: indeed, the assumption
uncompromised(KAS , [A,S]) becomes irrelevant.B knows that the server sent the appropriate mes-
sages and that some principalX forwarded the correct component to him. This makesB’s knowledge
very similar toA’s.

B : honest S ∧ uncompromised(KBS , [B,S]) ∧ (KBS(A, k, t))B

=⇒
[
〈A,B〉A < (A,B)S

(τ t)B

]
<

[
(ν k)S

(τ t)S

]
<

< 〈KAS(B, k, t),KBS(A, k, t)〉S< < 〈KBS(A, k, t)〉X <
< (KBS(A, k, t))B

Adding key confirmation With bothA andB unaware of whether its counterpart has seenk, each
party needs to inform the other of its knowledge ofk. We rely on the device already used in Kerberos
4 to accomplish this:A will concatenate the componentk A (any message encrypted withk will do,
but this happens to be the core of the Kerberos authenticator) as she forwardsKBS(A, k, t) to B. As
in version 4,B will confirm k with a responsekm for some recognizablem. We obtain the following
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exchange:
A S B
◦ A,B // ◦

νk
τ t��

◦
��

◦KAS(B,k,t),KBS(A,k,t)oo

◦ KBS(A,k,t),k A // ◦
��

◦ ◦k moo

This protocol fragment is extended to allow repeated authentication usingk exactly as for Ker-
beros 4:A generates a timestamptA and includes it in her authenticator;B optionally returnstA in
the last message.

This is the authentication core of Kerberos 5. As in its predecessor, two instances of this frag-
ment are chained together, and numerous fields add a great deal of flexibility [15, 16]. It should be
noted that, in Kerberos 5, the timestamp-based recency assessment (usingt) is supplemented with
a nonce-based guarantee by whichA sendsS a noncen with her initial request and expects it back
within KAS(B, k, t). As we saw in Section 4.1, certain nonce-based challenge-response exchanges
are alternative mechanisms for ensuring the recency of an action. They do not rely on loosely syn-
chronized clocks, but generally involve communication overhead (this is whyB’s recency guarantees
do not rely on nonces).
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A Relays and the equivalence of runs

Two processes should be considered indistinguishable if they have the same executable runs.6 But for
processes that run on a network with routers and relays, a run where(x : A → B)B and〈t : A → B〉A
interact directly, i.e.

√
(x : A → B)B = 〈t : A → B〉A is indistinguishable from the runs where of

these two actions interact through any number of relays in the form(x : Y → Z)C ; 〈x : Y → Z〉C ,
so that

√
(x : A → B)B = 〈x : Y → Z〉C and

√
(x : Y → Z)C = 〈t : A → B〉A.

The consequence of this is that the process 〈t : S → A〉S
⊗

〈u : S → B〉S

 ;

 (x : S → A)A

⊗
(x : S → B)B


6A finer equivalence would also require that their non-executable runs fail in the same ways. The whole linear-time

branching-time spectrum of concurrent systems opens up.
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can be reasonably viewed as equivalent with 〈t : S → A〉S
⊗

〈u : S → B〉S

 ;

 (x : S → A)A ; (y : S → B)A ; 〈y : S → B〉A
⊗

(x : S → B)B


By bundling the two interactions betweenS andA, , we get the process

〈t, u : S → A〉S ;

 (x, y : S → A)A ; 〈y : S → B〉A
⊗

(x : S → B)B


which is still equivalent with the ones above, but one interaction has been moved fromS to A. This
explains the transformation

A S B

◦
νx��◦ ◦f(x)oo g(x) // ◦

A S B

◦
νx��◦ ◦f(x),g(x)oo

◦
g(x)

// ◦
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