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Abstract

This paper presents a semantics of self-adjusting computation and proves that the semantics is
correct and consistent. The semantics integrates change propagation with the classic idea of mem-
oization to enable reuse of computations under mutation to memory. During evaluation, reuse of a
computation via memoization triggers a change propagation that adjusts the reused computation to
reflect the mutated memory. Since the semantics combines memoization and change-propagation,
it involves both non-determinism and mutation. Our consistency theorem states that the non-
determinism is not harmful: any two evaluations of the same program starting at the same state
yield the same result. Our correctness theorem states that mutation is not harmful: self-adjusting
programs are consistent with purely functional programming. We formalized the semantics and its
meta-theory in the LF logical framework and machine-checked the proofs in Twelf.





1 Introduction
Self-adjusting computation is a technique for enabling programs to respond to changes to their data
(e.g., inputs/arguments, external state, or outcome of tests). By automating the process of adjusting
to any data change, self-adjusting computation generalizes incremental computation (e.g., [10, 18,
19, 12, 11, 17]). Previous work shows that the technique can speed up response time by orders
of magnitude over recomputing from scratch [3, 7], closely match best-known (problem-specific)
algorithms both in theory [2, 6] and in practice [7, 8].

The approach achieves its efficiency by combining two previously proposed techniques: change
propagation [4], and memoization [5, 1, 17, 15]. Due to an interesting duality between memoiza-
tion and change propagation, combining them is crucial for efficiency. Using each technique alone
yields results that are far from optimal [3, 2]. The semantics of the combination, however, is
complicated because the techniques are not orthogonal: conventional memoization requires purely
functional programming, whereas change propagation crucially relies on mutation for efficiency.
For this reason, no semantics of the combination existed previously, even though the semantics of
change propagation [4] and memoization (e.g., [5, 17]) has been well understood separately.

This paper gives a general semantic framework that combines memoization and change prop-
agation. By modeling memoization as a non-deterministic oracle, we ensure that the semantics
applies to many different ways in which memoization, and thus the combination, can be realized.
We prove two main theorems stating that the semantics is consistent and correct (Section 3). The
consistency theorem states that the non-determinism (due to memoization) is harmless by showing
that any two evaluations of the same program in the same store yield the same result. The correct-
ness theorem states that self-adjusting computation is consistent with purely functional program-
ming by showing that evaluation returns the (observationally) same value as a purely functional
evaluation. Our proofs do not make any assumptions about typing. Our results therefore apply
in both typed and untyped settings. (All previous work on self-adjusting computation assumed
strongly typed languages.)

To study the semantics we extend the adaptive functional language AFL [4] with a memo
construct for memoization. We call this language AML (Section 2). The dynamic semantics of
AML is store-based. Mutation to the store between successive evaluations models incremental
changes to the input. The evaluation of an AML program also allocates store locations and updates
existing locations. A memo expression is evaluated by first consulting the memo-oracle, which
non-deterministically returns either a miss or a hit. Unlike in conventional memoization, hit returns
a trace of the evaluation of the memoized expression, not just its result. To adjust the computation
to the mutated memory, the semantics performs a change propagation on the returned trace. Change
propagation and ordinary evaluation are, therefore, intertwined in a mutually recursive fashion to
enable computation reuse under mutation.

The proofs for the correctness and consistency theorems (Section 3) are made challenging
because the semantics consists of a complex set of judgments (where change propagation and
ordinary evaluation are mutually recursive), and because the semantics involves mutation and
two kinds of non-determinism: non-determinism in memory allocation, and non-determinism
due to memoization. Due to mutation, we are required to prove that evaluation preserves cer-
tain well-formedness properties (e.g., absence of cycles and dangling pointers). Due to non-
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deterministic memory allocation, we cannot compare the results from different evaluations di-
rectly. Instead, we compare values structurally by comparing the contents of locations. To address
non-determinism due to memoization, we allow evaluation to recycle existing memory locations.
Based on these techniques, we first prove that memoization is harmless: for any evaluation there
exists a memoization-free counterpart that yields the same result without reusing any computa-
tions. Based on structural equality, we then show that memoization-free evaluations and fully
deterministic evaluations are equivalent. These proof techniques may be of independent interest.

To increase confidence in our results, we encoded the syntax and semantics of AML and its
meta-theory in the LF logical framework [13] and machine-checked the proofs using Twelf [16]
(Section 5). The Twelf formalization consist of 7800 lines of code. The Twelf code is fully founda-
tional: it encodes all background structures required by the proof and proves all lemmas from first
principles. The Twelf code is available at http://www.cs.cmu.edu/˜jdonham/aml-proof/.
We note that checking the proofs in Twelf was not a merely an encoding exercise. In fact, our ini-
tial paper-and-pencil proof was not correct. In the process of making Twelf accept the proof, we
simplified the rule systems, fixed the proof, and even generalized it. In retrospect, we feel that the
use of Twelf was critical in obtaining the result.

Since the semantics models memoization as a non-deterministic oracle, and since it does not
specify how the memory should be allocated while allowing pre-existing locations to be recycled,
the dynamic semantics of AML does not translate to an algorithm directly. In Section 6, we describe
some implementation strategies for realizing the AML semantics. One of these strategies has been
implemented and discussed elsewhere [3]. We note that this implementation is somewhat broader
than the semantics described here because it allows re-use of memoized computations even when
they match partially, via the so called lift construct. We expect that the techniques described
here can be extended for the lift construct.

2 The Language
We describe a language, called AML, that combines the features of an adaptive functional lan-
guage (AFL) [4] with memoization. The syntax of the language extends that of AFL with memo
constructs for memoizing expressions. The dynamic semantics integrates change propagation and
evaluation to ensure correct reuse of computations under mutations. As explained before, our re-
sults do not rely on typing properties of AML. We therefore omit a type system but identify a
minimal set of conditions under which evaluation is consistent. In addition to the memoizing and
change-propagating dynamic semantics, we give a pure interpretation of AML that provides no
reuse of computations.

2.1 Abstract syntax
The abstract syntax of AML is given in Figure 1. We use meta-variables x, y, and z (and variants)
to range over an unspecified set of variables, and meta-variable l (and variants) to range over
a separate, unspecified set of locations—the locations are modifiable references. The syntax of
AML is restricted to “2/3-cps”, or “named form”, to streamline the presentation of the dynamic
semantics.
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Values v : : = () | n | x | l | (v1, v2) | inl v | inr v |
funs f(x) is es | func f(x) is ec

Prim. Op. o : : = not | + | - | = | < | . . .
Exp. e : : = es | ec

St. Exp. es : : = v | o(v1, . . . , vn) | mod ec | memos es | applys(v1, v2) |
let x = es in e′s | letx1×x2 = v in es |
case v ofinl (x1) ⇒ es |inr (x2) ⇒ e′s end

Ch. Exp. ec : : = write(v) | read v as x in ec | memoc ec | applyc(v1, v2) |
let x = es in ec | letx1×x2 = v in ec |
case v ofinl (x1) ⇒ ec |inr (x2) ⇒ e′c end

Program p : : = es

Figure 1: The abstract syntax of AML.

Expressions are classified into three categories: values, stable expressions, and changeable
expressions. Values are constants, variables, locations, and the introduction forms for sums, prod-
ucts, and functions. The value of a stable expression is not sensitive to modifications to the inputs,
whereas the value of a changeable expression may directly or indirectly be affected by them.

The familiar mechanisms of functional programming are embedded in AML as stable expres-
sions. Stable expressions include the let construct, the elimination forms for products and sums,
stable-function applications, and the creation of new modifiables. A stable function is a function
whose body is a stable expression. The application of a stable function is a stable expression. The
expression mod ec allocates a modifiable reference and initializes it by executing the changeable
expression ec. Note that the modifiable itself is stable, even though its contents is subject to change.
A memoized stable expression is written memos es.

Changeable expressions always execute in the context of an enclosing mod-expression that
provides the implicit target location that every changeable expression writes to. The changeable
expression write(v) writes the value v into the target. The expression read v as x in ec

binds the contents of the modifiable v to the variable x, then continues evaluation of ec. A read
is considered changeable because the contents of the modifiable on which it depends is subject to
change. A changeable function is a function whose body is a changeable expression. A changeable
function is stable as a value. The application of a changeable function is a changeable expression.
A memoized changeable expression is written memoc ec. The changeable expressions include the
let expression for ordering evaluation and the elimination forms for sums and products. These
differ from their stable counterparts because their bodies consists of changeable expressions.

2.2 Stores, well-formed expressions, and lifting
Evaluation of an AML expression takes place in the context of a store, written σ (and variants),
defined as a finite map from locations l to values v. We write dom(σ) for the domain of a store,
and σ(l) for the value at location l, provided l ∈ dom(σ). We write σ[l ← v] to denote the
extension of σ with a mapping of l to v. If l is already in the domain of σ, then the extension
replaces the previous mapping.
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v ∈ {(), n, x}

v, σ
wf−→ v, ∅

l ∈ dom(σ) σ(l), σ wf−→ v, L

l, σ
wf−→ v, {l} ∪ L

v1, σ
wf−→ v′1, L1 v2, σ

wf−→ v′2, L2

(v1, v2), σ
wf−→ (v′1, v

′
2), L1 ∪ L2

ec, σ
wf−→ e′c, L

mod ec, σ
wf−→ mod e′c, L

v, σ
wf−→ v′, L

in{l,r} v, σ
wf−→ in{l,r} v′, L

v, σ
wf−→ v′, L

write(v), σ
wf−→ write(v′), L

e, σ
wf−→ e′, L

fun{s,c} f(x) is e, σ
wf−→ fun{s,c} f(x) is e′, L

v1, σ
wf−→ v′1, L1 · · · vn, σ

wf−→ v′n, Ln

o(v1, . . . , vn), σ
wf−→ o(v′1, . . . , v

′
n), L1 ∪ · · · ∪ Ln

v1, σ
wf−→ v′1, L1 v2, σ

wf−→ v′2, L2

apply{s,c}(v1, v2), σ
wf−→ apply{s,c}(v′1, v

′
2), L1 ∪ L2

e1, σ
wf−→ e′1, L e2, σ

wf−→ e′2, L
′

let x = e1 in e2, σ
wf−→ let x = e′1 in e′2, L ∪ L′

v, σ
wf−→ v′, L e, σ

wf−→ e′, L′

letx1×x2 = v in e, σ
wf−→ letx1×x2 = v′ in e′, L ∪ L′

v, σ
wf−→ v′, L e1, σ

wf−→ e′1, L1 e2, σ
wf−→ e′2, L2

(case v ofinl (x1) ⇒ e1 |inr (x2) ⇒ e2 end), σ wf−→
(case v′ ofinl (x1) ⇒ e′1 |inr (x2) ⇒ e′2 end), L ∪ L1 ∪ L2

e, σ
wf−→ e′, L

memo{s,c} e, σ
wf−→ memo{s,c} e′, L

v, σ
wf−→ v′, L ec, σ

wf−→ e′c, L
′

read v as x in ec, σ
wf−→ read v′ as x in e′c, L ∪ L′

Figure 2: Well-formed expressions and lifts.
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σ[l← v](l′) =

{
v if l = l′

σ(l′) if l 6= l′ and l′ ∈ dom(σ)
dom(σ[l← v]) = dom(σ) ∪ {l}

We say that an expression e is well-formed in store σ if 1) all locations reachable from e in σ
are in dom(σ) (“no dangling pointers”), and 2) the portion of σ reachable from e is free of cycles.
If e is well-formed in σ, then we can obtain a “lifted” expression e′ by recursively replacing every
reachable location l with its stored value σ(l). The notion of lifting will be useful in the formal
statement of our main theorems (Section 3).

We use the judgment e, σ
wf−→ e′, L to say that e is well-formed in σ, that e′ is e lifted in σ,

and that L is the set of locations reachable from e in σ. The rules for deriving such judgments are
shown in Figure 2. Any finite derivation of such a judgment implies well-formedness of e in σ.

We will use two notational shorthands for the rest of the paper: by writing e↑σ or reach (e, σ)
we implicitly assert that there exist a location-free expression e′ and a set of locations L such that

e, σ
wf−→ e′, L. The notation e↑σ itself stands for the lifted expression e′, and reach (e, σ) stands

for the set of reachable locations L. It is easy to see that e and σ uniquely determine e ↑ σ and
reach (e, σ) (if they exist).

2.3 Dynamic semantics
The evaluation judgments of AML (Figures 5 and 6) consist of separate judgments for stable and
changeable expressions. The judgment σ, e ⇓s v, σ′,Ts states that evaluation of the stable ex-
pression e relative to the input store σ yields the value v, the trace Ts, and the updated store σ′.
Similarly, the judgment σ, l ← e ⇓c σ′,Tc states that evaluation of the changeable expression e
relative to the input store σ writes its value to the target l, and yields the trace Tc together with the
updated store σ′.

A trace records the adaptive aspects of evaluation. Like the expressions whose evaluations they
describe, traces come in stable and changeable varieties. The abstract syntax of traces is given by
the following grammar:

Stable Ts : : = ε | mod l← Tc | let Ts Ts

Changeable Tc : : = write v | let Ts Tc | readl→x=v.e Tc

A stable trace records the sequence of allocations of modifiables that arise during the evaluation of
a stable expression. The trace mod l ← Tc records the allocation of the modifiable l and the trace
of the initialization code for l. The trace let Ts T′s results from evaluating a let expression in
stable mode, the first trace resulting from the bound expression, the second from its body.

A changeable trace has one of three forms. A write, write v, records the storage of the value
v in the target. A sequence let Ts Tc records the evaluation of a let expression in changeable
mode, with Ts corresponding to the bound stable expression, and Tc corresponding to its body. A
read readl→x=v.e Tc specifies the location read (l), the value read (v), the context of use of its
value (x.e) and the trace (Tc) of the remainder of the evaluation within the scope of that read. This
records the dependency of the target on the value of the location read.
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σ, es ⇓s v, σ′,T
alloc (T) ∩ reach (es, σ) = ∅

σ, es ⇓sok v, σ′,T
(valid/s)

σ, l← ec ⇓c σ′,T
alloc (T) ∩ reach (ec, σ) = ∅
l 6∈ reach (ec, σ) ∪ alloc (T)

σ, l← ec ⇓cok σ′,T
(valid/c)

Figure 3: Valid evaluations.

We define the set of allocated locations of a trace T, denoted alloc (T), as follows:

alloc (ε) = ∅
alloc (write v) = ∅
alloc (mod l← Tc) = {l} ∪ alloc (Tc)
alloc (let T1 T2) = alloc (T1) ∪ alloc (T2)
alloc (readl→x=v.e Tc) = alloc (Tc)

For example, if Tsample = let (mod l1 ← write 2) (readl1→x=2.e write 3), then alloc (Tsample) =
{l1}.

Well-formedness, lifts, and primitive operations. We require that primitive operations pre-
serve well-formedness. In other words, when a primitive operation is applied to some arguments,
it does not create dangling pointers or cycles in the store, nor does it extend the set of locations
reachable from the argument. Formally, this property can be states as follows.

If ∀i.vi, σ
wf−→ v′i, Li and v = o(v1, . . . , vn),

then v, σ
wf−→ v′, L such that L ⊆

⋃n
i=1 Li.

Moreover, no AML operation is permitted to be sensitive to the identity of locations. In the
case of primitive operations we formalize this by postulating that they commute with lifts:

If ∀i.vi, σ
wf−→ v′i, Li and v = o(v1, . . . , vn),

then v, σ
wf−→ v′, L such that v′ = o(v′1, . . . , v

′
n).

In short this can be stated as o(v1 ↑σ, . . . , vn ↑σ) = (o(v1, . . . , vn))↑σ.
For example, all primitive operations that operate only on non-location values preserve well

formedness and commute with lifts.
Valid evaluations. We consider only evaluations of well-formed expressions e in stores σ,

i.e., those e and σ where e ↑ σ and reach (e, σ) are defined. Well-formedness is critical for
proving correctness: the requirement that the reachable portion of the store is acyclic ensures that
the approach is consistent with purely functional programming, the requirement that all reachable
locations are in the store ensures that evaluations do not cause disaster by allocating a “fresh”
location that happens to be reachable. We note that it is possible to omit the well-formedness
requirement by giving a type system and a type safety proof. This approach limits the applicability
of the theorem only to type-safe programs. Because of the imperative nature of the dynamic
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σ, es ↑s
(miss/s)

σ0, es ⇓sok v, σ′0,T

σ, es ↓s v,T
(hit/s)

σ, ec ↑c
(miss/c)

σ0, l← ec ⇓cok σ′0,T

σ, ec ↓c T
(hit/c)

Figure 4: The oracle.

semantics, a type safety proof for AML is also complicated. We therefore choose to formalize
well-formedness separately.

Our approach requires showing that evaluation preserves well-formedness. To establish well-
formedness inductively, we define valid evaluations. We say that an evaluation of an expression e
in the context of a store σ is valid, if

1. e is well-formed in σ,

2. the locations allocated during evaluation are disjoint from locations that are initially reach-
able from e (i.e., those that are in reach (e, σ)), and

3. the target location of a changeable evaluation is contained neither in reach (e, σ) nor the
locations allocated during evaluation.

We use ⇓sok instead of ⇓s and ⇓cok instead of ⇓c to indicate valid stable and changeable
evaluations, respectively. The rules for deriving valid evaluation judgments are shown in Figure 3.

The Oracle. The dynamic semantics for AML uses an oracle to model memoization. Figure 4
shows the evaluation rules for the oracle. For a stable or a changeable expression e, we write
an oracle miss as σ, e ↑s or σ, l ← ec ↑c, respectively. The treatment of oracle hits depend on
whether the expression is stable or changeable. For a stable expression, it returns the value and the
trace of a valid evaluation of the expression in some store. For a changeable expression, the oracle
returns a trace of a valid evaluation of the expression in some store with some destination.

The key difference between the oracle and conventional approaches to memoization is that
the oracle is free to return the trace (and the value, for stable expressions) of a computation that
is consistent with any store—not necessarily with the current store. Since the evaluation whose
results are being returned by the oracle can take place in a different store than the current store,
the trace and the value (if any) returned by the oracle cannot be incorporated into the evaluation
directly. Instead, the dynamic semantics performs a change propagation on the trace returned by
the oracle before incorporating it into the current evaluation (this is described below).

Stable Evaluation. Figure 5 shows the evaluation rules for stable expressions. Most rules are
standard for a store-passing semantics except that they also return traces. The interesting rules are
those for let, mod, and memo.

The let rule sequences evaluation of its two expressions, performs binding by substitution,
and yields a trace consisting of the sequential composition of the traces of its sub-expressions. For
the traces to be well-formed, the rule requires that they allocate disjoint sets of locations. The mod
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σ, v ⇓s v, σ, ε
(value)

v = app(o, (v1, . . . , vn))
σ, o(v1, . . . , vn) ⇓s v, σ, ε

(prim.’s)

l 6∈ alloc (T) σ, l← e ⇓c σ′,T

σ,mod e ⇓s l, σ′,mod l← T
(mod)

σ, e ↑s
σ, e ⇓s v, σ′,T

σ,memos e ⇓s v, σ′,T
(memo/miss)

σ, e ↓s v,T

σ,T
sy σ′,T′

σ,memos e ⇓s v, σ′,T′
(memo/hit)

v1 = funs f(x) is e σ, [v1/f, v2/x] e ⇓s v, σ′,T

σ,applys(v1, v2) ⇓s v, σ′,T
(apply)

σ, e1 ⇓s v1, σ1,T1 σ1, [v1/x] e2 ⇓s v2, σ2,T2 alloc (T1) ∩ alloc (T2) = ∅
σ,let x = e1 in e2 ⇓s v2, σ2,let T1 T2

(let)

σ, [v1/x1, v2/x2] e ⇓s v, σ′,T

σ,letx1×x2 = (v1, v2)in e ⇓s v, σ′,T
(let×)

σ, [v/x1] e1 ⇓s v′, σ′,T

σ,caseinl v ofinl (x1) ⇒ e1 |inr (x2) ⇒ e2 end ⇓s v′, σ′,T
(case/inl)

σ, [v/x2] e2 ⇓s v′, σ′,T

σ,caseinr v ofinl (x1) ⇒ e1 |inr (x2) ⇒ e2 end ⇓s v′, σ′,T
(case/inr)

Figure 5: Evaluation of stable expressions.

rule allocates a location l, adds it to the store, and evaluates its body (a changeable expression)
with l as the target. To ensure that l is not allocated multiple times, the rule requires that l is not
allocated in the trace of the body. Note that the allocated location does not need to be fresh—it can
already be in the store, i.e., l ∈ dom(σ). Since every changeable expression ends with a write, it
is guaranteed that an allocated location is written before it can be read.

The memo rule consults an oracle to determine if its body should be evaluated or not. If the
oracle returns a miss, then the body is evaluated as usual and the value, the store, and the trace
obtained via evaluation is returned. If the oracle returns a hit, then it returns a value v and a trace
T. To adapt the trace to the current store σ, the evaluation performs a change propagation on T in
σ and returns the value v returned by the oracle, and the trace and the store returned by change
propagation. Note that since change propagation can change the contents of the store, it can also
indirectly change the (lifted) contents of v.

Changeable Evaluation. Figure 6 shows the evaluation rules for changeable expressions.
Evaluations in changeable mode perform destination passing. The let, memo, apply rules
are similar to the corresponding rules in stable mode except that the body of each expression
is evaluated in changeable mode. The read expression substitutes the value stored in σ at the
location being read l′ for the bound variable x in e and continues evaluation in changeable mode.
A read is recorded in the trace, along with the value read, the variable bound, and the body of the
read. A write simply assigns its argument to the target in the store. The evaluation of memoized
changeable expressions is similar to that of stable expressions.

Change propagation. Figure 7 shows the rules for change propagation. As with evaluation
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σ, l← write(v) ⇓c σ[l← v],write v
(write)

σ, l← [σ(l′)/x] e ⇓c σ′,T

σ, l← read l′ as x in e ⇓c σ′,readl′→x=σ(l′).e T
(read)

σ, e ↑c
σ, e ⇓c σ′,T

σ, l← memoc e ⇓c σ′,T
(memo/miss)

σ, e ↓c T

σ, l← T
cy σ′,T′

σ, l← memoc e ⇓c σ′,T′
(memo/hit)

v1 = func f(x) is e σ, l← [v1/f, v2/x] e ⇓c σ′,T

σ, l← applyc(v1, v2) ⇓c σ′,T
(apply)

σ, e1 ⇓s v, σ1,T1 σ1, l← [v/x] e2 ⇓c σ2,T2 alloc (T1) ∩ alloc (T2) = ∅
σ, l← let x = e1 in e2 ⇓c σ2,let T1 T2

(let)

σ, l← [v1/x1, v2/x2] e ⇓c σ′,T

σ, l← letx1×x2 = (v1, v2)in e ⇓c σ′,T
(let×)

σ, l← [v/x1] e1 ⇓c σ′,T

σ, l← caseinl v ofinl (x1) ⇒ e1 |inr (x2) ⇒ e2 end ⇓c σ′,T
(case/inl)

σ, l← [v/x2] e2 ⇓c σ′,T

σ,caseinr v ofinl (x1) ⇒ e1 |inr (x2) ⇒ e2 end ⇓c σ′,T
(case/inr)

Figure 6: Evaluation of changeable expressions.

rules, change-propagation rules are partitioned into stable and changeable, depending on the kind
of the trace being processed. The stable change-propagation judgment σ,Ts

sy σ′,T′s states that
change propagating into the stable trace Ts in the context of the store σ yields the store σ′ and the
stable trace T′s. The changeable change-propagation judgment σ, l ← Tc

cy σ′,T′c states that
change propagation into the changeable trace Tc with target l in the context of the store σ yields
the changeable trace T′c and the store σ′. The change propagation rules mimic evaluation by either
skipping over the parts of the trace that remain the same in the given store or by re-evaluating the
reads that read locations whose values are different in the given store. The rules are labeled with
the expression forms they mimic.

If the trace is empty, change propagation returns an empty trace and the same store. The mod
rule recursively propagates into the trace T for the body to obtain a new trace T′ and returns a
trace where T is substituted by T′ under the condition that the target l is not allocated in T′. This
condition is necessary to ensure the allocation integrity of the returned trace. The stable let rule
propagates into its two parts T1 and T2 recursively and returns a trace by combining the resulting
traces T′1 and T′2 provided that the resulting trace ensures allocation integrity. The write rule
performs the recorded write in the given store by extending the target with the value recorded
in the trace. This is necessary to ensure that the result of a re-used changeable computation is
recorded in the new store. The read rule depends on whether the contents of the location l′ being
read is the same in the store as the value v recorded in the trace. If the contents is the same as in
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σ, ε
sy σ, ε

(empty)
l 6∈ alloc (T′)

σ, l← T
cy σ′,T′

σ,mod l← T
sy σ′,mod l← T′

(mod)
σ, l← write v

cy σ[l← v],write v
(write)

σ,T1
sy σ′,T′1

σ′,T2
sy σ′′,T′2

alloc (T′1) ∩ alloc (T′2) = ∅

σ,let T1 T2
sy σ′′,let T′1 T

′
2

(let/s)

σ,T1
cy σ′,T′1

σ′, l← T2
cy σ′′,T′2

alloc (T′1) ∩ alloc (T′2) = ∅

σ, l← (let T1 T2)
cy σ′′, (let T′1 T

′
2)

(let/c)

σ(l′) = v σ, l← T
cy σ′,T′

σ, l← readl′→v=x.e T
cy σ′,readl′→v=x.e T

′
(read/no ch.)

σ(l′) 6= v σ, l← [σ(l′)/x]e ⇓c σ′,T′

σ, l← readl′→x=v.e T
cy σ′,readl′→x=σ(l′).e T

′
(read/ch.)

Figure 7: Change propagation judgments.

the trace, then change propagation proceeds into the body T of the read and the resulting trace is
substituted for T. Otherwise, the body of the read is evaluated with the specified target. Note
that this makes evaluation and change-propagation mutually recursive—evaluation calls change-
propagation in the case of an oracle hit. The changeable let rule is similar to the stable let.

Most change-propagation judgments perform some consistency checks and otherwise propa-
gate forward. Only when a read finds that the location in question has changed, it re-runs the
changeable computation that is in its body and replaces the corresponding trace.

Evaluation invariants. Valid evaluations of stable and changeable expressions satisfy the
following invariants:

1. All locations allocated in the trace are also allocated in the result store, i.e., if σ, e ⇓sok v, σ′,T
or σ, l← e ⇓cok σ′,T, then dom(σ′) = dom(σ) ∪ alloc (T).

2. For stable evaluations, any location whose content changes is allocated during that evalua-
tion, i.e., if σ, e ⇓sok v, σ′,T and σ′(l) 6= σ(l), then l ∈ alloc (T).

3. For changeable evaluations, a location whose content changes is either the target or gets
allocated during evaluation, i.e, if σ, l′ ← e ⇓cok σ′,T and σ′(l) 6= σ(l), then l ∈ alloc (T)∪
{l′}.

Memo-free evaluations. The oracle rules introduce non-determinism into the dynamic seman-
tics. Lemmas 5 and 6 in Section 3 express the fact that this non-determinism is harmless: change
propagation will correctly update all answers returned by the oracle and make everything look as
if the oracle never produced any answer at all (meaning that only memo/miss rules were used).

We write σ, e ⇓s∅ v, σ′,T or σ, l ← e ⇓c∅ σ′,T if there is a derivation for σ, e ⇓s v, σ′,T or
σ, l ← e ⇓c σ′,T, respectively, that does not use any memo/hit rule. We call such an evaluation
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memo-free. We use ⇓s∅,ok in place of ⇓sok and ⇓c∅,ok in place of ⇓cok to indicate that a valid
evaluation is also memo-free.

2.4 Deterministic, purely functional semantics
By ignoring memoization and change-propagation, we can give an alternative, purely functional,
semantics for location-free AML programs [9], which we present in Figure 8. This semantics gives
a store-free, pure, deterministic interpretation of AML that provides for no computation reuse.
Under this semantics, both stable and changeable expressions evaluate to values, memo, mod and
write are simply identities, and read acts as another binding construct. Our correctness result
states that the pure interpretation of AML yields results that are the same (up to lifting) as those
obtained by AML’s dynamic semantics (Section 3).

3 Consistency and Correctness
We now state consistency and correctness theorems for AML and outline their proofs in terms
of several main lemmas. As depicted in Figure 9, consistency (Theorem 1) is a consequence of
correctness (Theorem 2).

3.1 Main theorems
Consistency uses structural equality based on the notion of lifts (see Section 2.2) to compare the re-
sults of two potentially different evaluations of the same AML program under its non-deterministic
semantics. Correctness, on the other hand, compares one such evaluation to a pure, functional
evaluation. It justifies saying that even with stores, memoization and change propagation, AML is
essentially a purely functional language.

Theorem 1 (Consistency)
If σ, e ⇓sok v1, σ1,T1 and σ, e ⇓sok v2, σ2,T2, then v1 ↑σ1 = v2 ↑σ2.

Theorem 2 (Correctness)
If σ, e ⇓sok v, σ′,T, then (e ↑ σ) ⇓sdet (v ↑ σ′).

Recall that by our convention the use of the notation v ↑ σ implies well-formedness of v in
σ. Therefore, part of the statement of consistency is the preservation of well-formedness during
evaluation, and the inability of AML programs to create cyclic memory graphs.

3.2 Proof outline
The consistency theorem is proved in two steps. First, Lemmas 3 and 4 state that consistency is
true in the restricted setting where all evaluations are memo-free.

Lemma 3 (purity/st.)
If σ, e ⇓s∅,ok v, σ′,T, then (e ↑ σ) ⇓sdet (v ↑ σ′).

Lemma 4 (purity/ch.)
If σ, l← e ⇓c∅,ok σ′,T, then (e ↑ σ) ⇓cdet (l ↑ σ′).

11



v 6= l

v ⇓sdet v
(value)

v = app(o, (v1, . . . , vn))
o(v1, . . . , vn) ⇓sdet v

(prim.)
e ⇓cdet v

mod e ⇓sdet v
(mod)

e ⇓sdet v

memos e ⇓sdet v
(memo)

(v1 = funs f(x) is e)
[v1/f, v2/x] e ⇓sdet v

applys(v1, v2) ⇓sdet v
(apply)

e1 ⇓sdet v1

[v1/x] e2 ⇓sdet v2

let x = e1 in e2 ⇓sdet v2
(let)

[v1/x1, v2/x2] e ⇓sdet v

letx1×x2 = (v1, v2)in e ⇓sdet v
(let×)

[v/x1] e1 ⇓sdet v′(
case inl v ofinl (x1) ⇒ e1

| inr (x2) ⇒ e2

)
⇓sdet v′

(case/inl)

[v/x2] e2 ⇓sdet v′(
case inr v ofinl (x1) ⇒ e1

| inr (x2) ⇒ e2

)
⇓sdet v′

(case/inr)

write(v) ⇓cdet v
(write)

[v/x] e ⇓cdet v′

read v as x in e ⇓cdet v′
(read)

e ⇓cdet v

memoc e ⇓cdet v
(memo)

v1 = func f(x) is e
[v1/f, v2/x] e ⇓cdet v

applyc(v1, v2) ⇓cdet v
(apply)

e1 ⇓sdet v1

[v1/x] e2 ⇓cdet v2

let x = e1 in e2 ⇓cdet v2
(let)

[v1/x1, v2/x2] e ⇓cdet v

letx1×x2 = (v1, v2)in e ⇓cdet v
(let×)

[v/x1] e1 ⇓cdet v′(
case inl v ofinl (x1) ⇒ e1

| inr (x2) ⇒ e2

)
⇓cdet v′

(case/inl)

[v/x2] e2 ⇓cdet v′(
case inr v ofinl (x1) ⇒ e1

| inr (x2) ⇒ e2

)
⇓cdet v′

(case/inr)

Figure 8: Purely functional semantics of (location-free) expressions
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If σ, e ⇓sok v1, σ1,T1

then σ, e ⇓s∅,ok v1, σ1,T1

Lemma 5

If s, e ⇓s∅,ok v1, σ1,T1

then (e↑σ) ⇓sdet (v1 ↑σ1)

Lemma 3

?

Theorem 2

If σ, e ⇓sok v2, σ2,T2

then σ, e ⇓s∅,ok v2, σ2,T2

Lemma 5

If σ, e ⇓s∅,ok v2, σ2,T2

then (e↑σ) ⇓sdet (v2 ↑σ2)

Lemma 3

?

Theorem 2

But since ⇓sdet is deterministic,
it follows that (v1 ↑σ1) = (v2 ↑σ2)

@
@R

�
�	

Theorem 1
Figure 9: The structure of the proofs.

Second, Lemmas 5 and 6 state that for any evaluation there is a memo-free counterpart that
yields an identical result and has identical effects on the store. Notice that this is stronger than say-
ing that the memo-free evaluation is “equivalent” in some sense (e.g., under lifts). The statements
of these lemmas are actually even stronger since they include a “preservation of well-formedness”
statement. Preservation of well-formedness is required in the inductive proof.

Lemma 5 (memo-freedom/st.)
If σ, e ⇓sok v, σ′,T, then σ, e ⇓s∅ v, σ′,T where reach (v, σ′) ⊆ reach (e, σ) ∪ alloc (T).

Lemma 6 (memo-freedom/ch.)
If σ, l ← e ⇓cok σ′,T, then σ, l ← e ⇓c∅ σ′,T where reach (σ′(l), σ′) ⊆ reach (e, σ) ∪
alloc (T).

The proof for Lemmas 5 and 6 proceeds by simultaneous induction over the expression e.
It is outlined in far more detail in Section 4. Both lemmas state that if there is a well-formed
evaluation leading to a store, a trace, and a result (the value v in the stable lemma, or the target
l in the changeable lemma), the same result (which will be well-formed itself) is obtainable by a
memo-free run. Moreover, all locations reachable from the result were either reachable from the
initial expression or were allocated during the evaluation. These conditions help to re-establish
well-formedness in inductive steps.

The lemmas are true thanks to a key property of the dynamic semantics: allocated locations
need not be completely “fresh” in the sense that they may be in the current store as long as they
are neither reachable from the initial expression nor get allocated multiple times. This means
that a location that is already in the store can be chosen for reuse by the mod expression (Fig-
ure 5). To see why this is important, consider as an example the evaluating of the expression:
memos (mod (write(3))) in σ. Suppose now that the oracle returns the value l and the trace T0:
σ0,mod (write(3)) ⇓s l, σ′

0,T0. Even if l ∈ dom(σ), change propagation will simply update
the store as σ[l ← 3] and return l. In a memo-free evaluation of the same expression the oracle
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misses, and mod must allocate a location. Thus, if the evaluation of mod were restricted to use
fresh locations only, it would allocate some l′ 6∈ dom(σ), and return that. But since l ∈ dom(σ),
l 6= l′.

4 The Proofs
This sections presents a proof sketch for the four memo-elimination lemmas as well as the two
lemmas comparing AML’s dynamic semantics to the pure semantics (Section 3). We give a detailed
analysis for the most difficult cases. These proofs have all been formalized and machine-checked
in Twelf (see Section 5).

4.1 Proofs for memo-elimination
Informally speaking, the proofs for Lemmas 5 and 6, as well as Lemmas 8 and 9 all proceed
by simultaneous induction on the derivations of the respective result evaluation judgments. The
imprecision in this statement stems from the fact that, as we will see, there are instances where we
use the induction hypothesis on something that is not really a sub-derivation of the given derivation.
For this reason, a full formalization of the proof defines a metric on derivations which demonstrably
decreases on each inductive step. The discussion of the formalization in Twelf in Section 5 has
more details on this.

Substitution

We will frequently appeal to the following substitution lemma. It states that well-formedness and
lifts of expressions are preserved under substitution:

Lemma 7 (Substitution)
If e, σ

wf−→ e′, L and v, σ
wf−→ v′, L′, then [v/x] e, σ

wf−→ [v′/x] e′, L′′ with L′′ ⊆ L ∪ L′.

The proof for this proceeds by induction on the structure of e.

Hit-elimination lemmas

Since the cases for the memo/hit rules involve many sub-cases, it is instructive to separate these
out into separate lemmas:

Lemma 8 (hit-elimination/stable)
If σ0, e ⇓sok v, σ′

0,T0 and σ,T0
sy σ′,T where reach (e, σ) ∩ alloc (T) = ∅,

then σ, e ⇓s∅ v, σ′,T with reach (v, σ′) ⊆ reach (e, σ) ∪ alloc (T).

Lemma 9 (hit-elimination/changeable)
If σ0, l0 ← e ⇓cok σ′

0,T0 and σ, l ← T0
cy σ′,T where reach (e, σ) ∩ alloc (T) = ∅ and

l 6∈ reach (e, σ) ∪ alloc (T),
then σ, l← e ⇓c∅ σ′,T with reach (σ′(l), σ′) ⊆ reach (e, σ) ∪ alloc (T).
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Proof sketch for Lemma 5 (stable memo-freedom)

For the remainder of the current section we will ignore the added complexity caused by the need
for a decreasing metric on derivations. Here is a sketch of the cases that need to be considered in
the part of the proof that deals with Lemma 5:

• value: Since the expression itself is the value, with the trace being empty, this case is trivial.

• primitives: The case for primitive operations goes through straightforwardly using preser-
vation of well-formedness.

• mod: Given σ,mod e ⇓sok l, σ′,mod l← T we have

reach (mod e, σ) ∩ alloc (mod l← T) = ∅.

This implies that l 6∈ reach (mod e, σ). By the evaluation rule mod it is also true that
σ, e ⇓c σ′,T and l 6∈ alloc (T). By definition of reach and alloc we also know that
reach (e, σ) ∩ alloc (T) = ∅, implying σ, e ⇓cok σ′,T.

By induction (using Lemma 6) we get σ, l← e ⇓c∅ σ′,Twith reach (σ′(l), σ′) ⊆ reach (e, σ)∪
alloc (T). Since l is the final result, we find that

reach (l, σ′) = reach (σ′(l), σ′) ∪ {l}
⊆ reach (e, σ) ∪ alloc (T) ∪ {l}
= reach (e, σ) ∪ alloc (mod l← T) .

• memo/hit: Since the result evaluation is supposed to be memo-free, there really is no use of
the memo/hit rule there. However, a memo/miss in the memo-free trace can be the result
of eliminating a memo/hit in the original run. We refer to this situation here, which really
is the heart of the matter: a use of the memo/hit rule for which we have to show that we
can eliminate it in favor of some memo-free evaluation. This case has been factored out as a
separate lemma (Lemma 8), which we can use here inductively.

• memo/miss The case of a retained memo/miss is completely straightforward, using the in-
duction hypothesis (Lemma 5) on the subexpression e in mod e.

• let The difficulty here is to establish that the second part of the evaluation is valid. Given

σ,let x = e1 in e2 ⇓sok v2, σ
′′,let T1 T2

we have L ∩ alloc (let T1 T2) = ∅
where L = reach (let x = e1 in e2, σ) .

By the evaluation rule let it is the case that σ, e1 ⇓s v1, σ
′,T1 where alloc (T1) ⊆ alloc (T) .

Well-formedness of the whole expression implies well-formedness of each of its parts, so
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reach (e1, σ) ⊆ L and reach (e2, σ) ⊆ L. This means that reach (e1, σ)∩alloc (T1) =
∅, so σ, e1 ⇓sok v1, σ

′,T1. Using the induction hypothesis (Lemma 5) this implies

σ, e1 ⇓s∅ v1, σ
′,T1

and reach (v1, σ
′) ⊆ reach (e1, σ) ∪ alloc (T1) .

Since reach (e2, σ) ⊆ L we have reach (e2, σ) ∩ alloc (T1) = ∅. Store σ′ is equal
to σ up to alloc (T1), so reach (e2, σ) = reach (e2, σ

′). Therefore, by substitution
(Lemma 7) we get

reach ([v1/x] e2, σ
′) ⊆ reach (e2, σ

′) ∪ reach (v1, σ
′)

⊆ reach (e2, σ) ∪ reach (v1, σ
′)

⊆ reach (e2, σ) ∪ reach (e1, σ)

∪alloc (T1)

= L ∪ alloc (T1)

Since alloc (T2) is disjoint from both L and alloc (T1), this means that σ′, [v1/x] e2 ⇓sok v2, σ
′′,T2.

Using the induction hypothesis (Lemma 5) a second time we get

σ′, [v1/x] e2 ⇓s∅ v2, σ
′′,T2,

so by definition
σ,let x = e1 in e2 ⇓s∅ v2, σ

′′,let T1 T2.

It is then also true that

reach (v2, σ
′′) ⊆ reach ([v1/x] e2, σ

′) ∪ alloc (T2)

⊆ L ∪ alloc (T1) ∪ alloc (T2)

= L ∪ alloc (let T1 T2) ,

which concludes the argument.

The remaining cases all follow by a straightforward application of Lemma 7 (substitution),
followed by the use of the induction hypothesis (Lemma 5).

Proof sketch for Lemma 6 (Changeable memo-freedom)

• write: Given σ, l ← write(v) ⇓cok σ[l ← v],write v we clearly also have σ, l ←
write(v) ⇓c∅ σ[l ← v],write v. First we need to show that σ′(l) is well-formed in
s′ = σ[l← v]. This is true because σ′(l) = v and l is not reachable from v in σ, so the update
to l cannot create a cycle. Moreover, this means that the locations reachable from v in σ′

are the same as the ones reachable in σ, i.e., reach (v, σ) = reach (v, σ′). Since nothing
is allocated, alloc (write v) = ∅, so obviously reach (σ′(l), σ′) ⊆ reach (v, σ) ∪
alloc (write v).
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• read: For the case of σ, l ← read l′ as x in e ⇓cok σ′,T we observe that by definition of
well-formedness σ(l′) is also well-formed in σ. From here the proof proceeds by an appli-
cation of the substitution lemma, followed by a use of the induction hypothesis (Lemma 6).

• memo/hit: Again, this is the case of a memo/miss which is the result of eliminating the
presence of a memo/hit in the original evaluation. Like in the stable setting, we have factored
this out as a separate lemma (Lemma 9).

• memo/miss: As before, the case of a retained use of memo/miss is handled by straightfor-
ward use of the induction hypothesis (Lemma 6).

• let: The proof for the let case in the changeable setting is tedious but straightforward and
proceeds along the lines of the proof for the let case in the stable setting. Lemma 5 is used
inductively for the first sub-expression, Lemma 6 for the second (after establishing validity
using the substitution lemma).

The remaining cases follow by application of the substitution lemma and the use of the induc-
tion hypothesis (Lemma 6).

Proof of Lemma 8 (stable hit-elimination)

• value: Immediate.

• primitives: Immediate.

• mod: The case of mod requires some attention, since the location being allocated may
already be present in σ, a situation which, however, is tolerated by our relaxed evaluation rule
for mod e. We show the proof in detail, using the following calculations which establishes
the conclusions (lines (16, 19)) from the preconditions (lines (1, 2, 3)):
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(1) σ0,mod e ⇓sok l, σ′0,mod l← T0

(2) σ,mod l← T0
sy σ′,mod l← T

(3) reach (e, σ) ∩ alloc (T) = ∅
l 6∈ alloc (T) ∪ reach (e, σ)

(4) by (1) σ0, l← e ⇓c σ′0,T0

(5) by (1) alloc (mod l← T0) ∩ reach (e, σ0) = ∅
(6) by (5) alloc (T0) ∩ reach (e, σ0) = ∅
(7) by (5) l 6∈ reach (e, σ0)
(8) by (1),mod l 6∈ alloc (T0)
(9) by (4, 6, 7, 8) σ0, l← e ⇓cok σ′0,T0

(10) by (2),mod σ, l← T0
cy σ′,T

(11) by (3) reach (e, σ) ∩ alloc (T) = ∅
(12) by (3) l 6∈ reach (e, σ)
(13) by (3) l 6∈ alloc (T)
(14) by (9− 13), IH σ, l← e ⇓c∅ σ′,T
(15) by (9− 13), IH reach (σ′(l), σ′) ⊆ reach (e, σ) ∪ alloc (T)
(16) by (8, 14),mod σ,mod e ⇓s∅ l, σ′,mod l← T
(17) by (7, 8, 15) l 6∈ reach (σ′(l), σ′)
(18) by (17) reach (l, σ′) = reach (σ′(l), σ′) ∪ {l}

(19) by (15, 18)
reach (l, σ′) ⊆ reach (e, σ) ∪ alloc (T) ∪ {l}

= reach (e, σ) ∪ alloc (mod l← T)

• memo/hit: This case is proved by two consecutive applications of the induction hypothesis,
one time to obtain a memo-free version of the original evaluation σ0, e ⇓s∅ v, σ′

0,T0, and
then starting from that the memo-free final result.

It is here where straightforward induction on the derivation breaks down, since the derivation
of the memo-free version of the original evaluation is not a sub-derivation of the overall
derivation. In the formalized and proof-checked version (Section 5) this is handled using an
auxiliary metric on derivations.

• memo/miss: The case where the original evaluation of memos e did not use the oracle and
evaluated e directly, we prove the result by applying the induction hypothesis (Lemma 8).

• let: We consider the evaluation of let x = e1 in e2. Again, the main challenge here is
to establish that the evaluation of [v1/x] e, where v1 is the result of e1, is well-formed. The
argument is tedious but straightforward and proceeds much like that in the proof of Lemma 5.

All remaining cases are handled simply by applying the substitution lemma (Lemma 7) and
then using the induction hypothesis (Lemma 8).

Proof of Lemma 9 (changeable hit-elimination)

• write: We have e = write(v) and T0 = T = write v. Therefore, trivially, σ, l ←
e ⇓c∅ σ′,T with σ′ = σ[l ← v]. Also, reach (write(v), σ) = reach (v, σ) = L.
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Therefore, reach (σ′(l), σ′) = L because l 6∈ L. Of course, L ⊆ L ∪ alloc (T).

• read/no ch.: We handle read in two parts. The first part deals with the situation where there
is no change to the location that has been read. In this case we apply the substitution lemma
to establish the preconditions for the induction hypothesis and conclude using Lemma 9.

• read/ch.: If change propagation detects that the location being read contains a new value,
it re-executes the body of read l′ as x in e. Using substitution we establish the pre-
conditions of Lemma 6 and conclude by using the induction hypothesis.

• memo/hit: Like in the proof for Lemma 8, the memo/hit case is handled by two cascading
applications of the induction hypothesis (Lemma 9).

• memo/miss: Again, the case where the original evaluation did not get an answer from the
oracle is handled easily by using the induction hypothesis (Lemma 9).

• let: We consider the evaluation of let x = e1 in e2. As before, the challenge is to establish
that the evaluation of [v1/x] e, where v1 is the (stable) result of e1, is well-formed. The
argument is tedious but straightforward and proceeds much like that in the proof of Lemma 6.

All remaining cases are handled by the induction hypothesis (Lemma 9) which becomes appli-
cable after establishing validity using the substitution lemma.

4.2 Proofs for equivalence to pure semantics
The proofs for Lemmas 3 and 4 proceed by simultaneous induction on the derivation of the memo-
free evaluation. The following two subsections outline the two major parts of the case analysis.

Proof sketch for Lemma 3 (stable evaluation)

We proceed by considering each possible stable evaluation rule:

• value: Immediate.

• primitives: Using the condition on primitive operations that they commute with lifts, this is
immediate.

• mod: Consider mod ec. The induction hypothesis (Lemma 4) on the evaluation of ec directly
gives the required result.

• memo: Since we consider memo-free evaluations, we only need to consider the use of
the memo/miss rule. The result follows by direct application of the induction hypothesis
(Lemma 3).
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• let: We have σ,let x = e1 in e2 ⇓s∅ v2, σ
′′,let T1 T2. Because of validity of the original

evaluation, we also have let x = e1 in e2, σ
wf−→ L with L ∩ alloc (let T1 T2) = ∅.

Therefore, σ, e1 ⇓s∅ v1, σ
′,T1 where e1, σ

wf−→ L1 and L1∩alloc (T) = ∅ because L1 ⊆ L
and alloc (T1) ⊆ alloc (let T1 T2). By induction hypothesis (Lemma 3) we get (e1 ↑
σ) ⇓sdet (v1 ↑ σ′).

We can establish validity for σ′, [v1/x] e2 ⇓s∅ v2, σ
′′,T2 the same way we did in the proof

of Lemma 5, so by a second application of the induction hypothesis we get ([v1/x] e2 ↑
σ′) ⇓sdet (v2 ↑ σ′′). But by substitution (Lemma 7) we have ([v1/x] e2) ↑ σ′ = [(v1 ↑
σ′)/x] (e2 ↑ σ′). Using the evaluation rule let/p this gives the desired result.

The remaining cases follow straightforwardly by applying the induction hypothesis (Lemma 3)
after establishing validity using the substitution lemma.

Proof sketch for Lemma 4 (changeable evaluation)

here we consider each possible changeable evaluation rule:

• write: Immediate by the definition of lift.

• read: Using the definition of lift and the substitution lemma, this follows by an application
of the induction hypothesis (Lemma 4).

• memo: Like in the stable setting, this case is handled by straightforward application of the
induction hypothesis because no memo hit needs to be considered.

• let: The let case is again somewhat tedious. It proceeds by first using the induction hy-
pothesis (Lemma 3) on the stable sub-expression, then re-establishing validity using the
substitution lemma, and finally applying the induction hypothesis a second time (this time in
form of Lemma 4).

All other cases are handled by an application of the induction hypothesis (Lemma 4) after
establishing validity using the substitution lemma.

5 Mechanization in Twelf
To increase our confidence in the proofs for the correctness and the consistency theorems, we have
encoded the AML language and the proofs in Twelf [16] and machine-checked the proofs. We
follow the standard judgments as types methodology [13], and check our theorems using the Twelf
metatheorem checker. For full details on using Twelf in this way for proofs about programming
languages, see Harper and Licata’s manuscript [14].

The LF encoding of the syntax and semantics of AML corresponds very closely to the paper
judgments (in an informal sense; we have not proved formally that the LF encoding is adequate,
and take adequacy to be evident). However, in a few cases we have altered the judgments, driven
by the needs of the mechanized proof. For example, on paper we write memo-free and general
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evaluations as different judgments, and silently coerce memo-free to general evaluations in the
proof. We could represent the two judgments by separate LF type families, but the proof would
then require a lemma to convert one judgment to the other. Instead, we define a type family to
represent general evaluations, and a separate type family, indexed by evaluation derivations, to
represent the judgment that an evaluation derivation is memo-free.

The proof of consistency (a metatheorem in Twelf) corresponds closely to the paper proof
(see [9] for details) in overall structure. The proof of memo-freedom consists of four mutually-
inductive lemmas: memo-freedom for stable and changeable expressions (Lemma 5 and Lemma 6),
and versions of these with an additional change propagation following the evaluation (needed for
the hit cases). In the hit cases for these latter lemmas, we must eliminate two change propagations:
we call the lemma once to eliminate the first, then a second time on the output of the first call to
eliminate the second. Since the evaluation in the second call is not a subderivation of the input,
we must give a separate termination metric. The metric is defined on evaluation derivations and
simply counts the number of evaluations in the derivations, including those inside of change prop-
agations. In an evaluation which contains change propagations, there are “garbage” evaluations
which are removed during hit-elimination. Therefore, hit-elimination reduces this metric (or keeps
it the same, if there were no change propagations to remove). We add arguments to the lemmas to
account for the metric, and simultaneously prove that the metric is smaller in each inductive call,
in order for Twelf to check termination.

Aside from this structural difference due to termination checking, the main difference from the
paper proof is that the Twelf proof must of course spell out all the details which the paper proof
leaves to the reader to verify. In particular, we must encode “background” structures such as finite
sets of locations, and prove relevant properties of such structures. While we are not the first to use
these structures in Twelf, Twelf has poor support for reusable libraries at present. Moreover, our
needs are somewhat specialized: because we need to prove properties about stores which differ
only on a set of locations, it is convenient to encode stores and location sets in a slightly unusual
way: location sets are represented as lists of bits, and stores are represented as lists of value options;
in both representations the nth list element corresponds to the nth location. This makes it easy to
prove the necessary lemmas by parallel induction over the lists.
The Twelf code can be found at http://www.cs.cmu.edu/˜jdonham/aml-proof/

6 Implementation Strategies
The dynamic semantics of AML (Section 2) does not translate directly to an algorithm, not to
mention an efficient one. 1 In particular, an algorithm consistent with the semantics must specify
an oracle and a way to allocate locations to ensure that all locations allocated in a trace are unique.
We briefly describe a conservative strategy for implementing the semantics. The strategy ensures
that

1. each allocated location is fresh (i.e., is not contained in the memory)

2. the oracle returns only traces currently residing in the memory,
1This does not constitute a problem for our results, since our theorems and lemmas concern given derivations (not

the problem finding them).
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3. the oracle never returns a trace more than once, and

4. the oracle performs function comparisons by using tag equality.

The first two conditions together ensure that each allocated location is unique. The third con-
dition guarantees that no location can appear in the execution trace more than once. This condition
is conservative, because it is possible that the parts of a trace returned by the oracle are thrown
away (become unused) during change propagation. This strategy can be relaxed by allowing the
change-propagation algorithm to return unused traces to the oracle. The last condition enables
implementing oracle queries by comparing functions and their arguments by using tag equality.
Since in the semantics, the oracle is non-deterministic, this implementation strategy is consistent
with the semantics.

The conservative strategy can be implemented in such a way that the total space consump-
tion is no more than that of a from-scratch run. Such an implementation has been completed and
shown to be effective for a reasonably broad range applications [3, 7]. The implementation, how-
ever, places further restrictions on the oracle that are not required by the proof (e.g., computations
must always be re-used in the same order).Our results shows that these restrictions are not neces-
sary for correctness and can potentially be relaxed—such an implementation can be more broadly
applicable.

We note that the described conservative implementation does not guarantee correctness, be-
cause it requires the programmer to supply all the free variables of memoized expressions. When
the programmer misspecifies the free variables, the correctness guarantee fails. This problem can
be addressed by a type system or detecting the free variables of memoized expressions automati-
cally with a static analyzer.

7 Conclusion
Recent experimental results show that it is possible to adjust computations to changes to their data
(e.g., inputs, outcomes of comparisons) efficiently by using a combination of change propagation
and memoization. This paper formalizes a general semantics for combining memoization and
change propagation where memoization is modeled as a non-deterministic oracle, and computation
re-use is possible in the presence of mutation. Our main theorem shows that the semantics is
consistent with deterministic, purely functional programming.

By giving a general semantics for combining memoization and change propagation, we cover
a variety of possible techniques for implementing self-adjusting-computation. By proving the se-
mantics correct with minimal assumptions, we identify the properties that correct implementations
must satisfy. In particular, the results show that some assumptions made by existing implementa-
tions are not necessary for correctness and that they may be further improved.
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