Privacy-Preserving
Distributed Information Sharing

Lea Kissner

CMU-CS-06-149
July 2006

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Dawn Song, Chair
Manuel Blum
Dan Boneh, Stanford University
Benny Pinkas, Haifa University
Michael Reiter

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2006 Lea Kissner

This research was sponsored by the US Army Research Office under contract no. DAAD19-02-1-0389 and the
National Science Foundation under subcontract no. SA4896-10808PG.

The views and conclusions contained herein are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S. government, or any other
governmental, commercial or legal entity.

Keywords: privacy, distributed information sharing, multiset operations, hot-item identi-
fication

For Chris, whose support, kindness, and reminders
to eat regqularly have made this work possible.

v

Abstract

In many important applications, a collection of mutually distrustful parties must
share information, without compromising their privacy. Currently, these applica-
tions are often performed by using some form of a trusted third party (TTP); this
TTP receives all players’ inputs, computes the desired function, and returns the
result. However, the level of trust that must be placed in such a TTP is often
inadvisable, undesirable, or even illegal. In order to make many applications prac-
tical and secure, we must remove the TTP, replacing it with efficient protocols for
privacy-preserving distributed information sharing. Thus, in this thesis we explore
techniques for privacy-preserving distributed information sharing that are efficient,
secure, and applicable to many situations.

As an example of privacy-preserving information sharing, we propose efficient
techniques for privacy-preserving operations on multisets. By building a frame-
work of multiset operations, employing the mathematical properties of polynomials,
we design efficient, secure, and composable methods to enable privacy-preserving
computation of the wunion, intersection, and element reduction operations. We
apply these techniques to a wide range of practical problems, including the Set-
Intersection, Over-Threshold Set-Union, Cardinality Set-Intersection, and Thresh-
old Set-Union problems. Additionally, we address the problem of determining Subset
relations, and even use our techniques to evaluate CNF boolean formulae.

We then examine the problem of hot item identification and publication, a prob-
lem closely related to Over-Threshold Set-Union. Many applications of this problem
require greater efficiency and robustness than any previously-designed secure pro-
tocols for this problem. In order to achieve sufficiently efficient protocols for these
problems, we define two new privacy properties: owner privacy and data privacy.
Protocols that achieve these properties protect the privacy of each player’s personal
input set, as well as protecting information about the players’ collective inputs.
By designing our protocols to achieve owner and data privacy, we are able to sig-
nificantly increase efficiency over our privacy-preserving set operations, while still
protecting the privacy of participants. In addition, our protocols are extremely
flexible - nodes can join and leave at any time.

Acknowledgements

I would like to thank my (impressively patient) family and friends' for supporting me through
the highs and lows of my graduate school experience. I would like to thank my dance shoes for
supporting my arches and salsa habit.

I’d like to thank Dawn Song, my advisor. I've learned so much from her over the last four
years, and this thesis could not have been written without her guidance. My thesis committee,
Manuel Blum, Dan Boneh, Benny Pinkas and Mike Reiter, provided me with perspective, many
valuable insights and comments on this work which improved it in innumerable ways.

I’d like to thank Catherine Copetas and Sharon Burks in a large font, and
not just because it’s a required part of the thesis. I have always appreciated the wisdom they’ve
shared with me, as well as their scarily efficient ability to get things done when asked nicely.

The set operations work in this thesis was performed with my advisor, Dawn Song. The hot
item work in this thesis was performed with Hyang-Ah Kim, Dawn Song, Oren Dobzinski and
Anat Talmy.

I would like to thank David Molnar, Christopher Colohan, Lujo Bauer, Nikita Borisov,
and Alina Oprea for their invaluable comments on the hot item identification work in this
thesis. I would also like to extend my thanks to Dan Boneh, Benny Pinkas, David Molnar, and
Alexandre Evfimievski for their invaluable help and comments on the content and presentation
of the multiset operations work in this thesis. My thanks also go out to Luis von Ahn, Lujo
Bauer, David Brumley, Bryan Parno, Alina Oprea, Mike Reiter, and the many anonymous
reviewers who reviewed my papers and provided valuable feedback which enhanced the work
which you read here. Finally, I'd like to thank David Molnar again for his help in proofreading
my thesis.

Note that this thesis is about preserving privacy. Thus, I have not listed my family and friends to preserve
their privacy and give them plausible deniability. You know who you are.

vi

Contents

1 Introduction
1.1 Privacy-Preserving Set and Multiset Operations
1.2 Privacy-Preserving Distributed Hot Item Identification and Publication
1.3 Thesis Outline e

2 Related Work
2.1 Works Related to Multiset Operations
2.2 Works Related to Hot-Item Identification

3 Preliminaries
3.1 Adversary Models
3.1.1 Honest-But-Curious Adversaries
3.1.2 Malicious Adversaries
3.2 Multiset Operations Preliminaries
3.2.1 Additively Homomorphic Cryptosystem
3.2.2 Shuffle Protocol

4 Privacy-Preserving Set and Multiset Operations
4.1 Techniques and Mathematical Intuition
4.1.1 Background: Polynomial Rings and Polynomial Representation of Sets . .
4.1.2 Our Techniques: Privacy-Preserving Multiset Operations
4.1.3 Overview of Applications
4.2 Application I: Private Set-Intersection and Cardinality Set-Intersection
4.2.1 Set-Intersection
4.2.2 Cardinality Set-Intersection L.
4.2.3 Malicious Caseo
4.3 Application II: Private Over-Threshold Set-Union and Threshold Set-Union . . .
4.3.1 Over-Threshold Set-Union Protocol
4.3.2 Threshold Set-Uniono

vii

10
10
11

4.3.3 Malicious Case e 30

4.4 Set-Intersection, Cardinality Set-Intersection, and Over-Threshold Set-Union for
Malicious Parties 30
441 Tools e 30
4.4.2 Set-Intersection Protocol for Malicious Adversaries 31
4.4.3 Cardinality Set-Intersection Protocol for Malicious Adversaries 34
4.4.4 Over-Threshold Set-Union Protocol for Malicious Adversaries 36

4.5 Other Applications of Our Multiset Computation Techniques 38
4.5.1 General Computation on Multisets 38
4.5.2 Private Subset Relation L. 39
4.5.3 Computation of CNF Formulae 39

4.6 Proof of Mathematical Lemmas 0oL 40
4.6.1 Proofof Lemma 2 40
4.6.2 Proofof Lemmad4 43

Hot Item Identification and Publication 47

5.1 Problem Definition and Desired Properties. 47

5.2 HOTITEM-ID Protocol 49
5.2.1 Approximate Heavy-Hitter Detection 49
5.2.2 Ome-Show Tags 50
5.2.3 Approximate Distinct Element Counting 51
5.2.4 Anonymous Communication 52
5.2.5 Distributed One-Show Tag Collection 52
5.2.6 Putting HOTITEM-ID to Work 53

5.3 Hot Item Publication Protocol 54
5.3.1 Commitment to Foil Attacks, 54
5.3.2 Putting HorITEM-PUB to Work 55

54 Analysis 56
5.4.1 HOTITEM-ID Correctness v 56
5.4.2 Privacy in HoTITEM-ID oo 56
5.4.3 Privacy in HOTITEM-PUB 58
5.4.4 Performance e 59

5.5 Extensions. 59

5.6 Experimental Results o 60
5.6.1 Distributed Worm Signature Detection 60
5.6.2 Real-world Data and Experiment Method 61
5.6.3 Bandwidth Consumption and Accuracy 62

viil

6 Conclusion

A Appendices for Privacy-Preserving Set Operations

A1 Notation o e e

B Appendices for Hot-Item Identification

B.1 Notation e
B.2 Detailed Analysis
B.2.1 Correctness e
B.2.2 Owner Privacy e
B.2.3 Data Privacy e
B.2.4 Analysis for Bloom Filters

B.3 Details

of One-Show Tags

X

65

71
71

List of Figures

3.1

4.1

4.2
4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

Basic outline of a standard simulation proof.

Total communication complexity comparison for our multiparty protocols, pre-
vious solutions, and general multiparty computation. There are n > 2 players,
¢ < n dishonestly colluding, each with an input multiset of size k. The do-
main of the multiset elements is P. Security parameters are not included in the
communication complexity. L L Lo

Set-Intersection protocol secure against honest-but-curious adversaries.

Cardinality set-intersection protocol secure against honest-but-curious adversaries.

Over-Threshold Set-Union protocol secure against honest-but-curious adversaries.

Threshold Set-Union protocol secure against honest-but-curious adversaries
(semi-perfect variant). Lo

Threshold Set-Union protocol secure against honest-but-curious adversaries
(threshold contribution variant).

Threshold Set-Union protocol secure against honest-but-curious adversaries (per-
fect variant).

Set-Intersection protocol secure against malicious adversaries.

A simulation proof defines the behavior of the player GG, who translates between
the malicious players I', who believe they are operating in the real model, and
the ideal model, in which the trusted third party computes the desired answer.

Cardinality set-intersection protocol secure against malicious adversaries.

Over-threshold set-intersection protocol secure against malicious adversaries.

Components of HOTITEM-ID protocol: HOTITEM-ID defines how to efficiently compute
an approximate representation of Hj, in distributed fashion. Each player i (1 < i < n)
constructs local filters to approximately represent his private input set S;, generates
one-show tags for marked bits in filters, and sends a subset of those one-show tags to the
network using anonymous routing. A distributed approximate distinct element counting
protocol aggregates those tags in the network. At the end of the protocol, all players
learn the global filters that approximate Hy. At the right side of the figure we list the
purpose of each component.o Lo Lo

X1

21
23

33
35
37

5.2

5.3
5.4
5.5
5.6
5.7

5.8

5.9

B.1

B.2

In our HOTITEM-ID protocol, each player ¢ constructs a set of local filters from his
private input set S; (dark bits are ‘hit’). The players then construct global filters using
an approximate counting scheme; if a bit was hit by at least k players, then it is ‘hit’
(dark) as well. If an element hashes to a dark bit in each of the global filters, then it is
classified as hot. L e

t-collection protocol L L oL e e e e e
t-minimum value aggregation protocol Lo
HoTITEM-ID protocol, for identifying the hot items in each players’ private input.
HoTITEM-PUB protocol, for publishing the hot items in each players’ private input.

The degree of data privacy for an element with frequency f, is (I]S\}/;a\)' Ideally, the degree

of data privacy would be 1 for all frequencies, but by compromising this strong definition
of security, we obtain more efficient and robust protocols. We graph the degree of data
privacy (a), showing the increase in protection for rare elements. The same function is
graphed in (b) on a logarithmic scale, for increased detail.

Number of hosts (players) that have generated each content block (item) from observed
suspicious flows. L L L L L e e e e e e e e

Normalized bandwidth consumption per player in performing hot item identification
(k =100). Underlines values indicate that there were false positives or false negatives.

Buckets that are unsafe for hj/(a) (1 < j' < T) are those that have been marked as hit
by a sufficient number of players to allow the possibility that a might be erroneously
identified as a k’-threshold hot item. In (1), a is mapped to a sufficiently full bucket,
causing a to be erroneously identified as a k’-hot item. In (2), a is mapped to a safe
bucket. e e e e e e e e e e

Players collect one-show tags for each filter bucket during the HOTITEM-ID protocol.
Given a complete set of filters for some element, one may still not determine which
element produced the filters. However, each tag has a probability of 1 — i — 2% of having
too high a value for the ¢-collection phase, and thus of being hidden. When all tags for
an element in a specific filter are removed, as in (2), an even larger number of elements
could have produced the observed filters.

xii

62

Chapter 1

Introduction

As computer system capacity has increased, organizations and individuals have collected greater
and greater amounts of data. Developments in data mining have increased the utility of this
data; a data holder can now discover hidden trends and cheating customers. However, a great
deal of useful data cannot be computed from one party’s data alone. When multiple parties
can compare and share data, they can greatly increase the utility of their data. For example,
multiple pharmacies might compare their records to detect people filling a prescription multiple
times. Subtle trends can leave fingerprints in many data sets, hiding them from detection unless
multiple data sets are examined. The early stages of a disease epidemic might cause an increased
rate of absenteeism from work and school, higher sales of certain over-the-counter medications,
and many other small traces. Each of these traces, on its own, might not be enough to detect
an epidemic, as they fluctuate based on many factors. By combining many data sets, we can
detect increasingly more subtle trends.

Data does not exist in a void, however. To detect trends that involve medical data, we must
use medical data collected from individuals. This data is generally considered to be private;
many countries have strict regulations that control the use of medical and other personal infor-
mation. Many other data sets are collected by companies who are concerned about preserving
the proprietary value of their data. Government data often has both privacy and security re-
strictions associated with its use. Thus, we often cannot simply combine data sets held by
multiple parties to compute functions over the combined data. In the real world, parties often
resort to use of a trusted third party, who computes a fixed function on all parties’ private in-
puts, or forgo the application altogether. This unconditional trust is fraught with security risks;
the trusted party may be dishonest or compromised, as it is an attractive target. The problem
of privacy-preserving distributed information sharing is to allow parties with private data sets
to compute these joint functions without use of a trusted party, and thus achieve many of the
benefits obtained from combining the data sets without undesirably revealing private data.

Protocols for privacy-preserving distributed information sharing must also be designed
around a number of practical concerns. Many data sets are extremely large; protocols that
operate on large data sets must be efficient in order to operate in the real world. In addition,
we must be concerned with robustness. Adversaries may attempt to manipulate the protocol
to learn private information or change the results. Some adversaries may even manipulate the
network, causing some players to become disconnected from others. In some problem scenarios,
such as those concerning detecting and defending against network attacks, robustness against
an unreliable network is paramount.

In this thesis, we examine several specific problems that fall under the heading of privacy-

preserving distributed information sharing. We design efficient protocols for these problems,
proving their security and correctness in the presence of attackers. The first set of problems we
examine are those related to privacy-preserving set and multiset operations. We then examine
in depth the problem of hot item identification, including its need for extreme efficiency and
robustness.

1.1 Privacy-Preserving Set and Multiset Operations

We design efficient privacy-preserving techniques and protocols for computation over multisets
by mutually distrustful parties: no party learns more information about other parties’ private
input sets than what can be deduced from the result of the computation.

For example, to determine which airline passengers appear on a ‘do-not-fly’ list, the airline
must perform a set-intersection operation between its private passenger list and the govern-
ment’s list. This is an example of the Set-Intersection problem. If a social services organization
needs to determine the list of people on welfare who have cancer, the union of each hospital’s
lists of cancer patients must be calculated (but not revealed), then an intersection operation
between the unrevealed list of cancer patients and the welfare rolls must be performed. This
problem may be efficiently solved by composition of our private union and set-intersection
techniques.

Another example of the use of these techniques is in privacy-preserving distributed network
monitoring. In this scenario, each node monitors anomalous local traffic, and a distributed
group of nodes collectively identify popular anomalous behaviors: behaviors that are identified
by at least a threshold ¢ number of monitors. This is an example of the Over-Threshold Set-
Union problem.

In this thesis, we propose efficient techniques for privacy-preserving operations on multisets.
By building a framework of multiset operations using polynomial representations and employing
the mathematical properties of polynomials, we design efficient methods to enable privacy-
preserving computation of the union, intersection, and element reduction' multiset operations.

An important feature of our privacy-preserving multiset operations is that they can be
composed, and thus enable a wide range of applications. To demonstrate the power of our
techniques, we apply our operations to solve specific problems, including Set-Intersection, Car-
dinality Set-Intersection, Over-Threshold Set-Union, and Threshold Set-Union, as well as deter-
mining the Subset relation. Furthermore, we show that our techniques can be used to efficiently
compute the output of any function over multisets expressed in the following grammar, where
s represents any set held by some player and d > 1:

T:i=s|Rdg(Y) | TNYT|sUYT | TUs

Note that any monotonic function over multisets? can be expressed using our grammar, showing
that our techniques have truly general applicability. Finally, we show that our techniques are
applicable even outside the realm of set computation. As an example, we describe how to utilize
our techniques to efficiently and privately evaluate CNF boolean functions.

Our protocols are more efficient than the results obtained from previous work. General mul-
tiparty computation is the best previous result for most of the multiset computation problems

!The element reduction by d, Rda(A), of a multiset A is the multiset composed of the elements of A such that
for every element a that appears in A at least d’ > d times, a is included d’ — d times in Rdq(A).
2 Any function computed with only intersection and union, without use of an inverse operation.

we address in this thesis. Only the private Set-Intersection problem and two-party Cardinality
Set-Intersection problem have been previously studied [1, 23]. However, previous work only
provides protocols for 3-or-more-party Set-Intersection secure only against honest-but-curious
players; it is not obvious how to extend this work to achieve security against malicious players.
Also, previous work focuses on achieving results for the Set-Intersection problem in isolation
— these techniques cannot be used to compose set operations. In contrast, we provide efficient
solutions for private multi-party Set-Intersection secure against malicious players, and our mul-
tiset intersection operator can be easily composed with other operations to enable a wide range
of efficient private computation over multisets. We compare the communication complexity of
our protocols with previous work and solutions based on general multiparty communication in
Table 4. Note that the techniques utilized to create the circuits for the general solution are both
complex and incur very large constants, on top of the constants inherent in the use of general
multiparty computation [2]; we thus achieve greater practical efficiency, as well as asymptotic
efficiency.

Our protocols are provably secure in the PPT-bounded adversary model. We consider both
standard adversary models: honest-but-curious adversaries (HBC) and malicious adversaries.
For protocols secure in the HBC model, we prove that the information learned by any coalition
of honest-but-curious players is indistinguishable from the information learned in the ideal
model, where a trusted third party (TTP) calculates the function. For protocols secure in
the malicious model, we provide simulation proofs showing that for any strategy followed by a
malicious coalition I' in the real protocol, there is a translated strategy they could follow in the
ideal model, such that, to I', the real execution is computationally indistinguishable from ideal
execution.

1.2 Privacy-Preserving Distributed Hot Item Identification and
Publication

In this thesis, we consider a scenario in which a group of distributed nodes, each holding its
local data set, would like to collectively identify commonly occurring items. More formally,
a “commonly occurring item” is one that appears in at least a threshold number of nodes’
local data sets. We call such items hot items. The problem of identifying and publishing
these hot items is closely related to the Over-Threshold Set-Union problem we examine in
Chapter 4. Distributed identification of hot items, while preserving privacy, is important for
many applications.

For example, in distributed network monitoring, each participant monitors its local traffic
and the participants collectively need to identify common offenders (IP addresses that are
flagged as malicious by multiple sites) and common alerts (events that are flagged as anomalous
or malicious by multiple sites). Identifying common offenders and alerts is important to enable
defenses against wide-spread attacks as well as reduce the false positive rate; an offender or
alert reported by multiple sites is more likely to be truly malicious.

Many more applications use hot item identification for statistics gathering. In computer
troubleshooting, common configurations among unbroken computers can be used to identify
configuration errors and suggest fixes for troubled computers [25, 30, 55]. In a distributed
content delivery network (CDN), distributed identification of hot pages (web pages that are
commonly requested at different sites) is important for making effective caching decisions; hot
pages should have higher priority when caching [10].

In each of these applications, it is crucial to identify hot items held by distributed players.
At the same time, each local data set, be it local network traffic, a computer’s configurations,
or a site’s web surfing traffic, often contains personal or security-critical data; thus, we need
effective methods to identify hot items without revealing information about the non-hot items.
Moreover, in many distributed applications, some participants may not be trustworthy, and may
even be malicious. Thus, we need to design effective methods to enable distributed privacy-
preserving hot item identification in the presence of malicious participants. Additionally, as
players may join and leave the network frequently, we must construct protocols that do not
require global knowledge of the network.

Efficient, secure, and privacy-preserving hot item identification and publication is a challeng-
ing problem; previous solutions are largely insufficient. One approach is for every participant
to send his data to a trusted central authority, who identifies and announces the hot items.
In this approach, all security and privacy relies on the central authority. This level of trust is
unacceptable for many situations. Even if the authority is trusted, an attacker may compromise
the authority and players’ privacy with it. Several other problems inherent in centralization
are discussed in [37].

Another approach is to use a partially homomorphic cryptosystems, such as a distributed
version of Paillier [21, 22, 45], or a secure multi-party computation scheme to compute the
frequencies of each item or to identify hot items directly. However, these methods have signifi-
cant computation and communication overhead, including zero-knowledge proofs, which is often
prohibitive for large scale applications. Key management for maintaining shared keys in the
presence of malicious parties and players that join and leave the network may add non-trivial
overhead and complexity.

All previous approaches (except our Over-Threshold Set-Union protocols of Chapter 4) of
which we are aware propose heuristic solutions [37]; some even require additional trust assump-
tions such as “friends” [30, 55]. They do not preserve several forms of privacy that we believe
are important (see Section 5.1), do not give rigorous analysis, and cannot prevent malicious
participants from changing the result arbitrarily.

In this thesis, we propose new techniques for efficient, secure, and privacy-preserving dis-
tributed hot item identification and publication. To avoid counting the occurrences of each
hot item separately, we utilize a probabilistic filtering technique, allowing both efficiency and
privacy. Each player constructs a local filter, which is then combined with those of other play-
ers to create a global filter. In the process of combination, we utilize an approximate counting
technique which is both efficient and secure against undue interference by malicious parties.

Protocols for hot item identification and publication that achieve standard cryptographic
definitions of privacy [28] are too inefficient for many applications, including our protocols of
Chapter 4. We design protocols that enable these demanding applications by trading a certain
degree of privacy for greater efficiency; as a result, our protocols are comparably asymptot-
ically efficient to approaches that do not protect the privacy of participants, as described in
Section 5.4.4. We also construct one-show tags to prevent malicious players from tampering
with the identification of hot items. Our protocols scale extremely well when increasing the
number of players. If the hot-item threshold is proportional to the number of players, then
the bandwidth used per node is essentially constant as the number of players increases, as is
optimal. (See Section 5.4.4.)

Elements of honest players’ private input sets are protected by data privacy. This property,
which we rigorously define, is weaker than a standard notion of cryptographic privacy [28], but
can be achieved more efficiently. Essentially, the data privacy property states that non-hot

items are hidden in a crowd of indistinguishable elements, and that the more rare an item is,
the less information is revealed about it. Players who publish their hot items are protected by
the property owner privacy, which we rigorously define. Players may choose between correlated
owner privacy, in which published elements cannot be associated with the publishing player,
and uncorrelated owner privacy, in which we enforce the additional guarantee that no player
can distinguish whether two items have appeared in the same private input set.

Our protocol prevents a group of malicious players from influencing the identification and
publication of hot items: no group of malicious players may cause any element to be identified
as a hot item with higher probability than if it simply appeared in the malicious players’ private
input sets.

Unlike previous work, our protocols are extremely flexible in situations in which untrusted
clients often join and leave the network. As we require no threshold cryptography, secure multi-
party computation, or global knowledge of the network, no consistent set of players is needed
to execute a protocol. No player need trust any other.

We prove bounds on the probability of correctness of our protocols, as well as for data- and
owner-privacy. The approach we introduce in this thesis is applicable to many situations. Our
protocols are the most efficient hot item identification and publication protocols of which we
are aware that achieve the properties of data and owner privacy.

1.3 Thesis Outline

We begin by discussing related work in Chapter 2 and cryptographic and mathematical prelim-
inaries in Chapter 3. We then introduce our techniques and protocols for privacy-preserving set
and multiset computation in Chapter 4. In Chapter 5, we introduce our protocols for privacy-
preserving distributed hot item identification and publication. We conclude in Chapter 6. We
include additional proofs and information about our results in Chapter 5 in Appendix B.

Chapter 2

Related Work

In this chapter, we consider previous work related to our privacy-preserving multiset operations
and hot-item identification. We then discuss the distinctions between our results and previous
work.

2.1 Works Related to Multiset Operations

Most of the privacy-preserving multiset operations and functions we address in this thesis
(Chapter 4) have no better result in previous work than through general multiparty computa-
tion. General two-party computation was introduced by Yao [56], and general computation for
multiple parties was introduced in [5]. In general multiparty computation, the players share
the values of each input, and cooperatively evaluate the circuit. For each multiplication gate,
the players must cooperate to securely multiply their inputs and re-share the result, requiring
O(n) communication for honest-but-curious players and O(n?) communication for malicious
players [28]. Recent results that allow non-interactive private multiplication of shares [16] do
not extend to our adversary model (see Section 3.1), in which any ¢ < n players may collude.
Our results are more efficient than the general MPC approach; we compare communication
complexity in Table 4.

One privacy-preserving function that has been considered in both our results and previ-
ous work is set intersection. Rakesh Agrawal and Alexandre Evfimievski and Ramakrishnan
Srikant [1] and Freedman, Nissim, and Pinkas (FNP) [23] proposed protocols for problems re-
lated to two party Set-Intersection. FNP proposed protocols for multiparty set intersection
(secure only against honest-but-curious players) and two-party cardinality set intersection as
well. FNP’s results are based on the representation of sets as roots of a polynomial [23]. Their
work does not utilize properties of polynomials beyond evaluation at given points. In Chapter 4
of this thesis, we explore the power of polynomial representation of multisets, using operations
on polynomials to obtain three composable privacy-preserving multiset operations. We give a
more detailed comparison of our Set-Intersection protocol with FNP in Table 4.

In addition to previous work on privacy-preserving set intersection, researchers have designed
protocols for privacy-preserving computation of several related functions. For example, private
equality testing is the problem of set-intersection for the case in which the size of the private
input sets is 1. Protocols for this problem are proposed in [19, 38, 43], and fairness is added
in [8]. Another related problem is in testing the disjointness of private input sets [34]; a
restricted version of the Cardinality Set-Intersection problem. We do not enumerate the works

7

of privacy-preserving computation of other functions here, as they address drastically different
problems and cannot be applied to our setting.

2.2 Works Related to Hot-Item Identification

In essence, hot-item identification is a small variation on the problem of Over-Threshold Set-
Union. We address the Over-Threshold Set-Union problem in Chapter 4, with previous work
in a cryptographically secure setting considered in Section 2.1. In hot-item identification, the
players in the protocol approximate the desired results, and give up a certain measure of privacy
in exchange for increased efficiency and robustness. For example, our Over-Threshold Set-Union
protocol requires the players to share a decryption key and perform joint decryption. We do
not believe that such an assumption is tenable in all situations.

Several applications of privacy-preserving hot item identification and publishing have been
considered in previous work. Certain privacy-breaching attacks against distributed network
monitoring nodes were described in [37]. They did not, however, give a concrete definition of
security for their attempts to defeat such attacks, and their techniques require trusted central
servers. Additionally, in many cases, significant breaches in privacy occur when outlier ele-
ments, that appear in very few other players’ servers, are revealed; they do not assuage such
concerns. Privacy-preserving collection of statistics about computer configurations has also
been considered in previous work [30, 55]. Like the work in [37], they do not give a concrete
definition of security, but instead a technique for heuristically confusing attackers. Their ap-
proach also relies on chains of trust between friends, unlike our approach, in which nodes may
be arbitrarily malicious. It is nearly impossible to evaluate the claims of privacy of these works,
without a formal definition of security. We also believe some of the assumptions made in these
works are untenable in many scenarios.

In a non-distributed context, [4, 27, 32] examine the identification of elements that appear
often in a data stream, through the use of approximate counting. We generalize this task to a
distributed setting, as well as enforcing important privacy properties.

Chapter 3

Preliminaries

In this thesis, we utilize several cryptographic and mathematical tools described in previous
work. We briefly describe these tools in this chapter, including references to fuller descriptions,
as well as the standard adversary models utilized in this thesis.

3.1 Adversary Models

In this section we describe the adversary models used in the work throughout this thesis. We
provide intuition and informal definitions of these models; formal definitions can be found
in [28].

3.1.1 Honest-But-Curious Adversaries

Honest-but-curious adversaries act according to their prescribed actions in the protocol. Se-
curity against such adversaries is straightforward: no player or coalition of ¢ < n honest-but-
curious players (who may cheat by sharing their private information) gains information about
other players’ private input sets, other than what can be deduced from the result of the protocol.
This is formalized by considering an ideal implementation where a trusted third party (TTP)
receives the inputs of the parties and outputs the result of the defined function. We require
that in the real implementation of the protocol—that is, one without a TTP—each party does
not learn more information than in the ideal implementation, with overwhelming probability.

3.1.2 Malicious Adversaries

Malicious adversaries may behave arbitrarily, in contrast to honest-but-curious adversaries who
follow the specified protocol. In particular, we cannot hope to prevent malicious parties from
refusing to participate in the protocol, choosing arbitrary values for their private data inputs, or
aborting the protocol prematurely. Instead, we focus on the standard security definition (see,
e.g., [28]) which captures the correctness and the privacy issues of the protocol. Informally,
the security definition is based on a comparison between the ideal model and a TTP, where a
malicious party may give arbitrary input to the TTP. The security definition is also limited to
the case where at least one of the parties is honest. Let I" be the set of colluding malicious parties;
for any strategy I' can follow in the real protocol, there is a translated strategy that it could

The simulator communicates with the malicious parties I' according to the

protocol. Using his special abilities as a simulator, he obtains their private

inputs, submits this data to the trusted third party, and communicates the
result returned by the trusted third party to the malicious parties.

Malicious
party

Malicious
party

Malicious
party

Private inputs of

malicious parties Results

Trusted
third party

Private Private
input i
P Result Result input
Honest /j AN Honest
party party

Figure 3.1: Basic outline of a standard simulation proof.

follow in the ideal model, such that, to I', the real execution is computationally indistinguishable
from execution in the ideal model.

A simulation proof is a common method of proving security under such a definition: the
simulator G provides a concrete method of translating any strategy executed by I' to a strategy
in the TTP model. We illustrate such a proof in Figure 4.9.

In this thesis we consider only the class of PPT adversaries, whether they are malicious or
honest-but-curious.

3.2 Multiset Operations Preliminaries

In this section, we describe several cryptographic tools that we utilize in our constructions of
Chapter 4.

3.2.1 Additively Homomorphic Cryptosystem

In Chapter 4, we utilize a semantically secure [29], additively homomorphic public-key cryp-
tosystem whose plaintext domain can be chosen to be a ring R of arbitrarily large size. Let

10

E,i(-) denote the encryption function with public key pk. The cryptosystem supports the fol-
lowing operations, which can be performed without knowledge of the private key: (1) Given the
encryptions of a and b, Epi(a) and E,,(b), we can efficiently compute the encryption of a + b,
denoted E,i(a+b) := Epi(a) +5 Ep(b); (2) Given a constant ¢ and the encryption of a, Ep(a),
we can efficiently compute the encryption of ca, denoted Epi(c-a) := ¢ X}, Epp(a). When such
operations are performed, we require that the resulting ciphertexts be re-randomized for secu-
rity. In re-randomization, a ciphertext is transformed so as to form an encryption of the same
plaintext, under a different random string than the one originally used. We also require that
the homomorphic public-key cryptosystem support secure (n,n)-threshold decryption, i.e., the
corresponding private key is shared by a group of n players, and decryption must be performed
by all players acting together. We also require that no PPT adversary can recover the sizes of
the subfields of R with greater than negligible probability.

When we utilize an additively homomorphic cryptosystem in protocols secure against mali-
cious players, we require that: (1) the decryption protocol be secure against malicious players —
typically, this is done by requiring each player to prove in zero-knowledge that he has followed
the threshold decryption protocol correctly [26]; (2) efficient construction of zero-knowledge
proofs of plaintext knowledge; (3) optionally, efficient construction of certain zero-knowledge
proofs concerning the use of the cryptosystem’s homomorphic properties, as detailed in Sec-
tion 4.4.1.

Note that Paillier’s cryptosystem [45] satisfies each of our requirements: it is additively
homomorphic, supports ciphertext re-randomization and threshold decryption (secure in the
malicious case) [21, 22], allows efficient zero-knowledge proofs for the cases that we require
(these are standard constructions from [9, 14] and proof of plaintext knowledge [15]), and
recovering the sizes of the subfields of the plaintext domain R is equivalent to breaking the
semantic security of the cryptosystem. Key generation can be performed in a distributed
fashion for these distributed Paillier schemes [21, 22].

In Chapter 4, we simply use Ep,(-) to denote the encryption function of a homomorphic
cryptosystem which satisfies all the aforementioned properties.

3.2.2 Shuffle Protocol

Let each player i (1 < i < n) in the Shuffle protocol have a private input multiset V;. We define
the Shuffle problem as follows: all players learn the joint multiset V3 U --- U V,,, such that no
player or coalition of ¢ < n players I' can gain a non-negligible advantage in distinguishing, for
each element a € V; U--- UV, an honest player i (1 <i <mn, i ¢I) such that a € V;. That is,
the origin of each element (contributed by an honest player) in the joint multiset V3 U--- UV,
is anonymous to any player or coalition of ¢ < n players. A Shuffle protocol may be secure
against honest-but-curious or malicious players; we specify this security requirement in context
of the protocol’s use.

In several protocols in Chapter 4, we will impose an additional privacy condition on the Shuf-
fle problem; the multisets V1, ..., V, are composed of ciphertexts, which must be re-randomized
so that no player may determine which ciphertexts were part of his private input multiset. The
revised problem statement is as follows: all players learn the joint multiset V4 U --- U V,,, such
that no player or coalition of players can gain a non-negligible advantage in distinguishing, for
each element a € V1 U--- UV, a player ¢ (1 < ¢ < n) such that a € V;. That is, the origin of
each element (contributed by any player) in the joint multiset V3 U --- UV}, is anonymous to
any player or coalition of ¢ < n players.

11

Both variants of the Shuffle protocol can be easily accomplished with standard techniques [13,
17, 24, 31, 44], with communication complexity at most O(n?k).

12

Chapter 4

Privacy-Preserving Set and Multiset
Operations

Sets and multisets are common data formats; many database operations may be represented
as operations on sets and multisets. We thus examine in this chapter an important application
of privacy-preserving distributed information sharing: composable privacy-preserving set and
multiset operations, and secure protocols based on these operations.

We begin by describing our composable operations and their mathematical foundations in
Section 4.1 before proceeding to construct protocols for several important applications. These
protocols include several secure against honest-but-curious adversaries: Set-Intersection and
Cardinality Set-Intersection (Section 4.2), as well as Over-Threshold Set-Union and several vari-
ants on Threshold Set-Union (Section 4.3). We then construct protocols for Set-Intersection,
Cardinality Set-Intersection, and Over-Threshold Set-Union secure against malicious players in
Section 4.4. To show that our techniques extend even beyond privacy-preserving set and multi-
set operations, we briefly describe protocols for several additional applications in Section 4.5. In
Table 4, we show the communication complexity of several of our protocols, and compare their
efficiencies to that of previous work (see Section 2.1 for a more detailed discussion of previous
work).

Our solution | Previous solution General MPC
Set-Intersection (HBC) O(cnklg |P)) O(n?k1g|P]) [23] O(n?k polylog(k) Ig | P|)
Set-Intersection (Malicious) O(n?k1g|P]) none O(n3k polylog(k)Ig | P|)
Cardinality Set-Intersection (HBC) O(n’k1g|P|) none O(n?k polylog(k) 1g [P])
Over-Threshold Set-Union (HBC) O(n?k1g|P]) none O(n?k polylog(nk)lg[P])
Threshold Set-Union (HBC) O(n’k1g|P|) none O(n?k polylog(nk) g [P])
Subset (HBC) O(klg|P)) none O(k polylog(k)1g |P])

Figure 4.1: Total communication complexity comparison for our multiparty protocols, previous
solutions, and general multiparty computation. There are n > 2 players, ¢ < n dishonestly
colluding, each with an input multiset of size k. The domain of the multiset elements is P.
Security parameters are not included in the communication complexity.

13

4.1 Techniques and Mathematical Intuition

In this section, we introduce our techniques for privacy-preserving computation of operations
on sets and multisets.

Problem Setting. Let there be n players. We denote the private input set of player ¢ as 5;,
and |S;| =k (1 < ¢ < n). We denote the jth element of set i as (5;);. We denote the domain
of the elements in these sets as P, (Vi ey (Si); € P).

Let R denote the plaintext domain Dom(Fp(-)) (in Paillier’s cryptosystem, R is Zy). We
require that R be sufficiently large that an element a drawn uniformly from R has only negligible
probability of representing an element of P, denoted a € P. For example, we could require
that only elements of the form b = a || h(a) could represent an element in P, where h(-)
denotes a cryptographic hash function [40]. That is, there exists an a of proper length such
that b = a || h(a). If |h(-)] = 1g (), then there is only e probability that o’ < R represents an
element in P.

In this section, we first give background on polynomial representation of multisets, as well as
the mathematical properties of polynomials that we use in this chapter. We then introduce our
privacy-preserving (in a TTP setting) multiset operations using polynomial representations,
then show how to achieve privacy in the real setting by computing them using encrypted
polynomials. Finally, we overview the applications of these techniques explored in the rest of
the chapter.

4.1.1 Background: Polynomial Rings and Polynomial Representation of Sets

The polynomial ring R[z| consists of all polynomials with coefficients from R. Let f,g € R|x],
such that f(x) = E?i%(f) fli]z®, where f[i] denotes the coefficient of z* in the polynomial f. Let
f+ g denote the addition of f and g, f g denote the multiplication of f and g, and (@) denote
the dth formal derivative of f. Note that the formal derivative of f is Z?i%(f)_l(i—k 1) fli+1]2".

Polynomial Representation of Sets. In this chapter, we use polynomials to represent
multisets. Given a multiset S = {Sj}1<j<k, We construct a polynomial representation of S,
f € Rlz], as f(z) = J[;<j<x(x — S;). On the other hand, given a polynomial f € R[z],
we define the multiset S represented by the polynomial f as follows: an element a € S if
and only if (1) f(a) = 0 and (2) a represents an element from P. Note that our polynomial
representation naturally handles multisets: The element a appears in the multiset b times if
(z—a)’ | f A (@—a)*l [.

Note that previous work utilized polynomials to represent sets [23] (as opposed to multisets).
However, to the best of our knowledge, no operations beyond polynomial evaluation have been
employed to manipulate said polynomials. As a result, previous work is limited to set intersec-
tion and cannot be composed with other set operators. In this chapter, we propose a framework
to perform various set and multiset operations using polynomial representations and construct
efficient privacy-preserving set operations using the mathematical properties of polynomials.
By utilizing polynomial representations to represent sets and multisets, our framework allows
arbitrary composition of multiset operators as outlined in our grammar.

14

4.1.2 Our Techniques: Privacy-Preserving Multiset Operations

In this section, we construct algorithms for computing the polynomial representation of opera-
tions on sets, including union, intersection, and element reduction. We design these algorithms
to be privacy-preserving in the following sense: the polynomial representation of any operation
result reveals no more information than the set representation of the result. First, we introduce
our algorithms for computing the polynomial representation of set operations union, intersec-
tion, and element reduction (with a trusted third party). We then extend these techniques
to encrypted polynomials, allowing secure implementation of our techniques without a trusted
third party. Note that the privacy-preserving multiset operations defined in this section may
be arbitrarily composed (see Section 4.5.1), and constitute truly general techniques.

Set Operations Using Polynomial Representations

In this section, we introduce efficient techniques for multiset operations using polynomial rep-
resentations. In particular, let f, ¢ be polynomial representations of the multisets S and T,
respectively. We describe techniques to compute the polynomial representation of their union,
intersection, and element reduction. We design our techniques so that the polynomial repre-
sentation of any operation result reveals no more information than the multiset representation
of the result. We formally state a strong privacy property for each operation in Theorems 1, 3,
and 5.

Union. We define the union of multisets S U T as the multiset where each element a that
appears in S bg > 0 times and T by > 0 times appears in the resulting multiset bg + by times.
We compute the polynomial representation of SUT as follows, where f and g are the polynomial
representation of S and T respectively:

f*g.

Note that f x g is a polynomial representation of S UT because (1) all elements that appear in
either set S or T are preserved: (f(a) =0) A (g(b) =0) — ((f*xg)(a) =0) A((f *g)(b) =0);
(2) as f(a) = 0 < (x —a) | f, duplicate elements from each multiset are preserved: (f(a) =
0) A (g(a) =0) — (z —a)? | (f x g). In addition, we prove that, given f * g, one cannot learn
more information about S and T' than what can be deduced from S U T, as formally stated in
the following theorem:

Theorem 1. Let TTP1 be a trusted third party which receives the private input multiset S;
from player i for 1 <i < n, and then returns to every player the union multiset Sy U---U S,
directly. Let TTP2 be another trusted third party, which receives the private input multiset S;
from player i for 1 < i <n, and then: (1) calculates the polynomial representation f; for each
Si; (2) computes and returns to every player [, fi.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

Proof. Theorem 1 is trivially true. (This theorem is included for completeness.) O

Intersection. We define the intersection of multisets SNT' as the multiset where each element
a that appears in S bg > 0 times and T by > 0 times appears in the resulting multiset

15

min{bg, by} times. Let S and T be two multisets of equal size, and f and g be their polynomial
representations (also of equal size) respectively. We compute the polynomial representation of
SNT as:

frxr4+gxs

where 7,5 «— R[], where R[z] is the set of all polynomials of degree 0, ...,b with coeffi-
cients chosen independently and uniformly from R: r = Z?igo(f) rli]z’ and s = Z?i%(f) s[i]t,
where vOgigdeg(f) TM — R7 vOgigdeg(f) S[Z] — R.

We show below that f *xr + g x s is a polynomial representation of S N7T. In addition, we
prove that, given f * 7 4 g * s, one cannot learn more information about S and 7' than what
can be deduced from S N7, as formally stated in Theorem 3.

First, we must prove the following lemma, based on our definition of gcd as the output of
Euclid’s ged algorithm (see Lemma 19 in Section 4.6):

Lemma 2. Let f,g be polynomials in R[x] where R is a ring such that no PPT adversary
can find the size of its subfields with non-negligible probability, deg(f) = deg(g) = o, f > «,
ged(f,g) = 1, and fldeg(f)] € R* A g[deg(g)] € R*. Letr = Zfzor[z‘]xi and s = ZIiB:O s[i]z?,
where Yo<i<p 7[i] < R, Yo<i<p s[i] — R (independently).

Let u = fxr+gxs = fooﬁ [i]xt. Then Yo<i<atp uli] are distributed uniformly and
independently over R.

We prove Lemma 2 in Section 4.6.

By this lemma, f*r + g*s = ged(f, g) * u, where u is distributed uniformly in R"[x] for
v = 2deg(f) — |SNT|. Note that a is a root of ged(f, g) and (z — a)’ | ged(f,g) if and only
if a appears £, times in S NT. Moreover, because u is distributed uniformly in R"[z], with
overwhelming probability the roots of u do not represent any element from P (as explained in
the beginning of Section 4.1). Thus, the computed polynomial f *r 4 g * s is a polynomial
representation of SNT'. Note that this technique for computing the intersection of two multisets
can be extended to simultaneously compute the intersection of an arbitrary number of multisets
in a similar manner. Also, given f % r + g * s, one cannot learn more information about .S and
T than what can be deduced from S N T, as formally stated in the following theorem:

Theorem 3. Let TTP1 be a trusted third party which receives the private input multiset S; of
size k from player ¢ for 1 < i < n, and then returns to every player the intersection multiset
S1N---NS, directly. Let TTP2 be another trusted third party, which receives the private input
multiset S; from player i for 1 < i <mn, and then: (1) calculates the polynomial representation
fi for each S;; (2) chooses r; «— RE[z]; (3) computes and returns to each player S 1, fi * r;.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T'. The translation algorithm operates as
follows: (1) calculates the polynomial representation g of T'; (2) chooses the random polynomial
u «— R*=ITl[z]; (3) computes and returns g * u. O

Element Reduction. We define the operation of element reduction (by d) of a multiset
S (denoted Rdg4(S)) as follows: for each element a that appears b times in S, it appears

16

max{b — d,0} times in the resulting multiset. We compute the polynomial representation of
Rdy(5) as:

d .
Zf(J) * Fjo*r;

J=0

where r; « Rdes(f) [z] (0 < j < d) and each Fj is any polynomial of degree j, such that
Vaep F(a) #0 (0 < j <d) and ged(Fy, ..., Fy) = 1. Note that random polynomials of degree
0,...,d in R[z] have these properties with overwhelming probability.

To show that formal derivative operation allows element reduction, we require the following
lemma:

Lemma 4. Let F; € Rlz] (0 < j < d) each of degree j such that ged(Fo, ..., Fy) = 1. For
all elements a € R such that Yo<j<q (x — a) 1 Fj, ¢ € R[X] such that (x —a) 1 q, and
rj « RMTI8@[z] (0 < j < d), and:

oifm>d,f:(x—a)m*qe(x—a)m_d|Z§l:0f(j)*Fj*Tj A (z—a)mdt g
Z?:of(j)*Fj*Tj
cifm<d f=(z—a)"xq— (x—a)t o9« Fjxr

with overwhelming probability.

We prove this lemma in Section 4.6. By Lemma 2, Z?:o O« F; xr; =
ged(f@ =1 " #) % u, where u is distributed uniformly in RY[z] for v = 2k — [Rdg(9)|.
Thus, with overwhelming probability, any root of v does not represent any element from P.
Therefore, Z?:o 1) & F; x rj is a polynomial representation of Rd4(S), and moreover, given

Z?:o @ F j ¥4, one cannot learn more information about S than what can be deduced from
Rdg4(S), as formally stated in the following theorem:

Theorem 5. Let F; (0 < j < d) be publicly known polynomials of degree j such that
Vaer Fj(a) # 0 and ged(Fy, ..., Fy) = 1. Let TTP1 be a trusted third party which receives a
private input multiset S of size k, and then returns the reduction multiset Rdg(S) directly. Let
TTP2 be another trusted third party, which receives a private input multiset S, and then: (1)
calculates the polynomial representation f of S; (2) chooses ro, ... ,rq «— RF[z]; (3) computes
and returns Z;l:()) s Fjxrj.

There exists a PPT translation algorithm such that the results of the following two scenarios
are distributed identically: (1) applying translation to the output of TTP1; (2) returning the
output of TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T'. The translation algorithm operates as
follows: (1) calculates the polynomial representation g of T'; (2) chooses the random polynomial
u — R*=ITl[z]; (3) computes and returns g * u. O

Operations with Encrypted Polynomials

In the previous section, we prove the security of our polynomial-based multiset operators when
the polynomial representation of the result is computed by a trusted third party (TTP2).
By using additively homomorphic encryption, we allow these results to be implemented as
protocols in the real world without a trusted third party (i.e., the polynomial representation of

17

the set operations is computed by the parties collectively without a trusted third party). In the
algorithms given above, there are three basic polynomial operations that are used: addition,
multiplication, and the formal derivative. We give algorithms in this section for computation
of these operations with encrypted polynomials.

For f € R[z], we represent the encryption of polynomial f, Ep(f), as the ordered
list of the encryptions of its coefficients under the additively homomorphic cryptosystem:
E,i(f[0]), ..., Epp(fldeg(f)]). Let fi, f2, and g be polynomials in R[z] such that fi(z) =
S plilat, fo(x) = Y0P folilat, and g(x) = Y0 glilai. Let a,b € R. Using the
homomorphic properties of the homomorphic cryptosystem, we can efficiently perform the fol-
lowing operations on encrypted polynomials without knowledge of the private key:

e Sum of encrypted polynomials: given the encryptions of the polynomial f; and fo, we
can efficiently compute the encryption of the polynomial g := f; + fs, by calculating

Epr(9li]) := Epr(f1[i]) +n Epr(f2[i]) (0 < i < max{deg(f1), deg(f2)})

e Product of an unencrypted polynomial and an encrypted polynomial: given a polynomial
fo and the encryption of polynomial f;, we can efficiently compute the encryption of
polynomial g := fi * fa, (also denoted fo %, Epr(f1)) by calculating the encryption of
each coefficient
Enlgli) = (Bl xn Ew(AD) 4n (Bl xn Bw(ili -
1)) +n - 4n (foli] xp Epe(f1[0])) (0 < i < deg(f1) + deg(f2))-

e Derivative of an encrypted polynomial: given the encryption of polynomial f;, we can
efficiently compute the encryption of polynomial g := % f1, by calculating the encryption
of each coefficient E,;(g[i]) := (i + 1) xp, Epp(fi1[i +1]) (0 <i < deg(f1) —1).

e Evaluation of an encrypted polynomial at an unencrypted point: given the encryption of
polynomial f;, we can efficiently compute the encryption of a := f1(b), by calculating
Ep(a) = (0% xn Epr(f1[0])) +4 (0" xp Bpr(f1[1])) 41 - 41 (6780 i, Epyo(fr[deg(f1)]))-

Utilizing the above operations on encrypted polynomials, we can securely compute results
according to the multiset operations described in Section 4.1.2 without the trusted third party
(TTP2). We demonstrate this property with concrete examples detailed in the remainder of
this chapter.

4.1.3 Overview of Applications

The techniques we introduce for privacy-preserving computations of multiset operations have
many applications. We give several concrete examples that utilize our techniques for specific
privacy-preserving functions on multisets in the following sections.

First, we design efficient protocols for the Set-Intersection and Cardinality Set-Intersection
problems, secure against honest-but-curious adversaries (Section 4.2). We then provide an
efficient protocol for the Over-Threshold Set-Union problem, as well as three variants of the
Threshold Set-Union problem, secure against honest-but-curious adversaries, in Section 4.3. We
introduce tools and protocols, secure against malicious players, for the Set-Intersection, Cardi-
nality Set-Intersection, and Over-Threshold Set-Union problems in Section 4.4. We propose an
efficient protocol for the Subset problem in Section 4.5.2.

18

Protocol: SET-INTERSECTION-HBC

Input: There are n > 2 honest-but-curious players, ¢ < n dishonestly colluding, each with a private input
set S;, such that |S;| = k. The players share the secret key sk, to which pk is the corresponding public key
of a homomorpic cryptosystem.

Output: Each player determines S1 N ---NS,.

1. Each playeri=1,...,n

(a) calculates the polynomial f; = (z — (Si)1)...(z — (Si)x)

(b) sends the encryption of the polynomial f; to players i+ 1,...,i+¢

(c) chooses ¢+ 1 polynomials 750, .. .,7,c «— R"[z]

(d) calculates the encryption of the polynomial ¢; = fi—c * 755—c + -+ + fic1 * rs5—1 + fi * T30,
utilizing the algorithms given in Sec. 4.1.2.

2. Player 1 sends the encryption of the polynomial \; = ¢1, to player 2
3. Each player ¢ =2,...,n in turn

(a) receives the encryption of the polynomial A;—; from player i — 1

(b) calculates the encryption of the polynomial A\; = A\;_1 + ¢; by utilizing the algorithms given in
Sec. 4.1.2.

(c) sends the encryption of the polynomial A; to player ¢ +1 mod n

4. Player 1 distributes the encryption of the polynomial p = A\, = > 1 fi * (Z;:o T»LJrj,j) to all other
players.
5. All players perform a group decryption to obtain the polynomial p.

Each player ¢ = 1,...,n determines the intersection multiset as follows: for each a € S;, he calculates b such
that (z —a)’|p A (z —a)** Jp. The element a appears b times in the intersection multiset.

Figure 4.2: Set-Intersection protocol secure against honest-but-curious adversaries.

More generally, our techniques allow private computation of functions based on composition
of the union, intersection, and element reduction operators. We discuss techniques for this
general private computation on multisets in Section 4.5.1.

Our techniques are widely applicable, even outside the realm of computation of functions
over multisets. As an example, we show how to apply our techniques to private evaluation of
boolean formulae in CNF form in Section 4.5.3.

4.2 Application I: Private Set-Intersection and Cardinality Set-
Intersection

In this section, we design protocols for Set-Intersection and Cardinality Set-Intersection secure
against a coalition of honest-but-curious adversaries.

4.2.1 Set-Intersection

Problem Definition. Let there be n parties; each has a private input set S; (1 <i < n) of
size k. We define the Set-Intersection problem as follows: all players learn the intersection of
all private input multisets without gaining any other information; that is, each player learns
Si1NSyN---NS,.

Our protocol secure against honest-but-curious adversaries is given in Fig. 4.2. In this
protocol, each player i (1 < i < n) first calculates a polynomial representation f; € R[z] of
his input multiset S;. He then encrypts this polynomial f;, and sends it to ¢ other players
i+1,...,1+4 c. For each encrypted polynomial E,(f;), each player i+ j (0 < j < ¢) chooses a

19

random polynomial r;,;; € R¥[z]. Note that at most ¢ players may collude, thus 25:0 Titjj
is both uniformly distributed and known to no player. They then compute the encrypted

polynomial (Z;ZO ri+j7j) s, Epr(fi). From these encrypted polynomials, the players compute

the encryption of p = Y7 | fi * <Z§=0 ri+j7j>. All players engage in group decryption to
obtain the polynomial p. Thus, by Theorem 3, the players have privately computed p, a
polynomial representing the intersection of their private input multisets. Finally, to reconstruct
the multiset represented by polynomial p, the player i, for each a € S;, calculates b such that
(x —a)’lp A (z—a)’*' Jp. The element a appears b times in the intersection multiset.

Security Analysis. We show that our protocol is correct, as each player learns the appro-
priate answer set at its termination, and secure in the honest-but-curious model, as no player
gains information that it would not gain when using its input in the ideal model. A formal
statement of these properties is as follows:

Theorem 6. In the Set-Intersection protocol of Fig. 4.2, every player learns the intersection
of all players’ private inputs, S1 N.Se N --- NSy, with overwhelming probability.

Proof. Each player learns the decrypted polynomial p = Y0, fi * (25:0 riﬂ-,j). If
Viem) fila) = 0, then p(a) = 0. As no elements that are not in every players’ private in-
put can be in the set-intersection of all private inputs, all elements in the set-intersection can
be recovered by each player. Each element in his private input that a root of p is a member of
the intersection set.

We now show that, with high probability, erroneous elements are not inserted into the answer
set. Note that, by the reasoning of Lemma 19, all coefficients of f; (1 < i < n) are in the set
R*U{0}. Thus, by Lemma 2, the decrypted polynomial is of the form ([],c;(z — a)) * s, where
s is uniformly distributed over R?*~1|[z]. This random polynomial s is of polynomial size, and
thus has a polynomial number of roots. Each of these roots is a representation of an element from
P with only negligible probability. Thus, the probability that an erroneous element is included
in the answer set is also negligible, and all players learn exactly the intersection set. O

Theorem 7. Assuming that the additively homomorphic, threshold cryptosystem Ep(-) is se-
mantically secure, with overwhelming probability, in the Set-Intersection protocol of Fig. 4.2,
any coalition of fewer than n PPT honest-but-curious players learns no more information than
would be gained by using the same private inputs in the ideal model with a trusted third party.

Proof. We assume that the homomorphic cryptosystem (FE, D) used in the protocol is in fact
secure as we required. Thus, as the inputs of the other players are all encrypted until the
decryption is performed, nothing can be learned by any player before that point. Each player

J then learns only the summed polynomial p = """, f; * <Z§:0 riﬂ-’j).

Note that to every coalition of ¢ players, for every i, 25:0 Ti+j; is completely random, as
at least one player in the ¢ + 1 players who chose that random polynomial is not a member of
the coalition, and so 25:0 7i+j,; is uniformly distributed and unknown.

Note that, by the reasoning of Lemma 19, all coefficients of f; (1 < i < n) are in the set
R*U{0}. Thus, by Lemma 2, p = > | fi * (Z?:o ri+j7j> = ([Taer(@ — a)) * s, where I is
the intersection set and s is uniformly distributed over the polynomials of appropriate degree.

20

Protocol: CARDINALITY-HBC

Input: There are n > 2 honest-but-curious players, ¢ < n dishonestly colluding, each with a private input
set S;, such that |S;| = k. The players share the secret key sk, to which pk is the corresponding public key
of a homomorpic cryptosystem.

Output: Each player determines |S1 NN Sy|.

1. Each playeri=1,...,n

(a) calculates the polynomial f; = (z — (Si)1)...(z — (Si)x)

(b) sends the encryption of the polynomial f; to players i+ 1,...,i+¢

(c) chooses ¢+ 1 random polynomials 750, . . .,7;,c «— R*[z]

(d) calculates the encryption of the polynomial ¢; = fi—c * 755—c + -+ + fic1 * rs5—1 + fi * T30,
utilizing the algorithms given in Sec. 4.1.2.

2. Player 1 sends the encrypted polynomial A1 = ¢1, to player 2
3. Each player ¢ =2,...,n in turn

(a) receives the encryption of the polynomial A;—; from player i — 1

(b) calculates the encryption of the polynomial A\; = A\;_1 + ¢; by utilizing the algorithms given in
Sec. 4.1.2.

(c) sends the encryption of the polynomial A; to player ¢ +1 mod n

4. Player 1 distributes the encryption of the polynomial p = A\, = > 1 fi * (Z;:o T»LJrj,j) to all other
players.
5. Each playert =1,...,n

(a) evaluates the encryption of the polynomial p at each input (S;);, obtaining encrypted elements
Epk(cij) where ci; = p((Si);), using the algorithm given in Sec. 4.1.2.

(b) for each j =1,...,k chooses a random number r;; < R and calculates an encrypted element
(Vi); = 7rij Xn Epk(cis)

6. All players perform the Shuffle protocol on their private input sets V;, obtaining a joint set V, in
which all ciphertexts have been re-randomized.
7. All players 1,...n decrypt each element of the shuffled set V.

If nb of the decrypted elements from V are 0, then the size of the set intersection is b.

Figure 4.3: Cardinality set-intersection protocol secure against honest-but-curious adversaries.

Thus no information about the private inputs of the honest players can be recovered from p,
other than that given by revealing the intersection set. O

4.2.2 Cardinality Set-Intersection

Problem Definition. We define the Cardinality Set-Intersection problem on sets as follows:
each player learns the number of unique elements in S; N ---N.S,, without learning any other
information. A variant of this problem is the Cardinality Set-Intersection problem on multisets,
which we define as follows: all players learn |S; N --- N S,|, as computed on multisets.

Our protocol for Cardinality Set-Intersection, given in Figure 4.3, proceeds as our protocol
for Set-Intersection, until the point where all players learn the encryption of p, the polynomial
representation of S1 N ---NS,. Each player ¢ = 1,...,n then evaluates this encrypted poly-
nomial at each unique element a € S;, obtaining [3,, an encryption of p(a). He then blinds
each encrypted evaluation p(a) by calculating) = b, X, (.. All players then distribute and
shuffle the ciphertexts (3, constructed by each player, such that all players receive all cipher-
texts, without learning their source. The Shuffle protocol can be constructed from standard
techniques [13, 17, 24, 31, 44], with communication complexity at most O(n?k). The players
then decrypt these ciphertexts, finding that nb of the decryptions are 0, implying that there
are b unique elements in S; N---NS,. FNP utilize a variation of this technique [23], but it

21

is not obvious how to construct a multiparty Cardinality Set-Intersection protocol from their
techniques.

Variants. Our protocol can be simply extended to privately compute the Cardinality Set-
Intersection problem on multisets, by utilizing an encoding as follows: any element a that
appears b times in a multiset is encoded as the set: {a || 1,...,a || b}, with element included
only once. Note that this is a set of equivalent size as the original multiset representation, so
this variant preserves the efficiency of our protocol.

Security Analysis. We show that our protocol is correct, as each player learns the size of the
answer set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model. A formal statement
of these properties is as follows:

Theorem 8. In the Cardinality Set-Intersection protocol of Fig. 4.3, every player learns the
size of the intersection of all players’ private inputs, |S1 N Sa N --- N S,|, with overwhelming
probability.

Proof. Note that, following the proof of Theorem 6, p is a polynomial representation of the
intersection multiset, with overwhelming probability. Each player evaluates p (encrypted) at
each of their inputs, then blinds it by homomorphically multiplying a random element by the
encrypted evaluation. Thus each resulting encrypted element (V;); (1 <i<n,1<j <k)is
either 0, representing some element of a private input set in the intersection set, or uniformly
distributed, representing some element not in the intersection set. An element is a member of
S1N---NS, if and only if each player holds it as part of their private input set, for each element of
S1N---NS,, there are n encrypted evaluations that are 0. Thus, when the encrypted evaluations
(Vi); 1 <i<n, 1< j<k) are shuffled and decrypted, there are exactly n|S; N --- N Sy| Os,
and thus all players learn the size of the intersection set. O

Theorem 9. Assuming that the additively homomorphic, threshold cryptosystem Ep(-) is se-
mantically secure and that the Shuffle protocol is secure, with overwhelming probability, in the
Cardinality Set-Intersection protocol of Fig. 4.3, any coalition of fewer than n PPT honest-but-
curious players learns no more information than would be gained by using the same private
inputs in the ideal model with a trusted third party.

Proof. We assume that the cryptosystem E,;(-) and Shuffle protocol are secure, so we may
note that no player or coalition of players learns any information from the protocol except the
decryption of the randomly-ordered set {(V;);}icjn],je[r)- As each element of that set is either 0
or a uniformly distributed element, it conveys no information other than the statement ‘some
player had an element in their private input set that was/was not in the intersection set’. As
this information precisely constitutes the result of the Cardinality Set-Intersection problem, no
additional information is revealed. O

4.2.3 Malicious Case

We can extend our protocols in Figures 4.2 and 4.3, secure against honest-but-curious players,
to protocols secure against malicious adversaries by adding zero-knowledge proofs or using
cut-and-choose to ensure security. We give details of our protocols secure against malicious
adversaries in Section 4.4.2.

22

Protocol: OVER-THRESHOLD SET-UNION-HBC

Input: There are n > 2 honest-but-curious players, ¢ < n dishonestly colluding, each with a private input
set S;, such that |S;| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. Fy,..., F;_1 are fixed polynomials of degree 0, ..., — 1 which have no common factors or roots
representing elements of P.

Output: Each player determines Rd;—1(S1 U ---U Sy)

1. Each player i = 1,...,n calculates the polynomial f; = (z — (Si)1)...(z — (Si)x)
2. Player 1 sends the encryption of the polynomial A\; = fi to player 2
3. Each playert =2,...,n
(a) receives the encryption of the polynomial A\;_1 from player i — 1
(b) calculates the encryption of the polynomial A\; = A\;—1 * f; by utilizing the algorithm given in
Sec. 4.1.2.
(¢) sends the encryption of the polynomial \; to player ¢ +1 mod n

4. Player 1 distributes the encryption of the polynomial p = A, =[]}, fi to players 2,...,c+1
5. Each player i =1,...,c+1

(a) calculates the encryption of the 1, .., t—1st derivatives of p, denoted p<1)7 . ,p<t71), by repeating
the algorithm given in Sec. 4.1.2.
(b) chooses random polynomials 70, ...,7 -1 «— R"*[z]

(c) calculates the encryption of the polynomial Zz;é p“) * Fyx7; o and sends it to all other players.

6. All players perform a group decryption to obtain the polynomial ® = Eztz;(l) p® F; x (Z:ié m,g).

7. Each player t =1,...,n, foreach j =1,...,k
(a) chooses a random element b; ; — R
(b) calculates u;,; = b ; x ®((S;);) + (S:);

8. All players ¢ = 1,...n perform the Shuffle protocol on the elements w;; (1 < j < k), such that each
player obtains a joint set V.

Each element a € P that appears b times in V' is an element in the threshold set that appears b times in the
players’ private inputs.

Figure 4.4: Over-Threshold Set-Union protocol secure against honest-but-curious adversaries.

4.3 Application II: Private Over-Threshold Set-Union and
Threshold Set-Union

In this section, we design protocols for the Over-Threshold Set-Union problem and several
variations of the Threshold Set-Union problem, secure against a coalition of honest-but-curious
adversaries.

4.3.1 Over-Threshold Set-Union Protocol

Problem Definition. Let there be n players; each has a private input set S; (1 < i < n)
of size k. We define the Over-Threshold Set-Union problem as follows: all players learn which
elements appear in the union of the players’ private input multisets at least a threshold number
t times, and the number of times these elements appeared in the union of players’ private inputs,
without gaining any other information. For example, assume that a appears in the combined
private input of the players 15 times. If ¢ = 10, then all players learn a has appeared 15 times.
However, if t = 16, then no player learns a appears in any player’s private input. This problem
can be represented as Rd;—1(S1 U---US,,).

We describe our protocol secure against honest-but-curious players for the Over-Threshold
Set-Union problem in Fig. 4.4. In this protocol, each player ¢ (1 < i < n) first calculates f;, the

23

polynomial representation of its input multiset S;. All players then compute the encryption of
polynomial p =[], fi, the polynomial representation of Sy U---US,. Players i =1,...,c+
1 then each choose random polynomials 7;0,...,7;;—1, and calculate the encryption of the
polynomial Zz_é pO % Fy « ri g as shown in Fig. 4.4. All players then calculate the encryption

of the polynomial & = Ze 0 p© % Fy % (z+0 T g) and perform a group decryption to obtain

®. As at most ¢ players may dishonestly collude, the polynomials fll rie (1 < ¢ < d) are

uniformly distributed and known to no player. By Theorem 5, ® is a polynomial representation
of Rdt_l(Sl J---u Sn)

Each player i = 1,...,n then chooses b; ; < R and computes u; ; = b; j x ®((S;);) + (S:);
(1 < j < k). Each element u;; equals (S;); if (S;); € Rdy—1(S1 U---US,), and is otherwise
uniformly distributed over R. The players then shuffle these elements u; ;, such that each player
learns all of the elements, but does not learn which player’s set they came from. The shuffle
can be easily accomplished with standard techniques [13, 17, 24, 31, 44|, with communication
complexity at most O(n?k). The multiset formed by those shuffled elements that represent
elements of P is Rd;—1(S1 U---USy).

Security Analysis. We show that our protocol is correct, as each player learns the appro-
priate answer set at its termination, and secure in the honest-but-curious model, as no player
gains information that it would not gain when using its input in the ideal model with a trusted
third party. A formal statement of these properties is as follows:

Theorem 10. In the Quver-Threshold Set-Union protocol of Fig. 4.4, every honest-but-curious
player learns each element a which appears at least t times in the union of the n players’ private
inputs, as well as the number of times it so appears, with overwhelming probability.

Proof. All players calculate and decrypt ® = ZE Op * Iy * (Z+11 T; g) As ch+11 rie (0 <

¢ <t —1) are distributed uniformly over all polynomials of approximate size nk and, by the
reasoning of Lemma 19, all coefficients of p(¥) + F, (0 < £ < t — 1) are in the set R* U {0},
Lemma 2 tells us that ® = ged (p(t_l),p(t_Q), . ,p) *u, where u is a random polynomial of the
appropriate size. As u has only a polynomial number of roots, each of which has a negligable
probability of representing a member of P, u is a polynomial representation of the empty set
with overwhelming probability.

By Theorem 4, ged (p~Y, pt=2), ... p) has roots which are exactly those that appear at
least ¢ times in the players’ private inputs (the threshold set). The players calculate elements
u; j, which are uniformly distributed if (.5;); is not a member of the threshold set, and (.S;); if
it does appear in the threshold set. These elements are shuffled and distributed to all players.
Each reveals an element of the private input, if that element is in the threshold set, and nothing
otherwise. Thus each element in the threshold intersection set is revealed as many times as it
appeared in the private inputs. O

Theorem 11. Assuming that the additively homomorphic, threshold cryptosystem Ep(-) is
semantically secure, with overwhelming probability, in the Quver-Threshold Set-Union protocol
of Fig. 4.4, any coalition of fewer than n PPT honest-but-curious players learns no more infor-
mation than would be gained by using the same private inputs in the ideal model with a trusted
third party.

Proof. We assume that the cryptosystem employed is semantically secure, and so play-
ers learn only the formula ® = Ee Op x Fy (Z+1 rlg> Note that Zl 17“ (0 <

24

¢ < t — 1) are uniformly distributed and unknown to all players, as the maximum coali-
tion size is smaller than ¢ 4+ 1. Note that by the reasoning of Lemma 19, all coeffi-
cients of p® x F, (0 < ¢ < t — 1) are in the set R* U {0}. Thus, by Theorem 2,
® = ged (p(t_l) « Fy_1,p 2D« Fi_o, ... px Fp) * s, for some uniformly distributed polynomial
s. As s is uniformly distributed for any player inputs, no player or coalition can learn more than
ged (p(t_l),p(t_z), .. ,p). Fy, ..., F;_1 are chosen such that ged(p, Fy, ..., Fi—1) = 1 with over-
whelming probability, and so ged (pt=Y « F,_1,p¢2 « Fy_o,...,p*) = ged (p,ptV % F) =
ged (p=Y,plt=2) ... p) with overwhelming probability. As was observed in Theorem 10, this
information exactly represents the threshold set, and can thus be derived from the answer that
would be returned by a trusted third party. Thus no player or coalition of at most ¢ players
can learn more than in the ideal model.

Neither do the shuffled elements reveal additional information. As we assume the shuffling
protocol is secure, the origin of any element is not revealed. The elements revealed are exactly
those in the threshold set, each included as many times as it was included in the private inputs,
and thus also do not reveal information to any adversary. O

4.3.2 Threshold Set-Union

Problem Definition. We define the Threshold Set-Union problem as follows: all players
learn which elements appear in the combined private input of the players at least a threshold
number ¢ times. For example, assume that a appears in the combined private input of the
players 15 times. If ¢ = 10, then all players learn a. However, if ¢ = 16, then no player learns
a. This problem differs from the Over-Threshold Set-Union problem in that each player learns
the elements of Rdy—1(S1N---NS,), without learning how often each element appears.

We offer protocols for several variants on Threshold Set-Union: threshold contribution,
perfect, and semi-perfect. Threshold contribution allows for thresholds ¢ > 1, and each player
learns only those elements which appear both in his private input and the threshold set: player
i (1 <1i <mn) learns the elements of S; N"Rd;—1(S1N---NSy). Perfect threshold set-intersection
allows for thresholds ¢ > 1, and conforms exactly to the definition of threshold set-intersection.
The semi-perfect variant requires for security that ¢ > 2, and that the cheating coalition does
not include any single element more than ¢ — 1 times in their private inputs. Note that the
information illicitly gained by the coalition when they include more than ¢ — 1 copies of an
element a is restricted to a possibility of learning that there exists some other player whose
private input contains a. We do not consider the difference in security between the semi-perfect
and perfect variants to be significant.

The protocols for the Threshold Set-Union problem, given in Figs. 4.5, 4.6, and 4.7, are
identical to the protocol for Over-Threshold Set-Union (given in Fig. 4.4) from step 1-5. We
explain the differences between the protocols for each variant: threshold contribution, semi-
perfect, and perfect. Each player constructs encryptions of the elements ®((.5;);) from his
private input set in step 6, and continues as described below.

Threshold Contribution Threshold Set-Union. This protocol is given in Fig. 4.6. The
players cooperatively decrypt the encrypted elements ®((S;);) * (3 ,_; be,i ;). This decryption
must take place in such a way that only player i learns the element ®((.S;);) * (D), beij)-
Typically, parties produce decryption shares and reconstruct the element from them; player ¢
simply retains his decryption share, so that only he learns the decryption. Thus each player
learns which of his elements appear in the threshold set, since if (5;); appears in the threshold

25

Protocol: THRESHOLD-SEMIPERFECT-HBC

Input: There are n > 2 honest-but-curious players, ¢ < n dishonestly colluding, each with a private input
set S;, such that |S;| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. Fy,..., F;_1 are fixed polynomials of degree 0, ...,t — 1 which have no common factors or roots
representing elements of P.

Output: Each player learns the elements of Rd;—1(S1 U --- U Sy).

1. Each player ¢ = 1,...,n calculates the polynomial f; = (z — (Si)1)...(z — (Si)x)
2. Player 1 sends the encryption of the polynomial A\; = f1 to player 2
3. Each player t =2,...,n
(a) receives the encryption of the polynomial A\;_1 from player i — 1
(b) calculates the encryption of the polynomial A\; = A;—1 * f; by utilizing the algorithm given in
Sec. 4.1.2.
(c) sends the encryption of the polynomial \; to player ¢ +1 mod n

4. Player 1 distributes the encryption of the polynomial p = A, =[]}, fi to players 2,...,c+1
5. Each player it =1,...,c+1

(a) calculates the encryption of the 1, .., t—1st derivatives of p, denoted p<1)7 . ,p<t71), by repeating
the algorithm given in Sec. 4.1.2.
(b) chooses random polynomials 70, ...,7¢—1 < R"*[z]

(c) calculates the encryption of the polynomial Zz;é p“) * Fy*7; o and sends it to all other players.
6. Each playert =1,...,n

(a) evaluates the encryption of the polynomial ® = S/ p'“ x F, x (3¢ r;¢) at each input
S:)j, obtaining encrypted elements E,r(c;;) where ¢;; = ®((S;);), using the algorithm given
j g Y P J J J g g g

in Sec. 4.1.2
(b) for each 7 =1,...,k calculates an encrypted tag T;; = Enc;(h((S:);) || (Si);)
(¢) for each j = 1,...,k chooses a random number 7;; «+ R and calculates an encrypted element

Uij = (rij Xn Epr(cij)) +n Epr((Si);)
(d) constructs the set V; = {(T3; || Ui;) | 1 < j < k}
7. By using the Shuffle protocol, players perform shuffling on their private input sets V;.
8. For each shuffled element T || U in sorted order, each player i =1,...,n
(a) if D;(T) = h(a) || a for some a
i. if a has previously been revealed to be in the threshold set, then calculate an incorrect
decryption share of U, and send it to all other players

(b) else calculate a decryption share of U, and send it to all other players
(¢) reconstruct the decryption of U. If the element a € P, then a is in the threshold result set

Figure 4.5: Threshold Set-Union protocol secure against honest-but-curious adversaries (semi-
perfect variant).

set, ®((S:);) * (O_y_; be,i;) = 0. No player learns more information because if an element (.5;);
is not in the threshold set, ®((S;);) * (3_y_; be,i,;) is uniformly distributed.

Semi-Perfect Threshold Set-Union. This protocol is given in Fig. 4.5. The encrypted
element (U;); calculated from the encrypted evaluation of ®((.S;);) is either: (1) an encryption
of the private input element (5;); (if (S;); is in the intersection set) or (2) an encryption of a
random element (otherwise). However, the player also constructs a corresponding encrypted
tag for each (U;);, T;j. We require that the cryptosystem used to construct these tags be key-
private, so that the origin of ciphertext pairs T, U cannot be ascertained by the key used to
construct the tags.

The players then correctly obtain a decryption of each element in the threshold set exactly
once. Any other time a ciphertext U for an element in the threshold set is decrypted, a player

26

Protocol: THRESHOLD-CONTRIBUTION-HBC

Input: There are n > 2 honest-but-curious players, ¢ < n dishonestly colluding, each with a private input
set S;, such that |S;| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. F' is a fixed polynomial of degree ¢t — 1 which has no roots representing elements of P. The
threshold number of repetitions at which an element appears in the output is ¢t > 2. Fp,..., Fy—1 are fixed
polynomials of degree 0, ..., — 1 which have no common factors or roots representing elements of P.
Output: Each player ¢ (1 < ¢ < n) determines S; NRd¢—1(S1 U---USp).

1. Each player i = 1,...,