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Abstract

For their scalability needs, data-intensive Web applications can use a Database Scalability Service (DBSS),
which caches applications’ query results and answers queries on their behalf. To address security/privacy
concerns while retaining the scalability benefits of a DBSS, applications would like to encrypt all their cached
query results yet somehow enable the DBSS to invalidate these results when data updates render them obso-
lete. Without adequate information the DBSS is forced to invalidate large regions of its cache on an update.
In this paper, we present invalidation clues, a general technique that enables applications to reveal little data
to the DBSS, yet limit the number of unnecessary invalidations. Compared with previous approaches, inval-
idation clues provide applications significantly improved tradeoffs between security/privacy and scalability.
Our experiments using three Web application benchmarks, on a prototype DBSS we have built, confirm that
invalidation clues are indeed a low-overhead, effective, and general technique for applications to balance their
privacy and scalability needs.
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1 Introduction

Internet applications suffer from unpredictable load, especially due to events such as breaking news (e.g.,
Katrina) and sudden popularity spikes (e.g., the “Slashdot Effect”). Investing in a server farm that can
accommodate such high loads is not only expensive (particularly after factoring in the management costs)
but also risky because the expected customers might not show up. An appealing alternative is to contract
with a scalability service that charges based on usage. Content Delivery Networks (CDNs) [14] provide such
service by maintaining a large, shared infrastructure to absorb load spikes that may occur for any individual
application. However, CDNs currently do not provide a way to scale the database component of a Web
application. Hence the CDN solution is not sufficient when the database system is the bottleneck, as in many
e-commerce applications.

To overcome this key bottleneck, Database Scalability Services (DBSS) can be used to extend the scaling
benefits provided by CDNs to the database component of web applications [25, 29]. As in CDNs, a third party
(Database Scalability Service Provider) provides such service by maintaining a large, shared infrastructure
to offload work from and to absorb load spikes for any individual database. Figure 1 depicts the resulting
architecture, in which (1) a Web application’s code is executed at trusted hosts (application “servers”), (2)
the code in turn fires off database updates/queries that are handled by a DBSS, and (3) any updates and
queries that cannot be answered by the DBSS are sent to backend databases on the application vendor’s
“home” servers.

A key challenge in the design of a DBSS is providing this shared scalability infrastructure while protecting
each organization’s sensitive data. The goals are (1) to limit the DBSS administrator’s ability to observe or
infer an application’s sensitive data, and (2) to limit an application’s ability to use the DBSS to observe or
infer another application’s sensitive data. Such concerns have been increasing in the past few years, as borne
by well-publicized instances of database theft [31]. From the viewpoint of the home organization, these are
security concerns; from the viewpoint of an individual user whose personal data may be revealed, these are
privacy concerns.

Security/privacy concerns dictate that a DBSS should be provided encrypted updates, queries and query
results. The home servers of applications maintain master copies of their data and handle updates directly,
and the DBSS caches read-only (encrypted) copies of query results that are kept consistent via invalidation.
The trusted application “servers”1 are used to encrypt queries/updates and decrypt query results, as well as
run application code. When a data update occurs, to maintain consistency, the DBSS must invalidate (at
least) all the cached query results that changed. Because the results are encrypted, the DBSS needs help
from the application in order to know which results to invalidate; such help inevitably reveals some properties
about the data. Thus, in providing help to the DBSS, the application faces an important dilemma. On the
one hand, revealing less about the data means that the DBSS will invalidate far more than needed, resulting
in more queries passed through to the home server, decreasing scalability. On the other hand, revealing more
about the data to the DBSS raises security/privacy concerns.

Invalidation Clues. In this paper, we present invalidation clues, a general framework for enabling appli-
cations to reveal little data to the DBSS, yet prevent wholesale invalidations. Invalidation clues (or clues
for short) are attached by the home server to query results returned to the DBSS. The DBSS stores these
query clues with the encrypted query result. On an update, the home server can send an update clue to the
DBSS, which uses both query and update clues to decide what to invalidate. In this paper, we show how
specially designed clues can achieve three desirable goals:
(1) Limit unnecessary invalidations: Our clues provide relevant information to the DBSS that enable it to
rule out most unnecessary invalidations.
(2) Limit revealed information: Our clues enable the application to achieve a target security/privacy by
hiding information from the DBSS.

1These hosts could either (1) be maintained by the application vendor—for data-intensive Web applications, executing
application code is not the real bottleneck and hence a modest number of hosts suffice, (2) be maintained by the CDN—if the
vendor trusts the CDN, or (3) be users’ machines—there are on-going efforts to guarantee secure execution of code on a remote
machine [12, 33].
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Figure 1: A scalable architecture for database-intensive Web applications.
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Figure 2: Privacy-Scalability tradeoff in the presence of clues. The dashed box shows the region
in which an application can operate in our scheme. The six scenarios, A–F, are explained later
in Table 2. Code-analysis privacy and read-only scalability are explained in Section 5.2.

(3) Limit database overhead: Our clues do not enumerate which cached entries to invalidate. Instead, they
provide a “hint” that enables the DBSS to rule out unnecessary invalidations. Thus, the home server database
is freed from the excessive overhead of having to track the exact contents of each DBSS cache in order to
enumerate invalidations.

Compared with previous approaches [4, 5, 6, 21, 23, 24, 25, 29], invalidation clues provide applications
significantly improved tradeoffs between security/privacy and scalability. This is demonstrated in Figure 2
(discussed in detail in Section 2), which compares prior work in database scaling technology to our scheme.
Only our scheme enables the favorable tradeoffs inside the dashed box.

Our Contributions. The main contributions of this paper are as follows.

• We propose invalidation clues, a general framework that offers applications a low overhead, fine-grained
control to balance their security/privacy and scalability needs, and provides better tradeoffs than
previous approaches. We also provide examples of several configurable invalidation clues.

• We show how to keep application data secure/private under a more general attack model than previous
work [25].

• We identify families of common query/update classes where extra information is needed from the
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simple-bboard

QT SELECT id, body FROM comments

WHERE story=? AND rating>=?

UT UPDATE comments SET rating=rating+?

WHERE id=?

Table 1: A simplified bulletin-board example, consisting of a query template QT and an update
template UT on a base relation comments with attributes id, story, rating, and body. The
question marks indicate parameters bound at execution time.

database in order to perform precise invalidations. We show that generating these “database-derived”
clues in response to an update typically requires accessing only one or two database rows. We present
a strategy that uses such clues only when the scalability benefit from reduced invalidations outweighs
the cost of computing the clue.

• Finally, using experiments with three web application benchmarks—a bookstore (TPC-W), an auction
(RUBiS), and a bulletin-board (RUBBoS)—running on our prototype DBSS, we demonstrate the
scalability benefits of our proposed clues. We also use representative queries from these benchmarks
to show the effectiveness of our configurable clues in providing an improved security/privacy versus
scalability tradeoff.

Road Map. Section 2 provides an overview of invalidation clues and discusses related work. Section 3
and Section 4 show how different types of clues can be used to achieve different precisions in invalidations.
Section 5 discusses how clues can be tailored to balance between privacy and scalability. Section 6 presents
our empirical findings. Finally, Section 7 presents conclusions.

In the remainder of the paper, we will use privacy as a short hand for both security and privacy.

2 Overview and Related Work

This section introduces invalidation clues via an example, and places our scheme in the context of related
work.

2.1 An Illustrative Example

Consider a simplified application called simple-bboard, specified in Table 1. In this application, queries
follow the template QT (requesting information on comments, with rating above a threshold, made on a
particular story) and updates follow the template UT (changing a comment’s rating). The DBSS caches the
(encrypted) results of previous queries and uses any clues at hand to decide what to invalidate on an update.
Figure 2 plots six different scenarios of clues that illustrate the privacy-scalability tradeoff an application
faces with various schemes, using simple-bboard as an example. It also plots prior work in database scaling
technology. Most of this work [4, 5, 6, 21, 23, 24] does not address privacy/security concerns, and as a result,
can attain more scalability than our architecture (e.g., by not encrypting data, cached query results may be
incrementally maintained at the caches, instead of just invalidated). Our previous work [25] (plotted as C
in the figure) showed how to encrypt data that is not useful for invalidation. Without the general notion
of clues introduced here, however, the previous work was unable to achieve the favorable tradeoffs in the
figure’s dashed box, even under a weaker attack model.

Table 2 summarizes the clue scenarios, and what happens when an update occurs. Scenario A depicts a
scenario with no clues; in such cases, the DBSS has no way of knowing which (encrypted) cache result for
an earlier encrypted query is invalidated by this (encrypted) update. Hence, it must invalidate the entire
cache on an update. Scenario B depicts the opposite extreme in which the DBSS sees the entire database
and the updates (id value of 123 and rating increment of 1) and hence can perform precise invalidation (we
formalize the notion in Section 3.3). As Figure 2 shows, while the former provides maximum privacy but
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Query Clue for Q Update Clue Query Q Result invalidated

A none none if any update occurs

B entire database; 123, 1 if id=123 should be added
Q’s story&rating given its story&rating

C entire query 123, 1 if id=123 is absent
result (unencrypted) from query result

D id values (only) 123 as in scenario C
in query result

E Q’s story&rating, 123, and its as in scenario B
id values in result story&rating

F Q’s story&rating, Bloom-filter of scenario B, with
Bloom-filter of id {123}, and 123’s some false positives
values in result story&rating due to Bloom-filter

Table 2: Six clue scenarios A–F and their effect on what the DBSS invalidates when an update
UT with id=123 and rating=rating+1 occurs.

minimum scalability, the latter provides maximum scalability but no privacy. Because the increase in rating
by UT can never cause id=123 to drop out of a query result, the only case where the result is invalidated in
Scenario B is when id=123 is not in the query result but its story matches Q’s story and its new rating

now exceeds Q’s rating parameter.
Scenario C translates the solution proposed in [25] into the terminology of this paper. [25] did not have a

notion of clues and security was “all-or-nothing”—the different attributes in parameters or the query results
could not be encrypted independently. In this scenario, the DBSS does not know the story and rating of
id=123, so if the id is not in the unencrypted query result, then the DBSS does not know whether the id

should now be added and hence it must invalidate.
Because our clues can be arbitrarily fine-grained, our scheme enables better choices than previous schemes.

Scenario D, for example, has the same invalidations as scenario C, but additionally encrypts the body of
comments—only the id field is revealed, in order to enable checking for a particular id. Scenario E uses
better clues than scenario B—they reveal less information (e.g., the ids, rating, story id but not the
body), yet enable precise invalidation as before. Including the story and rating of id=123 in the update
clue is an example of a “database-derived” clue (discussed in Section 4), because these attributes are not in
the update and hence need to be looked-up in the database.

Finally, scenario F uses Bloom-filters2 to hide even the ids, at a cost of a small probability of an
unnecessary invalidation. This example illustrates how clues offer fine-grained control to an application—
the size of the Bloom-filter in this case—to choose a desired balance of security/privacy and scalability, as
depicted by the range of choices in the curved line for scenario F.

2.2 Other Related Work

We now discuss other related work in database services, view invalidation, and privacy.

Database Services. Existing work on providing database services can be classified into Database Outsourc-
ing (DO) services and Database Scalability Services (DBSS). With DO services, an application outsources
all aspects of management of its database to a third party [18]. Guaranteeing privacy of applications’ data
is a key challenge in this setting [1, 17, 19]. With DBSS, only database scalability is outsourced to a third
party: application providers retain master copies of their data on their own systems, with the DBSS caching
and serving read-only copies on their behalf. We contend that from a privacy and data integrity stand-
point, the DBSS approach is more attractive than the DO approach in the case of Web applications with

2A Bloom-filter [9] encodes a set as a short bit vector. Each value v in the set is represented by setting the h1(v)’th, h2(v)’th
and h3(v)’th bit in the bit vector, for three hash functions h1, h2, and h3. A query result is invalidated if the three bits set in
the update clue Bloom-filter are all set in the query clue Bloom-filter. A larger Bloom-filter reduces the number of unnecessary
invalidations but reveals more about the data.
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read/write workloads (e.g., e-commerce applications). In addition to the DBSS technology efforts discussed
earlier [4, 5, 6, 21, 23, 24] which do not address privacy concerns, we are also involved in work that seeks
to efficiently distribute updates among the network of DBSS nodes [15], a complementary effort that is also
not concerned with privacy.

View Invalidation and Maintenance. Many papers have studied invalidation strategies for cached
materialized views [11, 13, 22], but none of these study the privacy implications of using a particular in-
validation strategy, the focus of our work. Likewise, many papers [16, 30] have studied techniques for view
maintenance—how to change a view to reflect an update.

The view invalidation and view maintenance works cited above are only special cases of clues. They do
not aim to achieve the twin goals of limiting unnecessary invalidations and limiting revealed information and
hence are often ill-suited to our setting, as argued in Section 4.2. Furthermore, we demonstrate the necessity
and advantages of specially designed “database-derived” update clues, in order to achieve precise invalida-
tions. The work closest to this in technique is by Candan et al. [11]. They suggested using “polling queries”
to inspect portions of the database in order to decide whether to invalidate cached query results in response
to database updates. However, they used polling queries just as a heuristic to get better invalidations. They
neither implemented precise invalidations using polling queries, nor addressed privacy issues arising from the
use of polling queries.

Privacy. There has been a lot of recent interest in keeping data private, yet allowing the computation of
several functions on the data (e.g., [3]). Agrawal et al. [2] present order-preserving encryption schemes; these
could be used to enable order-comparisons over clues. However, under our attack model where the adversary
can have access to some mappings from plain-texts to encrypted-values, this scheme does not work. Hore et
al. [20] study the privacy-utility tradeoff in the choice of the “coarseness” of the index on encrypted data.
Our bucketization technique in Section 5.4 is similar. However, the resulting optimization problems are
different because different privacy metrics apply.

3 Using Clues for Invalidations

In this section we describe how clues can be used for invalidations. We begin in Section 3.1 by describing the
architecture that is the context for our work. Section 3.2 provides the details of our basic query and update
model, and introduces the terminology and notation we use in the rest of the paper. Then, in Section 3.3,
we formalize the notion of precise invalidations. Finally, in Section 3.4 we present various types of clues and
provide examples of when each type is useful.

3.1 Architecture

The overall system architecture is as depicted in Figure 1 (see Section 1). The DBSS maintains a cache of
encrypted queries and encrypted query results. Along with each cache entry, it stores query clues sent by
the home server’s database when returning the encrypted query result. On receiving an encrypted query
Q, the DBSS determines if an entry for Q is in its cache and, if so, it returns the cached encrypted query
result. Otherwise, the encrypted query is forwarded to the home database server, which returns an encrypted
query result and any associated query clues. All encrypted updates are routed to the home organization via
the DBSS. The home organization applies the updates, and returns the encrypted updates with associated
update clues. The DBSS monitors completed updates, and uses the query clues and update clues to invalidate
cached query results as needed to ensure consistency.

Depending on how the query clues and update clues are computed, this general formulation can emulate
any invalidation strategy in the DBSS setting. In particular, the application, via clues, can send relevant
data (about the rest of the database) to the DBSS, which may enable the DBSS to achieve more precise
invalidation.
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3.2 Query and Update Model

Our query and update model is based on our study of three benchmark Web applications (details in Sec-
tion 6.1). In our model, there are a fixed set of query templates and a fixed set of update templates. A
query Q is composed of a query template QT to which parameters are attached at execution time. Likewise,
an update U is composed of an update template UT to which parameters are attached at execution time. A
sequence of queries and updates issued at runtime constitutes a workload.

The query language is restricted to select-project-join (SPJ) queries having only conjunctive selection
predicates, augmented with optional order-by and top-k constructs. SPJ queries are relational expressions
constructed from any combination of project, select and join operations (except Cartesian product). As in
previous related work [8, 25, 30], the selection operations in the SPJ queries can only be arithmetic predicates
having one of the five comparison operators {<,≤, >,≥,=}. The order-by construct affects tuple ordering
in the result; and the top-k construct is equivalent to returning the first k tuples from the result of the query
executed without the top-k construct. We assume multi-set operation; the projection operation does not
eliminate duplicates.

The update language permits three kinds of updates: insertions, deletions and modifications. Each
insertion statement fully specifies a row of values to be added to some relation. Each deletion statement
specifies an arithmetic predicate over columns of a relation. Rows satisfying the predicate are deleted. Each
modification statement selects a row of a relation according to an equality predicate on the relation’s primary
key and modifies non-key attributes of the selected row.

3.3 Database-Inspection Strategy

We formalize the notion of precise invalidation as the invalidation behavior of an idealized strategy that
can inspect any portion of the database to determine which cached query results to invalidate for a given
update. A cached query result for a query Q must be invalidated if the update alters the answer to Q. We
call such a strategy a Database-Inspection Strategy (DIS). A DIS invalidates the minimal number of query
results—any other (correct) invalidation strategy invalidates at least the query results invalidated by a DIS.
Thus a DIS is a useful lower bound, against which we can compare how successful particular clues are in
helping the DBSS make invalidation decisions.

3.4 Types of Clues

Recall that we distinguish between query clues (attached to encrypted query results) and update clues
(attached to encrypted updates). We further classify query and update clues based on what data are used
to compute them. A query clue might be a parameter query clue, a result query clue, or a database query
clue, based on whether it is computed from the query parameters, the query result, or the database itself.
Similarly, an update clue might be a parameter update clue or a database update clue based on whether it
is computed from the update parameters or the database itself. Note that the contents of different types of
clues may overlap. Table 3 summarizes the taxonomy of clues.

In this paper we use the following default “no-clue” scenario. The DBSS knows the application’s database
schema, including the primary keys and foreign keys, and the application’s query and update templates. On
a query or update, the DBSS is informed as to which template has been used, but not the instantiated
parameters. We will consider various scenarios where clues are added on top of this default scenario.

Consider the simple-auction application shown in Table 4. For each of its query/update template pairs,
Table 5 lists the different kind of clues required to implement a DIS. In the first row, it suffices to have result
query clues and parameter update clues, in order to implement a DIS. For example, the set of item id values
in the query result together with the item id from the update statement suffice. Invalidation is ruled out
in the second and third rows simply by examining the templates. It is also ruled out in the last row because
of the foreign key relationship.

In the fourth row, only the region attributes need to be matched for a DIS—so the query and updates
clues are just a function of their instantiated parameters. For the fifth row, invalidation of cached results of
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Computed from

Attached to Parameters Result Database

(parameter clue) (result clue) (database clue)

query result parameter result database

(query clue) query clue query clue query clue

update parameter database

(update clue) update clue update clue

Table 3: A taxonomy of clues (The various clue types are in italics). Clues differ based on
whether they are attached to query results or updates, and whether they are computed from
parameters, result, or database.

simple-auction

QT

1 SELECT item id, category, end date

FROM items WHERE seller=?

QT

2 SELECT user id FROM users WHERE region=?

QT

3 SELECT item id FROM items, users

WHERE items.seller=users.user id

AND items.category=?

AND items.end date>=?

AND users.region=?

UT

1 UPDATE items SET end date=end date+? DAYS

WHERE item id=?

UT

2 INSERT INTO users (user id, region)

VALUES (?, ?)

Table 4: A simple auction example, consisting of three query templates, two update templates,
and two base relations: (1) items with attributes item id, seller, category, and end date, and
(2) users with attributes user id and region. Attribute items.seller is a foreign key into the
users relation. The question marks indicate parameters bound at execution time.

any instance of the query template QT
3 in response to an update template UT

1 cannot be ruled out just by
inspecting the query result, query parameters, or update parameters. For example, increasing the end date

may mean that the item in UT
1 now satisfies the cached QT

3 query—but only if the item has the appropriate
category and region (information only available in the database). So parameter and result clues are
insufficient to prevent wholesale invalidation. Database clues are needed.

4 Database Clues

The previous section motivated the use of database clues using the simple-auction example. In this
section, we first identify (Section 4.1) families of common query/update classes where database clues are
required for precise invalidation. Section 4.2 discusses the problems with achieving precise invalidations
using database query clues, and then presents our solution using database update clues. Finally, Section 4.3
presents practical techniques that further reduce overheads and/or increase privacy by relaxing the precise
invalidation requirement.
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Pair 〈Query clue, Update clue〉

〈QT
1 , UT

1 〉 〈 result, parameter 〉

〈QT
1 , UT

2 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 , UT

1 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 , UT

2 〉 〈 parameter, parameter 〉

〈QT
3 , UT

1 〉 〈 database, parameter 〉 or

〈 parameter, database 〉

〈QT
3 , UT

2 〉 〈 , 〉 (never invalidates: foreign key constraint)

Table 5: Types of clues required to implement a DIS for template-pairs of the simple-auction

example in Table 4.

Symbol Meaning

S(UT ) Attributes used in the selection/join predicates

of UT (i.e., in the where clause)

M(UT ) Attributes modified by UT

S(QT ) Attributes used in the selection/join predicates

or order-by constructs of QT

P (QT ) Attributes preserved in the result of QT

(i.e., in the select clause)

Table 6: Notation for aspects of templates.

4.1 Templates Requiring Database Clues

We begin by introducing some terminology for classifying query and update templates in a way that is useful
for our analysis. Then, we enumerate the query/update classes for which database clues are required for
precise invalidation.

4.1.1 Query and Update Classification

Define the selection attributes of an update template UT (denoted S(UT )) to be the attributes used in
any selection predicate (i.e., a selection or a join condition in the where clause) of UT . (If UT is an
insertion, S(UT ) = {}.) Further define the modified attributes (M(UT )) of UT , the selection attributes
(S(QT )) of a query template QT , and the preserved attributes (P (QT )) of QT as in Table 6. If UT is an
insertion or a deletion from a relation, M(UT ) is defined to be the set of all attributes in the relation. For
the simplest-auction application (Table ??), S(UT ) = {items.item id}, M(UT ) = {items.end date},
S(QT ) = {items.seller}, and P (QT ) = {items.item id, items.category, items.end date}.

4.1.2 Enumeration of Classes

We identify important classes of update/query template pairs, for which database clues are necessary for
achieving the invalidation behavior of a DIS. For all the other classes in the query and update model we
consider, described in Section 3.2, database clues are not necessary. (We omit proofs for brevity.)

For ease of understanding, we divide the classes into three main categories. A common condition across
all three categories is that the update not be “ignorable” with respect to the query. We say an update
template is ignorable with respect to a query template if and only if none of the attributes modified by the
update template belong to either the selection or preserved attributes of the query template. Formally, an
update is ignorable if and only if M(UT ) ∩ (S(QT ) ∪ P (QT )) is empty. For simplicity in the discussion
below, we assume that there are no foreign key constraints. The discussion can easily be extended to handle
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foreign keys. Next, we enumerate the three categories. For each category, if applicable, we provide separate
examples for insertion, deletion, and modification templates.

Category I. The rules for the first category are: (a) the update might add at least one row to the query
result, and (b) there is at least one attribute belonging to the query’s selection attributes whose final value
is not specified in the update. The intuition behind this rule is that as long as there is at least one attribute
whose value needs to be examined in the database in order to determine whether or not the update affects
the query result, a database clue is required. For example, in Table 4, consider the query QT

3 with either
modification template UT

1 , or the following insertion and modification templates:

INSERT INTO items (item id, seller, category,

end date) VALUES (?, ?, ?, ?)

UPDATE items SET end date=? WHERE item id=?

Category II. The rules for the second category are: (a) the query involves a top-k predicate, and (b)
the query fails to preserve at least one of its order-by attributes that is modified by the update. The
intuition behind this rule is that because of the top-k predicate, even when an update affects some tu-
ple in the database that is absent from the query result, it might affect the query result. For exam-
ple, consider the query template SELECT item id FROM items WHERE category=? ORDER BY end date

FETCH 11th to 21st rows3 paired with any of the following templates:

INSERT INTO items (item id, seller, category,

end date) VALUES (?, ?, ?, ?)

DELETE FROM items WHERE item id=?

UPDATE items SET category=? WHERE item id=?

Category III. The rule for the third category is: there is at least one attribute in the selection predicate
of the update template that is not preserved by the query template. The intuition behind this rule is that
the query result does not contain sufficient information to determine whether the update affects the query
result or not. For example, consider the query template SELECT end date FROM items WHERE category=?

paired with either of the following:

DELETE FROM items WHERE item id=?

UPDATE items SET end date=? WHERE item id=?

4.2 Implementing Database Clues

We now discuss how to implement database clues, so as to achieve precise invalidations as a DIS, while
minimizing both the overheads and the amount revealed about the data.

Problems with Using Database Query Clues. One way to achieve a DIS would be to use database
query clues. The goal for a database query clue is to provide all the data from the database that could
potentially help in deciding if a future update would affect the given query result. Self-maintaining view
techniques [30] could be used to identify the minimal such data. For example, for query template QT

3 in
Table 4, the techniques in [30] would suggest the DBSS caches two database fragments: (a) the seller,
category, and end date of each item in the items table, and (b) the region of each user in the users table.

For Web applications, because the set of update templates is known in advance, the amount of data stored
can sometimes be reduced. In the previous example, because of the limited update templates, it suffices to
cache all item ids that satisfy all but the end date predicate of the instantiated QT

3 query; these are the
only rows that can possibly become part of the query result as a result of UT

1 updating the end date for some
item. However, in general, given many cached queries and a richer collection of update templates, the amount
of data stored can be quite large. As a result, this approach suffers from two significant problems. First,
the cached portions of the database must themselves be maintained, resulting in additional overhead and

3Such a query arises, e.g., when the application wants to fetch and display the second page of query results.
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Algorithm: For update template UT and SPJ query template QT , find the database-update
clue.

Inputs: update template UT , query template QT

Output: database-update clue C as an associative array

1 If UT is an insertion, return
2 X ←M(UT ) ∩ (P (QT ) ∪ S(QT ))
3 If X = {}, return /* ignorable update */

4 if UT is a deletion
5 X ← S(QT )
6 for each attr a ∈ X,
7 C{a} ← “value of a in the row being updated”
8 return C

Figure 3: Pseudo code for computing a database update clue when query templates are re-
stricted to a single table.

additional clues to enable the maintenance. For example, maintaining the region information would mean
that instances of update UT

2 , which could previously be ignored for QT
3 (because attribute items.seller is

a foreign key into the users relation), can no longer be ignored. Second, because the approach potentially
reveals large portions of the database, it does not offer any reasonable privacy.

Our Solution. Instead, our approach is to achieve a DIS by generating the relevant database information
on-the-fly as database update clues. Because all updates are centrally handled by our system, such clues
are computed at the home organization. Database update clues make sense in our setting where the query
templates are known. For example, for the update template UT

1 in Table 4, knowing the query templates
enables the clue to be computed from just four values: the category of the specific item being updated, the
old and new end dates of the item, and the region of the specific seller of the item. Together with parameter
query clues stored with an instantiated query Q, these enable a DBSS to achieve a DIS, by checking whether
these four values now satisfy Q as a result of the update.

With database update clues, there is no overhead of keeping them consistent because the clue is generated
on-the-fly with every update. However, generating them each time places extra load on the home server’s
organization. Hence, it is not obvious whether the increase in scalability from precise invalidation outweighs
the decrease in scalability from generating the clues. Fortunately, for the templates in the three realistic
benchmarks we study, the work to generate a database update clue is rather minimal. In particular, out
of the over 1000 〈 query template, update template 〉 pairs, only 21 require database clues (details are in
Section 6.1). Of these 21, almost all of them require fetching a single row from a table and perhaps a single
associated row from a joining table, as in the 〈QT

3 , UT
1 〉 example above. Moreover, for these same reasons,

the amount revealed about the data tends to be small.
We use the following procedure for determining clues. Most of the work is precomputed offline given

the set of templates for an application. For our three applications, we performed this precomputation by
hand; however, it would not be difficult to automate much of this process. For example, precomputing
which update templates are ignorable by which query templates can be automated by extracting S(UT

i )
and M(UT

i ) for each update template UT
i and S(QT

j ) and P (QT
j ) for each query template QT

j , and then

testing whether M(UT ) ∩ (S(QT ) ∪ P (QT )) is empty. Similarly, there are simple, easily automated, rules
for determining pairs made ignorable by foreign key constraints. The precomputed results are stored in a
table for fast reference during execution. For those pairs using database update clues, a script is generated
and stored in the table for computing the clue. Figure 3 shows how a database update clue is computed
for single table SPJ queries. (Note that if UT is a modification template, the algorithm in Figure 3 must
be called twice, once before and once after applying the update. If UT is a deletion template, the algorithm
must only be called before applying the update.) This algorithm can readily be extended to handle top-k
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and join queries. After the extension, there are only a few pairs in our benchmarks, which fall outside the
query and update model we consider, that we currently only know how to do by hand.

4.3 Beyond Precise Invalidations

Thus far, we have focused on the goal of matching DIS’s optimal number of invalidations. However, because
of the minimal invalidations requirement, we have sacrificed opportunities to further minimize overheads
and maximize privacy. In this section, we present several simple techniques that further reduce overheads
and/or increase privacy by relaxing the precise invalidation requirement.

The hybrid Strategy. Although the overheads of computing database clues are minimal, depending on
the workload, the overheads can still be higher than their savings in some cases. In the three benchmarks we
study, there are cases where most of the invalidation savings arise from a small subset of the database update
clues. While generating these clues is worthwhile, generating the other clues (where the savings is small)
costs more than the savings. To address such concerns, we use a simple hybrid strategy that monitors the
workload for invalidation savings and then generates database update clues only when the savings exceeds
an estimated threshold of the (appropriately normalized) cost to generate the clue. Although more wholesale
invalidations are needed whenever we do not generate a database update clue, the overall effect is an increase
in scalability, as shown in Section 6.

Increasing Privacy through Hashing and Bloom-filters. As argued above, for most updates the
amount of revealed data is small (e.g., four values in the update clue for the 〈QT

3 , UT
1 〉 example). However,

even revealing four values per update may be more than desired if there are thousands to millions of updates.
Fortunately, in many cases, the revealed values are used solely for equality tests with query parameters, e.g.,
the category and region values in the 〈QT

3 , UT
1 〉 clue. In such cases, the actual values can be obscured by

using a one-way hash function. The equality test is assumed to succeed if the hashed values match. Such an
approach will always invalidate when required for correctness, but it introduces a very small probability of
an unnecessary invalidation due to a hash collision. Thus, for all practical purposes, it is as good as a DIS
strategy, but with better privacy.

In other common cases, the revealed values are used for order comparisons with query parameters, e.g.,
the end date value in the 〈QT

3 , UT
1 〉 clue. In such cases, the actual values can be hidden to varying degrees

as a tradeoff against invalidation precision, as will be discussed in Section 5.
Finally, another common case involves testing whether a particular value in an update clue is in a set

of values in a result query clue. For example, consider the simple-bboard example in Table 1 and the
corresponding result query clue and parameter update clue in the fourth row of Table 2. These clues enable
exact matching of ids but reveal all the id values in the query result. Instead, as shown in the last row of
Table 2, we can obscure these id values by using Bloom-filters [9], as discussed in the introduction. Although
Bloom-filters introduce a small probability of unnecessary invalidations (the probability is tunable by the
number of hash functions used in the filter and the size of the bit vector), for all practical purposes, it is as
good as exact matching, but with better privacy.

Although using hash functions and Bloom-filters are known techniques for increasing privacy, we adapt
them to a new scenario (DBSS) and demonstrate their effectiveness.

5 Privacy-Scalability Tradeoff

In this section we study privacy-scalability tradeoffs in the DBSS setting. We begin in Section 5.1 by describ-
ing our attack model of the DBSS. We next show in Section 5.2 that there is a fundamental tradeoff between
privacy and scalability in our DBSS setting. Section 5.3 then presents an overview of how applications could
get extra privacy by having the DBSS carry out unnecessary invalidations. Next, in Sections 5.4 and 5.5,
we study representative query and update template pairs from our application benchmarks, and present
configurable clues for these pairs. Finally in Section 5.6, we discuss how our current work applies to entire
applications, beyond a single query and update template pair.
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5.1 The Attack Model of the DBSS

Recall from Section 3.4 that the DBSS knows the application’s database schema, including the primary keys
and foreign keys, and the application’s query and update templates.

In our model, a DBSS can pose as a user, beyond having a honest-but-curious behavior, i.e., the DBSS
invalidates correctly as per the query and update clues, but tries its best to infer the contents of the encrypted
query results, encrypted queries, and encrypted updates. Posing as a user enables the DBSS to issue queries
and updates, observe which clues are generated, and thus correlate values in unencrypted queries and updates
to clues.

5.2 The Limit Cases

Recall Figure 2 from Section 1 which illustrates the privacy-scalability tradeoff that an application faces in
our DBSS setting, where (a) the DBSS has an attack model as described in Section 5.1 and (b) the home
server does not track the state of the DBSS’s cache. We call the level of privacy that can be attained just
by analyzing the application code code-analysis privacy. An application can achieve this level of privacy
by encrypting the data that can be (statically) determined as not being useful for invalidation (as in [25]).
On the other hand, minimal scalability is achieved when the DBSS invalidates all its cache entries on any
update, i.e., queries can only be answered from the cache as long as the workload remains read-only. We
call this level of minimal scalability read-only scalability.

As we show next, if an application achieves the maximum scalability, it gets code-analysis privacy (the
upper left corner of Figure 2), and if it achieves the maximum privacy, it gets read-only scalability (the lower
right corner of Figure 2).

Maximum privacy implies read-only scalability. An application achieves the maximum privacy if the
DBSS it is using cannot distinguish between any two encrypted query results in its cache. Because the DBSS
can pose as a user and issue updates, on any update, either all or none of an application’s query results
should be invalidated. Otherwise, the DBSS can distinguish between query results that were invalidated
and those that were not invalidated. Furthermore, for any non-trivial workload, it is likely that an update
invalidates some query result. Because the home server does not track what the DBSS’s cache contains,
for privacy and correctness, it requires the DBSS to invalidate all query results on every update. Thus the
application achieves read-only scalability.

Maximum scalability implies code-analysis privacy. An application achieves maximum scalability
when the invalidation behavior of the DBSS resembles a Database Inspection Strategy (Section 3.3). We
focus on two representative cases: (a) the invalidation decision involves an equality comparison, and (b)
the invalidation decision involves an order comparison. In case (a), the DBSS can repeatedly issue updates
till the query result is invalidated. Since the invalidation is precise and the DBSS is issuing the updates,
the DBSS learns the value of the data in the query result used for invalidation. In case (b), the DBSS
first computes an ordering between encrypted query results. It can do so easily, based on the frequency
with which a query result is invalidated. (Note that cache evictions do not affect the maintenance of the
frequency count, because (i) the DBSS can always store the query result just for the purposes of maintaining
this frequency count, and (ii) the home server does not track the contents of a DBSS’s cache.) It can then
pose as a user and do a binary search on the ordered query results to find the value corresponding to an
encrypted query result. Thus in both cases, equality and order comparisons, maximum scalability results in
the code-analysis privacy.

5.3 Trading Off Scalability for Privacy

The results in the previous section show that applications cannot hope for both good scalability as well
as good privacy. To achieve privacy, the applications have to sacrifice scalability—by allowing otherwise
needless invalidations. Through representative query and update template pairs from our applications, we
next show how clues provide applications with a convenient knob to balance their privacy and scalability
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QT SELECT i stock FROM item WHERE i id=?

UT UPDATE item SET i stock=? WHERE i id=?

Table 7: A query-update template pair from the bookstore benchmark.

a2

an

e1

em

parameter
values

function f
place−holders

a1

Figure 4: An example mapping of parameter values to place-holders.

needs. We consider two cases, depending on whether invalidations involve equality comparisons (Section 5.4)
or order comparisons (Section 5.5).

5.4 Equality Comparisons

Consider an actual template pair, shown in Table 7, from the bookstore benchmark (details in Section 6.1)
where the invalidation decision involves an equality comparison. For precise invalidation, the DBSS needs
the attribute value i id in the query and the update. However, in creating a clue, applications want to limit
the information that is revealed and may not want to reveal the exact i id value.

One natural way to do so is to map parameter values4 to some space of place-holders and then only
reveal place-holders as clues to a DBSS. Let {a1, . . . , an} be the parameter values and {e1, . . . , em} be the
place-holders. Let f be the function that determines the mapping. The mapping can be represented by
a bipartite graph as in Figure 4. Computing the query or the update clue then just involves finding the
place-holder corresponding to the parameter value. The DBSS invalidates a cached query result if the values
of the place-holders in the query and update clue match. An example is the hash function discussed in
Section 4.3.

In this setting, all that the DBSS can see is the place-holders. Using its capabilities, it can at most infer
the mapping f used to generate the place-holders. A metric of privacy in this setting then is the number
of place-holders m that the application chooses. The lower this number is, the better the privacy is. In the
extreme, if there is just one place-holder, the DBSS can not learn anything about the parameters. On the
other extreme, a higher m means the DBSS can more precisely infer the parameter values that get mapped
to an encrypted value.

Because the query results of all constituent parameter values that are mapped to a single place-holder get
invalidated whenever an update with any of the constituent values is issued, the value of m has an opposite
effect on the scalability. A higher m usually means that there are less unnecessary invalidations, and the
scalability is higher. Thus an application can tune the value of m to balance its privacy and scalability
requirements.

Next, we show that an application can use knowledge of the frequency distribution of parameters to
further choose clues that maximize its scalability for a given privacy value. Before proceeding, we introduce
some notation.

4In general, the discussion here applies to all attribute values used in invalidation equality comparisons, not just parameter
values.
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p jn−1
p jn>= >=

1

>=

m−1

p j1

Figure 5: The solution implied by Lemma 1. ji ∈ {1, . . . , n} is such that the parameter value
aji

is the ith most frequently occurring.

QT SELECT * FROM items WHERE end date>=?

UT INSERT INTO items VALUES (?, . . ., ?)

Table 8: A simplified query-update template pair from the auction benchmark.

Let pj denote the probability with which an update with parameter aj is issued. Formally,
∑

j pj = 1.
For each of the place-holder values ei, let domain-size ni and cumulative probability Pi denote the number
of parameter values mapped to a place-holder ei and the sum of their probabilities, respectively. Formally,
for i ∈ {1, . . . ,m}, ni = |{aj |f(aj) = ei}|, and Pi =

∑
f(aj)=ei

pj . Also
∑m

i=1 ni = n, and
∑m

i=1 Pi = 1.
If the application knows the pj values, for a given fixed privacy value m, we show how it can choose a

mapping that minimizes the total number of invalidations (the term
∑m

i=1 niPi represents the total number
of invalidations). Formally, the constrained optimization problem is to find the equality-optimal mapping
that minimizes

∑m

i=1 niPi given the constraints
∑m

i=1 ni = n and
∑m

i=1 Pi = 1. Lemma 1 provides the key
insight required to find the equality-optimal mapping.

Lemma 1 For a given privacy value, the minimum number of invalidations is achieved when: for any two
place-holders ei and ej with domain-size ni less than domain-size nj, the probability with which an update
using a value mapped to ei is issued is higher than the probability with which an update using a value mapped
to ej is issued.

Proof: Suppose the number of invalidations is minimum, and yet there are two place-holders ei and ej with
ni < nj such that for value x mapped to ei (f(x) = ei) and value y mapped to ej (f(y) = ej), px ≤ py.

In the expression for the number of invalidations, the contribution of terms in which px and py appear
is nipx + njpy. By swapping x and y, this contribution is reduced, thereby reducing the total number of
invalidations. Hence, the original mapping was not minimum, a contradiction. 2

Lemma 1 implies that the final solution has a form as shown in Figure 5, where the parameter values are
arranged in a sorted order of the probabilities with which they are issued, and only parameter values with
consecutive ranks can map to the same place-holder. Another implication of Lemma 1 is that the problem
of finding an equality-optimal mapping has the optimal sub-structure property, i.e., parts of the mapping
are themselves optimal solutions to parts of the problem. Dynamic Programming, which uses memoization
to get rid of repeated computations, can be used to solve this problem in O(nm) space and O(n2m) time.

In Section 6.4 we show that in the common case, an equality-optimal mapping reduces the number
of invalidations by around 20%, when compared to a simplistic mapping which maps an equal number of
parameter values to each place-holder. Thus if applications know the probability distribution with which
parameters are chosen when issuing updates, they can choose clues that maximize their scalability for a
target privacy.

5.5 Order Comparisons

Consider the template pair shown in Table 8. This pair is from the auction benchmark (details in Sec-
tion 6.1), and the invalidation decision involves an order comparison on the end date of an item being
auctioned. For precise invalidations, the DBSS needs the attribute value end date in the query and the
update. However, the application may not want to reveal the exact end date value.
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As with equality comparisons, we can apply an approach based on mapping parameter values to some
space of place-holders and then revealing only place-holders in the clues. Assume parameter values {a1, . . . , an}
with a1 < a2 < . . . < an and place-holders {e1, . . . , em} with e1 < e2 < . . . < em. Let f be the function
that determines the mapping. The application can use an Order-Preserving-Encryption-Scheme (OPES) [2]
to map the parameter values to place-holders such that the order is preserved. Use of an OPES ensures that
if ai < aj then f(ai) < f(aj). An honest-but-curious DBSS can learn a total ordering on the place-holders
either immediately (if it can observe the execution of the invalidation code), or over time (if it can only
observe which results are invalidated). However, privacy is still preserved since the DBSS cannot associate
place-holders to actual parameter values (as in [2]). In contrast to an honest-but-curious DBSS, use of an
OPES provides little security with our attack model. The DBSS by posing as a user can initiate queries with
known parameter values, observe the clues generated, and correlate place-holders to the parameter values.
Moreover, since it can learn a total ordering on the place-holders (as mentioned above), it can use binary
search to quickly find the parameter value(s) corresponding to a place-holder.

For place-holders ei and ej with ei < ej in query clues, let ak be the maximum value that gets mapped to
ei and al be the minimum value that gets mapped to ej . Formally, ak = maxf(ak)=ei

and al = minf(al)=ej
.

The DBSS can use binary search because in all of the above formulations, ei < ej implies ak < al, i.e., the
order is preserved when mapping parameter values of query. Thus any place-holder corresponds to a disjoint
range of parameter values, whose end-points can be determined by binary search.

Defeating binary search. Our key observation is that for correct invalidations, the order has to be
preserved only between parameters of queries and parameters of updates, and not across the parameters
of queries and updates. Formally, for two query (or update) parameter values ai and aj with ai < aj and
mapping f , f(ai) < f(aj) need not be true. This flexibility allows us to use two mapping functions fq (to
map query parameters) and fu (to map update parameters) so that if ai is a query parameter and aj is an
update parameter with ai < aj , then fq(ai) < fu(aj).

One family of such mappings is where a non-negative number is subtracted from each query parameter
and a non-negative number is added to each update parameter. Formally, fq(ai) = ai − rq(ai) and fu(aj) =
aj + ru(aj), where rq(ai) and ru(aj) are always non-negative, but can even be randomly generated. With
such a mapping, the DBSS can no longer use binary search to quickly find the parameters corresponding to
a place-holder.

A mapping with a provable guarantee. Next, we show how an application can use the two mappings
for greater privacy. Assume fu is the identity function, i.e., ru(aj) is always zero. The choice of rq allows
the application to control its privacy-scalability tradeoff. For parameter values a1 < . . . < an, an application
not wanting to let the DBSS learn the order information can measure privacy leak as the number of pairs for
which the DBSS can figure out the correct ordering. Privacy p can then be measured simply by normalizing
the privacy leak and subtracting it from 1. Formally, privacy(p) = 1- 2

n(n+1)

∑
i<j P (fq(ai) < fq(aj)), where

P (ai < aj) = 1 if fq(ai) < fq(aj), 1/2 if fq(ai) = fq(aj), and 0 otherwise.
Under such a definition and assuming that all parameter values are equi-probable, we show how for a

fixed number of invalidations, an application can choose ru values that maximize its privacy. We call such
a mapping the order-optimal mapping.

Lemma 2 In an order-optimal mapping, for any two parameter values ai and aj with ai < aj, if rq(ai)
and rq(aj) are non-zero, then fq(ai) > fq(aj).

Proof: By contradiction. Assume in an order-optimal mapping, there exist two values ai and aj with
ai < aj , for which rq(ai) > 0 and rq(aj) > 0. If rq(aj) is increased by 1 and rq(ai) is decreased by 1, the
total number of invalidations remain the same, but the privacy increases. Hence contradiction. 2

An implication of Lemma 2 is that for any given number of invalidations i, to find order-optimal, the
following two steps should be carried out: (1) Find values a

−n < a
−n+1 < . . . a

−1 so that a
−1 = a1. (2)

Starting with the maximum ai, map each ai to a
−i till the invalidation limit is reached. If the invalidation

limit is reached in an ai getting to a
−i, allow the ai to reach whatever value is reachable.

Section 6.4 shows that for a given scalability value, this mapping enables twice the privacy of an OPES.
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Number of 〈UT , QT 〉 pairs in category

Application Category I Category II Category III

auction 9 1 0

bboard 7 0 0

bookstore 3 1 0

Table 9: Number of template pairs in the three applications which require database clues for
precise invalidations, classified as per the categories introduced in Section 4.1.

5.6 Discussion

For our query and update model, any invalidation decision in an application fundamentally involves either
an equality comparison (or its generalization to a set membership test) or an order comparison. Our above
results can then be easily applied to the entire application. However, care must be taken in treating all the
subcases as independent, because the query or update can enforce a relationship between attribute values.

6 Evaluation

We implemented our proposed clues in our prototype DBSS to measure the scalability advantages of using
various types of invalidation clues. Before presenting these results in Section 6.3, we describe our benchmark
applications in Section 6.1 and our experimental methodology in Section 6.2. Finally, in Section 6.4 we
measure the effectiveness of our techniques in helping an application manage its privacy-scalability tradeoff.

6.1 Benchmark Applications

As in [25], we used three publicly available Web benchmark applications that extensively use a database and
represent real-world applications: RUBiS [27], an auction system modeled after ebay.com, RUBBoS [28], a
simple bulletin-board-like system inspired by slashdot.org, and TPC-W [32], a transactional e-Commerce
application that captures the behavior of clients accessing an online book store. 5. We used Java imple-
mentation of these applications. We will henceforth refer to these applications as auction, bboard, and
bookstore, respectively.

Note that there were a few queries in these benchmarks that did not conform to our query model
(Section 3.2), e.g., aggregate queries. For these queries, we use parameter and result clues but not database
clues.

Table 9 provides, for each of the three applications, the number of template pairs which require database
clues for precise invalidations, and classifies them according to the categories introduced in Section 4.1. As
the table shows, only 21 (out of the over 1000) pairs require database clues, and all but 2 of these fall into
Category I.

6.2 Experimental Methodology

As in [25], we report results on our experiments with a simple two-node configuration—a home server that
runs MySQL4 [26] as its database management system, and a DBSS node that provides answers to database
queries using its store of the cached query results, running on Emulab [34]. (To keep the configuration
simple, the DBSS node also provided the functionality of an application “server”, i.e., the ability to run
Web applications and to interact with a user running a Web browser. We used Tomcat [7] to provide

5To make the TPC-W application more representative of a real-world bookseller, we changed the distribution of book
popularity in TPC-W from a uniform distribution to a Zipf distribution based on the work by Brynjolfsson et al. [10]. Bryn-
jolfsson et al. verified empirically that for the well-known online bookstore amazon.com, the popularity of books varies as
log Q = 10.526− 0.871 log R, where R is the sales rank of a book and Q is the number of copies of the book sold within a short
period of time.
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Application DB size Parameters

Auction 1 GB 33,667 items
100,000 registered users

Bboard 1.5 GB 213,292 comments
500,000 registered users

Bookstore 200 MB 10,000 items
86,400 registered users

Figure 6: Application configuration parameters.

both functionalities.) Cached query results were kept consistent with the home server’s database using
non-transactional invalidation of cached query results.

The home server machine had an Intel P-III 850 MHz processor with 512 MB of memory, while the DBSS
node had an Intel 64-bit Xeon processor with 2048 MB of memory. In all experiments, the home server and
DBSS node were connected by a high latency, low bandwidth duplex link (100 ms latency, 2 Mbps). Each
client was connected to the DBSS node by a low latency, high bandwidth duplex link (5 ms latency, 20
Mbps). These network settings model a deployment in which a DBSS node (because there are many of
them) is “close” to the clients, most of which are “far” from any single home server.

Because the overhead for emulating clients is low, one additional Emulab node was used to emulate all
clients. As in the TPC-W [32] specification, clients simulate human usage patterns by issuing an HTTP
request, waiting for the response, and pausing for a think time of X seconds before requesting another Web
page—X is drawn from a negative exponential distribution with a mean of seven seconds.

Figure 6 provides the configuration parameters we used in our experiments. Each experiment ran for ten
minutes, and the DBSS node started with a cold cache each time. As in [25], scalability was measured as
the maximum number of users that could be supported while keeping the response time below two seconds
for 90% of the HTTP requests.

6.3 Scalability Benefits of Invalidation Clues

Figure 7 plots the scalability of an application as a function of the invalidation strategy used by the DBSS,
for all three applications. The y-axis plots scalability, measured as specified in Section 6.2. On the x-axis,
we consider five cases: one corresponding to not using a DBSS, one corresponding to not using clues6, and
the other three corresponding to DBSS strategies based on different classes of clues: Clues (excl. DB clues),
which uses only parameter and result clues7, Clues (incl. DB clues), which uses parameter, result, and
database update clues (as presented in Section 4.2), and Hybrid, which uses the hybrid strategy presented
in Section 4.3.

In all applications, using a DBSS with invalidation clues significantly increased scalability. This agrees
with previous work [25], which can be viewed as having considered specific types of (non-database) clues.
Because the rightmost strategy, Hybrid, heuristically uses database update clues only when the increase
in scalability is higher than the overhead, it offers the most scalability, for all three applications. For the
bboard application, in which each HTTP request results in about ten database requests, with the poor cache
behavior when no clues are used, not even a small number of clients can be supported within the response
time threshold specified in Section 6.2. Also for the bboard application, the overhead of computing database
update clues is high relative to the decrease in invalidations. Hence, as Figure 7 shows, using database update
clues whenever required for precise invalidations results in worse scalability. Figure 7 thus confirms the claim
made in Section 4.3 that the use of database update clues must be carefully weighed against the expected
benefit.

6The scalability of this strategy is the same as the Minimal Template-Inspection Strategy (MTIS) of [25].
7The scalability of this strategy is the same as the Minimal View-Inspection Strategy (MVIS) of [25].
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Figure 7: Impact of invalidation clues on scalability. For comparison, we include the scalability
numbers without a DBSS.
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Figure 8: Reduction in invalidations due to our equality-optimal mapping algorithm.

6.4 Privacy Experiments

Figure 8 shows the reduction in the number of invalidations when we use our equality-optimal mapping
algorithm described in Section 5.4. The y-axis plots the percentage reduction in invalidations in using our
equality-optimal mapping over a simplistic mapping which maps an equal number of parameter values
to each place-holder. (The percentage reduction is a crude estimate of how much scalability improvement an
application can achieve by switching to an equality-optimal mapping.) On the x-axis, we plot the number
of place-holders, which we increase in steps of three. The parameter values were chosen according to the
Zipf-distribution we used in bookstore, over a domain of 100 possible parameter values. As expected, when
all parameter values are either mapped to a single place-holder or are mapped to separate place-holders, any
algorithm is as good as the equality-optimal algorithm. Similarly, when the number of place-holders is
large (right part of the graph), all mapping algorithms result in almost the same number of invalidations. In
other cases, however, the equality-optimal algorithm reduces invalidations by around 20%. Preliminary
sensitivity analysis shows that the benefits increase as the parameter distribution becomes more skewed.

Figure 9 plots the improvement in privacy due to using two mappings instead of one mapping, as described
in Section 5.5. The x-axis plots normalized privacy, measured as per the definition in that section. The y-axis
plots normalized scalability, measured as

max−Ij

max−min , where Ij is the number of invalidations for the jth data
point and max and min are the maximum and minimum, respectively, of the Ij over all data points j. For
the one mapping approach, we use an order-preserving encryption scheme in which multiple values could be
mapped to a single value. For the two mappings approach, we use an identity mapping, and the order-

optimal mapping described in Section 5.5. For a given scalability, with our two mapping approach, the
privacy is almost twice that of a one-mapping approach. Although these results are skewed by the specific
privacy measure we use, we believe that the factor of two gap between the curves demonstrates a significant
opportunity for using two-mapping approaches.
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Figure 9: Improvement in privacy on using two mappings instead of one mapping.

7 Summary

Database scalability services (DBSSs) are an extension of CDNs that offload work from and absorb load
spikes for individual application databases, thereby removing a key bottleneck for many web applications
without the expense/headaches of an over-provisioned server farm. This paper presented invalidations clues,
a general framework and techniques for enabling applications to reveal little data to the DBSS, yet pro-
vide sufficient information to limit unnecessary invalidations of results cached at the DBSS. Compared with
previous approaches, our proposed invalidation clues provide increased scalability to the DBSS for a target
security/privacy level, as well as more fine-grained control of this tradeoff. Using three realistic web appli-
cation benchmarks, we illustrated the issues and solutions for generating effective clues, e.g., by identifying
categories requiring database clues, and then we demonstrated the bottom-line scalability benefits of these
solutions on our DBSS prototype.
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