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Abstract

There has been substantial work developing simple, efticierregretalgorithms for a wide class of re-
peated decision-making problems including online routifiigese are adaptive strategies an individual can
use that give strong guarantees on performance even insadialy-changing environments. There has
also been substantial work on analyzing properties of Ngsiilileria in routing games. In this paper, we
consider the question: if each player in a routing game usesragret strategy, will behavior converge to
a Nash equilibrium? In general games the answer to this igueistknown to benoin a strong sense, but
routing games have substantially more structure.

In this paper we show that in the Wardrop setting of multicardity flow and infinitesimal agents, behavior
will approach Nash equilibrium (formally, on most days, tust of the flow will be close to the cost of the
cheapest paths possible given that flow) at a rate that degasignomially on the players’ regret bounds
and the maximum slope of any latency function. We also shaivtice-of-anarchy results may be applied
to these approximate equilibria, and also consider theefsite (non-infinitesimal) load-balancing model
of Azar [2].
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1 Introduction

There has been substantial work in learning theory and ghewryt on adaptivano-regretalgorithms for
problems of repeated decision-making. These algorithme kize property that in any online, repeated
game setting, their average loss per time step approachesftithe best fixed strategy in hindsight (or
better) over time. Moreover, the convergence rates are goibd: in Hannan’s original algorithm [18], the
number of time steps needed to achieve a gap with respect to the best fixed strategy in hindsight—
the “per time step regret’—is linear in the size of the gaivie This was reduced t®(log N) in more
recent exponential-weighting algorithms for this probl@a, 5, 15] (also called the problem of “combining
expert advice”). Most recently, a number of algorithms hlagen developed for achieving such guarantees
efficientlyin many settings where the number of choi¢éss exponential in the natural description-length
of the problem [20, 27, 29].

One specific setting where these efficient algorithms agpbnline routing. Given a grapi = (V, E)
and two distinguished nodes;.,.: andv.,q, the game for an individual player is defined as follows. Atrea
time stept, the player’s algorithm chooses a pa&hfrom v+ 10 veng, @nd simultaneously an adversary (or
nature) chooses a set of edge cdsfs.cz. The edge costs are then revealed and the player pays the cost
of its path. Even though the number of possible paths can penextial in the size of the graph, no-regret
algorithms exist (e.g., [20, 29]) that achieve running tisne convergence rates (to the cost of the best fixed
path in hindsight) which are polynomial in the size of theplrand the maximum edge cost. Moreover, a
number of extensions [1, 23] have shown how these algorittansbe applied even to the “bandit” setting
where only the cost of edges actually traversed (or everthadbtal cost of?;) is revealed to the algorithm.

Along a very different line of inquiry, there has also beercimtecent work omprice of anarchyresults.
Koutsoupias and Papadimitriou [21] defined gnee of anarchywhich is the ratio of the cost of an optimal
global objective function to the cost of the worst Nash eguium. Many subsequent results have studied
the price of anarchy in a wide range of computational proklémm job scheduling to facility location to
network creation games, and especially to problems ofmguti the Wardrop model, where the cost of an
edge is a function of the amount of traffic using that edge [®17 25, 10]. Such work implicitly assumes
that selfish individual behavior results in Nash equilibria

In this work we consider the question: if all players in a logtgame use no-regret algorithms to
choose their paths each day, what can we say about the dvehalVior of the system? In particular, the
no-regret property (also called Hannan Consistency) candveed as a naturalefinition of well-reasoned
self-interested behavior over time. Thus, if all players adapting their behavior in such a way, can we
say that the system as a whole will approach Nash equilit#iuBur main result is that in the Wardrop
setting of multicommadity flow and infinitesimal agents, ftavs will approach equilibrium in the sense
that al — ¢ fraction of the daily flows will have the property that at maste fraction of the agents in them
have more than anincentive to deviate from their chosen path, wheapproaches 0 at a rate that depends
polynomially on the size of the graph, the regret-boundsefalgorithms, and the maximum slope of any
latency functiont Moreover, we show that the one new parameter—the dependerslepe—is necessary.
In addition, we give stronger results for special cases ssdne case af parallel links and also consider
the finite-size (non-infinitesimal) load-balancing modeRaar [2].

One way our result can be viewed is as follows. No-regretrélgos are very compelling from the
point of view of individuals: if you use a no-regret algorittto drive to work each day, you will get a good

1A more traditional notion of approximate Nash equilibriueguires thaho player will have more thaa incentive to deviate
from her strategy. However, one cannot hope to achieve sgahrantee using arbitrary no-regret algorithms, sinch ailgorithms
allow players to occasionally try bad paths, and in fact seigberimentation is even necessary in bandit settings. Hfeosame
reason, one cannot hope tladitdays will be approximate-Nash. Finally, our guarantee makeyone worry that some users could
always do badly, falling in the minority on every day, but as we discuss in Section 5, theagoet property can be used to further
show that no player experiences many days in which her exgectst is much worse than the best path available on that day.



guarantee on your performance no matter what is causingesting (other drivers, road construction, or
unpredictable events). But it would be a shame if, were @r@yto use such an algorithm, this produced
globally unstable behavior. Our results imply that in theréivap routing model, so long as edge latencies
have bounded slope, we can view Nash equilibria as not justtdessteady-state or the result of adaptive
procedures specifically designed to find them, but in facthasirievitable result of individually-selfish
adaptive behavior by agents that do not necessarily knovedi@) what policies other agents are using.
Moreover, our results do not in fact require that users vailgtrategies that are no-regret in the worst-case,
as long as their behavior satisfies the no-regret propedythe sequence of flows actually observed.

Regret and Nash equilibria: At first glance, a result of this form seems that it should bemks given
that a Nash equilibrium is precisely a set of (pure or mixédtegies that are all no-regret with respect to
each other. Thus if the learning algorithms settle at adly thill have to settle at a Nash equilibrium. In fact,
for zero-summgames, no-regret algorithms when played against eachwthapproach a minimax optimal
solution [16]. However, it is known that even in small 2-pageneral-sungames, no-regret algorithms
need not approach a Nash equilibrium and can instead cyaiégwveng performance substantially worse
than any Nash equilibrium for all players. Indeed simplenegles are known where standard algorithms
will have this property with arbitrarily high probability3p].

Regret and Correlated equilibria: It is known that certain algorithms such as that of Hart and{@alell
[19], as well as any algorithms satisfying the stronger propof “no internal regret” [14], have the property
that the empirical distribution of play approachesoarelatedequilibrium. On the positive side, such results
are extremely general, apply to nearly any game includingimg, and do not require any bound on the
slopes of edge latencies. However, such resultaatamply that the daily flows themselves (or even the
average flow) are at all close to equilibrium. It could welltbat on each day, a substantial fraction of the
players experience latency substantially greater tharbéisé path given the flow (and we give a specific
example of how this can happen when edge-latencies haveinded slope in Section 2.4).

Related work: Fischer and Vocking [12] consider a specific adaptive dyinarta particular functional
form in which flow might naturally change over time) in the t®xt of selfish routing and prove results
about convergence of this dynamics to an approximateliest@mfiguration. In more recent work, they
study the convergence of a class of routing policies und@eaific model of stale information [13]. Most
recently, Fischer, Raecke, and Vocking [11] give a disteld procedure with especially good convergence
properties. The key difference between that work and outisaisthose results consider specific adaptive
strategies designed to quickly approach equilibrium. Imtigst, we are interested in showing convergence
for anyalgorithms satisfying the no-regret property. That ispef@ach player is using a different strategy,
without necessarily knowing or caring about what strategithers are using, then so long as all are no-
regret, we show they achieve convergence. In addition,usecafficient no-regret algorithms exist even in
the bandit setting where each agent gets feedback only &bawin actions [1, 23], our results can apply
to scenarios in which agents adapt their behavior based lgrvery limited information and there is no
communication at all between different agents.

Convergence time to Nash equilibrium in load balancing Hss heen studied. Earlier work studied
convergence time using potential functions, with the latiitn that only one player is allowed to move
in each time step; the convergence times derived dependéldeagppropriate potential functions of the
exact model [24, 8]. The work of Goldberg [17] studied a randwd model in which each user can select
a random delay over continuous time. This implies that onlg aser tries to reroute at each specific
time; therefore the setting was similar to that mentionedvab Even-Dar and Mansour [9] considered
a model where many users are allowed to move concurrenttydarived a logarithmic convergence rate
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for users following a centrally-moderated greedy algonithMost recently, Berenbrink et al. [4] showed
weaker convergence results for a specific distributed pabtoTo summarize, previous work studied the
convergence time to pure Nash equilibria in situations witentralized mechanism or specific protocol. In
contrast, we present fast convergence results for appegitdash equilibria in a non-centralized setting,
and our only assumption about the player strategies istilgtdre all no-regret.

Structure of this paper: For ease of exposition we first discuss the special caseglesaommodity flow,
where all users share the same start node and end node. \ieblyefgicusing on the time-average flow,
analyzing how that approaches equilibrium, and then ussethesults to prove convergence of the flows at
each time step. In Section 7 we show how to extend our resulteetgeneral case of multicommodity flow,
where different users may have different start and end nasheseven different subsets of allowable edges.
This model generalizes both multicommodity flow and the barinks restricted-machines model, and can
also model the notion that users traveling at different siroeday may not affect each other.

2 Preliminaries

2.1 The Model

When dealing with networks and flows, we adopt the notatiadus/ Roughgarden [26], which we sum-
marize here. The definitions in this section pertain to sxggimmodity flow; necessary changes for the
multicommodity flow setting are discussed in Section 7.

Let G = (V, E) be a directed network with a source vertex,,» and a sink vertex,,,. We allow
multi-edges but disallow self-loops, as self-loops araungldnt in this context. Let be the number of
nodes in the network, and let be the number of edges. LBtrepresent the set of simplg;q,+-venq paths
onG. Aflowis afunctionf : P — R*, such thay" ., fp = 1 (instances with other traffic rates may be
normalized accordingly). Each flow induces a unique flow agesdsuch that the floyi, on an edge has
the propertyf. = > p..cp fp. Each edge € E has an associated traffic-dependent, positive, continuous
non-decreasingatencyfunction /.. The latency of a patt® given a flowf is £p(f) = > cple(fe), i€,
the sum of the latencies of the edges in the path, given that flo

Let f1, £2,..., fT denote a series of flows from time 1 up to tirfle We usef to denote the time-
average flow, i.e.f. = + S0 ft.

We will assume all edge latency functions have rafigé], so the latency of a path i® is always
between O and — 1.

2.2 Flows at Nash Equilibria

Aflow f is atNash equilibriumif no user would prefer to reroute her traffic, given the ergstlow.

Proposition 2.1. (Wardrop [28]) A flow f is at Nash equilibrium if and only if for ever;, P, € P with
fP1 >0, gPl(f) < €P2(f)

It is useful to note that in this domain, the flows at Nash elgjuilm are those for which all flow-carrying
paths have the same latency. In addition, given our assamtitat all latency functions are continuous and
non-decreasing, one can prove the existence and uniquehissh equilibria:

Proposition 2.2. (Beckman et al. [3]) For every directed graph, there exists a Nash flow. Moreover, if
f, [ are Nash flows thefip(f) = £p(f') for everyvsiart-venqg path P.

We define the cost of a flow to be the average latency incurragséss on that flow:
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Definition 2.3. Define thecostC/(f) of a flow f to beC(f) = > cp le(fe) fe.

2.3 No-Regret Algorithms

Definition 2.4. Consider a series of flow&', f2, ..., fT and a user who has experienced latencieg?, . . ., ¢
over these flows. The per-time-stemgret of the user is the difference between her average latencyhand
latency of the best fixed path in hindsight, that is,

1 T
f;&—%&%—;}e;f (fo)-

An algorithm isno-regretif, for any sequence of flows, the expected regret (overmaierandomness in the
algorithm) goes to 0 && goes to infinity.

Here and in the rest of this paper, excluding Section 8, wesiden infinitesimal users using a finite
number of different algorithms; in this setting, we can getaf the expectation. In particular, if each user
is running a no-regret algorithm, then the average regret osers also approaches 0. Thus, this means we
can make the following assumption:

Assumption 2.5. The series of flowg!, f2, ... satisfies

—ZZK IHfE<R(T) + = glel%ZZK

t=1 ecFE t=1 eeP

whereR(T") — 0 asT — oo. The functionR(7") may depend on the size of the network and its maximum
possible latency. We then defifie as the number of time steps required to BéT") = e.

For example, for the case of a network consisting of only tedes andn parallel edges, exponential-
weighting algorithms [22, 5, 15] giv&, = O( logm). For general graphs, results of Kalai and Vempala

yield T, = O(mnglog") [20]. For general graphs where an agent can observe onhattsqost, results of
Awerbuch and Kleinberg yield, = O({—Sm), whered is the length of the longest path [1].

2.4 Approaching Nash Equilibria

We now need to specify in what sense flow will be approachingaghNequilibrium. The first notion one
might consider is thd.; distance to some true Nash flow. However, if some edges hartystat latency
functions, it is possible for a flow to have regret near 0 artdstit be far in L, distance to a true Nash flow.
A second natural notion would be to say that the flbwas the property that no user has cost much more
than the cheapest path givénHowever, notice that the no-regret property allows useoxtasionally take
long paths, so long as they perform well on average (and trafgorithms for the bandit problem will have
exploration steps that do just that [1, 23]). So, one canrpeée that on any time stegdl users are taking
cheap paths.

Instead, we require thatostusers be taking a nearly-cheapest path gifeSpecifically,

Definition 2.6. A flow f is ate-Nash equilibrium if the average cost under this flow is withiof the
minimum cost path under this flow, i.€:(f) — minpep > cple(fe) < €.

Note that Definition 2.6 implies that at most & fraction of traffic can have more than,& incentive
to deviate from their path, and as a result is very similahtodefinition of(e, §)-Nash equilibria in [11].
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We also are able to show that one can apply price-of-anaesuits toe-Nash flows; we discuss this in
Section 6.

We will begin by focusing on théme-averagdlow f showing that for no-regret algorithms, this flow
is approaching equilibrium. That is, for a givéhwe will give bounds on the number of time steps befpre
is e-Nash. After analyzingg, we then extend our analysis to show that in factfarsttime stepg, the flow
ft itself is e-Nash. To achieve bounds of this form, which we show in Sadsiowe will however need to
lose an additional factor polynomial in the size of the grafdgain, we cannot hope to say thgtis e-Nash
for all (sufficiently large) time-steps because no-regret algorithms may occasionally take latigspand
an “adversarial” set of such algorithms may occasionallya&k long paths at the same time.

Dependence on slope: Our convergence rates will depend on the maximum skoplowed for any la-
tency function. To see why this is necessary, consider tke oatwo parallel links, where one edge has
latency O up to a load of/3 and then rises immediately to 1, and the other edge has ya€euap to a load

of 2/3 and then rises directly to 1. In this case the Nash cost isdn@oreover forany flow f’ we have
minpep Y cple(fl) = 0. Thus, the only wayf’ can bee-Nash is for it to actually have low cost, which
means the algorithm must precisely be at/a-2/3 split. If players use no-regret algorithms, traffic will
instead oscillate, each edge having cost 1 on about halfale a@nd each player incurring cost 1 on not
much more than half the days (and thus not having much redfletyever, none of the daily flows will be
e-Nash.

3 Infinitesimal Users: Linear Latency Functions

We begin as a warm-up with the easiest case, infinitesimat @l linear latency functions, which sim-
plifies many of the arguments. In particular, for linear hate functions, the latency of any edge given
the average fIOV\f is guaranteed to be equal to the average latency of that adgeime, i.e. /.( fe) =

LSt (fh) forall e,

Theorem 3.1. Suppose the latency functions are linear. Theriffor 7., the average flowf is e-Nash, i.e.

C(f) Se+ m};nzge(ﬂ)-

ecP

Proof. From the linearity of the latency functions, we have foreallﬁe(fe) = %Zleﬂe(ﬁ). Since

C(f1) f is a convex function of the flow, this implies(f.)fo < & S°1, €.(f1) f. Summing over alk,

we have

c(f) < F3L.0(Y
< e+minp F Zthl >eeple(fl) (by Assumption 2.5)
= e+ minp Y, ple(fe) (by linearity)

O

Corollary 3.2. Assume that all latency functions are linear. On generabgis if all agents use the Kalai-
Vempala algorithm [20], the average flow converges toecadash equilibrium atl, = O(%). On
networks consisting of two nodes and parallel links, if all agents use optimized “combining expe
advice”-style algorithms (with each edge an expert), therage flow converges to anaNash equilibrium
atT. = O(*%&™).



Note that we not only proved that the average flow approachesNash equilibrium, but as an inter-
mediate step in our proof we showed thatual average cost incurred by the users is at naagbrse than
the best path in the average flow.

4 Infinitesimal Users: General Latency Functions

The case of general latency functions is more complicatedus® the first and third transitions in the proof
above do not apply. Here, the additive term depends on thémiax slope of any latency function.

Theorem 4.1. Let¢’ = ¢ + 2y/sen. Then for general functions with maximum slopdor 7' > T, the
average flow ig’-Nash, i.e.

Y telfo)fe < e+ 2y/sen +min Y le(fe)

eckE eeP

Before giving the proof, we list several quantities we wiled to relate:

(the costoff) > Le(fe)fe (1)
eeE
1 T
“ A . . " t “
(the “cost off in hindsight’) - SN te(fhfe 2)
t=1ecE
1 T
(the average cost of flows up to il S (Sl (3)
t=1ecFE
1 T
. . . . - t
(the cost of the best path in hindsight) m};n;) o ; Ce(fh (4)
(the cost of the best path give) min > Le(fe) (5)
ecP

We now begin with a lemma:
Lemma 4.2. For general latency functions with maximum slopé4) < \/sen + (5).

Proof of Lemma 4.2First, observe that, because our latency functions aredeoreasing, the average la-
tency of an edge must be less than or equal to the latencytafdige as seen by a random user on a random

day. Thatis, for alk, f. "1 €. (f!) < SSF, € (fO) fL.
If we define}_ ., ec = ¢, this gives us

T T
1 ;1 1 .
€ot i ) Lelffe 2 D Le(FOIE 2 7D Le(fD e
t=1 t=1 t=1
for all e, since this equation is bounded from below by (4) and fromvallly e + (4). We can rewrite
this to get
1 T

€02 = S L= fo) 2 0
t=1



for all e, and thus

(ee(fé) - ee(fe))(fi - fe) 2 0

B

1
Ve, €e > T
t=1
This is a very useful equation, as it gives tight bounds omeafationship between the difference between
the latency of the average flow on an edge and the averageyatarthat edge.
From the bound on the maximum slope of any latency functiamknow that|f! — f| > |fe(f!) —

l.(f.)|/s and thus

05~ el <[5 (17— €00) (52 - £2) ©
for all e.
By properties of variance, we then get
1 T T -
= AR Z V) — G~ )
t=1 t=1
Using equation (6) above, this yields
T
Z (D) = Le(fe)) < V5ee. (7)
t:l
This gives ug4) < > p /36 + (5) < /sen + (5), because in the worst case,= <. O

We now use a second lemma
Lemma 4.3. For general latency functions with maximum slopél) < \/sen + (2).

Proof of Lemma 4.3Equation (7) above directly gives (3) < > . p JSeefo + (2). We then use the fact
that f, < 1 for all e to obtain the desired result. O

Given the above lemmas we now present the proof of Theorem 4.1

Proof of Theorem 4.1Since(3) < e + (4) by Assumption 2.5, an(R) < (3) by convexity, we get

(1) < Vsen+ (2) < Vsen+ (3) < e+ sen+ (4) < e+ 2y/sen + (5)

as desired. O

Corollary 4.4. Lete = e + 2/sen. Assume that all latency functions are positive, non-desirg, and
continuous, with maximum slope On general graphs, if all agents use the Kalai-Vempala algm [20],

the average flow converges to @aNash equilibrium afl, = O(M) = O(%ﬂ“’g") On networks
consisting of two nodes and parallel links, if all agents use optimized “combining erpadvice”-style
algorithms, the average flow converges toeaiNash equilibrium afl, = O(logm) = O(m).

e’d

Once again we remark that not only have we proved that theigedtow approacheg-Nash equilib-
rium, but as an intermediate step in our proof we showeddtiaial average cost obtained by the users is at
moste’ worse than the best path in the average flow.



5 Infinitesimal Users: How Bad is the Traffic Today?

Here we present results applicable to general graphs amdtajdanctions showing that anosttime steps,
the flow will be ate-Nash equilibrium.

Theorem 5.1. On general graphs with general latency functions with maximslopes, for all but a
(ms'/*el/4) fraction of time steps up to tiME, f!is a (e 4+ 2y/sen + 2m3/4s'/4el/4)-Nash flow. We can

rewrite this as: for all but are’ fraction of time steps up t®,, f! is ane’-Nash flow fore = (L)

smi4s2n2

Proof. As shown in equation (6), R
\V/5€e 2 we(fé) —Le(fe)

for all edges. Thus, for all edges, for all bt 4el/* of the time steps,
YA > 10o(f1) = Le(fe)].

Using a union bound over edges, this implies that on all buts&'*e!/* fraction of the time stepsll
edges have A
31/452/4 2 |€e(fet) — Le(fe)]-

From this, it follows directly that on most time steps, thatoof the best path givefi differs from the cost
of the best path giverf by at mostm?/4s!/4¢}/4. Also on most time steps, the cost incurred by flgtv
differs from the cost incurred by floyi by at mostin3/4s!/4¢}/4, Thus sincef is an ¢ + 2y/sen)-Nash
equilibrium, f* is an €+ 2/sen + 2m3/*s/4¢!/*)-Nash equilibrium on all but a.s/4¢!/* fraction of time
steps.

O

Corollary 5.2. On general graphs with general latency functions with maximslopes, for all but a
(ms'/%€'/%) fraction of time steps up to tine = T, the expected average cesty",_, ¢! incurred by any
user is at moste 4 21/sen + m>/*s'/4e/*) worse than the cost of the best path on that time step.

This demonstrates that no-regret algorithms are incewtivepatible in a network setting: if a player
knows that all other players are using no-regret algorithihrese is no strategy that will significantly improve
her expected cost on more than a small fraction of days. Byguaino-regret algorithm, she gets the
guarantee that on most time steps her expected cost is withie epsilon of the cost of the best path given
the flow for that day.

Proof sketch for Corollary 5.2From the proof of Theorem 5.1 we see that on most days, thettst
best path given the flow for that day is withim®/4s'/4€!/4 of the cost of the best path givef which is at
most2,/sen worse than the cost of the best path in hindsight. Combiriirgwith the no-regret property
achieved by each user gives the desired result.

6 e-Nash and the Price of Anarchy

In this section, we sketch how one can apply price-of-anarebults, which bound the relationship between
a Nash flow and the optimum flow, teNash equilibria.

Claim 6.1. For every networka and flow f at e-Nash equilibrium onG, there exists a network’ that
approximatess and a flowf’ that approximateg such that: (a)f’ is a Nash flow o/, (b) the cost off’
on & is at moste less than the cost of on G, and (c) the cost of the optimal flow @¥ is within /¢ of
the cost of the optimal flow af. These approximations allow one to apply price-of-anangsults fromy’
andG’ to f andG.



Proof sketch:Note that sincef is ate-Nash equilibrium orG, then at most &/ fraction of users are
experiencing costs more thare worse than the cost of the best path giveriWe can modifyG to embed
the costs associated with these “meandering” users sutkhthaosts experienced by the remaining users
do not change. We then rescale the latency functions andinmgmdlow so that we once more have one
unit of flow; the total cost incurred by the rescaled flgtnon the new network has decreased by at mpst
since meandering users were responsible for no morectbthe original cost.

Notice now that the cost of the worst flow-carrying path is at mogte worse than the cost of the
cheapest path given the flow. We now further augment the mktswthat all flow-carrying paths have cost
exactlyc. One can show that this increases the cost of any path (aedftany flow in the network) by no
more thany/e. Now observe that’ is an exact Nash flow i’ This gives us

ca(f) < Alear (fOPTEN) + e < Alca(FOFT D) + Ve) + ¢

whereA is the price of anarchy i, ¢ (k) denotes the cost of a flowin a networkN, and fO*T(V)
denotes the min-cost flow in a netwalk.

In particular, when all latency functions are linear, we agply the Roughgarden-Tardos result bound-
ing the price of anarchy by/3 [25].

7 Infinitesimal Users: Multicommodity Flow

In this section, we show how to extend our results to thergetif multicommodity flow. Here, every user is
associated with a commodity. Different commodities carehdifferent start and end vertices and even may
have access to different subgraphs of the network. Thiomaif different allowable subgraphs is natural
in the context of routing and can model issues such as tirmeebsariations. For example, if one edge
represents a given road at 8:30AM and another the same r@80&M, then users who must get to work
by 9:00AM would be restricted to the first edge, and the twaesdgay therefore end up with quite different
congestions even at Nash equilibrium. We now summarizegbessary changes to our definitions for this
multicommodity setting.

A commodity; has an associated start vertgx an end vertex;, and an allowed subgrapti; of G.
Let P; represent the set of simplg-e; paths onG;. Let P represent the union of afP;. Let f; be the
total amount of commodity. A multicommodity flows a functionf : » — R*, such thady, f; = 1 and

> pep, fp = fiforalli.
Similar to Assumption 2.5, we obtain the following multicomadity no-regret assumption:

Assumption 7.1. For every commodity, the series of flowg!, f2, ... satisfies

TfZZZe (fHrt, < —manZ€ (5

t=1ecF ‘t=1ecP

whereR(T') — 0 asT increases and wheig ; is the flow of commodity on edger at timet.
Summing over these equations, we obtain

_ZZE MHft < R(T ZflmmZZE

t=1ecFE ‘t=1ecP

As before, the functiork(7") may depend on the size of the network and its maximum podsitaacy,
and we defind’, as the number of time steps required to GéT") = .



Definition 7.2. A multicommaodity flow f is said to be at-Nash equilibrium if the average cost under this
flow is within e of the weighted costs of the minimum cost paths availableatheommodity under this

flow, i.e. C(f) — 32, fiminpep, oep Le(fe) < .

Given these new definitions, the proofs of Theorems 3.1,ahd,5.1 all proceed analogously to yield
the following theorems and corollaries:

Theorem 7.3. In the setting of linear latency functions and multicommyélow, forT" > T¢, the average
flow f is ate-Nash equilibrium.

Corollary 7.4. Assume the setting of multicommaodity flow and linear latémegtions. On general graphs,

if all agents use the Kalai-Vempala algorithm [20], the aage flow converges to aaNash equilibrium at

T, = O(%). On networks consisting of two nodes andparallel links, if all agents use optimized
“combining expert advice”-style algorithms (with each edgn expert), the average flow converges to an
e-Nash equilibrium af, = O(*%™).

Theorem 7.5.Lete’ = ¢+2/sen. Then for general functions with maximum slap@ the multicommodity
flow setting, forl’ > T, the average flow ig'-Nash.

Corollary 7.6. Assume the multicommodity setting and that all latencytfons are positive, non-decreasing,
and continuous, with maximum slopeOn general graphs, if all agents use the Kalai-Vempala aigm
[20], the average flow converges to aRNash equilibrium afl, = O(%) = O(%ﬂbg"). On net-
works consisting of two nodes andparallel links, if all agents use optimized “combining erpadvice”-
style algorithms, the average flow converges te’aNash equilibrium aff, = O(k’;#) = O(”Qsi#).
Theorem 7.7. In the multicommadity setting, on general graphs with gahktency functions, for all but

a (ms'/4€!/*) fraction of time steps up to tim&, f*is a (e + 2v/sen + 2m>/*s'/4!/*)-Nash flow. We can
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rewrite this as: for all but are’ fraction of time steps up t®,, f* is ane’-Nash flow fore = (m)
Corollary 7.8. In the multicommaodity setting, on general graphs with gahkatency functions with maxi-
mum slopes, for all but a (ms'/4¢'/4) fraction of time steps up to tini€ = T., the average cost 3/, ¢!
incurred by any user is at mogt + 2,/sen + m?®/*s/4¢1/4) worse than the cost of the best path on that
time step.

Remark 7.9. The price-of-anarchy results sketched in Section 6 alsenelxto the multicommodity flow
setting.

Remark 7.10. In real-world traffic, it would be nonsensical if a user codtize part-way to work on roads
that exist at 9:30AM and the rest of the way on the roads thistezk at 8:30AM that day. If we wanted
to capture the notion that users may have a choice of whemvelfrour current model would allow such
spurious paths. To avoid this, one could extend our defimstan that each commodity would be associated
with a start node, an end node, a subgraph, and a set of alloabrs. Permissible paths for a user would
be those consisting only of edges all with the same allowable » and all from the allowed subgraph. All
the results in this section hold given this further extendefihition of commaodities.

8 Discrete Users: Parallel Links

In contrast with the previous sections, we now consideréteaisers, where we denote title user weight
asw;. Without loss of generality, we assume that the weights arealized such that ;" , w; = 1. We
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limit ourselves in this section to the single-commoditysien of the parallel links model and to functions
with latency equal to the load, i.e. for a patlve havel, = f.. For each uset, we let the latency excluding
her own patte at timet be /. (! \ i) and her average latency on liakbe ¢, (f. \ i) = =+ ST (fEN ),
wheref! \ i = f!if useri is not routing on linke and f! \ i = f! — w; otherwise. We always exclude the
ith player from the latency function, since ttib player always pays for its weight.

Next we observe that at timtethere always exists a path with load at most the average load

Observation 8.1. At any time step, for every uset, there exists a pathsuch thau?e(f6 \i) < 1‘Tw

The following theorem differs from other theorems in the gram the sense that it is an expectation
result and holds for every user.

Theorem 8.2. Consider the parallel links model, with latency functiongls that the latency equals the
load. Assume that each discrete userses an optimized best expert algorithm. Then for all usersall
T > 0(*m),

Fewglle(f\D) < - e,

whereg;, is the distribution over then links output by the best expert algorithm.

Proof. By observation 8.1 we have that there exists a path with geecast at mosif%”i. Since usel is
using an optimized best expert algorithm and the maximahlat is1, we have that

T logm 1—w; logm 1 —w;
ZEeth [€e(fE\ 7)] < min £ ( fe \/T i \/T .
ecE

t=1

where the last inequality holds faF > O(*%&™). O

Consider an instance of this model where every user playsramly at random. The resulting flow is
clearly a Nash equilibrium, and the expected latency forithelayer is% excluding its own weight.
We thus have shown that the expected latency experienceddyuser is at moste worse than this Nash
latency.

9 Conclusions

In this paper, we consider the question: if each player inuimg game uses a no-regret strategy, will
behavior converge to a Nash equilibrium, and under whatitiond and in what sense? Our main result is
that in the setting of multicommodity flow and infinitesimaeats, al — e fraction of the daily flows are

at e-Nash equilibrium for approaching O at a rate that depends polynomially on theeayegret bounds
and the maximum slope of any latency function. Moreover, asthe dependence on slope is necessary.

Even for the case of reasonable (bounded) slopes, howeweboonds for general nonlinear latencies

are substantially worse than our bounds for the linear ckse.instance if agents are running the Kalai-
Vempala algorithm [20], we get a bound @f(mnlog") on the number of time steps needed for the time-

average flow to reach aaNash equilibrium in the linear case, hﬂtm) for general latencies. We
do not know if these bounds in the general case can be impréwvedidition, our bounds on the daily flows
lose additional polynomial factors which we suspect ardigbt.
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