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Abstract

There has been substantial work developing simple, efficient no-regretalgorithms for a wide class of re-
peated decision-making problems including online routing. These are adaptive strategies an individual can
use that give strong guarantees on performance even in adversarially-changing environments. There has
also been substantial work on analyzing properties of Nash equilibria in routing games. In this paper, we
consider the question: if each player in a routing game uses ano-regret strategy, will behavior converge to
a Nash equilibrium? In general games the answer to this question is known to beno in a strong sense, but
routing games have substantially more structure.
In this paper we show that in the Wardrop setting of multicommodity flow and infinitesimal agents, behavior
will approach Nash equilibrium (formally, on most days, thecost of the flow will be close to the cost of the
cheapest paths possible given that flow) at a rate that depends polynomially on the players’ regret bounds
and the maximum slope of any latency function. We also show that price-of-anarchy results may be applied
to these approximate equilibria, and also consider the finite-size (non-infinitesimal) load-balancing model
of Azar [2].
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1 Introduction

There has been substantial work in learning theory and game theory on adaptiveno-regretalgorithms for
problems of repeated decision-making. These algorithms have the property that in any online, repeated
game setting, their average loss per time step approaches that of the best fixed strategy in hindsight (or
better) over time. Moreover, the convergence rates are quite good: in Hannan’s original algorithm [18], the
number of time steps needed to achieve a gap ofε with respect to the best fixed strategy in hindsight—
the “per time step regret”—is linear in the size of the gameN . This was reduced toO(log N) in more
recent exponential-weighting algorithms for this problem[22, 5, 15] (also called the problem of “combining
expert advice”). Most recently, a number of algorithms havebeen developed for achieving such guarantees
efficientlyin many settings where the number of choicesN is exponential in the natural description-length
of the problem [20, 27, 29].

One specific setting where these efficient algorithms apply is online routing. Given a graphG = (V,E)
and two distinguished nodesvstart andvend, the game for an individual player is defined as follows. At each
time stept, the player’s algorithm chooses a pathPt from vstart to vend, and simultaneously an adversary (or
nature) chooses a set of edge costs{ct

e}e∈E . The edge costs are then revealed and the player pays the cost
of its path. Even though the number of possible paths can be exponential in the size of the graph, no-regret
algorithms exist (e.g., [20, 29]) that achieve running timeand convergence rates (to the cost of the best fixed
path in hindsight) which are polynomial in the size of the graph and the maximum edge cost. Moreover, a
number of extensions [1, 23] have shown how these algorithmscan be applied even to the “bandit” setting
where only the cost of edges actually traversed (or even justthe total cost ofPt) is revealed to the algorithm.

Along a very different line of inquiry, there has also been much recent work onprice of anarchyresults.
Koutsoupias and Papadimitriou [21] defined theprice of anarchy, which is the ratio of the cost of an optimal
global objective function to the cost of the worst Nash equilibrium. Many subsequent results have studied
the price of anarchy in a wide range of computational problems from job scheduling to facility location to
network creation games, and especially to problems of routing in the Wardrop model, where the cost of an
edge is a function of the amount of traffic using that edge [6, 7, 21, 25, 10]. Such work implicitly assumes
that selfish individual behavior results in Nash equilibria.

In this work we consider the question: if all players in a routing game use no-regret algorithms to
choose their paths each day, what can we say about the overallbehavior of the system? In particular, the
no-regret property (also called Hannan Consistency) can beviewed as a naturaldefinitionof well-reasoned
self-interested behavior over time. Thus, if all players are adapting their behavior in such a way, can we
say that the system as a whole will approach Nash equilibrium? Our main result is that in the Wardrop
setting of multicommodity flow and infinitesimal agents, theflows will approach equilibrium in the sense
that a1 − ε fraction of the daily flows will have the property that at mostanε fraction of the agents in them
have more than anε incentive to deviate from their chosen path, whereε approaches 0 at a rate that depends
polynomially on the size of the graph, the regret-bounds of the algorithms, and the maximum slope of any
latency function.1 Moreover, we show that the one new parameter—the dependenceon slope—is necessary.
In addition, we give stronger results for special cases suchas the case ofn parallel links and also consider
the finite-size (non-infinitesimal) load-balancing model of Azar [2].

One way our result can be viewed is as follows. No-regret algorithms are very compelling from the
point of view of individuals: if you use a no-regret algorithm to drive to work each day, you will get a good

1A more traditional notion of approximate Nash equilibrium requires thatno player will have more thanε incentive to deviate
from her strategy. However, one cannot hope to achieve such aguarantee using arbitrary no-regret algorithms, since such algorithms
allow players to occasionally try bad paths, and in fact suchexperimentation is even necessary in bandit settings. For the same
reason, one cannot hope thatall days will be approximate-Nash. Finally, our guarantee may make one worry that some users could
always do badly, falling in theε minority on every day, but as we discuss in Section 5, the no-regret property can be used to further
show that no player experiences many days in which her expected cost is much worse than the best path available on that day.
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guarantee on your performance no matter what is causing congestion (other drivers, road construction, or
unpredictable events). But it would be a shame if, were everyone to use such an algorithm, this produced
globally unstable behavior. Our results imply that in the Wardrop routing model, so long as edge latencies
have bounded slope, we can view Nash equilibria as not just a stable steady-state or the result of adaptive
procedures specifically designed to find them, but in fact as the inevitable result of individually-selfish
adaptive behavior by agents that do not necessarily know (orcare) what policies other agents are using.
Moreover, our results do not in fact require that users follows strategies that are no-regret in the worst-case,
as long as their behavior satisfies the no-regret property over the sequence of flows actually observed.

Regret and Nash equilibria: At first glance, a result of this form seems that it should be obvious given
that a Nash equilibrium is precisely a set of (pure or mixed) strategies that are all no-regret with respect to
each other. Thus if the learning algorithms settle at all, they will have to settle at a Nash equilibrium. In fact,
for zero-sumgames, no-regret algorithms when played against each otherwill approach a minimax optimal
solution [16]. However, it is known that even in small 2-player general-sumgames, no-regret algorithms
need not approach a Nash equilibrium and can instead cycle, achieving performance substantially worse
than any Nash equilibrium for all players. Indeed simple examples are known where standard algorithms
will have this property with arbitrarily high probability [30].

Regret and Correlated equilibria: It is known that certain algorithms such as that of Hart and Mas-Colell
[19], as well as any algorithms satisfying the stronger property of “no internal regret” [14], have the property
that the empirical distribution of play approaches acorrelatedequilibrium. On the positive side, such results
are extremely general, apply to nearly any game including routing, and do not require any bound on the
slopes of edge latencies. However, such results donot imply that the daily flows themselves (or even the
average flow) are at all close to equilibrium. It could well bethat on each day, a substantial fraction of the
players experience latency substantially greater than thebest path given the flow (and we give a specific
example of how this can happen when edge-latencies have unbounded slope in Section 2.4).

Related work: Fischer and Vöcking [12] consider a specific adaptive dynamics (a particular functional
form in which flow might naturally change over time) in the context of selfish routing and prove results
about convergence of this dynamics to an approximately stable configuration. In more recent work, they
study the convergence of a class of routing policies under a specific model of stale information [13]. Most
recently, Fischer, Raecke, and Vöcking [11] give a distributed procedure with especially good convergence
properties. The key difference between that work and ours isthat those results consider specific adaptive
strategies designed to quickly approach equilibrium. In contrast, we are interested in showing convergence
for anyalgorithms satisfying the no-regret property. That is, even if each player is using a different strategy,
without necessarily knowing or caring about what strategies others are using, then so long as all are no-
regret, we show they achieve convergence. In addition, because efficient no-regret algorithms exist even in
the bandit setting where each agent gets feedback only aboutits own actions [1, 23], our results can apply
to scenarios in which agents adapt their behavior based on only very limited information and there is no
communication at all between different agents.

Convergence time to Nash equilibrium in load balancing has also been studied. Earlier work studied
convergence time using potential functions, with the limitation that only one player is allowed to move
in each time step; the convergence times derived depended onthe appropriate potential functions of the
exact model [24, 8]. The work of Goldberg [17] studied a randomized model in which each user can select
a random delay over continuous time. This implies that only one user tries to reroute at each specific
time; therefore the setting was similar to that mentioned above. Even-Dar and Mansour [9] considered
a model where many users are allowed to move concurrently, and derived a logarithmic convergence rate
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for users following a centrally-moderated greedy algorithm. Most recently, Berenbrink et al. [4] showed
weaker convergence results for a specific distributed protocol. To summarize, previous work studied the
convergence time to pure Nash equilibria in situations witha centralized mechanism or specific protocol. In
contrast, we present fast convergence results for approximate Nash equilibria in a non-centralized setting,
and our only assumption about the player strategies is that they are all no-regret.

Structure of this paper: For ease of exposition we first discuss the special case of single-commodity flow,
where all users share the same start node and end node. We begin by focusing on the time-average flow,
analyzing how that approaches equilibrium, and then use those results to prove convergence of the flows at
each time step. In Section 7 we show how to extend our results to the general case of multicommodity flow,
where different users may have different start and end nodes, and even different subsets of allowable edges.
This model generalizes both multicommodity flow and the parallel links restricted-machines model, and can
also model the notion that users traveling at different times of day may not affect each other.

2 Preliminaries

2.1 The Model

When dealing with networks and flows, we adopt the notation used by Roughgarden [26], which we sum-
marize here. The definitions in this section pertain to single-commodity flow; necessary changes for the
multicommodity flow setting are discussed in Section 7.

Let G = (V,E) be a directed network with a source vertexvstart and a sink vertexvend. We allow
multi-edges but disallow self-loops, as self-loops are redundant in this context. Letn be the number of
nodes in the network, and letm be the number of edges. LetP represent the set of simplevstart-vend paths
onG. A flow is a functionf : P → R+, such that

∑

P∈P
fP = 1 (instances with other traffic rates may be

normalized accordingly). Each flow induces a unique flow on edges such that the flowfe on an edgee has
the propertyfe =

∑

P :e∈P fP . Each edgee ∈ E has an associated traffic-dependent, positive, continuous,
non-decreasinglatencyfunction `e. The latency of a pathP given a flowf is `P (f) =

∑

e∈P `e(fe), i.e.,
the sum of the latencies of the edges in the path, given that flow.

Let f1, f2, . . . , fT denote a series of flows from time 1 up to timeT . We usef̂ to denote the time-
average flow, i.e.,̂fe = 1

T

∑T
t=1 f t

e.
We will assume all edge latency functions have range[0, 1], so the latency of a path inP is always

between 0 andn − 1.

2.2 Flows at Nash Equilibria

A flow f is atNash equilibriumif no user would prefer to reroute her traffic, given the existing flow.

Proposition 2.1. (Wardrop [28]) A flowf is at Nash equilibrium if and only if for everyP1, P2 ∈ P with
fP1

> 0, `P1
(f) ≤ `P2

(f).

It is useful to note that in this domain, the flows at Nash equilibrium are those for which all flow-carrying
paths have the same latency. In addition, given our assumption that all latency functions are continuous and
non-decreasing, one can prove the existence and uniquenessof Nash equilibria:

Proposition 2.2. (Beckman et al. [3]) For every directed graphG, there exists a Nash flow. Moreover, if
f, f ′ are Nash flows theǹP (f) = `P (f ′) for everyvstart-vend pathP .

We define the cost of a flow to be the average latency incurred byusers on that flow:
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Definition 2.3. Define thecostC(f) of a flowf to beC(f) =
∑

e∈E `e(fe)fe.

2.3 No-Regret Algorithms

Definition 2.4. Consider a series of flowsf1, f2, . . . , fT and a user who has experienced latenciesc1, c2, . . . , cT

over these flows. The per-time-stepregretof the user is the difference between her average latency andthe
latency of the best fixed path in hindsight, that is,

1

T

T
∑

t=1

ct − min
P∈P

1

T

T
∑

t=1

∑

e∈P

`e(f
t
e).

An algorithm isno-regretif, for any sequence of flows, the expected regret (over internal randomness in the
algorithm) goes to 0 asT goes to infinity.

Here and in the rest of this paper, excluding Section 8, we consider infinitesimal users using a finite
number of different algorithms; in this setting, we can get rid of the expectation. In particular, if each user
is running a no-regret algorithm, then the average regret over users also approaches 0. Thus, this means we
can make the following assumption:

Assumption 2.5. The series of flowsf1, f2, . . . satisfies

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e ≤ R(T ) +

1

T
min
P∈P

T
∑

t=1

∑

e∈P

`e(f
t
e)

whereR(T ) → 0 asT → ∞. The functionR(T ) may depend on the size of the network and its maximum
possible latency. We then defineTε as the number of time steps required to getR(T ) = ε.

For example, for the case of a network consisting of only two nodes andm parallel edges, exponential-
weighting algorithms [22, 5, 15] giveTε = O( 1

ε2 log m). For general graphs, results of Kalai and Vempala

yield Tε = O(mn log n
ε2

) [20]. For general graphs where an agent can observe only its path cost, results of

Awerbuch and Kleinberg yieldTε = Õ(d7m
ε3

), whered is the length of the longest path [1].

2.4 Approaching Nash Equilibria

We now need to specify in what sense flow will be approaching a Nash equilibrium. The first notion one
might consider is theL1 distance to some true Nash flow. However, if some edges have nearly-flat latency
functions, it is possible for a flow to have regret near 0 and yet still be far inL1 distance to a true Nash flow.
A second natural notion would be to say that the flowf has the property that no user has cost much more
than the cheapest path givenf . However, notice that the no-regret property allows users to occasionally take
long paths, so long as they perform well on average (and in fact algorithms for the bandit problem will have
exploration steps that do just that [1, 23]). So, one cannot expect that on any time stepall users are taking
cheap paths.

Instead, we require thatmostusers be taking a nearly-cheapest path givenf . Specifically,

Definition 2.6. A flow f is at ε-Nash equilibrium if the average cost under this flow is within ε of the
minimum cost path under this flow, i.e.C(f)− minP∈P

∑

e∈P `e(fe) ≤ ε.

Note that Definition 2.6 implies that at most a
√

ε fraction of traffic can have more than a
√

ε incentive
to deviate from their path, and as a result is very similar to the definition of(ε, δ)-Nash equilibria in [11].
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We also are able to show that one can apply price-of-anarchy results toε-Nash flows; we discuss this in
Section 6.

We will begin by focusing on thetime-averageflow f̂ , showing that for no-regret algorithms, this flow
is approaching equilibrium. That is, for a givenTε we will give bounds on the number of time steps beforef̂
is ε-Nash. After analyzinĝf , we then extend our analysis to show that in fact formosttime stepst, the flow
f t itself is ε-Nash. To achieve bounds of this form, which we show in Section 5, we will however need to
lose an additional factor polynomial in the size of the graph. Again, we cannot hope to say thatf t is ε-Nash
for all (sufficiently large) time-stepst, because no-regret algorithms may occasionally take long paths, and
an “adversarial” set of such algorithms may occasionally all take long paths at the same time.

Dependence on slope: Our convergence rates will depend on the maximum slopes allowed for any la-
tency function. To see why this is necessary, consider the case of two parallel links, where one edge has
latency 0 up to a load of1/3 and then rises immediately to 1, and the other edge has latency 0 up to a load
of 2/3 and then rises directly to 1. In this case the Nash cost is 0, and moreover forany flow f ′ we have
minP∈P

∑

e∈P `e(f
′
e) = 0. Thus, the only wayf ′ can beε-Nash is for it to actually have low cost, which

means the algorithm must precisely be at a1/3-2/3 split. If players use no-regret algorithms, traffic will
instead oscillate, each edge having cost 1 on about half the days and each player incurring cost 1 on not
much more than half the days (and thus not having much regret). However, none of the daily flows will be
ε-Nash.

3 Infinitesimal Users: Linear Latency Functions

We begin as a warm-up with the easiest case, infinitesimal users and linear latency functions, which sim-
plifies many of the arguments. In particular, for linear latency functions, the latency of any edge given
the average floŵf is guaranteed to be equal to the average latency of that edge over time, i.e. `e(f̂e) =
1
T

∑T
t=1 `e(f

t
e) for all e.

Theorem 3.1. Suppose the latency functions are linear. Then forT ≥ Tε, the average floŵf is ε-Nash, i.e.

C(f̂) ≤ ε + min
P

∑

e∈P

`e(f̂e).

Proof. From the linearity of the latency functions, we have for alle, `e(f̂e) = 1
T

∑T
t=1 `e(f

t
e). Since

`e(f
t
e)f

t
e is a convex function of the flow, this implies̀e(f̂e)f̂e ≤ 1

T

∑T
t=1 `e(f

t
e)f

t
e. Summing over alle,

we have

C(f̂) ≤ 1
T

∑T
t=1 C(f t)

≤ ε + minP
1
T

∑T
t=1

∑

e∈P `e(f
t
e) (by Assumption 2.5)

= ε + minP
∑

e∈P `e(f̂e). (by linearity)

Corollary 3.2. Assume that all latency functions are linear. On general graphs, if all agents use the Kalai-
Vempala algorithm [20], the average flow converges to anε-Nash equilibrium atTε = O(mn log n

ε2 ). On
networks consisting of two nodes andm parallel links, if all agents use optimized “combining expert
advice”-style algorithms (with each edge an expert), the average flow converges to anε-Nash equilibrium
at Tε = O( log m

ε2
).
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Note that we not only proved that the average flow approaches an ε-Nash equilibrium, but as an inter-
mediate step in our proof we showed thatactualaverage cost incurred by the users is at mostε worse than
the best path in the average flow.

4 Infinitesimal Users: General Latency Functions

The case of general latency functions is more complicated because the first and third transitions in the proof
above do not apply. Here, the additive term depends on the maximum slope of any latency function.

Theorem 4.1. Let ε′ = ε + 2
√

sεn. Then for general functions with maximum slopes, for T ≥ Tε, the
average flow isε′-Nash, i.e.

∑

e∈E

`e(f̂e)f̂e ≤ ε + 2
√

sεn + min
P

∑

e∈P

`e(f̂e)

Before giving the proof, we list several quantities we will need to relate:

(the cost off̂ )
∑

e∈E

`e(f̂e)f̂e (1)

(the “cost off̂ in hindsight”)
1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f̂e (2)

(the average cost of flows up to timeT )
1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e (3)

(the cost of the best path in hindsight) min
P

∑

e∈P

1

T

T
∑

t=1

`e(f
t
e) (4)

(the cost of the best path given̂f ) min
P

∑

e∈P

`e(f̂e) (5)

We now begin with a lemma:

Lemma 4.2. For general latency functions with maximum slopes, (4) ≤ √
sεn + (5).

Proof of Lemma 4.2.First, observe that, because our latency functions are non-decreasing, the average la-
tency of an edge must be less than or equal to the latency of that edge as seen by a random user on a random
day. That is, for alle, f̂e

∑T
t=1 `e(f

t
e) ≤

∑T
t=1 `e(f

t
e)f

t
e.

If we define
∑

e∈E εe = ε, this gives us

εe +
1

T

T
∑

t=1

`e(f
t
e)f̂e ≥

1

T

T
∑

t=1

`e(f
t
e)f

t
e ≥ 1

T

T
∑

t=1

`e(f
t
e)f̂e

for all e, since this equation is bounded from below by (4) and from above byε + (4). We can rewrite
this to get

εe ≥
1

T

T
∑

t=1

`e(f
t
e)(f

t
e − f̂e) ≥ 0
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for all e, and thus

∀e, εe ≥ 1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e))(f

t
e − f̂e) ≥ 0.

This is a very useful equation, as it gives tight bounds on therelationship between the difference between
the latency of the average flow on an edge and the average latency on that edge.

From the bound on the maximum slope of any latency function, we know that|f t
e − f̂e| ≥ |`e(f

t
e) −

`e(f̂e)|/s and thus

|`e(f
t
e) − `e(f̂e)| ≤

√

s
(

`e(f t
e) − `e(f̂e)

) (

f t
e − f̂e

)

(6)

for all e.
By properties of variance, we then get

1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e)) ≤

√
s

1

T

T
∑

t=1

√

(`e(f t
e) − `e(f̂e))(f t

e − f̂e)

Using equation (6) above, this yields

1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e)) ≤

√
sεe. (7)

This gives us(4) ≤
∑

e∈P

√
sεe + (5) ≤ √

sεn + (5), because in the worst case,εe = ε
n .

We now use a second lemma:

Lemma 4.3. For general latency functions with maximum slopes, (1) ≤ √
sεn + (2).

Proof of Lemma 4.3.Equation (7) above directly gives us(1) ≤
∑

e∈P

√
sεef̂e + (2). We then use the fact

that f̂e ≤ 1 for all e to obtain the desired result.

Given the above lemmas we now present the proof of Theorem 4.1.

Proof of Theorem 4.1.Since(3) ≤ ε + (4) by Assumption 2.5, and(2) ≤ (3) by convexity, we get

(1) ≤
√

sεn + (2) ≤
√

sεn + (3) ≤ ε +
√

sεn + (4) ≤ ε + 2
√

sεn + (5)

as desired.

Corollary 4.4. Let ε′ = ε + 2
√

sεn. Assume that all latency functions are positive, non-decreasing, and
continuous, with maximum slopes. On general graphs, if all agents use the Kalai-Vempala algorithm [20],
the average flow converges to anε′-Nash equilibrium atTε = O(mn log n

ε2
) = O(mn3s2 log n

ε′4
). On networks

consisting of two nodes andm parallel links, if all agents use optimized “combining expert advice”-style
algorithms, the average flow converges to anε′-Nash equilibrium atTε = O( log m

ε2
) = O(n2s2 log m

ε′4
).

Once again we remark that not only have we proved that the average flow approachesε′-Nash equilib-
rium, but as an intermediate step in our proof we showed thatactualaverage cost obtained by the users is at
mostε′ worse than the best path in the average flow.
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5 Infinitesimal Users: How Bad is the Traffic Today?

Here we present results applicable to general graphs and general functions showing that onmosttime steps,
the flow will be atε-Nash equilibrium.

Theorem 5.1. On general graphs with general latency functions with maximum slopes, for all but a
(ms1/4ε1/4) fraction of time steps up to timeTε, f t is a (ε + 2

√
sεn + 2m3/4s1/4ε1/4)-Nash flow. We can

rewrite this as: for all but anε′ fraction of time steps up toTε, f t is anε′-Nash flow forε = Ω
(

ε′4

sm4+s2n2

)

.

Proof. As shown in equation (6), √
sεe ≥ |`e(f

t
e) − `e(f̂e)|

for all edges. Thus, for all edges, for all buts1/4ε
1/4
e of the time steps,

s1/4ε1/4
e ≥ |`e(f

t
e) − `e(f̂e)|.

Using a union bound over edges, this implies that on all but ams1/4ε1/4 fraction of the time steps,all
edges have

s1/4ε1/4
e ≥ |`e(f

t
e) − `e(f̂e)|.

From this, it follows directly that on most time steps, the cost of the best path givenf t differs from the cost
of the best path given̂f by at mostm3/4s1/4ε1/4. Also on most time steps, the cost incurred by flowf t

differs from the cost incurred by floŵf by at mostm3/4s1/4ε1/4. Thus sincef̂ is an (ε + 2
√

sεn)-Nash
equilibrium,f t is an (ε+2

√
sεn+2m3/4s1/4ε1/4)-Nash equilibrium on all but ams1/4ε1/4 fraction of time

steps.

Corollary 5.2. On general graphs with general latency functions with maximum slopes, for all but a
(ms1/4ε1/4) fraction of time steps up to timeT = Tε, the expected average cost1

T

∑T
t=1 ct incurred by any

user is at most(ε + 2
√

sεn + m3/4s1/4ε1/4) worse than the cost of the best path on that time step.

This demonstrates that no-regret algorithms are incentive-compatible in a network setting: if a player
knows that all other players are using no-regret algorithms, there is no strategy that will significantly improve
her expected cost on more than a small fraction of days. By using a no-regret algorithm, she gets the
guarantee that on most time steps her expected cost is withinsome epsilon of the cost of the best path given
the flow for that day.

Proof sketch for Corollary 5.2:From the proof of Theorem 5.1 we see that on most days, the costof the
best path given the flow for that day is withinm3/4s1/4ε1/4 of the cost of the best path given̂f , which is at
most2

√
sεn worse than the cost of the best path in hindsight. Combining this with the no-regret property

achieved by each user gives the desired result.

6 ε-Nash and the Price of Anarchy

In this section, we sketch how one can apply price-of-anarchy results, which bound the relationship between
a Nash flow and the optimum flow, toε-Nash equilibria.

Claim 6.1. For every networkG and flowf at ε-Nash equilibrium onG, there exists a networkG′ that
approximatesG and a flowf ′ that approximatesf such that: (a)f ′ is a Nash flow onG′, (b) the cost off ′

on G′ is at mostε less than the cost off on G, and (c) the cost of the optimal flow onG′ is within
√

ε of
the cost of the optimal flow onG. These approximations allow one to apply price-of-anarchyresults fromf ′

andG′ to f andG.

8



Proof sketch:Note that sincef is at ε-Nash equilibrium onG, then at most a
√

ε fraction of users are
experiencing costs more than

√
ε worse than the cost of the best path givenf . We can modifyG to embed

the costs associated with these “meandering” users such that the costs experienced by the remaining users
do not change. We then rescale the latency functions and remaining flow so that we once more have one
unit of flow; the total cost incurred by the rescaled flowf ′ on the new network has decreased by at mostε,
since meandering users were responsible for no more thanε of the original cost.

Notice now that the costc of the worst flow-carrying path is at most
√

ε worse than the cost of the
cheapest path given the flow. We now further augment the network so that all flow-carrying paths have cost
exactlyc. One can show that this increases the cost of any path (and thus of any flow in the network) by no
more than

√
ε. Now observe thatf ′ is an exact Nash flow inG′. This gives us

cG(f) ≤ A(cG′(fOPT (G′))) + ε ≤ A(cG(fOPT (G)) +
√

ε) + ε

whereA is the price of anarchy inG′, cN (h) denotes the cost of a flowh in a networkN , andfOPT (N)

denotes the min-cost flow in a networkN .
In particular, when all latency functions are linear, we canapply the Roughgarden-Tardos result bound-

ing the price of anarchy by4/3 [25].

7 Infinitesimal Users: Multicommodity Flow

In this section, we show how to extend our results to the setting of multicommodity flow. Here, every user is
associated with a commodity. Different commodities can have different start and end vertices and even may
have access to different subgraphs of the network. This notion of different allowable subgraphs is natural
in the context of routing and can model issues such as time-based variations. For example, if one edge
represents a given road at 8:30AM and another the same road at9:30AM, then users who must get to work
by 9:00AM would be restricted to the first edge, and the two edges may therefore end up with quite different
congestions even at Nash equilibrium. We now summarize the necessary changes to our definitions for this
multicommodity setting.

A commodityi has an associated start vertexsi, an end vertexei, and an allowed subgraphGi of G.
Let Pi represent the set of simplesi-ei paths onGi. Let P represent the union of allPi. Let fi be the
total amount of commodityi. A multicommodity flowis a functionf : P → R+, such that

∑

i fi = 1 and
∑

P∈Pi
fP = fi for all i.

Similar to Assumption 2.5, we obtain the following multicommodity no-regret assumption:

Assumption 7.1. For every commodityi, the series of flowsf1, f2, . . . satisfies

1

Tfi

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e,i ≤ R(T ) +

1

T
min
P∈Pi

T
∑

t=1

∑

e∈P

`e(f
t
e)

whereR(T ) → 0 asT increases and wheref t
e,i is the flow of commodityi on edgee at timet.

Summing over these equations, we obtain

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e ≤ R(T ) +

1

T

∑

i

fi min
P∈Pi

T
∑

t=1

∑

e∈P

`e(f
t
e)

As before, the functionR(T ) may depend on the size of the network and its maximum possiblelatency,
and we defineTε as the number of time steps required to getR(T ) = ε.
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Definition 7.2. A multicommodity flowf is said to be atε-Nash equilibrium if the average cost under this
flow is within ε of the weighted costs of the minimum cost paths available to each commodity under this
flow, i.e. C(f) − ∑

i fi minP∈Pi

∑

e∈P `e(fe) ≤ ε.

Given these new definitions, the proofs of Theorems 3.1, 4.1,and 5.1 all proceed analogously to yield
the following theorems and corollaries:

Theorem 7.3. In the setting of linear latency functions and multicommodity flow, forT ≥ Tε, the average
flow f̂ is at ε-Nash equilibrium.

Corollary 7.4. Assume the setting of multicommodity flow and linear latencyfunctions. On general graphs,
if all agents use the Kalai-Vempala algorithm [20], the average flow converges to anε-Nash equilibrium at
Tε = O(mn log n

ε2 ). On networks consisting of two nodes andm parallel links, if all agents use optimized
“combining expert advice”-style algorithms (with each edge an expert), the average flow converges to an
ε-Nash equilibrium atTε = O( log m

ε2
).

Theorem 7.5.Letε′ = ε+2
√

sεn. Then for general functions with maximum slopes, in the multicommodity
flow setting, forT ≥ Tε, the average flow isε′-Nash.

Corollary 7.6. Assume the multicommodity setting and that all latency functions are positive, non-decreasing,
and continuous, with maximum slopes. On general graphs, if all agents use the Kalai-Vempala algorithm
[20], the average flow converges to anε′-Nash equilibrium atTε = O(mn log n

ε2
) = O(mn3s2 log n

ε′4
). On net-

works consisting of two nodes andm parallel links, if all agents use optimized “combining expert advice”-
style algorithms, the average flow converges to anε′-Nash equilibrium atTε = O( log m

ε2
) = O(n2s2 log m

ε′4
).

Theorem 7.7. In the multicommodity setting, on general graphs with general latency functions, for all but
a (ms1/4ε1/4) fraction of time steps up to timeTε, f t is a (ε + 2

√
sεn + 2m3/4s1/4ε1/4)-Nash flow. We can

rewrite this as: for all but anε′ fraction of time steps up toTε, f t is anε′-Nash flow forε = Ω
(

ε′4

sm4+s2n2

)

.

Corollary 7.8. In the multicommodity setting, on general graphs with general latency functions with maxi-
mum slopes, for all but a(ms1/4ε1/4) fraction of time steps up to timeT = Tε, the average cost1T

∑T
t=1 ct

incurred by any user is at most(ε + 2
√

sεn + m3/4s1/4ε1/4) worse than the cost of the best path on that
time step.

Remark 7.9. The price-of-anarchy results sketched in Section 6 also extend to the multicommodity flow
setting.

Remark 7.10. In real-world traffic, it would be nonsensical if a user coulddrive part-way to work on roads
that exist at 9:30AM and the rest of the way on the roads that existed at 8:30AM that day. If we wanted
to capture the notion that users may have a choice of when to travel, our current model would allow such
spurious paths. To avoid this, one could extend our definitions so that each commodity would be associated
with a start node, an end node, a subgraph, and a set of allowable hours. Permissible paths for a user would
be those consisting only of edges all with the same allowablehourh and all from the allowed subgraph. All
the results in this section hold given this further extendeddefinition of commodities.

8 Discrete Users: Parallel Links

In contrast with the previous sections, we now consider discrete users, where we denote theith user weight
aswi. Without loss of generality, we assume that the weights are normalized such that

∑n
i=1 wi = 1. We
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limit ourselves in this section to the single-commodity version of the parallel links model and to functions
with latency equal to the load, i.e. for a pathe we havè e = fe. For each useri, we let the latency excluding
her own pathe at timet be`e(f

t
e \ i) and her average latency on linke be`e(f̂e \ i) = 1

T

∑T
t=1 `e(f

t
e \ i),

wheref t
e \ i = f t

e if user i is not routing on linke andf t
e \ i = f t

e − wi otherwise. We always exclude the
ith player from the latency function, since theith player always pays for its weight.

Next we observe that at timet, there always exists a path with load at most the average load.

Observation 8.1. At any time stept, for every useri, there exists a pathe such that̀ e(f̂e \ i) ≤ 1−wi

m .

The following theorem differs from other theorems in the paper in the sense that it is an expectation
result and holds for every user.

Theorem 8.2. Consider the parallel links model, with latency functions such that the latency equals the
load. Assume that each discrete useri uses an optimized best expert algorithm. Then for all users,for all
T ≥ O( log m

ε2
),

Ee∼qt
[`e(f

t
e \ i)] ≤ 1 − wi

m
+ ε,

whereqt is the distribution over them links output by the best expert algorithm.

Proof. By observation 8.1 we have that there exists a path with average cost at most1−wi

m . Since useri is
using an optimized best expert algorithm and the maximal latency is1, we have that

T
∑

t=1

Ee∼qt
[`e(f

t
e \ i)] ≤ min

e∈E
`e(f̂e \ i) +

√

log m

T
≤ 1 − wi

m
+

√

log m

T
≤ 1 − wi

m
+ ε,

where the last inequality holds forT ≥ O( log m
ε2

).

Consider an instance of this model where every user plays uniformly at random. The resulting flow is
clearly a Nash equilibrium, and the expected latency for theith player is1−wi

m excluding its own weight.
We thus have shown that the expected latency experienced by each useri is at mostε worse than this Nash
latency.

9 Conclusions

In this paper, we consider the question: if each player in a routing game uses a no-regret strategy, will
behavior converge to a Nash equilibrium, and under what conditions and in what sense? Our main result is
that in the setting of multicommodity flow and infinitesimal agents, a1 − ε fraction of the daily flows are
at ε-Nash equilibrium forε approaching 0 at a rate that depends polynomially on the players’ regret bounds
and the maximum slope of any latency function. Moreover, we show the dependence on slope is necessary.

Even for the case of reasonable (bounded) slopes, however, our bounds for general nonlinear latencies
are substantially worse than our bounds for the linear case.For instance if agents are running the Kalai-
Vempala algorithm [20], we get a bound ofO(mn log n

ε2 ) on the number of time steps needed for the time-

average flow to reach anε-Nash equilibrium in the linear case, butO(mn3 log n
ε4

) for general latencies. We
do not know if these bounds in the general case can be improved. In addition, our bounds on the daily flows
lose additional polynomial factors which we suspect are nottight.
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[7] A. Czumaj and B. Vöcking. Tight bounds on worse case equilibria. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 413–420, 2002.

[8] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilibria. In30th Interna-
tional Conference on Automata, Languages and Programming (ICALP), pages 502–513, 2003.

[9] E. Even-Dar and Y. Mansour. Fast convergence of selfish rerouting. InProceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 772–781, 2005.

[10] Alex Fabrikant, Ankur Luthra, Elitza Maneva, ChristosH. Papadimitriou, and Scott Shenker. On
a network creation game. InProceedings of the twenty-second annual symposium on Principles of
distributed computing (PODC), pages 347–351. ACM Press, 2003.

[11] Simon Fischer, Harald Raecke, and Berthold Vöcking. Fast convergence to wardrop equilibria by
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