New Techniques for Private Stream Searching

John Bethencourt Dawn Song Brent Waters!

February 2006
CMU-CS-06-106

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

* Carnegie Mellon University.
 SRI International.

During this project, John Bethencourt and Dawn Song received support from the NSF and ARO. Brent Waters
was supported in part by NSF CNS-0524252.

Keywords: private stream searching, private information retrieval, public key program obfus-
cation, systems of linear equations, Bloom filters, homomorphic encryption

Abstract

A system for private stream searching, introduced by Ostrovsky and Skeith [18], allows a client to
provide an untrusted server with an encrypted search query. The server uses the query on a stream
of documents and returns the matching documents to the client while learning nothing about the
nature of the query. We present a new scheme for conducting private keyword search on stream-
ing data which require®(m) server to client communication complexity to return the content

of the matching documents, whereis the size of the documents. The required storage on the
server conducting the search is al36m). Our technique requires some metadata to be returned

in addition to the documents; for this we present a scheme @fth log(¢/m)) communication

and storage complexity. In many streaming applications, the number of matching documents is
expected to be a fixed fraction of the stream length; in this case the new scheme has the optimal
O(m) overall communication and storage complexity with near optimal constant factors. The pre-
vious best scheme for private stream searching was shown to(hawéog m) communication

and storage complexity. In applications where> m, we may revert to an alternative method of
returning the necessary metadata which ®és: log m) communication and storage complexity;

in this case constant factor improvements over the previous scheme are achieved. Our solution
employs a novel construction in which the user reconstructs the matching files by solving a sys-
tem of linear equations. This allows the matching documents to be stored in a compact buffer
rather than relying on redundancies to avoid collisions in the storage buffer as in previous work.
We also present a unique encrypted Bloom filter construction which is used to encode the set of
matching documents. In this paper we describe our scheme, prove it secure, analyze its asymptotic
performance, and describe several extensions.

1 Introduction

The Internet currently has several different types of sources of information. These include con-
ventional websites, time sensitive web pages such as news articles and blog posts, real time public
discussions through channels such as IRC, newsgroup posts, online auctions, and web based fo-
rums or classified ads. One common link between all of these sources is that searching mechanisms
are vital for a user to be able to distill the information relevant to him.

Most search mechanisms involve a client sending a set of search criteria to a server and the
server performing the search over some large data set. However, for some applications a client
would like to hide his search criteria, i.e., which type of data he is interested in. A client might
want to protect the privacy of his search queries for a variety of reasons ranging from personal
privacy to protection of commercial interests.

A naive method for allowing private searches is to download the entire resource to the client
machine and perform the search locally. This is typically infeasible due to the large size of the data
to be searched, the limited bandwidth between the client and a remote entity, or to the unwillingness
of a remote entity to disclose the entire resource to the client.

In many scenarios the documents to be searched are being continually generated and are already
being processed as a stream by remote servers. In this case it would be advantageous to allow
clients to establish persistent searches with the servers where they could be efficiently processed.
Content matching the searches could then be returned to the clients as it arises. For example,
Google News Alerts system [1] emails users whenever web news articles crawled by Google match
their registered search keywords. In this paper we develop an efficient cryptographic system which
allows services of this type while provably maintaining the secrecy of the search criteria.

Private Stream Searching Recently, Ostrovsky and Skeith defined the problem of “private fil-
tering”, which models the situations described above. They gave a scheme based on the homomor-
phism of the Paillier cryptosystem [19, 9] providing this capability [18]. First, a public dictionary
of keywordsD is fixed. To construct a query for the disjunction of some keywdtds. D, the
user produces an array of ciphertexts, one for eaehD. If w € K, a one is encrypted; otherwise
a zero is encrypted. A server processing a document in its stream may then compute the product
of the query array entries corresponding to the keywords found in the document. This will result
in the encryption of some value which, by the homomorphism, is non-zero if and only if the
document matches the query. The server may then in turn corﬂ)(tﬁ)é(= FE(cf), wheref is
the content of the document, obtaining either an encryption of (a multiple of) the document or an
encryption of zero.

Ostrovsky and Skeith propose the server keep a large array of ciphertexts as a buffer to accu-
mulate matching documents; ea€licf) value is multiplied into a number of random locations in
the buffer. If the document matches the query th&non-zero and copies of that document will
be placed into these random locations; otherwise, 0 and this step will add an encryption of O
to each location, having no effect on the corresponding plaintexts. A fundamental property of their
solution is that if two different matching documents are ever added to the same buffer location
then we will have a collision and both copies will be lost. If all copies of a particular matching

document are lost due to collisions then that document is lost, and when the buffer is returned to
the client, he will not be able to recover it.

To avoid the loss of data in this approach one must make the buffer sufficiently large so that this
event does not happen. This requires that the buffer be much larger than the expected number of
required documents. In particular, Ostrovsky and Skeith show that a given probability of success-
fully obtaining all matching documents may be obtained with a buffer ofGize log m),* where
m is the number of matching documents. While effective, this scheme results in inefficiency due
to the fact that a significant portion of the buffer returned to the user consists of empty locations
and document collisions.

Our Approach In this paper we present a new private stream searching scheme which achieves
the optimalO(m) communication from the server to the client and server storage overhead in re-
turning the content of the matching documents, given any fixed probability of successfully retriev-
ing all matching documents. Metadata required for the reconstruction of the documents is returned
using a technique requirin@(m log(t/m)) communication and storage. The latter technique also
results in the optimad (m) complexity with near optimal constant factors in applications where
each document matches the query with some probability, independent of the other documents. In
applications where a fixed number of documents are expected to match, regardless of the stream
length, a modification to our scheme produces the previgius log m) complexity, but with near
optimal constant factor overhead. These results are based on the novel combination of a few tech-
nigues.

Like the approach of Ostrovsky and Skeith we give an encrypted dictionary and non-matching
documents have no effect on the encrypted contents. However, rather than using a large buffer and
attempting to avoid collisions, each matching document in our system is copied randomly over
approximately half of the locations across the buffer. A pseudo-random fungtiaiose key is
shared by the client and server, will determine pseudo-randomly with probabilifyether the
document is copied into a given location, where the function takes as inputs the document number
(document number is theith document seen by the server) and buffer location. While any one
particular buffer location will not likely contain any information about any matching document,
with high probability all the information from all the matching documents can be retrieved from the
whole system by the client given that the client knows the number of matching documents and that
the number of matching documents is less than the buffer size. The client can do this by decrypting
the buffer and then solving a linear system to retrieve the original documents. Finally, the server
maintains a separate encrypted Bloom filter that efficiently keeps track of which document numbers
were matched. The use of an efficient Bloom filter to keep track along with our method of storing
documents allows us to store the encrypted documents in a much smaller buffer.

1Specifically, they define a correctness parametand use a buffer of siz@(ym). They show that a given success
probability may be achieved with-athat isO(logm).

1.1 Related Work

Private searching may be viewed as the flip side of searching on encrypted data [21, 3, 11]; in this
case the data is unencrypted and the query is encrypted. Goh applied Bloom filters in a way that
allows a server to store encrypted-searchable data in a more efficient manner.

However, searching on encrypted data is quite different from private searching. In the problem
of searching on encrypted data the data is hidden from the server, while in private searching the
data is known to the server and the client’s queries must remain hidden. Private searching is
actually most closely related to the topics of single-database private information retrieval [8, 15, 5,
6] and oblivious transfer [17, 16]. One incompatibility between previously proposed PIR schemes
and the present problem is that PIR schemes have thus far required communication dependent on
the size of the entire database rather than the size of the portion retrieved. In some streaming
settings, a private searching scheme with communications independent of the size of the stream
or database is desirable. Another difference between the PIR and private search settings is that
most PIR constructions model the database to be searched as a long bitstring and the queries as
indices of bits to be retrieved. In contrast, the system proposed in this paper and that of Ostrovsky
and Skeith allow queries based on a search for keywords within text. Both these schemes may
also retrieve pieces of data by index, however. The text associated with a block of data in the
database against which queries are matched is arbitrary, so by simply including strings of the form
“blocknumber:1”, “blocknumber:2”, .. in the text associated with each block of data, they may
be explicitly retrieved by appropriate queries. There has been some consideration of search or
retrieval by keyword rather than index in the PIR literature [7, 14, 10], but none of these systems
has communication dependent only on the size of the data retrieved rather than some function of
the length of the database or stream. In [2] we experimentally analyzed the performance of our
system in the setting of a realistic application, comparing it with the scheme of Ostrovsky and
Skeith.

2 Definitions and Preliminaries

In this section we describe the problem of private searching and make appropriate definitions. We
also briefly review Paillier's cryptosystem and the definition of a pseudo-random function family.

2.1 Problem Definition

In a private searching scheme a client will create an encrypted query for the set of keywords that he
is interested in. The client will give this encrypted query to the server. The server will then run a
search algorithm on a stream of fteshile keeping an encrypted buffer storing information about
files for which there is a keyword match. The encrypted buffer will then be returned to the client
(periodically) to enable the client to reconstruct the files that have matched his query keywords.
We call a file amatching fileif it matches at least one keyword in the set of keywords that the

2We use the name “file” as a general term for the data chunk that is to be returned. The type of data will vary by
application.

client is interested in. The key aspect of a private searching scheme is that a server is capable of
conducting the search even though it does not know which set of keywords the client is interested
in. We now formally describe a private stream search scheme. A scheme for private stream search
scheme consists of the following three algorithms.

QueryConstruction (A, e,m, K) TheQueryConstruction algorithm is run by a client

to prepare an encrypted list of keywords that he would like the server to search for. The algorithm
takes as input a security paramelera correctness parameteran upper bound on the number
files to retrievem, and an unencrypted set of strinfysthat are to be used as the search keywords.
The algorithm outputs a public ke,.,, a private keyK,,;,, and an encrypted query. The

client then send%,,;, () to the server. The correctness parameteay be used to select various
algorithm parameters to ensure that upridiles will be correctly retrieved with high probability.
These additional parameters are also sent to the server.

StreamSearch (K, Q, f1,..., fi, W1,...,W;) The StreamSearch algorithm is run by

a server to perform a private keyword search on behalf of the client on a stream of files. The
algorithm takes as input an encrypted quélya public keyK,,;,, and a stream of filef =

(f1, f2,..., f:) and corresponding sets of keywords that describe eachifile (Wi, ..., Wy).
Normally each setV; is derived from the corresponding filg as a preprocessing step. The
algorithm produces a buffer of encrypted resiitte/hich is sent back to the client after processing
some number of fileg which is chosen by the client. The choicetad application dependent and
should ensure that no more thanmatching documents are likely to be found.

FileReconstruction (Kprivs R) The FileReconstruction algorithm is used to ex-
tract the set of matching files from the returned encrypted buffer. The algdfiteReconstruction
takes as input the private kéy,,;, and a buffer of encrypted resulks It outputs the set of match-
ing files{ f; | [K N W;| > 0}.

To define privacy for a private stream search scheme, consider the following game between
a challenger and an adversary. The adversary gives the challenger two sets of keyword strings
Ky, K;. The challenger then flips a coify runs theQueryConstruction (A, e,m, K3), and
gives the public key and the encrypted quéito the adversary. The adversary then outputs a
guess?’. We say that an adversary has advantai§eP (5 = ') — %| > €

Definition 1. We say that a private searching scheme is semantically secure if for all PPT adver-
sariesA, the advantage ofl is negligible in the security parameter,

We establish that the proposed system satisfies this definition in Section 4.2.

2.2 Preliminaries

Paillier's Cryptosystem We now provide a brief review of the most important features of the
Paillier cryptosystem. The Paillier cryptosystem is a public key cryptosystem; as in RSA the

4

public keyn is the product of two large primes. The factorizatiomok the private key. In this
paper the encryption of a plaintexiwith the public key (there is only one public key in use in this
paper, the one generated by the client when constructing a private search) is défotgdand
the decryption of a ciphertextwith the private key is denoteB) (c¢). Plaintexts are represented
by elements of the grouf,, and ciphertexts are represented by elements of the gfQupso
E:Z,— 7, andD : Z*, — Z,. Note that ciphertexts are twice as large as plaintéxts.

The key property of the Palillier cryptosystem upon which the entire system is based is its ho-
momorphism. For any, b € Z,, itis the case thab (E (a) - £ (b)) = a + b. That is, multiplying
ciphertexts has the effect of adding the corresponding plaintexts. This allows one to perform rudi-
mentary computations on encrypted values. Our construction may be adapted to use any public key,
homomorphic cryptosystem, but for concreteness, we assume the use of the Paillier cryptosystem
throughout the rest of the paper.

Pseudo-Random Functions In our construction we use a pseudo-random function faily
Ko x Z x 7 — {0,1}. Roughly speakingiZ will take in a keyk and two integers and output a

pseudo random bit. We let= G wherek Kid Ka.
The security of a pseudo-random function family: Ko x Z x Z — {0,1} is defined by
the following game between a challenger and an adverda#y challenger chooses a random key

il Kq and letsg = Gy.. The challenger then flips a binary cai At this point the adversary
submits to make oracle queries to the challenger over the domaih =f0 the challenger will
respond by evaluating the functignon the input, whereas i = 1 it will respond with random

bit to all new queries, while giving the same response if the same query is asked twice. Finally, the
adversary outputs a guess We define the adversary’s advantage in this game as:

Adv, = |Pr[g = ('] — 1/2]

We say that a pseudo random functiorids, w,, €)- secure if nav, time adversary, that makes
at mostw, oracle queries, has advantage at greater ¢han

3 New Construction

We now describe the algorithms of the new private search scheme and give an analysis of complex-
ity and security properties. In the following explanations, we defer discussion of several special
failure cases to the next subsection.

3This property of inflating messages by encrypting them is improved in [Aesgurik generalization of the Paillier
cryptosystem [9]. In their scheme the plaintext and ciphertext spaceg,arandZ’ .., for anys € {1,2,...}.
However, the constraints in this paper are likely to make the original situatier=of preferable.

Algorithm: QueryConstruction
Input: Set of keywordgy'.
Output: Query arrayQ = (E (q1), E (q2) ,- .., E (q,p))), public keyn.

Generate a Paillier key pair, K.,

for :=1,2,...,|D] :
if w; € K .
gi =1
else

Figure 1:The algorithm for setting up an encrypted query.

3.1 Client’'s QueryConstruction Procedure

Figure 1 gives the algorithm for producing the encrypted qu@uongryConstruction . A pub-
lic dictionary of potential keywords

D = {wy,wq, ..., wp}

is assumed to be available. Constructing the encrypted query for some disjunction of keywords
K C D then proceeds as in the scheme of Ostrovsky and Skeith. The client generates a key
pair, then for eachi € 1,...,|D|, definesq;, = 1if w; € K andg; = 0if w; ¢ K. The
valuesqi, ¢s, . . ., qp| are encrypted (rerandomizing each encryption) and put in the glray
(E(q1),E(g),---,E (qp))), which forms the final encrypted query. In Section 5.2 we give an
alternative form for the encrypted queries which eliminates the public dictioParyrhe client

then sends) and the public key: to the server.

3.2 Server'sStreamSearch Procedure

Figure 2 gives the full algorithm run by the servBtreamSearch . In addition to the public key
and@, the client may provide the server with the parametére number of files to process before
returning the results, and the parametgrs/;, andk, which affect correctness and performance
(see below and Section 4.1).

State The server must maintain three buffers as it processes the files in its stream. These buffers
are hereafter referred to as thata buffer,the c-buffer, and thematching-indices bufferand
denotedF’, C, and! respectively. Each of these is an array of elements from the ciphertext space
Z,, with F andC of length/; andI of length/;. For simplified notation here and in subsequent
explanations, we assume that each document is at mbgs and therefore fits within a single
plaintext inZ,,. For longer documents requiringelements of#Z,,, we would letF" be anfr x s

array and subsequent operations involving a file updatirage performed blockwise.

6

Algorithm: StreamSearch
Input: @, n, number of files to procegs sequence of filegy, . .., f;
with corresponding keyword selg1, . . . W, size of data buffer
¢, size of matching indices bufféy, number of hash functiors
Output: Data bufferF’, coefficients buffe”’, matching indices buffef.

Initialize F" andC as/r element arrays anflas an/; element array of
members ofZ’,. Initialize each element df', C, and/ to £ (0).

for ¢:

for j7:=1,2,...,0p :

F[j] := F[j] - e mod n?
C[j] :== C[j] - ¢ mod n?

Figure 2:The algorithm for running the private search.

The data buffer will store the matching files in an encrypted form which can then be used by
the client to reconstruct the matching files. In particular, the data buffer will contain a system of
linear equations in terms of the content of the matching files in an encrypted form. This system of
equations will later be solved by the client to obtain the matching files.

The c-buffer stores in an encrypted form the number of keywords matched by each matching
file. We call the number of keywords matched for a file thealue of the file. The c-buffer will
be used in reconstruction of the matching files from the data buffer by the client. As in the case of
the data buffer, the c-buffer stores its information in the form of a system of linear equations. The
client will later solve the system of linear equations to reconstruct the c-values.

The matching-indices buffer is an encrypted Bloom filter that keeps track of the indices of
matching files in an encrypted form. More precisely, the matching-indices buffer will be a en-
crypted representation of some set of indi€es, . . ., ..} where{ay, ..., .} C {1,...,t}. Here
r is the number of files which end up matching the query.

Each of these buffers begins with all its elements initialized to encryptions of zero. We now
detail how they are updated as each file is processed.

Processing Steps To process théth file f;, the server takes the following steps.

Step 1: Compute encrypted c-valugirst, the server looks up the query array er@j] corre-
sponding to each worda, found in the file. The product of these entries is then computed. Due to
the homomorphic property of the Paillier cryptosystem, this product is an encryption of c-value of
the file, i.e., the number of distinct membersioffound in the file. That is,

Il eul=£ (ijewi Qj) = E(c;)

’ijWi

wherelV; is the set of distinct words in th&h file andc¢; is defined to bgd X N 1W;|. Note in
particular that; # 0 if and only if the file matches the query.

Step 2: Update data buffehe server computes (¢; f;) using the homomorphic property of the
Paillier cryptosystem.

E(e) = B(cif) = E(cif;) iff; malltches the query

E(0) otherwise.
The server multiplies the valug (¢; f;) into a subset of the locations in the data buffer according
to the following procedure. Let/ be a family of pseudo-random functions that nfapx Z to

{0,1}. Randomly selecy L a (this should be done once upon initialization and the same
used for all files). The algorithm multiplie® (¢; f;) into each locatiory in the data buffer where
g(i,7) = 1. Suppose for example we are updating the third location in the data buffer with the
second file. Assume that first file was also multiplied into this location,gi(e,3) = ¢g(2,3) = 1.

Each of the two files may or may not match the query. Suppose in this examplg thatches

the query, butf, does not. Before processirfg we have thatD (F'[3]) = ¢, fi. After multiplying

in E (cafas), D (F[3]) = c1.fi + caf2. Butea = 0 since f, does not match, so it is still the case that

D (F[3]) = 1 f; and the data buffer is effectively unmodified. This mechanism allows the data
buffer to accumulate linear combinations of matching files while discarding all non-matching files.
Step 3: Update c-buffelhe valueF (¢;) is multiplied into each of the locations in the c-buffer in

a similar fashion a¥’ (¢; f;) was used to update the data buffer. In particular, the server multiplies
the valueF (¢;) into each location in the c-buffer where (i, j) = 1.

Step 4: Update matching-indices buff@he server then multiplie (c;) further into a fixed num-

ber of locations in matching-indices buffer. This is done using essentially the standard procedure
for updating a Bloom filter. Specifically, we ugehash functions:,, .. ., h; to select the: loca-

tions whereF (¢;) will be added. For optimal efficiency, the client should select the pararheter
H”%ﬂ, wherem is the number of files they expect to retrieve [4]. The locations of the matching-
indices buffer that a matching files multiplied into are take to bk, (¢), h2(i), ..., hi(i). Again,

if the f; does not match;; = 0 so the matching-indices buffer is effectively unmodified.

After completing the aforementioned steps for a fixed number offfilegs stream, the server
sends its three buffers back to the client. Also, the server should return the fugpction

8

Algorithm: FileReconstruction
Input: F,C, I, k.
Output: The matching fileg,, , fay, -, foy-

Decrypt each element df, C, andI to obtainF’, C’, andI’ .

B:=0
for i:=1,2,...,t
for j:=1,2,...,k
14 :h]‘(i) Odgj
if I'l(J=0: next i
B:=p0+1
ag =1
if B>Llp

output “Error, overflow.”, exit
while (< /fp :
g:=0+1
ag = pick({1,...,t} \ {a1,a2,...,a3_1})

if Aissingular :
output “Error, singular matrix.”, exit

¢:=A"t.C'
{af,0h,...,al} ={on,00,...,00,} \{ i | ca, =0}
for ie{ai|lcy, =0} :

Ca; =1

f=diag(®)"- AL F
OUtPUt fa’lafa’za-”afo/r

Figure 3:The algorithm for recovering the matching files after the completion of a private search.

3.3 Client’'s FileReconstruction Procedure

Figure 3 gives the algorithm run by the client upon completion of the private search and receipt of
the three bufferg’, C', and/, FileReconstruction

Step 1: Decrypt buffersThe client first decrypts the values in the three buffers using the Paillier
decryption algorithm with its private kek,,;,, obtaining decrypted buffer®’, C’, andI’.

Step 2: Reconstruct matching indic€®r each of the indicese {1,2,...,t}, the client computes
hi(7), ha(i), ..., he(7) and checks the corresponding locations in the decrypted matching-indices
buffer; if all these locations are non-zero, theis added to the listy, as, ..., az of potential

matching indices. Note that if # 0, then: will be added to this list. However, due to the false
positive feature of Bloom filters, we may obtain some additional indices. Now we may check for
overflow, which occurs when the number of false positives plus the number of actual matches
exceedd . At this pointif 5 < ¢z, we continue to add indices to the list until it is of length

Here the functiorpick denotes the operation of selecting an arbitrary member of a set. Note that
we will not run out of indices since> /.

Step 3: Reconstruct c-values of matching fitésen our superset of the matching indides, as . . ., ay,. },
the client next solves for the values@f , ca,, - - - , ¢a,,,- This is accomplished by solving the fol-
lowing system of linear equations fér

74

A.-c=C (1)

where A is the matrix with thei, jth entry set tay(«;, j), C” is the vector of values stored in the
{a],af ..., al} may be computed by checking whethgr = 0 for eachi € {1,...,¢r}. Before
proceeding, we replace all zeros in the vec¢taith ones.

As an example of Step 3, suppose there are four spots in the decrypted c-buffé: (ie.,
4), seven files are processed, and we have established the following list of potentially matching
indices:{ay, as, as, ay} = {1,3,5,7}. Then given

1 010 2
11001 R E
A= 100 1}’ ¢ = 1
01 10 3
we may compute
Ca1_cl
Cay = C3 =

We then see that there were three matching fites ¢): f1, f3, andfs.
Step 4: Reconstruct matching filésnally, the content of the matching filgs; , fo,, . - ., fa, may
be determined by solving the linear system

A-diag(d) - f = F' (2)

We directly computef = diag(c)"' - A71 - F’. Note thatdiag(c) is never singular because
we previously ensured that no zeros appeat.irThe content of the matching files appears as

where

4The possibility of the matrixd being singular is considered in the next section.

10

fafl, faé, ..., far; the other entries ilfwill be zero. Continuing the example above (and making
up a value off”), this corresponds to solving the following equations

Ji+ fs =32
Ji+2f3+ fr=32
Ji+ =10
2f3+ fs =44,

thereby determining that, = 10, f3 = 11, andf; = 22 (and f; = 0, but this value is ignored).

4 Analysis

4.1 Correctness and Complexity

In this section, we give the correctness and complexity analysis of our scheme. In particular, we
will show that given a desired success probability boiwd, if the number of matching documents

is at mostmn, then by using communication and storage overf@ad log(t/m)), our scheme will
enable the user to correctly reconstruct all the matching documents from a stréeawocoiments

with probability at least — e.

In order to perform the analysis to demonstrate the above point, we first analyze the different
failure cases where the user will fail to reconstruct the matching documents. From the recon-
struction procedure, we can see that the client fails to reconstruct the matching files when the two
systems of linear equations- ¢ = C’ (Eq. 1) andA - diag(?) - f: F’ (EqQ. 2) cannot be correctly
solved. This failure only happens in two cases:

1. The matrixA is singular. In this case, we will not be able to compute' and solve the
system of linear equations.

2. There are more that —r false positives when the set of matching indices is computed using
the Bloom filter. In particular, if in Step 2 in theéileReconstruction procedure, the
number of matching indices reconstructed from the Bloom filtéf is greater thai, then
we have more variables than the number of linear equations and thus we will not be able to
solve the system of linear equatioAs ¢ = C".

We show below that by picking the parametérsand/; correctly, we can guarantee that the
probability of the above two failure cases can be bounded to be helvVe demonstrate this by
proving the following three lemmas.

Lemma 1. For a given0 < € < 1, there exist: = o(log(1/¢)), such that for any.” > n, an
n’ x n’ random(0, 1)-matrix is singular with probability at most

Proof. Note that am x n, random (0,1)-matrix is singular with negligible probability»in This
was first conjectured by Eéd and proven in the 60’s by J. Koadl [13]. The specific bound has
since been improved several times, recently reachifi¢? + o(1))") [12, 22, 23]. Thus, itis easy
to see that the above lemma holds. O

11

Lemma2. LetG : Ko xZxZ — {0, 1} be a(wt, w,, €/8)-secure pseudo-random function family.

Letg = Gy, wherek £ Kg. Letlp = o(log(1/€)) such that ar/y x ¢ random(0, 1)-matrix is
singular with probability at most/4. Then the matrix

is singular with probability at most/2.

Intuitively, this lemma bounds the failure probability that the matrix A is singular. We provide
the proof in Appendix B. Additionally, we note that for a given constatite size of the/ will
be linear inm.

Lemma 3. Givenlr > m+81n(2/¢), letl; = O(mlog(t/m)), and assume the number of match-
ing files is at mostn out of a stream of. Then the probability that the number of reconstructed
matching indices is greater thar/r is at most /2.

Given the false positive rate of a Bloom filter, the proof is straightforward; we provide it in Ap-
pendix C. Together, Lemma 2 and Lemma 3 provide the primary result:

Theorem 1. If ¢/ = o(log(1/e€)) + O(m), £r > m + 81In(2/e), {; = O(mlog(t/m)), G :

Ko X Z xZ — {0,1} is a (w, wy, €/8)-secure pseudo-random function family, then when the
number of matching files is at mostin a stream of, our scheme guarantees that the client can
correctly reconstruct all matching files with probability at ledst e.

Proof. By Lemma 2, the probability that the matrik is singular is at most/2. By Lemma 3,
the probability that the reconstruction of the matching indices will yield more thamatching
indices is at most/2. Since these are the only two failure cases as explained earlier, the total
failure probability, the probability that the client would fail to reconstruct the matching files, is at
Mmoste. 0

4.2 Security

The security of the proposed system according to Definition 1 is straightforward. Intuitively, since
the server is only provided with an array of encryptions of ones and zeros, the scheme should be
as secure as the underlying cryptosystem.

Theorem 2. If the Paillier cryptosystem is semantically secure, then the proposed private search-
ing scheme is semantically secure according to Definition 1.

In Appendix D we provide a proof. The proof is straightforward and proceeds as in the case
of Ostrovsky and Skeith. Note that this establishes security based on the decisional composite
residuosity assumption, since that was used to prove the security of the Paillier cryptosystem.

12

5 Extensions

Here we describe several extensions to the proposed system which provide additional features or
vary performance tradeoffs.

5.1 Bloom Filter Space Saving

For security it will generally be necessary to use a modulatat least 1024 bits (e.g., as required

by the standards ANSI X9.30, X9.31, X9.42, and X9.44 and FIPS 186-2) [20]. The fact the c-
values will never approach'?? reveals that the Bloom filtef is in fact mostly wasted space. A
simple technique can be used to reclaim some of this space. If we assume that the sums of c-values
appearing in each location inwill be less thar2!6, for example, we may use each group element

to represent; array entries. In the case of= 1024, this reduces the size dfby a factor of 64.

When we need to multiply a valug (¢) into the Bloom filter in theStreamSearch algorithm,

we use the following technique. To multiply it into thith location in/, we leti; = Léj and

i, = i mod 64. Then we compute

2161'2

which has the result of shiftinginto thei,th 16-bit block within the group element it |. After

the client decryptd, they may simply break up each element into 64 regions of 16 bits. This
space savings comes at an additional computation cost, however. The server will need to perform
k additional modular exponentiations for each file it processes.

5.2 Hashing Keywords

In some applications, the predetermined set of possible keywonasy be unacceptable. Many
of the strings a user may want to search for are obscure (e.g., names of particular people or other
proper nouns) and including them inwould already reveal too much information. Since the size
of encrypted queries is proportional|tB|, it may not be feasible to filD with, say, every person’s
name, much less all proper nouns.

In such applications an alternative form of encrypted query may be used. Elimidativwg
allow K to be any finite subset af*, whereX is some alphabet. Now iQueryConstruction ,
we pick a lengti/,, for the array() and initialize each element # (0). Then for eachw € K, we
use a hash functioh : ¥* — {1,...,/;} to select alocation(w) in @ and seQ[h(w)] := E (1).
As before we rerandomize each encryption. To proces#htide in StreamSearch |, the server
may now computet’ (c;) = [[,cy, @[h(w)]. The rest of the scheme is unmodified. Using this
extension, it is possible for a fil to spuriously match the query if there is some warde W;
such thath(w') = h(w) for somew € K. The possibility of such false positives is the key
disadvantage of this approach.

An advantage of this alternative approach, however, is that it is possible to extend the types of
possible queries. Previously only disjunctions of keyword®iwere allowed, but in this case a
limited sort of conjunction of strings may be achieved. To support queries of the fornwsy”

13

wherew,,wy € ¥*, we change the way eadly; is derived from the corresponding filg. In
addition to including each word found in the fifg we include all adjacent pairs of words lifi;

(note that this approximately doubles the siz&16j. It is easy to imagine further extensions along
these lines. In particular, it is possible to match against binary data by simply including blocks of
the contents of; in W;.

5.3 Stream Length Independence

In applications where the expected number of matching documents is fixed and independent of
the stream length, a modification to the scheme allows communication and storage independent of
the stream length as well. To produce this effect, we abandon the Bloom filter based construction
used in the matching-indices buffer and instead use the Ostrovsky Skeith construction to store the
matching indices. We briefly describe this technique below; for details (including an analysis of
collision detection) refer to [18].

Let/; = ym, wherev is selected based on the desired error baurkix a set of hash functions
hi, ho, ..., hy. Also, let each entry in the matching-indices buffdse a pair of ciphertexts i
rather than a single ciphertext. To upddtevhen processing théh file in StreamSearch ,
compute the following.

for j:=1,2,...,7:

To recover the set of matching indiceskiteReconstruction , the client decrypts each pair
of entries in/. When a paitl’[k][1] andI’[k][2], k € {1,...¢,} is non-zero (and not a collision),
the client may recover the index of a matching file as I'[k][2] /I’ [k][1].

When using this technique, the c-buffer is omitted. We may set m; otherwise, the data
buffer is used as before. All parameters are now selected based ontyamal ¢ without regard
to ¢, and there are no false positives for streams of any length. The analysis in [18] demonstrates
that the probability of an overflow in the new matching-indices buffer may be bounded below
with v = O(log m + log(1/€)), producing an overall communication and storage complexity of
O(mlogm). Note that our scheme still produces a constant factor improvement over the original
scheme of Ostrovsky and Skeith in this case. If each file requiggaintext blocks (i.e., is of
lengthns bits), then we reduce communication and storage by a factor of approximatéhjis
is accomplished by retrieving the bulk of the content through the efficient data buffer and only
retrieving document indices through the less efficient matching-indices buffer.

5.4 Arbitrary Length Files

In applications where the files are expected to vary significantly in length, an unacceptable amount
of space may be wasted by setting an upper bound on the length of the files and padding smaller

14

files to that length. Here we describe a modification to the scheme which eliminates this source of
inefficiency by storing each block of a file separately.

In this extensiorQueryConstruction takes two upper bounds on the matching content.
We letm; be an upper bound on the number of matching files:andbe an upper bound on the
total length of the matching files, expressed in units of Paillier plaintext blocks. As before, the
c-buffer is of lengthO(m;) and the matching-indices buffer is of lengthim, log(t/m)) (or,
using the alternative construction given in Section B8y, logm;)). The data buffer is now set
to lengthO(m,), and each entry in the data buffer is now a single ciphertext rather than an array
fixed to an upper bound on the length of each file. We introduce a new buffer on the server called
the length buffer which is an arrayl set to lengthO(m,). Intuitively, the length buffer will be
used to store the length of each matching file, and the data buffer will now be used to store linear
combinations of individual blocks from each file rather than entire files.

We briefly describe how this is accomplished in more concrete terms. Replace the correspond-
ing portion of StreamSearch with the following, where/c = O(m;) is the length of the c-
buffer and length buffer{z = O(m.) is the length of the data buffeg, : Z* — {0,1} is an
additional pseudo-random functiodh, is the length of théth file in the stream, and th& blocks
of the file are denoted, 1, f;o, ..., fia-

e = % mod n?
for j:=1,2,...,0¢c :
it g(i,j)=1":

Clj] := C[j] - ¢ mod n?
L[j] := L[j] - e mod n?

for n=1,2,...,d; :
e := ¢/t mod n?
for jo:=1,2,...,4p :
it g(i,j1,j2) =1 :
F[js] :== Fljs] - e mod n?

The client may use a modified versionkifeReconstruction to recover the matching files.
As before, the matching-indices buftérs used to determine a superset of the indices of matching
files, and a matrixA of length /. is constructed based on these indices uginghe vectorc is
again computed a8 := A~! - C’. The client next computes the lengths of the matching files as
d := diag(¢)™' - A" - I/. If Y., d; > {r, the combined length of the files is greater than the
prescribed upper bound and the client aborts. Otherwise, the data buffer now stores a system of
{r > my linear equations in terms of the individual blocks of the matching files. Briefly, the
blocks may be recovered by constructing a new matrifilling its entries by evaluating over
the indices of the blocks of the matching files. The blocks of the matching files are then computed
asf := diag(¢’)"' - A~!. F’, whereZ’ is asc but with theith entry repeated, times.

Using this extension, space may be saved if the matching files are expected to vary in size.
Some information about the number expected to match and their total size is still needed to set up
the query, but the available space may now be distributed arbitrarily amongst the files.

15

6 Conclusion

The primary contribution of our scheme is the improvement of server storage and server to client
communication complexity fron®(m logm) in the size of the matching files ©(m log(t/m)).

In the common streaming case of each document matching independently from other documents,
this results in the optimaD(m) complexity, with near optimal constant factors. A practical anal-
ysis with problem parameters corresponding to a realistic application is given in [2], an extended
abstract on the performance of this scheme. It is shown that in a typical scenario with a long
stream, it is possible to avoid failure with probability over 0.99 while using communication (and
server storage).2m, wherem is the actual size of the matching files, before the factor of two
inflation due to the Paillier cryptosystem. In contrast, we found the scheme of Ostrovsky and
Skeith to result in storage and communication as higbdas before the inflation due to Palillier.

In applications wheren is allowed to vary arbitrarily, independent ©fa modified version of our
scheme returns to th@(m logm) communication and storage complexity. In this case constant
factor improvements are made over the previous scheme of Ostrovsky and Skeith. Both versions
of our scheme achieve the increased efficiency through a novel technique for efficiently spread-
ing the matching documents throughout the buffer of results, the former also employing a unique
encrypted Bloom filter construction. Finally, we proved correctness and security results for the
scheme and noted some extensions.

References

[1] The Google news alerts service. Information available at
http://www.google.com/alerts

[2] John Bethencourt, Dawn Song, and Brent Waters. New constructions and practical applica-
tions for private stream searching (extended abstract)ElBE Symposium on Security and
Privacy, May 2006.

[3] Boneh, Di Crescenzo, Ostrovsky, and Persiano. Public key encryption with keyword search.
In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRXH.

[4] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematicsl(4):485-509, 2005.

[5] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. BUROCRYPT '99pages 402—-414, 1999.

[6] Yan-Cheng Chang. Single database private information retrieval with logarithmic communi-
cation. Ininformation Security and Privacy ACISP004.

[7] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Technical report,
1997.

16

http://www.google.com/alerts

[8] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In36th Annual Symposium on Foundations of Computer Science FOQ®i§6s
41-51, October 1995.

[9] Ivan Damgard and Mats Jurik. A generalisation, a simplification and some applications of
Palillier’'s probabilistic public-key system. FPublic Key Cryptographypages 119-136, 2001.

[10] Freedman, Ishai, Pinkas, and Reingold. Keyword search and oblivious pseudorandom func-
tions. InTheory of Cryptography Conference (TCC), LN@8ume 2, 2005.

[11] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/

[12] J. Kahn, J. Kombs, and E. Szemedi. On the probability that a randoiril matrix is singular.
J. Amer. Math. So¢8(1):223-240, 1995.

[13] J. Kombs. On the determinant of (0,1)-matric&tudia Math. Hungarica2:7-21, 1967.

[14] Kaoru Kurosawa and Wakaha Ogata. Oblivious keyword se&&MPLEXITY: Journal of
Complexity 20, 2004,

[15] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. BBth Annual Symposium on Foundations
of Computer Science, FOCS'9Yages 364-373, 1997.

[16] Helger Lipmaa. An oblivious transfer protocol with log-squared communicationS@
pages 314-328, 2005.

[17] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluatioRrdoeedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STO(J88Es 245—
254, New York, May 1999. Association for Computing Machinery.

[18] Rafail Ostrovsky and William Skeith. Private searching on streaming data&CRMPTQ
August 2005.

[19] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT '99pages 223-238, 1999.

[20] Robert Silverman. A cost-based security analysis of symmetric and asymmetric key lengths.
Technical report, RSA Laboratories, November 2001.

[21] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. IEEE Symposium on Security and Privapgges 44-55, 2000.

[22] Terence Tao and Van H. Vu. On randofl matrices: singularity and determinant. In
Proceedings of the Annual ACM Symposium on Theory of Computing (Sp&g&s 431—
440, 2005.

17

http://eprint.iacr.org/

[23] Terence Tao and Van H. Vu. On the singularity probability of random bernoulli matrices.
Eprint in submission td. Amer. Math. So¢2005.

18

A Terms and Notation

For easy reference, we provide a single list of the terms and variables introduced and defined
throughout the text.

client the person or machine conducting a private search, i.e., generating a private query and
eventually recovering the content that matched the query

server the person or machine carrying out the private search on the behalf of the client
n Paillier public key & = p1p2, Wherep, andp, are large, secret primes)

s an upper bound on the length of a file as a number of elementsZrgrice., if files are at most
b bits, thens = [HT”M}

t number of files processed by the server before returning buffers to the client
p false positive rate of the Bloom filtdr

D global dictionary of potential keywords

K the set of keywords forming the query

w,; thesth word inD

¢; theith entry in the query array (before encryption), corresponds to

f; theith file checked by the server

W; the words present in or associated with ttefile®

¢; the number of distinct keywords matched by ittefile, i.e.,

KN W,

m an upper bound on the number of files which may be retrieved

r the number of files which actually match the query

@ the encrypted query, an array |d¥| elements fronZ’,

F' the data buffer, an array éf. elements, each of which is an arraysaélements fron¥’,
C' the coefficients buffer, an array éf elements fron¥.;,

I the matching indices buffer, an arrayffelements fron¥?,

k the number of hash functions to be used with the matching indices buffer, #éi%ﬁéj

5In the case of text documents, this is essentially the file itself; in the case of binary files, this set of words may be
metadata bundled with the file (e.g., the ID3 tag of an MP3 file).

19

B Proof of Lemma 2

Lemma2. LetG : Ko xZ xZ — {0, 1} be a(w, w,, €/8)-secure pseudo-random function family.

Letg = G, wherek <& Kg. Letlp = o(log(1/€)) such that ar/ x ¢ random(0, 1)-matrix is
singular with probability at most/4. Then the matrix

is singular with probability at most/2.

Proof. We know that ar/r x ¢r random(0, 1)-matrix is singular with probability at most/4.
However, in our schemed is not a random matrix, but a matrix constructed using the pseudo-
random functiony. Thus, we need the additional proof step to show that the mdtuve con-
structed using the pseudo-random functipalso satisfies the non-singular property with over-
whelming probability, otherwise, we could break the pseudo-random function. This proof step is
as follows.

Now assume for contradiction that the matrixis singular with probability greater thasi2.
Then we show that we can construct an adverganjth Advg > €/4 with polynomial number of
gueries and polynomial time, and thus contradicting the original assumpti@gns of

To do so, we play the following game. We flip a céire {0, 1} with a half and half probability,
the adversary is given one of two worlds in which he can make a number of queries to a given

oracle. If@ = 1, B is given world one, wherg = Gy, k Rl K¢, and the oracle responds to a
query (i,) with g(i, 7). If # = 0, the adversarys is given world two, where the oracle responds
to a query(z, j) by picking a random functio® mapping(s, j) to {0, 1}, i.e., by flipping a coin
b € {0, 1} with a half and half probability and returnirig(using a table of previous queries to
ensure consistency). After a series of queries, the advesgnesses which world he is in. The
adversaryB makes his guess using the following strategy: First, the adveiSargnstructs a
matrix A by querying the oracle for all;, j) wherei € {1,...,/r} andj € {1,...¢r},; then the
adversary3 checks ifA is singular. If yes, he guesses that he is in world one. If not, he guesses
that he is in world two.

Thus, we can compute the advantage of such an advefsary

Advs = | Pr[B? = 1]-Pr[B" = 1]| = |1/2 Pr[Ais singulaff = 1]—1/2 Pr[A is singulatf = 0] .

From the above assumptiori®;[A is singulatd = 1] > ¢/2, andPr[Ais singulatd = 0] <
/4, thusAdvg > ¢/8, contradicting the original assumptions@f N

20

C Proof of Lemma 3

Lemma 3. Given/{r > m + 8In(2/¢), let ; = O(mlog(t/m)), and assume the number of
matching files is at most, the probability that the number of reconstructed matching indites
greater than/y is at most /2.

Proof. The number of reconstructed matching indi¢esquals to the number of truly matching
files plus the number of false positives from the reconstruction using the Bloom filter. Thus, we
need to bound this number of false positives to be at st m.

The false positive ratg of the Bloom filter storingn entries is as follows [4].

L1 log 2

=(3) @

Thus, the expectation of the number of false positivegtis For simplicity, let's setpt =
(lp —m)/2. Thusl; = m(log2)? log(gFQfm). Sincelr is set to be linear inn, with ¢; =
O(mlog(t/m)) the expected number of false positives can be bounded farfrom

Moreover, we can model the number of false positives with a Bernoulli random variable
with rate parametes and approximate it with a Gaussian centered at the expected number of false
positives. From Chernoff bounds, we can derive thgtX > (p — m] < exp(—(¢p — m)/8).
Thus, with/r > m + 81n(2/¢), we can show that this probability is boundedd). Thus, we

show that the above lemma holds.]

21

D Proof of Theorem 2

Here we provide a proof of the semantic security of the proposed private searching system assum-
ing the semantic security of the Paillier cryptosystem. The proof is simple; in fact it proceeds in
the same way as the proof of semantic security in Ostrovsky and Skeith’s scheme [18]. The same
proof applies whether we are using encrypted queries of the original form proposed by Ostrovsky
and Skeith or the hash table queries we propose as an extension.

Theorem 2. If the Paillier cryptosystem is semantically secure, then the proposed private search-
ing scheme is semantically secure according to Definition 1.

Proof. We assume there is an adversatyhat can play the game described in Definition 1 with
non-negligible advantagein order to show that we then have non-negligible advantage in breaking
the security of the Paillier cryptosystem.

First we initiate a game with the Palillier challenger, receiving public/keWe choose plain-
textsmgy, my € Z, to be simplym, = 0 andm; = 1. We return them to the Paillier challenger
who secretly flips a coi, and sends ug’ (mg,).

Now we initiate a game wittd and send them the modulus challenging them to break the
semantic security of the private searching system. They send us two sets of keyipathsl /; .

We flip a coinf, and construct the queiy s, by passingi{s, to QueryConstruction . Next
we replace all the entries i3, which are encryptions of one with (mg,), re-randomizing each
time by multiplying by a new encryption of zero. Note that with probability one I4lf= 0 and
()3, is a query that searches for nothing. In this caskas no influence o, since() s, consists
solely of uniformly distributed encryptions of zero. Otherwi§g, searches fofs,.

Next we giveQ)s, to A. After investigation,A returns their guess). If 5, = 3,, we let the
guess for our challenge % = 1 and return it to the Paillier challenger. Otherwise wedgt= 0
and send it to the Paillier challenger.

Since A is able to break the semantic security of the private searching systéin=f1 the
probability that3, = f3; is 5 + €, wheres is a non-negligible function of the security parameter
If 5, =0, thenP (5, = 35) = % since(, was chosen uniformly at random and it had no bearing
on the choice off;,. Now we may compute our advantage in our game with the Paillier challenger
as follows.

P (=) =P (=104 =15 +P(3 =05 =0
SR LI
2 2 2 2
1 e
273
Sincee is non-negligible, so is. O

22

	1 Introduction
	1.1 Related Work

	2 Definitions and Preliminaries
	2.1 Problem Definition
	2.2 Preliminaries

	3 New Construction
	3.1 Client's QueryConstruction Procedure
	3.2 Server's StreamSearch Procedure
	3.3 Client's FileReconstruction Procedure

	4 Analysis
	4.1 Correctness and Complexity
	4.2 Security

	5 Extensions
	5.1 Bloom Filter Space Saving
	5.2 Hashing Keywords
	5.3 Stream Length Independence
	5.4 Arbitrary Length Files

	6 Conclusion
	A Terms and Notation
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Theorem 2

