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Abstract

A system for private stream searching, introduced by Ostrovsky and Skeith [18], allows a client to
provide an untrusted server with an encrypted search query. The server uses the query on a stream
of documents and returns the matching documents to the client while learning nothing about the
nature of the query. We present a new scheme for conducting private keyword search on stream-
ing data which requiresO(m) server to client communication complexity to return the content
of the matching documents, wherem is the size of the documents. The required storage on the
server conducting the search is alsoO(m). Our technique requires some metadata to be returned
in addition to the documents; for this we present a scheme withO(m log(t/m)) communication
and storage complexity. In many streaming applications, the number of matching documents is
expected to be a fixed fraction of the stream length; in this case the new scheme has the optimal
O(m) overall communication and storage complexity with near optimal constant factors. The pre-
vious best scheme for private stream searching was shown to haveO(m log m) communication
and storage complexity. In applications wheret

m
> m, we may revert to an alternative method of

returning the necessary metadata which hasO(m log m) communication and storage complexity;
in this case constant factor improvements over the previous scheme are achieved. Our solution
employs a novel construction in which the user reconstructs the matching files by solving a sys-
tem of linear equations. This allows the matching documents to be stored in a compact buffer
rather than relying on redundancies to avoid collisions in the storage buffer as in previous work.
We also present a unique encrypted Bloom filter construction which is used to encode the set of
matching documents. In this paper we describe our scheme, prove it secure, analyze its asymptotic
performance, and describe several extensions.





1 Introduction

The Internet currently has several different types of sources of information. These include con-
ventional websites, time sensitive web pages such as news articles and blog posts, real time public
discussions through channels such as IRC, newsgroup posts, online auctions, and web based fo-
rums or classified ads. One common link between all of these sources is that searching mechanisms
are vital for a user to be able to distill the information relevant to him.

Most search mechanisms involve a client sending a set of search criteria to a server and the
server performing the search over some large data set. However, for some applications a client
would like to hide his search criteria, i.e., which type of data he is interested in. A client might
want to protect the privacy of his search queries for a variety of reasons ranging from personal
privacy to protection of commercial interests.

A naive method for allowing private searches is to download the entire resource to the client
machine and perform the search locally. This is typically infeasible due to the large size of the data
to be searched, the limited bandwidth between the client and a remote entity, or to the unwillingness
of a remote entity to disclose the entire resource to the client.

In many scenarios the documents to be searched are being continually generated and are already
being processed as a stream by remote servers. In this case it would be advantageous to allow
clients to establish persistent searches with the servers where they could be efficiently processed.
Content matching the searches could then be returned to the clients as it arises. For example,
Google News Alerts system [1] emails users whenever web news articles crawled by Google match
their registered search keywords. In this paper we develop an efficient cryptographic system which
allows services of this type while provably maintaining the secrecy of the search criteria.

Private Stream Searching Recently, Ostrovsky and Skeith defined the problem of “private fil-
tering”, which models the situations described above. They gave a scheme based on the homomor-
phism of the Paillier cryptosystem [19, 9] providing this capability [18]. First, a public dictionary
of keywordsD is fixed. To construct a query for the disjunction of some keywordsK ⊆ D, the
user produces an array of ciphertexts, one for eachw ∈ D. If w ∈ K, a one is encrypted; otherwise
a zero is encrypted. A server processing a document in its stream may then compute the product
of the query array entries corresponding to the keywords found in the document. This will result
in the encryption of some valuec, which, by the homomorphism, is non-zero if and only if the
document matches the query. The server may then in turn computeE (c)f = E (cf), wheref is
the content of the document, obtaining either an encryption of (a multiple of) the document or an
encryption of zero.

Ostrovsky and Skeith propose the server keep a large array of ciphertexts as a buffer to accu-
mulate matching documents; eachE (cf) value is multiplied into a number of random locations in
the buffer. If the document matches the query thenc is non-zero and copies of that document will
be placed into these random locations; otherwise,c = 0 and this step will add an encryption of 0
to each location, having no effect on the corresponding plaintexts. A fundamental property of their
solution is that if two different matching documents are ever added to the same buffer location
then we will have a collision and both copies will be lost. If all copies of a particular matching
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document are lost due to collisions then that document is lost, and when the buffer is returned to
the client, he will not be able to recover it.

To avoid the loss of data in this approach one must make the buffer sufficiently large so that this
event does not happen. This requires that the buffer be much larger than the expected number of
required documents. In particular, Ostrovsky and Skeith show that a given probability of success-
fully obtaining all matching documents may be obtained with a buffer of sizeO(m log m),1 where
m is the number of matching documents. While effective, this scheme results in inefficiency due
to the fact that a significant portion of the buffer returned to the user consists of empty locations
and document collisions.

Our Approach In this paper we present a new private stream searching scheme which achieves
the optimalO(m) communication from the server to the client and server storage overhead in re-
turning the content of the matching documents, given any fixed probability of successfully retriev-
ing all matching documents. Metadata required for the reconstruction of the documents is returned
using a technique requiringO(m log(t/m)) communication and storage. The latter technique also
results in the optimalO(m) complexity with near optimal constant factors in applications where
each document matches the query with some probability, independent of the other documents. In
applications where a fixed number of documents are expected to match, regardless of the stream
length, a modification to our scheme produces the previousO(m log m) complexity, but with near
optimal constant factor overhead. These results are based on the novel combination of a few tech-
niques.

Like the approach of Ostrovsky and Skeith we give an encrypted dictionary and non-matching
documents have no effect on the encrypted contents. However, rather than using a large buffer and
attempting to avoid collisions, each matching document in our system is copied randomly over
approximately half of the locations across the buffer. A pseudo-random function,g, whose key is
shared by the client and server, will determine pseudo-randomly with probability1

2
whether the

document is copied into a given location, where the function takes as inputs the document number
(document numberi is theith document seen by the server) and buffer location. While any one
particular buffer location will not likely contain any information about any matching document,
with high probability all the information from all the matching documents can be retrieved from the
whole system by the client given that the client knows the number of matching documents and that
the number of matching documents is less than the buffer size. The client can do this by decrypting
the buffer and then solving a linear system to retrieve the original documents. Finally, the server
maintains a separate encrypted Bloom filter that efficiently keeps track of which document numbers
were matched. The use of an efficient Bloom filter to keep track along with our method of storing
documents allows us to store the encrypted documents in a much smaller buffer.

1Specifically, they define a correctness parameterγ and use a buffer of sizeO(γm). They show that a given success
probability may be achieved with aγ that isO(log m).
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1.1 Related Work

Private searching may be viewed as the flip side of searching on encrypted data [21, 3, 11]; in this
case the data is unencrypted and the query is encrypted. Goh applied Bloom filters in a way that
allows a server to store encrypted-searchable data in a more efficient manner.

However, searching on encrypted data is quite different from private searching. In the problem
of searching on encrypted data the data is hidden from the server, while in private searching the
data is known to the server and the client’s queries must remain hidden. Private searching is
actually most closely related to the topics of single-database private information retrieval [8, 15, 5,
6] and oblivious transfer [17, 16]. One incompatibility between previously proposed PIR schemes
and the present problem is that PIR schemes have thus far required communication dependent on
the size of the entire database rather than the size of the portion retrieved. In some streaming
settings, a private searching scheme with communications independent of the size of the stream
or database is desirable. Another difference between the PIR and private search settings is that
most PIR constructions model the database to be searched as a long bitstring and the queries as
indices of bits to be retrieved. In contrast, the system proposed in this paper and that of Ostrovsky
and Skeith allow queries based on a search for keywords within text. Both these schemes may
also retrieve pieces of data by index, however. The text associated with a block of data in the
database against which queries are matched is arbitrary, so by simply including strings of the form
“blocknumber:1”, “blocknumber:2”,. . . in the text associated with each block of data, they may
be explicitly retrieved by appropriate queries. There has been some consideration of search or
retrieval by keyword rather than index in the PIR literature [7, 14, 10], but none of these systems
has communication dependent only on the size of the data retrieved rather than some function of
the length of the database or stream. In [2] we experimentally analyzed the performance of our
system in the setting of a realistic application, comparing it with the scheme of Ostrovsky and
Skeith.

2 Definitions and Preliminaries

In this section we describe the problem of private searching and make appropriate definitions. We
also briefly review Paillier’s cryptosystem and the definition of a pseudo-random function family.

2.1 Problem Definition

In a private searching scheme a client will create an encrypted query for the set of keywords that he
is interested in. The client will give this encrypted query to the server. The server will then run a
search algorithm on a stream of files2 while keeping an encrypted buffer storing information about
files for which there is a keyword match. The encrypted buffer will then be returned to the client
(periodically) to enable the client to reconstruct the files that have matched his query keywords.
We call a file amatching fileif it matches at least one keyword in the set of keywords that the

2We use the name “file” as a general term for the data chunk that is to be returned. The type of data will vary by
application.
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client is interested in. The key aspect of a private searching scheme is that a server is capable of
conducting the search even though it does not know which set of keywords the client is interested
in. We now formally describe a private stream search scheme. A scheme for private stream search
scheme consists of the following three algorithms.

QueryConstruction (λ, ε, m, K) TheQueryConstruction algorithm is run by a client
to prepare an encrypted list of keywords that he would like the server to search for. The algorithm
takes as input a security parameterλ, a correctness parameterε, an upper bound on the number
files to retrievem, and an unencrypted set of stringsK that are to be used as the search keywords.
The algorithm outputs a public keyKpub, a private keyKpriv, and an encrypted queryQ. The
client then sendsKpub, Q to the server. The correctness parameterε may be used to select various
algorithm parameters to ensure that up tom files will be correctly retrieved with high probability.
These additional parameters are also sent to the server.

StreamSearch (Kpub, Q, f1, . . . , ft, W1, . . . ,Wt) The StreamSearch algorithm is run by
a server to perform a private keyword search on behalf of the client on a stream of files. The
algorithm takes as input an encrypted queryQ, a public keyKpub, and a stream of files~f =

(f1, f2, . . . , ft) and corresponding sets of keywords that describe each file~W = (W1, . . . ,Wt).
Normally each setWi is derived from the corresponding filefi as a preprocessing step. The
algorithm produces a buffer of encrypted resultsR which is sent back to the client after processing
some number of filest, which is chosen by the client. The choice oft is application dependent and
should ensure that no more thanm matching documents are likely to be found.

FileReconstruction (Kpriv, R) The FileReconstruction algorithm is used to ex-
tract the set of matching files from the returned encrypted buffer. The algorithmFileReconstruction
takes as input the private keyKpriv and a buffer of encrypted resultsR. It outputs the set of match-
ing files{ fi

∣∣ |K ∩Wi| > 0 }.

To define privacy for a private stream search scheme, consider the following game between
a challenger and an adversary. The adversary gives the challenger two sets of keyword strings
K0, K1. The challenger then flips a coinβ, runs theQueryConstruction (λ, ε, m, Kβ), and
gives the public key and the encrypted queryQ to the adversary. The adversary then outputs a
guessβ′. We say that an adversary has advantageε if |P (β = β′)− 1

2
| ≥ ε

Definition 1. We say that a private searching scheme is semantically secure if for all PPT adver-
sariesA, the advantage ofA is negligible in the security parameter,λ.

We establish that the proposed system satisfies this definition in Section 4.2.

2.2 Preliminaries

Paillier’s Cryptosystem We now provide a brief review of the most important features of the
Paillier cryptosystem. The Paillier cryptosystem is a public key cryptosystem; as in RSA the
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public keyn is the product of two large primes. The factorization ofn is the private key. In this
paper the encryption of a plaintextm with the public key (there is only one public key in use in this
paper, the one generated by the client when constructing a private search) is denotedE (m), and
the decryption of a ciphertextc with the private key is denotedD (c). Plaintexts are represented
by elements of the groupZn and ciphertexts are represented by elements of the groupZ∗

n2, so
E : Zn → Z∗

n2 andD : Z∗
n2 → Zn. Note that ciphertexts are twice as large as plaintexts.3

The key property of the Paillier cryptosystem upon which the entire system is based is its ho-
momorphism. For anya, b ∈ Zn, it is the case thatD (E (a) · E (b)) = a + b. That is, multiplying
ciphertexts has the effect of adding the corresponding plaintexts. This allows one to perform rudi-
mentary computations on encrypted values. Our construction may be adapted to use any public key,
homomorphic cryptosystem, but for concreteness, we assume the use of the Paillier cryptosystem
throughout the rest of the paper.

Pseudo-Random Functions In our construction we use a pseudo-random function familyG :
KG × Z × Z → {0, 1}. Roughly speaking,G will take in a keyk and two integers and output a

pseudo random bit. We letg = Gk wherek
R←− KG.

The security of a pseudo-random function familyG : KG × Z × Z → {0, 1} is defined by
the following game between a challenger and an adversaryA. A challenger chooses a random key

k
R←− KG and letsg = Gk. The challenger then flips a binary coinβ. At this point the adversary

submits to make oracle queries to the challenger over the domain. Ifβ = 0 the challenger will
respond by evaluating the functiong on the input, whereas ifβ = 1 it will respond with random
bit to all new queries, while giving the same response if the same query is asked twice. Finally, the
adversary outputs a guessβ′. We define the adversary’s advantage in this game as:

AdvA = |Pr[β = β′]− 1/2|

We say that a pseudo random function is(ωt, ωq, ε)- secure if noωt time adversary, that makes
at mostωq oracle queries, has advantage at greater thanε.

3 New Construction

We now describe the algorithms of the new private search scheme and give an analysis of complex-
ity and security properties. In the following explanations, we defer discussion of several special
failure cases to the next subsection.

3This property of inflating messages by encrypting them is improved in Damgård-Jurik generalization of the Paillier
cryptosystem [9]. In their scheme the plaintext and ciphertext spaces areZns andZ∗

ns+1 for any s ∈ {1, 2, . . .}.
However, the constraints in this paper are likely to make the original situation ofs = 1 preferable.
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Algorithm: QueryConstruction
Input: Set of keywordsK.

Output: Query arrayQ = (E (q1) , E (q2) , . . . , E
(
q|D|

)
), public keyn.

Generate a Paillier key pairn, Kpriv.

for i := 1, 2, . . . , |D| :
if wi ∈ K :

qi := 1
else :

qi := 0
Q[i] := E (qi)

Figure 1:The algorithm for setting up an encrypted query.

3.1 Client’s QueryConstruction Procedure

Figure 1 gives the algorithm for producing the encrypted query,QueryConstruction . A pub-
lic dictionary of potential keywords

D = {w1, w2, . . . , w|D|}

is assumed to be available. Constructing the encrypted query for some disjunction of keywords
K ⊆ D then proceeds as in the scheme of Ostrovsky and Skeith. The client generates a key
pair, then for eachi ∈ 1, . . . , |D|, definesqi = 1 if wi ∈ K and qi = 0 if wi /∈ K. The
valuesq1, q2, . . . , q|D| are encrypted (rerandomizing each encryption) and put in the arrayQ =
(E (q1) , E (q2) , . . . , E

(
q|D|

)
), which forms the final encrypted query. In Section 5.2 we give an

alternative form for the encrypted queries which eliminates the public dictionaryD. The client
then sendsQ and the public keyn to the server.

3.2 Server’sStreamSearch Procedure

Figure 2 gives the full algorithm run by the server,StreamSearch . In addition to the public key
andQ, the client may provide the server with the parametert, the number of files to process before
returning the results, and the parameters`F , `I , andk, which affect correctness and performance
(see below and Section 4.1).

State The server must maintain three buffers as it processes the files in its stream. These buffers
are hereafter referred to as thedata buffer,the c-buffer, and thematching-indices bufferand
denotedF , C, andI respectively. Each of these is an array of elements from the ciphertext space
Z∗

n2, with F andC of length`F andI of length`I . For simplified notation here and in subsequent
explanations, we assume that each document is at mostn bits and therefore fits within a single
plaintext inZn. For longer documents requirings elements ofZn, we would letF be an`F × s
array and subsequent operations involving a file updatingF are performed blockwise.
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Algorithm: StreamSearch
Input: Q, n, number of files to processt, sequence of filesf1, . . . , ft

with corresponding keyword setsW1, . . . Wt, size of data buffer
`F , size of matching indices buffer`I , number of hash functionsk.

Output: Data bufferF , coefficients bufferC, matching indices bufferI.

Initialize F andC as`F element arrays andI as aǹ I element array of
members ofZ∗

n2 . Initialize each element ofF , C, andI to E (0).

for i := 1, 2, . . . , t :
c := E (0)
for wj ∈Wi :

c := c ·Q[j] mod n2

e := cfi mod n2

for j := 1, 2, . . . , `F :
if g(i, j) = 1 :

F [j] := F [j] · e mod n2

C[j] := C[j] · c mod n2

for j := 1, 2, . . . , k :
` := hj(i) mod `I

I[`] := I[`] · c mod n2

Figure 2:The algorithm for running the private search.

The data buffer will store the matching files in an encrypted form which can then be used by
the client to reconstruct the matching files. In particular, the data buffer will contain a system of
linear equations in terms of the content of the matching files in an encrypted form. This system of
equations will later be solved by the client to obtain the matching files.

The c-buffer stores in an encrypted form the number of keywords matched by each matching
file. We call the number of keywords matched for a file thec-value of the file. The c-buffer will
be used in reconstruction of the matching files from the data buffer by the client. As in the case of
the data buffer, the c-buffer stores its information in the form of a system of linear equations. The
client will later solve the system of linear equations to reconstruct the c-values.

The matching-indices buffer is an encrypted Bloom filter that keeps track of the indices of
matching files in an encrypted form. More precisely, the matching-indices buffer will be a en-
crypted representation of some set of indices{α1, . . . , αr} where{α1, . . . , αr} ⊆ {1, . . . , t}. Here
r is the number of files which end up matching the query.

Each of these buffers begins with all its elements initialized to encryptions of zero. We now
detail how they are updated as each file is processed.
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Processing Steps To process theith file fi, the server takes the following steps.
Step 1: Compute encrypted c-value.First, the server looks up the query array entryQ[j] corre-
sponding to each wordwj found in the file. The product of these entries is then computed. Due to
the homomorphic property of the Paillier cryptosystem, this product is an encryption of c-value of
the file, i.e., the number of distinct members ofK found in the file. That is,∏

wj∈Wi

Q[j] = E

(∑
wj∈Wi

qj

)
= E (ci)

whereWi is the set of distinct words in theith file andci is defined to be|K ∩ Wi|. Note in
particular thatci 6= 0 if and only if the file matches the query.

Step 2: Update data buffer.The server computesE (cifi) using the homomorphic property of the
Paillier cryptosystem.

E (ci)
fi = E (cifi) =

{
E (cifi) if fi matches the query

E (0) otherwise.

The server multiplies the valueE (cifi) into a subset of the locations in the data buffer according
to the following procedure. LetG be a family of pseudo-random functions that mapZ × Z to

{0, 1}. Randomly selectg
R←− G (this should be done once upon initialization and the sameg

used for all files). The algorithm multipliesE (cifi) into each locationj in the data buffer where
g(i, j) = 1. Suppose for example we are updating the third location in the data buffer with the
second file. Assume that first file was also multiplied into this location, i.e.,g(1, 3) = g(2, 3) = 1.
Each of the two files may or may not match the query. Suppose in this example thatf1 matches
the query, butf2 does not. Before processingf2 we have thatD (F [3]) = c1f1. After multiplying
in E (c2f2), D (F [3]) = c1f1 + c2f2. But c2 = 0 sincef2 does not match, so it is still the case that
D (F [3]) = c1f1 and the data buffer is effectively unmodified. This mechanism allows the data
buffer to accumulate linear combinations of matching files while discarding all non-matching files.
Step 3: Update c-buffer.The valueE (ci) is multiplied into each of the locations in the c-buffer in
a similar fashion asE (cifi) was used to update the data buffer. In particular, the server multiplies
the valueE (ci) into each locationj in the c-buffer whereg(i, j) = 1.

Step 4: Update matching-indices buffer.The server then multipliesE (ci) further into a fixed num-
ber of locations in matching-indices buffer. This is done using essentially the standard procedure
for updating a Bloom filter. Specifically, we usek hash functionsh1, . . . , hk to select thek loca-
tions whereE (ci) will be added. For optimal efficiency, the client should select the parameterk as
b `I log 2

m
c, wherem is the number of files they expect to retrieve [4]. The locations of the matching-

indices buffer that a matching filei is multiplied into are take to beh1(i), h2(i), . . . , hk(i). Again,
if the fi does not match,ci = 0 so the matching-indices buffer is effectively unmodified.

After completing the aforementioned steps for a fixed number of filest in its stream, the server
sends its three buffers back to the client. Also, the server should return the functiong.

8



Algorithm: FileReconstruction
Input: F , C, I, k.

Output: The matching filesfα′
1
, fα′

2
, . . . , fα′

r
.

Decrypt each element ofF , C, andI to obtainF ′, C ′, andI ′ .

β := 0
for i := 1, 2, . . . , t :

for j := 1, 2, . . . , k :
` := hj(i) mod `I

if I ′[`] = 0 : next i
β := β + 1
αβ := i

if β > `F :
output “Error, overflow.”, exit

while β < `F :
β := β + 1
αβ := pick({1, . . . , t} \ {α1, α2, . . . , αβ−1})

A :=
[
g(αi, j)

]
i:=1,2,...,`F
j:=1,2,...,`F

if A is singular :
output “Error, singular matrix.”, exit

~c := A−1 · C ′

{α′
1, α

′
2, . . . , α

′
r} = {α1, α2, . . . , α`F

} \ { αi | cαi = 0 }
for i ∈ { αi | cαi = 0 } :

cαi := 1

~f := diag(~c)−1 ·A−1 · F ′

output fα′
1
, fα′

2
, . . . , fα′

r

Figure 3:The algorithm for recovering the matching files after the completion of a private search.

3.3 Client’s FileReconstruction Procedure

Figure 3 gives the algorithm run by the client upon completion of the private search and receipt of
the three buffersF , C, andI, FileReconstruction .
Step 1: Decrypt buffers.The client first decrypts the values in the three buffers using the Paillier
decryption algorithm with its private keyKpriv, obtaining decrypted buffersF ′, C ′, andI ′.

Step 2: Reconstruct matching indices.For each of the indicesi ∈ {1, 2, . . . , t}, the client computes
h1(i), h2(i), . . . , hk(i) and checks the corresponding locations in the decrypted matching-indices
buffer; if all these locations are non-zero, theni is added to the listα1, α2, . . . , αβ of potential
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matching indices. Note that ifci 6= 0, theni will be added to this list. However, due to the false
positive feature of Bloom filters, we may obtain some additional indices. Now we may check for
overflow, which occurs when the number of false positives plus the number of actual matchesr
exceeds̀ F . At this point if β < `F , we continue to add indices to the list until it is of length`F .
Here the functionpick denotes the operation of selecting an arbitrary member of a set. Note that
we will not run out of indices sincet ≥ `F .
Step 3: Reconstruct c-values of matching files.Given our superset of the matching indices{α1, α2 . . . , α`F

},
the client next solves for the values ofcα1 , cα2 , . . . , cα`F

. This is accomplished by solving the fol-
lowing system of linear equations for~c,

A · ~c = C ′ (1)

whereA is the matrix with thei, jth entry set tog(αi, j), C ′ is the vector of values stored in the
decrypted c-buffer, and~c is the column vector(cαi

)i=1,...,`F
.4 Now the exact set of matching indices

{α′
1, α

′
2 . . . , α′

r} may be computed by checking whethercαi
= 0 for eachi ∈ {1, . . . , `F}. Before

proceeding, we replace all zeros in the vector~c with ones.
As an example of Step 3, suppose there are four spots in the decrypted c-buffer (i.e.,`F =

4), seven files are processed, and we have established the following list of potentially matching
indices:{α1, α2, α3, α4} = {1, 3, 5, 7}. Then given

A =


1 0 1 0
1 1 0 1
1 0 0 1
0 1 1 0

 , C ′ =


2
3
1
3


we may compute

cα1 = c1 = 1

cα2 = c3 = 2

cα3 = c5 = 1

cα4 = c7 = 0 .

We then see that there were three matching files (r = 3): f1, f3, andf5.
Step 4: Reconstruct matching files.Finally, the content of the matching filesfα′

1
, fα′

2
, . . . , fα′

r
may

be determined by solving the linear system

A · diag(~c) · ~f = F ′ (2)

where

diag(~c) =

( c1 0 ···
0 c2
...

...

)
.

We directly compute~f = diag(~c)−1 · A−1 · F ′. Note thatdiag(~c) is never singular because
we previously ensured that no zeros appear in~c. The content of the matching files appears as

4The possibility of the matrixA being singular is considered in the next section.
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fα′
1
, fα′

2
, . . . , fα′

r
; the other entries in~f will be zero. Continuing the example above (and making

up a value ofF ′), this corresponds to solving the following equations

f1 + f5 = 32

f1 + 2f3 + f7 = 32

f1 + f7 = 10

2f3 + f5 = 44 ,

thereby determining thatf1 = 10, f3 = 11, andf5 = 22 (andf7 = 0, but this value is ignored).

4 Analysis

4.1 Correctness and Complexity

In this section, we give the correctness and complexity analysis of our scheme. In particular, we
will show that given a desired success probability bound1−ε, if the number of matching documents
is at mostm, then by using communication and storage overheadO(m log(t/m)), our scheme will
enable the user to correctly reconstruct all the matching documents from a stream oft documents
with probability at least1− ε.

In order to perform the analysis to demonstrate the above point, we first analyze the different
failure cases where the user will fail to reconstruct the matching documents. From the recon-
struction procedure, we can see that the client fails to reconstruct the matching files when the two
systems of linear equationsA · ~c = C ′ (Eq. 1) andA · diag(~c) · ~f = F ′ (Eq. 2) cannot be correctly
solved. This failure only happens in two cases:

1. The matrixA is singular. In this case, we will not be able to computeA−1 and solve the
system of linear equations.

2. There are more thaǹF−r false positives when the set of matching indices is computed using
the Bloom filter. In particular, if in Step 2 in theFileReconstruction procedure, the
number of matching indicesβ reconstructed from the Bloom filterI ′ is greater thaǹF , then
we have more variables than the number of linear equations and thus we will not be able to
solve the system of linear equationsA · ~c = C ′.

We show below that by picking the parameters`F and`I correctly, we can guarantee that the
probability of the above two failure cases can be bounded to be belowε. We demonstrate this by
proving the following three lemmas.

Lemma 1. For a given0 < ε < 1, there existsn = o(log(1/ε)), such that for anyn′ > n, an
n′ × n′ random(0, 1)-matrix is singular with probability at mostε.

Proof. Note that ann × n, random (0,1)-matrix is singular with negligible probability inn. This
was first conjectured by Erdös and proven in the 60’s by J. Komlós [13]. The specific bound has
since been improved several times, recently reachingO

((
3
4

+ o(1)
)n)

[12, 22, 23]. Thus, it is easy
to see that the above lemma holds.
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Lemma 2. LetG : KG×Z×Z→ {0, 1} be a(ωt, ωq, ε/8)-secure pseudo-random function family.

Let g = Gk, wherek
R←− KG. Let `F = o(log(1/ε)) such that aǹ F × `F random(0, 1)-matrix is

singular with probability at mostε/4. Then the matrix

A =
[
g(i, j)

]
i=1,...,`F
j=1,...,`F

is singular with probability at mostε/2.

Intuitively, this lemma bounds the failure probability that the matrix A is singular. We provide
the proof in Appendix B. Additionally, we note that for a given constantε the size of thè F will
be linear inm.

Lemma 3. Given`F > m+8 ln(2/ε), let `I = O(m log(t/m)), and assume the number of match-
ing files is at mostm out of a stream oft. Then the probability that the number of reconstructed
matching indicesβ is greater thaǹ F is at mostε/2.

Given the false positive rate of a Bloom filter, the proof is straightforward; we provide it in Ap-
pendix C. Together, Lemma 2 and Lemma 3 provide the primary result:

Theorem 1. If `F = o(log(1/ε)) + O(m), `F > m + 8 ln(2/ε), `I = O(m log(t/m)), G :
KG × Z × Z → {0, 1} is a (ωt, ωq, ε/8)-secure pseudo-random function family, then when the
number of matching files is at mostm in a stream oft, our scheme guarantees that the client can
correctly reconstruct all matching files with probability at least1− ε.

Proof. By Lemma 2, the probability that the matrixA is singular is at mostε/2. By Lemma 3,
the probability that the reconstruction of the matching indices will yield more than`F matching
indices is at mostε/2. Since these are the only two failure cases as explained earlier, the total
failure probability, the probability that the client would fail to reconstruct the matching files, is at
mostε.

4.2 Security

The security of the proposed system according to Definition 1 is straightforward. Intuitively, since
the server is only provided with an array of encryptions of ones and zeros, the scheme should be
as secure as the underlying cryptosystem.

Theorem 2. If the Paillier cryptosystem is semantically secure, then the proposed private search-
ing scheme is semantically secure according to Definition 1.

In Appendix D we provide a proof. The proof is straightforward and proceeds as in the case
of Ostrovsky and Skeith. Note that this establishes security based on the decisional composite
residuosity assumption, since that was used to prove the security of the Paillier cryptosystem.

12



5 Extensions

Here we describe several extensions to the proposed system which provide additional features or
vary performance tradeoffs.

5.1 Bloom Filter Space Saving

For security it will generally be necessary to use a modulusn of at least 1024 bits (e.g., as required
by the standards ANSI X9.30, X9.31, X9.42, and X9.44 and FIPS 186-2) [20]. The fact the c-
values will never approach21024 reveals that the Bloom filterI is in fact mostly wasted space. A
simple technique can be used to reclaim some of this space. If we assume that the sums of c-values
appearing in each location inI will be less than216, for example, we may use each group element
to representn

16
array entries. In the case ofn = 1024, this reduces the size ofI by a factor of 64.

When we need to multiply a valueE (c) into the Bloom filter in theStreamSearch algorithm,
we use the following technique. To multiply it into theith location inI, we let i1 = b i

64
c and

i2 = i mod 64. Then we compute

I[i1] := I[i1] · E (c)216i2

which has the result of shiftingc into thei2th 16-bit block within the group element inI[i1]. After
the client decryptsI, they may simply break up each element into 64 regions of 16 bits. This
space savings comes at an additional computation cost, however. The server will need to perform
k additional modular exponentiations for each file it processes.

5.2 Hashing Keywords

In some applications, the predetermined set of possible keywordsD may be unacceptable. Many
of the strings a user may want to search for are obscure (e.g., names of particular people or other
proper nouns) and including them inD would already reveal too much information. Since the size
of encrypted queries is proportional to|D|, it may not be feasible to fillD with, say, every person’s
name, much less all proper nouns.

In such applications an alternative form of encrypted query may be used. EliminatingD, we
allowK to be any finite subset ofΣ∗, whereΣ is some alphabet. Now inQueryConstruction ,
we pick a length̀ Q for the arrayQ and initialize each element toE (0). Then for eachw ∈ K, we
use a hash functionh : Σ∗ → {1, . . . , `Q} to select a locationh(w) in Q and setQ[h(w)] := E (1).
As before we rerandomize each encryption. To process theith file in StreamSearch , the server
may now computeE (ci) =

∏
w∈Wi

Q[h(w)]. The rest of the scheme is unmodified. Using this
extension, it is possible for a filefi to spuriously match the query if there is some wordw′ ∈ Wi

such thath(w′) = h(w) for somew ∈ K. The possibility of such false positives is the key
disadvantage of this approach.

An advantage of this alternative approach, however, is that it is possible to extend the types of
possible queries. Previously only disjunctions of keywords inD were allowed, but in this case a
limited sort of conjunction of strings may be achieved. To support queries of the form “w1 w2”
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wherew1, w2 ∈ Σ∗, we change the way eachWi is derived from the corresponding filefi. In
addition to including each word found in the filefi, we include all adjacent pairs of words inWi

(note that this approximately doubles the size ofWi). It is easy to imagine further extensions along
these lines. In particular, it is possible to match against binary data by simply including blocks of
the contents offi in Wi.

5.3 Stream Length Independence

In applications where the expected number of matching documents is fixed and independent of
the stream length, a modification to the scheme allows communication and storage independent of
the stream length as well. To produce this effect, we abandon the Bloom filter based construction
used in the matching-indices buffer and instead use the Ostrovsky Skeith construction to store the
matching indices. We briefly describe this technique below; for details (including an analysis of
collision detection) refer to [18].

Let `I = γm, whereγ is selected based on the desired error boundε. Fix a set of hash functions
h1, h2, . . . , hγ. Also, let each entry in the matching-indices bufferI be a pair of ciphertexts inZ∗

n2

rather than a single ciphertext. To updateI when processing theith file in StreamSearch ,
compute the following.

for j := 1, 2, . . . , γ :
` := hj(i) mod `I

I[`][1] := I[`][1] · c mod n2

I[`][2] := I[`][2] · ci mod n2

To recover the set of matching indices inFileReconstruction , the client decrypts each pair
of entries inI. When a pairI ′[k][1] andI ′[k][2], k ∈ {1, . . . `I} is non-zero (and not a collision),
the client may recover the index of a matching file asi = I ′[k][2]/I ′[k][1].

When using this technique, the c-buffer is omitted. We may set`F = m; otherwise, the data
buffer is used as before. All parameters are now selected based only onm andε without regard
to t, and there are no false positives for streams of any length. The analysis in [18] demonstrates
that the probability of an overflow in the new matching-indices buffer may be bounded belowε
with γ = O(log m + log(1/ε)), producing an overall communication and storage complexity of
O(m log m). Note that our scheme still produces a constant factor improvement over the original
scheme of Ostrovsky and Skeith in this case. If each file requiress plaintext blocks (i.e., is of
lengthns bits), then we reduce communication and storage by a factor of approximatelys. This
is accomplished by retrieving the bulk of the content through the efficient data buffer and only
retrieving document indices through the less efficient matching-indices buffer.

5.4 Arbitrary Length Files

In applications where the files are expected to vary significantly in length, an unacceptable amount
of space may be wasted by setting an upper bound on the length of the files and padding smaller
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files to that length. Here we describe a modification to the scheme which eliminates this source of
inefficiency by storing each block of a file separately.

In this extensionQueryConstruction takes two upper bounds on the matching content.
We letm1 be an upper bound on the number of matching files andm2 be an upper bound on the
total length of the matching files, expressed in units of Paillier plaintext blocks. As before, the
c-buffer is of lengthO(m1) and the matching-indices buffer is of lengthO(m1 log(t/m1)) (or,
using the alternative construction given in Section 5.3,O(m1 log m1)). The data buffer is now set
to lengthO(m2), and each entry in the data buffer is now a single ciphertext rather than an array
fixed to an upper bound on the length of each file. We introduce a new buffer on the server called
the length buffer,which is an arrayL set to lengthO(m1). Intuitively, the length buffer will be
used to store the length of each matching file, and the data buffer will now be used to store linear
combinations of individual blocks from each file rather than entire files.

We briefly describe how this is accomplished in more concrete terms. Replace the correspond-
ing portion ofStreamSearch with the following, wherè C = O(m1) is the length of the c-
buffer and length buffer,̀F = O(m2) is the length of the data buffer,̂g : Z3 → {0, 1} is an
additional pseudo-random function,di is the length of theith file in the stream, and thedi blocks
of the file are denotedfi,1, fi,2, . . . , fi,di

.

e := cdi mod n2

for j := 1, 2, . . . , `C :
if g(i, j) = 1 :

C[j] := C[j] · c mod n2

L[j] := L[j] · e mod n2

for j1 := 1, 2, . . . , di :
e := cfi,j1 mod n2

for j2 := 1, 2, . . . , `F :
if ĝ(i, j1, j2) = 1 :

F [j2] := F [j2] · e mod n2

The client may use a modified version ofFileReconstruction to recover the matching files.
As before, the matching-indices bufferI is used to determine a superset of the indices of matching
files, and a matrixA of length`C is constructed based on these indices usingg. The vector~c is
again computed as~c := A−1 · C ′. The client next computes the lengths of the matching files as
~d := diag(~c)−1 · A−1 · L′. If

∑
i di > `F , the combined length of the files is greater than the

prescribed upper bound and the client aborts. Otherwise, the data buffer now stores a system of
`F ≥ m2 linear equations in terms of the individual blocks of the matching files. Briefly, the
blocks may be recovered by constructing a new matrixÂ, filling its entries by evaluatinĝg over
the indices of the blocks of the matching files. The blocks of the matching files are then computed
as ~f := diag(~c ′)−1 · Â−1 · F ′, where~c ′ is as~c but with theith entry repeateddi times.

Using this extension, space may be saved if the matching files are expected to vary in size.
Some information about the number expected to match and their total size is still needed to set up
the query, but the available space may now be distributed arbitrarily amongst the files.
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6 Conclusion

The primary contribution of our scheme is the improvement of server storage and server to client
communication complexity fromO(m log m) in the size of the matching files toO(m log(t/m)).
In the common streaming case of each document matching independently from other documents,
this results in the optimalO(m) complexity, with near optimal constant factors. A practical anal-
ysis with problem parameters corresponding to a realistic application is given in [2], an extended
abstract on the performance of this scheme. It is shown that in a typical scenario with a long
stream, it is possible to avoid failure with probability over 0.99 while using communication (and
server storage)1.2m, wherem is the actual size of the matching files, before the factor of two
inflation due to the Paillier cryptosystem. In contrast, we found the scheme of Ostrovsky and
Skeith to result in storage and communication as high as24m before the inflation due to Paillier.
In applications wherem is allowed to vary arbitrarily, independent oft, a modified version of our
scheme returns to theO(m log m) communication and storage complexity. In this case constant
factor improvements are made over the previous scheme of Ostrovsky and Skeith. Both versions
of our scheme achieve the increased efficiency through a novel technique for efficiently spread-
ing the matching documents throughout the buffer of results, the former also employing a unique
encrypted Bloom filter construction. Finally, we proved correctness and security results for the
scheme and noted some extensions.
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A Terms and Notation

For easy reference, we provide a single list of the terms and variables introduced and defined
throughout the text.

client the person or machine conducting a private search, i.e., generating a private query and
eventually recovering the content that matched the query

server the person or machine carrying out the private search on the behalf of the client

n Paillier public key (n = p1p2, wherep1 andp2 are large, secret primes)

s an upper bound on the length of a file as a number of elements fromZn, i.e., if files are at most
b bits, thens = d b

dlog2 nee

t number of files processed by the server before returning buffers to the client

ρ false positive rate of the Bloom filterI

D global dictionary of potential keywords

K the set of keywords forming the query

wi theith word inD

qi theith entry in the query array (before encryption), corresponds towi

fi theith file checked by the server

Wi the words present in or associated with theith file5

ci the number of distinct keywords matched by theith file, i.e.,|K ∩Wi|

m an upper bound on the number of files which may be retrieved

r the number of files which actually match the query

Q the encrypted query, an array of|D| elements fromZ∗
n2

F the data buffer, an array of`F elements, each of which is an array ofs elements fromZ∗
n2

C the coefficients buffer, an array of`F elements fromZ∗
n2

I the matching indices buffer, an array of`I elements fromZ∗
n2

k the number of hash functions to be used with the matching indices buffer, set tob `I log 2
m
c

5In the case of text documents, this is essentially the file itself; in the case of binary files, this set of words may be
metadata bundled with the file (e.g., the ID3 tag of an MP3 file).
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B Proof of Lemma 2

Lemma 2. LetG : KG×Z×Z→ {0, 1} be a(ωt, ωq, ε/8)-secure pseudo-random function family.

Let g = Gk, wherek
R←− KG. Let `F = o(log(1/ε)) such that aǹ F × `F random(0, 1)-matrix is

singular with probability at mostε/4. Then the matrix

A =
[
g(i, j)

]
i=1,...,`F
j=1,...,`F

is singular with probability at mostε/2.

Proof. We know that aǹ F × `F random(0, 1)-matrix is singular with probability at mostε/4.
However, in our scheme,A is not a random matrix, but a matrix constructed using the pseudo-
random functiong. Thus, we need the additional proof step to show that the matrixA we con-
structed using the pseudo-random functiong also satisfies the non-singular property with over-
whelming probability, otherwise, we could break the pseudo-random function. This proof step is
as follows.

Now assume for contradiction that the matrixA is singular with probability greater thanε/2.
Then we show that we can construct an adversaryB with AdvB > ε/4 with polynomial number of
queries and polynomial time, and thus contradicting the original assumptions ofG.

To do so, we play the following game. We flip a coinθ ∈ {0, 1}with a half and half probability,
the adversaryB is given one of two worlds in which he can make a number of queries to a given

oracle. Ifθ = 1, B is given world one, whereg = Gk, k
R←− KG, and the oracle responds to a

query(i, j) with g(i, j). If θ = 0, the adversaryB is given world two, where the oracle responds
to a query(i, j) by picking a random functionR mapping(i, j) to {0, 1}, i.e., by flipping a coin
b ∈ {0, 1} with a half and half probability and returningb (using a table of previous queries to
ensure consistency). After a series of queries, the adversaryB guesses which world he is in. The
adversaryB makes his guess using the following strategy: First, the adversaryB constructs a
matrix A by querying the oracle for all(i, j) wherei ∈ {1, . . . , `F} andj ∈ {1, . . . `F}; then the
adversaryB checks ifA is singular. If yes, he guesses that he is in world one. If not, he guesses
that he is in world two.

Thus, we can compute the advantage of such an adversaryB.

AdvB = |Pr[Bg = 1]−Pr[BR = 1]| = |1/2 Pr[A is singular|θ = 1]−1/2 Pr[A is singular|θ = 0]| .

From the above assumptions,Pr[A is singular|θ = 1] > ε/2, andPr[A is singular|θ = 0] <
ε/4, thusAdvB > ε/8, contradicting the original assumptions ofG.
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C Proof of Lemma 3

Lemma 3. Given `F > m + 8 ln(2/ε), let `I = O(m log(t/m)), and assume the number of
matching files is at mostm, the probability that the number of reconstructed matching indicesβ is
greater thaǹ F is at mostε/2.

Proof. The number of reconstructed matching indicesβ equals to the number of truly matching
files plus the number of false positives from the reconstruction using the Bloom filter. Thus, we
need to bound this number of false positives to be at most`F −m.

The false positive rateρ of the Bloom filter storingm entries is as follows [4].

ρ =

(
1

2

) `I log 2

m

(3)

Thus, the expectation of the number of false positives isρt. For simplicity, let’s setρt =
(`F − m)/2. Thus`I = m(log 2)−2 log( 2t

`F−m
). Since`F is set to be linear inm, with `I =

O(m log(t/m)) the expected number of false positives can be bounded far from`F .
Moreover, we can model the number of false positives with a Bernoulli random variableX

with rate parameterρ and approximate it with a Gaussian centered at the expected number of false
positives. From Chernoff bounds, we can derive thatPr[X > `F − m] < exp(−(`F − m)/8).
Thus, with`F > m + 8 ln(2/ε), we can show that this probability is bounded byε/2. Thus, we
show that the above lemma holds.
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D Proof of Theorem 2

Here we provide a proof of the semantic security of the proposed private searching system assum-
ing the semantic security of the Paillier cryptosystem. The proof is simple; in fact it proceeds in
the same way as the proof of semantic security in Ostrovsky and Skeith’s scheme [18]. The same
proof applies whether we are using encrypted queries of the original form proposed by Ostrovsky
and Skeith or the hash table queries we propose as an extension.

Theorem 2. If the Paillier cryptosystem is semantically secure, then the proposed private search-
ing scheme is semantically secure according to Definition 1.

Proof. We assume there is an adversaryA that can play the game described in Definition 1 with
non-negligible advantageε in order to show that we then have non-negligible advantage in breaking
the security of the Paillier cryptosystem.

First we initiate a game with the Paillier challenger, receiving public keyn. We choose plain-
textsm0, m1 ∈ Zn to be simplym0 = 0 andm1 = 1. We return them to the Paillier challenger
who secretly flips a coinβ1 and sends usE (mβ1).

Now we initiate a game withA and send them the modulusn, challenging them to break the
semantic security of the private searching system. They send us two sets of keywords,K0 andK1.
We flip a coinβ2 and construct the queryQβ2 by passingKβ2 to QueryConstruction . Next
we replace all the entries inQβ2 which are encryptions of one withE (mβ1), re-randomizing each
time by multiplying by a new encryption of zero. Note that with probability one half,β1 = 0 and
Qβ2 is a query that searches for nothing. In this caseβ2 has no influence onQβ2 sinceQβ2 consists
solely of uniformly distributed encryptions of zero. Otherwise,Qβ2 searches forKβ2.

Next we giveQβ2 to A. After investigation,A returns their guessβ′
2. If β′

2 = β2, we let the
guess for our challenge beβ′

1 = 1 and return it to the Paillier challenger. Otherwise we letβ′
1 = 0

and send it to the Paillier challenger.
SinceA is able to break the semantic security of the private searching system, ifβ1 = 1 the

probability thatβ′
2 = β2 is 1

2
+ ε, whereε is a non-negligible function of the security parametern.

If β1 = 0, thenP (β′
2 = β2) = 1

2
, sinceβ2 was chosen uniformly at random and it had no bearing

on the choice ofβ′
2. Now we may compute our advantage in our game with the Paillier challenger

as follows.

P (β′
1 = β1) = P (β′

1 = 1|β1 = 1)
1

2
+ P (β′

1 = 0|β1 = 0)
1

2

=
(1

2
+ ε

)1

2
+

1

2
· 1
2

=
1

2
+

ε

2

Sinceε is non-negligible, so isε
2
.
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