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Abstract

Conventional parallel scientific computing uses files as interface between simulation components such as
meshing, partitioning, solving and visualizing. This approach results in time-consuming file transfers, disk
I/O and data format conversions that consume large amounts of network, storage, and computing resources
while contributing nothing to applications. We propose anend-to-endapproach to parallel supercomputing.
The key idea is to replace the cumbersome file interface with a scalable, parallel, runtime data structure, on
top of which all simulation components are constructed in a tightly coupled way. We have implemented this
new methodology within an octree-based finite element simulation system namedHercules. The only input
to Hercules is material property descriptions of a problem domain; the only outputs are lightweight jpeg-
formated images generated as they are simulated at every visualization time step.There is absolutely no
other intermediary file I/O. Performance evaluation of Hercules on up to 2048 processors on the AlphaServer
system at Pittsburgh Supercomputing Center has shown good isogranularscalability and fixed-size scalabil-
ity.
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1 Introduction

Traditionally, parallel supercomputing has been directed at the inner kernel of physical simulations: the
solver— a term we use generically to refer to solution of (numerical approximations of) the governing
partial differential, ordinary differential, algebraic, integral, or particleequations. Great effort has gone into
the design, evaluation, and performance optimization of scalable parallel solvers, and previous Gordon Bell
awards have recognized these achievements. However, the front endand back end of the simulation pipeline
— problem description and interpretation of the results — have taken a back seat to the solver when it comes
to attention paid to scalability and performance. This of course makes sense:Solvers are usually the most
cache-friendly and compute-intensive component, lending themselves naturally to performance evaluation
of each new generation of parallel architecture; whereas the front and back ends often have sufficiently small
memory footprints and compute requirements that they may be relegated to offline, sequential computation.

However as scientific simulations move into the realm of the terascale and beyond, this decomposition
in tasks and platforms becomes increasingly untenable. In particular, multiscale three-dimensional PDE
simulations often require variable-resolution unstructured meshes to efficiently resolve the different scales
of behavior. The problem description phase can then require generation of an unstructured mesh of massive
size; the output interpretation phase involves unstructured-mesh volume rendering of even larger size. As
the largest unstructured mesh simulations move into the multi-hundred million to billion element/grid point
range,the memory and compute requirements for mesh generation and volume rendering preclude the use
of sequential computers. On the other hand, scalable parallel algorithms and implementations for large-
scale mesh generation and unstructured mesh volume visualization aresignificantlymore difficult than their
sequential counterparts.1

We have been working over the last several years to develop methods to address some of these front-end
and back-end performance bottlenecks, and have deployed them in support of large-scale simulations of
earthquakes [3]. For the front end, we have developed a computational database system that can be used
to generate unstructured hexahedral octree-based meshes with billions of elements on workstations with
sufficiently-large disks [24, 25, 26, 28]. For the back end, we have developed special I/O strategies that
effectively hide I/O costs when transferring individual time step data to memoryfor rendering calculations
[30], which themselves run in parallel and are highly scalable[14, 15, 17, 30]. Figure 1 illustrates the
simulation pipeline in the context of our earthquake modeling problem, and, in particular, the sequence of
files that are read and written between components.

However, despite our — and others’ — best efforts at devising scalablealgorithms and implementations for
the meshing, solving, and visualization components, as our resolution and fidelity requirements have grown
to target multi-hundred million to billion and greater element simulations, there remain the even bigger
problems of storing, transferring, and reading/writing multi-terabyte files between these components. In
particular, I/O of multi-terabyte files remains a pervasive and abiding performance bottleneck on parallel
computers, to the extent thatthe offline approach to the meshing–solving–visualizing simulation pipeline
becomes intractable for billion mesh node unstructured mesh simulations.Ultimately, beyond scalability
and I/O concerns, the biggest limitation provided by the offline approach is itsinability to support interactive
visualization of the simulation: the ability to debug, monitor, adjust, and steer the simulation at runtime

1For example, in a report identifying the prospects of scalability of a varietyof parallel algorithms to petascale architectures
[20], mesh generation and associated load balancing are categorized as Class 2 — “scalable provided significant research challenges
are overcome.”
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Figure 1:Traditional simulation pipeline.

based on volume-rendered visualizations becomes increasingly crucial as problem size increases.

Thus, we are led to conclude that in order to (1) deliver necessary performance, scalability, and portability
for ultrascale unstructured mesh computations, (2) avoid unnecessary bottlenecks associated with multi-
terabyte I/O, and (3) support runtime visualization-based steering, we must seek anend-to-end solutionto
the meshing–solving–visualizing simulation pipeline. The key idea is to replace thetraditional, cumbersome
file interface with a scalable, parallel, runtime data structure that supports simulation pipelines in two ways:
(1) providing a common foundation on top of which all simulation components operate, and (2) serving as
a vehicle for data sharing among simulation components.

We have implemented this new methodology within a simulation system namedHercules, which targets
unstructured octree-based finite element PDE simulations running on multi-thousand processor supercom-
puters. Figure 2 shows an instantiation of Hercules for our earthquake modeling problem. All simulation
components, i.e. meshing, partitioning, solving, and visualizing, are implementedon top of, and operate
on, a unified parallel octree data structure. There is only one executable(MPI code), in which all the com-
ponents are tightly coupled and execute on the same processors. The onlyinput is a description of the
spatial variation of the PDE coefficients (a material database, in the case ofthe earthquake simulations); the
only outputs are lightweight jpeg-formatted visualization frames generatedas they are simulatedat every
visualization time step.2 There is absolutely no other file I/O.

A quick first glance may lead to a misperception that that Hercules — which makes use of the well-known
parallel octree data structure — is straightforward to implement. The fact is that we have to develop complex
new mechanisms on top of the parallel octree structure to support large-scale end-to-end finite element
simulations. For example, we need to associate unknowns with mesh nodes, which correspond to the vertices

2Optionally we can write out the volume solution at each time step if necessary for future post-processing — though we are
rarely interested in preserving the entire volume of output, and instead prefer to operate on it directly in-situ.
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of the octants in a parallel octree3. How to deal with octree mesh nodes alone represents a nontrivial
challenge to meshing and solving, which demand new data structure and algorithm design. Furthermore,
in order to provide unified data access services throughout the simulation pipeline, a flexible interface to
the underlying parallel octree has to designed and exported such that meshers, solvers and visualizers can
efficiently share simulation data.

It is worth noting that although we have integrated only visualization (Section 3.3.3) in the Hercules frame-
work, there is no technical difficulty to plug in other post-processing tools such as spectrum analysis in
place of visualization. The reason we have chosen 3D volume rendering visualization over others is that the
former is by far the most demanding back end in terms of the volume of data to be processed. By show-
casing that online, integrated visualization is implementable, we demonstrate that the proposed end-to-end
approach is feasible for implementing a wide variety of other simulation pipeline configurations.

We have assessed the performance of Hercules on the Alpha EV68-based terascale system at Pittsburgh
Supercomputing Center for our earthquake modeling problem. Preliminary performance and scalability
results (Section 3.4) show:

• Fixed-size scalability of the entire end-to-end simulation pipeline from 128 to 1024 processors at 76%
overall parallel efficiency for 134 million mesh node simulations

• Fixed-size scalability of the meshing and solving components from 128 to 2048processors at com-
bined 84% parallel efficiency for 134 million node simulations

• Isogranular scalability of the entire end-to-end simulation pipeline from 1 to 748 processors at com-
bined 81% parallel efficiency for 534 million mesh node simulations

• Scalability of the meshing and solving components on 2000 processors for 1.37 billion node simula-
tions

Already we are able — we believe for the first time — to demonstrate scalability to 1024 processors of the
entire end-to-end simulation pipeline, from mesh generation to wave propagation to scientific visualization,
a unified end-to-end approach.

3In contrast, other parallel octree-based applications such as N-body simulations have no need to manipulate octants’ vertices
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2 Octree-based finite element method

In general, octree-based finite element method are employed in at least three ways. First, for PDEs posed
in simple domains characterized by highly heterogeneous media in which solutionlength scales are known
a priori (such as in linear wave propagation), octree meshes that resolve local solution features can be gen-
erated up front. Second, for PDEs in simple domains having solution features that are known only upon
solution of the PDEs, octree meshes — driven by solution error estimates — can be adapted dynamically
to track evolving fronts and sharp features at runtime (for example to capture shocks). Third, for PDEs
posed on complex domains, octree meshes in combination with special numericaltechniques (such as fic-
titious domain, embedded boundary, or extended finite element methods) can be used to control geometry
approximation errors by adapting the octree mesh in regions of high geometricvariability, eithera priori
for fixed geometries, or at runtime for evolving geometries. Large-scale examples ofa priori adapted octree
mesh generation can be found in seismic wave propagation modeling [12], while octree mesh methods for
compressible flow around complex aircraft configurations provides an excellent example of geometry- and
solution-driven dynamic adaptivity [29].

This section provides a brief description of octree-based finite element method in the context of earthquake
ground motion modeling. Details on our computational methodology and underlying algorithms may be
found in [5, 6, 7, 12].

2.1 Wave propagation equation

We model seismic wave propagation in the earth via Navier’s equation of linearelastodynamics. Letu
represent the vector field of the three displacement components,λ andµ the Laḿe moduli andρ the density
distribution,b a time-dependent body force representing the seismic source, andL

AB a linear differential
operator that vanishes on the free surface, and applies an appropriate absorbing boundary condition on
truncation boundaries. LetΩ be an open bounded domain inR

3. The initial–boundary value problem is
then written as:

ρ ü − ∇ ·
[

µ
(

∇u + ∇u
T

)

+ λ(∇ · u)I
]

= b in Ω × (0, T ] ,
[

µ
(

∇u + ∇u
T

)

+ λ(∇ · u)I
]

n = L
AB

u on ∂Ω × [0, T ] , (1)

u = 0 on Ω × {t = 0} ,

u̇ = 0 on Ω × {t = 0} ,

wheren represents the outward unit normal to the boundary. With this model, longitudinal waves propagate
with velocity vp =

√

(λ + 2µ)/ρ, and shear waves with velocityvs =
√

µ/ρ. The continuous form above
does not include material attenuation, which we introduce at the discrete level via a Rayleigh damping
model. The vectorb comprises a set of body forces that equilibrate an induced displacement dislocation on
a fault plane, providing an effective representation of earthquake rupture on the plane. Explicit expressions
for such a body force will be given below in the case of antiplane shear.

On a face with a unit normaln and two tangential vectorsτ 1 andτ 2, such that the three vectors form a
right-handed orthogonal coordinate system, the absorbing boundary condition (Stacey’s formulation) takes
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Sn =







−d1
∂
∂t

c1
∂

∂τ1
c1

∂
∂τ2

−c1
∂

∂τ1
−d2

∂
∂t

0

−c1
∂

∂τ2
0 −d2

∂
∂t













un

uτ1

uτ2







≡ L
AB

u

whereS is the stress tensor and

c1 = −2µ +
√

µ(λ + 2µ),

d1 =
√

ρ(λ + 2µ),

d2 =
√

ρµ.

Even though Stacey’s absorbing boundary is not exact, it is local in bothspace and time, which is particularly
important for large-scale parallel implementation.

2.2 Octree-based spatial discretization

We apply standard Galerkin finite element approximation in space to the appropriate weak form of the
initial-boundary value problem (1). LetU be the space of admissible solutions (which depends on the
regularity ofb), Uh be a finite element subspace ofU , andvh be a test function from that subspace. Then
the weak form is written as follows.
Finduh ∈ Uh such that

∫

Ω

{

ρüh · vh +
µ

2

(

∇uh + ∇u
T

h

)

·
(

∇vh + ∇v
T

h

)

+ λ(∇ · uh)(∇ · vh) − b · vh

}

dΩ =

∫

∂Ω

(LAB
uh) · vh dA, ∀vh ∈ Uh. (2)

Spatial approximation is effected via piecewise trilinear basis functions and associated trilinear hexahedral
elements on an octree mesh. This strikes a balance between simplicity, low memory (since all element
stiffness matrices are the same modulo scale factors), and reasonable accuracy.

Upon spatial discretization, we obtain a system of ordinary differential equations of the form

M ü +
(

C
AB + αM + βK

)

u̇ +
(

K + K
AB

)

u = b, (3)

whereM andK are mass and stiffness matrices, arising from the terms involvingρ and(µ, λ) in (2), re-
spectively;b is a body force vector resulting from a discretization of the seismic source model; and damping
matricesCAB andK

AB are contributions of the absorbing boundaries to the mass and stiffness matrices, re-
spectively. We have also introduced damping matrices in the form of the Rayleigh material modelαM+βK

to simulate the effect of energy dissipation and resulting wave attenuation dueto anelastic material behavior.
The constantsα andβ are determined locally (elementwise) so that the resulting damping ratio is as close
as possible to a constant value dictated by the local soil type, over a band of frequencies. Since Rayleigh
damping increases both linearly and inversely with frequency, we seek a least squares solution to this opti-
mization problem over each element. This provides a reasonable damping model for many soils, although
very low and very high frequencies are overdamped.
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Spatial discretization via refinement of an octree produces a non-conforming mesh, resulting in a discon-
tinuous displacement approximation. Whenever a refined hexahedron (octant) neighbors an unrefined one,
dangling nodes, which belong to refined elements but not to unrefined neighbors, are produced. In such
cases, we restore continuity of the displacement field by imposing algebraic constraints that require the
displacements at dangling mesh nodes to be consistent with anchored neighbors. For linear hexahedra and
providedthe 2-to-1 constraintis enforced between neighbors, these constraints state simply that hanging
mid-edge values must be the average of the two anchored endpoint vertices, and hanging mid-face val-
ues must be the average of the four anchored vertex neighbors. We can express these discrete continuity
constraints in the form

u = Bū,

whereū denotes the displacements at the independent anchored mesh nodes, andB is a sparse constraint
matrix. In particular,Bij = 1

4
if (dependent) dangling mesh nodei is a face neighbor of (independent)

anchored nodej and 1

2
if it is an edge neighbor,Bij = 1 simply identifies an anchored node, andBij = 0

otherwise. Rewriting the linear system (5) as

Auk+1 = b(uk),

we can impose the continuity constraints via the projection

B
T
ABū = B

T
b(uk). (4)

The constrained update (4) remains explicit, since the projected matrixB
T
AB preserves the diagonality of

A. The work involved in enforcing the constraints is proportional to the number of dangling mesh nodes,
which can be a sizable fraction of the overall number of mesh nodes for a highly irregular octree, but is at
most ofO(N). Therefore, the per-iteration complexity of the update (4) remains linear in the number of
mesh nodes.

2.3 Temporal approximation

The time dimension is discretized using central differences. The algorithm is made explicit using a diago-
nalization scheme that lumps the mass matrix—and possiblyC

AB

—and splits the diagonal and off-diagonal
portions of the stiffness and absorbing boundary damping matrix. The resulting update for the displacement
field at time stepk + 1 is given by

[(

1 + α
∆t

2

)

M + β
∆t

2
K

diag
+

∆t

2
C

AB

diag

]

uk+1 = (5)
[

2M − ∆t2
(

K + K
AB

)

− β
∆t

2
K

off
− ∆t

2
C

AB

off

]

uk

+

[(

α
∆t

2
− 1

)

M + β
∆t

2
K +

∆t

2
C

AB

]

uk−1 + ∆t2bk.

The time increment∆t must satisfy a local CFL condition for stability. Space is discretized over an octree
mesh (each leaf corresponds to a hexahedral element) that resolves local seismic wavelengths: given a
(typically highly-heterogeneous) material property distribution and highest resolved frequency of interest,
a local mesh size is chosen to producep mesh nodes per shortest wavelength (we typically takep = 10 for
trilinear hexahedra). This insures that the CFL-limited time step is of the order of that needed for accuracy,
and that excessive dispersion errors do not arise due to over-refined meshes.
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2.4 Summary

Due to the trilinear hexahedral elements and local dense element-based datastructures, octree-based finite
element method has several important advantages:

• The hexahedral meshes stem from wavelength-adapted octrees, whichare more easily generated than
general unstructured tetrahedral meshes, particularly when the numberof elements increases above
50 million.

• The hexahedra provide somewhat greater accuracy per mesh node (the asymptotic convergence rate
is unchanged, but the constant is typically improved over tetrahedral approximation).

• The element-based data structure produces much better cache utilization by relegating the work that
requires indirect addressing (and is memory bandwidth-limited) to vector operations, and recasting the
majority of the work of the matrix-vector product as local element-wise densematrix computations.
The result is a significant boost in performance.

• The hexahedra all have the same element stiffness matrices, modulo element size and material prop-
erties (which are stored as vectors), and thus no matrix storage is required at all. This results in a
substantial decrease in required memory—about an order of magnitude, compared to our grid-point-
based tetrahedral code.

These features permit earthquake simulations to substantially greater resolutions than heretofore possible.

3 The Hercules system

Motivated to overcome the many pitfalls of the traditional, offline, file-based approach described in Sec-
tion 1, we have adopted an end-to-end, approach to parallel supercomputing and developed a new octree-
based finite element simulation system named Hercules. This section presents the design, implementation,
performance assessment of the Hercules system.

3.1 Data structures

The design goal of Hercules is to have all the simulation components operate on and share data from a
consistent, overarching data structure: a parallel octree, which is the backbone that ties all add-on pieces
(i.e., data structures and algorithms) together.4 There are three distinctive advantages of using a parallel
octree as the backbone: (1) octrees are simple, scalable, hierarchicalstructures, (2) algorithms on octrees
have been well studied and successfully applied, and (3) we can exploitinteresting properties of octrees for
parallelism.

Before explaining how we organize the backbone parallel octree structure, let us first examine the important
properties of octrees. For simplicity of illustration, we use two-dimensional quadtrees and quadrants in the

4The add-ons either implement general operations on the underlying parallel octree or realize specific functions of a simulation
component.
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figures and examples. All the techniques and properties are applicable to three-dimensional octrees and
octants.

An octree can be viewed in two equivalent ways: thedomain representationand thetree representation. A
domainis a Cartesian coordinate space that consists of a uniform grid of2n × 2n indivisible pixels. The
root octantthat spans the entire domain is defined to be at level 0. Each child octant is one level lower that
its parent (with a larger level value).

An octree can be viewed in two equivalent ways: thedomain representationand thetree representation. A
domainis a Cartesian coordinate space that consists of a uniform grid of2n×2n indivisiblepixels. Theroot
octantthat spans the entire domain is defined to be at level 0. Each child octant is one level lower that its
parent (with a larger level value). Figure 3(a) and (b) show the domain representation and the equivalent tree
representation of an octree, respectively. Each tree edge in Figure 3(b) is labeled with a binarydirectional
codethat distinguishes each child of an internal octant.
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Figure 3:Equivalent representations of an octree.

Linear octree. In order to address an octant so that it can be unambiguously distinguished from other octants,
we make use of thelinear octreetechnique [1, 10, 11]. The basic idea of a linear octree is to encode each
octant with a scalar key called alocational codethat uniquely identifies the octant. Figure 4(a) shows how
to compute the locational code of octantg. First, interleave the bits of the three coordinates of the octant’s
lower left pixel to produce its Morton code [19]. Then append the octant’s level to compose the locational
code. We refer to the lower left pixel of an octant as the octant’sanchor. For example, the shaded pixel in
Figure 3(a) is the anchor for octantg.

Aggregate hit. Given a locational code, we can descend a pointer-based octree to locate an octant. The
descending procedure works in the following way: We extract two bits from the start of the locational code
repeatedly and follow the branch labeled with the matching directional code until reaching a leaf octant. The
fact that we are able to locate an octant this way is not a coincidence. Actually, an alternative way to derive
a locational code is to concatenate the directional codes from the root octant to a leaf octant, pad zeroes to
make the code equal length, and then append the level of the leaf octant. Figure 4(b) shows an example of
locatingg using its locational code. Note that we have used only the leading bits (100100); the trailing bits
(00011) do not correspond to any branches sinceg itself is already a leaf octant. Generally, we can specify
the coordinate of any pixel within the geometric span of an octant, convert itto a locational code, and still
be able to locate the enclosing octant. We refer to such a property asaggregate hitbecause the returned
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octant is an aggregating ancestor of a non-existent octant.

Z-ordering. If we sort all the leaf octants of an octree according to their locational codes, we obtain a total
ordering of all the leaf octants. Given the encoding scheme of locational code, it is not difficult to verify that
the total ordering is identical to thepre-order traversalof the leaf octants of the octree (See Figure 3). If we
traverse the leaf octants in this order in the problem domain, we follow a Z pattern in the Cartesian space.
This is the well-knownPeano space-filling curveor simplyZ-order curve [9], which has the nice property
that spatially nearby octants tend to be clustered together in the total ordering. This property has enabled us
to use a space-filling curve based strategy to partition meshes and distribute workload among processors.

3.1.1 Parallel octree organization

We seek data parallelism by distributing an octree among all processors. Each processor keeps itslocal
instanceof the underlying global octree. Conceptually, each local instance is an octree by itself whose leaf
octants are marked as eitherlocal or remote, as shown in Figure 5(b)(c)(d).

The best way to understand the construction of a local instance on a particular processor is to imagine that
there exists a pointer-based, fully-grown, global octree (see Figure 5(a)). Every leaf octant of this tree is
marked aslocal if the processor needs to use the octant, for example, to map it to a hexahedral element, or
remoteif otherwise. We then apply an aggregation procedure to shrink the size ofthe tree. The predicate
of aggregation is that if eight sibling octants are marked asremote, prune them off the tree and make their
parent as a leaf octant marked asremote. For example, on PE 0, octantg, h, i, andj (which belong to PE
1) are aggregated and their parent is marked as a remote leaf octant. The shrunken tree thus obtained is the
local instance on the particular processor. Note that all the internal octants — the ancestors of leaf octants
— are unmarked. They exist simply because we need to maintain a pointer-based octree structure on each
processor (to implement aggregate hits).

We partition a global octree among all processors with a simple rule that each processor is a host for a
contiguous chunk of leaf octants in the pre-order traversal ordering.In order to keep the parallel octree in a
consistent way, we also enforce an invariant that a leaf octant, if markedaslocal on one processor, should
not be marked aslocal on any other processors. Therefore, the local instance on one processor is different
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Figure 5:Parallel octree organization on 3 processors. Circles marked by l represent local leaf octants;
and those marked by r represent aggregated remote leaf octants.

from the one on any other processor, though there may be overlaps between local instances. For example, a
leaf octant marked asremoteon one processor may actually correspond to a subtree on another processor.

So far, we have used a shallow octree to illustrate how to organize a paralleloctree on 3 processors. In our
simple example, the idea of local instances may not appear to be very useful.But in real applications, a
global octree can be very deep and needs to be distributed among hundreds or thousands of processors. In
these cases, the local instance method excels because each processoronly needs to allocate enough memory
to keep track of its share of the leaf octants.

It should be mentioned that in practice, due to huge memory requirements and redundant computational
costs, we never — and in fact, are unable to — build a fully-grown global octree on a single processor
first, and then shrink the tree by aggregating remote octants as an afterthought. Instead, local instances on
different processors grow and shrink dynamically in synergy at runtimeto conserve memory and keep the
global parallel octree in a coherent way.

3.1.2 Locational code lookup table

Searching for an octant is an indispensable operation frequently invoked by the various simulation com-
ponents. For example, we need to search for a neighboring octant whengenerating a mesh. If the target
octant is hosted on the same processor where the search operation is initiated, then we follow standard octree
search algorithms [21] to traverse the local instance to find the octant. But what if the algorithms encounters
a leaf octant that is marked asremote? In this case, we need to somehow forward the search operation to the
remote processor that hosts the target octant, and resume the search on that remote processor.

Our solution, which leverages the octree properties previously described, works in the following way. First,
we compute the locational code of the target octant. For example, when we are looking for the neighboring
octant ofg to its left (see Figure 3(a)), we know the position ofg itself. Thus it is straightforward to
compute its left neighbor’s anchor coordinate (assuming the neighbor is ofthe same size asg) and derive
the corresponding locational code. Next, we search for the hosting processor id in an auxiliary data structure
called thelocational code lookup table(discussed shortly). Finally, on the remote processor, we resume the
search operation using the aggregate hit search method to locate the targetoctant.

It would be extremely inefficient, and in most cases, infeasible, to record where every remote octant is
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hosted. The memory cost would beO(N), whereN is the number of octants, which can be as high as hun-
dreds of millions or even tens of billions. We avoid such excessive memory overhead by taking advantage
of a simple observation: Each processor holds a contiguous chunk of leaf octants in the pre-order traver-
sal ordering, which is identical to the total ordering imposed by the locational codes, thus we are given a
partitioning of the locational codes in ascending order for free. We exploit this fact to build and replicate a
locational code lookup tableon each processor. Each entry in the table has two fields<key, value>. The
key is the smallest locational code among all the leaf octants hosted by a processor; and thevalue is the
corresponding processor id. The table is sorted in ascending locationalcode order. When searching for a
remote processor id using an octant’s locational code, we perform a binary search on this table. Note that
we do not have to find an exact hit, but rather, we only need to find the entry whose key is the largest among
all those that are smaller than the search key, that is, the highest lower-bound.

Using a locational code lookup table, we have reduced the overhead of keeping track of remote octants
to O(P ), whereP is the number of processors. Even when there are 1 million processors, the memory
footprint of the locational code lookup table is only about 13 MB. Since compute nodes of recent new
parallel architectures tends to have large physical memory per processor (500 MB— 8 GB), the memory
requirement of the locational code lookup table is minimal and should not constitute a scalability bottleneck.

3.2 Interfaces

There are two types of interfaces in the Hercules system: (1) the interfaceto the underlying octree, and (2)
the interface between simulation components.

Simulation components need to operate on the underlying octree to implement their respective functions.
For example, a mesher needs to refine or coarsen the tree structure to carry out spatial discretization as
dictated by material properties. A solver needs to attach runtime solution resultsto mesh nodes; and a
visualizer needs to consume the attached attached. In order to support common operations efficiently, we
implement the backbone parallel octree in two abstract data types (ADTs):octant t andoctree t, and
provide a small application program interface (API) to manipulate the ADTs. For instance, at the octant
level, we provide functions to search for an octant, install an octant, sprout or prune an octant. At the
octree level, we support various tree traversal operations as well as the initialization and adjustment of the
locational code lookup table. Such an interface allows us to encapsulate thecomplexity of manipulating the
backbone parallel octrees within the abstract data types.

Note that there is one (and only one) exception to the cleanliness of the interface. We reserve a place-holder
in octant t, allowing a simulation component (e.g., a solver) to install a pointer to a data buffer where
component-specific data can be stored and retrieved. Nevertheless, such flexibility does not undermine the
robustness of the Hercules system because any structural changes tothe backbone octree still have to carried
out through a pre-defined API call.

We have also designed binding interfaces between the simulation components. However, unlike the oc-
tree/octant interface, the inter-component interfaces can only be clearlyexplained in the context of the
simulation pipeline. Therefore, we embed the description of the inter-component interfaces in the next
subsections where we cover individual simulation components.
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3.3 Algorithms

Engineering a complex parallel simulation system like Hercules not only involves careful software archi-
tectural design but also demands non-trivial algorithmic innovations. This section highlights important
algorithm and implementation features of Hercules. We have omitted many of the technical details.

3.3.1 Meshing and partitioning

Conceptually, generating or adapting an octree-based hexahedral mesh is straightforward. As shown in
Figure 6, we first refine a problem domain recursively using an octree structure. We require that two adjacent
octants sharing an edge of a face should not differ in edge size by a factor of 2, a constraint often referred
to as thebalance conditionor, more intuitively,2-to-1 constraint. We then map octants tomesh elements
and vertices tomesh nodes. The nodes hanging at the midpoint of an edge or the center of the face ofsome
element (due to the 2-to-1 constraint) aredangling nodes. The remaining nodes areanchored nodes. For
conforming finite element methods, each dangling node is dependent on the anchored nodes at the endpoints
of the edge or the face on which it is hanging through an explicit algebraic constraint. Explicit correlations
between dangling nodes and anchored nodes are established.

1

2 3 4 5

6 7

1
2 3

4 5

6 7

(a) (b) (c)

Figure 6: Octree-based hexahedral meshes. (a) Octree domain decomposition. (b) Octants map to
elements and vertices map to mesh nodes. The dark colored dots represent the anchored nodes and
the light colored dots represent the dangling nodes. The dashed arrows represent the explicit correlations
between dangling nodes and anchored nodes. (c) An example 3D octree mesh.

Following an end-to-end approach, we generate octree meshes onlinein-situ [27]. That is, we generate
an octree mesh in parallel on the same processors where a solver and a visualizer will be running. Mesh
elements and nodes are produced where they will be used instead of on remote processors. Such anin-situ
strategy requires that mesh partitioning becomes an integral part of the meshing component. The partitioning
method we used is simple [4, 8]. We sort all the octants in ascending Z-order and divide them into each
length chunks in such a way that each processor will be assigned one and only one chunk of the octants.
Because the Z-ordering of the leaf octants corresponds exactly to the pre-order traversal of an octree, the
partitioning and data re-distribution often only involve leaf octants migration between adjacent processors.
Whenever data migration occurs, local instances of participating processors need to be adjusted accordingly
to maintain a consistent global data structure. As will be shown in Section 3.4, such a simple strategy works
well and yields almost ideal speedup for solving fixed-size problems.
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The process of generating an octree-based hexahedral mesh is shown in Figure 7. First,NEWTREE boot-
straps a small and shallow octree on each processor. Next, the tree structure is adjusted byREFINETREEand
COARSENTREE, either statically or dynamically. While adjusting the tree structure, each processor is only
responsible for a small area of the domain. When the adjustment completes, there are many subtrees dis-
tributed among the processors. TheBALANCETREE step enforces the 2-to-1 constraint on the parallel octree.
After a balanced parallel octree is obtained,PARTITIONTREE redistributes the leaf octants among the pro-
cessors using the space-filling curve partitioning technique. Finally and most importantly,EXTRACTMESH

derives mesh elements and nodes information and determine the various correlations between elements and
nodes. The overall algorithm complexity of the meshing component isO(N log E), whereN andE are the
numbers of mesh nodes and elements, respectively.

NEWTREE REFINETREE COARSENTREE BALANCETREE PARTITIONTREE EXTRACTMESH

Octree and mesh handles to 
solver and visualizer

Upfront adaptation guided by 
material property or geometry

Online adaptation guided by  
solver’s output (e.g. error est.)

Figure 7:Meshing component. Shaded ovals are required steps. Unshaded ovals are optional steps.

Using the well-known octree algorithms [21], we have been able to implement theNEWTREE, REFINETREE

,COARSENTREE, andPARTITIONTREEsteps in a simple way. However, the parallel octree alone — though
scalable and elegant for locating octants and distributing workloads — is notsufficient for implementing
theBALANCETREE andEXTRACTMESH steps.

The key challenge here is how to deal with octants’ vertices, i.e. mesh nodes. We can easily compute
the coordinates of the vertices based on the configurations of the local instances in parallel. But we can
only obtain a collection of geometry objects (octants and vertices), which by themselves are not a finite
element mesh yet. To generate a meshin-situ and make it usable to a solver, we must identify the corre-
lations between octants and vertices (mesh connectivity), and between vertices and vertices, either on the
same processor (dangling-to-anchored dependences) or on different processors (inter-processor sharing in-
formation). Therefore, in order to implement theBALANCETREE andEXTRACTMESH steps, which require
capabilities beyond those offered by standard parallel octree algorithms,we have incorporated auxiliary
data structures such as hash tables and double-link lists, and develop newalgorithms such asparallel ripple
propagationandparallel octree bucket sortingfor meshing. These add-ons are internal and are not visible
to other simulation components downstream in the pipeline.

As we mentioned earlier, the interface between simulation components providesthe glue that ties the Her-
cules system together. The interface between the meshing and solving components consists of two parts:
(1)abstract data types, and (2) callback functions. When meshing is completed, a mesh abstract data type
(mesh t), along with a handle to the underlying octree (octree t), is passed forward to the solver. The
mesh t ADT contains all the information a solver would need to initialize its execution environment. On
the other hand, a solver controls the behavior of a mesher via callback functions that are passed as param-
eters to theREFINETREEandCOARSENTREEsteps at runtime. The latter interface allows us to carry out
online mesh adaptation, which is critical for including inverse solvers in the Hercules system in the future.
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3.3.2 Solving

Figure 8 shows the solving component’s workflow. After the meshing component hands over control, the
INITENV step sets an execution environment by computing element-independent stiffness matrices, allocat-
ing and initializing various local vectors, and building a communication schedule. Next, theDEFSOURCE

converts an earthquake source specification to a set of equivalent forces applied on mesh nodes. Then, a
solver enters its main loop (inner kernel) where displacements and velocities associated with mesh nodes
are computed for each simulation time step (i.e., theCOMPDISPstep). If a particular time step needs to be
visualized, which is determined eithera priori or at runtime (online steering), theCALLVIS step passes the
control to a visualizer. Once an image is rendered, control returns to the solving component, which repeats
the same procedure for the next time step until done. The solving component has the optimal complexity
of O(N

4

3 ), whereN
1

3 is the number of mesh node in each direction. This results from the fact that simply
writing the solution requiresO(N

4

3 ) complexity, sinceO(N) mesh nodes are required for accurate spatial
resolution, andO(N

1

3 ) time steps for accurate temporal resolution, which is of the order dictated by the
CFL stability condition.

INITENV DEFSOURCE COMPDISP

Octree and mesh handles 
from mesher

VIS STEP? CALLVIS DONE?

Octree handle

N N

Y Y

Figure 8:Solving component.

The COMPDISPstep (conducing local element-wise dense matrix computation, exchanging data between
processors, averaging dangling node values, etc.) presents no major technical difficulty, since the inner
kernel is by far the most well studied and understood part. More interesting is how the solving component
interacts with other simulation components and with the underlying octree in theINITENV ,DEFSOURCE,
andCALLVIS steps.

In the INITENV step, the solver receives anin-situ mesh via an abstract data typemesh t, which contains
such important information as the number of elements and nodes assigned to a processor, the connectivity of
the local mesh (element-node correlation, dangling-anchored node correlation), and the sharing information
(which processor shares which of my local mesh nodes), and so forth.Thus, all initialization work, including
the setup of a communication schedule, can be performed in parallel without any communication among
processors.

Along with themesh t ADT, the solving component also receives a handle to the backbone octree’s local
instanceoctree t. One of the two important applications of theoctree t ADT is to provide an efficient
search structure for defining earthquake sources (theDEFSOURCEstep). In Hercules, we support kinematic
earthquake sources whose displacements (slips) are prescribed. Thesimplest case is a point source. Note
that the coordinate of a point source is not necessarily that of any mesh node. We implement a point source
by finding the enclosing hexahedral element of the coordinate and convert the prescribed displacements to
an equivalent set of forces applied on the eight mesh nodes of the enclosing element. For general cases
of fault planes or arbitrary fault shapes, we first transform a fault toa set of point sources and then apply
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the same technique for single point source multiple times. In other words, whatever kinematic source is
involved, we always have to locate the enclosing elements of arbitrary coordinates. Hence, we are able to
implement theDEFSOURCEstep using the octree/octant interface, which provides such important services
as searching for octants.

The other important application of theoctree t ADT is to serve as a vehicle for a solver to pass data to a
visualizer. Recall that we have reserved a place-holder in theoctree t ADT. Thus, we allocate a buffer
that holds the results of the computation (displacements or velocities), and install the pointer to the buffer
in the place-holder. As new results are computed at each time step, the resultbuffer is updated accordingly.
Note that to avoid unnecessary memory copying, we do not store floating-point numbers directly into the
result buffer. Instead, we store pointers (array offsets) to internalsolution vectors and implement a set of
macros to manipulate the result buffer (de-reference pointers and compute results). So from a visualizer’s
perspective, the solving component has provided a nifty data service interface. Once theCALLVIS step
transfer the control to a visualizer, the latter is able to retrieve simulation resultdata from the backbone
octree by calling these macros.

A side note: When a time step does not need to be visualized, no data access macros are called; thus no
memory access or computation overhead occurs.

3.3.3 Visualizing

Simulation-time 3D volume rendering has rarely been attempted in the past for three major reasons. First,
scientists are reluctant to use the precious supercomputing hours for visualization. Second, data organization
designed for the solving component is generally very different from what is needed by rendering algorithms.
Third, executing a visualization pipeline on a different set of processors causes difficult communication
problems and increase the complexity of a simulation code.

By taking an online, end-to-end approach, we have been able to incorporate a highly adaptive parallel
visualizer into Hercules, which executes the meshing, solving, visualizing components all on the same set
of processors.

UPDATEPARAM

Octree handle

RENDERIMAGE COMPOSITIMAGE SAVEIMAGE

Figure 9:Visualizing component.

Figure 9 shows how the visualizing component works in Hercules. First, theUPDATEPARAM step updates
the viewing and rendering parameters.5 Next, theRENDERIMAGE step renders local data, that is, values
associated with blocks of hexahedral elements on each processor. Thedetails on the rendering algorithm can
be found in [17, 30]. The rendered (partial) images are then composited together in theCOMPOSITIMAGE

step. Different from most other the parallel image compositing algorithms that are designed for a specific

5In our current implementation, we fix the parameters and hence theUPDATEPARAM step is executed only once when the
visualizer is bootstrapped. However, when we incorporate online steering in the future,UPDATEPARAM will need to be executed
for each visualization step.
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network topology [2, 13, 16], we have made use of the scheduled linear image compositing (SLIC) [22]
technique, which has proved to be the most flexible and efficient parallel image compositing algorithm.
Finally, theSAVEIMAGE step stores an image to disk. Figure 10 shows a sequence of example images).
The cost of the visualizing component per invocation isO(xyE

1

3 log E), wherex, y represent the two-
dimensional image resolution andE is the number of mesh elements.

Figure 10:A sequence of snapshot images of propagating waves of 1994 No rthridge earthquake.

The visualizing component relies on the underlying parallel octree to (1) retrieve simulation data from the
solver, and (2) implement its adaptive rendering algorithm. We have explained the first point in the previous
subsection. Now let us take a closer look at the second point. Our visualizing component needs to traverse
the octree structure to implement its ray-casting based rendering algorithm. Bydefault, we have to process
all leaf octants a particular ray shoots through in order project a pixel. However, we might not always want
to render at the highest resolution. For example, when rendering hundreds of millions of elements to a
small image with 512× 512 pixels, it would not reveal much more perceivable details if we renderat the
highest resolution level, unless when a close-up view is selected. So in order to achieve better performance
of rendering without compromising the quality of the images, we perform a view-dependent pre-processing
step to choose an appropriate octree level before actually rendering animage [30]. Operationally, it means
that we may need to move up in the octree structure and render images at a coarser level. Again, the small
set API functions to manipulate the backbone octree comes to serve as the critical building block, this time,
for supporting adaptive visualization.
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3.4 Performance

In this section, we provide preliminary performance results that demonstratethe scalability of the Hercules
system. We also describe interesting performance characteristics and observations, which have been identi-
fied in the process of understanding the behavior of Hercules as an end-to-end simulation system.

Our simulations have been conducted to model seismic wave propagations during historical and synthetic
earthquakes in the Greater Los Angeles Basin, which comprises a three-dimensional volume of 100 by 100
by 37.5 kilometers. The performance data presented was collected from Lemieux, the HP AlphaServer
system at Pittsburgh Supercomputing Center. The execution time is obtained bymeasuring the wallclock
time as returned by theMPI Wtime() function call. Other performance data, including Mflops, processor
cycles, cache misses, and TLB misses are obtained from the HP Digital Continuous Profiling Infrastructure
(DCPI).6

The material property model we used to drive our simulations is the Southern California Earthquake Center
3D community velocity model [18] (Version 3, 2002), known as the SCEC CVMmodel. The model is a
standalone Fortran program that takes a list of coordinates (longitude, latitude, depth) as input, and produces
a list of corresponding records (i.e., primary velocity, shear velocity, and density) as output. However, the
execution model is not suitable for online unstructured mesh generation on parallel computers due to the
unknown coordinates. We discretize the domain at runtime to figure out the coordinates that need to be
further queried from the model. In other words, we have to query the physical model interactively rather
than in a batch. Unfortunately, we are unable to switch context to run the Fortran program on the compute
nodes at runtime.7 To solve this problem and enable our online, end-to-end simulations, we query the SCEC
CVM model at very high-resolution in advance offline, and then compress, store and index the results in
a material database [23] (approx. 2.5GB in size). Note that this is a one-time effort. The database thus
generated can be used repeatedly by many simulations. In our initial implementation, we let all processors
query a single material database stored on a parallel file system. But the performance was unacceptable,
especially when the number of processor exceeds 16. As a result, we have modified our implementation to
replicate the material database onto the local disk attached to each compute node before a simulation. We
note that this is not a particularly restrictive design choice since most cluster-based supercomputers usually
have sufficiently large local disks for compute nodes.

3.4.1 Isogranular scalability study

Our primary focus is to understand how the Hercules system performs when we increase the problem size
and the number of processors, and maintain more or less the same amount of work on each processor.

Figure 11 summarizes the characteristics of the isogranular experiments. “PEs” shows the number of pro-
cessors used in each simulation, which is denoted by the “Frequency” of the seismic wave to be resolved.
“Element”, “Nodes”, “Anchored” and “Dangling” show the statistics of theoctree-based hexahedral finite
element meshes. “Max leaf level” and “Min leaf level” represent the smallestand largest elements in the
meshes, respectively. “Elements/PE” is used as a rough indicator of the workload on each processor. Given

6Due to unknown reasons that are still being investigated, DCPI has caused significant execution time slowdown on larger
number of processors.

7In fact, even if we could fork a process to run the Fortran program, thebootstrapping cost would be forbiddingly expensive (on
the order of the seconds).
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the unstructured nature of the finite element meshes, it is impossible to guarantee the per-processor element
(node) number to be exactly the same over different simulation runs. Nevertheless, we have contained the
difference to within 10%. “Steps” shows the number of simulation steps Hercules executes. The “E2E time”
represents the absolute running time of a Hercules simulation from the beginning when the code is loaded
onto a supercomputer to the end when the code exits the system. The running timeincludes the time of
replicating a material database stored a shared parallel file system to the local disk attached to each compute
node (“Replicating”), the time to generate anin-situunstructured finite element mesh (“Meshing”), the time
to simulate seismic wave propagation (“Solving”), and the time to create visualizations and output jpeg im-
ages (“Visualizer”). “E2E time/step/elem” and “Solver time/step/elem” are the amortized cost per element
per time step for end-to-end time and solving time, respectively. “Mflops/sec/PE” stands for the sustained
megaflops per second per processor.

PEs 1 16 52 184 748 2000
Frequency 0.23 Hz 0.5 Hz 0.75 Hz 1 Hz 1.5 Hz 2 Hz
Elements 6.61E+5 9.92E+6 3.13E+7 1.14E+8 4.62E+8 1.22E+9
Nodes 8.11E+5 1.13E+7 3.57E+7 1.34E+8 5.34E+8 1.37E+9

Anchored 6.48E+5 9.87E+6 3.12E+7 1.14E+8 4.61E+8 1.22E+9
Dangling 1.63E+5 1.44E+6 4.57+6 2.03E+7 7.32E+7 1.48+8

Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5 6.20E+5 6.02E+5 6.20E+5 6.18E+5 6.12E+5
Steps 2000 4000 10000 8000 2500 2500
E2E time (sec) 12911 19804 38165 48668 13033 16709

Replicating (sec) 22 71 85 94 187 251
Meshing (sec) 20 75 128 150 303 333
Solving (sec) 8381 16060 31781 42892 11960 16097
Visualizing (sec) 4488 3596 6169 5528 558 *

E2E time/step/elem (µs) 9.769 7.984 7.927 7.856 8.436 *
Solver time/step/elem (µs) 6.341 6.475 6.601 6.924 7.741 *
Mflops/sec/PE 569 638 653 655 * *

Figure 11: Summary of the characteristics of the isogranular experime nts. The entries marked as
“*” are data points that have not yet been obtained due to either supercomputer scheduling or performance
measurement problems.

We can see from the table that the simulations involved highly unstructured meshes, with the largest el-
ements being 64 times as large in edge size as the smallest ones. Because of themulti-resolution of the
meshes, there are many dangling nodes, which account for 11% to 20% ofthe total mesh nodes.

A traditional way to assess the overall isogranular parallel efficiency is examine the degradation of the
sustained average Mflops per processor. In our case, we achieve 28% to 33% of the peak performance (2
GFlops/sec/PE) on the Alpha EV68 processors.8 However, there is no degradation in the sustained average
floating-point rate. On the contrary, the Mflops/sec/PE increases as we solve larger problems on larger
numbers of processors. We were initially puzzled by this counter-intuitive observation. But a careful second

8These are respectable numbers as compared to less than 10% reportedby most ASCI applications.
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thought reveals an interesting explanation: Solving is the most computation-intensive and time-consuming
component; as the problem size increases, processors spend more time in the solving component executing
floating-point instructions, thus boosting the overall Mflops per processor rate.

Therefore, in order to assess the isogranular parallel efficiency in a more meaningful way, we have turned
to analyze the running times. Figure 12(a) shows how each component of Hercules contribute to the total
running time in percentage. From bottom-up, it shows the contribution by the “replicating”, “meshing”,
“solving”, and “visualizing”, respectively. The one-time costs such as replicating material database and
generating a mesh are so inconsequential that they are almost invisible.9 On the other hand, since the
visualizing component has much better per time step time complexity as compared with that of the solving
component (O(xyE

1

3 log E) vs. O(N), wherex and y are the 2D image resolution,E andN are the
numbers of mesh elements and nodes, respectively, andN is always greater thanE in an octree-based
hexahedral mesh), as the problem size (E andN ) and the number of processors increase, the solving time
overwhelms the visualizing time by larger and larger margins.
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Figure 12:The overall isogranular scalability characteristics of th e Hercules system. (a) The percent-
age contribution of each simulation component to the total running time. (b) The amortized running time
per processor per step. The top curve corresponds to the amortized end-to-end running time and the lower
corresponds to the amortized solver running time.

Figure 12(b) shows the trend of the amortized end-to-end running time and solving time per time step
per element. Although the end-to-end time is always higher than the solving time, as we increase the
problem size, the end-to-end time curve is pulled towards closer to the solvingtime curve because the latter
becomes more and more dominant, . The key insight here is that the limiting factor of achieving high
isogranular scalability on a large number of processors is the scalability of the solver proper, rather than
other simulation components that we have bundled with the solving component. Therefore, it is reasonable
to use the degradation in solving time to measure the isogranular efficiency of the entire end-to-end system.
As shown in Figure 11, the solving time per step per element is 6.341µs on a single PE and 7.741µs on 748
PE. Therefore, we have an isogranular parallel efficiency around 81%, a very good result considering the
high irregularity of the meshes.

A side note: we have successfully run the meshing and solving components tosimulate the 2 Hz prob-

9For the 1.5 Hz simulation (748-PE run), we have only simulated 2,500 time steps. The “replicating” and “meshing” cost
appear to be slightly more significant percentage-wise. But a full-scale simulation of 10,000 time steps would wipe out any
residual percentage contribution due to “replicating” or “meshing”.
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lem (1.37 billion mesh nodes). However, in this case, the isogranular parallel efficiency drops to 60% as
compared with the 1 PE run. We are actively investigating the reason for the performance degradation.

3.4.2 Fixed-size scalability study

In this set of experiments, we investigate the fixed-size scalability of the Hercules system. That is, we fix the
problem size and solve the same problem on different numbers of processors to examine the performance
improvement in running time.

We have conducted three sets of fixed-size scalability experiments, for small size, medium size and large
size problems, respectively. The experimental setups are shown in Figure 13.

PEs 1 2 4 8 16 32 64 128 256 512 1024 2048

Small case (0.23 Hz, 0.8M nodes)x x x x x
Medium case (0.5 Hz, 11M nodes) x x x x x
Large case (1 Hz, 134M nodes) x x x x x

Figure 13:Setup of fixed-size speedup experiments. Entries marked with “x” represent experiment runs.

Figure 14 shows the performance of Hercules for different fixed-sized problems. Each column represents
the results for a set of fixed-size experiment. From left to right, we displaythe speedup plots for the small
case, medium case and large case, respectively.

The first row of the plots shows that Hercules, as a system for end-to-end simulations, scales well even for
fixed-size problems. As we increase the numbers of processors (to 16 times as many for all three cases),
the end-to-end running times improve accordingly. The actual running time curve skirts the ideal speedup
curve very closely. The end-to-end parallel efficiencies on 16× processors are 66%, 76%, and 64%, for the
small case (1 PE vs. 16 PEs), medium case (8 PEs vs. 128 PEs), and large case (128 PEs vs. 2048 PEs),
respectively.

The second row shows the performance of the meshing component only. Although not perfect, the meshing
component achieves reasonable speedups while running on a large number of processors. In fact, if a mesh
is only generated statically up front — that is, before the computation starts — and does not change over
time, the cost of the meshing is completely amortized by thousands of simulation time steps as long as
the mesh is generated in a reasonable amount of time. This is exactly the case for our forward earthquake
simulations. To appreciate the efficiency of the meshing component: assume that a 1 Hz mesh (7.6 GB
in size) already exists on a lab server and that we have to move it across thenetwork to a supercomputer.
Transferring the mesh at peak rates over a gigabit ethernet connectionwould require more than 60 seconds.
In comparison, the meshing component generates the mesh on 2048 processorsin-situ in 35 seconds.

An interesting question is how the meshing component would perform if dynamicmesh adaptation is
needed10. In this case, the speedup of the meshing component on larger numbers ofprocessors becomes
important. In a detailed study of the meshing component [27], we have identified that the least scalable and
the most time-consuming (approx. 60% of total meshing time) operation of meshingis thePARTITIONTREE

step. This step migrates data among processors, and is likely to put stress onthe bandwidth of the intercon-

10We have not yet evaluated this case empirically.
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Figure 14:Speedups of fixed-size experiments. The first row represents the end-to-end running time;
the second the meshing and partitioning time; the third the solving time; and the fourth the visualizing time.

nect network and the memory subsystem. However, if each processor has more or less the same number of
elements, which is probably true when dynamic mesh adaptation occurs, the cost of PARTITIONTREEwould
be significantly reduced. Therefore, we expect the speedup of the meshing component would be much better
in the dynamic adaptation cases. However, further research is needed tosubstantiate this speculation.
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The third row of Figure 14 shows a somewhat surprising result: the solvingcomponent achieves almost
perfect speedup on hundreds and thousands of processors, even though the partitioning strategy we used
(dividing a Z-ordered sequence of elements into equal chunks) is extremely simple. In fact, the solving
component’s parallel efficiency on 16× processors is 97%, 98%, and 86%, for the small case (1 PE vs. 16
PEs), medium case (8 PEs vs. 128 PEs), and large case (128 PEs vs. 2048 PEs), respectively. Since solving
is the most dominant component of the Hercules system, its high fixed-size parallel efficiency has obviously
promoted the performance of the entire end-to-end system.

The speedup of the visualizing component, as shown in the fourth row of Figure 14, is however less satis-
factory, even though the general trend of the running time indeed shows improvement as more processors
are used. But since this component is executed at each visualization time step(usually every 10th simula-
tion time step), the less than optimal speedup actually has a much bigger impact on theoverall end-to-end
performance than the meshing component. The visualizing parallel efficiency on 16× processors is actually
44%, 36%, and 38%, for the small case (1 PE vs. 16 PEs), medium case (8PEs vs. 128 PEs) and large case
(128 PEs vs. 2048 PEs), respectively.

(a) (b)

Figure 15:Workload distribution. (a) Elements assigned on one processor. (b) Unbalanced visualization
workload on two processors.

The visualizing performance degradation has nothing to do with our rendering and compositing algorithm.
Rather, it is caused by our simplistic partitioning strategy, which assigns equal number of elements to
each processor. At a visualization step, each processor renders its local data associated with the elements
(octants) hosted on that processor, as shown in Figure 15(a). But twoprocessors may have dramatically
different data block sizes and the resulting projected image sizes, as shown in Figure 15(b) where the light
blocks represent elements assigned to one processor and the dark blocks another processor. The net result
of such discrepancy in size is that the workload may become highly unbalanced for theRENDERIMAGE and
COMPOSITIMAGEsteps, especially, when larger numbers of processors are involved.

In our current implementation, we do not attempt to re-distribute the data blockssince the visualizing time
only accounts for a small fraction of the total simulation time. Our partitioning strategy has been chosen in
favor of the solving component. However, in the future when very sophisticated rendering techniques, such
as time-accurate vector field visualization, is to be included, the dynamics of thesystem may change in such
a way that visualizing may become as time-consuming as solving. So one interesting research topic is to
re-evaluate the space-filling curve based partitioning strategy and develop a hybrid scheme that can benefit
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both the solving and visualizing components.

4 Conclusion

We have demonstrated that an end-to-end approach to parallel supercomputing is not only desirable, but also
feasible for high-performance physical simulations. By eliminating the traditional, cumbersome file inter-
face, we have been able to turn “heroic” runs — large-scale simulation runs that often require days or even
weeks of preparations — into daily exercises that can be conveniently launched on parallel supercomputers.

Our new approach calls for new ways of designing and implementing high-performance simulation systems.
Besides data structures and algorithms for each individual simulation components, it is important to account
for the interactions between these components (in both control flow and dataflow). It is equally important
to design suitable parallel data structures and runtime systems that can support all simulation components.
Although we have implemented our methodology in only one framework that targets octree-based finite ele-
ment simulations for earthquake modeling, the basic principles and design philosophy should be applicable
to other types of large-scale physical simulations. For example, for tetrahedral mesh simulations, some type
of scalable hierarchical structure — which serves a similar function as a parallel octree in the Hercules sys-
tem — should be designed and implemented, though such an endeavor is of course much more challenging
than supporting octree-based hexahedral mesh simulations.

Our new approach also calls for new ways of assessing high-performance computing. We need to take
into account all the simulation components instead of merely the inner kernel ofthe solvers. No time —
either used by processors or human beings — should be excluded in the evaluation of the effectiveness of a
simulation system. After all, the turnaround time isthemost important performance metric for real-world
scientific and engineering simulations. Sustained average Mflops of inner kernels only helps explain the
achieved high performance (faster running time). They should not be treated as the only indicator of high
performance or scalability.
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