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Abstract

Conventional parallel scientific computing uses files as interface betvimeiaion components such as
meshing, partitioning, solving and visualizing. This approach results in timswoing file transfers, disk
I/0 and data format conversions that consume large amounts of netwandge, and computing resources
while contributing nothing to applications. We proposesad-to-endapproach to parallel supercomputing.
The key idea is to replace the cumbersome file interface with a scalable, haustene data structure, on
top of which all simulation components are constructed in a tightly coupled wayaie implemented this
new methodology within an octree-based finite element simulation system riden@des The only input
to Hercules is material property descriptions of a problem domain; the ombyutsuare lightweight jpeg-
formated images generated as they are simulated at every visualization tim&lségp.is absolutely no
other intermediary file 1/O. Performance evaluation of Hercules on up t8 p@tessors on the AlphaServer
system at Pittsburgh Supercomputing Center has shown good isogrecalkdrility and fixed-size scalabil-

ity.
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1 Introduction

Traditionally, parallel supercomputing has been directed at the inneelkefiphysical simulations: the
solver— a term we use generically to refer to solution of (numerical approximatifnthe governing
partial differential, ordinary differential, algebraic, integral, or partedgiations. Great effort has gone into
the design, evaluation, and performance optimization of scalable pardlletisand previous Gordon Bell
awards have recognized these achievements. However, the frommeéeck end of the simulation pipeline
— problem description and interpretation of the results — have taken a battoghe solver when it comes
to attention paid to scalability and performance. This of course makes seolsers are usually the most
cache-friendly and compute-intensive component, lending themselvaslhata performance evaluation
of each new generation of parallel architecture; whereas the frdriiack ends often have sufficiently small
memory footprints and compute requirements that they may be relegated to, silingntial computation.

However as scientific simulations move into the realm of the terascale anddeism decomposition

in tasks and platforms becomes increasingly untenable. In particular, migttbcae-dimensional PDE
simulations often require variable-resolution unstructured meshes to mtfjciesolve the different scales

of behavior. The problem description phase can then require gemeohtm unstructured mesh of massive
size; the output interpretation phase involves unstructured-mesh volunaerirgy of even larger size. As

the largest unstructured mesh simulations move into the multi-hundred million to billioreetégrid point
range,the memory and compute requirements for mesh generation and volodexirg preclude the use

of sequential computersOn the other hand, scalable parallel algorithms and implementations for large-
scale mesh generation and unstructured mesh volume visualizatisigmaifecantlymore difficult than their
sequential counterparts.

We have been working over the last several years to develop methoddresa some of these front-end
and back-end performance bottlenecks, and have deployed themgarsop large-scale simulations of
earthquakes [3]. For the front end, we have developed a computatiatadase system that can be used
to generate unstructured hexahedral octree-based meshes with biflielesn@nts on workstations with
sufficiently-large disks [24, 25, 26, 28]. For the back end, we haeldped special 1/O strategies that
effectively hide 1/0 costs when transferring individual time step data to mefoomgndering calculations
[30], which themselves run in parallel and are highly scalable[14, 153Q]f Figure 1 illustrates the
simulation pipeline in the context of our earthquake modeling problem, andrticyiar, the sequence of
files that are read and written between components.

However, despite our — and others’ — best efforts at devising scadddpbeithms and implementations for
the meshing, solving, and visualization components, as our resolution afityfidquirements have grown

to target multi-hundred million to billion and greater element simulations, there remaiavén bigger
problems of storing, transferring, and reading/writing multi-terabyte filéwdsen these components. In
particular, 1/0 of multi-terabyte files remains a pervasive and abiding pedioce bottleneck on parallel
computers, to the extent thete offline approach to the meshing—solving—visualizing simulation pipeline
becomes intractable for billion mesh node unstructured mesh simulatiditisaately, beyond scalability
and I/O concerns, the biggest limitation provided by the offline approachimitdity to support interactive
visualization of the simulation: the ability to debug, monitor, adjust, and steer theéasiomuat runtime

'For example, in a report identifying the prospects of scalability of a vat&parallel algorithms to petascale architectures
[20], mesh generation and associated load balancing are categaiZéaba 2 — “scalable provided significant research challenges
are overcome.”
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Figure 1:Traditional simulation pipeline.

based on volume-rendered visualizations becomes increasingly crsipigldem size increases.

Thus, we are led to conclude that in order to (1) deliver necessafyrpemce, scalability, and portability
for ultrascale unstructured mesh computations, (2) avoid unnecessitignbcks associated with multi-
terabyte 1/0, and (3) support runtime visualization-based steering, weseels arend-to-end solutioto
the meshing-solving—visualizing simulation pipeline. The key idea is to replatathgonal, cumbersome
file interface with a scalable, parallel, runtime data structure that supports sony#elines in two ways:
(1) providing a common foundation on top of which all simulation componentsatgeasnd (2) serving as
a vehicle for data sharing among simulation components.

We have implemented this new methodology within a simulation system nétaexiles which targets
unstructured octree-based finite element PDE simulations running on mulsiahayrocessor supercom-
puters. Figure 2 shows an instantiation of Hercules for our earthquatlelmg problem. All simulation
components, i.e. meshing, partitioning, solving, and visualizing, are implementezp of, and operate
on, a unified parallel octree data structure. There is only one execykdBlecode), in which all the com-
ponents are tightly coupled and execute on the same processors. Thamrilys a description of the
spatial variation of the PDE coefficients (a material database, in the c#se@drthquake simulations); the
only outputs are lightweight jpeg-formatted visualization frames geneestdbey are simulatedt every
visualization time step.There is absolutely no other file I/O.

A quick first glance may lead to a misperception that that Hercules — whichsnegeof the well-known

parallel octree data structure — is straightforward to implement. The factiséiaave to develop complex
new mechanisms on top of the parallel octree structure to support laage-end-to-end finite element
simulations. For example, we need to associate unknowns with mesh nodgscainespond to the vertices

20ptionally we can write out the volume solution at each time step if necessafyttire post-processing — though we are
rarely interested in preserving the entire volume of output, and inste&et ppeoperate on it directly in-situ.
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Figure 2:Online, end-to-end simulation pipeline.

of the octants in a parallel octrée How to deal with octree mesh nodes alone represents a nontrivial
challenge to meshing and solving, which demand new data structure andhatgdesign. Furthermore,

in order to provide unified data access services throughout the simulatielinp, a flexible interface to
the underlying parallel octree has to designed and exported such thatnsiesolvers and visualizers can
efficiently share simulation data.

It is worth noting that although we have integrated only visualization (Sect®8)3n the Hercules frame-

work, there is no technical difficulty to plug in other post-processing toath @1s spectrum analysis in
place of visualization. The reason we have chosen 3D volume rendesunglization over others is that the
former is by far the most demanding back end in terms of the volume of data tmbesged. By show-

casing that online, integrated visualization is implementable, we demonstrateghmbffosed end-to-end
approach is feasible for implementing a wide variety of other simulation pipelinigtwations.

We have assessed the performance of Hercules on the Alpha EVé8-teaascale system at Pittsburgh
Supercomputing Center for our earthquake modeling problem. Preliminaigrmance and scalability
results (Section 3.4) show:

e Fixed-size scalability of the entire end-to-end simulation pipeline from 12824 pfocessors at 76%
overall parallel efficiency for 134 million mesh node simulations

e Fixed-size scalability of the meshing and solving components from 128 to [2@t&ssors at com-
bined 84% parallel efficiency for 134 million node simulations

e Isogranular scalability of the entire end-to-end simulation pipeline from 1 &prdcessors at com-
bined 81% parallel efficiency for 534 million mesh node simulations

e Scalability of the meshing and solving components on 2000 processorgfobillion node simula-
tions

Already we are able — we believe for the first time — to demonstrate scalability2é ifcessors of the
entire end-to-end simulation pipeline, from mesh generation to wave prigat@scientific visualization,
a unified end-to-end approach.

3In contrast, other parallel octree-based applications such as N-bodiations have no need to manipulate octants’ vertices



2 Octree-based finite element method

In general, octree-based finite element method are employed in at le&sividwys. First, for PDEs posed
in simple domains characterized by highly heterogeneous media in which sdariigth scales are known
a priori (such as in linear wave propagation), octree meshes that resolvedtt#dis features can be gen-
erated up front. Second, for PDEs in simple domains having solution feataeare known only upon
solution of the PDEs, octree meshes — driven by solution error estimatesi-becadapted dynamically
to track evolving fronts and sharp features at runtime (for example to eaphocks). Third, for PDEs
posed on complex domains, octree meshes in combination with special nunexfuziues (such as fic-
titious domain, embedded boundary, or extended finite element methodsg cesedh to control geometry
approximation errors by adapting the octree mesh in regions of high geowetiability, eithera priori
for fixed geometries, or at runtime for evolving geometries. Large-szalmples ofa priori adapted octree
mesh generation can be found in seismic wave propagation modeling [1i,aetree mesh methods for
compressible flow around complex aircraft configurations providexeellent example of geometry- and
solution-driven dynamic adaptivity [29].

This section provides a brief description of octree-based finite elemenbchigthhe context of earthquake
ground motion modeling. Details on our computational methodology and undgdygorithms may be
foundin[5, 6, 7, 12].

2.1 Wave propagation equation

We model seismic wave propagation in the earth via Navier's equation of lalastodynamics. Let
represent the vector field of the three displacement componeats];, the Lane moduli andp the density
distribution, b a time-dependent body force representing the seismic sourcd,‘dha linear differential
operator that vanishes on the free surface, and applies an appeagbisorbing boundary condition on
truncation boundaries. L& be an open bounded domaink¥. The initial-boundary value problem is
then written as:

pa—v-[ (Vu+vuT)+A(V-u)I} — binQx(0,T],

1
(1 (Vu+ VaT) + MV u)I]n = L4%u on o x [0,7], L)
= 0onQx{t=0},
uw = 0onQx{t=0},

wheren represents the outward unit normal to the boundary. With this model, longitudaves propagate
with velocity v, = /(X + 2u)/p, and shear waves with velocity = +//p. The continuous form above
does not include material attenuation, which we introduce at the discrefeviavae Rayleigh damping
model. The vectob comprises a set of body forces that equilibrate an induced displaceiskatation on

a fault plane, providing an effective representation of earthquakeme on the plane. Explicit expressions
for such a body force will be given below in the case of antiplane shear.

On a face with a unit normat and two tangential vectors; andr,, such that the three vectors form a
right-handed orthogonal coordinate system, the absorbing bounadladtion (Stacey’s formulation) takes



the form
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whereS is the stress tensor and

g = 2p+uA+2u),
di = /p(A+2p),
de = /pp.

Even though Stacey’s absorbing boundary is not exact, it is local indpaite and time, which is particularly
important for large-scale parallel implementation.

2.2 Octree-based spatial discretization

We apply standard Galerkin finite element approximation in space to the ajteopeak form of the
initial-boundary value problem (1). Lé{ be the space of admissible solutions (which depends on the
regularity ofb), U, be a finite element subspaceléf andv;, be a test function from that subspace. Then
the weak form is written as follows.

Findu, € U}, such that

/Q{pfdh-vh + % (Vuh +Vuz) . (Vvh —|-va> + AV -up)(V -vp) — b-vh}dQ =

/ (LABuh) -vy, dA, Vv € Uy, (2)
o0

Spatial approximation is effected via piecewise trilinear basis functions sswtimted trilinear hexahedral
elements on an octree mesh. This strikes a balance between simplicity, low mesinoey €Il element
stiffness matrices are the same modulo scale factors), and reasonalbcgcc

Upon spatial discretization, we obtain a system of ordinary differentightions of the form
Mii+ (C* +aM + BK)u+ (K + K*¥)u=b, 3)

where M and K are mass and stiffness matrices, arising from the terms invopvengd (1, \) in (2), re-
spectively;b is a body force vector resulting from a discretization of the seismic sourdelyreind damping
matricesC“Z and K“? are contributions of the absorbing boundaries to the mass and stiffnegsasate-
spectively. We have also introduced damping matrices in the form of theiBaytaterial modeh M + 35 K

to simulate the effect of energy dissipation and resulting wave attenuatido dnelastic material behavior.

The constants: and 8 are determined locally (elementwise) so that the resulting damping ratio is as close
as possible to a constant value dictated by the local soil type, over a bémdjwencies. Since Rayleigh
damping increases both linearly and inversely with frequency, we seelstesiguares solution to this opti-
mization problem over each element. This provides a reasonable dampingforadany soils, although

very low and very high frequencies are overdamped.



Spatial discretization via refinement of an octree produces a non+oonfp mesh, resulting in a discon-
tinuous displacement approximation. Whenever a refined hexahedramijoneighbors an unrefined one,
dangling nodes, which belong to refined elements but not to unrefinetibeery are produced. In such
cases, we restore continuity of the displacement field by imposing algelmastraints that require the
displacements at dangling mesh nodes to be consistent with anchoredansighdr linear hexahedra and
providedthe 2-to-1 constrainis enforced between neighbors, these constraints state simply that hanging
mid-edge values must be the average of the two anchored endpoint siediw hanging mid-face val-
ues must be the average of the four anchored vertex neighbors. Wexpeess these discrete continuity
constraints in the form

u = Bu,
wherew denotes the displacements at the independent anchored mesh nodBsisamdparse constraint
matrix. In particular,.B;; = i if (dependent) dangling mesh nodeés a face neighbor of (independent)
anchored nodg and% if it is an edge neighboi3;; = 1 simply identifies an anchored node, aBg;, = 0
otherwise. Rewriting the linear system (5) as

Aup1 = b(uy),
we can impose the continuity constraints via the projection
BTABu = B'b(uy,). (4)

The constrained update (4) remains explicit, since the projected niatukB preserves the diagonality of
A. The work involved in enforcing the constraints is proportional to the nurabdangling mesh nodes,
which can be a sizable fraction of the overall number of mesh nodes fighdytirregular octree, but is at
most of O(N). Therefore, the per-iteration complexity of the update (4) remains lineaeimaimber of
mesh nodes.

2.3 Temporal approximation

The time dimension is discretized using central differences. The algorithmde m@licit using a diago-
nalization scheme that lumps the mass matrix—and pos@ﬁﬁ/—and splits the diagonal and off-diagonal
portions of the stiffness and absorbing boundary damping matrix. Thiingsupdate for the displacement
field at time stegk + 1 is given by

At At Al _an
(1o )M oTrn, « el fu - ©
9 AB At At _aB
[2M—At (K+K ) — 5Ky~ 7004 u
A A A
+ [(a{ - 1) M + ﬁ?tK T {CAB} 1 + At?by.

The time incremenfAt must satisfy a local CFL condition for stability. Space is discretized ovecae®
mesh (each leaf corresponds to a hexahedral element) that resolaksdmnic wavelengths: given a
(typically highly-heterogeneous) material property distribution and higleselved frequency of interest,
a local mesh size is chosen to prodwomesh nodes per shortest wavelength (we typically take10 for
trilinear hexahedra). This insures that the CFL-limited time step is of the ofdleaioneeded for accuracy,
and that excessive dispersion errors do not arise due to oveedaefiashes.

6



2.4 Summary

Due to the trilinear hexahedral elements and local dense element-basatldetizres, octree-based finite
element method has several important advantages:

e The hexahedral meshes stem from wavelength-adapted octrees amhitiore easily generated than
general unstructured tetrahedral meshes, particularly when the nafblements increases above
50 million.

e The hexahedra provide somewhat greater accuracy per mesh nedssythptotic convergence rate
is unchanged, but the constant is typically improved over tetrahedredxdpyation).

e The element-based data structure produces much better cache utilizatieledating the work that
requires indirect addressing (and is memory bandwidth-limited) to vectoatipes, and recasting the
majority of the work of the matrix-vector product as local element-wise deregeix computations.
The result is a significant boost in performance.

e The hexahedra all have the same element stiffness matrices, modulo elewemtdsmaterial prop-
erties (which are stored as vectors), and thus no matrix storage is cb@tiiedl. This results in a
substantial decrease in required memory—about an order of magnitudpaced to our grid-point-
based tetrahedral code.

These features permit earthquake simulations to substantially greateticgsotbian heretofore possible.

3 The Hercules system

Motivated to overcome the many pitfalls of the traditional, offline, file-basquagrh described in Sec-

tion 1, we have adopted an end-to-end, approach to parallel suparioghpnd developed a new octree-
based finite element simulation system named Hercules. This section presemésitn, implementation,

performance assessment of the Hercules system.

3.1 Data structures

The design goal of Hercules is to have all the simulation components operatedoshare data from a
consistent, overarching data structure: a parallel octree, which is thbdize that ties all add-on pieces
(i.e., data structures and algorithms) togethd@ihere are three distinctive advantages of using a parallel
octree as the backbone: (1) octrees are simple, scalable, hierasthicalires, (2) algorithms on octrees
have been well studied and successfully applied, and (3) we can expdoésting properties of octrees for
parallelism.

Before explaining how we organize the backbone parallel octree steuttius first examine the important
properties of octrees. For simplicity of illustration, we use two-dimensionatitiees and quadrants in the

“The add-ons either implement general operations on the underlyiatighactree or realize specific functions of a simulation
component.



figures and examples. All the techniques and properties are applicableédimensional octrees and
octants.

An octree can be viewed in two equivalent ways: doenain representatioand thetree representatianA

domainis a Cartesian coordinate space that consists of a uniform giid ef 2" indivisible pixels The
root octantthat spans the entire domain is defined to be at level 0. Each child octar isvah lower that
its parent (with a larger level value).

An octree can be viewed in two equivalent ways: doenain representatioand thetree representationA
domainis a Cartesian coordinate space that consists of a uniform g2féloR™ indivisible pixels. Theroot
octantthat spans the entire domain is defined to be at level 0. Each child octard Iswvah lower that its
parent (with a larger level value). Figure 3(a) and (b) show the doreaiesentation and the equivalent tree
representation of an octree, respectively. Each tree edge in Figyris 3dbeled with a binargirectional
codethat distinguishes each child of an internal octant.

y
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(a) Domain representation (b) Tree representation

Figure 3:Equivalent representations of an octree.

Linear octree In order to address an octant so that it can be unambiguously distiegdisim other octants,

we make use of thinear octreetechnique [1, 10, 11]. The basic idea of a linear octree is to encode each
octant with a scalar key calledacational codethat uniquely identifies the octant. Figure 4(a) shows how
to compute the locational code of octantFirst, interleave the bits of the three coordinates of the octant’s
lower left pixel to produce its Morton code [19]. Then append the ocdetel to compose the locational
code. We refer to the lower left pixel of an octant as the octamt&hor. For example, the shaded pixel in
Figure 3(a) is the anchor for octamnt

Aggregate hit Given a locational code, we can descend a pointer-based octreeate kot octant. The
descending procedure works in the following way: We extract two bita fitte start of the locational code
repeatedly and follow the branch labeled with the matching directional cddeaathing a leaf octant. The
fact that we are able to locate an octant this way is not a coincidence.kcaraalternative way to derive

a locational code is to concatenate the directional codes from the root teta leaf octant, pad zeroes to
make the code equal length, and then append the level of the leaf octaurte B{) shows an example of
locatingg using its locational code. Note that we have used only the leadinglbi${0); the trailing bits
(00011) do not correspond to any branches sipétself is already a leaf octant. Generally, we can specify
the coordinate of any pixel within the geometric span of an octant, contertitocational code, and still
be able to locate the enclosing octant. We refer to such a propesaggaegate hitbecause the returned
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Figure 4:Operations on octrees.

octant is an aggregating ancestor of a non-existent octant.

Z-ordering If we sort all the leaf octants of an octree according to their locatior@ggsowe obtain a total
ordering of all the leaf octants. Given the encoding scheme of locatiodal it is not difficult to verify that
the total ordering is identical to thgre-order traversabf the leaf octants of the octree (See Figure 3). If we
traverse the leaf octants in this order in the problem domain, we follow a Z patténe Cartesian space.
This is the well-knowrPeano space-filling curveor simplyZ-order curve [9], which has the nice property
that spatially nearby octants tend to be clustered together in the total ordehisgproperty has enabled us
to use a space-filling curve based strategy to partition meshes and distrinktead among processors.

3.1.1 Parallel octree organization

We seek data parallelism by distributing an octree among all processoch. pEacessor keeps itscal
instanceof the underlying global octree. Conceptually, each local instance istagedoy itself whose leaf
octants are marked as eitlecal or remote as shown in Figure 5(b)(c)(d).

The best way to understand the construction of a local instance on auparficocessor is to imagine that
there exists a pointer-based, fully-grown, global octree (see Figa)g FEvery leaf octant of this tree is
marked adocal if the processor needs to use the octant, for example, to map it to a hexidlednent, or
remoteif otherwise. We then apply an aggregation procedure to shrink the stbe dfee. The predicate
of aggregation is that if eight sibling octants are markedeasote prune them off the tree and make their
parent as a leaf octant markedramote For example, on PE 0, octagt i, i, andj (which belong to PE
1) are aggregated and their parent is marked as a remote leaf octanhriihkes tree thus obtained is the
local instance on the particular processor. Note that all the internaltectaithe ancestors of leaf octants
— are unmarked. They exist simply because we need to maintain a poinéet-tetsee structure on each
processor (to implement aggregate hits).

We partition a global octree among all processors with a simple rule that eachsgor is a host for a
contiguous chunk of leaf octants in the pre-order traversal orddringyder to keep the parallel octree in a
consistent way, we also enforce an invariant that a leaf octant, if maiedal on one processor, should
not be marked alocal on any other processors. Therefore, the local instance on onessirds different
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Figure 5:Parallel octree organization on 3 processors. Circles marked by | represent local leaf octants;
and those marked by r represent aggregated remote leaf octants.

from the one on any other processor, though there may be overlapsdrelvcal instances. For example, a
leaf octant marked agmoteon one processor may actually correspond to a subtree on anothesgoac

So far, we have used a shallow octree to illustrate how to organize a pahet on 3 processors. In our
simple example, the idea of local instances may not appear to be very uBefuh real applications, a
global octree can be very deep and needs to be distributed among ésiedtbousands of processors. In
these cases, the local instance method excels because each progcksseeds to allocate enough memory
to keep track of its share of the leaf octants.

It should be mentioned that in practice, due to huge memory requirementedmadant computational
costs, we never — and in fact, are unable to — build a fully-grown globakemn a single processor
first, and then shrink the tree by aggregating remote octants as an aftgrthinstead, local instances on
different processors grow and shrink dynamically in synergy at runtine®nserve memory and keep the
global parallel octree in a coherent way.

3.1.2 Locational code lookup table

Searching for an octant is an indispensable operation frequently idumk¢he various simulation com-
ponents. For example, we need to search for a neighboring octantgeinenating a mesh. If the target
octant is hosted on the same processor where the search operation iglirthiemene follow standard octree
search algorithms [21] to traverse the local instance to find the octant. l&attfthe algorithms encounters

a leaf octant that is marked emmoté In this case, we need to somehow forward the search operation to the
remote processor that hosts the target octant, and resume the searahremtite processor.

Our solution, which leverages the octree properties previously dedgrilmeks in the following way. First,

we compute the locational code of the target octant. For example, wherewsmlimg for the neighboring
octant ofg to its left (see Figure 3(a)), we know the position pftself. Thus it is straightforward to
compute its left neighbor’'s anchor coordinate (assuming the neighbotlie slame size ap and derive

the corresponding locational code. Next, we search for the hostieggsor id in an auxiliary data structure
called thdocational code lookup tabl@discussed shortly). Finally, on the remote processor, we resume the
search operation using the aggregate hit search method to locate thetaaget

It would be extremely inefficient, and in most cases, infeasible, to recbrtevevery remote octant is

10



hosted. The memory cost would 65 V), whereN is the number of octants, which can be as high as hun-
dreds of millions or even tens of billions. We avoid such excessive memamhead by taking advantage
of a simple observation: Each processor holds a contiguous chunkfafdizents in the pre-order traver-
sal ordering, which is identical to the total ordering imposed by the locatiad®s; thus we are given a
partitioning of the locational codes in ascending order for free. We @xple fact to build and replicate a
locational code lookup tableon each processor. Each entry in the table has two fiekdy, value-. The
keyis the smallest locational code among all the leaf octants hosted by a pmaasddhevalueis the
corresponding processor id. The table is sorted in ascending locatiot@lorder. When searching for a
remote processor id using an octant’s locational code, we perform gylsearch on this table. Note that
we do not have to find an exact hit, but rather, we only need to find thg whivse key is the largest among
all those that are smaller than the search key, that is, the highest lowed-bo

Using a locational code lookup table, we have reduced the overheaskepfrig track of remote octants
to O(P), whereP is the number of processors. Even when there are 1 million processemseimory
footprint of the locational code lookup table is only about 13 MB. Since admpodes of recent new
parallel architectures tends to have large physical memory per pro¢®8&oMB— 8 GB), the memory
requirement of the locational code lookup table is minimal and should notitdas scalability bottleneck.

3.2 Interfaces

There are two types of interfaces in the Hercules system: (1) the inteddlece underlying octree, and (2)
the interface between simulation components.

Simulation components need to operate on the underlying octree to implemenetpective functions.
For example, a mesher needs to refine or coarsen the tree structureytowaspatial discretization as
dictated by material properties. A solver needs to attach runtime solution résultesh nodes; and a
visualizer needs to consume the attached attached. In order to supponbocoperations efficiently, we
implement the backbone parallel octree in two abstract data types (ADdsant _t andoctree_t, and
provide a small application program interface (API) to manipulate the ADTs.irfstance, at the octant
level, we provide functions to search for an octant, install an octantusproprune an octant. At the
octree level, we support various tree traversal operations as wek agsitialization and adjustment of the
locational code lookup table. Such an interface allows us to encapsulatentipdexity of manipulating the
backbone parallel octrees within the abstract data types.

Note that there is one (and only one) exception to the cleanliness of theo#ekf/e reserve a place-holder
in oct ant _t, allowing a simulation component (e.g., a solver) to install a pointer to a daterwiffere
component-specific data can be stored and retrieved. Neverthelelsslesibility does not undermine the
robustness of the Hercules system because any structural chatiyebagkbone octree still have to carried
out through a pre-defined API call.

We have also designed binding interfaces between the simulation componewtgvet, unlike the oc-
tree/octant interface, the inter-component interfaces can only be cieglgined in the context of the
simulation pipeline. Therefore, we embed the description of the inter-compamterfaces in the next
subsections where we cover individual simulation components.
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3.3 Algorithms

Engineering a complex parallel simulation system like Hercules not only insaseeful software archi-
tectural design but also demands non-trivial algorithmic innovations. Tdagos highlights important
algorithm and implementation features of Hercules. We have omitted many of tiredaicdetails.

3.3.1 Meshing and partitioning

Conceptually, generating or adapting an octree-based hexahedtalisnasaightforward. As shown in
Figure 6, we first refine a problem domain recursively using an octineetgre. We require that two adjacent
octants sharing an edge of a face should not differ in edge size bya &2, a constraint often referred
to as thebalance conditionor, more intuitively,2-to-1 constraint We then map octants tonesh elements
and vertices tanesh nodesThe nodes hanging at the midpoint of an edge or the center of the faoenef
element (due to the 2-to-1 constraint) a@ngling nodes The remaining nodes aenchored nodes For
conforming finite element methods, each dangling node is dependent arctiered nodes at the endpoints
of the edge or the face on which it is hanging through an explicit algeboaist@int. Explicit correlations
between dangling nodes and anchored nodes are established.

=
()]
~

2 3 4 5

(@) (b)

Figure 6: Octree-based hexahedral meshes. (a) Octree domain decomposition. (b) Octants map to
elements and vertices map to mesh nodes. The dark colored dots represent the anchored nodes and
the light colored dots represent the dangling nodes. The dashed arrows represent the explicit correlations
between dangling nodes and anchored nodes. (c) An example 3D octree mesh.

Following an end-to-end approach, we generate octree meshes wnbita [27]. That is, we generate
an octree mesh in parallel on the same processors where a solver andla®iswill be running. Mesh
elements and nodes are produced where they will be used instead ohote rgrocessors. Such amsitu
strategy requires that mesh partitioning becomes an integral part of theéugmesmponent. The partitioning
method we used is simple [4, 8]. We sort all the octants in ascending Z-andegigide them into each
length chunks in such a way that each processor will be assigned dreanBnone chunk of the octants.
Because the Z-ordering of the leaf octants corresponds exactly todharger traversal of an octree, the
partitioning and data re-distribution often only involve leaf octants migration dstvadjacent processors.
Whenever data migration occurs, local instances of participating prarsassed to be adjusted accordingly
to maintain a consistent global data structure. As will be shown in Sectionu@Hd assimple strategy works
well and yields almost ideal speedup for solving fixed-size problems.
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The process of generating an octree-based hexahedral mesh is ishBigure 7. FirstNEWTREE boot-
straps a small and shallow octree on each processor. Next, the trdarstis@djusted bReFINETREEand
COARSENTREE either statically or dynamically. While adjusting the tree structure, each $goceé only
responsible for a small area of the domain. When the adjustment completesatbanany subtrees dis-
tributed among the processors. TBre. ANCETREE step enforces the 2-to-1 constraint on the parallel octree.
After a balanced parallel octree is obtainedRTITIONTREE redistributes the leaf octants among the pro-
cessors using the space-filling curve partitioning technique. Finally antimpertantly, EXTRACTMESH
derives mesh elements and nodes information and determine the varicelatoams between elements and
nodes. The overall algorithm complexity of the meshing componeft.i€ log F), whereN andE are the
numbers of mesh nodes and elements, respectively.

Upfront adaptation guided by
material property or geometry

—>—> COARSENTREE) —» ( BALANCETREE ) —» ( PARTITIONTREE —>

Online adaptation guided by Octree and mesh handles to
solver’s output (e.g. error est.) solver and visualizer

Figure 7:Meshing component. Shaded ovals are required steps. Unshaded ovals are optional steps.

Using the well-known octree algorithms [21], we have been able to implemernEth@REE, REFINETREE
,COARSENTREE, andPARTITIONTREESteps in a simple way. However, the parallel octree alone — though
scalable and elegant for locating octants and distributing workloads — isuffatient for implementing

the BALANCETREE andEXTRACTMESH steps.

The key challenge here is how to deal with octants’ vertices, i.e. mesh.ndlesan easily compute
the coordinates of the vertices based on the configurations of the lotahdes in parallel. But we can
only obtain a collection of geometry objects (octants and vertices), whichdmgblves are not a finite
element mesh yet. To generate a mashkitu and make it usable to a solver, we must identify the corre-
lations between octants and vertices (mesh connectivity), and betwdeesend vertices, either on the
same processor (dangling-to-anchored dependences) or orudiffepcessors (inter-processor sharing in-
formation). Therefore, in order to implement tReLANCETREE andEXTRACTMESH steps, which require
capabilities beyond those offered by standard parallel octree algorithenbave incorporated auxiliary
data structures such as hash tables and double-link lists, and develafgogithms such agarallel ripple
propagationandparallel octree bucket sortinfpr meshing. These add-ons are internal and are not visible
to other simulation components downstream in the pipeline.

As we mentioned earlier, the interface between simulation components prdvidghie that ties the Her-
cules system together. The interface between the meshing and solvingremgoonsists of two parts:
(1)abstract data types, and (2) callback functions. When meshing iset@apa mesh abstract data type
(mesh_t), along with a handle to the underlying octree{ r ee_t ), is passed forward to the solver. The
mesh_t ADT contains all the information a solver would need to initialize its execution enxient. On
the other hand, a solver controls the behavior of a mesher via callbactdins that are passed as param-
eters to theREFINETREEANd COARSENTREESteps at runtime. The latter interface allows us to carry out
online mesh adaptation, which is critical for including inverse solvers in threutles system in the future.
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3.3.2 Solving

Figure 8 shows the solving component’s workflow. After the meshing coemidmands over control, the
INITENV step sets an execution environment by computing element-independemrsstiffiatrices, allocat-
ing and initializing various local vectors, and building a communication schedgat, theDEFSOURCE
converts an earthquake source specification to a set of equivateesfapplied on mesh nodes. Then, a
solver enters its main loop (inner kernel) where displacements and velodtiesiated with mesh nodes
are computed for each simulation time step (i.e.,cb@iPDISPstep). If a particular time step needs to be
visualized, which is determined eithaipriori or at runtime (online steering), tleaLLVIS step passes the
control to a visualizer. Once an image is rendered, control returns totviag component, which repeats
the same procedure for the next time step until done. The solving compaattidhoptimal complexity
of (’)(Né), whereN'3 is the number of mesh node in each direction. This results from the factinalys
writing the solution requireé)(N%) complexity, sinc&?(N) mesh nodes are required for accurate spatial
resolution, anc(Q(N%) time steps for accurate temporal resolution, which is of the order dictatedeby th
CFL stability condition.

A

from mesher

! ! : :
Comen > Gersoncdt s eonros)—»< T srez>p Comave o< gon >

Octree and mesh handles J

Octree handle

Figure 8:Solving component.

The compDIsPstep (conducing local element-wise dense matrix computation, exchangmdetaveen
processors, averaging dangling node values, etc.) presents no nadyoicé difficulty, since the inner
kernel is by far the most well studied and understood part. More integdstimow the solving component
interacts with other simulation components and with the underlying octree imtheNv ,DEFSOURCE,
andCALLVIS steps.

In the INITENV step, the solver receives anrsitu mesh via an abstract data typesh_t , which contains
such important information as the number of elements and nodes assignedtesspr, the connectivity of
the local mesh (element-node correlation, dangling-anchored noddatiamn), and the sharing information
(which processor shares which of my local mesh nodes), and so Tdtis, all initialization work, including
the setup of a communication schedule, can be performed in parallel withpuwioanmunication among
processors.

Along with themesh_t ADT, the solving component also receives a handle to the backbone'sdbeal
instanceoct r ee_t . One of the two important applications of thet r ee_t ADT is to provide an efficient
search structure for defining earthquake sourcesoHrsOURCEStep). In Hercules, we support kinematic
earthquake sources whose displacements (slips) are prescribedinfiiest case is a point source. Note
that the coordinate of a point source is not necessarily that of any noelgh YWe implement a point source
by finding the enclosing hexahedral element of the coordinate and rtdheegorescribed displacements to
an equivalent set of forces applied on the eight mesh nodes of thesemclklement. For general cases
of fault planes or arbitrary fault shapes, we first transform a faudt $et of point sources and then apply
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the same technique for single point source multiple times. In other words, wehdi@ematic source is
involved, we always have to locate the enclosing elements of arbitrardioates. Hence, we are able to
implement theDEFSOURCEStep using the octree/octant interface, which provides such importaiteser
as searching for octants.

The other important application of tleect r ee_t ADT is to serve as a vehicle for a solver to pass data to a
visualizer. Recall that we have reserved a place-holder inthe ee_t ADT. Thus, we allocate a buffer
that holds the results of the computation (displacements or velocities), anill timstaointer to the buffer

in the place-holder. As new results are computed at each time step, thebtdiarlis updated accordingly.
Note that to avoid unnecessary memory copying, we do not store floating+pumbers directly into the
result buffer. Instead, we store pointers (array offsets) to intesolation vectors and implement a set of
macros to manipulate the result buffer (de-reference pointers and ¢temgzults). So from a visualizer's
perspective, the solving component has provided a nifty data servigéaode Once theALLVIS step
transfer the control to a visualizer, the latter is able to retrieve simulation mstatfrom the backbone
octree by calling these macros.

A side note: When a time step does not need to be visualized, no data acoess ara called; thus no
memory access or computation overhead occurs.

3.3.3 Visualizing

Simulation-time 3D volume rendering has rarely been attempted in the past femtiajer reasons. First,
scientists are reluctant to use the precious supercomputing hours falizagion. Second, data organization
designed for the solving component is generally very different fromtigneeded by rendering algorithms.
Third, executing a visualization pipeline on a different set of processauses difficult communication
problems and increase the complexity of a simulation code.

By taking an online, end-to-end approach, we have been able to imatep® highly adaptive parallel
visualizer into Hercules, which executes the meshing, solving, visualizimgpaoents all on the same set
of processors.

Octree handle
UPDATEPARAM RENDERIMAGE)—#»(COMPOSITIMAGE)

Figure 9:Visualizing component.

Figure 9 shows how the visualizing component works in Hercules. FirstjpibDaTEPARAM step updates
the viewing and rendering parametePsNext, theRENDERIMAGE step renders local data, that is, values
associated with blocks of hexahedral elements on each processaeféliie on the rendering algorithm can
be found in [17, 30]. The rendered (partial) images are then composgethtr in thecOMPOSITIMAGE
step. Different from most other the parallel image compositing algorithms thatesigned for a specific

5In our current implementation, we fix the parameters and hencerbaTEPARAM step is executed only once when the
visualizer is bootstrapped. However, when we incorporate online sgeierihe future, UPDATEPARAM Will need to be executed
for each visualization step.
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network topology [2, 13, 16], we have made use of the scheduled linegeig@mpositing (SLIC) [22]
technique, which has proved to be the most flexible and efficient parallgleirmampositing algorithm.
Finally, the SAVEIMAGE step stores an image to disk. Figure 10 shows a sequence of example images)
The cost of the visualizing component per invocatiorﬂ?i@ryEé log E), wherez, y represent the two-
dimensional image resolution atdis the number of mesh elements.

Figure 10:A sequence of snapshot images of propagating waves of 1994 No rthridge earthquake.

The visualizing component relies on the underlying parallel octree to {f1¢ve simulation data from the
solver, and (2) implement its adaptive rendering algorithm. We have exgldiadirst point in the previous
subsection. Now let us take a closer look at the second point. Our visgatiamponent needs to traverse
the octree structure to implement its ray-casting based rendering algorithdef&yit, we have to process
all leaf octants a particular ray shoots through in order project a pixekeder, we might not always want
to render at the highest resolution. For example, when rendering damaif millions of elements to a
small image with 512« 512 pixels, it would not reveal much more perceivable details if we reatre
highest resolution level, unless when a close-up view is selected. Sodntordchieve better performance
of rendering without compromising the quality of the images, we perform a-digpendent pre-processing
step to choose an appropriate octree level before actually renderintage [30]. Operationally, it means
that we may need to move up in the octree structure and render images aser é®ael. Again, the small
set API functions to manipulate the backbone octree comes to serve aitia fmnilding block, this time,
for supporting adaptive visualization.
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3.4 Performance

In this section, we provide preliminary performance results that demongteagealability of the Hercules
system. We also describe interesting performance characteristics amdailmss, which have been identi-
fied in the process of understanding the behavior of Hercules as ao-@&md simulation system.

Our simulations have been conducted to model seismic wave propagatiomg kiigtorical and synthetic
earthquakes in the Greater Los Angeles Basin, which comprises a ihmeasibnal volume of 100 by 100
by 37.5 kilometers. The performance data presented was collected fronele the HP AlphaServer
system at Pittsburgh Supercomputing Center. The execution time is obtaimadasyring the wallclock
time as returned by thePl "W i me() function call. Other performance data, including Mflops, processor
cycles, cache misses, and TLB misses are obtained from the HP Digital GamumgiRrofiling Infrastructure
(DCPI)$

The material property model we used to drive our simulations is the Soutladifor@ia Earthquake Center
3D community velocity model [18] (Version 3, 2002), known as the SCEC Qvibtlel. The model is a
standalone Fortran program that takes a list of coordinates (longitditiediéa depth) as input, and produces
a list of corresponding records (i.e., primary velocity, shear velocity,damsity) as output. However, the
execution model is not suitable for online unstructured mesh generatioaraligb computers due to the
unknown coordinates. We discretize the domain at runtime to figure out tirelinates that need to be
further queried from the model. In other words, we have to query theipdlymodel interactively rather
than in a batch. Unfortunately, we are unable to switch context to run theaR@rogram on the compute
nodes at runtimé. To solve this problem and enable our online, end-to-end simulations, we tipeeSCEC
CVM model at very high-resolution in advance offline, and then competese and index the results in
a material database [23] (approx. 2.5GB in size). Note that this is a one-tione &he database thus
generated can be used repeatedly by many simulations. In our initial implementedidet all processors
guery a single material database stored on a parallel file system. But foenpance was unacceptable,
especially when the number of processor exceeds 16. As a resultyevenuaified our implementation to
replicate the material database onto the local disk attached to each competeefioc a simulation. We
note that this is not a particularly restrictive design choice since most clhissed supercomputers usually
have sufficiently large local disks for compute nodes.

3.4.1 Isogranular scalability study

Our primary focus is to understand how the Hercules system performs wééncrease the problem size
and the number of processors, and maintain more or less the same amouornit ofweach processor.

Figure 11 summarizes the characteristics of the isogranular experimefs. sSFows the number of pro-
cessors used in each simulation, which is denoted by the “Frequencyg sttbmic wave to be resolved.
“Element”, “Nodes”, “Anchored” and “Dangling” show the statistics of thetree-based hexahedral finite
element meshes. “Max leaf level” and “Min leaf level” represent the smadledtlargest elements in the
meshes, respectively. “Elements/PE” is used as a rough indicator of théoaw on each processor. Given

%Due to unknown reasons that are still being investigated, DCPI hasctaigssficant execution time slowdown on larger
number of processors.

’In fact, even if we could fork a process to run the Fortran progranfdléstrapping cost would be forbiddingly expensive (on
the order of the seconds).
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the unstructured nature of the finite element meshes, it is impossible to gesttaafger-processor element
(node) number to be exactly the same over different simulation runs. fdeless, we have contained the
difference to within 10%. “Steps” shows the number of simulation steps Harenkrutes. The “E2E time”
represents the absolute running time of a Hercules simulation from the beginhan the code is loaded
onto a supercomputer to the end when the code exits the system. The runninigdindes the time of
replicating a material database stored a shared parallel file system to thdiscttached to each compute
node (“Replicating”), the time to generateiarsitu unstructured finite element mesh (“Meshing”), the time
to simulate seismic wave propagation (“Solving”), and the time to create visuahgatml output jpeg im-
ages (“Visualizer”). “E2E time/step/elem” and “Solver time/step/elem” are the t@radrcost per element
per time step for end-to-end time and solving time, respectively. “Mflops/Béatiands for the sustained
megaflops per second per processor.

PEs 1 16 52 184 748 2000
Frequency 0.23Hz| O05Hz| 0.75Hz 1Hz 1.5Hz 2 Hz
Elements 6.61E+5| 9.92E+6| 3.13E+7| 1.14E+8| 4.62E+8| 1.22E+9
Nodes 8.11E+5| 1.13E+7| 3.57E+7| 1.34E+8| 5.34E+8| 1.37E+9
Anchored 6.48E+5| 9.87E+6| 3.12E+7| 1.14E+8| 4.61E+8| 1.22E+9
Dangling 1.63E+5| 1.44E+6| 4.57+6| 2.03E+7| 7.32E+7| 1.48+8
Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5| 6.20E+5| 6.02E+5| 6.20E+5| 6.18E+5| 6.12E+5
Steps 2000 4000 10000 8000 2500 2500
E2E time (sec) 12911 19804| 38165| 48668 13033| 16709
Replicating (sec) 22 71 85 94 187 251
Meshing (sec) 20 75 128 150 303 333
Solving (sec) 8381 16060| 31781| 42892 11960| 16097
Visualizing (sec) 4488 3596 6169 5528 558 *
E2E time/step/eleny4s) 9.769 7.984 7.927 7.856 8.436 *
Solver time/step/elemuE) 6.341 6.475 6.601 6.924 7.741 *
Mflops/sec/PE 569 638 653 655 * *

Figure 11: Summary of the characteristics of the isogranular experime nts. The entries marked as
“*” are data points that have not yet been obtained due to either supercomputer scheduling or performance
measurement problems.

We can see from the table that the simulations involved highly unstructuredemesith the largest el-
ements being 64 times as large in edge size as the smallest ones. Becausewatithesolution of the
meshes, there are many dangling nodes, which account for 11% to 2b%total mesh nodes.

A traditional way to assess the overall isogranular parallel efficiencxasnae the degradation of the
sustained average Mflops per processor. In our case, we acliigveo233% of the peak performance (2
GFlops/sec/PE) on the Alpha EV68 processoHowever, there is no degradation in the sustained average
floating-point rate. On the contrary, the Mflops/sec/PE increases a®lwe larger problems on larger
numbers of processors. We were initially puzzled by this counter-intuibgerwation. But a careful second

8These are respectable numbers as compared to less than 10% répartest ASCI applications.
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thought reveals an interesting explanation: Solving is the most computatiosirgeand time-consuming
component; as the problem size increases, processors spend more timeatviiig component executing
floating-point instructions, thus boosting the overall Mflops per praseasse.

Therefore, in order to assess the isogranular parallel efficiency inra meaningful way, we have turned
to analyze the running times. Figure 12(a) shows how each componemrotfilels contribute to the total
running time in percentage. From bottom-up, it shows the contribution by #@i¢ating”, “meshing”,
“solving”, and “visualizing”, respectively. The one-time costs suchegdicating material database and
generating a mesh are so inconsequential that they are almost inVisiblethe other hand, since the
visualizing component has much better per time step time complexity as comparedawibi tire solving
component(@(myE% log F) vs. O(N), wherex andy are the 2D image resolutiotfy and N are the
numbers of mesh elements and nodes, respectively,Naigl always greater thaiw in an octree-based
hexahedral mesh), as the problem sizeand V) and the number of processors increase, the solving time
overwhelms the visualizing time by larger and larger margins.
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(a) Running time percentage breakdown. (b) Amortized running time.

Figure 12:The overall isogranular scalability characteristics of th e Hercules system. (a) The percent-
age contribution of each simulation component to the total running time. (b) The amortized running time
per processor per step. The top curve corresponds to the amortized end-to-end running time and the lower
corresponds to the amortized solver running time.

Figure 12(b) shows the trend of the amortized end-to-end running time avidgs time per time step
per element. Although the end-to-end time is always higher than the solving ténge ancrease the
problem size, the end-to-end time curve is pulled towards closer to the stiviegurve because the latter
becomes more and more dominant, . The key insight here is that the limiting fdcachieving high
isogranular scalability on a large number of processors is the scalabilitye afallrer proper, rather than
other simulation components that we have bundled with the solving componeamefdie, it is reasonable
to use the degradation in solving time to measure the isogranular efficienay eftine end-to-end system.
As shown in Figure 11, the solving time per step per element is fS84f a single PE and 7.744 on 748
PE. Therefore, we have an isogranular parallel efficiency arod#sl & very good result considering the
high irregularity of the meshes.

A side note: we have successfully run the meshing and solving componesitautate the 2 Hz prob-

°For the 1.5 Hz simulation (748-PE run), we have only simulated 2,500 tiepess The “replicating” and “meshing” cost
appear to be slightly more significant percentage-wise. But a full-sd@lelation of 10,000 time steps would wipe out any
residual percentage contribution due to “replicating” or “meshing”.
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lem (1.37 billion mesh nodes). However, in this case, the isogranular pafitéency drops to 60% as
compared with the 1 PE run. We are actively investigating the reason foetfmmance degradation.

3.4.2 Fixed-size scalability study

In this set of experiments, we investigate the fixed-size scalability of theulésrsystem. That is, we fix the
problem size and solve the same problem on different numbers of paysds examine the performance
improvement in running time.

We have conducted three sets of fixed-size scalability experiments, firs$snea medium size and large
size problems, respectively. The experimental setups are shown ireRigur

PEs \ 1 2 4 8 16 32 64 128 256 512 1024 2048
Small case (0.23 Hz, 0.8M nodeg)x X X X X

Medium case (0.5 Hz, 11M nodes) X X X X X

Large case (1 Hz, 134M nodes) X X X X X

Figure 13:Setup of fixed-size speedup experiments.  Entries marked with “x” represent experiment runs.

Figure 14 shows the performance of Hercules for different fixedesproblems. Each column represents
the results for a set of fixed-size experiment. From left to right, we digblagpeedup plots for the small
case, medium case and large case, respectively.

The first row of the plots shows that Hercules, as a system for endd@ieulations, scales well even for
fixed-size problems. As we increase the numbers of processors (to 16asmaany for all three cases),
the end-to-end running times improve accordingly. The actual running timve ckirts the ideal speedup
curve very closely. The end-to-end parallel efficiencies or péocessors are 66%, 76%, and 64%, for the
small case (1 PE vs. 16 PEs), medium case (8 PEs vs. 128 PESs), amddagy(128 PEs vs. 2048 PEs),
respectively.

The second row shows the performance of the meshing component dihigugh not perfect, the meshing
component achieves reasonable speedups while running on a largemafrpbocessors. In fact, if a mesh
is only generated statically up front — that is, before the computation startsd-d@es not change over
time, the cost of the meshing is completely amortized by thousands of simulation tinseastépgng as
the mesh is generated in a reasonable amount of time. This is exactly the case flrward earthquake
simulations. To appreciate the efficiency of the meshing component: assunhse thdz mesh (7.6 GB
in size) already exists on a lab server and that we have to move it acrosstitark to a supercomputer.
Transferring the mesh at peak rates over a gigabit ethernet connextitda require more than 60 seconds.
In comparison, the meshing component generates the mesh on 204&prsicesituin 35 seconds.

An interesting question is how the meshing component would perform if dynamgh adaptation is
needed®. In this case, the speedup of the meshing component on larger numhecessors becomes
important. In a detailed study of the meshing component [27], we have iddrttifie the least scalable and
the most time-consuming (approx. 60% of total meshing time) operation of mashiEPARTITIONTREE
step. This step migrates data among processors, and is likely to put sttbsstamdwidth of the intercon-

1%We have not yet evaluated this case empirically.
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e tasg visualizing speedup.

The first row represents the end-to-end running time;

the second the meshing and partitioning time; the third the solving time; and the fourth the visualizing time.

nect network and the memory subsystem. However, if each processordra or less the same number of
elements, which is probably true when dynamic mesh adaptation occursstiad BORTITIONTREEWOUId

be significantly reduced. Therefore, we expect the speedup of tHemgeomponent would be much better
in the dynamic adaptation cases. However, further research is neesigdastantiate this speculation.
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The third row of Figure 14 shows a somewhat surprising result: the sobongponent achieves almost
perfect speedup on hundreds and thousands of processanstheugh the partitioning strategy we used
(dividing a Z-ordered sequence of elements into equal chunks) isnelyesimple. In fact, the solving
component’s parallel efficiency on &6processors is 97%, 98%, and 86%, for the small case (1 PE vs. 16
PEs), medium case (8 PEs vs. 128 PEs), and large case (128 PB4&$Es), respectively. Since solving

is the most dominant component of the Hercules system, its high fixed-sedéepafficiency has obviously
promoted the performance of the entire end-to-end system.

The speedup of the visualizing component, as shown in the fourth row ofd=ig, is however less satis-
factory, even though the general trend of the running time indeed showewverpent as more processors
are used. But since this component is executed at each visualization timesiefly every 10th simula-
tion time step), the less than optimal speedup actually has a much bigger impactowetiléend-to-end
performance than the meshing component. The visualizing parallel effjaent6x processors is actually
44%, 36%, and 38%, for the small case (1 PE vs. 16 PEs), medium cB&es (8. 128 PES) and large case
(128 PEs vs. 2048 PESs), respectively.

@) (b)

Figure 15:Workload distribution.  (a) Elements assigned on one processor. (b) Unbalanced visualization
workload on two processors.

The visualizing performance degradation has nothing to do with our rexgd&nd compositing algorithm.
Rather, it is caused by our simplistic partitioning strategy, which assignd equzber of elements to
each processor. At a visualization step, each processor rendersaitsléta associated with the elements
(octants) hosted on that processor, as shown in Figure 15(a). Buytrbeessors may have dramatically
different data block sizes and the resulting projected image sizes, aa ghéigure 15(b) where the light
blocks represent elements assigned to one processor and the ddkdnother processor. The net result
of such discrepancy in size is that the workload may become highly unlealdoictheRENDERIMAGE and
COMPOSITIMAGE steps, especially, when larger numbers of processors are involved.

In our current implementation, we do not attempt to re-distribute the data bdaoude the visualizing time
only accounts for a small fraction of the total simulation time. Our partitioning sfydtas been chosen in
favor of the solving component. However, in the future when very stiphted rendering techniques, such
as time-accurate vector field visualization, is to be included, the dynamics ®fstem may change in such
a way that visualizing may become as time-consuming as solving. So one ingmestarch topic is to
re-evaluate the space-filling curve based partitioning strategy and gevélgbrid scheme that can benefit
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both the solving and visualizing components.

4 Conclusion

We have demonstrated that an end-to-end approach to parallel supeitong is not only desirable, but also
feasible for high-performance physical simulations. By eliminating the traditi@mumbersome file inter-

face, we have been able to turn “heroic” runs — large-scale simulatiantham often require days or even
weeks of preparations — into daily exercises that can be convenientlghHadron parallel supercomputers.

Our new approach calls for new ways of designing and implementing higbrpence simulation systems.
Besides data structures and algorithms for each individual simulation camn{sit is important to account
for the interactions between these components (in both control flow andl@ajalt is equally important
to design suitable parallel data structures and runtime systems that camt@lpgimulation components.
Although we have implemented our methodology in only one framework thatsawgee-based finite ele-
ment simulations for earthquake modeling, the basic principles and desigaqggtipshould be applicable
to other types of large-scale physical simulations. For example, for telr@hmesh simulations, some type
of scalable hierarchical structure — which serves a similar function asdlgdactree in the Hercules sys-
tem — should be designed and implemented, though such an endeavoriss& oauch more challenging
than supporting octree-based hexahedral mesh simulations.

Our new approach also calls for new ways of assessing high-penmfioer@mputing. We need to take
into account all the simulation components instead of merely the inner kertie¢ sblvers. No time —
either used by processors or human beings — should be excluded iratbaten of the effectiveness of a
simulation system. After all, the turnaround timetie most important performance metric for real-world
scientific and engineering simulations. Sustained average Mflops of ieneelk only helps explain the
achieved high performance (faster running time). They should not detras the only indicator of high
performance or scalability.
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