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Abstract

Estimating geometry from images is at the core of many computer vision
applications, whether it concerns the imaging geometry, the geometry of the
scene, or both. Examples include image mosaicking, pose estimation, multi-
baseline stereo, and structure from motion. All these problems can be mod-
eled probabilistically and translate into well-understood statistical estimation
problems, provided the correspondence between measurements in the different
images is known.

| will show that, if the correspondencem®t known, the statistically opti-
mal estimate for the geometry can be obtained using the expectation-maximization
(EM) algorithm. In contrast to existing techniques, the EM algorithm avoids
the estimation bias associated with computing a single “best” set of correspon-
dences, but rather considers the distribution over all possible correspondences
consistent with the data. While the latter computation is intractable in gen-
eral, | show that it can be approximated well in practice using Markov chain
Monte Carlo sampling. As part of this, | have designed an efficient sampler
specifically tuned to the correspondence problem.

The resulting Monte Carlo EM approach represents the first truly multi-
view algorithm for geometric estimation with unknown correspondence. This
is especially relevant in the structure from motion domain, where the state of
the art relies on robust estimation of two or three-view geometric constraints.
In addition, | will show that the probabilistic approach | propose allows for a
seamless and principled way of integrating prior knowledge, appearance mod-
els, and statistical models for occlusion and clutter.
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Chapter 1

Introduction

In this dissertation | advance the followitigesis

The Monte Carlo EM algorithm provides a practical way to accurately approx-
imate the optimal solution of multi-view geometric estimation problems with
unknown correspondence.

Below | explain what this means, why it is novel and important, and how the dissertation is
structured in order to support the thesis.

1.1 Geometric Estimation Problems

Many applications in computer vision can be summarizedeasnetric estimation prob-
lems As an example, consider an early application of computer vision, illustrated in Fig-
ure 1.1 on the following page, where the goal is to align two aerial photographs taken from
an airplane in order to create a larger “photo-mosaic”. In this case, we are trying to estimate

10
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Figure 1.1: An instance of a 2D image registration problem: the goal is to estimate the
translation between the two images (images courtesy of the US Geological Survey).

the translation between the images, i.e. the geometry of the imaging situation. Hence, this
is an instance of a geometric estimation problem. In the example, we used knowledge about
the problem (e.g. the airplane was flying in a straight line) in ordenadelthe situation

in terms of two parameters: vertical and horizontal translation. Under different circum-
stances, we might have to use more complex models and estimate additional parameters,
e.g. the rotation between the images or perspective distortion effects, etc.

Geometric estimation problems are at the core of many computer vision applications that
have practical uses in society. 2D image registration problems, like the example of Fig-
ure 1.1, underlie photo-mosaicking software that nowadays comes with many digital cam-
eras. Many industrial machine vision setups use a different type of 2D registration:here
the goal is to locate a known template in a cluttered image, a process called pose estima-
tion. Geometric estimation is not limited to 2D images: a common step in acquisition of
3D models using laser ranging is the registration of 3D scans to each other, or, in 3D pose
estimation, locate a known object in a cluttered 3D scene. Finally, we can estimate the pose
of a 3D object given (possibly multiple) 2D images.

A different type of geometric estimation involves recovering the structure and/or identity of
an object. The applications mentioned above involve parameters of the imaging situation,
i.e. calibration parameters, camera pose, or (equivalently) the pose of a known object with
respect to the camera. Below | will frequently refer to this type of parametercai®n
parameters. The converse estimation problem arises when we know the imaging setup,
but would like to recover thetructureof the scene or object that is seen. Stereo vision,
with its countless applications, is the prototypical example. A related problem is that of
object recognition, which can be viewed as structure recovery where the solution has to be



CHAPTER 1. INTRODUCTION 12

Figure 1.2: Structure from motion example. The goal is to estimate the 3D structure and
the camera location associated with the images (4 out of 5 images shown).

selected from a restricted set of object prototypes and their allowable variations.

1.2 Structure from Motion

In many respects the most difficult geometric estimation problem attempts the recovery of
structure and motiosimultaneously In other words, given a set of 2D images, recover
both the imaging geometry and the 3D structure of the scene. This problem is known as
structure from motiofSFM), and it has many applications ranging from building virtual
worlds to robot mapping and localization. In addition, the class of structure from motion
problems can be regarded as a superset of many of the other geometric estimation problems
mentioned above, in which either the motion or structure are known. Figure 1.2 shows an
instance of a structure from motion problem. In this example, features of interest were
extracted from each of the images, and the goal is to recover the 3D position (structure) for
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Figure 1.3: Estimated structure and motion for the image set in Figure 1.2.

each of the features as well as the camera pose (motion) for each image. A rendering of
such a structure and motion estimate is shown in Figure 1.3.

In this dissertation | will focus on feature-based structure from motion, as itis representative
of many other geometric estimation problems.

1.3 Feature-Based Methods

In feature-based methods, rather than using the pixel-values of the images themselves (the
“direct” method), a feature detector is used to first extract features of interest in the images.
This dramatically reduces the amount of data we need to process, and hence much larger
problems can be considered. In addition, it can be argued that low-texture regions in the
image do not provide a lot of information with respect to the geometry, and hence concen-
trating on salient features captures most of the available information. Figure 1.4 illustrates
the feature-based approach using a simple pose-estimation example. In this example, the
goal is to recover the location (translation only) of the idealized model of the CMU quad
(top panel, Figure 1.4a) in an aerial image of the CMU campus (bottom panel, Figure 1.4b).
The quad model is specified as a set of 5 features, corresponding to “corner-like” buildings,
of which there are two types. To find this model in the bottom image, a “corner-building
detector” was used to extract 6 featumeasurement$at recapitulate the image. However,

the detector is not ideal: the location of the features is not very precise, and one of the



CHAPTER 1. INTRODUCTION 14

(b) Image measurements

Figure 1.4: Model and image measurements (images courtesy of USGS).
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Figure 1.5: Likelihood function.

buildings yielded two measurements (labeled as measurements 1 and 4 in the image).

If the correspondence between the measurements in the image (i.e., the detected features
in Figure 1.4b) and the features in the model (Figure 1.4a) is known, then estimating the
translation is simple. In that case, the problem can be transformed (given some assumptions
about the nature of the measurement noise) into an optimization problem. For example, in
the pose-estimation problem of Figure 1.4, the optimal estimate for the two translation pa-
rameters can be found by maximizing the objective function shown in Figure 1.5. The
function shown is called thikkelihood function and measures how probable the measure-
ment data is given a value for the translation. It is defined ovepénemeter spacevhich

in this case is two-dimensional, as there are two translation parameters to be estimated. The
location of the maximum of the likelihood function is known as thaximum likelihood
estimate(MLE) of the translation. Maximum likelihood estimation will be explained in
more detail in Chapters 2 and 4.
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1.4 The Correspondence Problem

Using extracted features to solve geometric estimation problems indde¢s-association
problem also known as theorrespondence problenindeed, if we consider the example

from Figure 1.4, the flip-side of using features is that we now have to establish the corre-
spondence between features in the model, and the measurements (detected features) in the
image. If this correspondence is not given to us, it is unclear from looking at Figure 1.4b
which measurements are associated with which model features. In particular, we cannot
tell whether measurement 1 or 4 should be matched with the lower-right model feature.
Also, it might just be possible that measurements 5 and 6 have switched location due to the
large uncertainty in the position measurement of the feature detector.

Isolating a particular solution for the correspondence problem can lead to biased estimates
of the unknown parameters. This is illustrated quite nicely in the simple pose-estimation
example we have been considering. If we were to choose, arbitrarily, to use measurement
4 and discard measurement 1 as spurious, the location of the CMU quad would be biased
towards the upper left. Conversely, if were to use measurement 1 and discard 4, the location
would be estimated more towards the lower right. Below, in Section 1.6, | will show that
this problem can be resolved in a principled manner.

While a hard problem even for two views, the correspondence problem becomes expo-
nentially harder when multiple views are considered. In fact, there exist polynomial-time
algorithms that can find an optimal match between two sets of features, given some mea-
sure of affinity between them. In contrast, finding an optimal multi-way correspondence
between more than two sets is NP-complete. Nevertheless, this is the problem that will be
considered in this dissertation:

This dissertation deals with multi-view, feature-based geometric estimation problems where
the correspondence or data-association is unknown.

1.5 Existing Approaches to the Correspondence Problem

Solving the correspondence problem is crucial to feature-based geometric estimation, and
is often described as the most difficult part of the problem (Torr et al., 1998). Consequently,
it has received much attention in the literature. A detailed review of the literature on the
correspondence problem in vision and the data-association problem in target-tracking is



CHAPTER 1. INTRODUCTION 17

given in Chapter 3. However, a comprehensive solution to the problem of structure and
motion recovery with unknown correspondence has remained elusive:

e Until now, no true multi-view method for solving the correspondence problem for
structure from motion (or any other application) has been proposed. The state of the
art for SFM is based on multiview constraints that are limited to working with two
or three views at a time. Hence, for larger sequences or image sets, the problem
has to be split up in pairs or triplets whose solutions then have to be pieced together
somehow. Citing (Hartley and Zisserman, 2000), this is still to some extent “a black
art”. The approach proposed in this thesis is inherently multi-view and considers the
data in all images simultaneously to arrive at an optimal solution.

e Most approaches to correspondence in computer vision can be characterized as “pre-
processing” algorithms. In isolating a single “best” correspondence, the resulting
structure and motion estimate is biased by that arbitrary choice, as illustrated by the
example from Figure 1.4. From a decision-theoretic point of view, a statistically
optimal estimate should be obtained by considerimtys&ribution over all possible
correspondences consistent with the data, rather than a single one. The Bayesian
approach | propose is statistically optimal, and has the additional benefit that prior
knowledge about the solution can be added in a seamless manner.

e There have been efforts, both in the computer vision and target tracking literature,
to use “soft correspondences” to capture the same idea of considering a distribution
over correspondences, albeit in more restricted settings. The calculation of these soft
correspondences is intractable for all but trivial problem instances. As a consequence,
various ways of approximating them have been proposed, but all of them are unable
to capture the important information provided by thetual exclusion constraiitee
below). In this dissertation | propose the usesamplingas a practical way to obtain
more accurate estimates for these quantities.

All of these deficiencies are addressed by the Monte Carlo EM approach proposed in this
dissertation. The following section provides a brief introductory overview of the proposed
approach.
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Figure 1.6: Likelihood function with unknown correspondence.

1.6 MCEM for Data-Association: Overview

1.6.1 Likelihood without Correspondence

There is a statistically correct way to model geometric estimation problems with unknown
correspondence. In the same manner that a likelihood function can be constructed for the
case of known correspondence (e.g. the function shown in Figure 1.5), we can construct a
likelihood function for the parameters given just the measurementshaidbrrespondence
information. For the pose estimation example above, this function is shown in Figure 1.6.
For comparison, both functions are shown side by side as contour plots in Figure 1.7. Note
that the new likelihood function has multiple peaks, i.e. it is multi-modal. In fact, for
this example the local maximum closest to the ML estimate for known correspondence is
actually the less likely one if we dmot know the correspondence.

1.6.2 Deconstructing the Likelihood Function

As will be more formally derived in Chapter 4, the likelihood function given unknown cor-
respondence can be obtained by summing togettéhe individual likelihood functions
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Figure 1.7: Likelihood with known and unknown correspondence.

for all possible correspondences. For the example, if for simplicity’s sake we assume that
all model features are actually seen in the image, the number of possible ways to match
measurements to model features is equal to:

(g) X bl =6 x 120 = 720

This is because there are 6 ways to choose a subset of 5 measurements as corresponding to
the model features, and for each of these sets there are 120 ways to permute them. How-
ever, if we also take into account that there are 2 distinct types of features, the number of
possibilities is narrowed down td3) x 2!] x [(;) x 3!] = 2 x 24 = 48. For each of these
possible ways to do the correspondence we have an objective function in 2D (the parameter
space). They are all shown as contour plots in Figure 1.8. Note that the maximum likeli-
hood estimate for translation shifts around, depending on how the correspondence is made.
What is not obvious from the figure is that some of the functions have (much) higher val-
ues than others, because the probability of the measurement under a given correspondence

varies. Adding all these constituent likelihoods together yields the function in Figure 1.6.
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Figure 1.9: Deterministic annealing can be used to smooth out local maxima.

1.6.3 An EM Approach to Correspondence

While in principle we could use this way of constructing the likelihood function in order to
solve the problem with unknown correspondence, there are two substantial problems to be
overcome. First, the number of possible correspondences grows combinatorially with the
number of features, and, in the case of multiple views, with the number of views. In other
words, this approach does not scale well. Second, the resulting likelihood function can be
very complex and multi-modal. This is especially so in the case of structure from motion
problems, where the parameter space has many more dimensions, and even the individual
likelihood surfaces represent a coupled, non-linear optimization problem to be solved.

In this dissertation, | propose to circumvent the first problem, intractability, using the
expectation-maximizatioficM) algorithm. Whereas optimizing the true likelihood directly

is intractable in general, because of the combinatorial nature of the problem, the EM algo-
rithm provides an indirect way to find its maxima. Unfortunately, the EM algorithm is not
guaranteed to find the global maximum of the likelihood, as it is performs a series of local
approximations. Given that the objective function is complex and multi-modal, this is a sig-
nificant hurdle. In order to cope with this local maxima problem, we can apply a standard
trick from the optimization literaturedeterministic annealingln annealing, illustrated in
Figure 1.9, the objective function is smoothed in such a way that many small local maxima
disappear, and (hopefully) only strong, global maxima survive. By gradually decreasing
the annealing factor and tracking the maximum throughout, one can hope to converge to
the global maximum at termination.
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Figure 1.10: Evolving soft correspondences between the 6 measurements (each row) and
the 5 model features (each column) from Figure 1.4, for 5 iterations of the EM algorithm.
The first column in each panel is reserved to indicate “spurious” measurements.

1.6.4 Soft Correspondences as Marginal Probabilities

As will be discussed in detail in Chapter 4, the EM algorithm calls for the calculation of,

for each measurement, the probability that it is associated with a certain feature given a
current estimate for the unknowns. These probabilities are then used to re-estimate the
unknowns, until they converge to a consistent estimate. The marginal probabilities can be
interpreted as “soft correspondences”, as illustrated in Figure 1.10 for the pose-estimation
example from Figure 1.4. The EM algorithm was applied to this example and ran for 5
iterations, with a linearly decreasing annealing factor. The panels (a)-(e) in Figure 1.10
corresponds to the evolving soft correspondences for each of the 5 iterations, displayed as
images. The darker a pixel is for a specific row-column intersection, the more probable the
association between the measurement (associated with rows) and the feature (associated
with columns). In the first iteration, the translation estimate is not very good, but the high
annealing factor avoids making hard commitments to any given correspondence. Then,
as EM converges and annealing decreases, we converge on a specific soft assignment of
measurements to features.

This example also illustrates how ambiguous correspondences influence the final structure
and/or motion estimate without making a commitment to a single, “best” correspondence.

Indeed, the soft correspondences in Figure 1.10 are displayed in such a way that the ground
truth correspondence corresponds to a diagonal matrix. However, the soft correspondence
at convergence, shown in panel (e), accords more probability to measurement 1 as corre-
sponding to a model feature rather than measurement 4, even though the latter is actually
the true assignment. This can be related back to the multi-modal likelihood function from
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Figure 1.11: Result of sampling to approximate the true distribution (blue) by a sample
histogram (red).

Figure 1.6: here the highest peak corresponds to the former assignment, and the lower peak
to the latter (ground truth) assignment. Thus, even at convergence the possible ambiguity
between those two possibilities is left unresolved.

1.6.5 Sampling

The final piece of the puzzle concerns the calculation of the marginal probabilities (i.e.
the soft correspondences) themselves. It will become apparent (in Chapters 4 and 5) that
this calculation is itself intractable. In fact, the problem of computing the marginals is
intimately related to calculating the permanent of a matrix, a well studied problem in com-
plexity theory which is known to be P#-complete, i.e. itis as hard as counting the number
of solutions to certain NP-complete problems. In this dissertation, | propose the use of a
Monte Carlo approximation to estimate the marginals, i.e. to estimate thesarbpling

over the space of possible correspondences. This is illustrated in Figure 1.11 (for a different
example). In the figure, the true probability distribution over a set of possible correspon-
dences is shown in blue, with correspondences lined up in an arbitrary order along the
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ordinate axis. Thus, each bar is associated with a given correspondence, of which there are
34 different possible ones. Some correspondences are more probable than others, because
the measurement error they imply can be more or less likely given the measurement model.
Because the number of possible correspondences is very large in general, it is impossible
in practice to calculate these probabilities exactly. However, in Chapter 5 it will be shown
that a technique called Markov chain Monte Carlo sampling provides a practical way of
approximating them. As part of this, a new, efficient sampler tuned to the correspondence
problem is proposed. As an illustration, Figure 1.11 shows, in red, an approximation to the
blue distribution obtained using a few hundred samples.

1.7 Thesis Revisited

Using the EM algorithm in conjunction with a Monte Carlo method to approximate the
associated probability distributions is referred toMante Carlo EM Given all of the
above, the thesis can now be restated with no term undefined:

The Monte Carlo EM algorithm provides a practical way to accurately approx-
imate the optimal solution of multi-view geometric estimation problems with
unknown correspondence.

The last section in this introduction discusses how the dissertation is structured in order to
derive the MCEM approach to correspondence and to support the thesis that it is indeed a
practical and useful tool for computer vision.

1.8 Dissertation Outline

In Chapter 2, | present an overview of thgucture from motiorfSFM) problem, since it

is the application that motivated the work described in this dissertation. In addition, SFM
can be seen as a superset of many other geometric estimation problems in computer vision,
and hence is the ideal model-application to illustrate some key concepts.

In Chapter 3, | examine the state of the art in solving the correspondence problem, both
in the context of structure from motion as well as in other related geometric estimation
problems in vision.
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In Chapter 4, | propose the EM algorithm as a practical way to estimate structure and
motion parameters, given that the correspondence information is unknown.

Chapter 5 explains how Markov chain Monte Carlo sampling can be used to approximate
a distribution over correspondence assignments. This can then be used to approximate the
E-step in the MCEM-based approach to correspondence discussed in Chapter 4.

In Chapter 6, | demonstrate that the Monte Carlo EM approach does indeed provide a
practical way to to approximate the optimal solution of multi-view geometric estimation
problems with unknown correspondence. The results shown in this chapter assume that
there is no occlusion or clutter in the images, which is a strong assumption.

This assumption is relaxed in Chapter 7, where | extend the MCEM approach to handle
occlusion and clutter. Results under these assumptions are shown in Chapter 8.

The MCEM approach was derived under the assumption that the only information available

is the position of the measurements in the images. Chapter 9 discusses how appearance
information can be incorporated into the geometric estimation process. Finally, results
with appearance are shown in Chapter 10.



Chapter 2
Structure from Motion

In this chapter | present an overview of thieucture from motiorfSFM) problem, since it

is the application that motivates the work described in this dissertation. In addition, SFM
can be seen as a superset of many other geometric estimation problems in computer vision,
and hence is the ideal model application to illustrate some key concepts.

The SFM problem is introduced below under the assumption that the correspondence be-
tween measurements and 3D features is known, i.e. there is no data-association problem.
At the end of this chapter, in Section 2.6, the correspondence problem or data-association
is defined. Existing approaches to solve the correspondence problem are reviewed in the
next chapter.

2.1 Problem Statement

The structure from motion problem is this: given a set of images of a scene, taken from
different viewpoints, recover a 3D model of the scene along with the camera poses.

We will only be concerned here withfeature-base@pproach (Torr and Zisserman, 1999),
where one assumes that there is a set of 3D features that can easily be detected in the
images, using a feature detector. The problem then reduces to finding the most probable
location of the 3D features given the location of their detected image projections. Thisis in
contrast tadirect or image-base@pproaches (Irani and Anandan, 1999), where typically

the 3D structure is defined in image space, e.g. as a collection of depth or disparity values,
and there is no feature detector.

The feature-based approach is characterized by the following set of properties:

26
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e The 3D scene structure of interest consists of a collection3i) features, described
by thestructure parameterX = {x;|j € 1..n}.

e A set of m images is taken under under distinct circumstances described bycthe
tion parameterdM = {m;|i € 1..m}.

e Each image consists @f; distinctimage measurememts; = {u;;|k € 1..K;}, with
i« € 1..m, each of which either corresponds to one ofthfeaturesx;, or represents
a spurious measurement.

In addition to this standard formulation of the structure from motion problem, here we also
explicitly model the correspondence between 2D measurements and 3D features:

¢ To indicate which measurement corresponds to which 3D feature, we intraduce
image correspondence vectdrs= {jix|k € 1..K;} where the meaning gf; is the
following (illustrated in Figure 2.1):

— If ji;r = 0. u;; is considered spurious

— otherwiseu;; corresponds to thid) featurex;,,

The goal is to estimate the motion paramefefrsnd the structure parametéxs

2.2 Structure from Motion Applications

The typical SFM problem addressed in the literature is the one where the structural fea-
tures are 3D points, and the measurements are their projections in images taken under
orthographic or perspective projection. In this case, the structure pararXetenssist of

3D coordinates; € R?, and the image measurements are their 2D projectigns R*.

As an illustration, consider Figure 2.1 where the various variables are illustrated for the
perspective case.

However, more general structure from motion problems can also be accommodated within
this framework. Here are some examples:

e The structure can be parameterized as a heterogeneous collection of features, e.g
points and lines.
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Figure 2.1: An example with 4 point features seen in 2 images. The 7 measurements
are assigned to the individual featusesby means of the correspondence varialjles

e The structure can be parameterized by a smaller number of variables, e.g. points that
are constrained to lie on a plane or on the corners of a parameterized shape model.

e The camera model does not have to be a classical perspective projection. For ex-
ample, omni-directional cameras are readily accommodated. In addition, the motion
parametersn; can include varying camera parameters such as focal length.

e The parameterm; can also be parameterized by a smaller set of motion model pa-
rameters, if it is known that the camera was undergoing a smooth motion.

e Finally, time-varying structure can be accommodated using straightforward modifi-
cations.

2.3 SFM as Maximum Likelihood

Most existing approaches to SFM can be viewednaximum likelihoodML) methods,

if we assume that the correspondence between the measurements and the 3D features is
known. ML methods attempt to find those model parame®etisat are most likely to have
generated the data. In our case we have

1. The model paramete® consist of the 3D feature locatiosand the camera poses
M, i.e.,® = (X, M), thestructureand themotion

2. The data consists of the 2D image measureméntnd the correspondence vector
J that assigns measurements to 3D features;,, .
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Themaximum likelihood estimat®* given the datdJ andJ is given by
®" = argmax log L(©; U, J) (2.1)
()

where the likelihood.(®; U, J) is proportional toP(U, J|®), the conditional density of
the data given the model.

To evaluate the likelihood, we need to assume a generative model. In particular, we assume
that the generation of each measuremeptcan be modeled by an idealeasurement
functionh followed by corruption with additive noise:

W = h(ml, ink) +n

This formulation implicitly assumes that a given measuremgptdepends only on the
camera parametets; for the image in which it was observed, and on the 3D featyre

to which it is assigned. If global camera, motion, and/or structure parameters are modeled,
they need to be included appropriately.

As atypical example, consider the case in which the featurese 3D points and the mea-
surementsy;;, are points in the 2D image (refer to Figure 2.1). In this case the measurement
function can be written as a 3D rigid displacement followed by a projection:

h(m;, x;) = IL[R;(x; — t;)] (2.2)

whereR,; andt, are the rotation matrix and translation of thith camera, respectively, and

II, : R* — R? is a projection operator which projects a 3D point to the 2D image plane.
Various camera models can be defined by specifying the action of this projection operator
on a pointx = (z,y, 2)T (Morris et al., 1999). For example, the projection operators for
orthography and calibrated perspective are defined as:

o = [ © Pyl — x/z
(1) m- ()

Finally, in order to perform ML estimation, we need to assume a distribution for the noise
n. In the case that the noiseon the measurements is i.i.d. zero-mean Gaussian noise
with standard deviation, the negative log-likelihood is proportional to the sum of squared
re-projection errors:

K;

log L(©®; U, J) oc = > Y " |uy — h(my, x5, )| (2.3)

=1 k=1
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ML estimation with Gaussian noise models is equivalent to non-linear least-squares opti-
mization. Substituting (2.3) into (2.1), one can see that in this case the maximum likelihood
estimate®®* for the structure and motion parametésare those that minimize the sum

of squared errors between the measured and predicted 2D measurements:

= argmln ZZ |wir — h(my,x;,,)|”

i=1 k=1

A more realistic model for automatic feature detectors, where each measurement can have
its own individual covariance matriR;;, can also be accommodated. In that case we have

m K

log L(©;U,J) o< — > Y "(u — h(my, x5,)) Ry (i — h(my, x;,))

1=1 k=1

In the following section, | review the most commonly used methods for solving this maxi-
mum likelihood problem.

2.4 Existing Methods for Structure from Motion

The structure from motion problem has been studied extensively in the computer vision
literature over the past three decades. A good survey of techniques can be found in Hartley
and Zisserman’s recent book on multiple view geometry (Hartley and Zisserman, 2000;
Faugeras and Luong, 2001).

The earliest work focused on reconstruction from two images only (Ullman, 1979; Longuet-
Higgins, 1981; Tsai and Huang, 1984). Later methods were developed to handle multiple
images, and they can all be viewed as minimizing an objective function such as (2.3), under
a variety of different assumptions.

In certain cases, matrifactorizationtechniques can be used to solve the least-squares
problem associated with the structure from motion problem. In the case of orthographic
projection, i.e., the projection is orthogonal to the image plane and has its focus at infinity,
the estimate®* for the model parameters that minimize (2.3) can be found efficiently
by factorizing a measurement matrix (Tomasi and Kanade, 1992). Using this technique,
singular value decomposition (SVD) is first applied to a matrix derived from theWata

in order to obtainaffine structure and motion, denoted B/ andM®. They are called

affine because they are only defined up to a 3D affine transformation. The correspondence
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informationJ is needed to re-arrange the d&tan the correct order needed for SVD. To get
Euclidean structure and motion, an additional step is needed that imposes metric constraints
onM?*. The factorization method has the advantages that it is fast and does not need a good
initial estimate of structure and motion to converge. It has been applied to more complex
camera models, i.e., weak- and para-perspective models (Poelman and Kanade, 1997), and
even to fully perspective cameras (Triggs, 1996). These are well developed techniques, and
the reader is referred to (Tomasi and Kanade, 1992; Poelman and Kanade, 1997; Morris
and Kanade, 1998) for details and additional references.

In more general cases, one needs to resort to non-linear optimization to minimize the re-
projection error (2.3). For example, in the case of full perspective cameras the measurement
function h(m;, x;) is non-linear, as the projection involves a division by the depth of a
feature point relative to the camera. Solving the associated nonlinear least-squares problem
is known in photogrammetry and computer visionbasdle adjustmen{Spetsakis and
Aloimonos, 1991; Szeliski and Kang, 1993; Weng et al., 1993; Hartley, 1994; Cooper and
Robson, 1996; Kang and Szeliski, 1997; Triggs et al., 1999). The advantage with respect
to factorization is that it gives the exact ML estimate, when it converges. It is also more
robust to noise. The disadvantage, however, is that it can get stuck in local minima, and
thus a good initial estimate for structure and motion needs to be available. To alleviate this,
recursive estimation techniques can be used to process the images as they arrive (Broida and
Chellappa, 1991; Azarbayejani and Pentland, 1995). As an aside, techniques based on non-
linear minimization can handle very general problems, e.g. more complex camera models
(for example omnidirectional cameras) or measurements that mix points, lines, curves, etc.
For example, a recent paper that discusses how to work with line segment measurements is
(Taylor and Kriegman, 1995).

Most of the structure from motion results shown in this document are obtained using my
own implementation of bundle adjustment. It uses the sparse solver techniques described in
(Hartley, 1994) in order to accommodate large problems, and implements inner constraints
(Cooper and Robson, 1996) to obtain well-behaved problems in the face of the position and
scale ambiguity inherent to the SFM problem. Finally, it can easily deal with a variety of
camera models and prior-knowledge constraints through the use of automatic differentia-
tion. These techniques are described in more detail in Appendix A.
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2.5 Incorporating Prior Knowledge

If prior knowledge is available, it can be readily incorporated by perfornmiagimum

a posteriori(MAP) estimation rather than maximum likelihood estimation. While most
existing SFM methods assume no prior knowledge on either structure or motion, at their
core they are all optimization methods and thus can be easily extended to incorporate such
prior information. The MAP estimat®* for structure and motio® is the one that satisfies

®" = argmax log P(®|U, J) = argmax {log L(®; U,J) + log P(®)} (2.4)
) )

whereL(®; U, J) is the likelihood term, as discussed above, &1®) is a prior probabil-
ity density on the structure and motion parameters, e.g. a motion smoothness prior.

2.6 The Correspondence Problem

All of the above assumes that the correspondence between measureagpentthe dif-

ferent images and the 3D featuresis known, i.e. the image correspondence vecjors
areknown In a more general case this association between measurements and model pa-
rameters is not known, i.e. we are faced with therespondence problenn the tracking
literature, this problem is more commonly known as dla¢a-associatioproblem.

Typically, the correspondence problem is seen as a separate step, to be done before non-
linear minimization is even attempted. In this dissertation a different approach is taken,
where the correspondence problem is “solved” in parallel with the estimation of struc-
ture and motion. In the next chapter | review the literature on the correspondence/data-
association problem, where | attempt to both give a chronological history of approaches to
the problem, as well as trace the origins of the ideas that underlie my own work.



Chapter 3

Related Work

In this chapter | examine the state of the art in solving the correspondence problem, both

in the context of structure from motion as well as in other related geometric estimation
problems in vision. The approaches to recover 3D structure from motion, reviewed in
the previous chapter, assume that the correspondence between 2D measurements and 3D
features is known. If the correspondence is not known, typically a pre-processing step is
applied which outputs a single “best” correspondence between the features projections in
the different images. Alternatively, a robust estimator is used which estimates the structure
and the correspondence at the same time (for image pairs or triplets). Both approaches are
discussed in detail below.

Methods to solve the correspondence problem have a rich history, and play a central role
in a variety of computer vision applications. Feature correspondence is crucial not just to
recovering structure from motion, but also to image registration, 2D and 3D object recog-
nition, and (multiple-baseline) stereo. Historically, these applications have spawned much
of the literature on the correspondence problem. The literature review below is organized
according to these different applications, in order of complexity, which roughly reflects
their chronological development.

It is my thesis that many of these approaches, in which typically a “best” correspondence
solution is singled out, are deficient. They do not solve the correct geometric estimation
problem, but are biased by insisting on a single solution to the correspondence problem.
Rather, to be correct, a distribution over all possible correspondence solutions should be
considered.

In this dissertation, these deficiencies will be remedied by proposing a technique based on

33
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expectation-maximization (EM). Insofar EM-type algorithms have been used in the com-
puter vision literature, it has not been realized that EM is indeed the correct framework
(with the exception of (Wells, 1997) in the context of recognition). In addition, the E-step

(even if it is not called that) is always approximated in such a way that mutual exclusion
constraints can not be fully and correctly exploited. This will be remedied here by the
introduction of MCMC sampling to implement the E-step.

The EM-based approach also provides a solution to the correspondence problem in struc-
ture from motion. None of the algorithms for finding correspondences directly apply to
the SFM problem in the wide-baseline case, because the appearance of a 3D structure can
radically change when projected in separated 2D views. The current state of the art relies
on the robust recovery of multi-view constraints. However, these approaches are (a) limited
to working with either image pairs or triplets, and (b) again suffer from isolating a single
“best” correspondence, even though there might be ambiguity in the data. Both deficiencies
are remedied by the use of the EM-based approach proposed here.

The correspondence problem has also been studied in depth in the target tracking literature,
where itis more commonly known as the data-association problem. The methods employed
in this community were (and are) often more sophisticated than those used in the computer
vision community at the same time, and are always based on firm probabilistic principles.
Data-association techniques are reviewed below for the single and multiple target tracking
cases. One particular development, though less well known, is of particular interest in the
current context: the use of the EM algorithm for multiple-target smoothing in the PMHT
filter (see Section 3.2.3). In its use of the EM algorithm, the PMHT is completely equivalent
to the EM-based approach introduced in this dissertation. However, the PMHT (a) does not
address the recovery of motion (or sensor) parameters as it was developed for tracking or
smoothing, and (b) the E-step is either implemented using an intractable brute force method
or approximated in such a way that mutual exclusion constraints are totally disregarded.

3.1 The Correspondence Problem in Vision

In the computer vision literature, the data-association problem is often phrased as a token
matching problem, and is typically referred to as¢bherespondence problenn contrast to

the tracking literature, which is focused on time-recursive formulations, the correspondence

problem is mostly about matching between different images or point sets. Sometimes these
images are actually part of a time sequence, but typically no use is made of this fact. Of
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course, token tracking is used extensively in vision as well, but we can refer to the tracking
literature for those applications. Cox gives a good overview in (Cox, 1993).

Below, | review and comment on the literature following a rough chronological outline.
Historically, correspondence first showed up in simple (translational) image registration
problems, which were later extended to deal with more complicated transformations (affine,
projective), registering 3D to 3D points sets, and 2D to 3D alignment for pose recov-
ery/recognition applications. All of these are focused on recovering a global transformation
or motionbetween two sets or graphs, and the individual location of the points in the image
or reference model is assumed known or unimportant. Recovstingtureis the focus

of sparse (possibly multi-view) stereo applications. Finally, the desire to recover both mo-
tion andstructure underlies the techniques for estimating the fundamental matrix and more
general structure from motion approaches.

3.1.1 2D to 2D Matching
Non-geometric Matching

The first uses of correspondence analysis made no reference to geometry at all. By “non-
geometric matching” I mean the problem of finding an optimal match between two points
based on some measure of optimality that depends on the application. Whereas there are
several polynomial algorithms (Papadimitriou and Steiglitz, 1982; Bertsekas, 1991; Cook
et al., 1998) to solve the bipartite assignment problem if a general edge cost function is
given, some other approaches explored in the vision literature are worth discussing for the
ideas they introduce, even though they are sub-optimal.

The seminal reference for framing the correspondence problem and the general principles
involved is (Ullman, 1979). He proposed an algorithm that was designed with a biological
implementation in mind, i.e. it based on parallel, local computations. More theoretically
motivated techniques were inspired by statistical physics and used graduated-convexity op-
timization as a means to recover the match between two sets. In (Kosowsky and VYuille,
1994), it is shown that the optimal assignment between two point sets (with an equal num-
ber of points) can be found through minimizing an effective energy function derived from a
mean-field approximation. Minimizing this criterion is done by slowly decreasing the tem-
perature in the mean-field approximation and tracking the solution, in order to select the
proper global minimum at the lowest temperature. The entities minimized are continuous
variables that converge di, 1} at the solution fofl” = 0.
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Effectively the same technique is used in (Rangarajan and Mjolsness, 1994; Gold and Ran-
garajan, 1996) in order to match two graphs, and this paper was the first in a long string
of papers based on the “soft-assign” algorithm. Inexact graph matching is introduced in
(Shapiro and Haralick, 1981) for purposes of recognition, and it involves essentially the
same problems as the matching of point sets. In essence, binary assignment variables are
replaced by continuous values, and two-way constraints that enforce mutual exclusion are
gradually enforced as to arrive at the permutation matrix that constitutes a solution.

Recovering Translation

The earliest geometric application involving the correspondence problem was matching
two sets of 2D points for purposes of (translational) image registration. One of the earli-
est approaches to the problem was chamfer matching (Barrow et al., 1977), and related
approaches are still popular today, see e.g. (Huttenlocher et al., 1993; Gavrila and Davis,
1996; Olson, 2000). Chamfer matching is based on the distance transform (Rosenfeld and
Pfalz, 1966), which can be used to efficiently compute the distance of a point to the nearest
line or point in a reference image.

Relaxation labeling (Ranade and Rosenfeld, 1980; Wang et al., 1983; Price, 1986) is
an iterative technique to recover the translation between images. It identifies point pairs
whose translation has large support among other point pairs, and as such it is a precursor of
RANSAC (see below). (Ton and Jain, 1989) introduces the enforcement of two way mu-
tual exclusion constraints for relaxation labeling, and (Li, 1992) used graduated convexity
to improve the global convergence.

The downside of these approaches, however, is that none are readily applied to transforma-
tions other than translation. In addition, they were developed without the benefit of a firm
theoretical framework.

More General Transformations

In the literature on object recognition more general transformations need to be consid-

ered. Typically a match is sought between a 2D model and a 2D image that contains

a transformed copy of the model. Because of the presence of many distracting features
and the resulting huge space of possible matchings, early research focuses on efficiently
eliminating large parts of the search space, through indexing and pruning (Baird, 1985;

Ayache and Faugeras, 1986; Grimson and Lozano-Pérez, 1987).
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A different, SVD-based approach to recovering a rigid 2D or affine transformation be-
tween points sets is taken by (Scott and Longuet-Higgins, 1991; Shapiro and Brady, 1992).
In the former paper, a clever technique based on the SVD of a proximity matrix yields
a correspondence technique without iteration. However, it is not able to deal with large
rotations, prompting the latter paper in which point sets are analyzed in terms of a shape
description before the matching process. An eigenstructure analysis is also applied to regis-
tering and recovering the transformation parameters between two graphs (Umeyama, 1988;
Umeyama, 1991; Umeyama, 1993).

Approaches based on mean-field approximations (Lu and Mjolsness, 1994) and the soft-
assign algorithm (Rangarajan et al., 1997; Gold et al., 1998) were also applied to the
problem of recovering global transformations. In addition, these papers introduce the idea
of iterating between a (soft) assignment between the points and pose transformation param-
eters. This thus parallels the development in tracking/smoothing applications of using EM
to iterate between the sought parameters and the “nuisance” assignment variables (Section
3.2.3), albeit less formalized and theoretically motivated. Recently, (Chui and Rangara-
jan, 2000) showed it is possible to recover non-rigid 2D transformations as well using these
same ideas, and (Cross and Hancock, 1998) use an EM-type algorithm to match and recover
transformation parameters between graphs.

Finally, (Boykov and Huttenlocher, 1999) uses graph-algorithms to optimize for both cor-
respondence and pose, modeling the correspondence using a Markov random field.

All of these algorithms single out a “best” correspondence and recover the 2D global trans-
formation associated with it. Hence, in essence they solve an incorrectly posed problem. In
fact the correspondences are nuisance variables that should in principle be integrated out.
Even the EM-type approaches by Rangarajan and colleagues anneal the temperature down
to zero, forcing the data-association matrix into a binary stochastic matrix. By introducing
the EM framework that pitfall is avoided here. In addition, the sampling-based E-step in-
troduced here models the mutual exclusion constraint in a more powerful way than possible
with the mean-field approximation.

3.1.2 3Dto3D

Many of the techniques developed for 2D to 2D matching can conceivably be used to reg-
ister 3D point sets as well, and indeed some authors explicitly mention this (Gold et al.,
1998). Bipartite matching has been used in the 3D domain, to match features extracted
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from both the 3D scene and a model (Kim and Kak, 1991). However, when working with
the raw 3D data itself, there is no clear similarity between 3D points, except Euclidean
distance after transforming the model to the scene, given some estimate of the transforma-
tion. One of the most popular algorithms that uses this idea igehegive closest point

(ICP) algorithm (Besl and McKay, 1992), which iterates between solving for the best pos-
sible transformation and the best possible assignment. A non-rigid extension is given in
(Feldmar and Ayache, 1996).

ICP can be seen as an EM-type approach in which the E-step approximates the distribution
over possible correspondences using a single (optimal) correspondence set. Thus, again
the possible ambiguity in the data is discarded. As a result, the resulting algorithm is not
guaranteed to converge to a local maximum of the likelihood function. This is analogous
to the difference between using K-means or EM in a clustering application.

Thus, of considerable interest are the “soft” versions of such algorithms, which behave
like EM in allowing some ambiguity with respect to the matching. In particular, Szeliski
proposes the use of “slippery springs” in (Szeliski, 1989). These can be visualized as
springs that can slide across a 3D surface, and hence remain ambiguous as to exactly which
location on the 3D surface they correspond to. This concept is partly based on earlier work
on “elastic nets” used to solve travelling salesman problems(Durbin and Willshaw, 1987;
Durbin et al., 1989), which used a similar objective function in combination with annealing

(in a similar manner to what is proposed in this dissertation). Finally, these ideas have also
been used in the registration of 3D medical images in (Grimson et al., 1996).

3.1.3 3Dto2D

The interjection of a projection in the transformation process makes 2D to 3D matching
somewhat different. Its applications are both the recovery of 3D pose from a 2D image (or
images) and the recognition of 3D objects. A survey of early work in this field is given
in (Binford, 1982). An overview of bounded search-based methods is given in (Grimson,
1990).

It is in this domain that the RAndom SAmple Consensus (RANSAC) algorithm (Bolles and
Fischler, 1981; Fischler and Bolles, 1981) was first developed. RANSAC is a robust fitting
technique, which, in general, searches for a transformation between a model and a dataset
with maximal matching support. Applied to 3D pose recovery from a 2D perspective im-
age, the algorithm works by sampling minimal sets of correspondences, and evaluating the
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associated recovered pose in terms of how many additional matches are close under this
transformation. RANSAC is a completely general robust fitting scheme and has been used
in many more contexts (see below).

Some recent probabilistic methods are especially worth mentioning. In (Hornegger, 1997;
Paulus et al., 1997) a description of an object is given in probabilistic terms, and their
approach focuses on deriving a joint probability density function for a set of points, param-
eterized by pose. In this derivation, the marginalization over individual point assignments
is already done, so pose recovery is simply done by maximizing the likelihood of the joint
set of points. Once pose is recovered, object recognition is done in the same way.

(Wells, 1997) uses an EM-based approach for correspondence/pose recovery in object
recognition. In his posterior marginal pose estimation (PMPE) algorithm, he frames the
recovery of pose as a MAP estimation problem under the assumption that correspondence
is hidden, and uses the EM algorithm to optimize for pose. This is again the same use
of EM as in the tracking/smoothing literature and in this dissertation. To quote Wells, us-
ing EM for pose recovery is an “attractive alternative to combinatorial search, particularly
when combined with indexing methods, which typically yield somewhat inaccurate pose
estimates, since they are based on minimal sets of corresponding features”. However, in
the E-step, Wells does not attempt to enforce a mutual-exclusion constraint on the matching
process.

3.1.4 (Multiple-Baseline) Stereo

Correspondence also plays a central role in stereo applications, by which | mean any multi-
view setup in which the geometry of the imaging setup is known and the cameras are inter-
nally calibrated. Sparse stereo, where one works with features extracted from the images,
is then similar to smoothing approaches in the tracking literature, in that the characteris-
tics of the sensors are assumed known. What remains is a large data-association problem,
i.e. determining the correspondence of features in the different images. In contrast to the
multi-target smoothing problem, however, the number of 'targets’ is vastly larger.

Sparse stereo is to be contrasted with dense stereo, typically using two or three views,
where a dense depth map is recovered. The use of matching algorithms for dense stereo
has been investigated (Fielding and Kam, 1997; Fielding and Kam, 2000), but the authors
concluded that dynamic programming remained the algorithm of choice. The nature of the
dense stereo problem is somewhat different, as the depth map automatically establishes a
correspondence between the images.
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The literature on stereo is vast, and here | only mention those papers that have an obvi-
ous relationship to the work presented in this document. (Cheng et al., 1994) used the
eigenvalue-based approach of (Scott and Longuet-Higgins, 1991) to solve the correspon-
dence problem in a sparse two-view situation. The more fundamental idea in the paper
concerned the affinity between points in the two images, which is based on computing a
3D “pseudo-intersection” point. In a later paper (Cheng et al., 1996), more efficient bipar-
tite matching algorithms are used. (Pilu, 1997) uses the eigenvalue approach but adds an
appearance term to the proximity measure.

In (Yuille et al., 1991), the stereo problem is formulated explicitly with a matching field,
entirely analogous to the data-association vectors in multi-target tracking (Section 3.2.2).
Whereas in the tracking problem the posterior probability of the state sequence is max-
imized, in stereo the posterior probability of the disparity field is maximized. Yuille et.
al. explore both the elimination of the disparity field (equivalent to Rao-Blackwellization,
as in (Bergman and Doucet, 2000), see below), as the elimination of the matching field.
The latter is done through a mean-field approximation, and minimization of the resulting
effective energy function of the disparity field is done using deterministic annealing. Ef-
fectively, this implements a winner-take-all strategy, where at convergence only one match
determines the disparity at a given feature location.

Multiple-baseline stereo (Okutomi and Kanade, 1993) presents an added challenge, as three
or in general N-view matching is an NP-complete problem: there is no known algorithm
that can find an optimal matching in polynomial time. (Cox et al., 1996) gives a maximum-
likelihood formulation of the N-view, pixel-based stereo problem (where pixel intensities
themselves are used to match between images, rather than image neighborhoods). Their
method to account for occlusion and clutter is inspired by the tracking literature, in partic-
ular (PattiPati et al., 1990). However, again dynamic programming was found to be more
suitable to deal with the unique properties of stereo than an optimal matching algorithm,
where, for one, it is notimpossible to include smoothness constraints. An alternative, max-
imum flow based approach is presented in (Roy and Cox, 1998). For solving the sparse
N-view problem, (Bedekar and Haralick, 1996) take a brute force approach where all pos-
sible N-view correspondences are tested usigg st.

The shortcomings of winner-take-all approaches have already been discussed above. As
remarked before, the mean-field approximation is problematic as it does not accurately
model mutual exclusion. A novel and more correct approach to multi-view stereo based
on the ideas presented here would use EM combined with sampling to approximate the
(otherwise intractable) E-step.
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3.1.5 Structure from Motion

The majority of literature on SFM considers special situations where the data association
problem can be solved easily. Some approaches simply assume that data correspondence
is knowna priori (Ullman, 1979; Longuet-Higgins, 1981; Tsai and Huang, 1984; Hartley,
1994; Morris and Kanade, 1998). Other approaches consider situations where images are
recorded in a sequence, so that features can be tracked from frame to frame (Aggarwal
et al., 1981; Broida and Chellappa, 1991; Tomasi and Kanade, 1992; Szeliski and Kang,
1993; Lee and Joshi, 1993; Poelman and Kanade, 1997; Kang and Szeliski, 1997).

Several authors considered the special case of correct but incomplete correspondence, by
interpolating occluded features (Tomasi and Kanade, 1992; Jacobs, 1997; Basri et al.,
1998), or expanding a minimal correspondence into a complete correspondence (Seitz and
Dyer, 1995). In (Forsyth et al., 1999), it is shown that Markov chain Monte Carlo sam-
pling can be used to identify small errors in a given set of correspondences. However, all
these approaches require that a non-degenerate set of correct correspondences be provided
a priori.

An early approach to solve the correspondence problem in the SFM domain was (Lee and
Huang, 1988), which took a brute force approach by enumerating all possible correspon-
dences of 4 points, and assessing the quality of the resulting solution. In this sense, it can
be considered a fore-runner of the RANSAC approach (see below). Another approach used
the moments of the point cloud in the image in order to estimate the relative orientation of
two images (Goldgof et al., 1989; Goldgof et al., 1992).

Since the landmark papers on the fundamental matrix (Luong and Faugeras, 1996) and the
trifocal tensor (Shashua and Werman, 1995; Hartley, 1997), projective approaches to SFM
became very popular. They proceed by first computing multi-view constraint matrices be-
tween two or three views, after which obtaining projective structure is easy (Hartley and
Zisserman, 2000). Upgrading to a metric reconstruction is then done through specialized
algebraic methods and/or non-linear optimization. The correspondence problem only ap-
pears in the first step. Torr and colleagues (Torr and Murray, 1993; Torr and Murray, 1997,
Beardsley et al., 1996; Torr and Zisserman, 1998) propose the use of RANSAC (Bolles
and Fischler, 1981) to perform robust estimation of the fundamental matrix between two
views, or the trifocal tensor between image triplets. This is done by first hypothesizing
a seed set of possible matches, and then using RANSAC to search for the minimal sets
with the most support. The recovered constraint is then used to guide matching, which is
fed back to RANSAC, and so on until the estimate has stabilized. The use of least me-
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dian square robust estimators for the same purpose is discussed in (Zhang and Katsaggelos,
1996). Robust estimation of the multi-view constraints can be done solely to guide the cor-
respondence matching, even when used with a non-projective reconstruction method such
as bundle-adjustment.

Robust methods to recover the epipolar geometry have their problems. They can cope
with moderate to large inter-frame displacements and can be very effective in practice.
However, they depend crucially on the ability to identify a reasonably reliable set of initial
correspondences, and this becomes more and more difficult with increasing inter-frame
motion. In the most general case, images are taken from widely separated viewpoints.
This problem has largely been ignored in the SFM literature, due to the difficulty of the
data association problem, which has been referred to as the most difficult part of structure
recovery (Torr et al., 1998). Note that this is particularly challenging in 3D: traditional
approaches for establishing correspondence between sets of 2D points as discussed above
are of limited use in this domain, as the projected 3D structure can look very different in
each image. One approach is to use image-based methods to bring the images in rough
correspondence, e.g. by estimating a homography as done in (Pritchett and Zisserman,
1998b; Pritchett and Zisserman, 1998a), and then applying a RANSAC-based method. This
can account for large orientation changes, e.g. switching from landscape to portraitimages,
but it is still not able to cope with large translations.

The most fundamental problem with methods based on multiview constraints is that they
can only be formulated for two, three, or four views. The motion/correspondence recovery
can then only proceed by working with batches of pairs or triples (the quadrifocal tensor is
seldomly used), and stitching these sets together is, quoting (Hartley and Zisserman, 2000),
“still something of a black art”. The EM-based approach proposed here, in contrast, uses
all the images at the same time and hence uses all of the available data instead of parsing it
in chunks which then have to be stitched together somehow.

3.2 Data Association for Target Tracking

It comes as no surprise that data-association has been studied extensively in the target
tracking community. Tracking is the process of recursively estimating the state of one or
multiple targets, based on measurements perceived by one or multiple sensors. The process
of deciding which measurements are associated with which targets is a crucial step in esti-
mating the state of the targets. Indeed, this data-association problem is perceived by many
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as the most difficult aspect of the multi-target tracking problem (Molnar and Modestino,
1998).

Textbook references for data-association in the context of target-tracking are (Bar-Shalom
and Li, 1993; Popoli and Blackman, 1999), whereas (Cox, 1993) discusses the use of these
techniques in the context of computer vision. For a thorough background on tracking and
smoothing, see the textbooks (Jazwinsky, 1970; Maybeck, 1979; Maybeck, 1982; Bar-
Shalom and Li, 1993).

3.2.1 Single-Target Tracking

Methods to solve the data-association problem in the case of tracking a single target are
not of particular relevance in a computer vision context. It seldom occurs in vision that we
have only one feature to work with, and many geometric estimation problems in fact depend
on the existence of a minimal number of features. However, sometimes these algorithms
are still used to track features in a sequence, and, more importantly, the multiple target
literature was developed in many cases by extending the single target case.

Even in single-target tracking, theptimal data-association algorithm is intractable. The
data-association problem arises when at each time step we have multiple measurements, but
at most one measurement actually originates from the target, with the others<hgiag
Typically a pre-processing step involvgatingthe measurements to exclude improbable
associations from the outset. However, even if gating eliminates all but a few possible
associations in each time step, the number of possible hypotheses over the entire sequence
of data-associations for each time-step grows exponentially with time. An optimal but
impractical algorithm would keep track of all these different hypotheses.

Tractable approximations to the optimal algorithm can be obtained by pruning and combin-
ing hypotheses, as in the optimal Bayesian filter of (Singer et al., 1974), and Reid’s multiple
hypothesis filter (Reid, 1979). A different and popular approach is to reason about the data-
association only in theurrenttime-step, and regard choices in the past as fixed. This tack

is taken in the simplest of all algorithms, nearest neighbor (NN) tracking (Blackman, 1986;
Li and Bar-Shalom, 1996), which simply picks the measurement closest to the predicted
measurement at each time step. “Closeness” is defined in terms of Mahalanobis distance,
such that the uncertainty with respect to the prediction is taken into account. A more ac-
curate approximation is obtained by the probabilistic data association filter (PDAF) (Bar-
Shalom and Tse, 1975; Bar-Shalom and Fortmann, 1988), which enumerates all possible
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association hypotheses in the current time step, and then calculates for each measurement
the marginal probabilitys, of being associated with the target. These marginal probabili-

ties are then used to compute a weighted measurement which is used to update the target
state.

3.2.2 Multi-Target Tracking

Techniques for tracking multiple-targets with unknown data-association are very relevantin

the current context. When there are multiple targets to be tracked, the combinatorics make
the data-association problem still harder. This was realized very early on, in a paper by Sit-
tler (Sittler, 1964), which foreshadowed most of the later development in data-association

even before they could be implemented on computers.

A number of approaches actually represent a large number of complete data-association
hypotheses over multiple time-steps. The track splitting filter (Smith and Buechler, 1975)
keeps a tree of hypotheses for each target individually, and uses a maximum likelihood
criterion to prune the tree. (Morefield, 1977) models the interaction of the multiple tar-
gets more accurately, and phrases the resulting data-association problem as an integer pro-
gramming problem. Basically, the maximum likelihood partition of the measurements into
disjoint tracks is found. Finally, Reid’s multiple hypothesis tracker (MHT) (Reid, 1979)
constructs a tree of all possible hypotheses, including all possible new track initiations at
every time step. Reid discusses a number of strategies to prune the tree in order to achieve
reasonable computation times. Several algorithms restrict the number of generated hy-
potheses by only considering the m-best possible assignments of measurements to targets
(Danchick and Newnam, 1993; Cox and Hingorani, 1996; Cox and Miller, 1995), leading

to more efficient implementations of the MHT (Cox and Hingorani, 1994).

In contrast to the MHT and related approaches, the joint probabilistic data association fil-
ter (JPDAF) (Bar-Shalom et al., 1980; Fortmann et al., 1980; Fortmann et al., 1983)
only reasons about the association in the current time step, in a straightforward exten-
sion of the single-target PDAF. However, since now multiple targets have to be associated
with multiple measurements, many of which may be clutter, even the combinatorics of
enumerating the set of hypotheses in a single time-step can be intractable. Thus, several
authors have proposed ways to approximate the calculation ¢f ttaddues (the marginal
association probabilities), e.g. using a Hopfield neural network (Sengupta and lltis, 1988;
Sengupta and lltis, 1989; Hopfield and Tank, 1985), or by branch and bound type algo-
rithms (Zhou and Bose, 1993; Zhou and Bose, 1995). Recently, a particle filtering version



CHAPTER 3. RELATED WORK 45

of the JPDAF has been proposed in (Schulz et al., 2001).

The above multi-target tracking algorithms have been used extensively in the context of
computer vision. Some examples are the use of nearest neighbor tracking in (Deriche
and Faugeras, 1990), the multiple hypothesis tracker in (Cox and Leonard, 1994; Cox and
Hingorani, 1994), and the JPDAF in (Rasmussen and Hager, 1998; Rasmussen and Hager,
2001).

Multi-Target Multi-Sensor Tracking

Optimal multi-sensor association problems are NP-complete, and a relaxation approach
has been proposed by Pattipati and colleagues (PattiPati et al., 1990; Pattipati et al., 1992;
Deb et al., 1997; Kirubarajan et al., 2001).

3.2.3 Approaches based on the EM Algorithm

In the past decade, an alternative way of approximating the multiple-hypothesis filter has
been proposed, based on the expectation-maximization (EM) algorithm. Since these ap-
proaches are very related to the techniques described in this dissertation, | discuss them
separately.

In a 1992 paper (Avitzour, 1992), Avitzour proposed to use the EM-algorithm to obtain
the maximum likelihood state sequence, given a batch of measurements. In the E-step, a
probability distribution over all possible data-associations in each time step is computed.
Since this is conditioned on the current estimate of the state sequence, this can be done
independently for each image. The marginal association probabilities are then used, as in
the JPDAF, to create a weighted measurement that is used in the M-step to update the ML
estimate of the state sequence. These two steps are iterated to convergence.

Essentially the same mechanism is used in the probabilistic multi-hypothesis tracker (PMHT)
of Streit et. al. (Streit and Luginbuhl, 1994; Gauvrit et al., 1997). However, in the PMHT
case the marginal probabilities are approximated by ignoring the problem of mutual exclu-
sion, i.e. treating the assignment of measurements of targets as independent of each other.
A comparison between the PMHT and the JPDAF is done in (Rago et al., 1995), and a
number of improvements to the PMHT are surveyed in (Willett et al., 1999).

Molnar (Molnar and Modestino, 1998) presents a recursive version of the PMHT, where
the EM algorithm is used to obtain MAP state estimate for the current time-step only, in
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contrast to the original PMHT, which performs smoothing over the entire track. Of course,
the PMHT can be used as a fixed lag smoother and, with zero-lag, as a pure tracking algo-
rithm. The main contribution of (Molnar and Modestino, 1998) is a MRF formulation of
the E-step, where the marginal probabilities are obtained using a mean-field approximation.

The use of EM first by Avitzour and then Streit in the PMHT is completely analogous

to what is proposed in this dissertation. However, in geometric estimation problems, the
“structure” is assumed fixed (unless non-rigid motion is allowed), whereas in tracking it is
the sensors that are fixed and the targets that move. In addition, because in computer vision
applications there are typically many features, a brute-force approach to the E-step as in
Avitzour is intractable. The approximation to the E-step proposed by Streit, on the other
hand, completely disregards the mutual exclusion constraint. The mean-field approxima-
tion used by Molnar will not correctly model mutual exclusion either. The introduction of
sampling to implement the E-step in a MCEM scheme addresses both these problems.

A different use of the EM algorithm can be found in the EM data association (EMDA)
algorithm (Pulford and Scala, 1996; Pulford and Logothetis, 1997). In that approach, the
state sequence is regarded as the missing data, rather than the associations. The M-step then
finds a maximum likelihood association using the Viterbi algorithm. The use of an EM-
algorithm with a discrete parameter space to search over in the M-step is dubious, however:
the convergence proof of EM is valid only for continuous spaces.

Finally, the Monte Carlo data association (MCDA) algorithm (Bergman and Doucet, 2000)
is very similar in spirit to PMHT, in that it obtains a distribution over the unknown data-
associations. However, it uses Markov chain Monte Carlo sampling to obtain this distribu-
tion, and, in a technique called Rao-Blackwellization, the state sequence for each sample is
integrated out analytically. To sample, they use Gibbs sampling by drawing from the data-
association probability at each time step in turn. Since the number of data-associations
can be quite large, however, it is clear that this approach will not scale up to many more
targets/measurements.
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3.3 Data-association and Simultaneous Localization and
Mapping*

Simultaneous Localization and Mapping (SLAM) (Dissanayake et al., 2000; Durrant-
Whyte et al., 2001) in robotics, also called Concurrent Mapping and Localization (CML)
(Thrun et al., 1998; Leonard and Feder, 1999), is the problem of reconstructing a robot’s
environment (in 2D or 3D) from a time-series of odometry and sensor measurements col-
lected by one or more robots. Sensors that are commonly brought to bear on this task
include cameras, sonar and laser range finders, radar, and GPS.

Online versions of mapping algorithms are based on extensions of well-known tracking
methods, i.e. variable dimension Kalman filters (Cox, 1991; Leonard and Durrant-Whyte,
1991a; Leonard and Durrant-Whyte, 1991b; Castellanos et al., 1999; Castellanos and Tar-
dos, 2000), and face some of the same data-association issues. In particular, in the common
case where the goal is to estimate the location of landmarks, sensor readings have to be cor-
rectly associated with landmarks. For a relatively small number of landmarks, the multiple
hypothesis filter (MHT, discussed above in Section 3.2.2) has been successfully applied
(Cox and Leonard, 1994; Jensfelt and Kristensen, 1999; Roumerliotis and Bekey, 2000;
Reuter, 2000).

In the case the data-association is known, off-line versions approaches to the SLAM prob-
lem are essentially equivalent to the structure from motion problem in vision, and similar
to track smoothing. Maximum likelihood versions of this (i.e. without a smoothing prior)
were implemented by Lu and Milios (Lu and Milios, 1997) and Gutmann (Gutmann and
Nebel, 1997).

Off-line building of maps is considerably harder with unknown data-association, and is sim-

ilar to the geometric estimation problems with unknown correspondence considered here.
In this context, the EM algorithm has been suggested by Thrun and colleagues. (Thrun
et al.,, 1998). In their version of EM, the robot robot location is considered the latent

or nuisance variable, whereas the environment map is the quantity of interest. The data-
association problem is implicitly solved in this approach by using a grid-based probabilistic

representation of the map, which is constructed in the M-step by integrating sensor mea-
surements over the distribution of all robot poses. A different approach that uses essentially
the same EM paradigm is presented in (Liu et al., 2001), but here the environment model
is parameterized in terms of a set of objects (e.g. planes corresponding to walls) which

1This section is based in part on an unpublished note by Sebastian Thrun.
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is a much more constrained problem, and hence computationally more efficient and more
accurate (where the model assumptions hold).



Chapter 4
An EM Approach to Correspondence

In this chapter, | propose the EM algorithm as a practical way to estimate structure and
motion parameters, given that the correspondence information is unknown (Dellaert et al.,
2001). Whereas previous approaches first single out a “best” correspondence and then
estimate the structure and motion given the image measurements and correspondence, |
will show that the correct MAP estimate is obtained by integrating allepossible cor-
respondence vectors. When applied to estimating the alignment between 2D structures,
this EM approach formalizes a number of previous algorithms such as the softassign algo-
rithm (Rangarajan and Mjolsness, 1994; Gold and Rangarajan, 1996). In addition, because
the correspondence is modeled from measurements to structure as opposed to between
measurements, the algorithm automatically generalizes to multiple views. This is espe-
cially relevant when applied to the structure from motion domain, as up to now there is no
multiple-view algorithm to estimate structure and motion. As discussed in Chapter 3, the
state of the art proceeds via multi-view constraints that are limited to two, three, or four
views.

4.1 Generalizing Structure from Motion

Whereas the EM approach below is developed within the context of structure from mo-
tion, it applies directly to all the different geometric estimation problems discussed in the
previous chapter. Indeed, structure from motion can be seen as a superset of many other
geometric estimation problems in computer vision and target tracking. Below | explicitly
provide the connection to some important applications:

49
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2D to 2D alignment. Applications such as image mosaicking or 2D object recognition can
be seen as special cases of the SFM problem where the structure is a collection of
2D points (or lines, or both). In 2D object recognition the structure (model object) is
known and the motion parameters to be recovered are 2D rigid transformations. In
image mosaicking we can regard the 2D fiducial points as unknowns, and the motion
to be recovered can be as simple as 2D translation or as complex as a full projective
transformation. The measurement model is simply a transformation followed by
additive noise, i.e. there is no projection involved.

3D to 3D alignment. This can easily be extended to the 3D case, for 3D alignment and/or
3D object recognition. In this case both the structame the measurements are 3D
points. The motion parameters are rigid 3D transformations.

3D to 2D alignment. In the case of 3D object recognition from 2D images, we have a
known 3D structure, and a measurement model which involves a 3D rigid transfor-
mation followed by a projection (and additive noise).

(Multi-Baseline) Stereo. The connection between multi-baseline stereo and full structure
from motion is simply that the motion in the former is known.

2D Structure from Motion. The 2D robot mapping problem from bearing measurements
only can be seen as a special case of the SFM problem where the structure consists
of 2D points (the landmarks), and the measurements are projections of the landmarks
ina 1D image.

Even tracking applications can be straightforwardly modeled using the same notation and
terminology we have used before for structure from motion, and the data-association prob-
lem can be handled in the same way. However, in the remainder we will focus primarily on

structure from motion and its related applications in computer vision, as enumerated above.

4.2 Maximum a Posteriori Estimation

A direct approach to maximum a posteriori estimation of structure and muatithrout

being given the correspondence is intractable. Recall from Chapter 2 that the MAP estimate
of structure and motio®* given the measurement$ andthe correspondenckis given

by (equation 2.4 on page 32):

©* = argmax log P(®|U,J) = argmax {log L(©; U,J) + log P(©)}
© ©
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where P(©) is a prior on structure and motion, and which can be solved for using one
of the various optimization methods discussed in Section 2.4. If the corresponfi&nce
unknown we cannot directly apply these methods. However, at least formally, we can still
write down the MAP criterion:

©* = argmax P(®©|U) = argmax P(U|®)P(O) (4.1)
® ®

Although this might seem counterintuitive at first, equation (4.1) above statesé¢hedn

find the MAP estimate for structure and motion without explicitly reasoning about which
assignment might be correctVe “only” need to maximize the posteriét(®|U), which
does directly not depend ah Note that if we assume no prior informatidh®), the
above MAP criterion becomes a maximum likelihood (ML) criterion.

Although we can still frame this case as a problem of ML or MAP estimation, solving
it directly is intractable due to the combinatorial nature of the data association problem.
Indeed, the expression for the posterior density of structure and m®ticam be obtained

by marginalizing the joint density over the spa€eof all possible correspondencés

P(®|U) = P(©) ) P(U,J|©) (4.2)
JeJg

Unfortunately, the number of possible assignments grows combinatoriatty amd n.

Even if we assume there is no clutter or occlusion, there.bpessible assignment vectors

Ji in each image, yielding a total efi™ assignmentd. In summary,P(®|U) is hard to
obtain explicitly, as it involves summing over a combinatorial number of possible assign-
ments.

4.3 The Expectation-Maximization Algorithm

A key insight is that we can use the well-known expectation-maximization (EM) algorithm
(Hartley, 1958; Dempster et al., 1977; McLachlan and Krishnan, 1997) to find the MAP
estimate®* for structure and motion, while regarding the correspondence informatsn

a hidden variable. EM naturally comes to mind in missing data problems such as this, and
EM has been used in a similar setting in the tracking literature in (Avitzour, 1992; Streit and
Luginbuhl, 1994), where it forms the basis of the Probabilistic Multiple-Hypothesis Tracker
(PMHT). It has also been employed by Wells in the context of object recognition (Wells,
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Figure 4.1: EM example: Mixture components and data. The data consists of three samples
drawn from each mixture component, shown above as circles and triangles. The means of
the mixture components are2 and2, respectively.

1997). While a direct approach to computing the posterior (4.2) is generally intractable,
EM provides a practical method for finding its maxima.

The intuition behind EM is an old one (even though it is not the complete story): alternate
between estimating the unknow@sand the correspondende This idea has been around

for a long time (see Section 3.1 for a thorough discussion). However, instead of finding
the best correspondendggiven an estimat® at each iteration, EM computesisstribu-

tion over the space of correspondencgésin practice, only the sufficient statistics of this
distribution are needed, and these can be regarded as a “soft correspondence” that is used
instead of a single “best correspondence” vector. In this light, the recent 2D alignment algo-
rithms based on softassign by Rangarajan and colleagues (Rangarajan and Mjolsness, 1994;
Gold and Rangarajan, 1996; Gold et al., 1998) can be regarded as EM all but in name, albeit
with a sub-optimal approximation to the E-step.

One of the most insightful explanations of EM, that provides a deeper understanding of
its operation than the intuition of alternating between variables, is in terms of lower-bound

maximization (Neal and Hinton, 1998; Minka, 1998). In this derivation, the E-step can be

interpreted as constructing a local lower-bound to the posterior distribution, whereas the
M-step optimizes the bound, thereby improving the estimate for the unknowns. This is
demonstrated below for a simple example.

Consider the mixture estimation problem shown in Figure 4.1, where the goal is to esti-
mate the two component meaftssandd, given 6 samples drawn from the mixture, but
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0.5

Figure 4.2: The true likelihood function of the two component meéarandé,, given the
data in Figure 4.1.

without knowing from which mixture each sample was dralims is analogous to the cor-
respondence problem. The state space is two-dimensional, and the true likelihood function
(corresponding to equation 4.2 on page 51) is shown in Figure 4.2. Note that there are
two modes, located respectively at abou®, 2) and(2, —2). This makes perfect sense, as

we can switch the mixture components without affecting the quality of the solution. Note
also that the true likelihood is computed by integrating over all possible data associations,
and hence we can find a maximum likelihood solution without solving a correspondence
problem. However, even for only 6 samples, this requires summing over the space of 64
possible data-associations in equation 4.2.

EM proceeds as follows in this example. In the E-step, a “soft” assignment is computed that
assigns a posterior probability to each possible association of each individual sample. In
the current example, there are 2 mixtures and 6 samples, so the computed probabilities can
be represented inZax 6 table. Given these probabilities, EM computes a tight lower bound

to the true likelihood function of Figure 4.2. The bound is constructed such that it touches
the likelihood function at the current estimate, and it is only close to the true likelihood

in the neighborhood of this estimate. The bound and its corresponding probability table
are computed in each iteration, as shown in Figure 4.3. In this case, EM was run for 5
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Figure 4.3: EM works by constructing successive lower bounds to a function, show above
for the function in Figure 4.2. The dashed curves are projections of the 2D bound onto two
axis-parallel planes that show how each iteration improves the bound. The bars under each
panel show the corresponding “soft correspondence” (see text).
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iterations. In the M-step, the lower bound is maximized (shown by a black asterisk in
the figure), and the corresponding new estim@ted,) is guaranteed to lie closer to the
location of the nearest local maximum of the likelihood. Each next bound is an increasingly
better approximation to the mode of the likelihood, until at convergence the bound touches
the likelihood at the local maximum, and progress can no longer be made. This is shown
in the last panel of Figure 4.3.

The same intuition underlies EM in the case of structure from motion. However, instead of
two-dimensional, the state space will be vastly larger, as we are estimating the parameters
of each featurex; and all the motion parameters;. As in the mixture example, we will
compute a marginal probability table for the correspondence in each image, eitiries:

one for each measurement to feature association. The calculation of these probabilities in
the E-step is more challenging than in the mixture example, however, which is why we
will resort to an approximation by sampling (see below). In the M-step, we maximize the
resulting bound, and make progress towards a local maximum in the space of structure and
motion.

Appendix B provides a more detailed, mathematical derivation of EM, based on the lower-
bound interpretation sketched above. The earliest paper on EM is (Hartley, 1958), but the
seminal reference that formalized EM and provided a proof of convergence is the “DLR”
paper by Dempster, Laird, and Rubin (Dempster et al., 1977). A recent book devoted en-
tirely to EM and applications is (McLachlan and Krishnan, 1997), whereas (Tanner, 1996)
is another popular and very useful reference.

4.4 An EM Approach to Correspondence

In the present application, the EM algorithm starts from an initial g@%$or structure
and motion, and then iterates over the following steps:

1. E-step: Calculate thexpected log likelihood)!(®) of © given the datdJ and the
hidden variabled:

Q'(©) = (log P(U|J,©)) = Y f'(J)log P(U, J|O©) (4.3)
Jegn
where the expectation is taken with respect to the posterior distribyitidn 2
P(J|U, ©) over all possible assignmenisgiven the datdJ and a current guess
©®! for structure and motion.
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2. M-step: Find the maximum likelihood (ML) estimat®’*! for structure and motion,
by maximizingQ*(®):
O = argmax Q'(©) (4.4)
()

or, in case an informative prior is available, the maximum a posteriori (MAP) esti-
mate®'*!, by adding the log-priolog P(©) to the objective function:

O = argmax [Q"(©) + log P(©)] (4.5)
©

4.4.1 The Expected Log-LikelihoodQ!(®)

Because of the specific assumptions we can make in the structure from motion application
(and other related computer vision problems), we can substantially simplify the compu-
tation of Q*(®). The key to the efficiency of EM lies in the fact that, under certain as-
sumptions, the expression (4.3) above contains many repeated terms, and can be rewritten
as

m n K;

QO)=> "3 ") iy log P(uy|m;, x;) (4.6)
i=1 j=1 k=1

where, as you might recall, the following symbols were defined before:

e u;;, is thek™ measurement in imagewith i € 1..m andk € 1..K;
e m; are the motion parameters associated with image

e x; is the;™ structure feature, with € 1..n

and whergf’;,. is themarginal posterior probability”(j;, = j|U, ©') that measuremenn;,
corresponds to feature;, i.e. the probability that the correspondence indicgtoequals
j. Thus, the marginal correspondence probabﬂjjyyis formally defined as

L2 Pl = 41U,0Y = 3" 8(j, )f (J) 4.7)
Jegn

whered is the Kronecker delta function, i.6(j;, 7) = 1 if j; = j and0 otherwise. The
intuitive explanation is as follows: through the likelihood tetog P(u;;|m;,x;), each
measurement;;, should influence the estimation of the motion, and the feature; to
which it actually corresponds. This is becaukg P(u,;|m;,x;) corresponds to, in the
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typical SFM problem, theeprojection errorassociated with measureman}. However,

in the present case we only have a probabilistic or “soft” assignment of measurements to
features. The probability that measuremapt is assigned to feature; is exactly the
guantity {;k These probabilities are computed in the E-step, and we use them weight each
associated reprojection error accordingly. Using this weighted objective function, the the
motion parameterm; and the structure parametegsare re-estimated in the M-step. The
convergence proof of EM says that this will eventually converge to a maximume-likelihood

estimate for bottM andX?.

To show the validity of (4.6), let us first rewriteg P(U, J|®) from equation (4.3) by
applying the chain rule:

log P(U,J|©) = log P(U|J, ©) + log P(J|©)

Herelog P(U|J, ®) corresponds to the total reprojection error, given a specific correspon-
dence vectod, andlog P(J|®) is the log of a prior distribution over correspondendes
The first term is exactly the one minimized in typical structure from motion algorithms: by
varying ® we try to minimize the reprojection error. Less intuitive is that the prior term
log P(J|®) can also influence the optimal estim@é for structure and motion, depending

on how occlusion and clutter are modeled (see Chapter 7).

However, below we make the assumption that the pfigF|®) does not depend d@, i.e.
P(J|®) = P(J). In that case the only term of interestdf(®) is the expected image
likelihood (log P(U|J, ®)). Using the symbol =" to denote equality up to a constant, we
can then simplify the expected log-likelihood (4.3) as follows:

Q'(©) = (log P(U[J,©)) = > f'(J)log P(U|J, ©) (4.8)
Jegn
Note that the assumptioR(J|®) = P(J) is no longer valid if a sophisticated model is
used to model occlusion and clutter (see Chapter 7).

The second assumption we make is that of conditional independence of the measurements
u;,. First, assume that the respective imaggsare conditionally independent of each
othergiventhe structure and motion paramet@sand the correspondence vectgssin

that case, the image likelihood function factors over the different images:

PO, ©) = [ (ULl m,, X) 4.9)

=1

Ln fact, the weighted objective function is exactly the lower-bound computed in the E-step and maximized
in the M-step
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In addition, if the individual image measuremeunig are conditionally independent of each
other givenj;,, m;, and the structurX, we get:

K;

P(Uilji, m;, X) = [ [ Pluiljix, mi, X) (4.10)

k=1

Invoking these conditional independence assumptions (equations 4.9 and 4.10), we obtain
the factored expression:

i

= > 13D log Plugljix, mi, X) (4.11)

JeJgn i=1 k=1

Using a standard trick from the EM literature we can express this by means of the marginal

probabilitiesf’, :

n K;

E Z fz]k IOg P uzk|j7 my, X) (412)

i=1 j=0 k=1
the correctness of which is most easily noted by plugging in the definition ¢f thefi-
nition 4.7 on page 56) into the above, which yields back (4.11).

Finally, we can eliminate spurious measurements from consideration. On the assumption
that the likelihoodP (u;x|j;x = 0) of spurious measurements does not depend on the struc-
ture and motior®, the terms for whicly = 0 in (4.12) are constant with respect &

Q'(©®) can thus be written as a sum of non-spurious likelihood terms only:

m

Z Z Z 2 log P(u,|my, x;)

i=1 j=1 k=1

The difference is that (a) the summation oyes now from1 to » rather than front), and

(b) we have used the fact that, fpr£ 0, we can writeP (u;; |7, m;, X) = P(u;|m;, x;),
further simplifying the likelihood terms so that they are a function of one specific structure
element only.

Note that the form (4.6) doe®ot depend on the assumption of Gaussian noise, but rather
on the conditional independence of the image measurements. Note also that a similar trick
cannot be applied to the “naive” expression (4.2) for the posterior, as the latter is a sum of
probabilities, notog-likelihoods.
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4.4.2 The M-step and Virtual Measurements

In this section we show that, in the most common case, the M-step can be implemented in a
simple and intuitive way. Recall that in the M-step, we re-estimate the structure and motion
by minimizing the expected log-likelihoo@*(®), i.e. equation 4.6 on page 56. When

a Gaussian noise model is uséll{®) can be rewrittersuch that the M-step amounts to
solving a structure from motion problem of the same size as hdbateusing as input a
newly synthesized set of virtual measuremeatsated in the E-step. The concept of using
synthetic measurements is not new. It is also used in the tracking literature, where EM is
used to perform track smoothing (Avitzour, 1992; Streit and Luginbuhl, 1994).

Consider the common case where the measurement moda),faan be written as the
application of a (possibly non-lineameasurement functidm(., .) plus additive, zero-mean
Gaussian noise with covariance mafy,. In that case, the conditional probability density
for a single measurement is:

1 1 _
W exp —i(ulk — hij)TRikI (llik — hl]) (413)

. . A . .
where we assumg# 0 and we defind;; = h(m;, x;) for notational convenience.

P(uik|mi, Xj) =

The main point to be made in this section is this: it can be shown by simple algebraic
manipulation that in that cagg’(®) (equation 4.6) can be written as the sum of a constant
that does not depend @&, and a new re-projection error affeatures inn images

Q'(©) = —5 D3 (vl — by R (v, — ) (4.14)

i=1 j=1

where thevirtual measurements;; are defined as
K;
A —
ij = Rij Z iz'lgRikluik (415)
k=1
with thevirtual measurement covariande;; defined by
K;
-1 A _
Rijl = Zfzsz’zkl (4.16)
k=1

Thus, each virtual measuremerj} is simply a weighted average of the original measure-
mentsu,;, in the image. IntuitivelyR ;' is a measure for how much information is given by
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the measurement;;, andv;; is a quantity in which the original measurements contribute
according to their information content. The inverse virtual measurement covaﬂiq*;fce
encodes how much information each virtual measuremgmtontributes in the estimation
of the unknown structure and moti@.

The proof of the equivalence of (4.6) and (4.14) involves only algebraic manipulation and
can be found in Appendix C. More important is the intuitive interpretation that stems from
it, recapitulated below.

4.4.3 An Intuitive Interpretation of EM

The important point is that the M-step objective function (4.14) above, arrived at by as-
sumingunknowncorrespondence, is of exactly the same form as the objective function for
the SFM problem wittkknowncorrespondence. As a consequeras;, of the existing SFM
methods, of which many are discussed in Section 2.4, can be used to implement the M-step.
This provides an intuitive interpretation for the overall algorithm:

1. E-step: Calculate the Weightgg.,C from the distribution over assignments. Then, in
each of then images calculate virtual measurements;;.

2. M-step: Solve a conventional SFM problem using the virtual measurements as input.

In other words, the E-step synthesizes new measurement data, and the M-step is imple-
mented using conventional SFM methods. What is left is to show how the E-step can be
implemented.

Other geometric estimation problems in vision, such as 2D-2D, 2D-3D, and 3D-3D align-
ment, as well as (sparse) multi-view stereo, can all be handled as special cases of the struc-
ture from motion problem.

4.4.4 |sotropic Gaussian Noise

For i.i.d. isotropic Gaussian noise, i.e. where the noise is distributed in a radially symmetric
way, we can further simplify the virtual measurements formulation (4.14). In that case, the
covariance matriR;, = 02I,.», and the virtual measurement equations (4.15) and (4.16)
simplify considerably
A 1
Rij = 7]502]%2

K.
P ijk
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t & }:
Vij = —K; 7t fzyk ik

k=1Jijk k=1
i.e. the virtual measurements are simple weighted averages of the original measurements.
The expected log-likelihood is then a weighted sum of squared errors:

0©) =53 (S0 v -l

=1 j=1

4.4.5 Occlusion and Spurious Measurements

The derivation of the virtual features and variances also accommodates occluded features
and spurious measurements. The influence of occlusion can be understood as follows: for
featuresx; that are have a high probability of being occluded in imaite total probability
massZkK:iljgg.k of being associated with any of the measuremenjswill be low. In

that case, the corresponding squared error tevfn— hy;(|> will not be important in the
calculation ofQ"(©). Likewise, if a measurement;, has a high probability of being
spurious, its influence on the re-estimation proced® @ diminished, as its contribution

to the virtual measurements will be diminished.

In the special case that there are no spurious measurements We flayg’, = >
1, and we can further simplify by dropping the normalization factors:

zjlc =

n
sz = Zf;-z-kuik and Rij = Rzk = 0'2[2><2
k=1
and the log-likelihood (4.14) becomes simply the sum of squared re-projection errors with
respect to the virtual measurements:

Q'(®) =~ QUZZZH% hy;|*

i=1 j=1

4.4.6 Markov Chain Monte Carlo and the E-step

The previous section showed that, when given the virtual measurements, the M-step can be
implemented using any known SFM approach. As a consequence, we need only concern
ourselves with the implementation of the E-step. In particular, we need to calculate the
marginal probabilities’, = P(jx = j|U, ®") needed to calculate the virtual measure-
mentsv;; and covarianc®;;.
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Unfortunately, due to thenutual exclusiortonstraint an analytic expression for the suffi-
cient statisticg‘;},C is hard to obtain. Assuming conditional independence of the assignments
Jji in each image, we can factpt(J) as:

13 = rau, e =[] PGilu;, e

=1

whereU; are the measurements in imagé\pplying Bayes law, we have:

The second factor, the likelihood of the image correspondence vgctoan easily be
evaluated once a specific measurement model is assumed. However, the prior probability
P(j;|©") of an assignmerj; encodes the knowledge we have about mutual exclusion: if a
measurement,;, has been assigngg = j, then no other measurement in the same image
should be assigned the same feature pgintWhile it is easy toevaluatethe posterior
probability f/(j;) for any given assignmejt through (4.17), a closed form expression for

. that incorporates this mutual exclusion constraint is not available.

The solution proposed in the next chapter, Chapter 5, is to approximate the E-s@amby
pling from the posterior probability distributioff (j;) over valid assignments vectojs

The use of sampling has the benefit of being able to approximate the correct E-step up to
arbitrary resolution, taking into account all mutual exclusion constraints.

Formally this can be justified in the context oMonte Carlo EMor MCEM, a version of

the EM algorithm where the E-step is executed by a Monte-Carlo process (Tanner, 1996;
McLachlan and Krishnan, 1997). For now, assume a safjpjerom the true distribution

fL(j;) is available. To compute the virtual measurements in (4.15), we need to compute
the marginal probabilitieggk. Approximating the marginal probabilitigcg,C when given a
sample{j’} is straightforward:

R
1 o
z'z'lc ~ R Z 6 (Jix>J) (4.18)
r=1

Note that this can be done without explicitly storing the samples, by keeping running counts
of how many times each measuremaptis assigned to featurg

The detailed explanation of how one can obtain a sample fidfp) is postponed until
Chapter 5. It is done using a Markov chain Monte Carlo (MCMC) sampling method, in
particular the Metropolis-Hastings algorithm.
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4.5 Summary of the Algorithm
The inputs to the algorithm are:

e The number of features.

e The measurement§ = {{uy|k € 1..K;}|i € 1..m}, wherem is the number of
images andy; is the number of measurements in each image.

e The measurement covariandgs, for each measurement,.

Note that the only information we have about the measurements is the image in which they
were recorded.

The output of the algorithm is:

e A locally optimal structure and motion estimade 2 (M*, X*), a local maximizer
of the posterior probability distributioR(©®|U).

The pseudo-code for the final algorithm is as follows:

1. Generate an initial structure and motion estin@fee.g. at random.

2. Given®' and the datdJ, run the Metropolis-Hastings sampler in each image (Chap-
ter 5) to obtain approximate values for the Weig;l“ggl;g,(equation 4.18).

3. Calculate the virtual measuremenﬁ; and covarianceR,;; using equations (4.15)
and (4.16).

4. Find the new estima®!*! for structure and motion using the virtual measurements
vi; as data, and the virtual covariance matriB&s as their noise models. This can
be done using any SFM method discussed in Section 2.4.

5. If not converged, return to step 2.
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4.6 Dealing with Local Minima

One significant disadvantage of EM is that is only guaranteed to converdedal anaxi-

mum of the likelihood function, not to a global maximum. This is especially problematic in
the structure from motion application, where bad initial estimates for structure and motion
can be locked in by incorrect correspondences, and vice versa.

The main strategy to avoid local minima is the use of deterministic annealing, in conjunc-
tion with random restarts if the algorithm fails to converge.

In deterministic annealing we increase the noise parameiteearly iterations, gradually
decreasing it to its correct value. This has two beneficial consequences. First, the posterior
distributionf!(j;) is less peaked whem is high, allowing the MCMC sampler to explore

the space of assignmerjismore easily. Second, the expected log-likelih@d®d®) is
smoother and has fewer local maxima for higher values. of

If the algorithm still does not converge, we can restart it with different initial conditions.

It is easy to detect when a local minimum is reached based on the expected value of the
residual, as it obeys a knowyt distribution. If this occurs, the algorithm is restarted with
different initial conditions, until eventually successful.



Chapter 5
Sampling Weighted Assignments

This chapter explains how Markov chain Monte Carlo sampling can be used to approximate
a distribution over correspondence assignments. This can then be used to approximate the
E-step in the MCEM-based approach to correspondence discussed previously in Chapter 4.

In this chapter, the following assumptions will be made to simplify the problem:

1. There are no occlusions, i.e. all features are seen exactly once in all images.

2. There are no spurious measurements.
This has the following implications:

e The number of measurements in all images is equal te., K; = n, Vi.

¢ Avalid correspondence vectdmow consists ofn permutations of the indices.n.
In other words, each of the vectgrsdefines arassignmenfrom the measurements
u,;, to the featuresx;.

Clearly, the assumption that there is no occlusion or clutter is restrictive. However, there
might be applications in which these assumptions hold, e.g. because occlusion of features
does not occur and the feature extraction process is easy, or made easy by instrumenting
the environment. In addition, modeling visibility issues can be quite involved, which would
obscure the exposition below. Because of this, a detailed discussion of visibility modeling
is postponed until Chapter 7, where the assumptions above will be relaxed.

65
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5.1 Mutual Exclusion and the E-step

Recall that we are interested in estimating the structure and m@tiginen only the mea-
surementdJ but not the correspondende In the previous chapter, the EM algorithm was
proposed as a tractable way to find a local maximum of the posterior distribt@nu),

and it was shown that, when given the virtual measurements, the M-step can be imple-
mented using any known structure from motion algorithm. As a consequence, we need
only concern ourselves with the implementation of the E-step. In particular, we need to
calculate the marginal probabilities

e = Plin =50, 00 = Y 6, )f'(J) (5.1)
Jegn
i.e. the probability that the measuremet corresponds to featuse;, given the estimate
©®! calculated in the previous M-step. These marginal probabilities can then be used to
calculate the virtual measurements and virtual covarianceR,;; using equations (4.15)
and (4.16). Since this all that is needed to re-estin@afgielding 1), thefz.g,C play the
role of sufficient statisticéor the E-step

Unfortunately, due to the mutual exclusion constraint an analytic expression for the suf-
ficient statisticsf;, is hard to obtain. To see this, first note that the posterior distribution
ft(J) over correspondences can be factored over the different images:

m

1'3) 2 PAIU,©") o [ PG P(Uilj:, mi, XI)

=1
whereU; are the measurements in imageHere we applied Bayes law and we tacitly
assumed that the correspondences in the different imagespaieri independent of each
other and of the geometr®’. In Chapter 7 we will see that this is not always a valid
assumption, but in the absence of occlusion and clutter this assumption holds. As a con-
sequence, the marginal probabilit;p%§ associated with measurementg in the:" image
only depend on the posterior distributif{j;) for the image correspondence vegiofand
we need no longer consider the joint postefar(J)):

A . . . . .
fi 2 Pl = iU mi X = 37 8Ga ) (G) 5.2
Jhiedy

where
f1Gi) = P(i[Us, mt, XY oc P(3) P(Uj;, mé, X*) (5.3)
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It is here that the mutual exclusion constraint rears its ugly head. The second factor in (5.3),
the likelihoodP(U;|j;, ©'), can easily be evaluated once a specific measurement model is
assumed. However, the prior probabili(j;) of a correspondence vectjjrencodes the
knowledge we have about the structure from motion domain: if a measuremehas

been assignegl, = j, then no other measurement in the same image should be assigned
the same feature point;. In other words, if we assume thaalid correspondence vectors

are all equally likely, the prior probability gf is

{ L if j; is a valid assignment

n!

_ (5.4)
0 otherwise

P(ji) =
While it is easy to evaluate the posterior probabifity;) for any given correspondence
vectorj; through (5.3), thigllobal constraint makes it difficult to express analytically either
the posteriorf; or the marginalg; ;..

5.2 Ways to Approximate the E-step

In this section | survey the different ways in which the marginal probabilj‘;_i,gs:an be
approximated, given that there is no easy analytical expression available.

One can of course exactly compute the facy"gqisthrough brute force enumeration of all
possible correspondences, as done for example in the target tracking literature in (Avitzour,
1992). This is only feasible, however, in the case thistrelatively small, e.gn < 5. This
assumption may hold when tracking relatively few objects, but it typically does not hold in
feature-based computer vision applications. If occlusion and clutter are not allowed, there
aren! possible correspondences in each image. The number of candidate correspondences
grows even faster wit if occlusion and clutter are modeled, as will be discussed in
Chapter 7.

An alternative is to approximate the E-step by neglecting mutual exclusion constraints al-
together, as done in (Durbin and Willshaw, 1987; Durbin et al., 1989; Szeliski, 1989;
Streit and Luginbuhl, 1994; Wells, 1997). In this case, fhefactors are simply a function

of the Mahalanobis distance between the predicted and actual measurements. An applica-
tion where this holds, for example, is estimating the parameters of a mixture distribution
(e.g. in clustering applications). This approach is not feasible in the context of structure
from motion, as mutual exclusion provides an important constraint on the allowable solu-
tions. If this information is not used, degenerate solutions are almost always obtained.
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Finally, another approximate E-step can be obtained bhyean-fieldapproximation. If

the correspondence between features and measurements is arranged in a binary adjacency
matrix, it satisfies two way constraints on the rows and columns. Specifically, they add up to
one, creating @oubly stochastimatrix. The intuition behind a mean-field approximation

is to construct a continuous-valued matrix that obeys these two way constraints, and that is
taken to approximate theean fieldof the binary assignment variables, in other words: the
marginal probabilitie lgk These continuous variables are then optimized over as to best
approximate the true mean field, using methods that can be traced back to statistical physics.
Early work on this approach was done in (Yuille et al., 1991; Kosowsky and Yuille, 1994;
Rangarajan and Mjolsness, 1994), leading to the “invisible hand” algorithm (named after
an analogy with economic theories), and the “softassign” algorithm. Later work on the
softassign algorithm (Gold and Rangarajan, 1996; Rangarajan et al., 1997; Gold et al.,
1998; Chui and Rangarajan, 2000) introduced a graduated convexity strategy to avoid local
minima (as is done below, as well), and implemented the algorithm in terms of Sinkhorn’s
algorithm to obtain doubly stochastic matrices (Sinkhorn, 1964). In the tracking literature,

a mean-field approximation to a Markov random field (MRF) model of the data-association
problem is presented in (Molnar and Modestino, 1998).

The brute-force method is intractable, and both the “mixture” and the mean-field approxi-
mations to the E-step cannot accurately model the mutual exclusion constraint. In the next
section, another well known way of approximating a distribution (and hence its marginals)
is proposed for the correspondence domain: sampling.

5.3 Markov Chain Monte Carlo and the E-step

The solution proposed in this dissertation is to approximate the E-stegs@sriplefrom

the posterior probability distributiofy(j;) over valid assignments vectojs The use of
sampling has the benefit of being able to approximate the correct E-step up to arbitrary res-
olution, taking into account all mutual exclusion constraints. Indeed, any other constraint
on the range of allowable correspondences can be readily accommodated, e.g. ordering
constraints in stereo.

Assume a sampléj’|r € 1..R} from the distributionf/(j;) is available. To compute the
virtual measurements in (4.15), we need to compute the marginal probalg‘iigigles’\s
already discussed in section 4.4.6, a Monte Carlo estimate for the marginal probabilities
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can easily be obtained by:

.t.%lR(S”f ':lC»- 55

fTl ; (3 7) = 5Csn (5.5)
where R is the number of samples and thg;,, 2 SF 6(3, 4) are defined to be the
cumulative counts for each of the possible associations. Recalb tisathe Kronecker
delta, withd(ji,., j) = 1 iff j5. = 1. Note that the estimate (5.5) can be computed without
explicitly storing the samples, by incrementally updating the running catijisof how
many times each measuremaeyt is assigned to featurg

To sample from arbitrary distributions we can use the Metropolis-Hastings algorithm, a
Markov Chain Monte Carlo method (MCMC) (Neal, 1993; Gilks et al., 1996; Doucet
et al., 2001). In the present case, thgget distributionof the sampler is the posterior
distributionf/(j;) over correspondence vectgrsn image:. Formally, this can be justified

in the context of &Monte Carlo EMor MCEM, a version of the EM algorithm where the E-
step is executed by a Monte-Carlo process (Tanner, 1996; McLachlan and Krishnan, 1997).
Independently, MCMC has also been applied to data-association in (Pasula et al., 1999),
albeit in a different context. Gibbs sampling, an alternative MCMC sampling method, has
been applied to the data-association in tracking (Bergman and Doucet, 2000), but their
method requires a brute-force enumeration over all possible associations in a single time
step.

MCMC methods can be used to obtain approximate values for expectations over distri-
butions that defy easy analytical solutions. All MCMC methods work in a similar way:
they generate a sequencestéites in our case the correspondenggswith the property

that the collection of generated correspondence vegtagproximates a sample from the
target distribution/!(j;). To accomplish this, &arkov chainis defined over the space

of correspondence vectgjs i.e., a transition probability matrix is specified that gives the
probability of transitioning from any given correspondence vegtdo any other. The
transition probabilities are set up in a very specific way, however, such thatatenary
distribution of the Markov chain is exactly the target distributiftj;). This guarantees

that, if we run the chain for a sufficiently long time and then start recording states, these
states constitute a sample from the target distribution. Note that while neighboring samples
in the sequence are strongly correlated, the sample taken as a whole will be a true sample
from the distribution after the sampler has converged.

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) is one
way to simulate a Markov chain with the correct stationary distribution, without explicitly
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building the full transition probability matrix (which would be an intractable, given the
combinatorial nature of the space). In our case, we use it to generate a sequénce of
sampleg! from the target distributiof’(j;). The pseudo-code for the MH algorithm is as
follows (adapted from (Gilks et al., 1996)):

1. Start with a valid initial correspondence vecjr
2. Propose a new correspondence vector usingrbygosal density (j;; j7).

3. Calculate thacceptance ratio

2

3!
]

(37) 9t 35
it(jg) !](j;;jf)

(5.6)

a =

wheref!(j;) is thetarget distribution

4. If @ >= 1then accep}, i.e., we sef. ™ = j’.
Otherwise, acceptj. with probabilitymin(1, a). If the proposal is rejected, then we
keep the previous sample, i.e., we Jét = j’.

Intuitively, step 2 proposes “moves” in state space, generated according to a probability
distribution ¢(j:; j7) which is fixed in time but can depend on the current sjateThe
calculation ofz and the acceptance mechanism in steaisd4 have the effect of modifying

the transition probabilities of the chain such that its stationary distribution is exacily.

The MH algorithm easily allows incorporating the mutual exclusion constraint: if a corre-
spondence vectgf is proposed that violates the constraint, the acceptance ratio is simply
0, and the move is not accepted. Alternatively, and this is more efficient, one could take
care never to propose such a move.

5.4 Correspondences as Matchings

It is convenient to look at the correspondence problem in each image in isolation, and think
of it in terms ofweighted bipartite graph matchind@y abstracting away from the struc-

ture from motion problem, we can concentrate on sampling from weighted assignments
distributed according to a Gibbs distribution. This point of view is beneficial, as weighted
matchings are well-studied constructs in combinatorial optimization (Papadimitriou and
Steiglitz, 1982; Bertsekas, 1991; Cook et al., 1998). Abstracting away from the problem at
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hand will allow us to more easily apply insights from the extensive literature on matchings.
In addition, it has the benefit of unburdening the notation somewhat.

Consider the bipartite grapil = (U, V, E') in imagei where the vertice& correspond to
the image measurements, i.@k,é u,;;, and the vertice¥” are identified with the features,
I.e.,v; £ x;. Bothk andj range froml ton, i.e.,|U| = |V| = n. Finally, the graph is fully
connected by the set of edgEs= U x V, and we associate the followirglge weightvith
each edge = (uy, v;):

2 _log P(ag|jir, mi, x5,,) (5.7)

w(ug, vj)
Definition A matchingis defined as a subséf of the edges, such that each vertex is
incident to at most one edge. Assignments defined as a perfect matching: a sewtof
edges such that every vertex is incident to exactly one edge.

Given these definitions, it is easily seen that every assignment iectmmesponds to an
assignment in the bipartite grajgh so we use the same symbol to denote both entities.
Furthermore, we use the notatijfu) to denote the match of a vertexi.e., j;(ux) = v;

iff j;x = j. Recalling equation (5.3), itis easily seen tfaatvalid assignmentg € P, the
posterior probabilityf;(j;) can be expressed in terms of the edge weights as follows:

1 (i) ox exp Zlog P (W |jir, my, x;,, ) | oc e7? U (5.8)
k=1

where theweightw(j;) of an assignment is defined as

n

(i) = 7wl i)
k=1
Expression (5.8) has the form of a Gibbs distribution, whe(g) plays the role of an
energy term: assignments with higher weight (energy) are less likely, assignments with
lower weight (energy) are more likely.

Thus, the Gibbs distribution provides the link between weighted assignments on the one

hand, and the posterior probability of the associated correspondence on the other hand.
Clearly, this is no coincidence, as the weights are exactly defined as the log-likelihoods

(i.e., reprojection errors!) of the associated correspondence assignments. Keeping this
connection in mind helps a great deal in understanding the overall MCEM approach.
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5.5 An Efficient Sampler

The previous section showed that the problem of sampling from the assignment yectors
in the structure and motion problem is equivalent to sampling from weighted assignments
in the bipartite grapltz, where the target distribution is given by the Gibbs distribution
(5.8). Below we temporarily abstract away from the application at hand (structure from
motion and derived geometric estimation problems) problem and think solely in terms of
weighted assignmentkin a single image.

In this section | show that the Metropolis-Hastings method can be made to very effectively
sample from weighted assignments. The convergence of the Metropolis-Hastings algorithm
depends crucially on the proposal densjtyWe need a proposal strategy that leads to a
rapidly mixing Markov chain, i.e., one that converges quickly to the stationary distribution.
Below we discuss three different proposal strategies, each of which induces a Markov chain
with increasingly better convergence properties.

5.5.1 Flip Proposals

The simplest way to propose a new assignmiifitom a current assignmedtis simply to
swap the assignment of two randomly chosen vertices

1. Pick two matched edgé€s,, v;) and(u,, v2) at random.
2. Swap their assignments, i.e., Féfu,) < vy and.J'(us) + vy

To calculate the ratia, note that the proposal ratgéjj,—‘];; = 1. Thus, the acceptance ratio
a is equal to the probability ratio, given by
f(J)

a= = exp [w(uy, v1) + w(ug, v9) — w(uy, vy) — w(ug, v1)]

e

Even though this “flip proposal” strategy is attractive from a computational point of view,

it has the severe disadvantage of leading to slowly mixing chains in many instances. To

see this, consider the arrangement with= 3 in Figure 5.1. The regular arrangement of

the vertices on the circle means that there are two equally optimal assignments, (a) and
(e). The probability distribution over the assignments is given in Table 5.1: as expected

configurations (a) and (e) contain most of the probability mass, whereas (b-d) are much
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()

Figure 5.1: An ambiguous assignment problem witk 3. All vertices lie on a circle with
radiusR. See text for explanation.
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a b c d e f
49.994| 0.004| 0.004| 0.004| 49.994| 0.000

Table 5.1: The probability distribution (in percent) over the assignments in Figure 5.1,
according to the Gibbs distribution with defined by isotropic Gaussian noise with standard
deviationo = 0.4R (with R the radius).

Vo

ceohae Y

(a) (b) (c)

Figure 5.2: Augmenting paths. (a) Original, partial matching. (b) An augmenting path,
alternating between free and matched edges. (c) The resulting matching after augmenting
the matching in (a) with the path in (b) .

less likely, and (f) is very improbable. The figure illustrates a major problem with “flip
proposals™ there is no way to move from (a) to (e) via flip proposals without passing
through one of the unlikely states (b-d). An MCMC sampler that proposes only such moves
can stay stuck in the modes (a) or (e) for a long time.

5.5.2 Augmenting Paths and Alternating Cycles

In order to improve the convergence properties of the chain, we use the idea of randomly
generating araugmenting patha construct that plays a central role in deterministic al-
gorithms to find the optimal weighted assignment (Bertsekas, 1991; Cook et al., 1998;
Papadimitriou and Steiglitz, 1982). The intuition behind an augmenting path is simple: it
is a way to resolve conflicts when proposing a new assignment for some random vertex in
U. When sampling, an idea for a proposal density is to randomly pick a vege® change

its assignment, but as this can lead to a conflict, we propose to use a similar mechanism to
resolve the conflict recursively.

We now explain augmenting paths following (Kozen, 1991). Assume we have a partial
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AN T

glely

(@) (b) (c)

Figure 5.3: (a) Original assignment. (b) An alternating cycle implementing a k-swap, with
k=3 in this example. (c) Newly obtained assignment.

matchingM. An example is given in Figure 5.2 (a). Now pick an unmatched vertexd
propose to match it up with. We indicate this by traversing the free edgev). If v is
free, we can simply add this edge to the matchiig However, ifv is not free we cancel
its current assignment by traversing thatchededge(v, v’). We then recurse, until a free
vertex inV is reached, tracing out threugmenting pathp. One such a path is shown in
Figure 5.2 (b). Now the matching can hagmentedo A’ by swapping the matched and
the free edges ip. Thisaugmentatiomperation is written ag/’ = M & p, whered is the
symmetric difference operator on sets

A®B=(AUB)— (ANB)=(A— B)U(B — A)

For the example, the resulting matching is shown in Figure 5.2 (c).

Algorithms to find optimal matchings start with an empty matching, and then perform a
series of augmentations until an optimal matching is obtained (Kozen, 1991). For sampling
purposes alternatingyclesare of interest, because they implement k-swaps. An example
is shown forn = 4 in Figure 5.3. In contrast to the optimal algorithms, when sampling we
start out with a perfect matching (an assignment), and want to propose a move to a different
(also perfect) matching. We can do this by proposing the matcliing J @& C, where

C'is an alternating cycle. This has the effect of permuting a subset of the assignments.
Permutations that leave no element untouched are cdéeshgementsand hence any
alternating cycle implements a derangement of a subset of the assignments.
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5.5.3 Proposing Moves by “Chain Flipping”

Recall that the goal is to sample from assignmdntsing the Metropolis-Hastings algo-
rithm. We now advance a new strategy to generate proposed moves, through an algorithm
that we call “chain flipping” (CF). The algorithm is based on randomly generating an alter-
nating cycle according to the following algorithm:

1. Pick a random vertex in U

2. Choose a matchin V' by traversing the edge= (u, v) according to the transition

probabilities ()
A exp(—w(u,v
100 = 5 e w(u, o) ©9)

which accords higher probability to edges- (u, v) with lower weight.

3. Traverse the matched ed@e«) to undo the former match.
4. Continue with 2 until a cycle is formed.

5. Erase the transient part to get an alternating aycle

This algorithm simulates a Markov chaldC' defined on the bipartite gragh and termi-
nates the simulation when a cycle is detected. The resulting alternating(¢yslesed to
propose a new assignmefit= J & C, i.e., we “flip” the assignments on the alternating
cycle or “chain” of alternating edges.

We also need to calculate the acceptance rathss it happens, we have

S g )

Qop = = 5.10
) 9T 520

To prove this, note that by (5.8) and (5.9) the probability ratio is given by
) _ € H q(u, J'(u)) (5.11)

el

The proposal density(.J'; J) is equal to the probability of proposing a cyclethat yields
J' from .J, which is given by:

U

( I a(u 7 ) > Puc(T) (5.12)
(

u,v)EP
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where the sum is over all transient paffigshat end on the cycl€’, and Py,(T) is the
probability of one such transient. The probability/; J') of proposing.J starting from

J' is similarly obtained, and substituting both together with (5.11) into (5.10) yields the
surprising result = 1.

A distinct advantage of the CF algorithm is that, as with the Gibbs sampler (Gilks et al.,
1996), every proposed move is always accepted.rftteansition probabilitieg(u, v) are

also fixed and can be easily pre-computed. A major disadvantage, however, is that many of
the generated paths do not actually change the current assignment, making the chain slower
than it could be. This is because in stethere is nothing that prevents us from choosing

a matched edge, leading to a trivial cycle, and in steady state matched edges are exactly
those with high transition probabilities.

5.5.4 “Smart Chain Flipping”

An obvious modification to the CF algorithm, and one that leads to very effective sampling,
is to make it impossible to traverse through a matched edge when generating the proposal
paths. This ensures that every proposed move does indeed change the assi§nnient,
accepted. However, now the ratican be less thah, causing some moves to be rejected.

Forcing the chosen edges to be free can be accomplished by modifying the transition prob-
abilitiesq(u, v). We denote the new transition probabilitiesgdéu, v), as they depend on
the current assignmetit and define them as follows:

exp(—w(u,v)) .
¢ (u,v) 2 ) Xz exp(—w(up) if v# J(u)
0 if v = J(u)

i.e., we disallow the transition through a matched edge. We can rewrite this in terms of the
transition probabilitieg(u, v) defined earlier in (5.9), as follows

av) iy £ J(u)

J u,v) = 1—q(u,J(u))
7 (.v) 0 if v=J(u)

Note thatthese depend on the current assignmgriut in an implementation their explicit
calculation can be avoided by appropriately modifying the cumulative distribution function
of ¢ at run-time.

This proposal strategy, which we call “smart chain flipping” (SMART), generates more
exploratory moves than the CF algorithm, but at the expense of rejecting some of the moves.
It can be easily verified that we now have
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6: a= 1.00 (A) 7:a=0.58 (R) 8: a= 1.00 (A) 9: a= 1.00 (A) 10: a= 1.00 (A)

-~ N
Y0002

11: a= 0.58 (R) 12: a= 1.00 (A) 13: a= 1.00 (A) 14: a= 1.00 (A) 15: a= 0.58 (A)

VAV,

16: a= 1.73 (A) 17: a= 0.58 (A) 18: a= 1.00 (A) 19: a= 1.73 (A) 20 a=1.00 (A)

Figure 5.4: 20 iterations of an MCMC sampler with the “smart chain flipping” proposals.

The current matches are shown as solid blue edges, the proposed matches as dashed red
edges, and the transient part as dashed cyan edges. The acceptands sitoovn, as well

as whether the move was accepted (A) or rejected (R).
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(a) Low Temperature (b) High Temperature

Figure 5.5: Log-log plot comparing the mean absolute error (y-axis) versus number of
samples (x-axis) for the 3 different proposal distributions: random flips, chain flipping, and
smart chain flipping. (a) For a 'sharp’ distribution with low annealing parameter0.2,

and (b) for a high value of = 0.6.

B 1— q(u, J(u))
ASMART = uell 1 —q(u, J'(u))

In Figure 5.4 we have shown 20 iterations of a Metropolis-Hastings sampler using the

SMART proposals, and also show the valuez@ind whether the move was accepted (A)
or rejected (R).

5.5.5 Results for Efficient Sampling

Experimental results support the intuition that “smart chain flipping” leads to rapidly mix-
ing chains. In order to assess the relative performance of the three different samplers | have
discussed above, | generated 1000 synthetic weighted assignment instances=with

and ran each sampler for 10000 iterations on each example. There was no need to wait
until the stationary distribution was reached, as the initial assignment was drawn from the
exact distribution to start with, which is possible for examples with small

Figure 5.5 shows a log-log plot of the average absolute error (averaged over all examples)
for one of the marginal statistics (expression 5.5 on page 69) as compared to the true value
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(definition 5.2 on page 66). This was done for two different values of the annealing pa-
rameterss, which determines the smoothness of the distribution. As can be seen from the
figure, the “smart chain flipping” proposal is an order of magnitude better than the two
other samplers, i.e. it reaches the same level of accuracy in far fewer iterations. For lower
temperatures, i.e. sharper distributions, the difference is more pronounced. For higher tem-
peratures, the errors are larger on average (as the sampler needs to explore a larger typical
set), and the difference is less pronounced. It can also be seen that the difference between
the random flip and (non-smart) chain flipping proposals is negligible.

Another approach to assess the convergence of the sampler is discussed in (Gelman, 1996):
we can plot the time series for a single summary statistic in multiple, concurrently run
MCMC simulations. Convergence can be assumed if all time series converge to the same
value for the statistic. Displays such as this also give a qualitative understanding of the
behavior of the different strategies, as we discuss in more detail below.

For Figure 5.6, we sample from a distribution over assignmentswith 4, for the con-
figuration of features and observations as shown in Figure 5.4. It is clear from the latter
figure that there are two globally optimal assignments, leading to a strongly bimodal dis-
tribution. In Figure 5.6 we show the convergence of each of the three proposal strategies
discussed above, respectively from top to bottom: “flip proposals”, “chain flipping”, and
“smart chain flipping”. For each strategy, we show the results for a relatively smooth dis-
tribution (o = 0.9R, shown at left), and a relatively peaked distribution= 0.5R, shown

at right). The summary statistic used is the proportion of samples that assigns observation
1 to featurel, estimated by the average

~

Al '
Jii = ?zt:(s(’] (l)vl)

In the case of the low value for, this value is expected to be equalité, and smaller for
higher values ofr. In all cases, the sampler was run fidi00 iterations, the firsi 00 of
which were discarded as a transient.

We draw the following inferences from these figures:

e “Flip proposals” are very slowly mixing and get stuck on high probability assign-
ments, especially for peaked distributions (Ieyv This is evident from Figure 5.6

(0).

e “Chain flipping” leads to better mixing, but from the Figure 5.6 (c) and (d) it is clear
that there are long stretches where the assignment is not changed much if at all.
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Figure 5.6:Assessing the convergence for the different proposal strategies. See text for explana-

tion. (top) “Flip proposals”, (middle) “chain flipping”, (bottom) “Smart chain flipping”. On the left,

o = 0.9R, on the righto = 0.5R. The configuration that is being sampled over is the same as in

Figure 5.4.
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e Much better performance is obtained using “smart chain flipping”, especially for
the peaked distribution on the right. The convergence to the bimodal distribution is
almost immediate when compared to the other strategies. Convergence is somewhat
slower for a high value of, as there are many more probable states that take some
time to be visited often enough.



Chapter 6
Results with no Occlusion or Clutter

In this chapter | demonstrate that the Monte Carlo EM approach does indeed provide a prac-
tical way to approximate the optimal solution of multi-view geometric estimation problems
with unknown correspondence. All the results shown in this chapter (as in the entire disser-
tation) concern the structure from motion (SFM) problem. As discussed in Section 4.1 on
page 49, SFM can be regarded as a superset of many geometric estimation problems, and
is also the most challenging of these problems in many respects.

The results shown below are for problems in which there is no occlusion or clutter, i.e.
satisfying the assumptions made in Chapter 5. Whereas the MCEM algorithm was derived
in Chapter 4 with no such restriction, the sampler from the previous chapter was designed
to sample over the space a$signmentsé each image, i.e. over matchings between
measurements;, andn 3D featuresg;, where botht and; range froml to n. In the next
chapter, Chapter 7, we discuss probabilistic models for occlusion and clutter, and results
for problems with occluded features or spurious measurements are presented in Chapter 8.

This chapter is divided into two sections. Section 6.1 illustrates the MCEM approach us-
ing the “cube” sequence, which | have used frequently in papers and talks to explain the
approach in a user-friendly way. The next section, Section 6.2, shows additional results
on real image sequences, both to establish that the approach is feasible and to illustrate its
gualitative behavior on different image sets.

83
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6.1 The MCEM Approach

6.1.1 Inputs to The Algorithm

The MCEM approach is illustrated below using a data-set derived from the images shown
in Figure 6.1. There are 11 images of a calibration cube with texture on the sides. The
images were taken under controlled conditions in the CMU calibrated imaging lab (CIL).
They were taken as a sequence, but in order to illustrate that the MCEM approach does not
need this information, the sequence information is disregarded in this example. In general,
the correspondence matching and structure recovery can be made considerably easier if it
is known in which temporal (or spatial) order the images were taken. In particular, this can
be done in a straightforward manner by using a prior on the moiloif this were desired

(in fact, an example of such a prior is discussed in detail in Section 8.1 on page 144).

The inputs to the MCEM algorithm are 50 measurements in each image, manually obtained
by clicking on the same interesting features in all 11 images, for a total of 550 measure-
ments. Figure 6.2 shows the measurements thus obtained for 6 out of the 11 images. As part
of this manual process, the ground truth correspondence between the images was recorded,
and is used below to present the output of the algorithm in a comprehensible manner. Nat-
urally, the ground truth is not used by the MCEM algorithm itself.

6.1.2 Structure from Motion without Correspondence

To initialize the algorithm, the initial structure and motion estim@tewas generated as
follows:

e The 50 features; were initialized randomly in a normally distributed cloud around
the origin, with standard deviatian= 0.1.

e The 11 cameras were all placed at locatiea (0, 0, —5)7, facing the origin.

The MCEM algorithm gradually recovers the 3D-structure of the cube and the location of
each of the features, as shown in Figure 6.3. The recovered structure at each iteration is
visualized by drawing colored polygons that correspond to the faces and/or salient features
on the surface of the cube. Note that to do this, the ground truth correspondence is used to
guess the most likely identity of each structure point (needed to draw the polygons). This
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Figure 6.1: The 11 original “cube” input images.

85



CHAPTER 6. RESULTS WITH NO OCCLUSION OR CLUTTER

L ok
L ® o) sof © o)
L o ©O 100 o O
o ® © o ® =
b @) 150 o
OOOO O OOO OO @]
L O Q o 2001 O O
o § {0
000 @) Qo @)
F O 2501 (@]
9 0] 9 @)
L o @] o 3001 o @) o
® ®
r 350
C L L L L L L L L L L L 4001 L L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550
(a) image 1 (b) image 3
L ol
L ® O soF ® O
L o O 1001 o O
o °c & N o) °c 8 Q0 °
L o @) 1501 0000
& o o QP $ o o %%Oo
F © 5 9o oD 200 ©o 5 O 0%y
o &P o
F O 250 o O
o
oo ° 0, °
r O 300 O
© ©
r 350
C L L L L L L L L L L L 4001 L L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550
(c) image 5 (d)image 7
L ok
[ @ ©) soF ® o)
b o 100 e}
o o)
o °® o @ o & . @
L % o ool o 0% o
O 0000 596 o 000 O
[ o 8 9] 000 200 o O 0000
00 Q (o)ie
o @b o
L o O 2501 OO
05° 0,°
r O 300 O
® (&)
r 350
C L L L L L L L L L L L 4001 L L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550

(e) image 9

Figure 6.2: Measurements in 6 (out of 11) “cube” images.

(f)image 11
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(d)it13 (e) it 17

(9)it25 (h) it 29 (i) it 30

Figure 6.3: The structure estimate at successive iterations of the algorithm for the “cube”
images.
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is necessary as the order of the structure points can be scrambled by a random permutation,
even if the “correct” correspondence between images is nearly recovered.

There are two important facts to note from Figure 6.3. First, even after the first iteration,
the recovered structure shown in panel (a) is recognizable, andithsut the benefit of a
known correspondence, and starting from a random initial estim@geond, as a conse-
guence of the deterministic annealing strategy used to avoid local minima, the gross struc-
ture is recovered first, whereas small details are recovered more gradually as the annealing
factor is decreased. Both these points will be discussed in more detail, but it is instructive
to first take a more detailed look at the E-step.

In the example, the annealing schedule is linear with the initial annealing factor equal to
44 x o, whereo is the noise standard deviation estimated at 1 pixel.

6.1.3 The E-step

Figure 6.4 illustrates the E-step and the computation of the virtual measurements. Recall
that the EM algorithm alternates between an expectation step (E-step) and a maximization
step (M-step). In each E-step we compute (or estimate using sampling, in this case), for
each measurement;, the marginal probabilit Z';k that it actually corresponds to feature

x;, conditioned on the current structure and motion estirftte

As explained in Chapter 5, this is done by first projecting the estimated strituireo

each image according to the estimated motion parametersThese projected features
h(m;, x;) are shown in Figure 6.4 as red numbers. Note that, because in the first iteration
the structure estimate is random and all the cameras are at the same position, the projected
features in both images 1 and 6 are in exactly the same location. In both images, the mea-
surements are visualized using the same mesh as used in Figure 6.3, i.e. the measurements
are the vertices of the colored mesh.

The Monte Carlo E-step proceeds by sampling over assignments between the projected fea-
tures (red numbers) and the measurements (vertices of the mesh). The resulting estimated
marginal probabilities are shown as grayscale edges between the feature projections and
the measurements, where a darker edge means a more probable association.

The virtual measurements (shown as blue numbers) are then computed as weighted aver-
ages of the original measurements, with weights corresponding to the grayscale edges in
Figure 6.4. There is exactly one virtual measuremq‘piin each image for each feature

x;, and the weights used to compute teare those that connect the featurewith the
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(b) image 6

Figure 6.4: The calculation of virtual measurements (the E-step) in the first iteration, for
images 1 and 6. See text for a detailed explanation.
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measurements;; in imagei. To illustrate this, consider the projected feathfen, x9)

which, by chance, ended up towards the top of the image (the red number 19 in Figure
6.4a). After running the sampler, featutg, is estimated to be most strongly associated
with measurements on the right-hand side of the image, corresponding to the cube vertices
of the top-left corners (both in back and in front, but the association is stronger with those
of the back corner). The virtual measurement, is formed as the weighted averageadif
measurements, but weighted according to the estimated correspondence prob@%uities
Since the measurements on the right are much more strongly associated with fgature

the virtual measurement, ;4 appears on the right, as well. It is shown as the blue number
19 in the figure.

Also apparent from the figure is the effect of the mutual exclusion constraint. For example,
the projection of feature,q is closer to the measurements on the left. However, these as-
sociations are made less probable because the projections of featyres, x3;, andxy,
respectively, monopolize the probability mass allocated to the measurements on the left.
This can be best understood in terms of the sampling mechanism: if an assignment is pro-
posed in whichk,qy is associated with the left measurements, the other feature projections
are forced (because of mutual exclusion) to make less probable associations elsewhere.
Because of that, the acceptance ratio will be much smaller, i.e. such a proposal will most
likely be rejected.This is the essential difference with the E-step in mixture estimation
which the marginal probabilities are based on distance only. In the present case, shorter
edges can actually be less probable.

Finally, looking at both image 1 and 6 in combination, some intuition can be gained as
to why gross structure is recovered in the first iteration. Because of mutual exclusion, as
explained above, the virtual measuremevfgscan end up far from their associated pro-
jected featureh(m;, x;). In addition, the images are not that different, as in this sequence,
the separation between the camera viewpoints is not that large. Both factors combine to
cause virtual measurements to be more or less consistently distributed towards the left or
the right, or anywhere else in the image. Since the virtual measuremgraee used as

input to bundle adjustment, the resulting structure and motion esti®tatedoes also have
some consistency to it. However, because the initial structure estimate is completely ran-
dom, there is of course no preservation of the order of the feature indid&gen if, in a

very unlikely case, all virtual measurements would end up being strongly associated with
one measurement only, and the same one at that in all the different images, the jndices
would still be scrambled by an arbitrary permutation.
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6.1.4 Marginal Probabilities over Time

The behavior of the algorithm can further be illustrated by looking at how the marginal
probabilities orsoft correspondencq’gk (and hence the virtual measurememjgs) change

over time, which is illustrated in Figure 6.5 for one image. First, this figure clearly illus-
trates the effect of annealing: in the early iterations, measurements that are close together
are grouped together. This is because for a high annealing factor, small differences in
distance between projected features and measurements will not affect the marginal proba-
bilities greatly. In later iterations, they separate out, and smaller structural features begin
to appear in the structure estimate. Second, in later iterations, when the correct correspon-
dence is close to being the only one with any probability mass, the virtual measurements
almost coincide with the actual measurements. This is because one association dominates
all other associations for a given featuwtg and hence the computation of the associated
virtual measurementﬁj is dominated by the contribution of only one measurement.

A more concise and very insightful way to monitor the changing marginal probabilities is
by displaying them as doubly stochastic matrices, as shown in Figures 6.6 and 6.7. For
each image, the marginal probabilitiﬁﬁ can arranged in an x n matrix, since there

aren measurements;; in each image and featuresx;. This will be adoubly stochastic
matrix, meaning that both rows and columns will sum to one. In each iteration, 11 of
these matrices are computed, and they are graphically represented in figures 6.6 and 6.7 as
a set of 11 stacked images. Thecolumns correspond to thefeaturesx;, whereas the

m X n rows correspond to the measuremanyjs The darker a pixelk, j) is in subimage
(corresponding to imag#, the higher the probabilit)gg.k. The probabilities change at every
iteration, as (a) the E-step is conditioned on a changing structure and motion egimate
computed in the M-step, and (b) because of deterministic annealing (see below).

There are two important things to notice. First, the marginal probabilities converge to per-
mutation matrices associated with the correct (ground-truth) correspondence. The matrices
are presented in such a way that the ground truth corresponds to a stack of 11 identity matri-
ces. This can be done only because we actually have the ground truth correspondence, and
hence we can rearrange the columns and rows of the matrices to make it so. As can be seen
in the figures, the marginal probabilities gradually converge to the identity matrices. In re-
ality, the marginal probabilities corresponding to incorrect correspondences are not entirely
zero. Even in the last iteration, when the algorithm has converged, a non-zero probability
is estimated for “incorrect” correspondences. The word “incorrect” is in quotes, as from
the point of view taken here, there are no correct or incorrect correspondences, only more
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and less probable ones. Recall that we are only obtaining a point estimate for structure and
motion, and in order to do so a distribution over correspondences is computed, not a single,
“correct” one.

Second, the effect of annealing can clearly be seen in the figures. The decreasing annealing
factor has the effect of gradually “sharpening” the posterior probability distribution over
correspondencek and hence also its margingﬂﬁ. Looking at iteration 17 (Figure 6.7a),

for example, we see that while the first 20 or so features (corresponding to structural fea-
tures on a larger scale, e.g. the cube vertices) are already sharply associated in a consistent
manner across all images, the marginal probabilities corresponding to the last 30 features
appear as gray “blocks” in the matrix. If examined carefully, three blocks can be discerned,
corresponding respectively to the small circle on the front of the cube, and two distinct
groups associated with the decoration on the side of the cube. We can correlate that with
Figure 6.5e, which shows the calculation of virtual measurements for the same iteration (it-
eration 17). Looking at both figures in combination it is easy to see the connection between
the two different ways of presenting essentially the same information.

6.1.5 The M-step

In the M-step, the virtual measurements computed in the E-step are used to re-estimate
the structure and motio®. A 3D representation of the evolving structure estimate, as
shown in Figure 6.3, is not always the most insightful way to represent this. In addition, it
requires us to specify a mesh, which is not always applicable. An alternative is to instead
plot the evolution of thgrojectedstructure in image space, as shown in Figure 6.8. In the
figure, in the top panel, the measurements are shown as circles, and for eachxeature
the evolution of its projectioi(m;, x;) is shown as a trajectory. Because in this case the
correct correspondence is recovered, all the trajectories endpoints coincide (almost) exactly
with a measurement. The endpoint itself is shown as an asterisk in the figure. Finally, at
the bottom, the measurements and the trajectory endpoints are superimposed on the original
input image, which clearly shows that the algorithm has converged to a consistent solution.
An overview across all images can be gained by looking at the evolution of the projected
structure in many images at once, as shown in Figure 6.9.
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Figure 6.9: Plot of the predicted location for each of the features over time in each of the 6
“cube” images shown in Figures 6.2 and 6.10 (below).
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(c)image 7 (d) image 11

Figure 6.10: 4 (out of 11) original “cube” input images. The last predicted location is
marked with an asterisk. Measurements are shown as circles.
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6.1.6 The Final Result

The quality and correctness of the final structure and motion estimate can be assessed by
superimposing the measurements and the projected features corresponding to the converged
estimate on the original input images. This representation is shown in Figure 6.10 for the
case of the “cube” sequence, and it is used extensively below, as well.
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6.2 More Results with Real Images

In this section, some more results are shown on different image sets. In order to appreciate
what the algorithm uses as input, the raw 2D measurements are always shown first, without
showing the actual input images. If the actual images are shown, the problem looks easy, as
our visual cortex makes immediate sense of the scene. However, remember that the MCEM
approach as presented above does not make use of any appearance information (at least not
until Chapter 9), which is something we automatically do when we look at an image.

The results shown below were are all obtained under the assumption that there was no
occlusion or clutter. In all cases, measurements were obtained in the same way as before,
i.e. by a graduate student who manually clicked on salient features. This simulates a
“perfect feature detector”, which never reports any spurious measurements or misses a
feature. Additionally, the features were chosen such that it is never occluded in any of the
input images. As mentioned before, these assumptions will be relaxed in the next chapter.

6.2.1 Townhouse

The “townhouse” sequence illustrates that incorrect correspondences in the first iterations
can be recovered from in later iterations. The image sequence consists of 4 images with 20
measurements in each image, shown in Figure 6.11.

In this case, the structure and motion were initialized in the same way as for the cube
sequence, with all cameras looking to a normally distributed cloud of points. The evolution
of the marginal probabilities over time, shown in Figure 6.12, illustrates that this initial
estimate is quite good for this sequence, in which image viewpoints are indeed quite close.
Indeed, the marginal probabilities in the very first iteration closely resemble stacked identity
matrices, which correspond to the ground truth. The measurements incorrectly assigned
in the first E-step do not have a large effect on the M-step, which in turn favors correct
assignments in subsequent E-steps. By iteration 3 there is still confusion, but it is gradually
cleared up as the annealing factor is decreased.

For this sequence, some generic prior knowledge about the motion parameters was used.
The fact that the structure is initialized randomly does not matter that much: a good initial
motion estimate is what matters more. In this case, the cameras were initialized at the same
position, all upright, and looking at the same point in space. This is a good strategy for
image sets with moderate motion between the images. Prior knowledge is also used in
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the M-step: in many cases, we know enough about how the sequence is taken that we can
rule out many improbable values for the motion parameters. For example, in the majority
of images taken with snapshot cameras, the orientation will be landscape. That fact is
used here (and in all results below), to impose a strong prior on the roll parameter of the
cameras (i.e. making non-zero values less probable). Pictures with portrait orientation
could conceivably be handled automatically, as in many cases it is possible to guess the
orientation from the images (e.g.bright sky belongs at thetapyeaker prior is imposed

on the vertical position of the camera: in this instance and also below, the prior biases the
estimate towards all images taken from the same height.

The evolving structure estimate for the “townhouse” sequence is shown here using both
trajectories of projected features, in Figure 6.13, and a 3D mesh representation, in Figure
6.14. In the latter figure, the camera position and orientation for the 4 cameras is shown, as
well. Finally, the converged structure and motion estimate is illustrated by superimposing
both the projected features and the measurements on the original input images, in Figure
6.15.

LIn fact, research at the Kodak company addresses exactly this problem (personal communication with
unnamed Kodak source).
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(c)image 3 (d) image 4

Figure 6.15: The 4 original “townhouse” input images. The last predicted location is
marked with an asterisk. Measurements are shown as circles.
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6.2.2 Mantle

A good initial estimate can lead to very fast convergence, as illustrated by the “mantle”
image set. Again, 2D measurements are shown first in Figure 6.16, whereas the evolving
marginal probabilities are shown as stacked stochastic matrices in Figure 6.17. By varying
the number of iterations in successive runs, | found that the MCEM approach converged
in as little as 10 iterations, provided a good initial estimate for structure and motion was
available. In the “mantle” case this was obtained, as before, by initializing all the cameras
at the same location and looking at the same point in space. However, in this case the
structure was initialized on a plane at some arbitrary depth, using the measurements from
an arbitrary image to create rays that were intersected with the plane. As a consequence
the measurements and projected features coincide in that image (in this case image 3),
as shown in Figure 6.18c. Since the other images were taken relatively nearby and with
the same orientation (landscape), the displacements in the other images are also relatively
small, which explains why the first E-step is so close to the ground truth.

The input images with superimposed measurements and projected structure and motion
estimate are shown in Figure 6.19.
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Measurements in all 5 “mantle” input images.
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(a) image 1 (b) image 2

(c) image 3 (d) image 4

(e) image 5

Figure 6.19: The 5 original “mantle” input images. The last predicted location is marked
with an asterisk. Measurements are shown as circles.
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6.2.3 Desk

The same initialization method, initializing points on a plane using the measurements in
one image, was applied to the “desk” image set, whose measurements are shown in Figure
6.20. The marginals estimated in the first iteration, shown in Figure 6.21a, have only partly
consistent (soft) assignments. The scene is more difficult than the “mantle” scene, and
takes longer to converge (25 iterations, in this case).

The more difficult searching executed by the EM algorithm (remember, EM does nothing
but hill-climbing in likelihood space, using the lower-bounding mechanism) is illustrated
most clearly in Figure 6.22, where the trajectories for the projected features are shown for
the 5 images. The algorithm does finally converge however, and the end-result is shown,
superimposed on the input images, in Figure 6.23.
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Figure 6.20: Measurements in the 5 “desk” input images.
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Figure 6.22: Plot of the predicted location for each of the features over time in the 5 “desk”
images. The last predicted location is marked with an asterisk. Measurements are shown
as circles.
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(c) image 3 (d) image 4

(e) image 5

Figure 6.23: The 5 original “desk” input images. The last predicted location is marked with
an asterisk. Measurements are shown as circles.
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6.2.4 House

The EM algorithm can get stuck in local minima, and a typical way that this manifests itself
is illustrated here using the “house” image set. This set consists of five images of the set of
houses as the “townhouse” set shown before, but taken at a different time and from a wider
range of viewpoints. As such, there is significant foreshortening due to the perspective
projection. The measurements for this set are shown in Figure 6.24.

No matter how many times the algorithm is restarted with different initial conditions and/or
annealing schedules (which also specifies the number of iterations the algorithm is run),
there are remain small local mismatches in the final result. The evolution of the estimated
3D structure and the marginal probabilities for a typical run are shown in Figures 6.25 and
6.26, respectively. In this run, the algorithm was run for 50 iterations. Even though the
gross structure is recovered very early and most detailed structure is recovered eventually,
there are three features in the final structure estimate that are completely wrong. This can
clearly be seen from the figures: looking at the 3D estimate in Figure 6.25f we see that
the front roof and the rightmost window seem to have swapped vertices. Likewise, the
marginal probabilities in the last iteration (Figure 6.26h) clearly show local mismatches in
images 1,2, and 5.

Because this is a typical manifestation of a local minimum, Figures 6.27 and 6.28 illustrate
in more detail what exactly the mismatch is. From Figure 6.27, which shows the virtual
measurements in the last iteration for images 1 and 5, it is clear that the problem is very
local: the vast majority of the features, and also the motion, are estimated correctly. The
problem seems to be limited to three features on the right hand-side of the images, where
the gable of the roof and the rightmost window have switched position in the images. Figure
6.28 shows a close-up view of the problem area. The local minimum is this: the (wrongly)
estimated structure for features, x39 andx,g is such that a three-way mismatch is by far

the most likely correspondence. In turn, this correspondence causes the wrongly estimated
structure estimate to persist. In other words, we are in a part of state space where the
likelihood function is locally maximized, but we are in in fact not at the global maximum.

This particular run -with the local minimum problem- is further illustrated in Figures 6.29
and 6.30, respectively showing the trajectories of the projected features in image space, and
the original input images with the final structure estimate superimposed on them.

The final structure and motion estimate is very good, apart from the local mismatch between
these three features. The motion estimate is only slightly biased by the local mismatch. In
addition, the features for which the mismatch occurs is easily identified by looking at the
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Figure 6.24: Measurements in the 5 “house” input images.
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Figure 6.25: The structure estimate at successive iterations of the algorithm for the “house”
image series.
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Figure 6.26: Marginal probabilities computed in the E-step (“house”).
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Figure 6.27: Projected features (red), marginal probabilities (grayscale edges), and virtual
measurements (blue) in the last iteration for images 1 and 5. Note the three-way switch
between features;, x39 andxyy.
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Figure 6.28: Version of Figure 6.27 that shows the three-way switch between feafures
X3¢ andx,o more clearly.
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Figure 6.29: Plot of the predicted location for each of the features over time in the 5 “house”
images. The last predicted location is marked with an asterisk. Measurements are shown
as circles.
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(a) image 1 (b) image 2

(c) image 3 (d) image 4

(e) image 5

Figure 6.30: The 5 original “house” input images. The last predicted location is marked
with an asterisk. Measurements are shown as circles.
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residuals for the corresponding virtual measurements. These two facts together make that
the problem is actually easy to correct in a post-processing step: once the gross geometry
is recovered, it is straightforward to correct local problems such as these.

A Local Mismatch Correction Scheme

One possible way to correct local mismatches such as the one illustrated above, relies on
the fact that the motion estimate is overconstrained, even when mismatched features are
omitted or discounted. Thus, a more accurate motion estimate can be obtained by either
using a robust optimization scheme or simply omitting the mismatched features. After this
is done we have the best possible motion estimate, given that we have not yet corrected the
mismatch.

A possibly corrected structure estimate is then obtained by a RANSAC-like scheme. Since,
when given the motion, the structure is determined by exactly two views, we can sample
(or, if m is small, simply enumerate) from the possible image pairs, and select the pair that
has the smallest reprojection error. This then, presumably, is a pair in which the mismatch
does not occur (or, in the case of multiple problems, less mismatches occur).

Using the robustly estimated structure and mot@nwe can run the E-step again, and
re-estimate the structure and mot®nn a last M-step. If the estima® was in the basin

of attraction of the global maximum of the likelihood function, we are done. Otherwise,
we can repeat the process.

The scheme, as described informally above, was implemented and works well to correct
small, local mismatches, such as the one in this example.



Chapter 7
Occlusion and Clutter

In this chapter we extend the MCEM approach to handle occlusion and clutter. Self-
occlusion of objects and occluding objects can mean that certain features are not visible
in all of the images. In addition, the feature detector might miss some of the features, even
if they are visible. Finally, a feature detector can generate spurious measurements, i.e.,
report a feature where there is none. All these processes can be modeled probabilistically.
Clutter has been modeled before in the tracking literature. Occlusion has been studied less,
and | explore some of the options before settling on a simple visibility model that allows
for easy inference.

By allowing occlusion and clutter, the space of possible correspondence véetgpands
dramatically. Even if one assumes, as | do below, that the number of featisdsmown,

the number of measuremenk$ in the images can be different for each image and in
general different fromm. Only a subset of features might be visible in each image, and

a subset of the measurements might be spurious. It is easily seen that enumerating all
possible ways in which the subsets can be chosen and combined leads to a combinatorial
explosion.

Fortunately, sampling over a larger space to approximate the E-step is no harder than sam-
pling over the space of assignments, provided one can evaluate the probability of each
correspondence vector up to a constant. It is shown in this chapter that for a simple visibil-
ity model, the posterior probability(j;) of a given correspondence vecfpin one image
is given by the following simple expression:

fiGi) o< @ exp [~w(ji)]
whereq is a constant that depends on the amount of occlusion and cluttef; asdhe

126



CHAPTER 7. OCCLUSION AND CLUTTER 127

number of spurious measurements in imag&he second factor is simply the Gibbs dis-
tribution that favors measurements close to their predicted location gnaesrin Chapter
5 (equation 5.8 on page 71).

In this chapter we derive this expression and then show how the MCMC sampling algorithm
can be adapted to sample over the larger space of correspondence vectors. In the following
section, Section 7.1, we first examine the correspondence in one image. The knowledge
we have about the amount of occlusion and clutter can be modeled with varying degrees of
sophistication, which is discussed in Section 7.2. The result is that we can formulate a prior
over correspondences, based on their degree of occlusion and clutter. When combined with
a measurement model, we can finally derive the probability for any given correspondence
vectorJ, which is done in Section 7.3. Finally, sampling over these correspondence vectors
is discussed in the last section, Section 7.4.

7.1 Correspondence in one Image

The key assumption underlying this chapter is that, given a specific degree of occlusion
and clutter in one image, all correspondence assignments are otherwise equally likely. In-
tuitively, we expect a certain amount of occluded features and a certain amount of clutter,
but correspondence assignmehtlat have too much or too little of each are less probable.
That is expanded upon in the next section. However, it is clear that we have no eeason
priori to favor some correspondences over others, if they haveatimedegree of clutter or
occlusion. For the case when occlusion and clutter were not an issue, we assumed that all
n! possible image correspondence vecjovgere equally likely. Similarly, and this is a key
assumption, in the present case we assume that all correspondence jyeatersqually

likely a priori, once we know (a) which features are detected in imageand (b) how

many spurious measurements there are.

To make this assumption more explicit, we define two key random variables that help quan-
tify the degree of occlusion and clutter. Specifically, suppose the number of measurements
in images is equal tok;, then we define

e D, 2 the number features detected in imagehere) < D; < n.

o S; 2 the number of spurious measurements in imagéhere) < S; < K.
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Clearly, we havek; = D; + S;: a measurement is either spurious or corresponds to a
detected feature.

However, in order for two correspondence vectors to be equally likely a priori, they also
need to have exactly theamefeaturesx; detected in each. Indeed, one can imagine a
probabilistic model for occlusion that accords a higher probability of being occluded to
a specific feature (see below, in Section 7.2.2). To model this, we need to know exactly
which features were detected. Thus, let us define for each im#dgeimage detection
vectord;, wherei € 1..m. Eachd; is defined to be an-dimensional vector of booleans

d;;, indicating for each feature; whether it was detected in imager not:

d; = {dylj € 1.0}
We also define the aggregate detection veExahat spans all images:

D £ {d;]i € 1..m}

Finally, we can now specify the prior probability of a given assignment végtgiven the
detection vectod; and the number of spurious measuremehiss:

1

P(j;|d;, S;) = Comp(jiadi)ﬂ
NJ ’

whereComp(j;, d;) is an indicator function denoting whethgiis compatible withd;, and
Nfi’Di is the number of compatible assignment vectors contaislirgros and); detected
feature indices. Since there a(r%;’D) ways to choose the arrangement of the zeros, and
for each arrangement we hak! different ways of permuting the detected feature indices,

we have D (5.4 D) K
siD; _ (Pi T i\ o, Wit D) I
Ny N ( S; >Dl' N S;! R

Thus, we get
S,! S,

;= Comp(j;, d;) — (7.1)

P(jild;, 5;) = Comp(js, di)m Ki.!

Note that, if one would want tgeneraterandom assignment vectojs one needs the
pattern of detected featurds. simply knowing the number of detected featuresis not
sufficient.
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7.2 Detection, Visibility and Clutter

In this section we calculate how probable it is a priori that a specific image correspon-
dence vectoj; is observed. It will be shown that, for a simple visibility model, this prior
probability P(j;) is given by

6—)\

Si D; - n—D;
7(Si+Di)!)\ q (1 —q) (7.2)

P(ji) =
where ) is the expected number of spurious measurementsgaadhe the combined
visibility-detection probability. Both these quantities are defined and discussed below. Ex-
pression 7.2 can then be combined with a measurement model in order to obtain a posterior
probability over image correspondence vectors.

Given the key assumption made in the previous section, we can reduce the calculation of
the prior P(j;) to calculating the probability of a specific set of detected featiDes
combination with a specific number of spurious measuremgnis each image. Note
however that, in general, we can no longer treat the images in isolation. Indeed, we get the
following expression for the conditional priét(J|M, X) over correspondence vectdrs

P(JIM,X) = P(D, Sy, ... Su| M, X) [ [ P(iild:, S2) (7.3)

=1

We have not yet made any assumptions that allow us to decompose the first factor, the prior
on detection and number of spurious featuP¥®, Sy, .., S,,|M, X), over the images. In
fact, several realistic models are possible where this cannot be done. The final expression
(7.2) is only valid for a specific, simple visibility model that disregards possible correlation
between neighboring images.

In general, it is reasonable to model the occlusion and detection process separately from
clutter, and model clutter as independent of the structure imaged. This is formalized by the
following assumptions:

e Detection of features is independent of clutter. While in high-clutter situations it
might be harder to pick out which measuremenjs correspond to real features,
the number or identity of detected features is not affected. In terms of probability
distributions, this is expressed as

P(D, S, .., Su|M, X) = P(D|M, X)P(S4, .., Spu|M, X) (7.4)
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e The number of spurious features in the images is independent of the striXcture
However, we keep the possible dependence on mdoaxplicit for now, so we
can model correlation between thein images taken closely together. In terms of
probability distributions, this second assumption implies

P(S1, .., Sm|M, X) = P(S4, .., Spu|M) (7.5)

Under these assumptions, we get the following expression for the prior probahilitivi, X)
on aggregate correspondence vecib(by substituting (7.4) and (7.5) into (7.3)):

P(JIM, X) = P(D|M, X)P(Si, ., Su[M) [ | P(iilds, S:)
=1
Below we first examine the detection procé¥®|M, X) in further detail, then the clutter
P(Sy, .., Spm|M).

7.2.1 Detection

The question of whether a featusg is measured in imagg i.e., the value otl;;, can be
regarded as the answer to two separate questions: (a) is the feataceuallyvisible in

images, and (b) in the case it is visible, is it then actually detected by the measurement
process? The latter question reflects the fact that feature detection algorithms are in general
not infallible.

We modelvisibility v; in a given image as am-dimensional Boolean vector

vi = {vylj € 1.n}
where each bit;; indicates whether featuse; is visible in the image positioned ai;. We
define theaggregate visibility vectoV as the collection of al;:

V 2 {vi|i € 1.m}

For simplicity we model each visible feature to have a fixed probabildf/being detected
when visible. This yields the following conditional probability of detectignwhengiven
visibility v;;, in table format:

vij | di | P(dijlvig)
1 1 )
1 0 1—46
0] 1 0
0] O 1
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Sincev;; andd;; are both boolean variables this can be written compactly as:

P(dijlvig) = 6%% (1 — g)vut=da)gU=vis)dis (7.6)
6Uijdij (1 _ 6)”ij(1*dij)v(.i.ij (77)

L

where the second equality can be easily verified using a truth table. The second form (7.7)
is convenient to obtain the probability of a specific detection vediagiven a visibility
vectorv;:

P(dlv;) = 6P (1 — 6)" P [ oi (7.8)
j=1

whereD, denotes the number of detected features,1dns the number of visible features
in image:. The rightmost product above indicates whetlgis compatible withv; in
terms of visibility: it is zeraiff there exists a feature; for whichv;; = 0 andd;; = 1. In
other words, invisible features are assumed undetectable.

There might be imaging situations where a more sophisticated detection model is called for.
For example, one application involves reconstructing the shape of an asteroid, where the
detected features are craters on the asteroid’s surface. Crater-shaped features are less likely
to be detected on the shadow side of the asteroid, and this could be modeled by conditioning
the probability of detection on the imaging situati®n An alternative solution is to include

this effect in the calculation of visibility;, and by convention reserve the detection process

to effects that do not depend éh This is the approach we take here.

The probability of a given detection vectBrgivenM andX is then obtained by summing
over all possible visibility configuration¥':
P(DIM,X) =Y P(VIM,X) [[ P(dilv:) (7.9)
A% =1
with P(d;|v;) defined as above in equation (7.8). What is left is to model the probability of
a visibility vectorV by means of the conditional prid?(V|M, X), which is done below.

7.2.2  Visibility

There are several ways to model visibility, with varying degrees of sophistication: (a) using
an MRF, (b) assuming conditional independence, (c) assuming a fixed probability of being
visible. Below we mostly use the latter (simplest) model, keeping in mind that any of
the more sophisticated models can be used if warranted. Note that since the model for
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visibility is part of the prior it is often not critical that it is accurate. Once we condition
on the measurements;, the prior is most likely swamped out in the calculation of the
posterior.

Below | discuss each of the three visibility models. For the two simpler models we can
simplify the expression (7.9) for the priét(D|M, X) on detection.

Using a Markov Random Field

Using a Markov random field (MRF) (as e.g. in (MacCormick and Blake, 1998))

P(VIM,X) = % exp [— > U(VeM, X)]

wherec are the cliques of a suitably defined neighborhood systéim,an MRF potential
function, and~Z is a normalization constant. This allows modeling intuitive knowledge
such as the fact that features tend to be either both visible or both invisible in neighboring
images, or that features close together are likely to be occluded together.

Conditionally Independent Visibility

A simplification is to assume that, givévi and X, the visibility valuesy;; of individual
features are conditionally independent, leading to

P(VIM, X) = [ [ P(vi;lm;, x;) (7.10)
irj
If we substitute (7.10) and (7.7) into (7.9) and simplify we obtain a particularly simple
expression for the prior probability of a specific detection veBlor

P(D|M,X) = ZHP vi; My, x;)8% %5 (1 — §)via (1= did)y % (7.11)

ij

= 11 Z P(vi/m;, x;)§"5 %5 (1 — §)vss (i) (7.12)

1,j vij=0

= [[ s ] (P + (1= Py)) (7.13)

z]—l z]—o

= [ P [ - Puo) (7.14)

1]71 z]*o
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. A . .
where we define®;; = P(v;; = 1|m;, x;) for notational convenience.

As a practical example consider the case of a 2D robot mapping application, whete the
are 2D landmark locations and; robot location. Here a reasonable model is to assume
that the visibilityv;; of a featurex; depends only on its distandéx;, m;) to m; :

P(U,-j|mi,xj) = P(v,]|d(xj,m,))

Fixed Probability of Visibility

Even simpler is to drop the dependencéMrandX altogether, and have a fixed probability
v of being visible for each feature;

P(vij|mi,xj) =V (715)

so that, withV; the number of features visible in imagehe probability of a given image
visibility vector v; becomes

P(vi|M, X) = P(v;|v) = v"i(1 —v)" " (7.16)

and .
P(VIM,X) = P(V|v) = H P(vilv)

Note that we can condition the occlusion probabilityn the type of environment or object
that is being observed. It can be set by hand, estimated from data, or even inclélad in
a parameter to be estimated by EM.

Substituting (7.15) in (7.14) yields the following expression for a specific detection vector
D:

POMX) = []w [] @-vd)

dij=1 d;;=0

= ] PdiM,X)

with

P(d;|M, X) = (v8)Pi(1 — v§)" P = ¢"i(1 — g)" P (7.17)
where we defined as the combined visibility-detection probabiliyyé vd. This result
is of course obvious in retrospect: it is simply the probability thaidetected features in
image: were visibleand detected, multiplied with the probability of the remainimg- D;
features to be either occluded or undetected.
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7.2.3 Clutter

In this section we look at the process of clutter, modele&by, .., S,,|M). Note that here

we are only concerned with the prior probability of temberof spurious measurements

S; in each imageé. Reasoning about the location of these clutter measurements cannot be
done without reference 0, i.e., this shows up in the calculation of the posterior.

Again we have a choice to model this using models of varying complexity:

e Using a Markov random field that models the fact that the number of spurious mea-
surements might be correlated between neighboring images.

e Using a simpler model that neglects this possible dependence (and any possible de-
pendence oiM), and regards clutter as independent in all images:

P(S1, .., Sp|M) = ﬁp(si) (7.18)

Below the simpler model is used, with the distribution o¥egoverned by d&oisson pro-

cess with intensity
(Ay)ie=

S;!
where A is the image area. Poisson processes are the standard way of modeling clutter
in the tracking literature, see e.g. (Popoli and Blackman, 1999). The intensstyo be
interpreted as the expected number of spurious measurements per unit area. In many cases

it is easier to directly specify the expected number of spurious measurements

= E{Si} = Ay
and the prior is written as
)\Sie—/\
P(S; \) = =X (7.19)

7.2.4 A Prior on Correspondence

Putting all these results together, we can now formulate a prior on correspondence vec-
torsJ. Assuming conditional independence of visibility (7.10) and clutter (7.18) the prior
factors over the different images as

P(IM,X) = [ [ P(ilm;, X)

=1



CHAPTER 7. OCCLUSION AND CLUTTER 135

with the following generic prior on image correspondence vegtors
P(ji|m;, X) = P(d;|m;, X) P(S;) P(j;|d;, Si)

Note that this doesot hold in case a Markov random field is used for either visibility or
clutter. In that case the prior cannot be easily factored.

Substituting expression (7.1) an (7.19) respectively for the correspondence and clutter pri-
ors, and simplifying, we obtain

. A\ig=A . Si!
P(j;jjm;, X) = P(di|mi,X)< S >(00mp(Ji;di)K—i!>

S P(dymy, X

67)‘

- 7)\SIP dz i;X
G L dilmi X)

whereComp(j;, d;) = 1 is assumed, ad; above iscomputedrom j;.

Finally, if the simple visibility model (7.15) is used, we can substitute (7.17) for the detec-
tion probability P(d;|m;, X) and we obtain the following final expression for the prior on
image correspondence vectgrs

67)‘

P(jijm;, X) = P(ji|n) = S+ D)

NigPi(1 —g)n P (7.20)
where0 < D; < n for all valid configurations, as befoqeé v is the combined visibility-
detection probability, and bot$} andD; can be readily computed frojp Note that for this
model (the simplest visibility model) the dependencemwrdisappears, and the dependence
on X is only through the number of features

As a sanity check, we can calculate the expected number of spurious and detected measure-
ments. It is easily seen that, under the distribution (7.20) the expected number of spurious
measurement&[S;] = ), the expected number of detected featuté®;] = ¢qn, and by
linearity of expectatiorE’[K;] = E[S; + D;] = A + gn.

Boundary Cases

It is both instructive and of interest to examine some specific valueg #rd A more
closely. The case wherg = 0, i.e., no features are ever detected, is not of practical
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interest. However, fog = 1, the case where every feature is visible and reliably detected,
we haveD,; = n andK; > n. In this case the prior becomes
. e s,
P(jiln, g =1) = m)\ '
If A =0, i.e., there are no spurious features, the number of measurekiigitequal to
D;, the number of detected measurements. Furthermore, welfyaveD; < n. The prior
becomes

1, s
1 1 _ n 1
ot (1=4)

Finally, when both\ = 0 andg = 1 we have the familiar case where all features are visible

in all images, and there are no spurious measurements. In thig¢asd); = n, S; = 0,
and the prior reverts to

. 1
P(jiln,g=1,A=0) = ]

7.3 The Probability of Correspondence Vectors

To sample over correspondence vectbrs/e need to evaluate their probability. Now that
a prior P(J|M, X) over correspondence vectafds available, we can use Bayes law to
calculate the posterior probabilify(J|U, M, X):

P(J|U,M, X) x P(U|J,M, X)P(J|M, X)
As shown below, the likelihood will be of the form
P(U|J,M,X) =[] A e W) (7.21)
whereA is the image area. This expression, when combined with the simple visibility prior
(7.20), yields a very simple form for the posterior:
P(J[U,M,X) o [ [ o exp [-w(ji)] (7.22)
wherea is defined in terms of andg from Section 7.2:
A 1—gq
oO=y—-

The rest of this section is divided into two subsections: Section 7.3.1 details the expression
for the likelihood (7.21), where-after in Section 7.3.2 the final expression for the posterior
(7.22) is derived.
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7.3.1 The Likelihood

The expression for the likelihoo®(U|J, M, X) of correspondence vectodsgiven the

dataU is very similar to the case without occlusion or clutter: we only need to add the
likelihood of spurious measurements. On the assumption that spurious measurements have
uniform probability of appearing in the image atégthe image likelihood(U;|j;, m;, X)

can be split up in a spurious and non-spurious part:

S,

. L\™ .

P(Ulji, m;, X) = (Z) H P |jik, my, Xj,, ) (7.23)
Jir 70

whereS; is defined as the number of spurious measurements in imag@e that we can

treat each image in isolation because conditional independence between images is assumed,

given the correspondence vecior

It is convenient to reason in terms of imperfect bipartite matchings. As in Section 5.4
(page 70), we can view the correspondence problem in each image in terms of weighted
matchings of the bipartite grapghi = (U, V, E), where the vertice§ = {ux|k € 1..K;}
correspond to the image measuremanis and the vertice$” = {v;|j € 1..n} are iden-

tified with the features:;. However, where before we only allowed perfect matchings or
assignmentsye now also allow imperfect matchingsere (a) some vertices, can be
unmatched, indicating that they are spurious, and (b) some vettices be unmatched,
indicating that they are occluded in image

The associated bipartite graph is fully connected by the edgesU x V/, and the edge
weights are defined as before:

A

w(ug, vj) = —log P(wik|jix, m;, x;,,) (7.24)

Substituting this into equation (7.23), we obtain the following simple expression for the

image likelihood:

1\% .
P(U,-|j,-,m,-,X):<Z> e wii) (7.25)

where theweightw(j;) of an assignment is now defined as

w(j;) = Z w (g, ji(ur))

Jir#0
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7.3.2 The Posterior

Now that an expression for the prior is available, we can combine it with the likelihood
(7.25) and derive an expression for the posterior probabilily of correspondence vectors

J. We do this below for the simple combined visibility-detection model. For this model the
posteriorf (J) factors over the images:

f3) =[] PGilUs, m;, X)

i=1
where the individual posterior probabilitié¥j;|U;, m;, X) for the image correspondence
vectorsj; are proportional to the product of the image likelihood and the correspondence
prior:
P(j;|U;, m;, X) < P(j;|m;, X)P(U,;|j;, m;, X) (7.26)
Substituting (7.25) for the likelihood and (7.20) for the prior into (7.26) and simplifying,
we obtain the following expression for the posterior, where the imageArealiminated:

Si
(%) e—w(jn]

— ((5117/\&)’) (%)S q" (1 — q)" " exp [—w(j;)]

x 7%igP(1 - q)" " exp [~w(ji)]

) e b oD
P(j;|U;,;m;, X) = {m)\squ)z(l—@ Dl}

Recall thaty = \/A is the expected number of spurious measurements per unit area, and
w(j;) is the weight of the imperfect matching defined by the correspondence assigiment

.\ A . .
w(ji) = Z w(ug, ji(ue)) = — Z log P(wik |jir, m, xj,, )
Jik 70 Jix 70
SinceD; = K; — S;, andK; is known when we evaluate the posteremdif ¢ # 1, we can
further simplify this by isolating constant factors and dropping them from the equation:

P(ji|U;,m;, X) o %" 5% (1 — ¢)" 5 exp [~w(jy)] (7.27)
1—q\” ,
x (qu) exp [~ (i) (7.28)
x a5 exp[~w(j) (7.29)
wherea is defined as
A 1—gq
a=y——
q

The factora increases with increasing occlusion and clutter. Thus, for a high value of
configurations with more spurious and occluded features are more probable.
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Boundary Cases

In case all features are know to be visible, ge= 1, then the simplification above does not
work. However, we get an equally simple expression:

P(ji|Ui, m;, X) oc v exp [—w(ji)]
i.e. this is of the same form as (7.3), but with= .

Clearly, if there is no occlusioar clutter, i.e.q = 1 andy = 0, we recover the familiar
Gibbs distribution from Chapter 5 (equation 5.8 on page 71):

P(ji| Ui, my, X) o< exp [—w(ji)]

7.4 Sampling Imperfect Matchings

To approximate the E-step in the MCEM algorithm in the presence of occlusion and clut-
ter, we need to sample over the imperfect matchings as defined above. This can be done
in almost the same way as for perfect assignments (Section 5.5 on page 72). However, the
proposal distribution, which involved simulating a “mini” Markov chaifhC' with transi-

tion probabilities defined by the weights, will be slightly modified to cope with free vertices
and a special “spurious vertex”, in which case an alternating cycle cannot be obtained.

7.4.1 Occluded Features

If features can be occluded, we need to allow free verticed/e use the same proposal
distribution, but now terminate the run of the Markov chaifC' when a free vertex is
reached. In this case we have a simple pathot a cycle. The path is used in the same
way as before to propose a new assignmint J @ p, i.e., we “flip” the assignments on
the path of alternating edges.

For the simple chain flipping proposals, the acceptance ratio is gain equal to 1, as

) ey alu, J'(w)
f(J) e =11 q(u, J(u))

uep

and
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Similarly as before, if we modify théd/C' transition probabilities to disallow matched
edges, we get a modified acceptance ratio equal to:

oy L alu J(w)
ASMART = H 1= q(u, J'(u) (7.30)

ucp

7.4.2 Spurious Measurements

To model spurious measurements we introduce a special null-wgrteat can be matched
with severak: vertices.

Furthermore, we extend the edge weight® w such that

—1 if v =
w(u,v) & cec U= (7.31)
w(u,v) otherwise
Intuitively, w(u,vy) = —loga is the penalty for spurious measurements. It is highest

(infinite) whena = 0, and decreases with increasingly larger values.ofThen, from
(7.29) we have
K;
P(ji|U;, m;, X) o< exp [— Zw(ukaji(uk))] (7.32)
k=1
Note that the original weights now need to be defined more carefully, since they need to be
balanced against log «. For example, for a d-dimensional, isotropic Gaussian measure-
ment error we have (in imagg

1 1
w(ug,vj) = —log {W exp (‘@Huik - h(mz’,Xj)HQ)} (7.33)
d 1
= 3 log(270?) + @Hu“c — h(m;,x;)|)? (7.34)

Again the proposal algorithm is the same, with the additional termination criterion when the
special null-vertex is reached. The acceptance ratios are exactly as in the previous section,
as the null-vertex can be regarded as a special vertex that is always considered “free”.
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“o “o

(a) True Matching (b) MAP Matching

Figure 7.1: Example matching. Red vertices represent predicted feature locations, whereas
green vertices represent measurements.

0.2

0.18| N

0.16 ,

0.14r- *

0.12| N

0.1F -

0.08 N

0.06 N

0.04 T

0.02| ,

0 5 10 15 20 25 30 35

Figure 7.2: Result of sampling to approximate the true distribution (blue) by a sample
histogram (red).



CHAPTER 7. OCCLUSION AND CLUTTER 142

T T
— — random flips
chain flipping
09F —— smart chain flipping

1

0.7+ 4

0.6 |- b

0.5} b

0.4 B

| | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
107 4
U\ AN E
[ 4 \/ X W e ]
t ( ’ [ / ’ |y ]
[ N v b AV 1
-2 | ‘\ \ / " NN\“\‘J‘
107 || Iy A A/ 5
I i ‘
| W
107 ]
107k |
107 E i
random flips
10°F | — chain flipping i
F —— smart chain flipping
1075 — - . .
10 10 10 10 10

Figure 7.3: Time series of one marginal statistic Statistic and the corresponding log-log
error plot for three different proposal strategies.



CHAPTER 7. OCCLUSION AND CLUTTER 143

7.5 Results for Sampling with a Visibility Model

This sampling scheme can be tested experimentally and compared with the ground truth
distribution for small values of. In Figure 7.1 on page 141 an example of a matching is
shown forn = 3 and K = 3. In this case, the true matching is actually an assignment,
but the maximum a posteriori (MAP) matching declares one of the measurements to be
spurious. After sampling, we can compare a histogram of the samples with the true distri-
bution over all possible correspondences. This is done in Figure 7.2 on page 141, where the
correspondences are arranged along the x-axis in arbitrary order. As you can see from this
example, singling out one specific correspondence would skew our perception, as there are
at least three different correspondences with roughly equal probability. Finally, the perfor-
mance of the different proposal strategies (flipping, chain flipping and smart chain flipping)
is compared in Figure 7.3 on the preceding page, in the same way as in Section 5.5.5 on
page 79.



Chapter 8

Results with Occlusion and Clutter

In this chapter | present results for image sets with either clutter or occlusion. However, it
was borne out by experimentation that, once clutter and occlusion are modeled, the wealth
of new explanations that can be given to the data leads to many more local maxima.

One approach to deal with the more challenging optimization problem resulting from the
presence of occlusion and/or clutter is the use of prior knowledge. An advantage of formu-
lating the geometric estimation problem with unknown correspondence as a MAP (maxi-
mum a posteriori) estimation problem is that incorporating prior knowledge can be done in
a seamless manner. We only need to modify the M-step by adding an appropriate log-prior
term to the objective function to be minimized.

Most of the results in this chapter have been obtained using a prior on the camera motion,
which will be explained first in Section 8.1. Results are then presented for sequences with
occlusion only (Section 8.2), clutter only (Section 8.3), and sequences with both occlusion
and clutter (Section 8.4).

A second way of minimizing the impact of occlusion and clutter is by incorporating feature
appearance, which will be discussed in Chapter 9.

8.1 The Arc Prior

In order to cope with the more challenging optimization problem in the presence of occlu-
sion and clutter, most of the results presented in this chapter use a prior on the motion. In
particular, this is done through an “arc prior”, which codifies the knowledge that (a) the

144
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(a) image 1 (b) image 4 (c)image 7 (d) image 10

Figure 8.1: 4 (out of 10) images of two objects, taken in sequence and at regularly spaced
intervals around the object.
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Figure 8.2: The “arc” prior: the idealized trajectory is shown in yellow, along with the
MAP estimates for structure and motion for the sequence in Figure 8.1.
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images were taken in sequence, and (b) the images were taken at regularly spaced intervals
around the object, i.e. the camera was traveling roughly along a circular trajectory. This
prior was inspired by a potential commercialization of the technology, which would enable
consumers to digitize an object by taking a few snapshots of it. In order to simplify the
problem, the snapshots would have to be taken at roughly equal angles and roughly equal
distance, e.g. by placing the object on a table and walking around it, taking a snapshot at
regular intervals. An example is shown in Figure 8.1.

The “arc” prior is parameterized by two parameters: a height and an arc-angle. Once these
are given an ideal trajectory is calculated, and the prior states that the deviation of each
camera from its ideal location is small, both in absolute position and in orientation. The
ideal orientation is such that the camera faces the origin exactly. The radius of the ideal cir-
cular trajectory is fixed, which also fixes the otherwise arbitrary scale of the reconstruction.
All this is illustrated in Figure 8.2, which shows the idealized trajectory in yellow, and the
MAP estimates for structure and motion. As you can see, the camera frames stay close to
their ideal positions and orientations. Note that in taking this image sequence, no emphasis
was placed on trying to follow a circular trajectory exactly: the prior only provides a rough
sketch.

8.2 Examples with Occlusion

8.2.1 Book

The sequence from Figure 8.1 (see also Figure 8.3) was used to demonstrate the MCEM
approach in the presence of occlusion. Again, measurements were extracted by hand. How-
ever, some features are now occluded in some of the images. There were no spurious
measurements (i.e. no clutter). The actual measurements are shown in Figure 8.4.

The MCEM algorithm was run for 25 iterations, and the marginals (or soft correspon-
dences) are shown for a subset of the iterations in Figure 8.5. The marginals are presented
in such a way that the ground truth correspondence yields identity matrices as before. How-
ever, in the case of occlusion some rows will be missing, as some features are occluded in
some of the images.

Figure 8.5e shows that the ground truth correspondence is recovered. An inputimage where
one of the features was occluded is shown in Figure 8.3.
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Figure 8.3: Image 1 of the “book” sequence with the measurements and the MAP estimate
superimposed. Note that the position of the occluded corner of the box is predicted but a
measurement is not available due to occlusion.
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Figure 8.4: Measurements in the 4 (out of 10) input images.
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Figure 8.5: Marginal probabilities computed in the E-step. Occlusion shows up as breaks

in the “perfect” correspondence matrix (an identity matrix). In this example, the first four
images are missing a measurement on the last feature, whereas the last image does not have
an observation on feature 2.
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Figure 8.6: Measurements in the 4 “Canon” input images.

8.2.2 Canon

The measurements for a second sequence, also taken under the “arc-prior” assumption, are
shown in Figure 8.6. Please note the difficulty of determining the 3D structure of the object
based on these measurements alone.

The MCEM approach, however, manages quite nicely, in no small part because of the
strong motion prior. The evolution of the marginals probabilities over the course of 25

iterations is shown in Figure 8.7. Note that there is considerably more occlusion than in
the “book” sequence from Section 8.2.1. Especially in the last image, almost half of the
features visible in the first image are occluded.

Finally, trajectories of the projected structure over time and the original input images are
shown in Figures 8.8 and 8.9, respectively.
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Figure 8.7: Marginal probabilities computed in the E-step (“*Canon”).
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Figure 8.8: Plot of the predicted location for each of the features over time. The last
predicted location is marked with an asterisk. Measurements are shown as circles.
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Figure 8.9: Input images for the “Canon” sequence. The last predicted location is marked
with an asterisk. Measurements are shown as circles.
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Figure 8.10: Measurements in 4 (out of 8) “horse” input images.

8.2.3 Horse

Measurements for a last sequence with occlusion only are shown in Figure 8.10. This
sequence has a lot of occlusion as the 8 images were taken from all around the object.
Hence, the prior for the arc-angle was set to 45 degrees. Note that this is only a prior and
an initial estimate: the angle is also optimized for in the M-step.

Again EM was run for 25 iterations, and the by now familiar marginal probability plots
and predicted structure trajectories are shown in Figures 8.11 and 8.12, respectively. The
original input images are shown in Figure 8.13.
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Figure 8.11: Marginal probabilities computed in the E-step. Up to 5 (out of 11) features

are occluded in each image.
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Figure 8.12:

Plot of the predicted location for each of the features over time. The last
predicted location is marked with an asterisk. Measurements are shown as circles.

Figure 8.13: Input images for the “horse” sequence. The last predicted location is marked
with an asterisk. Measurements are shown as circles.



CHAPTER 8. RESULTS WITH OCCLUSION AND CLUTTER 155

(a) Measurements

Figure 8.14: Translational pose estimation example from the introduction, with spurious
measurements. Measurements corresponding to model features are marked with a cross.

8.3 Examples with Clutter

The MCEM approach can not only be used for structure and motion problems, but also
for simpler geometric estimation problems, such as pose estimation. An instance of a pose
estimation problem in the presence of clutter, but no occlusion, is shown in Figure 8.14
and 8.15. It is the same example as was used in the introduction: the top panel shows
an idealized model of the CMU quad, to be located in the aerial image at the bottom. A
“corner building” detector was simulated to generate the measurements.

Note that there are two different types of measurements: squares represent a “right-handed”
corner, and triangles represent “left-handed” corners. The use of symbolic appearance
attributes such as these will be discussed in detail in Chapter 9, but the bottom-line is that

the sampler will only allow correspondences that consistently assign measurements of a
given type to model features of the same type.

In total, there were 9 spurious measurements (i.e. clutter measurements) versus only 5
actual measurements. The MCEM approach has no trouble recovering the pose, however,
and does so in only 5 iterations. The marginal probabilities over the course of the EM
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(a) Model

Figure 8.15: The model of the CMU quad whose location is to be estimated in the image
of Figure 8.14.
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Figure 8.16: Marginal probabilities computed in the E-step.
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Figure 8.17: Measurements in the 4 (out of 10) input images.

iterations are shown in Figure 8.16. In this figure, the first column in each matrix is reserved
to indicate the probability that a measurement is spurious. The marginals are re-arranged
such that the spurious measurements are the first 9 measurements, and the algorithm can
be seen to converge to the ground truth assignment.

8.4 A SFM Example with Occlusionand Clutter

Finally, an example of a structure from motion problem in the presence of both occlusion
and significant clutter is shown in Figure 8.17. In this case, the number of features
was equal to 11. Measurements were extracted from the images (shown later) by hand,
but some features were occluded in some of the images. To simulate clutter, spurious



CHAPTER 8. RESULTS WITH OCCLUSION AND CLUTTER

T
!

T [THE | ] | U |

/S

e

L m

i

E - ;%'“- ;%'“-
S
o

§ --il

| |
| |
Il '
ll 1
!

Vivivi

£l AT P

(@itl

(b)it7

(c)it13

/.

(d)it19

VAVAV VAV AV VAWV

(e)it25

158

Figure 8.18: Marginal probabilities computed in the E-step. Note that in this sequence
there is relatively little occlusion.
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(c) image 7 (d) image 10

Figure 8.19: Input images with projected structure estimate and measurements. The last
predicted location is marked with an asterisk. Measurements are shown as circles. Note the
significant amount of clutter measurements.
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measurements were generated randomly, with a uniform probability over the image. The
number of spurious features for each image was drawn from a Poisson distribution with
mean5. In the problem instance shown, the values drawn for each of the 10 images were:
7,7,3,6,3,4,6, 10, 6, and 5, respectively. In other words, in some cases there were as
many spurious as non-spurious measurements. Given that no appearance information about
the measurements is used at all, recovering structure from this data is not straightforward.

Again an “arc” prior was used, with a prior of 10 degrees on the arc-angle. The EM algo-
rithm was run for 25 iterations, and the evolution of the marginal probabilities is shown in
Figure 8.18. Note that in this case the marginals were arranged in such a way that the spuri-
ous measurements are ordered last in each image. From panel (a), corresponding to the first
iteration, we see that the initial distribution over correspondences is rather removed from
the actual ground truth correspondence: almost all measurements are mostly estimated as
spurious. However, the picture gradually improves, and the ground truth is finally recovered
by the last iteration. The original input images, with spurious measurements, are shown in
Figure 8.19.

8.5 Discussion

While all of the problem instances shown above converged, the structure recovery is consid-
erably more challenging in the presence of occlusion and clutter. Especially if the amount
of clutter is increased, the MCEM algorithm needs to be restarted multiple times or fails to
converge at all. In addition, the approach often fails in part or completely without using a
motion prior.

This is not all too surprising, given thab appearance information is used at.allhe fol-
lowing chapter will discuss how appearance information can easily be incorporated within
the MCEM framework, and how it alleviates the convergence problem in the presence of
clutter and/or occlusion.



Chapter 9
Incorporating Appearance

In this chapter | discuss how appearance information can be incorporated into the geometric
estimation process. Since in the presence of occlusion and clutter the number of possible
correspondence matchings grows dramatically, the number of local maxima and the cost
of sampling over the space of matchings both increase. Adding appearance information
can help constrain the sampling over correspondences, and hence make the entire problem
more tractable. However, reliable models of appearance measurements are hard to come
by, since the appearance of 3D features can change significantly if images are taken from
widely separated viewpoints. Even though recent work on appearance-based matching
has produced impressive results for a restricted set of image transformations (Schmid and
Mohr, 1997; Lowe, 1999; Mikolajczyk and Schmid, 2001), no simple appearance models
are available that are invariant under 3D transformations. Hence, we are obligated to either
adopt a complicated model of appearance, e.g. oriented surface patches, or accept a more
limited range of viewpoints that can be handled.

9.1 An Appearance Measurement Model

Before we can incorporate appearance information, we need to model the process of how
appearance measuremems are generated given that the structure is described by the
appearance paramete. Whereas more sophisticated models are possible, below | will
assume a simple model wherein appearance is measured independently for each feature.

161
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9.1.1 Appearance Measurements and Parameters

Let us assume that the appearance measuremerte in the form of a collection of
individual appearance measuremernig, one for each associated location measurement
u;, i.e. A = {{a;|k € 1..K;}|i € 1..m}, where thea;;, can be either continuous, discrete,

or a mix of both. Below | often refer to appearance measurements using a single index, i.e.
A = {ai|k € 1..K}, where we defind( 2 >, K; as the total number of measurements.

In order to model the appearance measurement process, | introduce hidden appearance
parametery . In particular, let us introduce for every featurgan appearance varialye,

which comprises of parameters that describe the appearance of the feature. The appearance
parameters for the entire structure are denoteH’bAy {y;li € 1.n}.

A number of useful appearance representatdre®me to mind. For example, if the feature

is seen from roughly the same orientation and distance in each image in which it is visible,
the appearance parametgrscan be a collection of pixels, predicting the pixel valags

in a small window around the projected featiuen;, x;,, ). Optionally, we can incorporate
surface orientation, in which case the predicted pixel values would be obtained by first
appropriately transforming the surface patch model in the image. Another, less involved
approach is to predict grayscale or color invariants that can be measured in the image.
Finally, the appearance model can be symbolic, e.g. stating that the feature is “corner-
like”, or a “T-junction”, or any other discrete attribute that can be reliably extracted from
the images.

An example of the latter, a symbolic appearance model, is shown in Figure 9.1. Here the
appearance is modeled by a binary random variable denoting either square or triangular
features, i.ey,; € {S,T}, for j € {1,2}. The appearance measurements are also binary,
with a; € {s,t}, fork € {1,2,3,4}. The lower-case notation makes it explicit thatnd¢
aremeasurementalues.

9.1.2 The Appearance Likelihood Model

What is needed is a probabilistic description of the appearance measurement process. In
general, this process can be completely described by a conditional probability density func-
tion P(A|J,0,Y) = P(ay,...,ax|J,0,y1,...,y,). In order to simplify this descrip-

tion, | make the modeling assumption thgitzenthe geometry®’ and the structure appear-

ance parametef® = {y,|j € 1..n}, the measured appearance valagsare conditionally
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Y1 Yo

Figure 9.1: Example of appearance paramegeisnd measuremenis.

P(s|S) [ 0.9
P(s|T) | 0.2
P@S) |01
P(t|T) | 0.8

Table 9.1: Example of a measurement model for a binary appearance model.

independent of each other, i.e.
K;

P(A|3,0"Y) =[] P(anljs, m}, X", Y) (9.1)

i1=1 k=1

As an illustration, Table 9.1 provides an example measurement model for the binary ap-
pearance example from Figure 9.1. Because of the conditional independence assumption,
we only need to provide four numbers to specify the entire joint appearance measurement
model. In this case, squares are more reliably measured than triangles. Note that, as re-
quired,P(s|S) + P(t|S) = 1,andP(s|T) + P(t|T) = 1.
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9.1.3 Spurious Measurements

We can simplify expression 9.1 by being explicit about which measurements correspond
to actual features and which do not, i.e. aprious If we introduce a special model
Py(a;) = P(au|jix = 0) to describe the appearance of spurious features, we can decom-
pose the expression above into a spurious and non-spurious part:

PmuemnzﬁIHR@m)OIHP@W%%MMO (9.2)
i=1 j;1 =0 i=1 jir#0

Because of this we can now use, in the non-spurious part above, the feature Ia@gtion
and appearancg;,, that correspond ta;; according toJ. For notational simplicity, we
define thespurious appearance likelihood

Lo(So) = P(Sold) = [] Polar) (9.3)
ap€So
where S, = {a,|jx = 0} is defined to as the set of spurious measurements. Note that
Ly(0) = 1. Using this definition we obtain:

P(A]3,04Y) = Ly(So) [ | [] Plawlmi, =, ,¥5,) (9.4)

i=1 jip 70
9.1.4 Partitioning the Measurements into Sets

The correspondencé induces a set partition on the measurements, which allows us to
rewrite expression (9.4) in an insightful way. Indeed, it can be re-arranged as a product of
n factors, each one concerned with the appearance of a given feature see this, note

that, given a specific correspondence vedtavery appearance measuremepis paired

with one and only one feature;,, and its corresponding appearance paramstgrs In

other words, the correspondence vedianduces aset partitionon the measuremends
DefineS; to be the set of measurements that correspond to feajuweith j € 1..n. Then

we can re-arrange the product over all measurementasducts over the sets;:

P(A|3,0"Y) = Lo(So) [ | [] PlaxM'.x}.y;) (9.5)
Jj=1la,€s;
Note that the correspondence veclodisappeared from the equation: it is subsumed by
the partitioning of the measuremeitfsn setsS;. Also, we need to condition on all motion
parameterd/I’, as the sets§; can measurements in several images.
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We can illustrate the partitioning over sef$ with the example of Figure 9.1. Let us
represent correspondence vectors by a string of numbers enclosed in square brackets. For
example, in the figure, the correct correspondehee [1212] is shown. This assignment
induces two sets$; = {a;, a3}, andS,; = {ay, a,}. In this case, the appearance likelihood

of J givenY is

P(A|J =[1212],©"Y) = P(aj,ay,a3 a,|J =[1212],y, = S,y. =1T)

= H H P(ag|y;)

j=lap€s;

= [Plai[Y1)P(a3]Y1)] x [P(as|Y2) P(asY>)]
= [P(s|S)P(s[9)] x [P(t[T)P(tT)]
Using the values from Table 9.1, we have

P(A|J =[1212],y, = S,y, = T) = 0.9%0.8° = 0.5184

9.2 Some Simple Appearance Models

This section discusses some simple appearance models that | have used in order to demon-
strate the use of the MCEM approach for structure from motion.

9.2.1 Sophisticated Models

Before considering simpler models, it is of interest to note that quite sophisticated models
can be used. In particular, we could usgnted surface patchés model a patch of texture
around each feature point, which is then appropriately transformed into the images using
texture mapping. Oriented surface particles have been used before for geometry modeling
(Szeliski and Tonnesen, 1992), and stereo (Fua, 1997). The appearance pargmeters
would then correspond to the texture on the patch, and can be estimated in parallel with the
geometry, as explored in (Dellaert et al., 1998a; Dellaert et al., 1998b). Another approach
would be to use a deformable mesh, with textured polygons to model the appearance.

9.2.2 A Simple Discrete Measurement Model

The example of Figure 9.1 used discrete measurements, but is still quite general in that there
were no restrictions on the conditional probability table specifying the model. In contrast,
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| will refer the simple discrete measurement modgien the following assumptions are
satisfied:

1. The appearance parametgfsand measuremends are discrete (symbolic) and de-
fined over the same set of lab&s= A = {1..|A|}.

2. The measurement model can be characterized with a sreialbility measurep,. 2

P(a = cly = ¢), wherec € {1..|A|}. The reliability measurg is the probability that
a measuremernt assumes the correct valugassuming we know = c. In case the
measurement does not agree, we assume the probability~ c|y = ¢) of seeing
any other measurement is equaltc= (1—p.)/(JA] = 1).

This model is more restrictive than a general discrete model, in that it cannot model if two
labels are easily confused. However, note that every labah have a different reliability
pe, i.e. we can model the fact that some labels are more reliably estimated than others.

9.2.3 The Perfect Measurement Model

In the simple discrete model above, we have- 1 if the appearance measurements are
absolutely reliable. Let us call this thperfect measurement moddtor example, if in a
computer vision application there are several easily distinguishable features, this could be
an appropriate model.

9.2.4 A Simple Continuous Measurement Model

A simple continuous measurement model assumes werhagppearance measurements
a, = {ay.|c € 1..n.} that are simply copies of a corresponding set of appearance param-
etersy; = {y,c|c € 1..n.}, corrupted by i.i.d. normally distributed noise. Under those
assumptions, the conditional probabil®(a, |m}, x’, y;) of a measurement vectay, is a
Gaussian distribution with diagonal covariance matitiX, and the appearance parameters
y; as the mean:

N e 1 Ne
P(ag|M', x5, y;) = [ [ Plakelyje) = (270%) "% exp {_T,Z > (ar - ch)z}
c=1 c=1

This simple model is appropriate when the appearance is modeled using predicted pixel
values, neglecting the geometric situation and correlations between the measured pixel
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values that can be introduced in the image formation process. This model is frequently
used in RANSAC based methods and also underlies most stereo work. However, its obvious
disadvantage is that it is not able to withstand large rotations or displacements between the
images, as in that case the appearance of features can change substantially.

This simple Gaussian model can also be used to predict grayscale or color invariants, such
as described in (Schmid and Mohr, 1997) and (Montesinos et al., 1998). These multi-
dimensional quantities are calculated to provide invariance with respect to rotation and
translation. However, general 3D invariants are not available.

9.3 EM with Appearance

If all we are interested in is the structure and mot@nthen in principle we need tiote-

grate outthe hidden appearance paramef€érsin contrast, if we were to simultaneously
estimate the appearance as well, the resulting structure and motion estimates would be bi-
ased. This is because the resulting estimate of the geometry is associated with one set of
appearance parameters only, while there might be other appearance parameters that are al-
most as plausible. This is completely analogous to the bias we have if a single, “best” set
of correspondences is obtained rather than considering a distribution over them.

In this section | show how appearance can be integrated out in the E-step, and how it will
influences the posterior distribution over correspondence assigni€erig re-estimation
of the structure and motion estima®+*! in the M-step, however, will not be affected.

The biggest disadvantage to taking this approach is that sampling will now no longer de-
couple over the respective images, i.e. we need to sample over joint correspondence vectors
J instead of sampling image correspondence vegtseparately. How this can be done

will be explained in the next section, Section 9.4.

9.3.1 EM with Appearance

If appearance information is available, the E-step needs to be adapted, but the M-step re-
mains the same. This is shown below.

Suppose that, aside from location, additional measurementAlataavailable about the
appearancef the features detected in the images. As in previous chapters, we want to find
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the MAP estimat®* of structure and motio®, but now given both location information
U and appearance informatigx. That is

©* = argmax P(®|U, A)
(C]

Analogous to the previous chapters, the total likelihood is found by integrating over all
possible correspondence vectdrs

©* =argmax Y P(J,0|U,A)
© J

Because this is intractable in general, we instead use the EM-algorithm, which iteratively
maximizes the sum of the log-prior & and the expected log-likelihodd'(®), where

Q'(©) 23 P(J|U,A,©)log P(U, A, J|©)
J
This is the analogous to expression 4.3 on page 55, but now incorporating appearance
informationA.

The M-step will be as before. As always, in the M-step, we optimize for structure and
motion®:
O = argmax (log P(U, A, J|®)) + log P(O®) (9.6)
()

As the appearance informatigh does not influence the geometric estimation of structure
and motion®, we havdog P(U, A, J|®) = log P(U, J|®), which is the same as before.
Therefore, the M-step does not change.

However, theE-stepdoes change. Recall, in the E-step we need to compute (or estimate)
the marginal probabilities of the correspondence posterior probability

P(J|U, A, ©Y

which now is also conditioned on appearance informafidre appearance yields informa-
tion on which measurements, are likely to correspond to the same featuwtg and hence
the posterior distribution over correspondences changée. E-step is modified in that the
posteriorP(J|U, A, ©") will now have an additional appearance factor in it. To see this,
apply the chain rule:

P(J|U,A, 0" x P(U,A,J,0% = P(U|A,J,0)P(A|J, 0)P(J|©!) P(0!)

As @' is given at the time of the E-step, the priB(®') is a constant. We also make
the following assumption: given the correspondefi@nd the structure and motion guess
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©!, the location of features is independent of the appearancee. P(UJA,J, ©!) =
P(U|J,©"). Thus, the posterior is the product of a location likelihd®@U|J, ©*), an
appearance likelihoo®(A|J, ®'), and a correspondence priBfJ|©"):

P(J|U, A, @) x P(A|J,04P(U|J, 0P (J|0Y)

From Chapter 7 (equation 7.22 on page 136) we know that, when using a simple visibility
model, the product of the latter two factors is given by

P(U}J,©")P(J|O") x H o’ exp [~w(j)]

What remains to be done is obtain an expression for the appearance likelthadd, ©F).

Note that this is a different expression from the measurement model (9.5), as the appearance
parameterd are assumed unknown. In the section below | show that in order to obtain
an expression foP(A|J, ©'), we need tantegrateover the hidden appearance parameters

Y.

9.3.2 Integrating over Unknown Appearance

In the E-step we need to integrate over the unknown appeahmdée¢he structure. Recall
that we are interested in the appearance likelihB¢A |J, ©'). To evaluate it, we need to
integrate over all possible values for the appearance paraméters

P(A|J,G)t):/YP(A|J,G)t,Y)P(Y|G)t) (9.7)

whereP (Y |®?) is a prior on appearance.

Note that the structure and motion estim@eéis computed in the M-step, and might or
might not be necessary in the calculation of the likelihdd@A |J, ©!,Y). In fact, in
general a value fo®! is only needed if the geometric dependence of the appearance in the
image is modeled, e.qg. for an oriented surface patch. In the case that there is no geometric
dependence, we have

P(A]J,0'Y) = P(A]],Y)

A similar comment holds for the pridP(Y|©®?): it is conditioned on our current gue€s
for the geometry, i.e. if we wanted we could model effects like “features close in space
have similar appearance”.
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Unlike ©¢, the values of the appearance paramef®rsare not computed in the M-step

they are nuisance variables. This is the reason ¥Wnas to be integrated out in the E-step.
This type of reasoning has been applied in a different context, as well, by Pasula in (Pasula
et al., 1999). In the next few sections it is shown how, under mild assumptions, this can be
done in a tractable manner.

9.3.3 The Appearance Likelihood as a Product of Set Scores

Expression 9.5 tells us what the likelihood of a given correspondence \kEdsomgiven
the appearance measuremeAtsand the structure appearance paramelérs However,
recall that we need to integrate out the appearance paramétesibstituting (9.5) into
expression 9.7 on the preceding page we obtain:

P(A]J,0') = Lo(Sy) / H I PlacM’xi,v;) (9.8)
j=1a,€es;

Let us assume that the appearanggesf the features ara priori independent of each other
and of the geometr@®’, i.e.

P(Y|®Y = Hp y;) (9.9)

In that case, we can perform the mtegratlon separately for each fegture
P(a13,0) = L [ [ Pis) ] PlaMx.y;)
j=1 Yj akESj
If we define theset scorel.(S;) as
Yi akESj
we finally obtain

P(AI3.©") = Lo(s) [T £(5) ©.11)

The intuition is this: the appearance likelihood of the correspondé&nsehe product of

(a) the spurious appearance likelihobgl Sy), and (b)n likelihood factors or set scores
L(S;). The set scord.(S;) computes how likely it is that a certain set of measurements
S; are associated with each other, given their appearance. The latter factor is an integral,
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as all possible values fagr; have to be “compared” with the joint appearance of the set
S;. Another way to view the set scofgS;) is as the joint probability of the appearance
measurements;, € S;. The score or appearance likelihood for the entire correspondence
vectorJ is obtained by multiplying all these set scores (and the spurious score).

This calculation has to be done for every possible correspondence vector, which yields
a ranking of correspondence in terms of appearance. Note that the likelihood scores are
not probabilities, and do not have to sum up to 1. To yield a probability distribution over
the J, the appearance likelihood scores would still have to be multiplied with the location
likelihood and correspondence prior, and renormalized.

A Simple Example

The calculation of the appearance likelihood using set scores, via (9.11), can again be
illustrated with the example from Figure 9.1. For the prior on appearance, let us assume
that squares are more common than triangles,(@.) = 0.6 andP(T") = 0.4. Then the
appearance likelihood of the (shown) correspondence véctof1212] is

P(A|[1212]) = L(S))L(Ss)

= ZP(yl) H P(ag|y1) ZP(YZ) H P(ai|y2)

apecf{al,az} apc{az,aq¢}
= [P(S)P(s]S)’ + P(T)P(s|T)’] [P(S)P(t|S)’ + P(T)P(+|T)’]
= [0.6 x 0.97+0.4 x 0.2°] [0.6 x 0.1 + 0.4 x 0.8°]
= [0.486 + 0.016] [0.006 + 0.256] = 0.502 x 0.262 = 0.132

It is also instructive to follow the calculation in case spurious features are allowed. In that
case, we need to specify the probability of a spurious measurement. Let us asanche

t are equally probableP,(s) = 0.5, and Py(t) = 0.5. Let us examine the appearance
likelihood for a correspondence vectdr = [0212] that assigns measuremet to be
spurious, but all others correctly. By definition 9.3, we have

Lo(Sy) = Py(ay) = 0.5
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Then, noting that nows; = {3}, the score for/ = [0212] can be computed as

P(A|[1212]) = Lo(Sy)L(S1)L(S,)
= 0.5 ZP(YI)P(33|YI)] ZP(}’Z) H P(agly2)
y1 v2 ap€{az,as}

=0.5 [P(S)P(s|S)+ P(T)P(s|T)] [P(S)P(t|S)* + P(T)P(t|T)’]
=0.5 [0.6x0.9+0.4x0.2][0.6 x 0.1> + 0.4 x 0.8°]
=0.5 [0.54 4 0.08][0.006 + 0.256] = 0.5 x 0.62 x 0.262 = 0.081

Comparing this to the non-spurious example, we see that the set/screA ) of the set

S1 = {3} has increased. This is to be expected: the joint probability of a smaller set of
measurements is expected to be higher than that of a larger set. However, the spurious
appearance likelihood makes this assignment less likely than the correct one.

9.3.4 Set Scores for Simple Discrete Appearance Models
The Simple Discrete Measurement Model

Under the assumption that each appearance kabelequally probable a priori, the set
scores are particularly simple to calculate for the simple discrete measurement model from
Section 9.2.2 on page 165. Indeed, under the assumption that thePgsidiis uniform,
i.e.

P(y) =1/n,

wheren, is the number of different symbols, the set sc@¥g) can be calculated as

1s) = Y Py =0 [ Plasly; = o)

akESj
Ns
§ N; Si|—N;
o pc ]Cq|c ]‘ Jje
c=1

where N, 2 {ar € Sjlar = c}| is the number of measurements in Setaking on the
valuec. Note that) < |S;| < m, and0 < N;. < |S;], and in an implementation the values

k(c, Nje, 1S;]) 2 piegli=Nie can be precomputed.
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The Perfect Measurement Model

If the appearance measurements are absolutely reliable, we have a perfect appearance
model, and the set scores are simply binary, measuring whether an assigniseain-
sistent given the appearance measuremans not:

L(Sj) = 6(Ny, |S;])

Here N; is defined as the number of majority votes. In other words, the set scorg is
all measurements agree, andtherwise. This result holds for arbitrary appearance priors

P(y;).

9.4 Sampling Joint Correspondence Vectors

When incorporating appearance, sampling over correspondences changes substantially in
one respect: we can no longer sample image correspondence vectors for each image in
isolation. The measurement setsin the calculation of the appearance likelihood (9.11)
span multiple images. Any change in the set membership induced by modifying the cor-
respondence vectdrwill change the set scork(S;) and hence the appearance likelihood
P(A|J, ®"). This means that, if we were to sample image correspondence v§dtoiso-

lation, the appearance likelihood depends on the correspondence assignments in all other
images.

Sampling over joint correspondences assignménsschallenging, as the proposal distri-
butions from Chapter 5 were designed for the single image case. This leads to poor conver-
gence behavior in the joint image case. While the use of importance sampling can alleviate
some of that, the underlying problem remains essentially unsolved. The only exception
is the case of the perfect discrete appearance measurement model, or when we know the
appearance partition sizes for a discrete model (see below). The problem can be avoided,
at a cost, by incorporating appearance estimation in the M-step, as will be discussed in the
next section, Section 9.5.

9.4.1 A Modified Proposal Strategy

As discussed in the previous paragraphs, we have to sample over aggregate correspondence
vectorsJ when incorporating appearance. However, we can use almost exactly the same
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proposal strategies as in the previous chapters, i.e. chain flipping and smart chain flipping.
Instead of sampling in the images independently, we now sample over the entire correspon-
dencel. To propose a change i the following strategy is proposed:

1. Choose an imageat random. In contrast to before, we can no longer sample in
images in isolation, but it is perfectly valid to limit the action of the proposal step to
individual images.

2. Propose a change jg exactly as in Chapters 5 and 7 (specifically, Section 7.4 on
page 139).

3. Calculate the original acceptance ratjaising equation 7.30 on page 140:

B 1 —q(u,J(u))
ASMART = H 1 — q(u, J’(U))

ucp
wherep is the proposed alternating path, and #fte, J(«)) are the modified transi-
tion probabilities in the smart Markov chaiviC'.

4. Multiply the acceptance ratioy ), 4z With the appearance likelihood factor:

P(A|)', ©")

a = asSpmMART X W (912)

wherel’ is the proposal correspondence vector. Recall that the appearance likelihood
P(A|J, ®!) is given by a product of set scores (equation 9.11 on page 170):

P(AI3.©) = Lo(So) [ L(S)

Note that the random choice of the image in which to change the assignment has no effect
on the acceptance ratio. The only substantial change in the calculation of the acceptance
ratio is the calculation of the appearance likelihood factor in (9.12).

9.4.2 Statistics on Appearance

In order to monitor the behavior of the sampler, we can look at the probability of the
appearance parametéyscomputed in the E-step. Specifically, it would be interesting to
see how the probability over the individual appearance paramgjerisanges over time.
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Given the conditional independence assumptions made above we can do this easily. In
particular, we are interested in

P(y;|U,A,©") => " P(y;/U,A,J,©")PJ|U A 0" =(P(y;|U A, T 0Y)
J

where the expectation is taken with respect to the correspondence paBtdiitr, A, ©7),
i.e. the very same one we are computing in the E-step. The posiiyofU, A, J, ©) is
assumed conditionally independent of the location measurerieatsd, applying Bayes
law, is proportional to the product of the likelihood and the prior:

A|Jv ®t7 yj)P(Yj|J7 ®t)
P(A]J,0©)

P
P(y;|U,A,J,0") = P(y;|A,J,0") = (

We have already obtained the likelihood facfofA |J, ®,y;) as part of the appearance
likelihood (equation 9.5). It can be computed by a product over all appearance measure-
ments in the sef; that is associated with featuxe given the correspondende

P(A]3,0"y)) = [] Plax/M',x}.y,))
ap€eS;
We assumed before that the prior on appearance is independent of geometry, we have

P(y;|J,©" = P(y;). Given this, we finally have:

P(YJ) Hakesj P(ak|MtaX§'7Yj)
P(A|J, ©)

P(y]|U,A, @t) X <

Comparing this with the definition 9.10 on page 170 of set scores, we see that the statistics
we are after are nothing but the normalized posterior probability terms in the set scores.
In the case of a symbolic measurement model, we can represent thiAas a table of
posterior probabilities, which can be easily interpreted.

9.4.3 The Deadlock Problem

While the proposal strategy suggested above is theoretically valid, it leads to very poor
convergence behavior in practice.

In fact, in the case of a perfect appearance model even theoretical guarantees on conver-
gence disappear, as the resulting Markov chain is no longer irreducible, one of the require-
ments for convergence (Gilks et al., 1996; Robert and Casella, 1999). A Markov chain is
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x B> B
> W > |

Figure 9.2: Example that illustrates the Markov chain over joint correspondences can be

reducible under certain conditions. On the left, the true situation. On the right, a sampler

state that can never reach the true state unless occlusion is allowed. See text for further
explanation.

irreducibleif all states communicate, i.e. from any state of the sampler there is a sequence
of (accepted) proposals that can result in any other state. In the case of the perfect discrete
appearance model from Section 9.2.3 this is no longer the case. To see this, consider the
example in Figure 9.2. In the example, there are two images with associated appearance
measurementd; and A,. In the example we assume that occlusion is not allowed, but
spurious measurements are. The true situation is the one on the left, where one triangular
feature is observed in the two images, and there are two spurious measurements, each with
a square appearance. However, if we start the joint correspondence sampler in the state
corresponding to the right diagram, where the observed feature is thought to be square, we
cannot transition to the true situation by changing the assignment in one image only. The
reason is simple: because of the perfect appearance measurement model, any intermediate
state would have probability zero, and hence such proposals will not be accepted.

Even though the Markov chain might be irreducible if we use a non-perfect measurement
model, convergence will still be very poor. Since we propose a change of assignmentin one
image only, an incorrect assignment in another image can lock in the incorrect assignment,
or make it very improbable that an intermediate state is visited. This is analogous to the
problems with the flip proposal problem in the single image case: we need a concerted
change not provided for by the proposal distribution. Even for non-perfect measurements,
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this deadlock problenis no longer absolute, but the probability of overcoming it is very
small. The same reasoning holds for continuous models.

9.4.4 Special Cases
No Occlusion or Clutter

In the case that there is no occlusion or clutter, the deadlock problem disappears. In addi-
tion, the sampling process is decomposed inte n, smaller sampling problems, where as
beforem is the number of images and is the number of symbols. Indeed, after looking

at a single image we can tell exactly (for a discrete appearance model) how many features
there are of any given appearance type. In that case, any valid assignment partitions the
correspondence vectors neatly along type boundaries. Since we cannot propose an assign-
ment that changes the appearance (ironically, because of the deadlock problem), we only
have to consider the subset of measurements and features that have the same type.

Known Partition Sizes

The same is true in the case that we know exactly how many features there are of each
appearance type. Given this additional information, we can restrict ourselves to that part of
the space of correspondences that do not change the number of features in each class.

Implementation

Results for the case that we know the partition sizes are given in the next chapter, Chapter
10. Implementing the sampler from Section 9.4.1 is particularly simple in this case: we
simply haven, smaller sampling problems that do not interact.

Indeed, since the partition sizes are known, the features can be partitioned beforehand and
designated to be of a particular (discrete) appearance type. The sampler is then run, and on
each iteration an image is randomly selected, after which an assignment change is proposed
using the usual chain flipping machinery described in Chapter 5. The transition probabili-
ties in the mini Markov chain remain the samegceptvhen the proposed transition assigns

a measurement of one type to a feature of another type. In that case, the transition proba-
bilities are set to zero, corresponding to infinite edge weights. In other words, those edges
that connect measurements with features of a different type are simply deleted from the
bipartite graph.
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9.4.5 Importance Sampling

If the partition sizes are not known, the modified sampler from Section 9.4.1 has very poor
convergence properties, but a technique caliggortance samplingTanner, 1996) can to
some extent alleviate the problem. The idea is this: instead of multiplying the acceptance
ratio with the appearance likelihood ratio

P(A]J', ©")
P(A]J, ©Y)

as done in equation 9.12, we accord an importance weight equalAdJ, ©") to each
accepted samplé. In other words, we sample without regard to appearance, but weight
each resulting sample to reflect how likely each sampled correspondence assigininent

this way, the sampler is not caught in near-trapping states, and the effect of appearance can
be integrated nevertheless.

While some results using importance sampling are shown in Chapter 10, the problem of
poor convergence has simply been replaced by a different problem, namely thghof
variance In particular, the more accurate appearance measurements are (whether they are
discrete or continuous), the more extreme the appearance likelihood fuitiold, ©Y)

will be as a function of]. If a given correspondence assignment is compatible with the
appearance measuremeAtsthe likelihood and the associated importance weight will be
very high. Conversely, if there is some inconsistency, the importance weight will be very
low. Since there are many more inconsistent assignments than there are consistent ones,
the importance weights will be dominated by a small set of very large values. This is a well
known problem with importance sampling in general (Tanner, 1996).

More importantly, the problem becomes increasingly worse with the number of images
m and the number of features Indeed, the state space over correspondedicg®ws
combinatorially inm andn, but the number of consistent assignments does not. This
virtually guarantees that the modified proposal strategy of Section 9.4.1 will fail.

There are two strategies to avoid this problem: (a) we can try to come up with new proposal
strategies that are specially built for the multi-image assignment problem, and hopefully
avoid the problems associated with proposing changes in isolated images, or (b) we can
sidestep the problem and estimate appearance along with structure and motion, in which
case the sampling once again decomposes over the different images. In this dissertation |
have taken the latter approach, which is explained in detail in the next section, Section 9.5.



CHAPTER 9. INCORPORATING APPEARANCE 179

9.5 EM for Structure, Motion, and Appearance

9.5.1 Introduction

In order to sidestep the problems with sampling joint correspondence assignmerds
can instead also estimate appearance along with structure and motion. In other words, in
the M-step, in addition to estimating structure and moti@&n we now also optimize for
appearance parameté&’s
{©"! Y"1} = argmax (log P(U, A, J|©,Y)) + log P(©) + log(Y) (9.13)
0,Y

)

where the priors?(®) and P(Y) on geometry and appearance, respectively, are assumed
independent. One needs to compare this with equation 9.6 on page 168, where (a) only the
geometry is treated as an unknown, and (b) the appearance parametersot appear, as

there they are integrated out. In contrast, in ( 9.13) we treat the appearance parameters
as unknown parameters of interest.

In the E-stepwe condition on the current estima® of structure and motioand on the
current estimaté&’? for the appearance parametéfs to obtain the posterior probability
over correspondencds

P(J|U,A, 0" Y")

The advantage with respect to joint sampling is that this will now decompose over images,
i.e. we can sample in each image in isolation. The disadvantage is that wetat&ain-

ing an unbiased structure and motion estimate: it will depend on the concurrently found
estimate for appearancé.

9.5.2 The M-Step:
Re-estimating Structure, Motion, and Appearance

In the M-step, we re-estimate structure and mot®nand the appearance paramef¥rs
The expected log-likelihood is given by

Q'(©) = (log P(U, A, J|©,Y))
Applying the chain rule to the likelihood term within the expectation operator, we have

log P(U,A,J|©,Y) =1log P(U|A,J,0,Y) + log P(A|J,0©,Y) + log P(J|®,Y)
(9.14)
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The third termP(J|®,Y) above is a conditional prior on correspondence, given geome-
try ® and appearanc¥. This prior onJ is independent of the geomet® if a simple
visibility model is used, as discussed in Section 7.2. Likewise, we will assume here that
correspondence ia priori independent of the structure appearaite Hence, the third

term in (9.14) can be dropped from further consideration.

This remainder of the objective function consists of two terms, discussed in turn below:

1. If we assume that the location measuremé&htsre conditionally independent of the
appearance term& andY, givenJ and®, we have

log P(UJ|A,J,0,Y) =log P(U|J, ©)

This term is well known: it is nothing but the conventional structure and motion ob-
jective function. When taking its expectation with respect to the distribution over cor-
respondences, we have the familiar virtual measurements formulation from Chapter
4 (equation 4.14 on page 59):

> > (v —hy) "R (v — hy)

i=1 j=1

(log P(U|J,0)) = —

DN | —

with the virtual measurementsfj and covariance matriceR,; defined as before
(equations 4.15 and 4.14, on page 59).

2. The second term has been encountered as well: it is the appearance likelihood,
given'Y, which can be expressed in terms of measurement$egsquation 9.5
on page 164). Ihog terms, and dropping the spurious term (as it does not depend on
the unknowns), we have:

log P(A]J,0,Y) = Z Z log P(a;|m;, x;,y,)
Jj=1 a,€S;
Note that this term involves the geometry-related unknomnsindx;. This means
that, if the appearance measurement model is geometry dependent (e.g. in the case of
oriented surface patches), the resulting optimization problem is coupled. However,
in all the measurement models considered in this dissertation, appearance measure-
ments are independent of geometry, i.e.

n

log P(A|J,0,Y) =1log P(A|J,Y) =) ) logP(asly;)

j:1 akESj
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If the simple continuous measurement model from Section 9.2.4 is used, this is noth-

ing but a maximum likelihood criterion for a mixture of Gaussians. Maximizing the

expected log-likelihood is as simple as estimating the means (and possibly covari-

ances) of the Gaussians by a weighted average, where the weights are exactly the

marginal probabilitieg;, estimated in the E-step (equation 4.18 in Section 4.4.6).
Since the geometry and appearance related estimation problems neatly decouple, the M-
step can be summarized as:

1. Solve for optimal structure and moti@'*!, given virtual measuremenigj and
virtual covarianceR;;. The appropriate algorithm to use depends on the application.

2. Re-estimate the appearance paramgtefsr each feature.

Application: The Simple Continuous Model

In the case of the simple model from Section 9.2.4, the appearance is estimated by a
weighted average of the appearance measureragnor each componet;,, we have

t+1 _ DDk Jti?kakc

y .C =
! DDk zzk

and, if the variances;, are unknown:

(02- )t+1 _ > i Dk fiz'k(akc - y;;rl)Z
o > ok fign

9.5.3 The E-Step: Approximating Marginal Correspondence Proba-
bilities given an Appearance Estimate

In the E-step we need to estimate the marginal correspondence probabilities given the cur-
rent estimate®’ and Y’ respectively for structure and motion, and appearance. If we
make the same independence assumptions as in the M-step, the conditional posterior over
correspondencekis

P(J|U,A,©"Y") x P(U,A,J, 0" Y") « P(J|©)P(U|J,0)P(A|J, 0", Y
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Thus, the posterior can be seen as consisting of two parts: one factor measures the geo-

metric consistency of a correspondence, and the other part measures the appearance con-
sistency. Since we condition on both geome®¥yand estimated appearan¥é from the

M-step, this entire expression can be factored over the images. To see this, consider each

of the factors in turn:

1. The first two factorsP(J|©") P(U|J, ©"), are together the posterior probability of
the correspondencEgiven the location measuremeffisand an estimate for struc-
ture and motior®®. We know from the previous chapters that, under some mild
assumptions, this probability decomposes over the different images:

P(U|3,0"P(J|©") = [ | P(Uilj;, m!,X") P(J|m{, X")
i=1
Recall from Chapter 5 that in that case, we can treat the E-step in terms of sampling
weighted matchings in bipartite graphs. If we use a simple visibility model, we know
from Chapter 7 that (equation 7.32 on page 140):

11 (3a) = P (Ui, mj, X') P(J|mj, X') o exp [ Zw ks Ji(u) ] (9.15)

where the augmented weights are defined by ( 7.31 on page 140):

5 ( )A —loga ifv=uw
w(u,v) = .
w(u,v) otherwise

Here o depends on the amount of occlusion and cluttglis a special “spurious”
vertex, and the weights(u, v) measure how far actual measurementsre from

the projected features, e.g. for 2D isotropic Gaussian noise we have (equation 7.34
on page 140):

w(uka 'Uj) é - IOg P(uik|mia ink)
1
= log(270”) + ﬁ“‘lz’k — h(m;, x;)|
2. The appearance likelihodd{ A |J, ©*, Y?) also decouples over the imaggssenthe
appearance parametéys Indeed, we already know that the likelihood factors over
allimages and measurements as follows (slightly rewriting equation 9.2 on page 164:

P(A|3,0"Y") =[] P(Ailji m}, X' Y") =[] lH Py(ai) || Plag/m!, X"y}, )

=1 i=1 1jir=0 Jik #0
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This is the main advantage of taking appearakceito the M-step: we can now
sample for each image in isolation. If we assume as above that the appearance mea-
surement is independent of the geometry, we can write the appearance likelihood for
a given image correspondence vegtas:

P(Aiji,m!, X'Y") = P(Ailj;, Y) = [] Po(a) [] Plawlyi.,) (9.16)

Jir=0 Jir#0
Sampling Appearance-weighted Weighted Matchings

Since both parts decompose over the images, we can once again abstract away from the
problem and simply sample over weighted matchingewever, we need to use newly
computed weights that take appearance into account. The target distribution is the the image
correspondence posteriB(j;|U;, A;, m!, X' Y'). To lessen the burden of notation, let us
denote this as

Fei3i) = PG|, Ay ml, X1, YY)
where theY in the subscript indicates we are now also conditioning on an appearance
estimateY’. Combining equations (9.15) and (9.16) and rewriting the resulting expression
we obtain a Gibbs distribution with new weights:

fyi(i) = exp _Zw(ukaji(uk))] [T Potaw) [T Plailys)
L k=1 Jir=0 Jir#0
= exp | Y (loga+log Py(ai)) + Y (log P(uy|my, x;,) + log P(au|yj, )
Ljir =0 Jik#0
= exp |— @(uk,ji(uk))]
L k=1

where the new weights are defined as

5w, 0) A —loga — log Py(ay;) if v =y
"] —log P(u|my, x;,.) — log P(agly;,) otherwise

Application: The Simple Continuous Model

In the case of the simple model from Section 9.2.4, i.e. independently measured appearance
components (e.g. pixels), and with isotropic 2D Gaussian noise for the location measure-
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ments, we have:

o) N —loga — log Py(ay;) if v =g
’ log(27r02) + #Huik — h(m,, Xj)||2 + Zc ﬁ(aikc — y§0)2 otherwise
je

The Spurious Likelihood Model

There is one more issue to resolve before we can implement this in practice: what should
the spurious likelihood moddf,(a) be ? We cannot simply drop this term from consid-
eration, as this would unduly favor correspondences with more spurious measurements, as
this minimizes the sum of the weights. Instead, the appearance-related penalty associated
with spurious measurements should be on the same order as the penalty incurred for non-
spurious measurements. For the simple model, this can be accomplished by using the same
independent Gaussian model, with mean and covariance derived from the entire collection
of measurements:

i Dk Be

o2 — Zz Zk(akc - Y0c)2
Oc —
Zi K;




Chapter 10

Results for MCEM with Appearance
Models

This chapter presents results obtained by incorporating appearance. Results are shown for
both the joint correspondence sampling approach and the EM approach with re-estimating
appearance.

The first approach is appropriate for discrete appearance models where there is no occlusion
or clutter, or in the case that the partition sizes are known. Results for both binary and multi-
valued symbols are shown below in Section 10.1. We also show one result, in Section 10.2,
for which the partition sizes are not known. To implement this | used importance sampling.
However, it is noted that the appearance model can only be used to provide a weak bias, in
order to avoid high variance in the importance weights.

The second approach, where appearance is re-estimated in the M-step, is illustrated with
pixel templates as the appearance model in Section 10.3.

10.1 Known Partition Sizes

10.1.1 Binary Symbols

In this section | illustrate a sequence with a perfect measurement model, with known par-
tition sizes. The object in the 8 images has features that contain the color red and some
that do not. The measurements are shown in Figure 10.1: both their location and symbolic

185
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Figure 10.1: Measurements in the 8 input images.
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Figure 10.2: Marginal probabilities computed in the E-step, grouped according to type.
Due to the perfect appearance model, there is no interaction between measurements and
features of different type. Note that, as before, the first column is reserved to indicate
spurious measurements, of which there are none here.
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Figure 10.3: Plot of the predicted location for each of the features over time. The last
predicted location is marked with an asterisk. Measurements are shown as squares and tri-
angles. Note that in every image some features are occluded, in which case no measurement
is shown.
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Figure 10.4: Input Images. The last predicted location is marked with an asterisk.

surements are shown as squares and triangles.

Mea-
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appearance attribute are shown. Triangles and squares respectively represent the measure-
ments with and without the color red.

The effect of incorporating appearance is clearly seen in the E-step. The course of the
EM algorithm is illustrated as before, with the soft correspondence in Figure 10.2 and
the prediction paths in Figure 10.3. The perfect appearance model makes that there is no
probability mass between red measurements and non-red-features, and vice versa. This
causes a block-diagonal structure for the marginal probabilities in the early iterations of the
algorithm.

10.1.2 Multiple Symbols

To fully appreciate the information added by appearance measurements, consider the wire
toy example in Figure 10.5. For this example, location measurements on the beads were
obtained manually. If we look closer at one image (Figure 10.6) it is clear that, if the beads
are indistinguishable, there is considerable opportunity for confusion, as projections of the
beads line up in many images. Furthermore, in every image there are some some beads
that are occluded. To illustrate incorporating appearance, the 153 bead measurements n
the 8 images were augmented with a symbolic attribute representing the color of the bead.
In total, there are 6 red (squares), 5 yellow (triangles), 4 green (circles), 4 orange (upside
down triangles), and 4 blue beads (diamonds). This information is given to the algorithm,
i.e. we are in the “known partition” case, and the problem is expected to decompose into 5
smaller problems.

Figure 10.7 contrasts the results without (on the left) and with incorporating appearance
(on the right). Note that the final correspondence in the former is incorrect, whereas the
probability mass in the latter is constrained considerably by appearance. Even so, there is
still potential for confusing like measurements. For example, in iteration 9 there is still con-
siderable uncertainty about the yellow and blue beads, mostly so in image 4. Looking back
at Figure 10.6 we see the cause: the yellow bead measurements almost overlap, whereas
the blue beads projections in the lower right corner are quite close. However, this is quickly
resolved by the EM algorithm by using measurements in the other images do disambiguate
the situation, and the final correspondence with appearance is the correct one.
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Figure 10.5: Eight input Images for wire toy example. The last predicted location is marked
with an asterisk. Measurements are shown as various symbols.
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Figure 10.6: Large version of wire toy image 4, clearly showing the symbolic appearance
measurements. There is one symbol per color.
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Figure 10.7: Comparing results without (on the left) and with incorporating appearance (on
the right). The features and measurements are partitioned according to colors, in the order:
red (6), yellow (5), green(4), orange(4), blue(4).
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Figure 10.8: Comparing results without (on the left) and with incorporating appearance
(on the right), with unknown partitions. The features and measurements are partitioned as
before.
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Figure 10.9: Marginal probabilities and appearance statistics. Above each marginals plot,
the 5 by 23 grayscale image shows for the posterior probalftlity, = y|U, A, ©") for

each of the 23 features, whegec 1..5. Thus, each column has 5 entries, one for each
color, and the features are grouped the same way as before.
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10.2 Unknown Partition Sizes

This section shows results on the same “wire toy” image sequence from Section 10.1, but
now assuming the partition sizes are unknown. If this more general case, appearance can
still be used to bias the sampling. As explained above, this has to be done using impor-
tance sampling. In the case of 5 symbolic features, a completely uninformative appearance
measurement model would have a reliability= 0.2, i.e. the appearance measurement

is modeled as drawn at random from the 5 features. We cannot use the true reliability
p = 1.0, as this will result in a useless sampler, unless we happen to stumble on a perfectly
consistent joint assignmedt Any value forp close tol.0 will have the same effect: the
importance sampler will have high variance, i.e. dominated by a few (or even one) very
large importance weights.

With a relatively low appearance bias, the type partitions can be recovered even if unknown.
Figure 10.8 shows the marginals obtained with an appearance hias 0f3. This means,

we modelthe probability of drawing the predicted appearance measurenietghereas

any other draw has a probability gf—0.3) /4 = 0.175. Compared to the marginals without
using appearance (which are again shown the right), there is not a lot of difference, but the
appearance bias is enough to avoid the incorrect local minimum that was attained without
appearance.

While the appearance parametgrsare integrated out in the E-step, it is nevertheless
instructive to plot the posterior probabilitigyy; = y|U, A, ©") for each possible color
assignment to each of the features. This is done in Figure 10.9, where these posterior
probabilities are represented as images, in the same way the marginals are. Note that a
near-perfect red-yellow-green-orange-blue partition is recovered in the last iteration.

10.3 EM with a Simple Continuous Model

The approach from Section 9.5, i.e. re-estimating the hidden appearance parameters
along with the structure and motidd, is demonstrated for the case of the simple contin-
uous model from Section 9.2.4. In particular, the appearance parameters were taken to be
15 x 15 templates of predicted pixel values. The image sequence was again the wiretoy
image from Figure 10.5, for which this model could be assumed to hold: the beads on the
wires do look roughly the same no matter where they are viewed from. The EM algorithm
was run for 25 iterations with linear annealing, and the marginal correspondence probabil-
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Figure 10.10: Marginal probabilities with continuous appearance model, where appearance
is modeled by image templates.
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Figure 10.11: Estimated template means, respectively in iteration 1,2,3,5,9,13,17,21, and
25.
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ities are shown for a subset of these iterations in Figure 10.10. As can be seen from the
last panel, the correct correspondence was recovered. The estimated appearance templates
change over time and are shown in Figure 10.11. Since the same ordering was used for the
colors as before (red, yellow, greed, orange, and blue), we can see very well that the correct
appearance is recovered towards the end of the algorithm.



Chapter 11

Discussion

11.0.1 Summary of Thesis

In this dissertation, | have shown that the Monte Carlo EM algorithm provides a practical
way to accurately approximate the optimal solution of multi-view geometric estimation
problems with unknown correspondence.

Mathematically, the MCEM approach combines several tools from applied probability and
statistics: the expectation-maximization algorithm provides a tractable way to optimally es-
timate structure from motion with unknown correspondence, provided the marginal proba-
bilities over the space of correspondences can be computed efficiently. The latter is done by
approximating the distribution over correspondences at each iteration of EM by a Markov
chain Monte Carlo sampler. An efficient sampler, specifically tuned to the correspondence
problem, was developed for that purpose. Finally, a deterministic annealing strategy was
used to avoid the local maxima problem that can otherwise hamper an EM based approach.

The new proposal strategies | proposed for efficient sampling of assignments bear an in-
teresting relation to research in the field of computational complexity theory. The “chain
flipping” proposal is related in terms of mechanism, if not description, to the Broder chain,
an MCMC type method to generate (unweighted) assignments at random (Broder, 1986).
However, our method is specifically geared towards sampling fveightedassignments,

and uses the weights to bias proposals towards more likely assignments.

While initially derived under the assumptions of perfect visibility (i.e. all features visible
in all images) in Chapters 4, 5, and 6, it was shown in Chapter 7 that the approach is eas-
ily extended to handle occlusion and clutter. Results with various degree of occlusion and

199
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simulated clutter were shown in Chapter 8. However, if significant occlusion and clutter

is present, any approach based solely on geometry is likely to diverge in many cases, un-
less strong priors on motion and or structure are imposed. Such a motion prior (the “arc”
prior) was introduced in Chapter 8, and many other -application dependent- priors can be
imagined. The combined results in Chapters 6 and 8 show that the Bayesian methodology,
implemented through the MCEM algorithm, is capable of recovering structure and/or mo-
tion from measurement data that present significant challenges, as can be appreciated by
looking at the datasets without viewing the original images.

Clearly though, geometry is not the only measurement information that can be derived from
images: appearance information can significantly constrain the data-association problem.
In Chapter 9 is is shown how appearance information can be incorporated into the geo-
metric estimation process, and experimental results with use of appearance are shown in
Chapter 10. It was shown that appearance can be viewed as a nuisance variable, just like
correspondence, but that this presents a significant computational challenge. A much sim-
pler approach is to regard appearance as one of the variables to be estimated, and it can be
argued that this is indeed the sensible thing to do. It was shown that in that case, the MCEM
approach can be straightforwardly extended by incorporating appearance as an unknown in
the M-step, and having it constrain the data-association in the E-step.

11.0.2 Future Work

Despite the tools and techniques proposed in this dissertation for the problem of data-
association, fully automatic structure from motion without correspondence remains a sig-
nificant challenge. In particular, | have completely side-stepped the the important issue of
feature selection, as all results were obtained on data sets where feature selection was done
by hand. This allowed us to concentrate fully on the simultaneous geometric estimation
and data-association problem, rather than having to solve the feature selection problem as
well. Commonly used feature detectors are far from ideal, and the amount of spurious
measurements and missed features makes application of the MCEM algorithm a non-trivial
problem, especially in the case when no appearance information is used.

There are at least two possible approaches to push towards fully automatic structure and
motion recovery. First, one could push on the feature selection side, i.e. try to extract
only features that can be reliably detected across views, and are less prone to spurious
measurements than, say, corner detectors. Second, one could concentrate on extracting
appearance measurements from the images that are invariant to changes in viewpoint and
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can be used to easily identify matches in other images. This is an area of intense re-
search (Schmid and Mohr, 1997; Montesinos et al., 1998)(Tuytelaars and Van Gool, 2000;
Tuytelaars and Van Gool, 2001).

The selection of better features is not addressed here, but for the latter, appearance-based
approach it was shown in Chapter 9 that such appearance measurements can be easily in-
corporated in the MCEM approach. However, the problem is not the ability of MCEM to
take appearance into account, but rather the fact that reliable appearance models are far
from obvious, especially in structure from motion applications. Indeed, invariant appear-
ance descriptors are in general not available under 3D viewing transformations (Schmid
and Mohr, 1997). While | have shown results (in Chapter 10) with image sequences in
which appearance was relatively stable from view to view, even with large displacements,
this is seldomly the case if image sets are taken under more realistic circumstances. For
instance, if a detected feature sits on an occlusion boundary (a frequent occurrence), the
background can change dramatically depending on from which side it is viewed. Note that
this issue is not avoided by the use of other algorithms, e.g. RANSAC based methods,
which face exactly the same problem. In fact, the usefulness of RANSAC-based estimation
of multiview constraints is severely limited by the implicit assumption of that viewpoint
changes will be small, as the initial seeding of correspondences will fail otherwise. This is
primarily due to the loss of appearance consistency over large displacements.

One other assumption made in this dissertation is unlikely to be satisfied in practice, namely
the assumption that the number of featutes known,a priori. This is a valid assumption

if there is no occlusion or clutter, as in that case the number of features can be obtained
simply by counting the number of measurements in any given image. However, in the
presence of occlusion and or clutter, we havealel selectioproblem: what is the number

of features that best explains the data ? There are a number of possible solutions that are
currently the focus of ongoing work. First, EM can be used in conjunction with a criterion
such as the Bayesian Information Criterion (BIC), in order to obtain a MAP estimate for
the number of features. In effect, the BIC provides a Bayesian prior on the number of
features. A second approach would be to take structure into the E-step, i.e. integrate out
the structure of unknown dimension as a nuisance variable, analogous to correspondence.
Instead of sampling over correspondences only, we would then also sample over the space
of possible structures, a union of spaces of different dimensions (one space for each value
of n). We then obtain a MAP estimate for motidA only, and, if desired, an associated
sampleover the structur&. A third approach is to abandon a point estimate for motion
altogether, and simply sample over the joint space of structure and motion, integrating out
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correspondence. This would be the purely Bayesian approach.

Finally, it is important to note that the MCEM approach is not limited to point features, or,

in general, to feature-based methods. There is no reason why the approach could not be
applied, in principle, to the pixel values in the images themselves. In this respect the work
of Yuille or Roy (Yuille et al., 1991; Roy and Cox, 1998) can serve as a guide. In those pa-
pers, multiview correspondence methods were applied working directly with the individual
pixels. However, their approach was limited to stereo (known motion) and the algorithms
they used do not guarantee optimality. In addition, they isolate one single, “best” multiview
correspondence, the shortcomings of which were one of the motivations behind the EM-
based framework presented here. It is of considerable interest to see whether the MCEM
approach to data-association can be applied in a computationally efficient manner to struc-
ture and motion recovery directly from pixel values, i.e. truly usatigthe information
available in the images.



Appendix A

Bundle Adjustment
for Point Features

This appendix describes the bundle-adjustment method for point features that was used to
generate all results.

A.1 Bundle Adjustment

Recall from Section 2.3 that to find the maximum likelihood (ML) soluhfor structure
and motion we need to minimize the following objective function (equation 2.3 on page 28):

K;

log L(©®; U, J) oc = > Y " |uy — h(my, x;,, )| (A.1)

=1 k=1

This can be written using vector notation by collecting all the measurements in a column
vectorU, and introducing a vector-functidn(®, J) that predicts the measurements given
structure and motio® and a correspondence vectorlf we assume that there aré 2D
image measurements,is 2 -dimensional. We can then write:

To find the ML solution, we need to minimize (A.2). In order to do this, we mustin general
use a non-linear minimization method, B&) involves an image projection. One such

203
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method isGauss-Newtonon-linear minimization, which starting from an initial gue®$
for structure and motion, and iterates over

@' = @'+ (HI'H,)” HY (U — h(e")

in practice implemented by solving the systemmofmal equations

H/H,(©'*' - ©') = H/ (U - K(®")) (A3)

In this expression the matriéd, is defined as the Jacobianlef.) evaluated a®*

b, _ 70(O)
00 o
H, has dimensior K x N, whereN is the number of unknowns, i.e. the dimension of
©. For example, for 6 degree of freedom cameras and 3D points weMaveésm + 3n,
with m the number of camera views amndthe number of points, anH[;, has dimension

2K x (6m + 3n).

Sinceh(.) can be very non-linear, straight Gauss-Newton iterations are usually replaced by
Levenberg-Marquardt iterations. This method automatically switches to gradient descent
when Gauss-Newton diverges, by making the Hessian diagonally dominant. In particular,
the diagonal elemen®;;, of Q 2 HTH are replaced b@.(1+A), where\ is a parameter

that is automatically adjusted during the course of the algorithm.

A.2 Sparse Solver

The HessiaHH! H;, is a block-matrix consisting dfin + n)? sub-matrices, which is quite

large if many points and/or camera positions are being considered. Inverting the Hessian
is the main cost in iterating (A.3). One way to avoid this inversion is to alternate between
structureX and motionM, keeping one constant while solving for the other. However, this
can lead to slow convergence, as structure and motion are not being considered simultane-
ously.

Hartley (Hartley, 1994) showed that, by making use of the special block structifetbé
exact solution of (A.3) can be found efficiently. Below | present a slightly different treat-
ment which is easier to implement, as we rely on sparse matrix multiplication to perform
the bookkeeping for us.
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To start with,H is first written as composed of & x m block-matrixF and aK x n
block-matrixG

_ _ | oh(M,X) 8h(M,X)
H= [ F G ] o [ oM X

whereF andG are the Jacobians &f.) with respect to motio and structuréX, respec-
tively. BothF andG are sparse matrices, as an image measuremgistonly affected by
a change in camera pose; and a change in feature positian. All sub-matrices corre-
sponding to other combinations will contain only zeros. The HeddiaH then becomes

FTF FTG]A[ U W]

H'H = (A.4)

G'F G'G | | W' VvV
The sub-matricedJ, V, andW are easily and efficiently computed using sparse matrix
multiplication. As a result of the special structurefofand G, bothU andV are block-
diagonal matrices, whered¥ is in general not sparse. The system (A.3) can now be
written as

e (A.5)

GT

U W
wT v

]5@:

wheres® 2 (Ol — @), e 2 (U — h(®")). By performing one step of Gaussian

elimination, we transform the Hessian into a lower-triangular block matrix:

_ -IwT T _ 1T
U-WV—W" 0 56 — F WV~—'G . (A.6)
w7 \% GT
We now find themotion updatéM by solving only the top half of (A.6):
(U-WV'WHsM = (FF —WV~'GT)e (A7)

OncedM is found, it is substituted in the bottom half, which yields an expression for the
structure updaté X :

X =V 1(GTe - WT§M) (A.8)
Both update equations (A.7) and (A.8) involVe!, which can be computed iR (n) time
(with n the number structure elements) due to the block-diagonal structivfe of

A.3 Point Features

Below we derive expressions fbrandG in the case that camera rotation is parameterized

by incremental rotation angles,, w, andw,, with respect to a base rotatid?*s*. In

the following we treat the case where each feature is seen in each image, but this is easily
generalized to extended sequences.
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Parameterization

To be precise, the cameras are parameterized as

Wy
_ base _ -
m; = tZ,RZ , Wi = Wy ,1 € {lm}

Wy

wherew; is an angular velocity vector that specifies an incremental rotation with respect
to R, as will be explained below. We assume the camera focal lefigthe aspect
ratio a, and the principal pointu,, vo) to be known, and skewto be zero, although these
assumptions will be relaxed later.

The structure is parameterized as

X

x;= |y |,j€{l.m}
Z

Note that we dropped theand; subscripts of the scalars to avoid notation clutter. With the
parameterization above, ti2ex 1 vector-valued measurement functibfim;, x;)(.) that
predicts the measurememy; = (u;;, v;;) is written as

(A.9)

where we definec;'- as the coordinates of the poixj expressed in the camera coordinate
frame::

A /

y | = Ri(x; —ti) (A.10)

z

7
X

In the expression above, the rotation mailRxis the product of the incremental rotation
matrix AR (w;) and the base rotatidR?*s:

R; = AR(w;)R¢

The incremental rotation matriX R (w;) is given by Rodriguez’s formula (Faugeras, 1993):

sin 0 1 ——cos@

AR(w) = I+ == J(w) + —;

T (w;)? (A.11)
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wheref) = ||w;||, and.J(w) is the skew symmetric operatdr: R* — SO(3):

0 —w, wy
J(w) = Wz 0 —wy
—Wy Wy 0

The base rotation is updated after each iteration in the optimization process, using (A.11),
so that at the working poinAR (w;) is always equal to the identity matrix, and around
this point the incremental rotation angles are small. This avoids the singularities normally
associated with an Euler angle parameterization (Hartley, 1994; Shum and Szeliski, 2000).

Change with respect to an arbitrary parameter

The partial derivative of (A.9) with respect to an arbitrary parametéother than the
camera intrinsics) can be found by applying the chain rule (Lowe, 1991):

o oy (A.12)

Z,

oh(m;,x;)  f [z’ 0 —a ] o |" . 0

0 a —ay

where we definel (x!) to be the2 x 3 matrix that is shared by all the derivatives. Below we
will specialize this for th&m unknown camera parameters andihestructure parameters,
respectively.

Change in Camera Parameters

The camera parameters we are optimizing for are the translgtiand the incremental
rotationw;, yielding 6 unknowns per camera. The mafifixthe partial derivative o with
respect to the camera parameters, is a block matrix&ithmn sub-blocks';;, each of size
2 x 6, whereK is the number of measurements (elg.= mn if there is no occlusion or
clutter). However, there are only non-zero blocks, as measurementis only affected
by a change in the camera parameiars Using (A.12) we have the following expression
for each of thesé&” nonzero blocks:

— . Oxt

m;,X;

m;,X;
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The partial derivative ok} with respect to translatioty is simply

Ox; 0 (Ri(x; —t:))
ot; ot;

= —R; = —R* (A.13)

and is independent of the feature poxjt The last equality follows because at the lin-
earization pointv, = w, = w, = 0, andR; = R},

An incremental rotation is slightly more complicated. Note that, for smalAR (w;) can
be approximated by
AR(w;) =~ T + J(w;)

From this, we see that the effect of the incremental rotationt;omn be written in terms
of a cross product:

AR (w;)x) ~ X} + w; X X}

as.J(w)p = w x p for any arbitraryw andp. Taking the partial derivative with respect to

w; yields _ _
OAR(wi)x;  Ow; x X})

Gwi - awi - _J(Xj)
The final expression for thg x 6 matrix F ;;; is
Fiiji = —AX)) | Rt J(x!) (A.14)

Change in Structure Parameters

We have three unknown structure parameterg andz for each pointk;. The matrixG,

the partial derivative oh with respect to the structure parameters, is a block matrix with
K x n sub-blocksG,;, each of siz& x 3. However, there are onli non-zero blocks, as
measurement;; is only affected by a change in the feature peintAgain each non-zero
block is found using (A.12):

Oh(my, x;) - oxi
G iV = vy = A(Xz.) J
i aX]’ m;,X; ! an m;,X;

The3 x 3 partial derivative ofx§. with respect to the feature poig} is

Oxj _ ORy(x; — ti)
aX]’ aX]’

=R; = R} (A.15)



APPENDIX A. BUNDLE ADJUSTMENT FOR POINT FEATURES 209

The final expression for thz x 3 matrix G ;;; is then
Gijy; = ARy (A.16)

Note thatG ;;); is equal (up to a sign) to the first 3 columnskgf;);. In an implementation
this can be used to speed up the calculatioR ahdG.

Varying Intrinsic Parameters

If the intrinsic parameters are allowed to vary between cameras, they can simply be added
to the unknowns for each camera. The corresponding partial derivatives then need to be
appended to the non-zero blockskfin the case of varying focal length aspect ratia,

and principal pointug, v) the corresponding partial derivatives are

oh(m;,x;) 1 [ 0 2 0]

Olfauguvdl” 2 | ay fy O 2

Non-zero Skew

The case for non-zero skew can easily be accommodated, but leads to slightly more com-
plicated expressions. In the case the skew can vary between cameras, this is is handled in a
similar fashion as varying focal length etc.

A.4 Orthographic Case

In the orthographic case, the expressionk @hdG are bilinear in the parameters (Morris
and Kanade, 1998). We have:

and
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A.5 Imposing Inner Constraints

Because of the position and scale ambiguity inherent in the SFM problem, the Hessian
H”H from equation (A.4) will be rank-deficient. In the 3D case, we need to impose 7
constraints to remove this rank deficiency. Tineer constraintare a set of constraints on

the structure updatA X that are optimal in the sense that they minimize the trace of the
resulting covariance matrix @* (Cooper and Robson, 1996). They are (from (Cooper
and Robson, 1996), p. 41-42) the three positional constraints,

Z&l’j = Zéy] = Z&Z] =0
three rotational constraints,
> 20y — yibz) = Y [—z0w; + x62) = Y [y;6x; — w;0y;] =0

and one scale constraint

Z[!L’j(Sl‘j + yjéyj + Z]'(SZJ'] =0
wherez;, y;, andz; are the coordinates of the 3D poiat, andj € {1..n}. Itis convenient
to write these constraints in the form

C6X =0 (A.17)

The normal equations (A.5) can now be augmented with the constraints (A.17) as follows:

Uu W o oM FT
wl v CT X | =] GT |e
0O C 0 A 0

and after a similar elimination process as the one that lead to (A.6), we get

FI - WVG
-CV~lG

U-WV W' —-wv-'Cc"
-Cv-'w’  —cv-ict

M|
N

] e (A.18)

and
6X =V (Ge - WIsM — CT)) (A.19)
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A.6 Automatic Differentiation

The sparse solver techniques above are very efficient for the classical 3D point feature
setup. However, the analytic derivatives are complex to derive in many other cases, and
the process of deriving them is error-prone and time-consuming. In order to lower the

entry-barrier to introducing interesting priors or camera models, | have implemented an

automatic differentiation toolbox in MATLAB.

Automatic differentiation (Griewank, 1989), abbreviated AD, is neither symbolic differen-
tiation nor numerical differentiation by a finite-difference approximation. Instead, to quote
Griewank, “AD simply implements the chain rule in a suitable fashion”. When the value
of a derivative is needed, AD computes the values of the arguments and their derivatives
(recursively), evaluates the function at the arguments, and executes the correct multiplica-
tions and additions to implement the chain rule. In contrast to symbolic differentiation, an
analytic expression for the derivative is never computed or needed. And, unlike numerical
differentiation, the value of the derivative is exact and free of numerical instabilities. In
addition, if implemented in a certain way, the computation cost is never more than 5 times
the cost of evaluating the function value itself (typically more like 1.5 times the cost).

| have implemented AD by creating a small functional language within MATLAB, where
common vector valued functions are adjoined with functions implementing their deriva-
tives. The objective function for optimization problems can be composed from these prim-
itive functions using let statements and various vector operators. When a derivative needs
to be evaluated at a given value, the chain rule is applied recursively by a top-level inter-
preter that produces the numerical value of the derivative and the function value at the same
time. The toolbox handles vector-valued functions and large Jacobians (for thousands of
variables), and makes use of sparse matrix techniques to attain efficiency.



Appendix B

EM as Lower Bound Maximization

The expectation-maximization (EM) algorithm can be explained in many different ways
(Dempster et al., 1977; McLauchlan and Murray, 1995; Tanner, 1996), one of the most
insightful being in terms of lower bound maximization (Neal and Hinton, 1998; Minka,
1998). The goal is to maximize the posterior probability of the param@&egsven the
dataU, or, equivalently, maximize the logarithm of the joint distribution:

e = = argmax log P(U,®) = argmax log »  P(U,J,0) (B.1)
Jegn
Here the variabld represents nuisance variables that cannot be easily integrated out, mak-
ing an analytic approach to maximizing (B.1) intractable.

The idea behind EM is to start with a gue®s for the parameter®, compute an easily
computed lower boun®(O; ®') to the functionlog P(©|U), and maximize that bound
instead. If iterated, this procedure will converge to a local maxinf&eof the objective
function, provided the bound improves at each iteration.

To motivate this, note that the key problem with maximizing (B.1) is that it involves the
logarithm of a (big) sum, which is difficult to deal with. Fortunately, we can construct a
tractable lower bound(©®; ©") that instead contains a sum of logarithms. To derive the
bound, first trivially rewritdog P(U, ®) as

log P(U, ©) logz (U,J,0) IOng UJG))
Jegn Jegn )

wheref*(J) is an arbitrary probability distribution over the spa¢é of hidden variables

212



APPENDIX B. EM AS LOWER BOUND MAXIMIZATION 213

J. By Jensen’s inequality, we have

B(©;0!) 2 > F(I)log — 2 PU,1,© <=log Y _ f(J) UJ@)

t
Jegn 13 Jegn (J)
Note that we have transformed a log of sums into a sum of logs, which was the prime
motivation.

B.1 Finding an Optimal Bound

EM goes one step further and tries to find bestbound, defined as the bouit{©®; ©)
that touches the objective functitwy P(U, ©) at the current guesd’. Intuitively, finding
the best bound at each iteration will guarantee that we obtain an improved egBfriate
when we locally maximize the bound with respecBo Since we knowB(©; ©) to be a
lower bound, the optimal bound @’ can be found by maximizing
t. @t U, J, Gt)

B(©'; ©) J;nf i) (B.2)
with respect to the distributioff(J). Introducing a Lagrange multipliex to enforce the
constrainty;_ .. f*(J) = 1, the objective becomes

t):)\ll_th +Zf )1log P(U,J, ©") — Zf ) log f'(J

Jegn Jegn Jegn
Taking the derivative
oG . .
o) A+log P(U,J, 0" —log f'(J)
and solving forf*(J) we obtain
P(U,J, 0%
i3 = 2 = P(J|U, @
() > 3em P(U,T,07) 4l )
yielding the following bound3(©; @"):
P(U,J,0)
B(O®: O = P Nlog ——27 =/ B.

Jegn
By examining the value of the resulting optimal boundtwe see that it indeed touches
the objective function:

P(U,J,0

B(©" 0" = P(J|U,0"1
(06" = 3~ POIU.6")log fi e

Jegn

=log P(U, ©Y)
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B.2 Maximizing The Bound

To maximizeB(©; ©") with respect td, note that we can write (B.3) as

B(©;0) 2 (logP(U,J,0))+
= (logP(U,J|@)>+logP( )+ H
= QYO©)+1logP(O®)+H

where(.) denotes the expectation with respecfQJ) 2 P(J|U,©®%), and

e Q'(O) is the expected complete log-likelihood, defined as:

Q'(®) £ (log P(U, J|©))

e P(®) isthe prior on the paramete&

o 1 2 — (log f!(J)) is the entropy of the distributioff(J) = P(J|U, ©)

Since’{ does not depend o®, we can maximize the bound with respect®ousing the
first two terms only:

O = argmax B(©; ©') = argmax [Q'(©) + log P(©)] (B.4)
e e

B.3 The EM Algorithm

At each iteration, the EM algorithm first finds an optimal lower bous@®; ®) at the
current gues®' (equation B.2), and then maximizes this bound to obtain an improved
estimate®'™! (equation B.4). Because the bound is expressed as an expectation, the
first step is called the “expectation-step” or E-step, whereas the second step is called the
“maximization-step” or M-step. The EM algorithm can thus be conveniently summarized
as:

A

e E-step: calculatg!(J) = P(J|U, ©)

e M-step: @'t = argmaxg [Q'(©) + log P(O)]
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It is important to remember thé}'(©) is calculated in the E-step by evaluatiff§J) using
the current gues®’ (hence the superscripf, whereas in the M-step we are optimizing
Q'(©®) with respect to thdree variable® to obtain the new estimat®’*!. It can be
proven that the EM algorithm converges to a local maximuniogfP (U, ©), and thus
equivalently maximizes the log-posteriog P(®|U) (Dempster et al., 1977; McLachlan
and Krishnan, 1997).

B.4 Relation to the Expected Log-Posterior

Note that we have chosen to defi@&©) as the expected log-likelihood as in (Dempster
et al., 1977; McLachlan and Krishnan, 1997), i.e.,

Q'(®) £ (log P(U, J|©))

An alternative route is to compute the expected log-posterior and maximize that in the
M-step(Tanner, 1996):
®'"! = argmax (log P(©|U, J)) (B.5)
()

Applying Bayes law, we obtain
(log P(®|U,J)) = (log P(U,J|®) + log P(©) — log P(U, J))

Here the second term does not depend amd can be taken out of the expectation, and the
last term does not depend @ Hence, maximizing (B.5) with respect @ is equivalent
to (B.4):

argmax (log P(®|U, J)) argmax [(log P(U, J|®)) + log P(©)]
) ®

= arggnax [Q"(®) +1og P(O)]



Appendix C

Virtual Measurements

In this appendix we prove the following theorem:

Theorem. Assume that the measuremenjg are normally distributed around their pre-
dicted valueh(m;, x;), wherem; are the motion parameters associated with imaged
x; are the coordinates of feature i.e.

1

\/ |27TR11€|

where we defind;; 2 h(m,, x;) for notational convenience; In that case, the expected
log-likelihood, given by equation 4.6 on page 56 and repeated here for convenience

1
P(uik|mi, Xj) = exp |:—§(llz]€ — hij)TRﬁcl(uik — hl]) (Cl)

m

=> Z Z fisn log P(uix [mj, x;) (C.2)

i=1 j=1 k=1

is equivalent to the following virtual measurements formulation (equation 4.14 on page 59):

———ZZ —hy)"R;; (vi; — hyj) (C.3)

i=1 j=1

Here thevirtual measurements’;; are defined as

A
f = Ry ZfzykRzk Wik (C.4)

and thevirtual measurement covarianceR;; are defined by

R;' 2 Z LR (C.5)
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Proof. The log-likelihood for a single measurement can be obtained by taking the log-

arithm of the Gaussian conditional density (C.1) and dropping the constant:
1
IOg P(uik|mi,xj) = —§(u,k — hij)TRZ-_kl (uik — hz])

Substituting this into (C.2) we get the following expression for the expected log-likelihood

Q'(©): -
Q'(©) = —% > Z > ik — hi) "Ry (ui — hyj) (C.6)

=1 j=1 k=1
Expanding the square in (C 6) we obtain

zljlkl

Now distribute the sum over measurement indicetsking constants out of the sums:

K;
i Z Z Zf”kquRzk Ui — QhZ; Zfz lchk U, + hg;- (Z flsz’zkl) hij
k=1 k=1

lel_

(C.7)

The first term in the square brackets can be isolated as a coudstamtd we apply the
definition of R;; (definition C.5 on the page before) in the last term:

1 m n . o
¢- 2 ; ; —2h;; Z kRzk uy; + h; R hyy) (C.8)

Now, deﬁnevlt to satisfy the equation below
—2h% Z LR a = —2h[ RV (C.9)

which is obtained by

K;
ij =Ry Zfz'z'kR;kluik
k=1
i.e. this is definition C.4. Apply the transformation (C.9) in equation (C.8) to yield

I~ T -1t T -1
¢-3 > > (-2nR;'vl; + hiR;'hy)
i=1 j=1
Completing the square, we obtain

1 m n B
C =5 > > (ViR + ViRV — 2hiR;'v]; + hR 'hyj)

i=1 j=1
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Since the firstterm; 71" | > | viR;;'vl;, is independent o® (since it does not include

h;;) we can absorb it in the constant. Rewriting the remaining terms as a square yields the
desired expression (C.3). O
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for chain flipping, 74 in target tracking, 42
for smart chain flipping, 76 deadlock problem, 172
alignment detection, 126, 127
2D to 2D, 35, 47 deterministic annealingeeannealing

3D to 2D, 38, 48

3D to 3D, 37, 48
alternating cycles, 72
annealing, 21, 61, 92
appearance

integrating over, 166

measurement model, 158

measurements, 159

parameters, 159

statistics, 171
appearance likelihood, 159

with set scores, 167
assignment, 69
augmenting paths, 72

E-step, 59, 66, 85
and mutual exclusion, 64
approximating, 65
with appearance, 178
EM
algorithm, 49, 209
approaches based on, 44
as lower-bounding, 50, 209
for correspondence, 21, 53, 60
including appearance, 176
intuition, 50, 58
with appearance, 164
expectation-maximization
see EM, 209
CF, seechain flipping expected log-likelihood, 54
chain flipping, 73, 78
clustering, 65
clutter, 126, 131, 152, 154

feature-based methods, 13
flip proposals, 70, 78

CML, 46 geometric estimation problems, 10
correspondence problem, 16, 32 Gibbs distribution, 69

existing approaches, 16 Gibbs sampling, 67, 74

in vision, 34

importance sampling, 175

data association, 42 o
local minima, 61, 114
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M-step, 56, 92 discrete appearance, 169
including appearance, 176 example, 168
MAP estimate, 31, 48 SLAM, 46
marginal probabilities, 22, 54, 88 SMART, seesmart chain flipping
Markov chain, 67 smart chain flipping, 76, 78
Markov chain Monte CarliseeMCMC soft correspondences, 22, 88
Markov random fieldseeMRF spurious measurements, 59, 131, 137, 161
matching, 69 stereo, 39, 48
for correspondence, 68 multi-baseline, 48
MCEM, 18, 60, 67, 81 structure from motion, 12, 26, 40, 81
MCMC, 59, 63, 66, 67 2D, 48
mean-field approximation, 35, 65 applications, 27
measurement partition, 161 existing methods, 30
Metropolis-Hastings, 67 generalizing, 47
Monte Carlo EMseeMCEM maximum likelihood, 28
MRF, 66

target tracking, 42
multiple targets, 43
single target, 42

mutual exclusion, 59
in the E-step, 64

occlusion, 59, 126, 136, 143, 154 thesis, 10, 24

prior, 31 virtual measurement covariance, 57
arc motion, 141 virtual measurements, 56, 57, 85
on correspondence, 131 visibility, 126, 128

proposal density, 67

RANSAC, 38, 122
registrationseealignment

sampler, 69
sampling
appearance-weighted matchings, 180
assignments, 60, 66
imperfect matchings, 136
joint correspondence, 170
over assignments, 23
set score, 167



