
Fixpoint Semantics for a Fragment of First-Order
Linear Logic

Marco Bozzano �
May 22, 2001

CMU-CS-01-129

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

�DISI, Universit�a di Genova, Italy

Abstract

In this paper we investigate the theoretical foundation of a bottom-up, �xpoint
semantics for a subset of Girard's linear logic [Gir87]. More precisely, we con-
sider a �rst-order formulation of a fragment of LinLog [And92] including mul-
tiplicative disjunction and universal quanti�cation over goals. The semantics
is de�ned by means of a �xpoint operator which is monotonic and continuous
over an extended notion of interpretation lattice. We prove soundness and com-
pleteness of this semantics with respect to the usual operational semantics. We
discuss some applications and related work.

This research was sponsored by the O�ce of Naval Research (ONR) under grant
no. N00014-01-1-0432.

The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the o�cial policies, either expressed or
implied, of the ONR or the U.S. government.

Keywords: linear logic, �xpoint semantics

1 Introduction
In recent years a number of fragments of linear logic [Gir87] have been proposed
as a logical foundation for extensions of logic programming [Mil95]. Languages
like LO [AP91], LinLog [And92], ACL [KY95], Lolli [HM94], and Lygon [HP94]
have been proposed with the aim of enriching traditional logic programming
languages like Prolog with a well-founded notion of state and with aspects of
concurrency. The operational semantics of this class of languages is given via a
sequent-calculi presentation of the corresponding fragment of linear logic. Spe-
cial classes of proofs like the focusing proofs of [And92] and the uniform proofs
of [Mil96] allow us to restrict our attention to cut-free, goal-driven proof systems
that are complete with respect to provability in linear logic. These presenta-
tions of linear logic are the natural counterpart of the traditional top-down
operational semantics of logic programs.

In this paper we discuss an alternative operational semantics for a �rst-order
formulation of a fragment of linear logic which is a subset of LinLog [And92],
a presentation of full linear logic. The fragment under consideration comprises
the multiplicative disjunction ..

............
................................. , additive truth >, linear implication ��, and

also universal quanti�cation over goals. The ..
............
................................. connective can be thought of as

a multiset constructor, and it can be used for instance to specify (�rst-order)
multiset rewriting, while the universal quanti�er can be used to reason about
speci�cations which require introducing new values (e.g. names). The opera-
tional semantics we propose extends our previous works [BDM01a, BDM01b],
and consists of a goal-independent bottom-up evaluation of programs. Specif-
ically, given a program P our aim is to compute a �nite representation of the
set of goals that are provable from P . There are several reasons to look at
this problem. For instance, the provability relation of our logic can be used to
naturally express veri�cation problems for Petri Net-like models of concurrent
systems [BDM01b, CDL+99]. Also, a formal de�nition of the bottom-up se-
mantics can be useful for studying equivalence, compositionality and abstract
interpretation, as for traditional logic programs [BGLM94, GDL95].

Technically, the semantics is based on the de�nition of an extended notion
of interpretation comprising multisets of non ground atoms, and of a �xpoint
operator which turns out to be monotonic and continuous over the complete
lattice corresponding to the interpretation domain. The �xpoint semantics is
proved to be sound and complete with respect to the operational semantics. As
in [BDM01a, BDM01b], the semantic de�nition is presented in two steps. More
precisely, we �rst present a simple, non-e�ective notion of (concrete) interpre-
tation and the corresponding de�nition of �xpoint operator, which we call TP .
We then present an extended notion of (abstract) interpretation, and we de�ne
a symbolic and e�ective version of the �xpoint operator, which we call SP . The
purpose of this double de�nition is to ease the proof of soundness and complete-
ness. Namely, this latter proof is carried out by proving that the �xpoint of the
TP operator is equivalent to the operational semantics and that SP is a symbolic

1

version of TP . The main contribution with respect to [BDM01a, BDM01b] is
the management of universal quanti�cation over goals. Universal quanti�cation
can be seen as a means for introducing new values or names (eigenvariables)
during the computation. The semantic de�nition must then take into account
the fact that program signatures can dynamically grow.

Plan of the paper. After introducing some preliminaries in Section 2, we
present the logical fragment under consideration and its operational semantics
in Section 3. In Section 4 and 5 we discuss the de�nition of our bottom-up,
�xpoint semantics and we prove it is sound and complete with respect to the
operational semantics. More precisely, in Section 4 we present the de�nition of
the non e�ective �xpoint operator TP , while in Section 5 we present its symbolic
version SP . Finally, in Section 6 we discuss conclusions and future work.

2 Preliminaries
Signatures, terms and atoms. Given a program P , we denote by �P the
signature comprising the set of constants, function and predicate symbols in P .
We also assume to have an in�nite set V of variable symbols (usually noted X ,
Y , Z , : : :), and an in�nite set E of new constants (eigenvariables). We denote
by SigP the set of signatures which comprise at least the symbols in �P (and
possibly some eigenvariables). T� denotes the set of non ground terms over �
and A� the set of non ground atoms over �.

Multisets. We will extensively use operations on multisets. Multisets of
atoms over A� will be hereafter called facts, and symbolically noted as A,
B, C, : : : . A multiset with (possibly duplicated) elements a1; : : : ; an 2 A�
will be simply indicated as fa1; : : : ; ang, overloading the usual notation for
sets. A multiset A is uniquely determined by a map Occ : A� ! N such that
OccA(A) is the number of occurrences of A in A. Multisets are ordered accord-
ing to the multiset inclusion relation 4 de�ned as follows: A 4 B if and only if
OccA(A) � OccB(A) for every A 2 A�. We will also write B 3 A for A 4 B.
The empty multiset is denoted � and is such that Occ�(A) = 0 for every A 2 A�,
and � 4 A for any A. Multiset union A;B (alternatively written A+B when `,'
is ambiguous) is such that OccA;B(A) = OccA(A) + OccB(A) for every A 2 A�.
Multiset di�erence AnB is such that OccAnB(A) = max (0;OccA(A)�OccB(A))
for every A 2 A�. We also de�ne a special operation � to compute the least
upper bound of two multisets with respect to 4. Namely, A � B is such that
OccA�B(A) = max (OccA(A);OccB(A)) for every A 2 A�.

In the rest of the paper we will use �, �0, : : : to denote multisets of possibly
compound formulas. Given two multisets � and �0, � 4 �0 indicates multiset
inclusion and �;�0 multiset union, as before, and �; fGg is written simply
�;G . In the following, a context will denote a multiset of goal-formulas (a fact

2

is a context in which every formula is atomic). Given a linear disjunction of
atomic formulas H = a1

..
............
................................. : : : ..

............
................................. an , we introduce the notation bH to denote the

multiset fa1; : : : ; ang.
Finally, let T : I ! I be an operator de�ned over a complete lattice hI;vi.

We de�ne T "0= ;, where ; is the bottom element, T "k+1= T (T "k) for all
k � 0, and T "!=

F1
k=1 T "k , where

F
is the least upper bound w.r.t. v.

Furthermore, we use lfp(T) to denote the least �xpoint of T .

Substitutions and Multiset Uni�ers. We will use the usual notion of sub-
stitution as in traditional logic programming. Substitutions will be denoted by
�, �, � , : : : , and F� (where F is a fact, or a context, formula, : : :) will denote
the application of the substitution � to F . Composition of two substitutions �
and � will be denoted � � �, e.g F (� � �) stands for (F�)�. We will indicate the
domain of a substitution � by Dom(�), and will say \� de�ned on a signature
�" meaning that � can only map variables in Dom(�) to terms in T�. Finally,
FV (F) (where F is a fact, or a context, formula, : : :), will denote the set of
free variables of F , and �jW , where W is a set of variables, will denote the
restriction of � to Dom(�) \W .

We need to lift the de�nition of most general uni�er from expressions to
multisets of expressions. Namely, given two multisets (with the same number
of elements) A = fa1; : : : ; ang and B = fb1; : : : ; bng, we de�ne a most general
uni�er of A and B, written m�g�u�(A;B), to be the most general uni�er (de�ned
in the usual way) of the two lists of expressions (a1; : : : ; an) and (b1; : : : ; bn).
Note that in the notation fa1; : : : ; ang we don't care about the order of the
elements, therefore there might be more than one way to unify two given mul-
tisets. We use the notation � = m�g�u�(A;B) to denote any uni�er which is non
deterministically picked from the set of most general uni�ers of A and B.

3 A Proof Theoretical Presentation
In this section we give a proof-theoretic presentation of the fragment of linear
logic we are interested in. Basically it comprises the multiplicative disjunction
of linear logic (..

............
.................................), additive truth (>), linear implication �� (we use the reversed

notation H �� G for G �� H), and the universal quanti�er 8. In this section
we will de�ne a proof system, based on sequent calculus, for this logic, and its
operational semantics.

The logic programming language we discuss is based on linear logic, and can
be described by the following grammar:

D ::= A1
..

............
................................. : : : ..

............
................................. An �� G j D & D

G ::= G ..
............
................................. G j 8x�G j A j >

where A1; : : : ;An and A are atomic formulas. G-formulas correspond to

3

P `� >;� >r

P `� G1;G2;�

P `� G1
..

............
................................. G2;�

..
............
................................. r

P `�;c G [c=x];�

P `� 8x�G ;� 8r (c 62 �)
P `� G�;A
P `� bH �;A

bc (H ��G 2 P (variant))

Figure 1: A proof theoretical presentation for the logic

goals to be evaluated in a given program, while D-formulas correspond to
multiple-headed program clauses. A program P is a D-formula. Let P be the
program C1 & : : : & Cn . The execution of a multiset of G-formulas G1; : : : ;Gk
in � and P corresponds to a goal-driven proof for the two-sided sequent

P `� G1; : : : ;Gk ;

which is an abbreviation for the following two-sided linear logic sequent:

!C1; : : : ; !Cn)� G1; : : : ;Gk �
The formula !F on the left-hand side of a sequent indicates that F can be
used in a proof an arbitrary number of times. This implies that a program
can be viewed also as a set of reusable clauses. According to this view, the
operational semantics is given via the uniform (goal-driven) proof system de�ned
in Figure 1, where P is a set of implicational clauses, � is a signature in SigP , A
denotes a multiset of atomic formulas, and � denotes a multiset of G-formulas.
Note that all the formulas (and also substitutions) on the right hand side are
implicitly assumed to range over the term language T�, i.e. only the constants
declared in � can appear in formulas. A sequent is provable if all branches of
its proof tree terminate with instances of the >r axiom. The proof system of
Figure 1 is a specialization of more general uniform proof systems for linear logic
like Andreoli's focusing proofs [And92] and Forum [Mil96]. The proof system
is intended to de�ne the set of non ground goals which are provable from a
given program P (the so-called C-semantics of [FLMP93]), in other words free
variables in sequents must be implicitly considered universally quanti�ed. Rule
bc denotes a backchaining (resolution) step (where bH is the multiset consisting of
the literals in the disjunction H). We can assume Dom(�) � FV (H) [FV (G)
(note that H �� G is assumed to be a variant, therefore it has no variables in
common with A). Note that bc can be executed only if the right-hand side
of the current sequent consists of atomic formulas. Rule 8r is responsible for
signature augmentation. Clauses having the following form

a1
..

............
................................. : : : ..

............
................................. an �� >

4

play the same role as the unit clauses of Horn programs. In fact, a backchaining
step over such a clause leads to success independently of the current context A,
as shown in the following scheme:

P `� >;A >r

P `� a1; : : : ; an ;A bc

provided a1
..

............
................................. : : : ..

............
................................. an �� > 2 P

This observation leads us to the following property (we recall that 4 is the
sub-multiset relation).

Proposition 1 Given a program P, a signature � 2 SigP , and two contexts
�;�0 such that � 4 �0, if P `� � then P `� �0.

Proof. By simple induction on the structure of proofs. 2

We conclude this section with the de�nition of the (non ground) operational
semantics.

De�nition 3.1 (Operational Semantics) Given a program P, its operation-
al semantics, denoted O(P), is given by

O(P) = fA j A is a multiset of (non ground) atoms in A�P and P `�P Ag�
Note that, according to [And92], the information on provable facts from a given
program P is all we need to decide whether a general goal (with possible nesting
of connectives) is provable from P or not. In fact, provability of a compound
goal can always be reduced to provability of a �nite set of atomic multisets.

4 Bottom-Up Semantics
We will now discuss the de�nition of a bottom-up semantics for the logic lan-
guage of Section 3. The semantics should enjoy the usual properties of classical
bottom-up semantics, in particular its de�nition should be based on an e�ective
�xpoint operator (i.e. at least every single step must be �nitely computable),
and it should be goal-independent. In this section we present the �rst version of
our �xpoint operator, called TP , while in Section 5 we will present its symbolic
and e�ective version, called SP .

In presence of universal quanti�cation and therefore signature augmentation,
we need to extend the de�nition of Herbrand base and (concrete) interpretations
as follows. Namely, the de�nition of Herbrand base now depends explicitly on
the signature, and interpretations can be thought of as in�nite tuples, with one
element for every signature � 2 SigP .

5

De�nition 4.1 (Herbrand Base) Given a program P and a signature � 2
SigP , the Herbrand base of P over �, denoted HB�(P), is given by

HB�(P) = fA j A is a multiset of (non ground) atoms in A�g�
De�nition 4.2 (Interpretations) Given a program P, a (concrete) inter-
pretation is a family of sets (I�)�2SigP , where I� 2 P(HB�(P)) for every
� 2 SigP .

In the following we often use the notation I for an interpretation to denote the
family (I�)�2SigP .

Interpretations form a complete lattice where inclusion and least upper
bound are de�ned like (component-wise) set inclusion and union. In the fol-
lowing de�nition we therefore overload the symbols � and [for sets.
De�nition 4.3 (Interpretation Domain) Interpretations form a complete
lattice hD;�i, where:
� D = fI j I is an interpretationg;
� I � J i� I� � J� for every � 2 SigP ;

� the least upper bound of I and J is (I� [J�)�2SigP ;

� the bottom and top elements are ; = (;�)�2SigP and (HB�(P))�2SigP ,
respectively.

Before introducing the de�nition of �xpoint operator, we need to de�ne a notion
of satis�ability of a context � in a given interpretation I . For this purpose, we
introduce the judgment I j=� � B C, where I is an interpretation, � is a
context, and C is an output fact. The judgment is also parametric with respect
to a given signature �. The parameter C must be thought of as an output
fact such that C + � is valid in I . The notion of output fact will simplify the
presentation of the algorithmic version of the judgment which we will present
in Section 5. This notion of satis�ability is modeled according to the right-
introduction (decomposition) rules of the proof system. In other words, the
computation performed by the satis�ability judgment corresponds to top-down
steps inside our bottom-up semantics. In what follows we always make the
implicit assumption that � is a context de�ned over �, and, as a result, also
the output fact C must be de�ned over �.
De�nition 4.4 (Satis�ability Judgment) Let P be a program, � 2 SigP ,
and I = (I�)�2SigP an interpretation. The satis�ability judgment j=� is de�ned
as follows:

I j=� >;� B C for any fact C in A�;

I j=� A B C if A+ C 2 I�;

I j=� 8x�G ;� B C if I j=�;c G [c=x];� B C; with c 62 �;

I j=� G1
..

............
................................. G2;� B C if I j=� G1;G2;� B C�

6

The satis�ability judgment j=� satis�es the following properties.

Lemma 1 For every interpretation I = (I�)�2SigP , context �, and fact C,
I j=� � B C i� I j=� �; C B �.

Proof. \If part". By induction on the derivation of I j=� �; C B �.

- If � = >;�0, obvious;

- if � = A and A+ C 2 I�, then also I j=� A B C holds;

- if � = 8x�G ;�0 and I j=�;c G [c=x];�0; C B �, with c 62 �, then by induc-
tive hypothesis I j=�;c G [c=x];�0 B C, which implies I j=� 8x�G ;�0 BC;

- if � = G1
..

............
................................. G2;�0, the conclusion follows by a straightforward applica-

tion of the inductive hypothesis.

\Only if" part. By induction on the derivation of I j=� � B C.
- � = >;�0, obvious;

- if � = A and A+ C 2 I�, then also I j=� A; C B � holds;

- if � = 8x�G ;�0 and I j=�;c G [c=x];�0 B C, with c 62 �, then by inductive
hypothesis I j=�;c G [c=x];�0; C B �, which implies I j=� 8x�G ;�0; C B
�;

- if � = G1
..

............
................................. G2;�0 the conclusion follows by a straightforward application

of the inductive hypothesis.

2

Lemma 2 For any interpretations I1 = ((I1)�)�2SigP , I2 = ((I2)�)�2SigP ,
: : : , context �, and fact C,

i) if I1 � I2 and I1 j=� � B C then I2 j=� � B C;

ii) if I1 � I2 � : : : and
S1

i=1 Ii j=� � B C then there exists k 2 N s.t.
Ik j=� � B C.

Proof.

i) By induction on the derivation of I1 j=� � B C.
- If � = >;�0, obvious;
- if � = A and A + C 2 (I1)�, then A + C 2 (I2)�, because I1 � I2,

therefore I2 j=� A B C;

7

- if � = 8x�G ;�0 and I1 j=�;c G [c=x];�0 B C, with c 62 �, then by
inductive hypothesis I2 j=�;c G [c=x];�0 B C, which implies I2 j=�8x�G ;�0 B C;

- if � = G1
..

............
................................. G2;�0, the conclusion follows by a straightforward

application of the inductive hypothesis.

ii) By induction on the derivation of
S1

i=1 Ii j=� � B C.
- If � = >;�0, then for every k 2 N, Ik j=� � B C;
- if � = A and A + C 2 (

S1
i=1 Ii)�, there exists k 2 N s.t. A + C 2

(Ik)�, i.e. Ik j=� A B C;
- if � = 8x�G ;�0 and

S1
i=1 Ii j=�;c G [c=x];�0 B C, with c 62 �, then

by inductive hypothesis there exists k 2 N s.t. Ik j=�;c G [c=x];�0 B
C, therefore Ik j=� 8x�G ;�0 B C;

- if � = G1
..

............
................................. G2;�0, the conclusion follows by a straightforward

application of the inductive hypothesis.

2

We are now ready to de�ne the �xpoint operator TP .

De�nition 4.5 (Fixpoint Operator TP) Given a program P and an inter-
pretation I = (I�)�2SigP , the �xpoint operator TP is de�ned as follows:

TP (I) = ((TP (I))�)�2SigP
(TP (I))� = f bH � + C j there exist (H ��G) 2 P (variant)

and a substitution � s.t. I j=� G� B Cg�
In the previous de�nition, � is implicitly assumed to be de�ned over �. The
following property holds.

Proposition 2 (Monotonicity and continuity) For every program P, the
�xpoint operator TP is monotonic and continuous over the lattice hD;�i.
Proof. Monotonicity follows immediately from TP de�nition and Lemma 2
i). To prove continuity, it is su�cient to prove that TP is �nitary, i.e., for any
increasing chain of interpretations I1 � I2 � : : : we have that TP (

S1
i=1 Ii) �S1

i=1 TP (Ii). We will prove that for every signature � 2 SigP and for every con-
text �, if TP (

S1
i=1 Ii) j=� � B � then there exist k 2 N s.t. TP (Ik) j=� � B �,

from which the conclusion follows immediately. The proof is by induction on
the derivation of TP (

S1
i=1 Ii) j=� � B �.

- If � = >;�0, then for every k 2 N, TP (Ik) j=� � B �;

8

- if � = A and A 2 (TP (
S1

i=1 Ii))�, then there exist a variant H ��G of a
clause in P and a substitution � s.t.

S1
i=1 Ii j=� G� B C and A = bH �+C.

By Lemma 2 ii), we have that there exist k 2 N s.t. Ik j=� G� B C,
therefore bH � + C = A 2 (TP (Ik)�), which implies TP (Ik) j=� A B �;

- if � = 8x�G ;�0 and TP (
S1

i=1 Ii) j=�;c G [c=x];�0 B �, with c 62 �, then
by inductive hypothesis there exist k 2 N s.t. TP (Ik) j=�;c G [c=x];�0 B
�, therefore we can conclude that TP (Ik) j=� 8x�G ;�0 B �;

- if � = G1
..

............
................................. G2;�0 the conclusion follows by a straightforward application

of the inductive hypothesis.

2

Monotonicity and continuity of the TP operator imply, by Tarski's Theorem,
that lfp(TP) = TP "!. The �xpoint semantics of a program P is then de�ned
as follows.

De�nition 4.6 (Fixpoint Semantics) Given a program P, its �xpoint se-
mantics, denoted F (P), is de�ned as follows:

F (P) = (lfp(TP))�P = (TP"!((;�)�2SigP))�P �
We conclude this section by proving the following fundamental result, which
states that the �xpoint semantics is sound and complete with respect to the
operational semantics.

Theorem 1 For every program P, F (P) = O(P).

Proof. F (P) � O(P). We prove that for every k 2 N, for every signature
� 2 SigP , and for every context �, TP"k j=� � B � implies P `� �. The proof
is by lexicographic induction on (k ; h), where h is the length of the derivation
of TP"k j=� � B �.

- If � = >;�0, obvious;

- if � = A and A 2 (TP"k)�, then there exist a variant H ��G of a clause in
P , a fact C and a substitution � s.t. A = bH �+C and TP"k�1 j=� G� B C.
By Lemma 1, this implies TP"k�1 j=� G�; C B �. Then by inductive
hypothesis we have P `� G�; C, from which P `� bH �; C, i.e. P `� A
follows by bc rule;

- if � = 8x�G ;�0 and TP"k j=�;c G [c=x];�0 B �, with c 62 �, then by
inductive hypothesis we have P `�;c G [c=x];�0 from which P `� 8x�G ;�0
follows by 8r rule;

- if � = G1
..

............
................................. G2;�0 and TP"k j=� G1;G2;�0 B �, then by inductive

hypothesis we have P `� G1;G2;�0, from which P `� G1
..

............
................................. G2;�0 follows

by ..
............
................................. r rule.

9

O(P) � F (P). We prove that for every signature � 2 SigP and for every
context �, if P `� � then there exists k 2 N s.t. TP"k j=� � B �. The proof
is by induction on the derivation of P `� �.

- If � = >;�0, then for every k 2 N, TP"k j=� � B �;

- if � = bH �;A, with H �� G variant of a clause in P , � substitution, and
P `� G�;A, then by inductive hypothesis we have that there exists k 2 N
s.t. TP"k j=� G�;A B �. Then, by Lemma 1, TP"k j=� G� B A. By TP

de�nition, bH �+A 2 (TP"k+1)�, which implies TP"k+1 j=� bH � +A B �;

- if � = 8x�G ;�0 and P `�;c G [c=x];�0, with c 62 �, then by inductive
hypothesis we have that there exist k 2 N s.t. TP"k j=�;c G [c=x];�0 B �,
from which TP"k j=� 8x�G ;�0 B � follows;

- if � = G1
..

............
................................. G2;�0 the conclusion follows by a straightforward application

of the inductive hypothesis.

2

5 E�ective Fixpoint Semantics
The �xpoint operator TP de�ned in the previous section does not enjoy one
of the crucial properties we required for our bottom-up semantics, namely its
de�nition is not e�ective. This is a result of both the de�nition of the satis�a-
bility judgment (whose clause for > is clearly not e�ective) and the de�nition
of interpretations as in�nite tuples. In order to solve these problems, we �rst
de�ne the (abstract) Herbrand base and (abstract) interpretations as follows.

De�nition 5.1 (Abstract Herbrand Base) Given a program P, the Her-
brand base of P, denoted HB(P), is given by

HB(P) = HB�P (P)�
De�nition 5.2 (Abstract Interpretations) Given a program P, an inter-
pretation I is any subset of HB(P), i.e. I 2 P(HB(P)).

In order to de�ne the abstract domain of interpretations, we need the following
de�nitions.

De�nition 5.3 (Instance Operator) Given an interpretation I and a signa-
ture � 2 SigP , we de�ne the operator Inst� as follows:

Inst�(I) = fA� j A 2 I; � substitutiong�

10

De�nition 5.4 (Upward-closure Operator) Given an interpretation I and
a signature � 2 SigP , we de�ne the operator Up� as follows:

Up�(I) = fA+ C j A 2 Ig�
As usual, in the previous de�nitions we assume � and the fact C to be de�ned
over �. The following de�nition provides the connection between the (abstract)
interpretations de�ned in De�nition 5.2 and the (concrete) interpretations of
De�nition 4.2. The idea behind the de�nition is that an interpretation implic-
itly denotes the set of elements which can be obtained by either instantiating
or closing upward elements in the interpretation itself (where the concepts of
instantiation and upward-closure are made precise by the above de�nitions).
The operation of instantiation is justi�ed by the fact that free variables are im-
plicitly universally quanti�ed, while the operation of upward-closure is justi�ed
by Proposition 1. Note that the instantiation and upward-closure operations
are performed for every possible signature � 2 SigP .

De�nition 5.5 (Denotation of an Interpretation) Given an (abstract) in-
terpretation I , its denotation [[I]] is the (concrete) interpretation ([[I]]�)�2SigP
de�ned as follows:

[[I]]� = Inst�(Up�(I)) (or, equivalently, [[I]]� = Up�(Inst�(I)))�
Two interpretations I and J are said to be equivalent, written I ' J , i� [[I]] =
[[J]].

The equivalence of the two di�erent equations in De�nition 5.5 is stated in the
following proposition.

Proposition 3 For every interpretation I , and signature � 2 SigP ,

Inst�(Up�(I)) = Up�(Inst�(I))�
Proof. Let (A + C)� 2 Inst�(Up�(I)), with A 2 I . Then (A + C)� =
(A�) + C� 2 Up�(Inst�(I)). Vice versa, let A� + C 2 Up�(Inst�(I)), with
A 2 I . Let B be a variant of C with new variables (not appearing in A, �, and C)
and �0 be the substitution with domain Dom(�) [FV (B) and s.t. �0jDom(�) = �
and �0 maps B to C. Then A� + C = A�0 + B�0 = (A+ B)�0 2 Inst�(Up�(I)).

2

We are now ready to de�ne the abstract interpretation domain. As we do
not need to distinguish between interpretations having the same denotation, we
simply identify them using equivalence classes with respect to the corresponding
equivalence relation '.

De�nition 5.6 (Abstract Interpretation Domain) Abstract interpretations
form a complete lattice hI;vi, where

11

� I = f[I]' j I is an interpretationg;
� [I]' v [J]' i� [[I]] � [[J]], i.e. i� for every A 2 I , there exist B 2 J , a

substitution � and a fact C (de�ned over �P) s.t. A = B� + C;

� the least upper bound of [I]' and [J]', written [I]'
F

[J]', is [I [J]';

� the bottom and top elements are [;]' and [�]', respectively.

The condition A = B� + C provides for an e�ective method for testing the
v relation over interpretations. Equivalence with the non e�ective condition
[[I]] � [[J]] is stated in the following proposition. We will need this result later
on.

Proposition 4 Given two interpretations I and J , [[I]] � [[J]] i� for every
A 2 I , there exist B 2 J , a substitution � and a fact C (de�ned over �P) s.t.
A = B� + C.

Proof. \If part". We prove that for every � 2 SigP , [[I]]� � [[J]]�. Let
A0 = A�0 + C0 2 Up�(Inst�(I)) = [[I]]�, with A 2 I and �0, C0 de�ned over
�. By hypothesis, there exist B 2 J , a substitution � and a fact C (de�ned
over �P) s.t. A = B� + C. Therefore, A0 = A�0 + C0 = (B� + C)�0 + C0 =
B��0 + (C�0 + C0) 2 Up�(Inst�(J)) = [[J]]� (note that ��0 and C�0 + C0 are both
de�ned over � because �P � �).
\Only if" part. Let A 2 I , then A 2 [[I]]�P (note that A is de�ned over �P by
de�nition of interpretation). Then, by hypothesis we have that A 2 [[J]]�P =
Up�P (Inst�P (J)), i.e. there exist B 2 J , a substitution � and a fact C (de�ned
over �P) s.t. A = B� + C. 2

We now de�ne the abstract satis�ability judgment I
� � B C ; �, where I
is an interpretation, � is a context, C is an output fact, and � is an output
substitution. As usual, we make the implicit assumption that � is a context
de�ned over �, and, as a result, also the output fact C and substitution � must
be de�ned over �. The judgment
� can be thought of as an abstract version
of the judgment j=�. We now need one more parameter, namely an output
substitution. The idea behind the de�nition is that the output fact C and the
output substitution � are minimal (in a sense to be clari�ed) so that they can be
computed e�ectively given a program P , an interpretation I , and a signature �.
The output substitution � is needed in order to cope with clause instantiation,
and its minimality is ensured by using most general uni�ers in the de�nition.

De�nition 5.7 (Abstract Satis�ability Judgment) Let P be a program, I
an interpretation, and � 2 SigP . The abstract satis�ability judgment
� is

12

de�ned as follows:

I
� >;� B � ; �;

I
� A B C ; � if there exist B 2 I (variant); B0 4 B;A0 4 A;
C = B n B0; and � = m�g�u�(B0;A0)jFV (A;C);

I
� 8x�G ;� B C ; � if I
�;c G [c=x];� B C ; �; with c 62 �;

I
� G1
..

............
................................. G2;� B C ; � if I
� G1;G2;� B C ; ��

Example 1 Let I be the interpretation with the only multiset fp(X); q(X)g
(for simplicity, hereafter we omit parenthesis in multiset notation), and P the
program

1 � r(Y) �� q(f (Y))
2 � s(Z) �� 8x�p(X) ..

............
................................. t(Z)

Let's consider (a renaming of) the body of the �rst clause, q(f (Y 0)), and (a
renaming of) the element in I , p(X 0); q(X 0). Using the second clause for the
judgment
�P , with A = A0 = q(f (Y 0)), B = p(X 0); q(X 0), B0 = q(X 0), we get

I
�P q(f (Y 0)) B p(X 0) ; [X 0 f (Y 0)]�
Let's consider now (a renaming of) the body of the second clause, 8x�p(X) ..

............
.................................

t(Z 0), and the same element p(X 0); q(X 0). From the last clause for
�P , we
have that I
�P 8x�p(X) ..

............
................................. t(Z 0) B C ; � if I
�P 8x�p(X); t(Z 0) B C ; �.

From the third clause for
�P , this holds if I
�P ;c p(c); t(Z 0) B C ; �, with
c 62 �P . Now, we can apply the second rule for
�P ;c. Unfortunately, we can't
choose A0 to be p(c) and B0 to be p(X 0). In fact, by unifying p(c) with p(X 0),
we should get the substitution � = [X 0 c] and the output fact q(X 0) (note
that X 0 is a free variable in the output fact) and this is not allowed because the
substitution � must be de�ned on �P , in order for I
�P 8x�p(X); t(Z 0) B C ; �
to be meaningful. It turns out that the only way to use the second clause for

�P ;c is to choose A0 = B0 = �, which is useless in the �xpoint computation (see
Example 2). 2

The following lemma states a simple property of the substitution domain, which
we will need in the following.

Lemma 3 For every interpretation I , context �, fact C, and substitution �, if
I
� � B C ; � then Dom(�) � FV (�) [FV (C).
Proof. Immediate by induction on the de�nition of the judgment. 2

The connection between the satis�ability judgments j=� and
� is clari�ed by
the following lemma.

Lemma 4 For every interpretation I , context �, fact C, and substitution �,

13

i) if I
� � B C ; � then [[I]] j=� ���0 B C0�0 for every substitution �0 and
fact C0 3 C�;

ii) if [[I]] j=� �� B C then there exist a fact C0, and substitutions �0 and �
s.t. I
� � B C0 ; �0, �jFV (�) = (�0 � �)jFV (�), C0�0� 4 C.

Proof.

i) By induction on the derivation of I
� � B C ; �.

- If � = >;�0, obvious;
- suppose � = A, with B 2 I (variant), B0 4 B, A0 4 A, C = BnB0, and
� = m�g�u�(B0;A0)jFV (A;C). We want to prove that [[I]] j=� A��0 B
C0�0 for every substitution �0 and fact C0 3 C�, i.e. A��0+C��0+D�0 2
[[I]]� for every substitution �0 and fact D. Now, A��0+ C��0+D�0 =
(A�+ C�+D)�0 = (A0�+ (AnA0)�+ (B nB0)�+D)�0 = (A0�+ (An
A0)� + (B� n B0�) +D)�0 = B��0 + ((A n A0)��0 +D�0) 2 [[I]]�;

- if � = 8x�G ;�0 and I
�;c G [c=x];�0 B C ; �, with c 62 �, then by
inductive hypothesis we have that [[I]] j=�;c G [c=x]��0;�0��0 B C0�0
for every substitution �0 and fact C0 3 C� (where �0 and C0 are de�ned
over �; c). Assuming that the variable x is not in the domain of ��0
(it is always possible to rename the universally quanti�ed variable x
in 8x�G), we have that [[I]] j=�;c G��0[c=x];�0��0 B C0�0, and, by
de�nition of the judgment, we get [[I]] j=� 8x�(G��0);�0��0 B C0�0,
i.e. [[I]] j=� (8x�G ;�0)��0 B C0�0, where we can restrict �0 and C0 to
be de�ned over �, with C0 3 C�;

- if � = G1
..

............
................................. G2;�0 and I
� G1;G2;�0 B C ; �, then by in-

ductive hypothesis we have that [[I]] j=� (G1;G2;�0)��0 B C0�0,
for every substitution �0 and fact C0 3 C�. Therefore, [[I]] j=�
G1��0;G2��0;�0��0) B C0�0, and, by de�nition of the judgment, we
get [[I]] j=� (G1

..
............
................................. G2;�)��0 B C0�0.

ii) By induction on the derivation of [[I]] j=� �� B C.
- If � = >;�0, take C0 = �, �0 = �, and � = �;
- suppose [[I]] j=� A� B C and A� + C 2 [[I]]� = Up�(Inst�(I)).

Then there exist B 2 I , a fact D and a substitution � (de�ned on
�) s.t. A� + C = B� + D. We can safely assume, thanks to the
substitution � , that B is a variant of an element in I . Also, we can
assume that Dom(�) � FV (B) and Dom(�) \ Dom(�) = ;. Now,
take the substitution �00 s.t. Dom(�00) = (Dom(�) \ FV (A)) [
Dom(�), �00jDom(�)\FV (A) = �jDom(�)\FV (A), and �00jDom(�) = � .
We have that A�00 + C = B�00 + D. Let A0 4 A and B0 4 B be
two maximal submultisets s.t. A0�00 = B0�00, � = m�g�u�(A0;B0), and

14

�0 = �jFV (A) [FV (BnB0). By de�nition of the
� judgment, I have
that I
� A B C0 ; �0, where C0 = B n B0. As �00 is a uni�er for
A0,B0, while � = m�g�u�(A0;B0), I have that there exists a substitution
� s.t. �00 = � � �. Therefore, �jFV (A) = �00jFV (A) = (� � �)jFV (A) =
(�j(FV (A) [FV (BnB0)) � �)jFV (A) = (�0 � �)jFV (A), as required. We
also have that A�00+C = B�00+D, i.e., A0�00+(AnA0)�00+C = B0�00+
(B nB0)�00+D, i.e. (AnA0)�00+ C = (B nB0)�00+D. By this equality
and maximality of A0 and B0, we get that necessarily (B nB0)�00 4 C.
Therefore, C0�0� = (B n B0)�0� = (B n B0)�� = (B n B0)�00 4 C, as
required;

- if � = 8x�G ;�0 and [[I]] j=�;c (G [c=x];�0)� B C, with c 62 �, then by
inductive hypothesis there exist a fact C0, and substitutions �0 and �
(de�ned over �; c) s.t. I
�;c G [c=x];�0 B C0 ; �0, �jFV (G[c=x];�0) =
(�0 � �)jFV (G[c=x];�0), and C0�0� 4 C. By de�nition of the
� judg-
ment, I get that I
� 8x�G ;�0 B C0 ; �0. The conclusion follows (re-
member that we require C0, �0 and � to be de�ned over �) by the fol-
lowing crucial observations: Dom(�0) � (FV (G[c=x];�0) [FV (C0))
by Lemma 3; �0 does not map variables in G [c=x];�0 to the eigen-
variable c (otherwise also � would); �0 does not map variables in C0
to c and C0 itself does not contain c (otherwise C0�0� 4 C would not
hold); I can safely assume that Dom(�) does not contain variables
mapped to c, because such mappings do not a�ect the properties
that � must satisfy;

- if � = G1
..

............
................................. G2;�0 the conclusion follows by a straightforward ap-

plication of the inductive hypothesis.

2

The satis�ability judgment
� also satis�es the following properties.

Lemma 5 For any interpretations I1, I2, : : : , context �, fact C, and substitu-
tion �,

i) if I1 v I2 and I1
� � B C ; � then there exist a fact C0, and substitutions
�0 and � s.t. I2
� � B C0 ; �0, �jFV (�) = (�0 � �)jFV (�), C0�0� 4 C�;

ii) if I1 v I2 v : : : and
F1

i=1 Ii
� � B C ; � then there exist k 2 N, a
fact C0, and substitutions �0 and � s.t. Ik
� � B C0 ; �0, �jFV (�) =
(�0 � �)jFV (�), C0�0� 4 C�.

Proof.

i) Suppose I
� � B C ; � and I v J . By Lemma 4 i), [[I]] j=� �� B C�.
By Lemma 2 i), [[J]] j=� �� B C�. The conclusion then follows from
Lemma 5 ii);

15

ii) Suppose
F1

i=1 Ii
� � B C ; � and I1 v I2 v : : : . By Lemma 4 i),
[[
F1

i=1 Ii]] j=� �� B C�, i.e.
F1

i=1[[Ii]] j=� �� B C�. By Lemma 2 ii),
there exists k 2 N s.t. [[Ik]] j=� �� B C�. The conclusion then follows
from Lemma 5 ii).

2

We are now ready to de�ne the abstract �xpoint operator SP : I ! I. We will
proceed in two steps. We will �rst de�ne an operator working over interpre-
tations (i.e. elements of P(HB(P))). With a little bit of overloading, we will
call the operator with the same name, i.e., SP . This operator should satisfy the
equation [[SP (I)]] = TP ([[I]]) for every interpretation I . This property ensures
soundness and completeness of the symbolic representation.

After de�ning the operator over P(HB(P)), we will lift it to our abstract do-
main I consisting of the equivalence classes of elements of P(HB(P)) w.r.t. the
relation ' de�ned in De�nition 5.5. Formally, we �rst introduce the following
de�nition.

De�nition 5.8 (Symbolic Fixpoint Operator SP) Given a program P and
an interpretation I , the symbolic �xpoint operator SP is de�ned as follows:

SP (I) = f(bH + C)� j there exists (H ��G) 2 P (variant)
s.t. I
�P G B C ; �g�

Note that the SP operator is de�ned using the judgment
�P . The following
property shows that SP is sound and complete w.r.t TP .

Proposition 5 For every program P and interpretation I , [[SP (I)]] = TP ([[I]]).

Proof. \[[SP (I)]] � TP ([[I]])". We prove that for every � 2 SigP , [[SP (I)]]� �
(TP ([[I]]))�. Suppose (bH +C)� 2 SP (I), with H ��G variant of a clause in P and
I
� G B C ; �. Suppose also that A = ((bH + C)� +D)�0 2 Inst�(Up�(I)) =
[[Sp(I)]]. By Lemma 4 i), [[I]] j=� G��0 B C0�0 for every fact C0 3 C�, i.e.
[[I]] j=� G��0 B C��0 +D�0 for every fact D. Therefore, by TP de�nition, I
have bH ��0 + C��0 +D�0 2 TP ([[I]]), i.e. A 2 TP ([[I]]).
\TP ([[I]]) � [[SP (I)]]". We prove that for every � 2 SigP , (TP ([[I]]))� �
[[SP (I)�]]. Suppose A 2 (TP ([[I]]))�. By de�nition of TP , there exist a variant
of a clause H �� G in P , a fact C and a substitution � (de�ned over �) s.t.
A = bH � + C and [[I]] j=� G� B C. By Lemma 4 ii), there exist a fact C0,
and substitutions �0 and � (de�ned over �) s.t. I
� G B C0 ; �0, �jFV (G) =
(�0 � �)jFV (G), and C0�0� 4 C. Therefore, by SP de�nition, (bH + C0)�0 2 SP (I).
Now, A = bH � + C = bH �0� + C (note in fact that by hypothesis �0� and
� coincide for variables in G , and are not de�ned on variables in H which
do not appear in G because H �� G is a variant). Therefore, we have thatbH �0� + C 3 bH �0� + C0�0� = ((bH + C0)�0)� 2 [[(bH + C0)�0]] � [[SP (I)]]. 2

16

Furthermore, the following corollary holds.

Corollary 1 For every program P and interpretations I and J , if I ' J then
SP (I) ' SP (J).

Proof. If I ' J , i.e. [[I]] = [[J]], we have that TP ([[I]]) = TP ([[J]]), and, by
Proposition 5, [[SP (I)]] = [[SP (J)]], i.e. SP (I) ' SP (J). 2

The previous Corollary allows us to safely lift the de�nition of SP from the lattice
hP(HB(P));�i to hI;vi. Formally, we de�ne the abstract �xpoint operator as
follows:

De�nition 5.9 (Abstract �xpoint operator SP) Given a program P and
an equivalence class [I]' of I, the abstract �xpoint operator SP is de�ned as
follows:

SP ([I]') = [SP (I)]'
where SP (I) is de�ned in De�nition 5.8.

For the sake of simplicity, in the following we will often use I to denote its
class [I]', and we will simply use the term (abstract) interpretation to refer to
an equivalence class, i.e. an element of I. The abstract �xpoint operator SP
satis�es the following property.

Proposition 6 For every program P, the abstract �xpoint operator SP is mono-
tonic and continuous over the lattice hI;vi.
Proof. \Monotonicity". We prove that if I v J , then SP (I) v SP (J), i.e.
[[SP (I)]] � [[SP (J)]]. To prove this latter condition, we will use the characteri-
zation given by Proposition 4. Suppose A = (bH + C)� 2 SP (I), with H �� G
variant of a clause in P and I
�P G B C ; �. By Lemma 5 i), there exist
a fact C0, and substitutions �0 and � (note that they are de�ned over �P) s.t.
J
�P G B C0 ; �0, �jFV (G) = (�0 � �)jFV (G), C0�0� 4 C�. Let C� = C0�0� +D,
with D a fact de�ned over �P . By SP de�nition, B = (bH +C0)�0 2 SP (J). Now,
A = (bH + C)� = bH � + C� = bH �0� + C0�0� +D (note in fact that by hypothesis
�0� and � coincide for variables in G , and are not de�ned on variables in H
which do not appear in G because H �� G is a variant). Therefore, we have
that A = bH �0� + C0�0� +D = B� +D.
\Continuity". We show that SP is �nitary, i.e. if I1 v I2 v : : : , then SP (

F1
i=1 Ii)v F1i=1 SP (Ii), i.e. [[SP (

F1
i=1 Ii)]] � [[

F1
i=1 SP (Ii)]]. Again, we will use the char-

acterization given by Proposition 4. Suppose A = (bH +C)� 2 SP (
F1

i=1 Ii), with
H �� G variant of a clause in P and

F1
i=1 I1
�P G B C ; �. By Lemma 5

ii), there exist k 2 N, a fact C0, and substitutions �0 and � (note that they
are de�ned over �P) s.t. Ik
�P G B C0 ; �0, �jFV (G) = (�0 � �)jFV (G),C0�0� 4 C�. Let C� = C0�0� + D, with D a fact de�ned over �P . By SP
de�nition, B = (bH + C0)�0 2 SP (Ik). Exactly as above, we prove that A =
(bH + C)� = bH �0� + C0�0� +D = B� +D. 2

17

Corollary 2 For every program P, [[lfp(SP)]] = lfp(TP).

Let SymbF (P) = lfp(SP), then we have the following main Theorem.

Theorem 2 For every program P, O(P) = F (P) = [[SymbF (P)]]�P .

The previous results give us an algorithm to compute the operational and �x-
point semantics of a program P via the �xpoint operator SP .

Example 2 Let's consider the program P given by

1 � r(Y) �� q(f (Y))
2 � s(Z) �� 8x�p(X) ..

............
................................. t(Z)

3 � p(X) ..
............
................................. q(X) �� >

From the third clause, and using the �rst rule for
�P , we get that

SP"1= SP (;) = f[p(X); q(X)]'g�
We can now apply clauses 2. and 3. to the interpretation I = f[p(X); q(X)]'g
(remember that SP ([I]') = [SP (I)]'). From the �rst clause (see Example 1)
we have I
�P q(f (Y 0)) B p(X 0) ; [X 0 f (Y 0)]. Therefore we have that
[(r(Y 0); p(X 0))[X 0 f (Y 0)]]' = [r(Y 0); p(f (Y 0))]' 2 SP "2. As the reader
can verify (see discussion in Example 1), clause 2. does not yield any further
element, therefore we can assume

SP"2= f[p(X); q(X)]'; [r(Y 0); p(f (Y 0))]'g;
which turns out to be the �xpoint of SP . Note that F (P) is de�ned to be
[[lfp(SP)]]�P , therefore it includes for instance the elements p(f (X 00)); q(f (X 00))
and p(f (X 00)); q(f (X 00)); s(Z). 2

6 Conclusions
In this paper we have de�ned a �xpoint semantics for a �rst-order formulation
of a subset of LinLog [And92]. Possible applications of this framework include
for instance studying veri�cation problems for Petri Net-like models of concur-
rent systems, as discussed in [BDM01b], and studying observable properties of
programs [BGLM94, GDL95]. This work extends our previous work [BDM01b],
which was limited to the propositional case, along the directions explored in
[BDM01a]. With respect to [BDM01a], the current work deals with �rst-order
variables using a traditional approach based on substitutions and most general
uni�ers, rather than using (uni�cation) constraints. The main novelty with
respect to [BDM01a] is the treatment of the universal quanti�er 8. Among
the applications of this extended framework, we are currently studying veri�-
cation of security protocols, which, as shown in [CDL+99], can be speci�ed in

18

a fragment of linear logic corresponding to multiset rewriting plus existential
quanti�cation. This latter fragment directly corresponds, modulo a direct trans-
lation between dual connectives of linear logic, to the logical language presented
in this paper.

Veri�cation of protocols is performed by means of a bottom-up algorithm
which follows a strategy related to the so-called backward reachability relation
in model checking, as explained in [BDM01b]. The results presented in this
paper are intended as a formal justi�cation of the correctness of the algorithm
in presence of universal quanti�cation. Future work also includes extending
the logic underlying the current framework. On the one hand, it is possible
to allow other connectives in the right hand side of sequents, as shown for in-
stance in [BDM01a] in the case of additive conjunction & . On the other hand,
a more involved extension would require considering dynamically modi�able
programs as, e.g., in Lolli [HM94] or Lygon [HP94]. Also, by extending the
current management of substitutions, it would be possible to reason about ob-
servables like computed answer substitutions, as in the so-called S-semantics
[FLMP93, BGLM94]. We also plan, along the lines of [BDM01a], to allow con-
straints in program de�nitions. For instance, constraints over real numbers are
commonly used in security protocols speci�cations to deal with timestamps.

Acknowledgments
The author would like to thank Frank Pfenning, Iliano Cervesato and Giorgio
Delzanno for fruitful discussions.

References
[And92] J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation, 2(3):297{347, 1992.

[AP91] J.-M. Andreoli and R. Pareschi. Linear Objects: Logical Processes
with Built-In Inheritance. New Generation Computing, 9(3-4):445{
473, 1991.

[BDM01a] M. Bozzano, G. Delzanno, and M. Martelli. An E�ective Bottom-Up
Semantics for First Order Linear Logic Programs. In Proceedings of
Fifth International Symposium on Functional and Logic Program-
ming (FLOPS'01), 2001.

[BDM01b] M. Bozzano, G. Delzanno, and M. Martelli. An E�ective Fixpoint
Semantics for Linear Logic Programs, 2001. To appear in Theory
and Practice of Logic Programming.

19

[BGLM94] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-Semantics
Approach: Theory and Applications. Journal of Logic Program-
ming, 19-20:149{197, 1994.

[CDL+99] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Sce-
drov. A Meta-notation for Protocol Analysis. In R. Gorrieri, editor,
12th IEEE Computer Security Foundations Workshop (CSFW'99),
pages 55{69, 1999.

[FLMP93] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-
Theoretic Reconstruction of the Operational Semantics of Logic Pro-
grams. Information and Computation, 103(1):86{113, 1993.

[GDL95] M. Gabbrielli, M. G. Dore, and G. Levi. Observable semantics for
Constraint Logic Programs. Journal of Logic and Computation,
5(2):133{171, 1995.

[Gir87] J.Y. Girard. Linear logic. Theoretical Computer Science, 50:1:1{102,
1987.

[HM94] J. Hodas and D. Miller. Logic Programming in a Fragment of Intu-
itionistic Linear Logic. Information and Computation, 110(2):327{
365, 1994.

[HP94] J. Harland and D. J. Pym. A Uniform Proof-Theoretic Investigation
of Linear Logic Programming. Journal of Logic and Computation,
4(2):175{207, 1994.

[KY95] N. Kobayashi and A. Yonezawa. Asynchronous Communication
Model based on Linear Logic. Formal Aspects of Computing,
7(2):113{149, 1995.

[Mil95] D. Miller. A Survey of Linear Logic Programming. Computational
Logic: The Newsletter of the European Network of Excellence in
Computational Logic, 2(2):63{67, 1995.

[Mil96] D. Miller. Forum: A Multiple-Conclusion Speci�cation Logic. The-
oretical Computer Science, 165(1):201{232, 1996.

20

