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Abstract
Pattern recognition encompasses two fundamental tasks: description and classification. Given
an object to analyze, a pattern recognition system first generates a description of it (i.e., the pat-
tern) and then classifies the object based on that description (i.e., the recognition). Two general
approaches for implementing pattern recognition systems, statistical and structural, employ differ-
ent techniques for description and classification. Statistical approaches to pattern recognition use
decision-theoretic concepts to discriminate among objects belonging to different groups based upon
their quantitative features. Structural approaches to pattern recognition use syntactic grammars
to discriminate among objects belonging to different groups based upon the arrangement of their
morphological (i.e., shape-based or structural) features. Hybrid approaches to pattern recognition
combine aspects of both statistical and structural pattern recognition.

Structural pattern recognition systems are difficult to apply to new domains because implementation
of both the description and classification tasks requires domain knowledge. Knowledge acquisition
techniques necessary to obtain domain knowledge from experts are tedious and often fail to produce
a complete and accurate knowledge base. Consequently, applications of structural pattern recog-
nition have been primarily restricted to domains in which the set of useful morphological features
has been established in the literature (e.g., speech recognition and character recognition) and the
syntactic grammars can be composed by hand (e.g., electrocardiogram diagnosis). To overcome
this limitation, a domain-independent approach to structural pattern recognition is needed that
is capable of extracting morphological features and performing classification without relying on
domain knowledge. A hybrid system that employs a statistical classification technique to perform
discrimination based on structural features is a natural solution. While a statistical classifier is
inherently domain independent, the domain knowledge necessary to support the description task
can be eliminated with a set of generally-useful morphological features. Such a set of morpholog-
ical features is suggested as the foundation for the development of a suite of structure detectors to
perform generalized feature extraction for structural pattern recognition in time-series data.

The ability of the suite of structure detectors to generate features useful for structural pattern
recognition is evaluated by comparing the classification accuracies achieved when using the struc-
ture detectors versus commonly-used statistical feature extractors. Two real-world databases with
markedly different characteristics and established ground truth serve as sources of data for the eval-
uation. The classification accuracies achieved using the features extracted by the structure detectors
were consistently as good as or better than the classification accuracies achieved when using the
features generated by the statistical feature extractors, thus demonstrating that the suite of structure
detectors effectively performs generalized feature extraction for structural pattern recognition in
time-series data.
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Chapter 1

Introduction

The essential problem of pattern recognition is to identify an object as belonging to a particular
group. Assuming that the objects associated with a particular group share common attributes more
so than with objects in other groups, the problem of assigning an unlabeled object to a group can
be accomplished by determining the attributes of the object (i.e., the pattern) and identifying the
group of which those attributes are most representative (i.e., the recognition). If information about
the universe of all possible objects and the groups to which they can be assigned is known, then
the identification problem is straightforward in that the attributes that best discriminate among
groups and the mapping from attributes to groups can both be determined with certainty. When
the information about the identification problem is imperfect or incomplete, then the attributes and
mapping to use must be inferred from example objects whose group membership is known.

Given the goal of classifying objects based on their attributes, the functionality of an automated
pattern recognition system can be divided into two basic tasks: the description task generates
attributes of an object usingfeature extractiontechniques, and the classification task assigns a group
label to the object based on those attributes with aclassifier. The description and classification
tasks work together to determine the most accurate label for each unlabeled object analyzed by
the pattern recognition system. This is accomplished with atraining phasethat configures the
algorithms used in both the description and classification tasks based on a collection of objects
whose labels are known—i.e., atraining set. During the training phase, a training set is analyzed to
determine the attributes and mapping which assigns labels to the objects in the training set with the
fewest errors. Once trained, a pattern recognition system assigns a classification to an unlabeled
object by applying the mapping to the attributes of that object. A measure of the efficacy of a
trained pattern recognition system can be computed by comparing the known labels with the labels
assigned by the classification task to the training set: as the agreement between known and assigned
labels increases, the accuracy of the pattern recognition system increases. Such a methodology for
configuring and evaluating the description and classification tasks of a pattern recognition system is
calledsupervised learning. If a training set is not available, thenunsupervised learningtechniques
can be used.

The generality of the description and classification architecture in conjunction with the flexibil-
ity afforded by the training phase makes automated pattern recognition systems useful for solving
a wide range of real-world problems. The objects under analysis in real-world pattern recognition
systems typically are data sets containing attributes that were automatically collected and are rep-
resentative of the physical or behavioral objects to be identified. In electrocardiogram analysis,
for example, a data set might contain the electrical activity recorded during one heartbeat by an
electrode placed on a patient, and a collection of such data sets would constitute a description of a
patient’s cardiac behavior over a period of time. Given such a collection of data sets, the goal of a
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2 Chapter 1. Introduction

pattern recognition system for electrocardiogram analysis would be to classify each heartbeat (i.e.,
data set) as being indicative of normal or abnormal cardiac behavior, thereby assisting the physician
in diagnosing the condition of a patient’s heart. Other real-world applications of automated pattern
recognition include the following:

• Industrial Applications
– Character recognition
– Process control
– Signature analysis
– Speech analysis

• Medical Applications

– Electroencephalogram analysis
– Genetic studies

• Government Applications
– Smog detection and measurement
– Traffic analysis and control
– Fingerprint matching

• Military Applications
– Sonar detection and classification
– Automatic target recognition

See Friedman and Kandel [29], Fu [30], Jain [47], Nadler [65], and Young and Fu [91] for a
discussion of these and other applications of pattern recognition.

1.1. Structural Pattern Recognition

There are two fundamental approaches to implementing a pattern recognition system: statistical and
structural. Each approach employs different techniques within the description and classification
tasks which constitute a pattern recognition system. Statistical pattern recognition [24][32][47]
draws from established concepts in statistical decision theory to discriminate among data from
different groups based upon quantitative features of the data. The quantitative nature of statis-
tical pattern recognition, however, makes it difficult to discriminate among groups based on the
morphological (i.e., shape-based or structural) subpatterns and their interrelationships embedded
within the data. This limitation provided the impetus for the development of a structural approach
to pattern recognition.

Structural pattern recognition [31][38][70], sometimes referred to as syntactic pattern recogni-
tion due to its origins in formal language theory, relies on syntactic grammars to discriminate among
data from different groups based upon the morphological interrelationships (or interconnections)
present within the data. Structural pattern recognition systems have proven to be effective for data
which contain an inherent, identifiable organization such as image data (which is organized by
location within a visual rendering) and time-series data (which is organized by time). The useful-
ness of structural pattern recognition systems, however, is limited as a consequence of fundamental
complications associated with the implementation of the description and classification tasks.

The description task of a structural pattern recognition system is difficult to implement because
there is no general solution for extracting structural features, commonly calledprimitives, from
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data. The lack of a general approach for extracting primitives puts designers of structural pattern
recognition systems in an awkward position: feature extractors are necessary to identify primitives
in the data, and yet there is no established methodology for deciding which primitives to extract.
The result is that feature extractors for structural pattern recognition systems are developed to
extract either the simplest and most generic primitives possible or the domain- and application-
specific primitives that best support the subsequent classification task. Neither scheme is optimal.
Simplistic primitives are domain-independent, but capture a minimum of structural information and
postpone deeper interpretation until classification. At the other extreme, domain- and application-
specific primitives can be developed with the assistance of a domain expert, but obtaining and
formalizing the necessary domain knowledge, calledknowledge acquisition, can be problematic.
To avoid the overhead of knowledge acquisition, existing structural pattern recognition systems
rely on morphological features that have been established in the literature as being particularly
effective for the domain under analysis.

The classification task of a structural pattern recognition system is difficult to implement
because the syntactic grammars embody the precise criteria which discriminate among groups
and, therefore, they are by their very nature domain- and application-specific. Grammar inference
techniques can be used to construct automatically a grammar from examples, but these methods
can fail in the most general cases such as when the target grammar is context free. Consequently,
existing structural pattern recognition systems are primarily applied to domains where the syntactic
grammars required for classification can be constructed by hand.

1.1.1. Applications to Time-Series Data

Identification problems involving time-series (or waveform) data constitute a subset of pattern
recognition applications that is of particular interest because of the large number of domains that
involve such data [25][83]. Both statistical and structural approaches can be used for pattern recog-
nition of time-series data: standard statistical techniques have been established for discriminant
analysis of time-series data [79], and structural techniques have been shown to be effective in a
variety of domains involving time-series data [30]. Structural approaches are particularly appro-
priate in domains where domain experts classify time-series data sets based on the arrangement
of morphological events evident in the waveform—e.g., speech recognition, electrocardiogram
diagnosis, seismic activity identification, radar signal detection, and process control.

Structural approaches for pattern recognition in time-series data are typically employed within
well-explored domains where the necessary domain knowledge is readily available to guide the
implementation of the description and classification tasks. In electrocardiogram diagnosis, for
example, the types of morphologies that occur within the waveform and their implications with
respect to cardiac behavior are clearly understood. Consequently, the existing body of knowledge
within the domain of electrocardiography can serve as a solid foundation for constructing a domain-
specific structural pattern recognition system for electrocardiogram diagnosis. Most domains
involving time-series data, however, are not nearly as well understood as is electrocardiography.
To implement a structural pattern recognition system for poorly-understood domains, knowledge
acquisition techniques must be used to assemble the required domain knowledge. To avoid the
burden of knowledge acquisition and to enable structural approaches to be applied to unexplored
domains where knowledge acquisition techniques would generate an inadequate knowledge base,
a domain-independent approach to structural pattern recognition is necessary.
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1.1.2. Domain-Independent Structural Pattern Rec ognition

A domain-independent structural pattern recognition system is one that is capable of acting as a
“black box” to extract primitives and perform classification without the need for domain knowledge.
Such a system would automatically describe and classify data, thereby eliminating the overhead
associated with traditional approaches to structural pattern recognition. A domain-independent
structural pattern recognition system for time-series data must incorporate techniques for the de-
scription and classification tasks that are not dependent on domain knowledge—i.e., generalized
description and generalized classification. Since syntactic grammars are inherently tied to the
domain and application, a sensible approach to generalized classification for time-series data is a
statistical classifier that performs discrimination based on structural features extracted from the data.
Generalized description can be implemented using a foundation of generally-useful morphological
features that are effective regardless of the domain.

The field of signal processing offers a suggestion for morphological features that can provide
the foundation for generalized description of time-series data. Six fundamental types of modu-
lation commonly used in signal processing systems—constant, straight, exponential, sinusoidal,
triangular, and rectangular—entail morphologies deliberately introduced into a continuous medium
with the intent of conveying information regardless of the domain or application [7][9][20][62].
Moreover, these six modulation types subsume the small set of domain-independent morphological
features commonly extracted by structural pattern recognition systems—straight lines, parabolas,
and peaks. A suite of feature extractors which identify morphological features based on these
six modulation types, therefore, would constitute a first pass at implementing generalized feature
extraction to support domain-independent structural pattern recognition in time-series data.

1.2. Generalized Feature Extraction

The six morphology types suggested by the field of signal processing—constant, straight, exponen-
tial, sinusoidal, triangular, and rectangular—serve as the foundation for a set of feature extractors,
called structure detectors, for generalized feature extraction in time-series data. Each structure
detector fits a unique function to a time-series data set that embodies the morphology type and
contains free parameters. A structure detector extracts an instance of its associated morphology
type by instantiating values for the free parameters so as to minimize the difference between the
raw data and the function; the extracted structure is defined by the function once the free parameters
have been fixed. There are six structure detectors, one for each of the six morphology types. The
structure detector associated with the rectangular modulation type, however, was generalized to
extract instances of trapezoidal modulation so as to increase its descriptive power.

Each structure detector approximates an entire time series with a single structure. Since the
values of the free parameters are set so as to minimize the difference between the raw data and
the function, the extracted structure must balance the effects of the disparate subregions of the
time series by following the general, global trend of the data. Local trends can be captured via
the piecewise application of the structure detectors: applying a structure detector to contiguous
subregions of a time series such that the union of the subregions is the entire time series and
the intersection of the subregions is empty. The application of a structure detector in such a
piecewise manner results in an approximation of a time series composed of a sequence of extracted
substructures such that each subregion is represented by the same function but with different values
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instantiated onto the free parameters within each subregion. The local trend in a time series can
be better represented by allowing the structure detector used to approximate each subregion to
vary among the subregions: the structure detector that most minimizes the difference between the
function and the data within a subregion is selected to represent the subregion, regardless of the
structure detectors used to represent the other subregions. The piecewise application of these six
structure detectors provides the foundation for generalized feature extraction in time-series data.

1.3. Structure Detector Evaluation

The relative efficacy of the structure detectors can be evaluated by comparing the classification
accuracies achieved when using the various structure detectors for feature extraction. Additionally,
established techniques for extracting features from time-series data can serve as a benchmark: If
the classification accuracy achieved with features generated by the structure detectors is at least
as high as the accuracies achieved with the other techniques, then it can be concluded that the
structure detectors capture characteristics of time-series data suitable for classification at least as
well as commonly-used methods. Since the structure detectors subsume general-purpose feature
extractors for structural pattern recognition in time-series data (e.g., chain codes, curve fitting), the
comparable feature extractors must be drawn from those techniques commonly used for statistical
pattern recognition: the identity transformation (i.e., the extracted features are the raw data itself),
the Fourier transformation, and the wavelet transformation.

An experiment to evaluate the efficacy of the structure detectors under a range of conditions
incorporates several factors: feature extraction method, training set size, composition of training
set, and data preprocessing technique. Each experimental factor is allowed to vary over a range
of values in order to fully explore the performance of the various feature extractors. For each
combination of experimental factors, the experiment proceeds by randomly selecting a training set
from the collection of data sets under analysis, configuring the feature extractor with the randomly-
selected training set, extracting the attributes from each data set using the trained feature extractor,
and classifying the entire collection of data sets based on the extracted features. Two different
domains serve as a source of time-series data for the experiment, namely semiconductor fabrication
and electrocardiography. The data sets for each domain were inspected by appropriate domain
experts, and a label of normal or abnormal was assigned to each data set. The labels assigned by
the domain experts are considered to be completely accurate—i.e., the “ground truth.”

The classification accuracy achieved by the classifier can be summarized with a pair of per-
centages: the percent of data sets known to be normal that are classified as normal, and the percent
of data sets known to be abnormal that are classified as abnormal. To compensate for the random
selection involved in assembling the training set, twenty experimental iterations are performed for
each combination of experimental factors and the mean and standard deviation of the percentage
pairs over the twenty iterations are computed. Therefore, the overall classification accuracy for
each combination of experimental factors is represented by two pairs of values: the mean and
standard deviation of the percent of known normal data sets classified as normal, and the mean and
standard deviation of the percent of known abnormal data sets classified as abnormal.

The mean classification accuracies achieved by the structure detectors are generally as good as
or better than those achieved by the statistical feature extraction methods. Rarely did any of the
structure detectors perform poorer overall than the statistical feature extraction methods. The ability
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of the structure detectors to achieve classification accuracies comparable to the baseline statistical
methods demonstrates that the suite of structure detectors effectively performs generalized feature
extraction for structural pattern recognition in time-series data.

1.4. Thesis Outline

This thesis explores the topic of structural pattern recognition in time-series data. Specifically,
the complications involved in implementing a structural pattern recognition system are examined
and shown to act as a barrier to applying structural approaches to new identification problems. A
modification to traditional structural pattern recognition that eliminates these problems is proposed,
and its efficacy is evaluated.

Chapter 2 explores issues pertaining to the implementation of automated pattern recognition
systems. The difficulties associated with implementing a structural pattern recognition system are
described and demonstrated to manifest in existing systems designed to analyze time-series data.
An architecture for domain-independent structural pattern recognition is suggested as a remedy that
would make structural approaches more readily applicable to new domains. The cornerstone of
this modified approach to structural pattern recognition is generalized feature extraction. A suite of
structure detectors for generalized feature extraction in time-series data is presented in Chapter 3.
The implementation of the structure detectors and the methodology employed to identify sequences
of primitives in time-series data are explained. Chapter 4 describes the design and outcome of
an experiment performed to evaluate the efficacy of the structure detectors for generalized feature
extraction. The conclusions of this thesis are discussed in Chapter 5.



Chapter 2

Pattern Recognition

2.1. Introduction

All living organisms must perform different types of identification problems in the course of
their existence. For organisms whose main focus is survival, examples of such problems include
locating edible food, distinguishing between friend and foe, and seeking shelter that is likely
to be free from predators. More complex organisms, such as humans, contend with a wider
variety of such problems: locating a desired coin within a handful of change, recognizing relatives
among arriving travelers at an airport, and determining the identity of a person by their voice or
handwriting. Regardless of the organism, identification problems are resolved by collecting and
analyzing sensory information from the environment to discriminate among different populations,
groups, or classes. To perform medical diagnosis, for example, a physician assembles information
from the environment (i.e., the patient) in order to discriminate among many possible classes (i.e.,
the conditions, disorders, or diseases that can be diagnosed) based on his knowledge and experience.

2.2. Automated Pattern Recognition Systems

The ability of living organisms to solve identification problems is rooted in their perceptual and
cognitive abilities to collect and analyze information from the environment [5][73]. The field
of pattern recognition focuses on mechanizing these abilities with the goal of automating the
identification process [54][65][91]. In contrast to biological systems, automated pattern recognition
systems use algorithms to process data collected either electronically (via monitors or sensors) or
transcribed by a human, resulting in an identification of the group of which the data are most
representative. Figure 2.1 illustrates the parallel between living organisms and automated pattern
recognition systems.

The algorithms used by pattern recognition systems are commonly divided into two tasks, as
shown in Figure 2.2. The description task transforms data collected from the environment into
features—i.e., any value that can be derived from and is representative of the data—which are used
in the classification task to arrive at an identification. The description task can involve several
different, but interrelated, activities:

• Preprocessingis sometimes necessary to modify the data either to correct deficiencies in the
data due to limitations of the sensor, or to prepare the data for subsequent activities later in
the description task or in the classification task.

• Feature extractionis the process of generating features to be used in the classification task.
Elementary featuresare explicitly present in the data and can be passed directly to the

7
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Figure 2.1 The identification problem as solved by living organisms and auto-
mated pattern recognition systems. Automated pattern recognition systems deploy
electronic sensors and implement algorithms which approximate the functioning of
the perceptual and cognitive abilities of living organisms.
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features

Pattern Recognition Algorithms

identificationdata

Figure 2.2 The two separate tasks commonly used to divide the algorithms within
automated pattern recognition systems. The description task transforms data col-
lected from the environment into features. The classification task arrives at an
identification based on the features provided by the description task.
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classification task. Higher-order featuresare derived from elementary features and are
generated by performing manipulations and/or transformations on the data.

• Feature selectionreduces the number of features provided to the classification task. Those
features which are likely to assist in discrimination are picked out and allowed to be used in
the classification task. Features which are not selected are discarded; higher-order features
which are determined to be unnecessary for classification can be eliminated from the feature
extraction process.

Of these three activities, feature extraction is most critical because the particular features made
available for discrimination directly influence the efficacy of the classification task: features which
truly discriminate among groups will assist in identification, while the lack of such features can
impede the classification task from arriving at an accurate identification. Feature selection, while
useful to minimize the feature extraction effort, is often relegated to the classification task so that
the usefulness of each feature can be evaluated within the context of the discrimination process.

The end result of the description task is a set of features, commonly called afeature vector,
which constitutes a representation of the data. The classification task uses aclassifierto map a
feature vector to a group. Such a mapping can be specified by hand or, more commonly, atraining
phaseis used to induce the mapping from a collection of feature vectors known to be representative
of the various groups among which discrimination is being performed (i.e., thetraining set). Once
formulated, the mapping can be used to assign an identification to each unlabeled feature vector
subsequently presented to the classifier.

The generality of the description and classification architecture in conjunction with the flexibil-
ity afforded by the training phase makes automated pattern recognition systems useful for solving a
wide range of real-world problems. Various algorithms can be used for the description and classi-
fication tasks to implement a pattern recognition system that is appropriate for a particular domain
and application. Different combinations of algorithms have proven to be effective, resulting in two
basic approaches to implementing pattern recognition systems.

2.3. Approaches to Pattern Recognition

There are two fundamental approaches to implementing a pattern recognition system: statistical
and structural. Each approach employs different techniques to implement the description and
classification tasks. Hybrid approaches, sometimes referred to as a unified approach to pattern
recognition [35], combine both statistical and structural techniques within a pattern recognition
system.

Statistical pattern recognition [24][32][47] draws from established concepts in statistical deci-
sion theory to discriminate among data from different groups based upon quantitative features of
the data. There are a wide variety of statistical techniques that can be used within the description
task for feature extraction, ranging from simple descriptive statistics to complex transformations.
Examples of statistical feature extraction techniques include mean and standard deviation computa-
tions, frequency count summarizations, Karhunen-Lo`eve transformations, Fourier transformations,
wavelet transformations, and Hough transformations. The quantitative features extracted from each
object for statistical pattern recognition are organized into a fixed-length feature vector where the
meaning associated with each feature is determined by its position within the vector (i.e., the
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first feature describes a particular characteristic of the data, the second feature describes another
characteristic, and so on). The collection of feature vectors generated by the description task are
passed to the classification task. Statistical techniques used as classifiers within the classification
task include those based on similarity (e.g., template matching, k-nearest neighbor), probability
(e.g., Bayes rule), boundaries (e.g., decision trees, neural networks), and clustering (e.g., k-means,
hierarchical).

The quantitative nature of statistical pattern recognition makes it difficult to discriminate among
groups based on the morphological (i.e., shape-based or structural) subpatterns and their interre-
lationships embedded within the data. This limitation provided the impetus for the development
of a structural approach to pattern recognition that is supported by psychological evidence per-
taining to the functioning of human perception and cognition. Object recognition in humans has
been demonstrated to involve mental representations of explicit, structure-oriented characteris-
tics of objects [11][48][67][74][75], and human classification decisions have been shown to be
made on the basis of the degree of similarity between the extracted features and those of a pro-
totype developed for each group [4][41][72][86][87]. For instance, Biederman [11] proposed the
recognition-by-components theory to explain the process of pattern recognition in humans: (1)
the object is segmented into separate regions according to edges defined by differences in surface
characteristics (e.g., luminance, texture, and color), (2) each segmented region is approximated by
a simple geometric shape, and (3) the object is identified based upon the similarity in composition
between the geometric representation of the object and the central tendency of each group. This
theorized functioning of human perception and cognition serves as the foundation for the structural
approach to pattern recognition.

Structural pattern recognition [31][38][70], sometimes referred to as syntactic pattern recog-
nition due to its origins in formal language theory, relies on syntactic grammars to discriminate
among data from different groups based upon the morphological interrelationships (or intercon-
nections) present within the data. Structural features, often referred to asprimitives, represent the
subpatterns (or building blocks) and the relationships among them which constitute the data. The
semantics associated with each feature are determined by the coding scheme (i.e., the selection
of morphologies) used to identify primitives in the data. Feature vectors generated by structural
pattern recognition systems contain a variable number of features (one for each primitive extracted
from the data) in order to accommodate the presence of superfluous structures which have no
impact on classification. Since the interrelationships among the extracted primitives must also
be encoded, the feature vector must either include additional features describing the relationships
among primitives or take an alternate form, such as a relational graph, that can be parsed by a
syntactic grammar.

The emphasis on relationships within data makes a structural approach to pattern recognition
most sensible for data which contain an inherent, identifiable organization such as image data
(which is organized by location within a visual rendering) and time-series data (which is organized
by time); data composed of independent samples of quantitative measurements, such as the Fisher
iris data, lack ordering and require a statistical approach.1 Methodologies used to extract structural
features from image data such as morphological image processing techniques [21][33] result in

1The Fisher iris data comprise the measurements of the sepal length and width and the petal length and width in
centimeters of fifty iris plants for each of three types of iris. These data were originally collected by Anderson [3], but
were made famous by Fisher [27]. See Andrews [6] for a more recent discussion of the data.
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Figure 2.3 The statistical and structural approaches to pattern recognition ap-
plied to a common identification problem. The goal is to discriminate between
the square and the triangle. A statistical approach extracts quantitative features
which are assembled into feature vectors for classification with a decision-theoretic
classifier. A structural approach extracts morphological features and their interrela-
tionships, encoding them in relational graphs; classification is performed by parsing
the relational graphs with syntactic grammars.

primitives such as edges, curves, and regions; feature extraction techniques for time-series data
include chain codes, piecewise-linear regression, and curve fitting which are used to generate
primitives that encode sequential, time-ordered relationships. The classification task arrives at an
identification using parsing: the extracted structural features are identified as being representative of
a particular group if they can be successfully parsed by a syntactic grammar. When discriminating
among more than two groups, a syntactic grammar is necessary for each group and the classifier
must be extended with an adjudication scheme so as to resolve multiple successful parsings.2

Figure 2.3 demonstrates how both approaches can be applied to the same identification problem.
The goal is to differentiate between the square and the triangle. A statistical approach extracts
quantitative features such as the number of horizontal, vertical, and diagonal segments which are
then passed to a decision-theoretic classifier. A structural approach extracts morphological features
and their interrelationships within each figure. Using a straight line segment as the elemental
morphology, a relational graph is generated and classified by determining the syntactic grammar
that can successfully parse the relational graph. In this example, both the statistical and structural
approaches would be able to accurately distinguish between the two geometries. In more complex
data, however, discriminability is directly influenced by the particular approach employed for
pattern recognition because the features extracted represent different characteristics of the data.

2The classification task for structural pattern recognition could be more efficiently implemented as a single grammar
composed of individual subgrammars whereeach identifies objects belonging to one particular group; an examination
of the resulting parse tree would determine the final identification produced by such a compound grammar. For the
purposes of this discussion, a separate grammar is assumed for each group.
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Statistical Structural
Foundation Statistical decision theory Human perception and cognition

Description Quantitative features Morphological primitives
Fixed number of features Variable number of primitives
Ignores feature relationships Captures primitive relationships
Semantics from feature position Semantics from primitive encoding

Classification Statistical classifiers Parsing with syntactic grammars

Table 2.1 A summary of the differences between statistical and structural ap-
proaches to pattern recognition. Due to their divergent theoretical foundations,
the two approaches focus on different data characteristics and employ distinctive
techniques to implement both the description and classification tasks.

A summary of the differences between statistical and structural approaches to pattern recogni-
tion is shown in Table 2.1. The essential dissimilarities are twofold: (1) the description generated
by the statistical approach is quantitative, while the structural approach produces a description
composed of subpatterns or building blocks; and (2) the statistical approach discriminates based
upon numeric differences among features from different groups, while grammars are used by the
structural approach to define a “language” encompassing the acceptable configurations of primi-
tives for each group. Hybrid systems can combine the two approaches as a way to compensate
for the drawbacks of each approach, while conserving the advantages of each. As a single-level
system, structural features can be used with either a statistical or structural classifier. Statistical
features cannot be used with a structural classifier because they lack relational information, however
statistical information can be associated with structural primitives and used to resolve ambiguities
during classification (e.g., as when parsing with attributed grammars) or embedded directly in the
classifier itself (e.g., as when parsing with stochastic grammars). Hybrid systems can also combine
the two approaches into a multi-level system using a parallel or a hierarchical arrangement.

2.4. Structural Pattern Recognition

Structural approaches, while supported by psychological evidence which suggests that structure-
based description and classification parallels that of human perceptual and cognitive processes, have
not yet been developed to the fullest potential due to fundamental complications associated with
implementing structural pattern recognition systems. Shiavi and Bourne [78, p. 557] summarize
the problems of applying structural methods for pattern recognition within the context of analyzing
biological waveforms:

There are obvious problems with the use of [structural techniques]. First, rather deep
knowledge about the problem is required in order to successfully identify features and
write [grammar] rules. While it is conceptually interesting to consider the possibility of
using some automated type of grammatical inference to produce the rules, in practice
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no technique of grammatical inference has proved robust enough to be used with real
problems involving biological waveforms. Hence, the writing of rules is incumbent
on the designer of the analysis system. Similarly, the selection of features [to extract]
must be accomplished essentially by hand since automated techniques usually cannot
provide the guidance necessary to make a useful feature selection. Second, the con-
trol strategy of typical parsing systems is relatively trivial and cannot deal with very
difficult problems. Typical parsing techniques consist of simple repeated application
of a list of rules, which is often equivalent to forward chaining, an elementary concept
in knowledge-based rule systems. Formation of a robust control strategy for guiding
syntactic parsing of strings appears somewhat problematic. However, if rather straight-
forward amalgamation of constituent elementary tokens in a waveform will suffice to
secure an identification or evaluation, then this technique will work rather well.

While Shiavi and Bourne detail several barriers to effectively using a structural approach for pattern
recognition, the underlying complication is that both the description and classification tasks must
be implemented anew for each unique combination of domain and identification problem which,
by the very nature of the techniques used, can require a time-consuming, hand-driven development
cycle.

2.4.1. Description

There is no general solution for extracting structural features from data. Pattern recognition texts
give scant attention to the topic of primitive selection, most often describing the process as being
domain- and application-specific. For example, Friedman [29, p. 243] addresses the issue by
saying, “The selection of primitives by which the patterns of interest are going to be described
depends upon the type of data and the associated application.” Nadler [65, p. 152] seems to support
this position when he states, “...features are generally designed by hand, using the experience,
intuition, and/or cleverness of the designer.”

The lack of a general approach for extracting primitives puts designers of structural pattern
recognition systems in an awkward position: feature extractors are necessary to identify primitives
in the data, and yet there is no established methodology for deciding which primitives to extract. The
result is that feature extractors for structural pattern recognition systems are developed to extract
either the simplest and most generic primitives possible, or the domain- and application-specific
primitives that best support the subsequent classification task. Some structural pattern recognition
systems justify the use of a particular set of feature extractors by claiming that the same set had been
used successfully by a previous system developed for a similar application within the same domain;
such claims simply shift the burden of feature extractor development onto previously-implemented
systems.

Neither of these two philosophies for developing feature extractors for structural pattern recogni-
tion is optimal. Simplistic primitives are domain-independent, but capture a minimum of structural
information and postpone deeper interpretation until the classification step. At the other extreme,
domain- and application-specific primitives can be developed with the assistance of a domain ex-
pert, but obtaining and formalizing knowledge from a domain expert, calledknowledge acquisition,
can be problematic.
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Figure 2.4 The process of knowledge acquisition for developing domain- and
application-specific feature extractors for structural pattern recognition. Referring
to the numbered activities in the figure, the procedure typically entails several steps:
(1) Knowledge acquisition techniques are used to assemble domain knowledge
from an expert to produce a knowledge base containing a high-level description
of the data. The database contains a collection of labeled data sets and is used
to assess the validity of the knowledge base. (2) Domain- and application-specific
feature extraction tools are developed using the knowledge base and are applied
to the database. (3) Classification is performed with the extracted features. (4) The
accuracy of the resulting classification is evaluated. The process iterates until an
accurate and robust classification is achieved.
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Knowledge Acquisition Technique
Structured Protocol Laddered Card

Domain Interview Analysis Grid Sort
Flint Artifacts [16] 33% 11% 33% 33%
Glacier Attributes [15] 33% 16% 35% 23%
Igneous Rocks [14] 28% 8% 28% 30%

Table 2.2 A summary of the efficacy of four knowledge acquisition techniques
applied within three different domains to elicit knowledge from experts regarding
features useful for classification. For each combination of technique and domain,
the average coverage of knowledge elicited from multiple experts is reported.

The process of knowledge acquisition for developing domain- and application-specific feature
extractors for structural pattern recognition is shown in Figure 2.4. Referring to the numbered
activities in the figure, the procedure typically entails several steps: (1) Knowledge acquisition
techniques are used to assemble domain knowledge—information about the database and the
environment in which it is generated—from an expert to produce a knowledge base containing a
high-level description of the data. The database contains a collection of labeled data sets and is used
to assess the validity of the knowledge base. (2) Domain- and application-specific feature extraction
tools are developed using the knowledge base and are applied to the database. (3) Classification is
performed with the extracted features. (4) The accuracy of the resulting classification is evaluated.
If the accuracy of the classification is unacceptable, then the procedure returns to step #1, the domain
expert is reconsulted, and the feature extractors are refined. This iterative process continues until
the extracted primitives result in an accurate and robust classification.

The success of the knowledge acquisition process hinges on the ability of the domain expert to
provide complete, accurate, and consistent domain knowledge. Both manual and computer-based
approaches have been developed to elicit domain knowledge from experts. Manual techniques for
knowledge acquisition include interviews, task analysis, protocol analysis, card sorting, decision
analysis, and graph construction [43]; computer-based techniques consist mainly of automated
versions of manual methods and approaches that would be too tedious to perform manually, such
as modeling and simulation [12]. Applications of these techniques are most often reported in the
literature as case studies, leaving efficacy a matter of anecdote rather than experimental evaluation.

One study, however, has been undertaken to compare rigorously the efficacy of four knowl-
edge acquisition techniques: structured interview (a designed and ordered set of domain-specific
questions is answered by the expert), protocol analysis (the expert “thinks aloud” while classifying
domain objects), laddered grid (a conceptual graph representing the relationships among domain
elements is developed by the expert), and card sort (the expert repeatedly sorts domain objects
or cards representing domain elements and describes the rationale behind each unique sorting).
Table 2.2 summarizes the efficacy of each of these knowledge acquisition techniques when used to
extract features for classification [14][15][16]. Within a domain, each technique was used to elicit
knowledge from multiple experts, coverage was computed for each expert (i.e., the percentage of
knowledge elicited as compared to a complete knowledge base), and the average coverage for each
technique was reported as a measure of its efficacy. As shown in Table 2.2, the overall coverage of
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elicited knowledge was poor, where the most effective techniques achieved a coverage between 25
and 35 percent (pairwise combinations of these techniques were able to achieve a coverage between
35 and 45 percent). These findings are echoed in a survey of around seventy case studies describing
the development of industrial expert systems: almost half reported problems with the quality of
knowledge elicited from the expert [18]. This phenomenon, dubbed theknowledge acquisition
bottleneck, was identified twenty years ago and is still being cited as a major flaw in techniques
used for knowledge acquisition [26][37][57].

Using knowledge acquisition techniques to obtain domain knowledge from an expert has two
major drawbacks: (1) it is a time-consuming process, and (2) the resulting knowledge base is likely
to be incomplete. Developing domain- and application-specific feature extractors, therefore, can
be burdensome and will not necessarily produce a robust set of features for classification. As a
result, the effort needed to implement the description task for a new domain and application can
act as a barrier to using structural approaches to pattern recognition.

2.4.2. Classification

The classifier for a structural pattern recognition system is composed of a set of syntactic grammars,
one for each group among which discrimination is being performed, and a parser. The identification
generated by the classifier is the group whose associated syntactic grammar successfully parses the
primitives extracted from the data. An adjudication scheme is necessary to resolve the situation
where there is more than one successful parse.

The main difficulty in developing the classifier for a structural pattern recognition system
lies in constructing the syntactic grammars. Since the grammars embody the precise criteria
which differentiate among the groups, they are by their very nature domain- and application-
specific. Complicating matters is the lack of a general solution for extracting structural features
from data, causing the primitives used within the grammars to vary among domains, identification
problems, and pattern recognition systems. Grammar inference techniques can be used to construct
automatically a grammar from examples, but these methods can fail in the most general cases such
as when the grammar for a group is context free.

Existing structural pattern recognition systems are typically applied to domains where the
grammars required for discrimination can be constructed by hand. For example, structural pattern
recognition systems developed for electrocardiogram diagnosis [53][85] routinely use hand-tooled
grammars because the domain knowledge is extensive, the primitives are distinct, and the relation-
ships among the primitives are well defined. This approach, however, quickly becomes tedious,
unmanageable, and error prone as the complexities of the domain and identification problem in-
crease. Moreover, specification of grammars by hand is impractical for domains that are complex,
and infeasible for domains that are poorly understood.

2.5. Applications to Time-Series Data

Identification problems involving time-series (or waveform) data constitute a subset of pattern
recognition applications that is of particular interest because of the large number of domains that
involve such data [25][83]. Time-series data could be treated as if it were image data by coverting
the time-series data into a visual rendering and applying image-based segmentation techniques.
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Grammar:

<NORMAL ECG>→ <P><QRS><T>
<P>→ <P+>
<QRS>→ <Q><R><S>
<Q>→ <Q->
<R>→ <R+>
<S>→ <S->
<T>→ <T+>
<P+> : positive wave, expected shape
<Q-> : negative wave, expected shape
<R+> : positive wave, expected shape
<R*> : positive wave, invalid amplitude
<S-> : negative wave, expected shape
<T+> : positive wave, expected shape
<T-> : negative wave, expected shape

Myocardial Infarction

P+

Q-

R*

S-
T-

Parse String: P+ Q- R* S- T-

Grammar:

<MYO INF ECG>→ <P><QRS><T>
<P>→ <P+>
<QRS>→ <Q><R><S>
<Q>→ <Q->
<R>→ <R*>
<S>→ <S->
<T>→ <T->
<P+> : positive wave, expected shape
<Q-> : negative wave, expected shape
<R+> : positive wave, expected shape
<R*> : positive wave, invalid amplitude
<S-> : negative wave, expected shape
<T+> : positive wave, expected shape
<T-> : negative wave, expected shape

Figure 2.5 An example of structural pattern recognition applied to time-series
data for electrocardiogram diagnosis. Each waveform traces the electrical activ-
ity recorded during one cardiac cycle (i.e., heartbeat) by a single electrode: the
leftmost represents data recorded during a normal heartbeat, and the rightmost
represents data recorded during a heartbeat exhibiting behavior indicative of a car-
diac condition called myocardial infarction. The primitives extracted from each data
set are labeled on the waveforms. Concatenating the primitives by time constitutes
a parse string, and a context-free grammar can be constructed to parse, and hence
classify, each string of primitives.
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Such an approach, however, would ignore the inherent, time-based sequencing and unnecessarily
complicate feature extraction by converting one-dimensional time-series data into two-dimensional
image data. Feature extractors for structural pattern recognition in time-series data identify time-
based subpatterns that manifest across consecutive data points within a time series.

Figure 2.5 illustrates an example of structural pattern recognition applied to time-series data
for electrocardiogram diagnosis. Each waveform traces the electrical activity recorded during one
cardiac cycle (i.e., heartbeat) by a single electrode: the leftmost represents data recorded during
a normal heartbeat, and the rightmost represents data recorded during a heartbeat exhibiting be-
havior indicative of a cardiac condition called myocardial infarction.3 Primitives in the data are
extracted using a morphological coding scheme that characterizes the peaks in the data according
to their shape and location. The extracted primitives are labeled on each waveform. Concatenating
the primitives for each data set according to time of appearance constitutes a parse string, and a
context-free grammar can be constructed to parse, and hence classify,each string of primitives. An
example grammar for each waveform is shown. Notice that the grammar for the normal electrocar-
diogram can not successfully parse the string of primitives extracted from the waveform exhibiting
myocardial infarction and vice versa. Other domains involving time-series data where structural
pattern recognition is similarly applied include speech recognition, seismic activity identification,
radar signal detection, and process control.

Both statistical and structural approaches can be used for pattern recognition of time-series
data: standard statistical techniques have been established for discriminant analysis of time-series
data [79], and structural techniques have been shown to be effective in a variety of domains
involving time-series data [30]. Examples of structural pattern recognition systems developed for
classification of time-series data include the following:

• Stockman and Kanal [84] used a structural approach to develop a waveform parsing system,
called WAPSYS, and demonstrated its usefulness at classifying pulse data. Feature extractors
were developed with the assistance of medical personnel: curve fitting was used to identify
instances of parabolic and straight-line primitives. A context-free grammar called a problem
reduction representation (PRR) was developed under a construct-test-accept revision cycle
and used for classification. Acknowledging the limitations of WAPSYS, the authors state
that “the user must define the structure of his domain in terms of the PRR and primitives
and [must] include knowledge about which structures are best recognized first. He may also
need to splice problem-specific semantic routines into the system” [84, p. 297].

• Another application of structural approaches to pattern recognition is to monitor sensor
data for process control and fault diagnosis. Rengaswamy and Venkatasubramanian [76]
describe a system constructed to perform fault diagnosis of a critical process within a refinery.
Parabolic and straight-line primitives were selected as features based on earlier work; a
grammar capturing the knowledge of a process engineer was used for classification. Love
and Simaan [58] designed a structural pattern recognition system to monitor an aluminum
strip rolling mill. Visual inspection of the data led to the selection of straight-line primitives,
where the slope was used to categorize each extracted primitive into one of four subclasses:

3Myocardial infarction, commonly referred to as a heart attack, is the death of an area of heart muscle due to a sudden
reduction in blood flow relative to the amount of work the heart is doing at the time.
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impulses (i.e., sharp peaks), edges (i.e., sudden increases or decreases), flats (i.e., absence
of increases or decreases), and ramps (i.e., linear increases or decreases). Classification was
performed using rule-based inference.

• Structural approaches to pattern recognition are commonly used to implement systems for
electrocardiogram (ECG) diagnosis [88][81]. Trahanias and Skordalakis [85] developed a
structural pattern recognition system for ECG data which extracted instances of straight-line
segments, peaks, and parabolas as primitives. The choice of these primitives was rationalized
as “a natural one because the complexes are composed of peaks and the segments have the
shape of a straight line or a parabola” [85, p. 649]. Attribute grammars developed with
domain knowledge were used for classification. Koski, Juhola, and Meriste [53] based the
implementation of their structural pattern recognition system for ECG data on techniques
successfully used in previous systems: straight-line primitives were extracted and parsed
with attributed automata (i.e., finite state machines with scalar variables associated with the
states to assist in determining state transitions).

As evidenced by these systems, structural approaches to pattern recognition can be used to solve
certain identification problems; however, implementation relies on domain knowledge either pro-
vided by an expert or assimilated from the data by the system designer. Some structural pattern
recognition systems stray from traditional implementation techniques so as to simplify the devel-
opment process and/or to generalize the applicability of the system to other identification problems.
Examples of such systems include the following:

• The curve fitters used by Stockman and Kanal [84] in WAPSYS allowed different sets of
primitives to be defined by varying the constraints placed on the slope, curvature, and length
of the extracted parabolic and straight-line features.

• Konstantinov and Yoshida [52] proposed a generic methodology for analyzing time-series
data and demonstrated its efficacy at monitoring an amino acid production process. Their
system incorporated an expandable library of primitives so that new application-specific
entries could be defined. Primitives in the library included standard ones such as straight
lines and parabolas, while others described irregular shapes such as “IncreasingConcavely-
Convexly” and “StartedToDecrease.”

• Keogh and Pazzani [51] developed a structural pattern recognition system for analyzing
telemetry data from the space shuttle. Straight-line segments generated by a specialized
piecewise-linear segmentation algorithm were used as primitives based upon their success and
usefulness for other identification problems. A new statistical classification algorithm, called
CTC (Cluster, then Classify), based on distance measurements was used for classification.

• A structural pattern recognition system for the on-line identification of handwritten Chinese
characters was implemented by Kuroda, Harada, and Hagiwara [55]. While many character
recognition systems analyze images of handwritten text, time-series data composed of the loci
of vertical points, horizontal points, and pen pressure were collected as the characters were
written. Feature extraction was accomplished using peak segmentation. A regular grammar
encoded as a matrix was learned from training data for each class; the set of matrices was
then used for classification.
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Structural Features
Straight Lines Parabolas Peaks

Stockmanet al. [84]
√ √

Rengaswamyet al. [76]
√ √

Love et al. [58]
√

Trahaniaset al. [85]
√ √ √

Koski et al. [53]
√

Konstantinovet al. [52]
√ √

Keoghet al. [51]
√

Kurodaet al. [55]
√

Table 2.3 A summary of the structural features extracted by some structural pat-
tern recognition systems. Each column is associated with a particular primitive
type. Each row reports the types of primitives extracted by a system with a check
in the appropriate columns.

Of these pattern recognitions systems, two trends towards generality are apparent: (1) a broadening
of the selection of primitives to permit the inclusion of other structural features that may be effective
for other identification problems, and (2) the substitution of syntactic grammars by statistical
classification techniques so as to simplify the development of the classifier by eliminating hand-
constructed grammars and the need for a separate parser. These trends make structural pattern
recognition systems better suited for a wider variety of identification problems, but the continued
reliance on domain knowledge to define primitives persists in hindering structural approaches to
pattern recognition.

The types of primitives extracted by each of the structural pattern recognition system discussed
in this section are summarized in Table 2.3. Notice that almost all systems rely on straight-line
primitives, probably due to the ease in which they are identified and their versatility in approximat-
ing arbitrary curves. Parabolas and peaks are used less often than straight-line primitives, being
included when appropriate for the domain under analysis.

2.6. Domain-Independent Structural Pattern Recognition

A domain-independent structural pattern recognition system is one that is capable of acting as a
“black box” to extract primitives and perform classification without the need for domain knowledge.
While it may be possible to achieve more accurate results by using domain-dependent techniques, a
domain-independent structural pattern recognition system would be advantageous for preliminary
data exploration, particularly in complex, poorly-understood domains where knowledge acquisition
would be unacceptably lengthy or infeasible. Moreover, a domain-independent structural pattern
recognition system could be used to generate a first pass at a set of feature extractors, thereby
laying the groundwork for construction of a domain- and application-specific structural pattern
recognition system.

A domain-independent structural pattern recognition system for time-series data must incor-
porate techniques for the description and classification tasks that are not dependent on domain
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(a) Constant (b) Straight (c) Exponential

(d) Sinusoidal (e) Triangular (f) Rectangular

Figure 2.6 Types of modulation commonly used by signal processing systems
to transmit information via a continuous medium (e.g., an electrical current) in-
clude (a) constant, (b) straight, (c) exponential, (d) sinusoidal, (e) triangular, and (f)
rectangular.

knowledge. Since syntactic grammars are inherently tied to the domain and application, a natural
solution is a hybrid system that employs a statistical classifier to perform discrimination based on
structural features extracted from the data. While syntactic grammars are capable of analyzing
the variable-length feature vectors generated by structural feature extractors, statistical classifiers
require fixed-length feature vectors. This requirement can be satisfied with a separate training
phase for the description task so as to determine a fixed number of primitives to be generated by
the structural feature extractors. Additionally, the structural features extracted from a time-series
data set can be ordered in the associated feature vector according to their linear sequence in the
data, thereby encoding the relationships among the primitives.

A popular solution employed by the non-traditional structural pattern recognition systems
described in Section 2.5 for generalizing feature extraction is to allow for the inclusion of new
primitives. While a dynamic set of primitives can be useful, this solution still requires domain
knowledge to define new primitives to add. What is needed is a collection of primitives such
that each is generally useful and is easy to extract from time-series data. While a sequence of
straight-line segments can be used to approximate any waveform, more complex morphologies
identified within a waveform can result in a closer approximation to the waveform, contribute more
structural information per extracted feature, reduce the complexity of the classification task, and
provide a better foundation for interpretation by humans. As summarized in Table 2.3, straight-line
segments, parabolas, and peaks have proven to be useful primitives and, therefore, the description
task for time-series data must minimally include feature extractors for these primitives.

The field of signal processing offers a suggestion for additional, more complex primitives for
time-series data. Signal processing systems are designed to transmit information via a continuous
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Modulation Types
Constant Straight Exponential Sinusoidal Triangular Rectangular

Stockman
√ √ √

et al. [84]

Rengaswamy
√ √ √

et al. [76]

Love
√ √

et al. [58]

Trahanias
√ √ √ √

et al. [85]

Koski
√ √

et al. [53]

Konstantinov
√ √ √

et al. [52]

Keogh
√ √

et al. [51]

Kuroda
√

et al. [55]

Generalized
√ √ √ √ √ √

Straight Lines Parabolas Peaks
Structural Features

Table 2.4 The structural features extracted by the pattern recognition systems
listed in Table 2.3 recast as the set of modulation types used in signal process-
ing. The relationship is as follows: the constant and straight modulation types
approximate straight-line segments, the sinusoidal modulation type approximates
parabolas, and the triangular modulation type approximates peaks. Given this
mapping, a check appears in the columns associated with the types of modula-
tion extracted by each system. The last row indicates the modulation types that
generalized feature extraction would identify.

medium (e.g., an electrical current) and subsequently reconstruct it. The information is trans-
mitted by modulation of the medium: the transmitter encodes the information as a sequence of
modulations, and the receiver decodes the modulations as information. Figure 2.6 shows the six
fundamental types of modulation commonly used in signal processing systems: constant, straight,
exponential, sinusoidal, triangular, and rectangular [7][9][20][62]. These six modulation types
entail morphologies deliberately introduced into time-series data (i.e., the continuous medium)
with the intent of conveying information regardless of domain or application. Since the goal of
description for domain-independent structural pattern recognition is to extract primitives which
represent meaningful structural features in time-series data without relying on domain knowledge,
these six modulation types constitute a potentially-useful set of primitives to extract.

The modulation types used in signal processing provide a set of morphologies that can approx-
imate the small set of primitives commonly extracted by structural pattern recognition systems:
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straight lines are used outright, peaks can be approximated by a triangle, and parabolas can be
approximated by one-half period of a sine curve. Additionally, the modulation types include mor-
phologies not commonly extracted by structural pattern recognition systems. Table 2.4 shows the
relationship between the set of modulation types and the structural features listed in Table 2.3.
The six modulation types constitute a reasonable foundation for generalized feature extraction for
domain-independent structural pattern recognition in time-series data because they constitute a
superset of those morphologies extracted by existing structural pattern recognition systems and
suggest additional morphologies not already commonly extracted by such systems. The last row
in Table 2.4 indicates the modulation types that generalized feature extraction would identify.

2.7. Discussion

A domain-independent structural pattern recognition system is one that is capable of solving an
identification problem regardless of domain or application. To achieve this flexibility, techniques
that do not require domain knowledge in the development process must be used to implement both
the description and classification tasks. An architecture that does not rely on domain knowledge is a
hybrid approach that combines feature extractors that identify domain- and application-independent
morphological features with a statistical classifier. A set of six morphologies which have proven to
be useful for signal processing and subsumes those morphologies extracted by existing structural
pattern recognition systems can serve as a foundation for generalized feature extraction in time-
series data. In order to realize domain-independent structural pattern recognition, feature extractors
which identify these morphologies in time-series data must first be developed.
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Generalized Feature Extraction

3.1. Introduction

Generalized feature extraction relies on a collection of feature extractors that function independently
of domain and application. For time-series data, such feature extractors must be able to identify
generally-useful structures that emerge from the relationships between consecutive measurement
values over time. A suite of suitable feature extractors for time-series data would be characterized
by its ability to

• capture fundamental trends and relationships,

• generate accurate approximations,

• represent the extracted structures compactly,

• support subsequent classification, and

• be domain independent.

Section 2.6 discussed both the structural pattern recognition literature and the field of signal
processing as sources of structure types commonly identified in time-series data. A preliminary set
of feature extractors for generalized feature extraction in time-series data is one that can identify
instances of structure types that have support from both fields. The signal processing and the
structural pattern recognition literatures suggest that a set of six structure types—constant, straight,
exponential, sinusoidal, triangular, and rectangular—would be useful for structural pattern recog-
nition in time-series data. As such, these six structures will serve as the foundation for a set of
feature extractors, called structure detectors, for generalized feature extraction in time-series data.
Before a formal description of the structure detectors can be offered, however, a more rigorous
definition of time-series data is necessary so as to provide the context for describing the structure
detectors.

3.2. Time-Series Data

A time-series data setX is an ordered sequence{X1,X2, . . . ,Xn} whereXt is a vector of
observations (i.e., measurements) recorded during epocht such that the observations inXt were
recorded previous to those inXt+1 for all 1 ≤ t < n. Each vectorXt is composed ofm
measurements{d1

t , d
2
t , . . . , d

m
t } recorded during epocht. A transposition of the time-series data

25
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setX results in a corresponding data setY which is a collection of vectors{Y 1,Y 2, . . . ,Y m}
whereY k contains the time-series{dk1, dk2, . . . , dkn} for all 1≤ k ≤ m.

Given this definition, a time-series data set has the matrix form

Y 1 Y 2 Y 3 · · · Y m

X1 d1
1 d2

1 d3
1 · · · dm1

X2 d1
2 d2

2 d3
2 · · · dm2

X3 d1
3 d2

3 d3
3 · · · dm3

...
...

...
...

...
...

Xn d1
n d2

n d3
n · · · dmn

where each row comprises the observations for one particular epoch (i.e., rowt containsXt) and
each column comprises the observations for one particular measurement (i.e., columnk contains
Y k). Note the difference betweenX andY : X is an ordered sequence ofn vectors each having
dimensionm, whileY is an unordered collection ofm one-dimensional time-series vectors each
of lengthn.

Since each valuedkt is associated with a particular timet,Y k can be rewritten in the equivalent
functional form

Y k(t) = dkt

The functional formY k(t), therefore, can be used to refer to the time-series vectorY k. Additionally,
each structure detector is univariate in nature and can only be applied to a single, one-dimensional
time-series vector, thereby making thek superscript unnecessary. Thus,Y (t) will be used to denote
any one-dimensional time-series vector or data set.

3.3. Structure Detectors

A structure detector identifies a particular structure in time-series data and generates a new time
series containing values which describe the identified structure. That is, the input to the structure
detector is a time series of raw data, and the output is another, newly-generated time series that
contains the structure extracted from the input time-series data. To perform this transformation, a
structure detector implements a functionf such that

f(Y (t)) = Ŷ (t)

whereŶ (t) is a time series which constitutes the structure extracted fromY (t). The functionf is
fitted toY (t) so thatŶ (t) approximatesY (t). The sum of squared errorE is a measure of how
closelyŶ (t) approximatesY (t) and is defined as

E =
n∑
t=1

(Y (t)− Ŷ (t))2
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If Ŷ (t) is equal toY (t) for 1≤ t ≤ n, thenE is equal to zero; as the deviation ofŶ (t) fromY (t)
increases, the value ofE increases. SincêY (t) can differ arbitrarily fromY (t), there is no upper
bound to the value ofE.

Each structure detector implements a unique functionf which extracts one of the modulation
types shown in Figure 2.6. Note, however, that the structure detector associated with the rectangular
modulation type was generalized to extract trapezoidal modulation so as to increase its descriptive
power. The functionf is dependent ont as well as one or more free parameters: the functionf
is fitted to the input time series by setting the values of the free parameters so as to minimize the
sum of squared error. Once an instantiation of the free parameters inf has been determined,f is
applied toY (t) to generatêY (t).

The functionsf implemented by the structure detectors fall into two categories: those that
extract instances of linear structures, and those that extract instances of nonlinear structures. Values
for the free parameters in the functionsf that extract instances of linear structures (i.e., constant and
straight) can be computed directly from the input time-series data. Values for the free parameters in
the functionsf that extract instances of nonlinear structures (i.e., exponential, sinusoidal, triangular,
and trapezoidal) are determined by searching the space of all possible combinations of values for
an instantiation that minimizes the sum of squared error. Consequently, structure detectors which
extract instances of linear structures are implemented differently than structure detectors which
extract instances of nonlinear structures.

3.3.1. Linear Structure Detectors

Structure detectors that extract linear structures (i.e., constant and straight) from time-series data
use linear regression techniques to compute the values of the free parameters in the functionsf .
Linear regression is an established statistical method for identifying a linear relationship between
two variables [23][42][45]. In this case, it is the linear relationship betweent and Y (t) that
determines the values of the free parameters in the functionsf .

Constant

The constant structure detector extracts a linear relationship betweent andY (t) such that the value
of Ŷ (t) is invariant with respect tot. The constant structure detector implements the function

f(Y (t)) = a

where the value of the free parametera is computed fromY (t) using the standard linear regression
equation

a =
1
n

n∑
t=1

Y (t)

Computing the value ofa in this manner minimizes the sum of squared error and, consequently,
generates âY (t) that is the best constant linear approximation ofY (t).

Figure 3.1(a) shows an example of a constant structure extracted from a time-series data set:
the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents the
extracted structure (i.e.,̂Y (t)). The value ofE is equal to the sum of the squared distances between
the hollow bullets and the line. By design,Ŷ (t) minimizes the value ofE and, consequently, no
transformation could be performed on the extracted structure to decrease the sum of squared error.
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(a) Constant (b) Straight

(c) Exponential (d) Sinusoidal

(e) Triangular (f) Trapezoidal

Figure 3.1 The six structures fitted to a common data set. Each graph shows
the input time-series data plotted with hollow bullets overlaid with a solid line rep-
resenting one of the six structures. Each structure is fitted to the data so as to
minimize the sum of squared error. The structures ordered from best to worst fit
(i.e., from smallest to largest sum of squared error) are (f) trapezoidal, (e) triangular,
(c) exponential, (d) sinusoidal, (b) straight, and (a) constant.
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Straight

The straight structure detector identifies an unconstrained linear relationship betweent andY (t)
with the function

f(Y (t)) = a+ b ∗ t

wherea andb are free parameters. The values ofa andb are computed fromY (t) using the standard
linear regression equations

b =

∑n
t=1(t− t̄ )(Y (t)− ȳ)∑n

t=1(t− t̄ )2

a = ȳ − b ∗ t̄

where

ȳ =
1
n

n∑
t=1

Y (t)

t̄ =
1
n

n∑
t=1

t

These equations compute the values ofaandb so as to minimize the sum of squared error. Therefore,
the Ŷ (t) generated by the fitted functionf will be the best unconstrained linear approximation of
Y (t).

Figure 3.1(b) shows an example of a straight structure extracted from a time-series data set:
the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents the
extracted structure (i.e.,̂Y (t)). The straight structure detector generatesŶ (t) so as to minimize the
value ofE.

3.3.2. Nonlinear Structure Detectors

Structure detectors that extract nonlinear structures (i.e., exponential, sinusoidal, triangular, and
trapezoidal) from time-series data must be implemented differently than linear structure detectors.
Linear regression techniques, which serve as the foundation for linear structure detectors, only
identify linear relationships among variables and, consequently, can not be used as the basis for
nonlinear structure detectors. Since no statistical methodology has been developed to fit an arbitrary
nonlinear functionf directly from the data, a search must be performed within the space of all
possible combinations of values for the free parameters inf to find an instantiation that minimizes
the sum of squared error.

While there are many methodologies for optimizing nonlinear functions [46], a commonly-
used search strategy that is simple to implement and quick to converge is the simplex method.1

1The simplex method for function optimization and the simplex method for linear programming both makes use of the
geometrical concept of a simplex, however the two algorithms are unrelated and should not be confused.
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Simplex search, originally introduced by Spendley, Hext, and Himsworth [82] and generalized by
Nelder and Mead [66], is a direct search method in that the search is guided by evaluating the
target function with various combinations of values of the free parameters in the function (i.e., no
derivative information is used). The Nelder-Mead simplex method moves a geometric shape, called
a simplex, through the search space using a set of well-defined transformation operations called
reflection, expansion, and contraction [89][90]. Each operation moves one or more of the vertices
of the simplex so as to relocate the volume of the simplex closer to the optimal value of the target
function; a series of operations is applied to an initial simplex until the simplex has converged on an
optimum. No general convergence properties of the original Nelder-Mead simplex search strategy
have been proven, but some limited proofs of convergence have been published [56][61].

A generally-available Nelder-Mead simplex search algorithm [71] is used to fit the functionsf
in the nonlinear structure detectors to the input time-series data. The sum of squared errorE is the
target function, and the search returns the combination of values for the free parameters inf which
minimizes the sum of squared error. There is no guarantee that the simplex search algorithm will
fit the functionf so that the sum of squared error is the absolute minimum, but suboptimal fits of
f have proven to have negligible effects.

Exponential

The exponential structure detector identifies such a relationship betweent and Y (t) with the
function

f(Y (t)) = a ∗ |b|t + c

wherea, b, andc are free parameters and control the scale, degree of curvature, and vertical position,
respectively, of the extracted exponential structure. The absolute value ofb is necessary because a
negative value ofb would makef discontinuous for incremental integer values oft.

Figure 3.1(c) shows an example of an exponential structure extracted from a time-series data
set: the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents
the extracted structure (i.e.,Ŷ (t)). The exponential structure detector uses simplex search to find
values for the free parameters inf so that theŶ (t) generated byf minimizes the value ofE.

Sinusoidal

The sinusoidal structure detector identifies such a relationship betweent andY (t) with the function

f(Y (t)) = a ∗ sin(t+ b) + c

wherea, b, andc are free parameters and control the amplitude, period offset, and vertical position,
respectively, of the extracted sinusoidal structure. The sinusoidal structure detector is constrained
to fit exactly one period of a sine curve to the input time-series data set. This constraint could be
eliminated with an additional free parameter in the functionf to control the number of periods in
the extracted sinusoidal structure, but at the expense of increasing the complexity of the simplex
search.

Figure 3.1(d) shows an example of a sinusoidal structure extracted from a time-series data set:
the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents the
extracted structure (i.e.,̂Y (t)). The sinusoidal structure detector uses simplex search to find values
for the free parameters inf so that theŶ (t) generated byf minimizes the value ofE.
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Triangular

The triangular structure detector identifies such a relationship betweent andY (t) with the function

f(Y (t)) =
{
a+ b ∗ t t ≤ c
(a+ 2 ∗ b ∗ c) − (b ∗ t) t ≥ c

wherea, b, andc are free parameters. The value ofc controls the location of the peak: values
of t less than or equal toc constitute the leading edge, while values oft greater than or equal to
c constitute the trailing edge. Note that the peak itself (i.e., whent is equal toc) is a member of
both the leading and trailing edges. The values ofa andb control the placement of the line for the
leading edge; the trailing edge is constrained to be a line with the negative slope of the leading edge
and positioned so as to intersect the leading edge whent is equal toc. These constraints could be
eliminated with additional free parameters in the functionf , but at the expense of increasing the
complexity of the simplex search.

Figure 3.1(e) shows an example of a triangular structure extracted from a time-series data set:
the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents the
extracted structure (i.e.,̂Y (t)). The triangular structure detector uses simplex search to find values
for the free parameters inf so that theŶ (t) generated byf minimizes the value ofE.

Trapezoidal

The trapezoidal structure detector identifies such a relationship betweentandY (t) with the function

f(Y (t)) =


a+ b ∗ t t ≤ cstart
a+ b ∗ cstart cstart ≤ t ≤ cstop
(a+ b ∗ cstart + b ∗ cstop)− (b ∗ t) t ≥ cstop

wherea andb are free parameters. A hidden free parameterc controls the length of the horizontal
line that forms the top of the trapezoidal structure. The parameterscstart and cstop are linear
transformations ofc where

cstart =
1
2

(n− c)

cstop = n− 1
2

(n− c) + 1

The values ofcstart andcstop control the onset and offset of the top of the trapezoid structure: values
of t less than or equal tocstart constitute the leading edge, values oft betweencstart and cstop
inclusive constitute the top of the trapezoidal structure, and values oft greater than or equal tocstop
constitute the trailing edge. The values ofa andb control the placement of the line for the leading
edge. The line that forms the top of the trapezoidal structure is constrained to be a horizontal line
that intersects the leading edge whent is equal tocstart. The trailing edge is constrained to be a
line with the negative slope of the leading edge and positioned so as to intersect the top atcstop.
Additionally, the values ofcstart andcstop are constrained so that the number of epochs (i.e., the
number of values oft) which constitute the leading edge is equal to that of the trailing edge. These
constraints could be eliminated with additional free parameters in the functionf , but at the expense
of increasing the complexity of the simplex search.
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Figure 3.1(f) shows an example of a trapezoidal structure extracted from a time-series data set:
the hollow bullets represent the input time-series data (i.e.,Y (t)), and the solid line represents the
extracted structure (i.e.,̂Y (t)). The trapezoidal structure detector uses simplex search to find values
for the free parameters inf so that theŶ (t) generated byf minimizes the value ofE.

3.4. Piecewise Application of Structure Detectors

Each structure detector fits its functionf to an entire time-series data set so as to minimize the
sum of squared error between the extracted structure and the time series. The optimal fit of
f , therefore, must average the effects of the disparate subregions of the time series, extracting
structures that follow the general, global trend of the data. For example, the straight structure
shown in Figure 3.1(b) reflects the overall trend of the data, filtering out the visually-salient, local
trends. These local trends may provide information useful for subsequent analyses and, as such,
the extracted structure must be able to represent them.

Local trends can be captured via the piecewise application of the structure detectors: fitting a
functionf to contiguous subregions of a time series such that the union of the subregions is the
entire time series and the intersection of the subregions is empty. The resulting superstructure
consists ofp extracted substructures, where the substructures are one of the six structure types
described in Section 3.3. Such a superstructure is fit to the time seriesY (t) with the functiong that
is defined as

g(Y (t)) =


f(Y (t)) s1 ≤ t < s2

f(Y (t)) s2 ≤ t < s3
...
f(Y (t)) sp ≤ t ≤ n

where the values ofs partition the time seriesY (t) into subregions of consecutive values oft such
that subregionj starts whent is equal tosj (s1 is equal to 1), andf is a function fit by one of
the six structure detectors applied to each of thep subregions. The sum of squared error for the
superstructure, by extension, is simply the sum of the sum of squared errors for allp subregions.

For a given set of values fors, the best-fit structure is extracted from each subregion of the
time series by the structure detector implementing the functionf selected forg. In order to extract
the superstructure with the minimal sum of squared error for the entire time series, the values ofs
must partition the time series so as to minimize the sum of squared error within each subregion.
Consequently, extracting the best-fit superstructure requires an iterative process of two steps: (1)
select a set of values fors, and (2) extract from each subregion the structure with the minimum
sum of squared error given a particular functionf . This process continues until a set of values
for s is found that minimizes the sum of squared error for the superstructure. Rather than testing
all possiblep-partitionings of the time series (which would be intractable for any reasonably-sized
data set), dynamic programming [10] is used to reduce the computational effort necessary to find an
optimal partitioning which minimizes the sum of squared error for the superstructure. The problem
of identifying an optimal set of values fors using dynamic programming can be expressed with the
recurrence relation

Gγ [α, β] =

{
err(f(Y (α, . . . , β))) γ = 1
minα<τ≤β−γ+2{G1[α, τ − 1] +Gγ−1[τ, β]} γ > 1
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where err computes the sum of squared error of the approximationf(Y (α, . . . , β)) andGγ[α, β]
is the bestγ-partitioning ofY (t) for α ≤ t ≤ β. Dynamic programming solves each subproblem,
namely computingf for each contiguous subsequence of values oft, and composes the results
to find the optimal partitioning. The functiong, therefore, can be computed asGp[1, n] and an
optimal set of values fors is the sequence ofτ values used in the optimal recurrence.

Figure 3.2 shows the piecewise extraction of each of the six structure types to fit two subregions
to the same time-series data set shown in Figure 3.1. Each graph plots the input time-series data with
hollow bullets overlaid with two solid lines, one for the structure extracted from each subregion,
and a vertical dashed line separating the two subregions. For each superstructure, the recurrence
relation defined byG is solved by settingp equal to two andf equal to the function associated with
the appropriate structure type; the solution toG determines both the values ofs which partition
the time series into subregions and the free parameters off which fit the structure within each
subregion. For example, Figure 3.2(c) depicts the partitioning and the exponential structure fitted to
the time series within each subregion: the first subregion includes the first four epochs (i.e., values
of t), the second subregion incorporates the remaining epochs. Since the recurrence relationG is
solved for each superstructure separately, the resulting partitionings need not be the same among
the piecewise extractions shown in the graphs (e.g., Figures 3.2(a) and 3.2(c)). To avoid fitting the
transition between separate structures, the time series is partitioned between epochs. For example,
the exponential superstructure shown in Figure 3.2(c) is partitioned between epochs four and five.

The pair of structures extracted for each superstructure tend to better reflect the local trend
in the data as compared to the single structure extracted for the same time series as shown in
Figure 3.1. Notice that the second subregion for each superstructure (except exponential) has
been fitted with a horizontal line. This is possible because each type of structure, both linear and
nonlinear, can degrade to a constant structure for particular combinations of values of the free
parameters in their corresponding functionsf . Figure 3.3 shows the piecewise application of the
straight structure detector to fit various numbers of subregions to the same time-series data: as
the number of subregions increases, the fit of each superstructure becomes more representative of
the local trend embedded within the time series, resulting in a concomitant decrease in the sum of
squared error.

The piecewise application of the structure detectors in the functiong extracts the same type of
structure from each subregion of the time series. The local trend within each subregion can be better
represented if each subregion is fitted with the type of structure that results in the minimum sum
of squared error for that subregion, regardless of the structure types fitted to the other subregions.
Such a composite superstructure can be fitted using the functionh that is defined as

h(Y (t)) =


f1(Y (t)) s1 ≤ t < s2

f2(Y (t)) s2 ≤ t < s3
...
fp(Y (t)) sp ≤ t ≤ n

where the values ofs partition the time seriesY (t) into subregions of consecutive values oft such
that subregionj starts whent is equal tosj (s1 is equal to 1), andfj is equivalent to any of the
six functionsf defined in Section 3.3 and applied to subregionj. As with the functiong, the sum
of squared error for the composite superstructure is the sum of the sum of squared errors for allp
subregions.
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(a) Constant (b) Straight

(c) Exponential (d) Sinusoidal

(e) Triangular (f) Trapezoidal

Figure 3.2 The piecewise extraction of the six structures to fit two subregions
to a common data set. Each graph shows the input time-series data plotted with
hollow bullets overlaid with two solid lines, one for the structure extracted from each
subregion, and a vertical dashed line separating the two subregions. The super-
structures ordered from smallest to largest sum of squared error are (f) trapezoidal,
(c) exponential, (e) triangular, (d) sinusoidal, (b) straight, and (a) constant.
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(a) One Subregion (b) Two Subregions

(c) Three Subregions (d) Four Subregions

(e) Five Subregions (f) Six Subregions

Figure 3.3 The piecewise extraction of the straight structure to fit various numbers
of subregions to a common data set. Each graph shows the input time-series data
plotted with hollow bullets overlaid with solid lines representing the straight structure
extracted from each subregion. Vertical dashed lines separate the subregions.
Increasing the number of subregions results in a concomitant decrease in the sum
of squared error.
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The process of extracting a composite superstructure from a time-series data set requires a
dynamic programming approach similar to that used for extracting a homogeneous superstructure.
The problem of identifying an optimal set of values forswith dynamic programming for a composite
superstructure can be expressed with the recurrence relation

Hγ [α, β] =

{
minf{err(f(Y (α, . . . , β)))} γ = 1
minα<τ≤β−γ+2{H1[α, τ − 1] +Hγ−1[τ, β]} γ > 1

The recurrence relationH is the same asG except that the base case ofH fits each of the six structure
types and selects the one with the smallest sum of squared error to approximate the subregion. In
the case of a tie, the less complex structure type is used. Based on the number of free parameters
in the functionsf and the restrictions placed on assigning values to those free parameters, the
structure types in order from least to most complex are constant, straight, exponential, sinusoidal,
triangular, and trapezoidal.

Figure 3.4 shows the piecewise extraction of the composite superstructure to fit various numbers
of subregions to the same time-series data. For each number of subregions, the recurrence relation
defined byH is solved by settingp equal to the number of subregions; the solution toH deter-
mines the values ofs which partition the time series into subregions, the functionsf which best
approximate each subregion, and the free parameters for eachf which fit the structure within each
subregion. The composite superstructure that best fits the time series using one subregion is the
trapezoidal structure, as is expected given Figure 3.1. As with the homogeneous superstructure, the
fit of each composite superstructure becomes more representative of the local trend as the number
of subregions increases, resulting in a concomitant decrease in the sum of squared error. Since
the composite superstructure extracts the best-fit structure type from each subregion, the sum of
squared error for each composite superstructure is less than or equal to that for the corresponding
homogeneous superstructure. Notice that the extracted superstructure with six subregions appears
odd: there is a “spike” in the second subregions of the superstructure. This spike is a triangular
structure fitted to a subregion of three data points with a sum of squared error equal to zero. The
strange appearance of the graph is a consequence of overfitting: too many subregions were used to
fit the time series and, as a result, small subregions were fitted with counterintuitive structure types
in an effort to minimize the error. To avoid overfitting, a balance between the number of subregions
and error must be struck.

Figure 3.5 shows the relationship between the number of subregions used in the piecewise
application of the structure detectors to extract a composite superstructure and the resulting sum
of squared error: as the number of subregions increases, the sum of squared error decreases
rapidly, reaching zero when there are enough subregions so that the structure extracted from each
subregion perfectly fits the data in that subregion. (A similar relationship exists when extracting a
homogeneous superstructure.) How many subregions are sufficient so that the extracted composite
superstructure filters out the noise and other minor perturbations in the data and, at the same time,
captures enough of the local trend so as to be of use for subsequent analyses? Such a situation
occurs when a weighted sum of the number of subregions and the error is minimized. Model
selection [92] using a formal description length metric, such as Akaike’s Information Criterion
(AIC) [1] or Bayesian Information Criterion (BIC) [77], could be used to find the optimal number
of subregions by balancing the error with a penalty which increases with the number of subregions.
Such approaches, however, are grounded in asymptotics and, consequently, may be sensitive to
small sample sizes. An alternative approach is to identify the number of subregions such that
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Figure 3.4 A composite superstructure fitted to a common data set with various
numbers of subregions. Each graph shows the input time-series data plotted with
hollow bullets overlaid with solid lines representing the structure extracted from
each subregion. Vertical dashed lines separate the subregions, and the type of
structure fitted to each subregion is indicated. Increasing the number of subregions
results in a concomitant decrease in the sum of squared error.
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Figure 3.5 The relationship between the number of subregions used in the piece-
wise application of the structure detectors to extract a composite superstructure
and the resulting sum of squared error. The sum of squared error, plotted with
hollow bullets, decreases rapidly as the number of subregions increases, reaching
zero when there are enough subregions so that the structure extracted from each
subregion perfectly fits the data in that subregion. The pair of extracted straight
structures, plotted as two solid lines, show how the sum of squared error values
are partitioned; the arrow indicates the number of subregions where the reduction
in error grows small with respect to the increase in number of subregions.

��	

any increase would result in a comparatively small decrease in error—i.e., the “knee” of the error
versus number-of-subregions curve. This approach would produce results similar to those of a
description length metric and has an additional benefit of not being asymptotic with respect to the
sample size. Moreover, a graph of the error versus number-of-subregions curve can be inspected
either to confirm an expected outcome or to discover the cause of an unreasonable outcome.

The knee of the curve lies at the point where the linear relationship between the sum of squared
error and the number of subregions changes from mostly vertical (i.e., having consecutively large
decreases in error) to mostly horizontal (i.e., having consecutively small decreases in error). The
piecewise application of the straight structure can be used to identify the point where this change
in the linear relationship between error and the number of subregions occurs: the straight structure
detector is used to fit two subregions to the sequence of sum of squared error values ordered by
number of subregions, and the knee is located at the point where the two extracted straight structures
meet. The piecewise application of the straight structure detector fits two straight structures so as
to minimize the sum of squared error for each piece, therefore the curve must be split where the
linear relationship between the error and number of subregions changes from mostly vertical to
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mostly horizontal; the point where this change occurs is the number of subregions which provides
diminishing returns and is the optimal number of subregions (i.e., the value ofp to use in the
recurrence relationsG andH in order to specify the number of subregions into which a time
series is to be partitioned). The two straight structures extracted from the sum of squared error
values is shown in Figure 3.5, and the optimal number of subregions to use to extract a composite
superstructure is marked with an arrow (which identifies four subregions as optimal). Returning
to Figure 3.4, using four subregions in the extracted composite superstructure results in a fit which
identifies the local trends without capturing every small change in the data. Five subregions, by
comparison, has a smaller sum of squared error, however the resulting composite superstructure
has been fitted to the time series quite accurately and has not identified the abstract, general trends
in the data.

The optimal number of subregions to use for a collection of time-series data sets can be identified
using a similar procedure: (1) for each number of subregions, generate an approximation for each
data set and compute the sum of squared error, summing the individual error values across all the
data sets to arrive at the total error; (2) use the straight structure detector to fit two subregions to the
sequence of total error values ordered by number of subregions; and (3) identify the optimal number
of subregions to be the point where the two extracted straight structures meet. This procedure can
be useful, for example, as a training phase to determine a fixed number of subregions for the
structure detectors based on a collection of time-series data sets (i.e., a training set) so as to extract
the same number of structures from each data set.

3.5. Structure Detector Implementation

The implementation of the structure detectors requires two separate algorithms: the structure
detector algorithm identifies the optimal piecewise approximation of a time-series data set using a
specified number of subregions, and the structure detector training algorithm determines an optimal
number of subregions for the structure detector algorithm based on a collection of time-series data
sets. The structure detector algorithm is general in nature and can be used to extract from a time-
series data set any of the six homogeneous superstructures (i.e., constant, straight, exponential,
sinusoidal, triangular, or trapezoidal) as well as a heterogeneous, or composite, superstructure. The
structure detector algorithm extracts the various types of superstructures by using the appropriate
functionf to approximate each subregion. Similarly, the structure detector training algorithm can
determine an optimal number of subregions for the various types of superstructures by invoking
the appropriate instantiation of the structure detector algorithm.

3.5.1. Structure Detector Algorithm

The structure detector algorithm solves the recurrence relations specified byG andH in Section 3.4
using Bellman’s dynamic programming method [10]. The input to the algorithm is the number of
subregions to use,p, and a time-series data set of lengthn. The output of the algorithm includes
the error of approximating the time-series data set with the superstructure, the partitioning of the
time series into subregions, the error of approximating the time series within each subregion, and
the values of the free parameters of the functionf used to approximate each subregion. In the
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case where a composite superstructure is extracted, the type of structure used to approximate each
subregion is also reported by the algorithm.

The dynamic programming methodology used in the structure detector algorithm first examines
all the individual components that could be assembled together into a solution, and then searches
through the possible ways of assembling the components to find the final solution. Given a value
of p and a time-series data set of lengthn, the structure detector algorithm proceeds as follows:

1. Read the specified time-series data set. Store the time series as a sequence ofY (t) values
where 1≤ t ≤ n.

2. For each contiguous subset oft, letS contain theY (t) values within the subset. Compute the
sum of squared error resulting from approximating each subsetS with a structure, treatingS
as an indivisible subregion.

• When extracting one of the six homogeneous superstructures:

(a) Apply the appropriate functionf to S, resulting in an approximation̂S.

(b) Compute the sum of squared error betweenS andŜ.

(c) Store in tableT1 an entry indexed byS that contains the values of the freeparameters
used to fit the structure toS and the resulting sum of squared error.

• When extracting a composite superstructure:

(a) Apply each of the six functionsf to S, producing six approximationŝS.

(b) Compute the sum of squared error betweenS and each of the six approximations
Ŝ.

(c) Select as the best approximation ofS the structure type that results in the minimum
of the six sum of squared error values. To resolve the situation where the mini-
mum sum of squared error value is not unique, choose the less complex structure
type. Based on the number of free parameters in the functionsf and the restric-
tions placed on assigning values to those free parameters, the structure types in
order from least to most complex are constant, straight, exponential, sinusoidal,
triangular, and trapezoidal.

(d) Store in tableT1 an entry indexed byS that contains the structure type selected to
approximate the subsetS, the values of the free parameters used to fit the structure
to S, and the resulting sum of squared error.

3. Compute the minimum sum of squared error of approximatingY (t) within various contiguous
subsets oft usingq subregions where 1≤ q ≤ p. Let i denote the start of the current subset.
Given q and for eachi such that 1≤ i ≤ n − q + 1, let S contain the values ofY (t)
wherei ≤ t ≤ n. Compute the minimum sum of squared error of approximatingS usingq
subregions.

(a) Let j represent the location inS where the values ofY (t) in S will be split into two
subregions,S1

j andS2
j . For eachj such that 1≤ j ≤ n− i− q+ 2, the sum of squared

error of approximatingSj with q subregions is equal to the total of the sum of squared
errors for approximatingS1

j with one subregion andS2
j with q − 1 subregions.
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• Let S1
j contain the subset ofY (t) values wherei ≤ t ≤ i + j − 1. The sum of

squared error for approximatingS1
j with one subregion was calculated in step #2

and can be retrieved from tableT1.

• Let S2
j contain the subset ofY (t) values wherei+ j ≤ t ≤ n. The sum of squared

error for approximatingS2
j with q − 1 subregions was computed in a previous

iteration of step #3 (or in step #2 for the case whereq = 2) and can be retrieved
from tableTq−1.

(b) Select as the best approximation ofS theSj that results in the minimum sum of squared
error.

(c) Store in tableTq an entry indexed byS that contains the selected value ofj and the
resulting sum of squared error.

4. Report the best approximation to the time-series data set usingq = psubregions by backchain-
ing through the tablesT and assembling the information for each subregion.

(a) Leti = 1. LetS contain the subset ofY (t) values wherei ≤ t ≤ n.

(b) Retrieve the entry from tableTq indexed byS.

(c) Use the value ofj in the entry to subdivideS into S1 andS2.

• Let S1 contain the values ofY (t) wherei ≤ t ≤ i+ j − 1.

• Let S2 contain the values ofY (t) wherei+ j ≤ t ≤ n.

(d) Retrieve the entry from tableT1 indexed byS1, and report its contents to summarize the
approximation of the current subregion.

(e) Letq = q − 1. Let i = i+ j. LetS = S2. If q > 1, then return to step #4(b).

(f) Retrieve the entry from tableT1 indexed byS, and report its contents to summarize the
approximation of the last subregion.

(g) Report the total of the sum of squared errors across allp subregions as the sum of
squared error for fitting the superstructure to the entire time-series data set.

Step #2 computes the sum of squared error for all contiguous subsets within the time-series data
sets, thereby investigating all subregions that could possibly appear in the final solution. Step #3
searches through the possible combinations of subregions incrementally, using results generated
in step #2 as well as previous iterations of step #3. Once the search is complete, step #4 uses the
stored partial results to report the final solution.

The computational complexity of each step of the structure detector algorithm is as follows:

1. Reading the time-series data set isO(n).

2. Searching all contiguous subsets oft isO(n2).

• When extracting one of the six homogeneous superstructures:

(a) Applying the constant functionf isO(1), and applying any of the other functions
f isO(n).
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(b) Computing the sum of squared error for the constant functionf is O(1), and
computing the sum of squared error for any of the other functionsf isO(n).

(c) Storing the approximation information isO(1).

• When extracting a composite superstructure:

(a) Applying the six functionsf isO(n).

(b) Computing the sum of squared error isO(n).

(c) Selecting among the structure types isO(1).

(d) Storing the approximation information isO(1).

3. Examining the values ofq ≤ p for each subset oft wherei ≤ t ≤ n and 1≤ i ≤ n− q + 1
isO(pn).

(a) Movingj through each subset has a complexity ofO(n).

• The sum of squared error forS1
j is established via a table lookup ofO(1).

• The sum of squared error forS2
j is established via a table lookup ofO(1).

(b) Selecting the best approximationSj isO(n).

(c) Storing the approximation information isO(1).

4. Backchaining through the tables requiresp table accesses and, thus, has a complexity of
O(p).

The computational complexity for each step can be calculated by multiplying the complexities of
the individual substeps. Step #1 isO(n). Step #2 isO(n2) when approximating with the constant
superstructure,O(n3) when approximating with any of the other five homogeneous superstructures,
andO(n3) when approximating with a composite superstructure. Step #3 isO(pn2). Step #4 is
O(p). Combining the computational complexities for each step results in the overall computational
complexity for the structural detector algorithm as follows:

• When approximating with the constant superstructure, the algorithm isO(pn2).

• When approximating with any of the other five homogeneous superstructures, the algorithm
isO(n3 + pn2).

• When approximating with a composite superstructure, the algorithm isO(n3 + pn2).

The computational effort of finding the optimal piecewise approximation of a time-series data
set can be lessened by using sampling, smoothing, or multiresolution techniques [71] to reduce
the lengthn of the time series, provided that the resulting morphological description does not
compromise the subsequent classification accuracy.
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3.5.2. Structure Detector Training Algorithm

The structure detector algorithm requires the number of subregionsp as input. In order to deter-
mine an optimal value ofp that minimizes a weighted sum of the number of subregions and the
approximation error, the structure detector training algorithm analyzes the change in error as the
number of subregions increases. Moreover, the algorithm performs its analysis within the context
of a collection of time-series data sets so as to arrive at a value forp that is appropriate given the
variability across the data sets.

The structure detector training algorithm determines a value forp based on a training set
comprising a sample of the entire collection of time-series data sets that are to be analyzed. Given
a training setR composed ofr time-series data sets,R1 to Rr, the structure detector training
algorithm arrives at an optimal value ofp as follows:

1. Read each of the time-series data setsRi where 1≤ i ≤ r. Let ni be equal to the length of
time-series data setRi. Let nmax be equal to the maximumni.

2. For eachq such that 1≤ q ≤ 1
2nmax + 1, compute the total sum of squared error for

approximating each of the time-series data sets inR usingq subregions.

(a) For each time-series data setRi where 1≤ i ≤ r, invoke the structure detector algorithm
with p = q to approximate the time seriesRi with the appropriate type of superstructure.
Letmi be equal to the sum of squared error returned by the structure detector algorithm.

(b) LetMq be equal to the sum of themi values where 1≤ i ≤ r.

3. Find the knee in the curve plotted by the sequence ofM values. Invoke the structure
detector algorithm withp = 2 to approximate the sequence ofM values with the straight
superstructure. Report as the optimal value ofp the value ofq such thatMq falls at the start
of the second subregion.

Once a value ofp has been set, it can be used as input to the structure detector algorithm when
analyzing each of the time-series data sets within the entire collection.

Assuming that the values ofn for ther data sets inR are similar, the computational complexity
of each step of the structure detector training algorithm is as follows:

1. Reading ther time-series data sets, each of lengthn, and calculatingnmax isO(rn).

2. Examining the values ofq isO(n).

(a) Invoking the structure detector algorithmr times withp = q to fit a constant superstruc-
ture isO(rn2), to fit any of the remaining homogeneous superstructures isO(rn3), and
to fit a composite superstructure isO(rn3).

(b) Adding the sum of squared error values has a complexity ofO(r).

3. Invoking the structure detector algorithm withp = 2 to approximate theM values with a
straight superstructure isO(n3). Reporting the optimal value ofp isO(1).
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The computational complexity for each step can be calculated as a combination of the individual
substeps. Step #1 isO(rn). Step #2 isO(rn3) when approximating with the constant superstruc-
ture,O(rn4) when approximating with any of the other five homogeneous superstructures, and
O(rn4) when approximating with a composite superstructure. Step #3 isO(n3). Combining the
computational complexities for each step results in the overall computational complexity for the
structure detector training algorithm as follows:

• When approximating with the constant superstructure, the algorithm isO(rn3).

• When approximating with any of the other five homogeneous superstructures, the algorithm
isO(rn4).

• When approximating with a composite superstructure, the algorithm isO(rn4).

The fact that the structure detector training algorithm has a computational complexity that is
dominated by then4 term makes the algorithm expensive for any reasonably-sized data sets. A
small modification to the structure detector algorithm can simplify the structure detector training
algorithm and, by extension, reduce its computational complexity.

3.5.3. Reducing the Computational Complexity

When using the structure detector algorithm to approximate a time-series data set withp subregions,
tablesT1 throughTp are produced such that the best approximation usingp subregions can be found
via backchaining starting with tableTp. Notice, however, that the best approximation of the time-
series data set withp − 1 subregions has also been computed and can be found via backchaining
starting with tableTp−1. Generally, the best approximation of the time-series data set with each of
q subregions can be found via backchaining starting with tableTq where 1≤ q ≤ p.

Using this observation, the structure detector algorithm can be modified to report the sum
of squared error resulting from approximating the time-series data set withq subregions where
1≤ q ≤ p by modifying step #4 of the structure detector algorithm to be

4. Report the best approximation to the time-series data set usingq subregions where 1≤ q ≤ p
by backchaining through the tablesT and assembling the information for each subregion.

The remainder of the algorithm remains unchanged.
The computational complexity of step #4 of the modified structure detector algorithm is

4. Backchaining through the tables requiresp table accesses. Reporting the best approximation
for each ofq subregions where 1≤ q ≤ p isO(p2).

The computational complexity of the other steps of the algorithm remains unchanged. The overall
computational complexity for the modified structure detector algorithm is as follows:

• When approximating with the constant superstructure, the algorithm isO(p2 + pn2).

• When approximating with any of the other five homogeneous superstructures, the algorithm
isO(n3 + p2 + pn2).
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• When approximating with a composite superstructure, the algorithm isO(n3 + p2 + pn2).

If p� n, the computation complexity of the modified structure detection algorithm is the same as
the original algorithm.

The structure detector training algorithm can take advantage of the modified structure detector
algorithm with the following changes:

2. Compute the total sum of squared error for approximating the time-series data sets inR using
1
2nmax + 1 subregions.

(a) For each time-series data setRi where 1≤ i ≤ r, invoke the modified structure detector
algorithm withp = 1

2nmax + 1 to approximate the time seriesRi with the appropriate
type of superstructure. Letmq

i be equal to the sum of squared error returned by the
structure detector algorithm for the time-series data setRi with q subregions where
1≤ q ≤ 1

2nmax + 1.

(b) LetMq be equal to the sum of themq
i values where 1≤ i ≤ r for each 1≤q≤ 1

2nmax+1.

The other steps of the algorithm remain unchanged.
The computational complexity of this modified structure detector training algorithm undergoes

a parallel modification:

2. Examining one value ofp isO(1).

(a) Invoking the modified structure detector algorithmr times withp = 1
2nmax + 1 to fit a

constant superstructure isO(rn3), to fit any of the remaining homogeneous superstruc-
tures isO(rn3), and to fit a composite superstructure isO(rn3).

(b) Adding the sum of squared error values has a complexity ofO(rn).

The computational complexity of the other steps of the algorithm remains unchanged. The overall
computational complexity for the modified structure detector training algorithm is as follows:

• When approximating with the constant superstructure, the algorithm isO(rn3).

• When approximating with any of the other five homogeneous superstructures, the algorithm
isO(rn3).

• When approximating with a composite superstructure, the algorithm isO(rn3).

The modified structure detector training algorithm successfully reduces by a factor ofn the compu-
tational complexity when approximating with any of the other five homogeneous superstructures or
a composite superstructure. The complexity when approximating with the constant superstructure
remains essentially the same.

Because of the reduction in computational complexity afforded by the modification to both
algorithms, the modified version of both the structure detector algorithm and the structure detector
training algorithm are the logical choices to implement. Under the assumption thatp ≈ O(n), the
modified structure detector algorithm approximates a time-series data set inO(n3) and the structure
detector training algorithm determines an optimal value ofp based on a training set containingr
time-series data sets inO(rn3). For the modified versions of both algorithms, these computational
complexities apply regardless of the type of superstructure being extracted from the data.
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3.6. Discussion

A structural approach to pattern recognition necessarily requires generating a morphological de-
scription of the data under analysis and then performing classification based on that description.
A general approach to producing such a morphological description of time-series data is one that
finds an optimal piecewise approximation by fitting a sequence of structures selected from a library
of domain-independent structure types. The task of generating a morphological description of a
time-series data set, therefore, becomes one of identifying a sequence of structures that approximate
the data such that the difference between the approximation and the data is minimized.

Dual evidence from the field of signal processing and the structural pattern recognition literature
suggests a set of six structure types—constant, straight, exponential, sinusoidal, triangular, and
trapezoidal—to serve as the foundation for a library of structure types for generalized feature
extraction. A structure detector is used to identify the optimal piecewise-fit of each structure type
in time-series data using basic curve-fitting algorithms and search strategies.

The suite of structure detectors and the methodology used to identify the optimal piecewise
approximation to time-series data address the characteristics necessary for generalized feature
extraction from time-series data as follows:

• The selection of structure types is based on their perceived usefulness in both the field of signal
processing and the structural pattern recognition literature. As such, the six structure types
capture fundamental trends and relationships that have proven useful in other applications.

• Time-series data can be approximated with arbitrary accuracy, as determined by the number
of subregions used in the piecewise application of the structure detectors.

• The optimal piecewise-fit of a time-series data set can be represented by a sequence of
structure types, onsets, and values for the free parameters.

Whether the suite of six structure detectors can satisfy the remaining characteristics, namely being
able to support a subsequent classification task and being domain independent, can be determined
empirically with an experiment to evaluate the efficacy of these structure types for classification of
data from various domains.



Chapter 4

Structure Detector Evaluation

4.1. Introduction

The structure detectors described in Chapter 3 were designed to perform generalized feature extrac-
tion for structural pattern recognition in time-series data by generating a range of generally-useful
descriptive characteristics for classification. Each structure detector acts as a feature extractor
capable of recognizing one specific type of primitive; applying a structure detector in a piecewise
fashion to a time series results in a sequence of features that represents the original data and can be
used as the basis for classification. The resulting classification accuracy depends on how well the
extracted features differentiate among objects from different classes: features which better discrim-
inate will result in a higher classification accuracy as compared to features with less discriminatory
power. Since each structure detector extracts a unique set of features, selecting among the structure
detectors to generate features for classification will affect the subsequent accuracy.

The relative efficacy of the structure detectors can be evaluated by comparing the classification
accuracies achieved when using the various structure detectors for feature extraction. Additionally,
established techniques used to extract features from time-series data can serve as a benchmark:
if the classification accuracies achieved with features generated by the structure detectors are
at least as high as the accuracies achieved with the other techniques, then it can be concluded
that the structure detectors capture characteristics of time-series data suitable for classification at
least as well as commonly-used methods. The most suitable benchmark would comprise domain-
independent feature-extraction methods for structural pattern recognition in time-series data—
e.g., chain codes and curve fitting. However, such techniques are subsumed by the structure
detectors and, consequently, would not constitute a distinct comparison. A benchmark unrelated
to the structure detectors can be established with feature-extraction techniques commonly used for
statistical pattern recognition.

4.2. Statistical Feature Extractors

Three commonly-used domain-independent statistical methods for feature extraction are the identity
transformation, the Fourier transformation, and the wavelet transformation [59][60]. Each of these
techniques generates an approximation of a time-series data set composed of a sum of weighted
elements drawn from an associated basis (i.e., a set of fundamental, or constituent, waveforms).
The weighted elements which constitute an approximation are characteristic of the particular data
set under analysis and, therefore, can be used as features for classification. The precise number
of weighted elements in the approximation varies among data sets and determines the number

47



48 Chapter 4. Structure Detector Evaluation

of features extracted from the data set. Since statistical classifiers generally require a constant
number of features from each data set, a separate training phase for each of the three statistical
feature extractors is necessary to determine a fixed number of features to extract. Moreover, each
training phase must also transform the time-series data set into a format suitable for analysis by
the associated feature extractor, if necessary. To perform these two operations, the training phase
for each of the statistical feature extractors will have both a data preparation and a model selection
component.

4.2.1. Identity Transformation

The simplest features to use for classification of time-series data are those which require no extrac-
tion whatsoever—i.e., the raw data itself. The basis necessary to generate such an approximation
comprises a collection ofn waveforms, wheren is the length of the data set under analysis, such
that basis waveformi is equal to one att = i and equal to zero everywhere else. Since such a
basis is essentially a collection of unit vectors, expressing the identity transformation as a sum of
weighted basis waveforms would be unnecessarily overcomplicated. Rather, the approximation
generated by the identity transformation can be more simply expressed as

Ŷ (t) = Y (t)

whereŶ (t) is a time series which constitutes an approximation toY (t) such that each value in
Ŷ (t) is equal to the corresponding value inY (t). SinceŶ (t) is equivalent toY (t), the sum of
squared errorE is always equal to zero. The features generated by the identity transformation for
classification comprise the sequence ofŶ (t) values. The extracted features can be arranged into a
feature vector having the form

A1 A2 A3 · · · An

whereAi is theith feature such thatAi = Ŷ (i). The feature vector contains a total ofn features.
See Appendix A for a concrete example. Applying the identity transformation to a data set of
lengthn and assembling the extracted features has a computational complexity ofO(n).

The training phase for the identity feature extractor comprises both a data preparation and a
model selection component applied to a training set. Since the number of features extracted depends
on the length of the data set, the data preparation component must establish a uniform length for
all data sets to be analyzed. This can be accomplished by selecting either the shortest or longest
data set within the training set. Once established, each data set can be made to conform to the fixed
length either by truncation (i.e., terminating the data set at the desired length) or extension (i.e.,
artificially extending the data set using techniques such as zero padding, extrapolation of observed
trends, or wraparound methods). Since there is no tradeoff between the number of basis waveforms
used in the approximation and the resulting sum of squared error (because the sum of squared error
E is consistently zero), there is no model selection to be performed. Thus, the outcome of the
training phase consists solely of the fixed data length. The computational complexity of the training
phase isO(rn) when applied to a training set containingr data sets wheren is the maximum length
of the data sets within the training set.
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4.2.2. Fourier Transformation

The Fourier transformation [69][71] generates an approximation to a time-series data set using as
a basis the cosine and sine functions having periodn and frequencyj wherej = {0, 1, 2, . . . , 1

2n}
andn is the length of the data set. Figure 4.1 plots a subset of the basis waveforms used by the
Fourier transformation. The sine and cosine functions with frequencyj equal to 0, 1, and 2 are
shown. Whenj = 0, the sine function is equivalent to the zero function and, consequently, is
excluded from the basis.

Given this basis, the Fourier transformation approximates a time series as

Ŷ (t) =
∑
j∈B

(aj cosjt+ bj sinjt)

where Ŷ (t) is a time series which constitutes an approximation toY (t), B is a subset of the
frequencies within the basis,aj is the coefficient (or weight) associated with the cosine basis
function with frequencyj, and bj is the coefficient (or weight) associated with the sine basis
function with frequencyj. Notice that for eachj in B, both the cosine and sine functions with
frequencyj are incorporated into the approximation. The sum of squared errorE depends on the
number of frequencies contained inB: as the number of frequencies inB increases, the sum of
squared errorE decreases. The features generated by the Fourier transformation for classification
comprise the coefficient pairsaj andbj for each frequencyj in B. The features extracted from a
data set can be arranged into a feature vector having the form

A1 B1 A2 B2 · · · A|B| B|B|

whereAi andBi constitute theith feature pair for eachi such that 1≤ i ≤ |B| and |B| is the
number of frequencies inB. In order to map feature pairi to frequencyj, the frequencies inB
are ordered according to their overall contribution towards approximating the data sets within a
training set, as determined during the training phase. (The training phase, discussed next, computes
the overall contribution of each frequency,cj, and orders the frequencies according to these values,
from highest to lowest.)A1 andB1 are equal toaj andbj wherej ∈ B such that frequencyj
contributes the most (i.e., has the largestcj value) towards approximating the data sets within a
training set.A2 andB2 are equal toaj andbj wherej ∈ B such that frequencyj contributes the
second most (i.e., has the second largestcj value) towards approximating the data sets within a
training set. And so on. The feature vector contains a total of 2∗ |B| features. See Appendix A for
a concrete example. Applying the Fourier transformation to a data set of lengthn and assembling
the extracted features has a computational complexity ofO(n logn).

The training phase for the Fourier transformation feature extractor comprises both a data prepa-
ration and a model selection component applied to a training set. The fast Fourier transformation
by Press [71] requires that the time-series data set has a length equal to a power of two.1 The data
preparation component, therefore, must establish a uniform length equal to a power of two for all
the data sets to be analyzed. This can be accomplished by selecting either the shortest or the longest
data set within the training set: if the shortest data set is selected, then the length is fixed at the

1Other, more complex, versions of the fast Fourier transformation can be applied directly to data sets that violate this
length requirement.



50 Chapter 4. Structure Detector Evaluation

n

-1

1

0

j = 0

j = 1 j = 2

Cosine Functions

n

-1

1

0

j = 1

j = 2

Sine Functions

Figure 4.1 A subset of the cosine and sine functions used as basis waveforms
by the Fourier transformation. Each basis waveform has period n and frequency j
where j = {0, 1, 2, . . . , 1

2n} and n is the length of the data set. The basis waveforms
with j equal to 0, 1, and 2 are shown. When j = 0, the sine function is equivalent
to the zero function and, consequently, is excluded from the basis.
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|B| = 1 E = 5440 |B| = 5 E = 1528

|B| = 10 E = 1148 |B| = 13 E = 994

|B| = 17 E = 884 |B| = 20 E = 773

Figure 4.2 The Fourier transformation applied to the same data set for various
sizes of B and a constant ordering of the frequencies. Each graph shows the input
time-series data plotted with hollow bullets overlaid with a solid line representing
the approximation generated by the Fourier transformation with the |B| frequencies
that contribute most to the approximation. The resulting sum of squared error E is
indicated. Notice that the approximation better represents the data as the number
of frequencies in B increases, resulting in a concomitant decrease in the sum of
squared error E that diminishes as |B| increases.
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power of two less than or equal to the selected data set; if the longest data set is selected, then the
length is fixed at the power of two greater than or equal to the longest data set. Once established,
each data set can be made to conform to the fixed length either by truncation or extension.

The model selection component of the training phase must assess the tradeoff between the
number of frequencies contained inB and the resulting sum of squared errorE. Before such
an analysis can be performed, the order in which the frequencies will be added toB must be
established. For each size ofB, the particular frequencies included will be determined by the
ordering, thereby guaranteeing that the same set of frequencies is used to approximate each data
set and, more importantly, ensuring that the features extracted from each data set measure the
same characteristics. The frequencies are ranked according to their overall contribution to the
approximation, from most to least, and are added toB in this order. As each frequency is added
to B, the sum of squared errorE decreases, but the magnitude of the decrease diminishes with
each subsequent frequency. Figure 4.2 illustrates the approximation generated by the Fourier
transformation for various sizes ofB and a constant ordering of the frequencies. Notice that the
approximation better represents the data as the size ofB increases, resulting in a concomitant
decrease in the sum of squared errorE. Moreover, the decrease in the sum of squared error
diminishes as the size ofB increases.

The contribution of frequencyj is equal to a combination of the weights assigned to the cosine
and sine basis waveforms of frequencyj. Let cij be the contribution of frequencyj towards the
approximation of data seti. The value ofcij is computed as

cij =
√

(aij)2 + (bij)2

whereaij andbij are the weights associated with the cosine and sine basis functions, respectively,
with frequencyj as computed by the Fourier transformation applied to data seti in the training
set. Letcj be the overall contribution of frequencyj for the entire training set. The value ofcj is
computed as

cj =
∑
i

cij

wherei is a data set in the training set. Thecj values are ordered by magnitude, from largest to
smallest. Frequencies are added toB according to the orderedcj values: the frequencyj with the
largestcj value is added first, the frequencyj with the second largestcj value is added second,
and so on until the required number of frequencies have been added toB. Once the frequencies
have been ordered, the model selection component of the training phase can determine an optimal
number of frequencies forB that minimizes a weighted sum of the number of frequencies|B|
and the sum of squared errorE. A procedure similar to that used in the training phase for the
structure detectors (described in Section 3.4) can be employed: (1) compute the sum of squared
error for each approximation generated with an incremental number of frequencies inB; (2) order
the sum of squared error values according to the number of frequencies contained inB; (3) apply
the straight structure detector to approximate the sequence of sum of squared error values with two
straight structures; and (4) identify the optimal number of frequencies forB to be the point where
the two extracted straight structures meet.

The outcome of the training phase is the fixed data length and the subset of frequenciesB
to use in approximating the data sets. The subset of frequenciesB is determined by the optimal
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number of frequencies and the ordering established by thecj values—e.g., if the optimal number
of frequencies is five, then the subset of frequencies to use in approximating the data sets contains
the five frequencies with the largestcj values. The computational complexity of the training phase
isO(n2 + rn logn) when applied to a training set containingr data sets wheren is the maximum
length of the data sets within the training set.

4.2.3. Wavelet Transformation

The basis used by the Fourier transformation comprises waveforms which span an entire time-series
data set, making such a basis appropriate for approximating a time series with pure periodic struc-
ture. Many time-series data sets, however, contain local structures which manifest in contiguous
subsets of the data—e.g., sharp spikes. The wavelet transformation [19][39][68][71] employs a
basis containing waveforms that are localized in space and, therefore, is more suitable for approx-
imating time-series data sets containing regional structures.

The wavelet transformation by Press [71] uses a basis comprisingn waveforms wheren is the
length of the data set under analysis. The basis waveforms are derived from scalings and translations
of a mother waveletψ. The transformations are ordered according to the degree of localization in
the resulting basis waveform such thatψj is thejth transformation ofψ wherej = {1, 2, . . . , n}.
Figure 4.3 plots a subset of the basis waveforms derived from the Daubechies 4-coefficient mother
wavelet. The basis waveforms withj equal to 1, 3, 6, 10, 25, and 33 are shown. Notice that asj
increases, the basis waveforms become more localized.

Given this basis, the wavelet transformation approximates a time series as

Ŷ (t) =
∑
j∈B

φjψj(t)

where Ŷ (t) is a time series which constitutes an approximation toY (t), B is a subset of the
transformations ofψ within the basis, andφj is the coefficient (or weight) associated with basis
waveformψj. The sum of squared errorE depends on the number of transformations contained in
B: as the number of transformations inB increases, the sum of squared errorE decreases. The
features generated by the wavelet transformation for classification comprise the coefficientsφj for
each transformationj in B. The features extracted from a data set can be arranged into a feature
vector having the form

A1 A2 · · · A|B|

whereAi constitutes theith feature for eachi such that 1≤ i ≤ |B| and |B| is the number of
transformations inB. In order to map featurei to transformationj, the transformations inB are
ordered according to their overall contribution towards approximating the data sets within a training
set, as determined during the training phase. (The training phase, discussed next, computes the
overall contribution of each transformation,cj, and orders the transformations according to these
values, from highest to lowest.)A1 is equal toφj wherej ∈ B such that transformationj contributes
the most (i.e., has the largestcj value) towards approximating the data sets within a training set.
A2 is equal toφj wherej ∈ B such that transformationj contributes the second most (i.e., has the
second largestcj value) towards approximating the data sets within a training set. And so on. The
feature vector contains a total of|B| features. See Appendix A for a concrete example. Applying
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Figure 4.3 A subset of the basis waveforms used by the wavelet transforma-
tion derived from the Daubechies 4-coefficient mother wavelet. The basis wave-
forms are ordered according to their degree of localization and indexed by j where
j = {0, 1, 2, . . . , n} and n is the length of the data set. The basis waveforms with j
equal to 1, 3, 6, 10, 25, and 33 are shown. Notice that as j increases, the basis
waveforms become more localized.
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|B| = 1 E = 4501 |B| = 5 E = 1732

|B| = 10 E = 1150 |B| = 13 E = 676

|B| = 17 E = 326 |B| = 20 E = 217

Figure 4.4 The wavelet transformation applied to the same data set for various
sizes ofB and a constant ordering of the transformations applied to the Daubechies
4-coefficient mother wavelet. Each graph shows the input time-series data plotted
with hollow bullets overlaid with a solid line representing the approximation gener-
ated by the wavelet transformation with the |B| transformations that contribute most
to the approximation. The resulting sum of squared error E is indicated. Notice
that the approximation better represents the data as the number of transformations
in B increases, resulting in a concomitant decrease in the sum of squared error E
that diminishes as |B| increases.
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the wavelet transformation to a data set of lengthn and assembling the extracted features has a
computational complexity ofO(n logn).

The training phase for the wavelet transformation feature extractor comprises both a data
preparation and a model selection component applied to a training set. The wavelet transformation
by Press [71] requires that the time-series data set has a length equal to a power of two. The data
preparation component, therefore, must establish a uniform length equal to a power of two for all
the data sets to be analyzed. This can be accomplished by selecting either the shortest or the longest
data set within the training set: if the shortest data set is selected, then the length is fixed at the
power of two less than or equal to the selected data set; if the longest data set is selected, then the
length is fixed at the power of two greater than or equal to the longest data set. Once established,
each data set can be made to conform to the fixed length either by truncation or extension.

The model selection component of the training phase must assess the tradeoff between the
number of transformations contained inB and the resulting sum of squared errorE. Before such
an analysis can be performed, the order in which the transformations will be added toB must be
established. For each size ofB, the particular transformations included will be determined by the
ordering, thereby guaranteeing that the same set of transformations is used to approximate each
data set and, more importantly, ensuring that the features extracted from each data set measure the
same characteristics. The transformations are ranked according to their overall contribution to the
approximation, from most to least, and are added toB in this order. As each transformation is
added toB, the sum of squared errorE decreases, but the magnitude of the decrease diminishes
with each subsequent transformation. Figure 4.4 illustrates the approximation generated by the
wavelet transformation for various sizes ofB and a constant ordering of the transformations applied
to the Daubechies 4-coefficient mother wavelet. Notice that the approximation better represents
the data as the size ofB increases, resulting in a concomitant decrease in the sum of squared error
E. Moreover, the decrease in the sum of squared error diminishes as the size ofB increases.

The contribution of transformationj is equal to the weight assigned to the basis waveformψj.
Let cij be the contribution of transformationj towards the approximation of data seti. The value
of cij is computed as

cij = φij

whereφij is the weight associated with the basis waveformψj as computed by the wavelet transfor-
mation applied to data seti in the training set. Letcj be the overall contribution of transformation
j for the entire training set. The value ofcj is computed as

cj =
∑
i

cij

wherei is a data set in the training set. Thecj values are ordered by magnitude, from largest to
smallest. Transformations are added toB according to the orderedcj values: the transformation
j with the largestcj value is added first, the transformationj with the second largestcj value
is added second, and so on until the required number of transformations have been added toB.
Once the transformations have been ordered, the model selection component of the training phase
can determine an optimal number of transformations forB that minimizes a weighted sum of
the number of transformations|B| and the sum of squared errorE. A procedure similar to that
used in the training phase for the structure detectors (described in Section 3.4) can be employed:
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(1) compute the sum of squared error for each approximation generated with an incremental
number of transformations inB; (2) order the sum of squared error values according to the number
of transformations contained inB; (3) apply the straight structure detector to approximate the
sequence of sum of squared error values with two straight structures; and (4) identify the optimal
number of transformations forB to be the point where the two extracted straight structures meet.

The outcome of the training phase is the fixed data length and the subset of transformationsB
to use in approximating the data sets. The subset of transformationsB is determined by the optimal
number of transformations and the ordering established by thecj values—e.g., if the optimal
number of transformations is five, then the subset of transformations to use in approximating the
data sets contains the five transformations with the largestcj values. The computational complexity
of the training phase isO(n2 + rn logn) when applied to a training set containingr data sets where
n is the maximum length of the data sets within the training set.

4.2.4. Dissimilarity to Structure Detectors

Each of the three statistical feature extractors—identity, Fourier, and wavelet transformations—
generates features from a time-series data set using a methodology that differs from the others in
terms of the basis used, the constraint placed on the length of the data set, the number of features
extracted, and the computational complexity. The training phase for each statistical feature extractor
must comprise both a data preparation and a model selection component that are appropriate for
the associated feature extractor, thereby resulting in training phases that differ from one another in
terms of their functionality and computational complexity. Each of the statistical feature extractors
also differs from the structure detectors in terms of these same characteristics.

The structure detectors use a set of generally-useful morphologies as a basis for generating an
approximation to a time-series data set (as discussed in Chapter 3). Given this basis, the structure
detectors approximate a time series with a homogeneous sequence of structures (i.e., the same
morphology type is used to approximate each subregion) as

Ŷ (t) = g(Y (t))

and with a composite, or heterogeneous, sequence of structures (i.e., the morphology type used to
approximate each subregion varies among the subregions) as

Ŷ (t) = h(Y (t))

where the functionsg andh are defined in Section 3.4. The sum of squared errorE depends on the
number of subregionsp used in the approximation: as the number of subregions increases, the sum
of squared errorE decreases. The features generated by the structure detectors for classification
include, for each subregion, the morphology type used to approximate the subregion, the values of
the free parameters of the structure fitted to the subregion, the value oft at the onset of the subregion,
the value oft at the offset of the subregion, and the length of the subregion. Additionally, the
differences between the lastY (t) value of a subregion and the firstY (t) value of the next subregion
for all consecutive pairs of subregions are also used as features. The features extracted from a data
set can be arranged into a feature vector having the form

A1 B1 A2 B2 · · · Ap−1 Bp−1 Ap
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whereAi comprises the features extracted from theith subregion andBi is the difference between
the lastY (t) value of subregioni and the firstY (t) value of subregioni+ 1. The extracted features
in Ai have the form

Ci Di Ei Fi Gi

whereCi is the type of morphology fitted to subregioni, Di comprises the free parameters of the
structure fitted to subregioni, Ei is the value oft at the onset of subregioni, Fi is the value oft at
the offset of subregioni, andGi is the length of subregioni. The extracted features inDi have the
form

Hi Ii Ji Ki LiMi Ni Oi Pi Qi Ri Si Ti Ui Vi

whereHi is equal to the free parametera of the constant structure type fitted to subregioni; Ii
andJi are equal to the free parametersa andb of the straight structure type fitted to subregioni;
Ki, Li, andMi are equal to the free parametersa, b, andc of the exponential structure fitted to
subregioni; Ni, Oi, andPi are equal to the free parametersa, b, andc of the sinusoidal structure
fitted to subregioni; Qi, Ri, andSi are equal to the free parametersa, b, andc of the triangular
structure fitted to subregioni; andTi, Ui, andVi are equal to the free parametersa, b, andc of the
trapezoidal structure fitted to subregioni. Even though only one morphology type is ever used to
approximate a subregion, it is necessary to include a placeholder in the feature vector for each free
parameter for each possible structure to ensure that thekth feature always has the same meaning
(i.e., represents the same characteristic of the data). Without placeholders, thekth feature might
represent the free parametera for a constant structure in one feature vector, and represent the free
parameterb for a straight structure in another. Features for structures not fitted to subregioni are
set to zero. The consequence of these placeholders is an excessively long feature vector: using
the structure detectors to approximate a data set usingp subregions results in a feature vector with
20p − 1 features. See Appendix A for a concrete example. Applying the structure detectors to
a data set of lengthn and assembling the extracted features has a computational complexity of
O(n3).

Table 4.1 summarizes the characteristics of the methodologies used by the statistical feature
extractors and the structure detectors to extract features from a time-series data set. The identity
transformation can be used to extract elementary features from a time series and, consequently, is
simple to apply and has a correspondingly small computational complexity. However, the features
extracted by the identity transformation ignore abstract behavior that manifests across consecutive
data points in a time series. Higher-order features are derived from multiple elementary features
and, as such, capture behavior that is not explicitly present in the raw data. Both the Fourier and
wavelet transformationsextract features which capture such behavior, but each uses a different basis
for approximation. The basis waveforms used by the Fourier transformation comprise sine and
cosine functions that span the time series, making the technique most effective for extracting global
features and least effective for extracting local features that manifest in contiguous subsets of the
data. The wavelet transformation employs basis waveforms generated by scaling and translating
a mother wavelet, thereby enabling the technique to extract features that are both global and local
within a time series. The basis waveforms, however, are derived from a single morphology as
defined by the mother wavelet. The structure detectors differ from the statistical feature extractors
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Identity Fourier Wavelet Structure
Transformation Transformation Transformation Detectors

Basis for unit vectors sine and cosine transformations of generally-useful
Approximation waveforms a mother wavelet morphologies

Data Length none power of 2 power of 2 none
Constraint

Number of
Features n 2 ∗ |B| |B| 20p− 1

Extracted

Computational O(n) O(n logn) O(n logn) O(n3)
Complexity

Main simple extracts global extracts both global basis comprises
Strength features and local features various morphologies

Main ignores higher- ignores local basis derived from computational
Weakness order features features a single morphology complexity

Table 4.1 A summary of the characteristics of the methodologies used by the
statistical feature extractors and the structure detectors to extract features from a
time-series data set of length n. For the Fourier and wavelet transformations, |B|
refers to the number of basis waveforms allowed to contribute to the approxima-
tion. For the structure detectors, p refers to the number of subregions used in the
approximation.

in that the basis comprises various morphologies, but suffers from a computational complexity that
exceeds that of the other techniques.

The training phase for the structure detectors comprises both a data preparation and a model
selection component applied to a training set. Since the structure detectors can analyze data of any
length, the data preparation component performs no function. The model selection component of
the training phase must assess the tradeoff between the number of subregionsp and the resulting
sum of squared errorE. The procedure for determining an optimal number of subregionsp is
discussed in Section 3.4. The outcome of the training phase is the number of subregionsp to use in
approximating the data sets. The computational complexity of the training phase isO(rn3) when
applied to a training set containingr data sets wheren is the maximum length of the data sets
within the training set.

Table 4.2 summarizes the characteristics of the training phase associated with each of the
statistical feature extractors and the structure detectors applied to a training set containingr data
sets with maximum lengthn. The outcome of the training phase establishes a fixed number of
features to be extracted and depends on the associated feature extraction methodology: a uniform
data lengthn′ for the identity, Fourier, and wavelet transformations; a subset of basis waveforms
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Identity Fourier Wavelet Structure
Transformation Transformation Transformation Detectors

Data establish uniform establish uniform establish uniform none
Preparation data length data length equal data length equal

to a power of 2 to a power of 2

Model none optimize number optimize number optimize number
Selection of basis functions of basis functions of subregions

versus error versus error versus error

Computational O(rn) O(n2 + rn logn) O(n2 + rn logn) O(rn3)
Complexity

Outcome n′ n′ andB n′ andB p

Table 4.2 A summary of the characteristics of the training phase associated with
each of the statistical feature extractors and the structure detectors applied to
a training set containing r data sets with maximum length n. The outcome of
the training phase depends on the associated feature extraction methodology: a
uniform data length n′ for the identity, Fourier, and wavelet transformations; a subset
of basis waveforms B for the Fourier and wavelet transformations; and a number
of subregions p for the structure detectors.

B for the Fourier and wavelet transformations; and a number of subregionsp for the structure
detectors. The value ofn′ determines the length to which each data set will either be truncated
or extended before analysis by the identity, Fourier, or wavelet transformations and, therefore,
becomes the value ofn for the statistical feature extractors in Table 4.1.

Each of the feature extraction techniques—the three statistical feature extractors and the struc-
ture detectors—employs a different methodology for extracting features from a time-series data
set. A separate training phase associated with each feature extractor determines a fixed number of
features to extract based on a training set. A trained feature extractor, therefore, can be used to
extract the same number of features from each data set under analysis, generating a fixed-length
feature vector representing each data set. A statistical classifier can be used to discriminate among
data sets having unique group affiliations based upon their associated fixed-length feature vectors,
resulting in a classification accuracy that details the number of data sets correctly classified. The
specific features used for discrimination directly influence the classification accuracy: features
which truly discriminate among groups will increase accuracy, while the lack of such features
will decrease accuracy. Since the dissimilarities among the feature extraction methodologies will
cause a different set of features to be extracted by each feature extractor, the classification accuracy
achieved when using features extracted by the various methodologies will also differ. In order to
evaluate the relative efficacy of each feature extractor, an experiment that compares the classifica-
tion accuracies achieved when using features extracted by the various methodologies under a range
of conditions can be conducted and used to assess the performance of the structure detectors versus
the benchmark comprising the statistical feature extractors.
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4.3. Experiment Design

The efficacy of the structure detectors for generalized feature extraction can be evaluated by com-
paring the relative classification accuracies achieved when using features extracted by the structure
detectors and the statistical methods under a range of conditions. An experiment to perform such
an evaluation requires a database containing a collection of labeled data sets so that the resulting
classification accuracy can be computed. For simplicity, the data sets are affiliated with one of two
groups: normal or abnormal. To evaluate each feature extractor, the experiment comprises several
steps: the training phase associated with the feature extractor is applied to a training set containing
a subset of data sets randomly selected from the database, the trained feature extractor is used to
generate features from each data set in the database, the features extracted from each data set are
assembled into a feature vector, a statistical classifier is used to discriminate among the normal
and abnormal data sets based upon their associated feature vectors, and the resulting classification
accuracy is reported. Such an experiment includes several factors other than the feature extraction
method that may influence the outcome of the training phase. The experimental factors and the
levels (or values) for each are as follows:

Feature extraction method. The feature extraction methods include the three statistical meth-
ods used as a baseline, the six structure-detectormethods applied individually (i.e., generating
a homogeneous approximation), and the structure-detector methods applied in combination
(i.e., generating a composite, or heterogeneous, approximation). The ten values for this
factor are identity, Fourier, wavelet, constant, straight, exponential, sinusoidal, triangular,
trapezoidal, and composite.

Training set size. A range of training set sizes is used to determine whether the number of
data sets used to train each feature extraction method influences the classification accuracy.
The four values for the training set sizer are 2, 4, 8, and 16. These values span the sizes
for the training set that are of greatest interest: 2 is the minimum number of data sets that
should be used for training, and 16 is the maximum number that can be processed in a
reasonable amount of time by the training phase associated with the structure detectors due
to its computational complexity.

Composition of training set. The distribution of the labels of the data sets in the training set
will affect the outcome of the training phase and, by extension, the resulting classification
accuracy. Given a database comprising data sets labeled as normal or abnormal, a training
set containing only data sets with normal labels will cause the outcome of the training phase
to prefer features that better approximate normal data sets, while a training set containing
data sets with an equal number of both normal and abnormal labels will cause the outcome of
the training phase to compromise and include features that are useful for approximating both
groups. To investigate the effect of training set composition on classification accuracy, the
training set is randomly selected from the database so as to contain data sets with a mixture
of normal and abnormal labels. The composition of the training setw refers to the number of
abnormal data sets in the training set. The five values ofw are 0, 1, 2, 4, and 8. These values
were selected in relation to the values of the training set sizer so as to span an interesting
range of label distributions. Assuming that the data sets labeled as normal manifest a lesser
degree of variability than those labeled as abnormal (since many types of abnormalities are
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included within the group), it would be more desirable to produce features which better
approximate the normal data sets. To prevent the abnormal data sets from constituting a
majority of the training set which would cause the training phase to prefer features which
better approximate abnormal data sets, the maximum allowable value ofw is 1

2r.

Data preprocessing. This experimental factor specifies the procedure for modifying the data
length during the data preprocessing component of the training phase. The data preprocessing
component establishes a fixed length for all data sets by selecting either the shortest or the
longest data set in the training set, and then using truncation or extension methods to modify
each data set to conform to the expected length. When a data set must be extended to meet
the required length, zero padding is used because of its simplicity and domain independence.
Assuming that selecting the shortest data set primarily requires truncation and selecting the
longest data set mainly requires zero padding, the two values of this factor are truncation and
padding.

These four factors result in an experiment with a 10× 4× 5× 2 factorial design. Subtracting the
unrealizable combinations (due to the restriction on the composition of the training set and the lack
of data preprocessing for the structure detectors) from the 400 possible combinations leaves 182
allowable combinations of experimental factors.

For each combination of experimental factors, the experiment proceeds as follows:

1. Construct the training set. Randomly selectr data sets from the database such thatw data
sets have labels of abnormal andr − w data sets have labels of normal.

2. Train the feature extraction method. Perform the training phase associated with the feature
extraction method (as discussed in Section 4.2). For the identity, Fourier, and wavelet
transformations, a uniform data length is established using the technique specified by the
value of the data preprocessing factor. For the wavelet transformation, the basis derived from
the Daubechies 4-coefficient mother wavelet is used.

3. Extract features from the data sets. Apply the trained feature extraction method to each data
set in the database as specified by the parameters determined by the outcome of the training
phase.

4. Assemble the features extracted from each data set into a feature vector. The form of the
feature vector for each feature extraction method is as discussed in Section 4.2. Each feature
vector has the same known group label as its associated data set.

5. Classify the collection of feature vectors. Use a statistical classifier to assign a group label
to each feature vector.

6. Evaluate the classification accuracy. Compare the assigned and known group labels for each
feature vector, and compute the overall classification accuracy across all feature vectors.

A flowchart of the experiment procedure is shown in Figure 4.5. The numbered activities in
the figure refer to the individual steps in the experiment (as described above). For a particular
combination of experimental factors, the end result of performing the experiment procedure is a
measure of the resulting classification accuracy.
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Figure 4.5 A flowchart of the experiment procedure. Referring to the numbered
activities in the figure, the experiment procedure comprises several steps: (1) a
training set is assembled, (2) the feature extraction method is trained, (3) features
are extracted as specified by the parameters determined by the outcome of the
training phase, (4) the features extracted from each data set are assembled into
a feature vector, (5) classification is performed on the feature vectors, and (6) the
classification accuracy is evaluated.
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Predicted
Known Normal Abnormal
Normal a b
Abnormal c d

Figure 4.6 A confusion matrix generated by CART reporting the classification
results. The confusion matrix is a two-by-two grid consisting of one column for
each of the known classes (i.e., normal and abnormal), and one row for each of
the predicted classes (i.e., normal and abnormal). The values a, b, c, and d are
the number of feature vectors—and, by extension, the number of data sets—falling
into each category. The value a is the number of data sets known to be normal
that were classified as normal. The value d is the number of data sets known to be
abnormal that were classified as abnormal.

4.3.1. Classification Accuracy

Since the purpose of the experiment is to assess the effect of the experimental factors on classifi-
cation accuracy as opposed to evaluating the efficacy of various classifiers using a particular set of
features, only one classifier is necessary for the experiment. The decision-tree classifier CART [13]
was selected for the experiment over other techniques (e.g., linear discriminant analysis) because
CART uses the available data judiciously, generates a classification tree that is easy to interpret
as decision rules, has a demonstrated resistance to the curse of dimensionality for regression [8]
(which should hold for classification as well), and makes no assumptions about the feature vectors
within each group (e.g., linear discriminant analysis discriminates best when the features vectors
within each group are normally distributed with the same covariance matrix). CART uses a se-
quence of univariate (i.e., one-feature) partitionings to subdivide the collection of feature vectors
into clusters such that all feature vectors within the same cluster are predicted to belong to the same
class (in this case, normal or abnormal). The default parameters were used to run CART (e.g., use
ten-fold cross-validation, split nodes based on the gini diversity index) for the experiment.

The classification results generated by CART are reported as a confusion matrix having the
form shown in Figure 4.6. The confusion matrix is a two-by-two grid consisting of one column for
each of the known classes (i.e., normal and abnormal), and one row for each of the predicted classes
(i.e., normal and abnormal). The valuesa, b, c, andd are the number of feature vectors—and,
by extension, the number of data sets—falling into each category. The valuea is the number of
data sets known to be normal that were classified as normal. The valued is the number of data
sets known to be abnormal that were classified as abnormal. The classification accuracy can be
summarized with a pair of percentages: the percent of data sets known to be normal that were
classified as normal (a

a+b
∗ 100), and the percent of data sets known to be abnormal that were

classified as abnormal (d
c+d
∗ 100).

To compensate for the effect on the classification accuracy due to the random selection of the
training set, twenty iterations of the experiment procedure are performed for each combination of
experimental factors—requiring a total of 182×20= 3640 experimental iterations per database—
and the mean and standard deviation of the percentage pairs over the twenty iterations are computed.
The overall classification accuracy for each combination of experimental factors is reported as
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Figure 4.7 The methodology used to compute the overall classification accuracy
for each combination of experimental factors. To compensate for the effect on the
classification accuracy due to the random selection of the training set, the exper-
iment procedure is repeated twenty times for each combination of experimental
factors. The mean and standard deviation of the percent of normal data sets cor-
rectly classified and the percent of abnormal data sets correctly classified represent
the overall classification accuracy.

two pairs of values: the mean and standard deviation of the percent of known normal data sets
classified as normal, and the mean and standard deviation of the percent of known abnormal data
sets classified as abnormal. Figure 4.7 sketches the methodology used to compute the overall
classification accuracy for each combination of experimental factors.

4.3.2. Databases

Two different domains serve as a source of time-series data sets for the experiment, namely semicon-
ductor microelectronics fabrication and electrocardiography. A collection of in-line process-control
measurements recorded from various sensors during the processing of silicon wafers for semicon-
ductor fabrication constitute the wafer database; each data set in the wafer database contains the
measurements recorded by one sensor during the processing of one wafer by one tool. The elec-
trocardiogram (ECG) database contains measurements of cardiac electrical activity as recorded
from electrodes at various locations on the body; each data set in the ECG database contains the
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Normal Abnormal
Data Sets Data Sets

Wafer Database 1067 127
ECG Database 133 67

Table 4.3 The number of normal and abnormal data sets contained in the wafer
and ECG databases. There are a total of 1194 data sets in the wafer database,
and a total of 200 data sets in the ECG database.

measurements recorded by one electrode during one heartbeat. The data sets contained in each
database were analyzed by appropriate domain experts, and a label of normal or abnormal was
assigned to each data set. Of the 1194 data sets in the wafer database, 1067 data sets were identified
as normal and 127 data sets were identified as abnormal. The ECG database contains 200 data sets
where 133 were identified as normal and 67 were identified as abnormal. Table 4.3 summarizes
the contents of both databases.

Semiconductor microelectronicsare manufactured using a complex process during which layers
of various materials are applied to a silicon wafer and selectively removed to define circuit elements
on the wafer [2][80]. This procedure is called etching. The most common method used for etching
starts by applying a mask using photolithography: a photosensitive resin, called positive photoresist,
is coated onto the surface of the wafer and selectively exposed to ultraviolet (UV) light under a
mask detailing the desired circuit pattern. A chemical solution designed to remove the portion
of the photoresist exposed to the UV light is then applied, leaving behind only the photoresist
that protects the areas needed to construct the circuit elements (i.e., the non-circuit areas are left
unprotected). After the photolithography process, the wafer is placed in a vacuum chamber and
exposed to a reactive plasma (i.e., an energized gas) designed to remove the regions of the wafer
which are unprotected by the photoresist (i.e., the non-circuit areas). When the unprotected areas
have been completely removed, the gasses in the plasma chamber change in stoichiometry (i.e.,
chemical properties and composition) because of a decrease in both the reaction byproducts and the
consumption of the reactant gasses. This change can be sensed by monitoring the light emission
from the plasma, acting as an indicator for terminating exposure of the wafer to the plasma. This
is commonly called the etch endpoint.

The process of manufacturing semiconductor microelectronics involves over 250 processing
steps, any of which can result in degraded performance and reliability, reduced yield, or even
scrappage of microelectronics if the manufacturing tools operate outside of allowable tolerances
[2]. Very complex semiconductor manufacturing tools may have up to 450 in-line sensors which
can be monitored during the etch process for quality control. Each tool has its own special set of
parameters which best reflect the state of the manufacturing process, the wafer, and the tool. In
the case of the tool used for this study, six parameters have been identified by domain experts as
being critical for monitoring purposes: radio frequency forward power, radio frequency reflected
power, chamber pressure, 405 nanometer (nm) emission, 520 nanometer (nm) emission, and direct
current bias. The first two parameters are measures of electrical power applied to the plasma, the
third parameter measures the pressure within the etch chamber, the fourth and fifth parameters
measure the intensity of two different wavelengths (i.e., colors) of light emitted by the plasma, and
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Figure 4.8 Examples of normal and abnormal data sets for the 405 nm parameter
in the wafer database. The waveforms labeled with “N” are graphical representa-
tions of five normal data sets, and the waveforms labeled with “A” are graphical
representations of five abnormal data sets. These data sets were recorded simul-
taneously with those shown in Figure 4.9.
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Figure 4.9 Examples of normal and abnormal data sets for the 520 nm parameter
in the wafer database. The waveforms labeled with “N” are graphical representa-
tions of five normal data sets, and the waveforms labeled with “A” are graphical
representations of five abnormal data sets. These data sets were recorded simul-
taneously with those shown in Figure 4.8.
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Figure 4.10 Examples of normal and abnormal data sets for the lead 0 parameter
in the ECG database. The graphical representation of five normal and five abnormal
data sets are shown concatenated into one continuous waveform. A label appears
at the onset of each data set within the waveform: an “N” indicates the start of a
normal data set, and an “A” indicates the start of an abnormal data set. These data
sets were recorded simultaneously with those shown in Figure 4.11.
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Figure 4.11 Examples of normal and abnormal data sets for the lead 1 parameter
in the ECG database. The graphical representation of five normal and five abnormal
data sets are shown concatenated into one continuous waveform. A label appears
at the onset of each data set within the waveform: an “N” indicates the start of a
normal data set, and an “A” indicates the start of an abnormal data set. These data
sets were recorded simultaneously with those shown in Figure 4.10.
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the sixth parameter measures the direct current electrical potential difference within the tool. Each
data set contains the measurement values from one sensor for one wafer. Previous experiments
[22] have shown that the most accurate classification of wafer data sets can be accomplished using
the 405 nm and 520 nm parameters. Figures 4.8 and 4.9 show graphical representations of normal
and abnormal data sets for the 405 nm and 520 nm parameters, respectively, which were collected
simultaneously and are representative of the same sequence of wafers. The collection of data sets
for each of these two parameters constitute two individual subsets from the wafer database, and
will be used separately as sources of data for the experiment.

Electrocardiography [17][36] is a diagnostic procedure that monitors the electrical activity
of the heart with the intention of diagnosing cardiac pathologies. An electrocardiogram (ECG) is
generated by placing one or more electrodes at standardized locations on the body, and recording the
electrical potential difference observed at that site during each heartbeat; a complete ECG utilizes
twelve electrodes, but fewer are often used for simpler diagnostic procedures. Electrocardiographic
monitoring is often performed in a resting state, but can also be performed under ambulatory
conditions using a special recording device called a Holter monitor [44][50]. Long-term monitoring
of cardiac behavior is possible with a Holter ECG recorder, but at the expense of data that is noisier
than that which can be collected under resting conditions. The ECG database for the experiment
was drawn from the Supraventricular Arrhythmia Database (SVDB) [40] which is available on
the MIT-BIH Arrhythmia Database CD-ROM [64] and the affiliated on-line repository PhysioNet
[34]. The SVDB contains 78 Holter ECG recordings where each electrocardiogram was recorded
from a single patient for a duration of approximately thirty minutes. One ECG was selected at
random and the portions of the recording representative of heartbeats with the most prevalent
abnormality—supraventricular premature beat—were extracted along with a random sample of the
portions of the recording representative of normal heartbeats. Two leads, called lead 0 and lead 1,
were used to record this ECG, and each data set contains the measurement values from one lead
for one heartbeat.2 Figures 4.10 and 4.11 show graphical representations of normal and abnormal
data sets for the lead 0 and lead 1 parameters, respectively, which were collected simultaneously
and are representative of the same sequence of heartbeats. The collection of data sets for each of
these two parameters constitute two individual subsets from the ECG database, and will be used
separately as sources of data for the experiment.

Table 4.4 lists some elementary characteristics of the normal and abnormal data sets contained
both in the wafer database for the 405 nm and 520 nm parameters and in the ECG database for the
lead 0 and lead 1 parameters. The statistics describe the ranges of measurement values contained
in the data sets as well as the lengths of the data sets. Several observations are apparent from
the table: (1) the wafer data sets tend to contain longer data sets; (2) the wafer data sets contain
measurement values with a much larger range than those in the ECG data sets; (3) there is only a
small difference in the ranges of measurement values between the lead 0 and lead 1 parameters,
but the corresponding difference in the wafer database is very large; (4) there is little difference

2The correspondence between lead 0 and lead 1 in the database and the standardized leads used in electrocardiography
is not recorded in the documentation for the Supraventricular Arrhythmia Database. However, the laboratory in which
these data were collected regularly used a modified lead II (which is roughly parallel to limb lead II but with the
electrodes on the chest) to record lead 0 in the database, and chest leadV1 to record lead 1 in the database [63]. So, it
would not be unreasonable to assume that this correspondence holds for the data used in this research. See Constant
[17] or Goldman [36] for additional information about the standardized leads used in electrocardiography.
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Range Length
Wafer Database Min Max Mean Min Max Mean

405 nm Normal 2045 2049 2046 114 152 136
Abnormal 2045 2047 2046 104 198 144

520 nm Normal 755 1185 1011 114 152 136
Abnormal 778 1408 1069 104 198 144

Range Length
ECG Database Min Max Mean Min Max Mean

Lead 0 Normal 360 720 490 61 116 94
Abnormal 302 719 548 39 152 81

Lead 1 Normal 392 676 542 61 116 94
Abnormal 112 692 462 39 152 81

Table 4.4 Characteristics of the normal and abnormal data sets for each param-
eter in the wafer and ECG databases. The minimum, maximum, and mean range
of the measurement values contained in the data sets are given. The minimum,
maximum, and mean length of the data sets are also given.

in terms of lengths between the lead 0 and lead 1 parameters as well as between the 405 nm and
520 nm parameters; and (5) comparing the normal and abnormal data sets within each parameter
suggests that the differences in lengths may assist in discrimination, but the differences in ranges
is overall less useful.

Besides being generated by completely different physical processes, the characteristics listed
in Table 4.4 suggest that the wafer and ECG databases contain data that are dissimilar. However,
these statistics do not address differences in the structural composition of the data. To evaluate the
structural differences between each pair of parameters, an approach based on chain codes [28][49]
can be employed. Chain codes were originally introduced by Freeman [28] as a methodology for
encoding arbitrary curves as a sequence of symbols: a grid is used to digitize a continuous curve
into a series of discrete points, and a label is assigned to each pair of successive points based on the
spatial relationship between them. Figure 4.12 shows an example application of chain codes using
a typical grid and labeling scheme that differentiates among eight spatial relationships between
successive digitized points.

A modified version of Freeman’s chain codes can be used to analyze the differences in the
structural composition between each pair of parameters in the wafer and ECG databases. The
modified chain code methodology is applied to an individual data set as follows: compute the
magnitude of the slope between each consecutive pair of values, normalize the slopes so that
the values range between zero and one, assign a label to each slope based upon its normalized
value, and total the number of normalized slope values assigned with each unique label. Since
the normalized slope values can vary arbitrarily between zero and one, the encoding scheme must
assign symbols based on continuous ranges of normalized slope values. The strategy for assigning
labels to slopes for the modified chain code methodology is shown in Table 4.5. A log-like scale
was used to assign labels so as to elucidate the distribution of slopes; uniform ranges would have
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Figure 4.12 An example application of chain codes. A typical encoding scheme is
shown on the left: each of the eight different spatial relationships between succes-
sive digitized points is assigned a unique symbol. This encoding scheme is applied
to the curve on the right: the continuous curve (plotted with a solid line) is digitized
(plotted with solid bullets connected by a dashed line), and each successive pair
of points is assigned a label according to the encoding scheme. The chain code
representation of this curve is the sequence 01011121212.

Label Assignment Rule
A slope ≤ 0.0001
B 0.0001< slope ≤ 0.0005
C 0.0005< slope ≤ 0.0020
D 0.0020< slope ≤ 0.0085
E 0.0085< slope ≤ 0.0340
F 0.0340< slope ≤ 0.1365
G 0.1365< slope ≤ 0.5460
H 0.5460< slope ≤ 1.0000

Table 4.5 The encoding scheme used for the modified chain code methodology
to assign labels to slope values. Each label has an associated assignment rule
expressed as a range of values. A slope is assigned the label whose assignment
rule includes the normalized slope value.
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resulted in a similar outcome, with the exception that the smaller slopes with different labels under
the log-like scale would have all been assigned the same label. To compute the distribution of labels
for each parameter, apply the modified chain code methodology to each data set for the parameter,
add the total number of normalized slope values assigned with each unique label for all data sets,
and compute the percent of the total number of normalized slope values assigned with each unique
label. The distribution of the percent of normalized slope values across the labels indicates how
frequently and radically the measurement values change over time and, moreover, provides a basis
for comparing the structural composition among parameters.

Figure 4.13 plots the distribution for each parameter in the two databases: the percent of
slope values assigned with each of the eight labels is shown, where the shaded bars represent the
distribution for the parameters in the wafer database and the patterned bars represent the distribution
for the parameters in the ECG database. The distributions for the two parameters from the wafer
database are skewed to the left, indicating that a majority of the slope values are small. Therefore, it
can be concluded that the wafer database comprises data sets containing values that do not change
often or abruptly over time. The distributions for the two parameters from the ECG database are
skewed to the right, indicating that a majority of the slope values are large. Therefore, it can be
concluded that the ECG database comprises data sets containing values that consistently undergo
large shifts over time. This disparity between the distributions demonstrates that the two databases
contain data that are markedly different from each other.

4.3.3. Computational Effort

There are 182 combinations of experimental factors, each of which is repeated 20 times, resulting
in a total of 3640 iterations of the experiment procedure per parameter. For the four parameters
contained in the wafer and ECG databases, a grand total of 14,560 iterations of the experiment
procedure are necessary. It is possible, however, to reduce the amount of computational effort
required to perform the experiment. Such a reduction can be achieved because the steps in the
experiment after training the feature extractor are deterministic and, therefore, the classification
accuracies for two experiment iterations must necessarily be the same if the outcomes of their
training phases are identical, the same feature extractor is used, and the same data preprocessing
technique is employed. Consequently, all iterations of the experiment procedure for a specific
parameter having the same values for the feature extractor method and data preprocessing factors
can be clustered according to the outcome of the training phase. Once clustered, only one iteration
from each cluster is pursued to completion, and the resulting classification accuracy is transferred
to the other iterations of the experiment procedure within the cluster. Using this approach, all
iterations of the experiment procedure for a parameter must be performed at least through the
feature extractor training, but only one iteration of the experiment procedure per cluster needs to
be completed.

The experiment was performed using this clustering scheme. Table 4.6 details the number of
iterations of the experiment procedure that were completed under the clustering scheme broken
down by parameter and feature extractor. The total number of iterations per parameter that would
have been completed without clustering is 560 for each statistical feature extractor and 280 for
each structure detector. Notice that the number of iterations completed is very low for the structure
detectors and consistently high for the wavelet transformation. This disparity is due to the fact
that the outcomes of their associated training phases differ in the degree to which they enable
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Figure 4.13 The distribution of the percent of normalized slope values across the
labels for each of the four parameters contained in the wafer and ECG databases.
The distributions for the wafer database parameters are represented by the shaded
bars: the lightly-shaded bar shows the distribution for the 405 nm parameter, and
the darkly-shaded bar shows the distribution for the 520 nm parameter. The distri-
butions for the ECG database parameters are represented by the patterned bars:
the diagonally-filled bar shows the distributions for the lead 0 parameter, and the
crosshatch-filled bar shows the distributions for the lead 1 parameter.
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405 nm 520 nm Lead 0 Lead 1
Identity 48 48 65 65
Fourier 28 29 208 83
Wavelet 464 405 303 288
Constant 2 2 4 5
Straight 2 2 4 3
Exponential 1 2 3 3
Sinusoidal 2 2 3 2
Triangular 2 2 4 2
Trapezoidal 1 2 4 2
Composite 1 1 4 2

Table 4.6 The number of iterations of the experiment procedure that were com-
pleted under the clustering scheme broken down by parameter and feature extrac-
tor. The total number of iterations per parameter that would have been completed
without clustering is 560 for each statistical feature extractor and 280 for each
structure detector.

clustering. The outcome of the training phase for the structure detectors consists solely of the
number of subregions. The value for the number of subregions varied little among the iterations,
thereby allowing for a high degree of clustering. The outcome of the training phase for the wavelet
transformation consists of a uniform data length and a subset of transformationsB. The subset
of transformationsB varied greatly among the iterations, thereby preventing a high degree of
clustering (since iterations can not be clustered if the contents ofB differs). Overall, only 2,103
of the possible 14,560 iterations of the experiment procedure were completed, thereby reducing
the computational effort necessary to perform the experiment by reducing the number of iterations
completed to about 14% of the total possible number of iterations.

4.4. Experiment Results

The experiment outlined in Section 4.3 was performed separately for each of the two parameters
in both the wafer and ECG databases. The experiment results for the wafer and ECG databases are
presented separately in Sections 4.4.1 and 4.4.2, respectively. A discussion of the combined results
appears in Section 4.5.

4.4.1. Wafer Database

Tables 4.7 and 4.9 report the classification accuracies for the normal and abnormal data sets,
respectively, of the 405 nm parameter using the statistical feature extractors and broken down by
combinations of the experimental factors. Tables 4.8 and 4.10 report the parallel results for the 520
nm parameter. The classification accuracy for each combination of experimental factors is reported
as the mean and standard deviation of the percents of the data sets correctly classified across twenty
iterations of the experiment procedure. Several trends are apparent:
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Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 99.7 (0.0) 99.6 (0.1) 99.9 (0.1)99.7 (0.0) 99.8 (0.7) 99.3 (0.9)
2 1 99.7 (0.0) 99.6 (0.1) 99.9 (0.0)99.7 (0.0) 100 (0.0) 99.5 (0.2)
4 0 99.7 (0.0) 99.6 (0.1) 99.9 (0.0)99.7 (0.0) 99.6 (1.1) 99.1 (1.1)
4 1 99.7 (0.0) 99.6 (0.1) 99.9 (0.0)99.7 (0.1) 99.7 (0.9) 99.2 (1.0)
4 2 99.7 (0.0) 99.6 (0.1) 99.9 (0.1)99.7 (0.1) 99.5 (1.1) 98.9 (1.3)
8 0 99.7 (0.0) 99.5 (0.0) 99.9 (0.0)99.7 (0.1) 99.0 (1.4) 98.7 (1.4)
8 1 99.7 (0.0) 99.5 (0.0) 99.9 (0.0)99.7 (0.1) 99.0 (1.4) 98.8 (1.3)
8 2 99.7 (0.0) 99.5 (0.0) 99.9 (0.0)99.7 (0.1) 99.1 (1.4) 99.2 (0.8)
8 4 99.7 (0.0) 99.6 (0.2) 99.9 (0.0)99.7 (0.1) 99.6 (0.9) 99.2 (0.8)
16 0 99.7 (0.0) 99.6 (0.0) 99.9 (0.0)99.6 (0.1) 98.3 (1.5) 97.5 (1.5)
16 1 99.7 (0.0) 99.6 (0.0) 99.9 (0.0)99.6 (0.1) 98.0 (1.4) 97.4 (1.5)
16 2 99.7 (0.0) 99.5 (0.0) 99.9 (0.0)99.6 (0.1) 98.1 (1.4) 97.2 (1.5)
16 4 99.7 (0.0) 99.5 (0.0) 99.9 (0.0)99.6 (0.1) 98.1 (1.4) 97.5 (1.4)
16 8 99.7 (0.0) 99.6 (0.1) 99.9 (0.0)99.6 (0.1) 99.0 (1.4) 98.7 (1.3)

Table 4.7 Normal, 405 nm, statistical extractors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.

Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 99.1 (0.2) 99.1 (0.2) 99.6 (0.3)98.9 (0.3) 98.5 (0.3) 98.6 (0.4)
2 1 99.1 (0.1) 99.2 (0.3) 99.4 (0.5)99.0 (0.2) 98.2 (0.2) 98.6 (0.1)
4 0 99.1 (0.1) 99.1 (0.1) 99.7 (0.3)98.8 (0.3) 98.6 (0.4) 98.6 (0.4)
4 1 99.0 (0.1) 99.1 (0.1) 99.7 (0.2)98.7 (0.4) 98.5 (0.5) 98.7 (0.5)
4 2 99.0 (0.1) 99.1 (0.1) 99.6 (0.3)98.8 (0.5) 98.6 (0.6) 98.5 (0.2)
8 0 99.1 (0.1) 99.1 (0.1) 99.7 (0.2)98.6 (0.2) 98.9 (0.6) 98.5 (0.4)
8 1 99.0 (0.1) 99.1 (0.1) 99.7 (0.3)98.6 (0.2) 98.9 (0.7) 98.5 (0.3)
8 2 99.0 (0.1) 99.1 (0.1) 99.7 (0.3)98.6 (0.4) 98.8 (0.6) 98.7 (0.7)
8 4 99.0 (0.0) 99.1 (0.1) 99.7 (0.1)98.6 (0.4) 98.6 (0.6) 99.4 (0.8)
16 0 99.0 (0.1) 99.1 (0.1) 99.8 (0.0)98.6 (0.2) 99.3 (0.6) 98.3 (0.2)
16 1 99.0 (0.1) 99.1 (0.1) 99.8 (0.2)98.6 (0.2) 99.4 (0.6) 98.3 (0.2)
16 2 99.0 (0.1) 99.1 (0.1) 99.8 (0.0)98.6 (0.3) 99.4 (0.6) 98.3 (0.3)
16 4 99.0 (0.0) 99.1 (0.2) 99.8 (0.0)98.5 (0.3) 99.4 (0.6) 98.3 (0.3)
16 8 99.0 (0.0) 99.1 (0.1) 99.8 (0.1)98.4 (0.4) 98.9 (0.8) 98.4 (0.2)

Table 4.8 Normal, 520 nm, statistical extractors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.
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Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 90.6 (0.0) 77.5 (5.6) 84.1 (1.7)90.6 (0.3) 72.7 (16.1) 87.0 (3.0)
2 1 90.6 (0.0) 76.7 (6.2) 83.7 (0.7)90.6 (0.0) 78.0 (0.0) 88.7 (2.5)
4 0 90.6 (0.0) 78.6 (5.5) 83.2 (0.8)90.6 (0.3) 70.9 (17.3) 86.1 (4.3)
4 1 90.6 (0.0) 77.3 (6.1) 83.5 (1.2)90.2 (1.6) 69.3 (21.8) 86.8 (5.2)
4 2 90.6 (0.0) 78.1 (5.9) 83.7 (1.2)89.8 (2.2) 68.3 (19.9) 87.9 (4.0)
8 0 90.6 (0.0) 80.0 (4.6) 82.8 (0.5)90.2 (1.4) 61.2 (23.5) 76.4 (17.3)
8 1 90.6 (0.0) 80.0 (4.6) 83.0 (0.6)90.2 (1.4) 61.2 (23.5) 76.5 (18.1)
8 2 90.6 (0.0) 81.9 (0.0) 83.0 (0.6)89.8 (2.2) 63.8 (22.2) 72.9 (23.1)
8 4 90.6 (0.0) 79.4 (5.2) 83.4 (0.8)89.9 (2.1) 66.7 (23.8) 83.3 (14.7)
16 0 90.6 (0.0) 79.2 (5.1) 82.8 (0.4)90.0 (1.7) 39.7 (26.1) 74.0 (12.2)
16 1 90.6 (0.0) 79.4 (5.2) 82.8 (0.4)90.0 (1.7) 41.0 (22.9) 74.8 (12.2)
16 2 90.6 (0.0) 81.3 (2.8) 82.8 (0.5)89.7 (2.1) 39.4 (24.6) 77.7 (5.7)
16 4 90.6 (0.0) 81.3 (2.8) 82.9 (0.6)89.6 (2.3) 39.4 (24.6) 73.5 (12.8)
16 8 90.6 (0.0) 81.3 (2.8) 83.3 (0.8)88.7 (3.0) 57.5 (26.5) 77.2 (18.0)

Table 4.9 Abnormal, 405 nm, statistical extractors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.

Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 77.1 (2.2) 76.9 (5.0) 73.9 (1.8)76.7 (4.2) 59.5 (12.9) 68.7 (18.9)
2 1 78.7 (1.6) 76.2 (5.1) 75.2 (3.6)76.9 (2.3) 68.2 (5.7) 72.6 (8.9)
4 0 77.7 (2.0) 77.0 (4.6) 73.9 (2.5)76.5 (4.7) 56.0 (15.4) 69.5 (19.8)
4 1 79.5 (1.4) 78.3 (3.6) 73.8 (2.7)75.9 (4.8) 58.2 (16.9) 65.6 (24.9)
4 2 79.7 (1.3) 78.9 (3.4) 74.0 (3.2)75.6 (4.4) 56.1 (21.7) 70.3 (11.6)
8 0 78.6 (1.6) 77.6 (4.2) 73.7 (2.6)74.0 (6.3) 46.1 (22.8) 66.8 (20.3)
8 1 79.5 (1.4) 78.2 (3.8) 73.8 (3.1)74.3 (6.3) 45.9 (23.0) 70.0 (13.1)
8 2 80.0 (1.0) 78.3 (3.8) 73.4 (2.6)75.5 (4.7) 48.5 (21.7) 55.2 (30.5)
8 4 80.2 (0.7) 79.5 (2.3) 73.6 (1.0)76.5 (4.1) 55.9 (19.4) 23.2 (33.2)
16 0 79.2 (1.5) 78.1 (3.8) 72.8 (1.0)69.3 (6.5) 28.5 (20.8) 61.3 (12.5)
16 1 79.8 (1.2) 78.7 (3.3) 73.2 (2.8)69.6 (6.4) 27.6 (21.1) 61.3 (12.5)
16 2 80.0 (1.0) 78.8 (3.3) 72.6 (1.0)69.5 (6.6) 26.4 (21.6) 61.5 (12.7)
16 4 80.3 (0.0) 78.5 (3.9) 72.8 (1.0)69.6 (6.5) 27.1 (21.4) 59.8 (10.7)
16 8 80.3 (0.0) 79.1 (3.3) 73.3 (0.9)73.7 (6.1) 45.8 (26.9) 65.0 (10.7)

Table 4.10 Abnormal, 520 nm, statistical extractors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.
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• The classification accuracies for the normal data sets of both parameters are uniformly around
99% regardless of the values of the experimental factors.

• When the experimental factors are held constant except for data preprocessing, the pairwise
differences are small between the classification accuracies when using padding versus trun-
cation for the normal data sets of each parameter. In most cases, the means are slightly higher
and the standard deviations are slightly lower when using padding.

• The classification accuracies for the abnormal data sets of each parameter vary with the
values of the feature extraction method and the data preprocessing experimental factors. The
training set size and the training set composition experimental factors have less of an effect
on the classification accuracies, with the notable exception of when the training set size is 16
and the Fourier transformation is used as the feature extraction method.

• When the experimental factors are held constant except for data preprocessing, the pairwise
relationships between the classification accuracies when using padding versus truncation
do not consistently recommend one technique over the other for the abnormal data sets of
each parameter, but the pairwise differences can be large in those instances where padding
outperforms truncation. Moreover, the standard deviations when using truncation are always
larger than the corresponding standard deviations when using padding.

The most interesting observation is that the identity transformation, which implements the simplest
feature extraction method, performs as well as or better than the other statistical techniques across
all combinations of the remaining experimental factors for the normal and abnormal data sets of
each parameter. This outcome suggests that there is little value in using a more complex statistical
technique to extract features from these data.

Table 4.11 reports the classification accuracies for the normal and abnormal data sets of the
405 nm and 520 nm parameters averaged across the various values of the training set size and
the training set composition experimental factors for the statistical feature extractors. For each
combination of the feature extraction method and the data preprocessing experimental factors, the
mean and standard deviation of the percents of the data sets correctly classified are reported. When
the experimental factors are held constant except for data preprocessing, the pairwise differences
between the classification accuracies when using padding versus truncation are all statistically
significant (based on a one-tailed t-test withp < .001). Since padding consistently results in a
superior classification accuracy, its use as a data preprocessing technique for these data is preferable
to truncation.

Tables 4.12 and 4.14 report the classification accuracies for the normal and abnormal data
sets, respectively, of the 405 nm parameter using the structure detectors and broken down by
combinations of the experimental factors. Tables 4.13 and 4.15 report the parallel results for the
520 nm parameter. The classification accuracy for each combination of experimental factors is
reported as the mean and standard deviation of the percents of the data sets correctly classified
across twenty iterations of the experiment procedure. Several trends are apparent:

• The classification accuracies are generally unaffected by the training set size and the training
set composition experimental factors for the normal and abnormal data sets of each parameter.
The standard deviations are most often zero.
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Normal Abnormal
405 nm Padding Truncation Padding Truncation
Identity 99.7 (0.0) 99.7 (0.1) 90.6 (0.0) 90.0 (1.8)
Fourier 99.6 (0.1) 99.1 (1.3) 79.4 (4.9) 59.1 (25.2)
Wavelet 99.9 (0.0) 98.6 (1.4) 83.2 (0.9) 80.2 (13.7)

Normal Abnormal
520 nm Padding Truncation Padding Truncation
Identity 99.0 (0.1) 98.7 (0.3) 79.3 (1.6) 73.8 (6.0)
Fourier 99.1 (0.1) 98.8 (0.7) 78.2 (3.9) 46.4 (23.7)
Wavelet 99.7 (0.3) 98.5 (0.5) 73.6 (2.4) 62.2 (21.7)

Table 4.11 Classification accuracies for the normal and abnormal data sets of the
405 nm and 520 nm parameters averaged across the various values of the training
set size and the training set composition experimental factors for the statistical
feature extractors. The means (and standard deviations) of the percents of the
data sets correctly classified are reported. When the experimental factors are
held constant except for data preprocessing, the pairwise differences between the
classification accuracies when using padding versus truncation are all statistically
significant (based on a one-tailed t-test with p < .001).

• For each combination of experimental factors, the classification accuracies for the normal data
sets of the 405 nm parameter are approximately equivalent to the corresponding classification
accuracies for the normal data sets of the 520 nm parameter.

• For each combination of experimental factors, the classification accuracies for the abnormal
data sets of the 405 nm parameter are superior to the corresponding classification accuracies
for the abnormal data sets of the 520 nm parameter, with the exception of the triangular
structure detector.

• For each combination of experimental factors, the classification accuracies for the normal
data sets of each parameter are superior to the corresponding classification accuracies for the
abnormal data sets.

Notice that the classification accuracies when using the composite structure detector, which com-
bines the heterogeneous structure detectors to extract features from a data set, are rarely better
than when using each heterogeneous structure detector individually (except for the normal data
sets of the 405 nm parameter). The underlying cause for this counterintuitive result is discussed in
Section 4.5.

The large number of standard deviations equal to zero indicates that the percent of the data sets
correctly classified is often the same across the twenty iterations of the experiment procedure for
each combination of experimental factors. Similar behavior can be observed in the classification
accuracies reported when the identity transformation is used as the feature extraction method in
Tables 4.7 and 4.9. The structure detectors and the identity transformation are prone to such
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r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
2 1 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.7 (0.1) 99.2 (0.2) 99.3 (0.0) 100 (0.0)
4 0 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.1) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
4 1 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.7 (0.1) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
4 2 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.1) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
8 0 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
8 1 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
8 2 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
8 4 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
16 0 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
16 1 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
16 2 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
16 4 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)
16 8 99.4 (0.0) 99.7 (0.0) 99.9 (0.0) 99.6 (0.0) 99.1 (0.0) 99.3 (0.0) 100 (0.0)

Table 4.12 Normal, 405 nm, structure detectors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.

r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 99.4 (0.0) 99.3 (0.2) 98.9 (0.1) 99.1 (0.0) 99.7 (0.2) 98.1 (0.0) 99.3 (0.0)
2 1 99.4 (0.0) 99.3 (0.2) 98.9 (0.2) 99.0 (0.1) 99.5 (0.4) 98.2 (0.3) 99.3 (0.0)
4 0 99.4 (0.0) 99.3 (0.0) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
4 1 99.4 (0.0) 99.4 (0.2) 98.9 (0.0) 99.0 (0.1) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
4 2 99.4 (0.0) 99.4 (0.3) 98.9 (0.0) 99.0 (0.1) 99.7 (0.2) 98.1 (0.0) 99.3 (0.0)
8 0 99.4 (0.0) 99.3 (0.0) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
8 1 99.4 (0.0) 99.3 (0.1) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
8 2 99.4 (0.0) 99.3 (0.2) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
8 4 99.4 (0.0) 99.4 (0.3) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
16 0 99.4 (0.0) 99.3 (0.0) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
16 1 99.4 (0.0) 99.3 (0.0) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
16 2 99.4 (0.0) 99.3 (0.0) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
16 4 99.4 (0.0) 99.3 (0.2) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)
16 8 99.4 (0.0) 99.4 (0.2) 98.9 (0.0) 99.1 (0.0) 99.7 (0.0) 98.1 (0.0) 99.3 (0.0)

Table 4.13 Normal, 520 nm, structure detectors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.
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r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
2 1 90.6 (1.6) 86.7 (2.0) 92.1 (0.0) 87.9 (1.2) 83.7 (5.9) 92.1 (0.0) 88.2 (0.0)
4 0 91.1 (0.9) 85.8 (0.0) 92.1 (0.0) 87.6 (0.7) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
4 1 90.9 (1.2) 85.8 (0.0) 92.1 (0.0) 87.7 (1.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
4 2 91.1 (0.9) 85.8 (0.0) 92.1 (0.0) 87.6 (0.7) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
8 0 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
8 1 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
8 2 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
8 4 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
16 0 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
16 1 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
16 2 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
16 4 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)
16 8 91.3 (0.0) 85.8 (0.0) 92.1 (0.0) 87.4 (0.0) 80.3 (0.0) 92.1 (0.0) 88.2 (0.0)

Table 4.14 Abnormal, 405 nm, structure detectors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.

r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 81.9 (0.0) 85.7 (0.2) 83.5 (0.4) 81.9 (0.0) 82.9 (1.1) 74.8 (0.0) 78.7 (0.0)
2 1 82.0 (0.2) 85.7 (0.3) 83.6 (0.5) 83.4 (3.8) 83.6 (1.9) 75.4 (1.7) 78.7 (0.0)
4 0 81.9 (0.0) 85.8 (0.0) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
4 1 81.9 (0.0) 85.6 (0.3) 83.5 (0.0) 82.9 (3.2) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
4 2 81.9 (0.0) 85.6 (0.4) 83.5 (0.0) 82.9 (3.2) 82.9 (1.1) 74.8 (0.0) 78.7 (0.0)
8 0 81.9 (0.0) 85.8 (0.0) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
8 1 81.9 (0.0) 85.8 (0.2) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
8 2 81.9 (0.0) 85.7 (0.3) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
8 4 81.9 (0.0) 85.6 (0.4) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
16 0 81.9 (0.0) 85.8 (0.0) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
16 1 81.9 (0.0) 85.8 (0.0) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
16 2 81.9 (0.0) 85.8 (0.0) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
16 4 81.9 (0.0) 85.7 (0.2) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)
16 8 81.9 (0.0) 85.6 (0.3) 83.5 (0.0) 81.9 (0.0) 82.7 (0.0) 74.8 (0.0) 78.7 (0.0)

Table 4.15 Abnormal, 520 nm, structure detectors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.
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Normal Abnormal
405 nm 520 nm 405 nm 520 nm

Constant 99.4 (0.0) 99.4 (0.0) 91.2 (0.7) 81.9 (0.1)
Straight 99.7 (0.0) 99.3 (0.2) 85.9 (0.6) 85.7 (0.3)
Exponential 99.9 (0.0) 98.9 (0.1) 92.1 (0.0) 83.5 (0.2)
Sinusoidal 99.6 (0.0) 99.1 (0.0) 87.5 (0.5) 82.1 (1.6)
Triangular 99.1 (0.1) 99.7 (0.1) 80.6 (1.8) 82.8 (0.7)
Trapezoidal 99.3 (0.0) 98.1 (0.1) 92.1 (0.0) 74.8 (0.5)
Composite 100 (0.0) 99.3 (0.0) 88.2 (0.0) 78.7 (0.0)

Table 4.16 Classification accuracies for the normal and abnormal data sets of the
405 nm and 520 nm parameters averaged across the various levels of the training
set size and the training set composition experimental factors for the structure
detectors. The means (and standard deviations) of the percents of the data sets
correctly classified are reported.

Normal Abnormal
405 nm 520 nm 405 nm 520 nm

Composite Triangular Exponential Straight
Exponential Constant Trapezoidal Exponential
Straight Composite Constant Triangular
Sinusoidal Straight Composite Sinusoidal
Constant Sinusoidal Sinusoidal Constant
Trapezoidal Exponential Straight Composite
Triangular Trapezoidal Triangular Trapezoidal

Table 4.17 The structure detectors ordered by classification accuracy for the nor-
mal and abnormal data sets of the 405 nm and 520 nm parameters. The structure
detectors are listed from most (top) to least (bottom) accurate.

results because each is associated with a training phase with an outcome comprising a single
numeric value, thus increasing the likelihood that separate training phases will produce the same
outcome. By comparison, the outcomes of the training phases associated with the Fourier and
wavelet transformations include a subset of basis waveforms that can vary widely among data sets,
thereby reducing the likelihood that separate training phases will produce the same outcome.

Table 4.16 reports the classification accuracies for the normal and abnormal data sets of the 405
nm and 520 nm parameters averaged across the various levels of the training set size and the training
set composition experimental factors for the structure detectors. Clearly, the structure detectors
classify the normal data sets more accurately than the abnormal data sets, regardless of parameter.
The classification accuracies of the abnormal data sets are slightly better for the 405 nm parameter
than for the 520 nm parameter. Table 4.17 lists the structure detectors sorted by the classification
accuracies for the normal and abnormal data sets of each parameter. The exponential structure
detector performs well for both the normal and abnormal data sets of the 405 nanometer parameter;
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Percent Normal Data Sets Correctly Classified
99.2 99.4 99.6 99.8 100.0

P
er

ce
n

t 
A

b
n

o
rm

al
 D

at
a 

S
et

s 
C

o
rr

ec
tl

y 
C

la
ss

if
ie

d

80

82

84

86

88

90

92

94

78
99.0

Identity

Fourier

Wavelet

Constant

Straight

Exponential

Sinusoidal

Triangular

Trapezoidal

Composite

Figure 4.14 The relative classification accuracies for all feature extraction meth-
ods for the 405 nm parameter. Each feature extraction method is plotted using the
mean percent of normal and abnormal data sets correctly classified as coordinates.
For the statistical feature extraction methods, the results with padding are used and
are enclosed with a dashed line.
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Figure 4.15 The relative classification accuracies for all feature extraction meth-
ods for the 520 nm parameter. Each feature extraction method is plotted using the
mean percent of normal and abnormal data sets correctly classified as coordinates.
For the statistical feature extraction methods, the results with padding are used and
are enclosed with a dashed line.



4.4. Experiment Results 83

the triangular structure detector performs best for both the normal and abnormal data sets of the
520 nanometer parameter. No one structure detector, however, stands out as being superior to the
others.

To compare the efficacy of the structure detectors with the statistical feature extraction methods,
the overall ability to correctly classify both the normal and abnormal data sets of each parameter
must be examined. Figures 4.14 and 4.15 illustrate the relative classification accuracies of the ten
feature extraction methods (note that the scales of the x and y axes on each graph are not uniform and
differ between the two graphs). Each feature extraction method is plotted using the mean percent
of normal and abnormal data sets correctly classified as coordinates: the results in Table 4.11 are
used to plot the statistical feature extraction methods (the results with padding are used), and the
results in Table 4.16 are used to plot the structure detectors. A dashed line encloses the three
statistical feature extraction methods; the structure detectors with better classification accuracies
are those which are plotted further towards the upper-right of the graph relative to the dashed area.
For the 405 nm parameter, the exponential structure detector is the best overall feature extraction
method; the triangular structure detector performs poorly. For the 520 nm parameter, the straight
structure detector is the best overall feature extraction method (the triangular structure detector
could be considered to be superior if correctly classifying normal data sets far outweighs correctly
classifying abnormal data sets); the triangular, sinusoidal, and constant structure detectors perform
acceptably well over the statistical feature extraction methods, while the trapezoidal structure
detector performs particularly poorly.

4.4.2. ECG Database

Tables 4.18 and 4.20 report the classification accuracies for the normal and abnormal data sets,
respectively, of the lead 0 parameter using the statistical feature extractors and broken down by
combinations of the experimental factors. Tables 4.19 and 4.21 report the parallel results for the
lead 1 parameter. The classification accuracy for each combination of experimental factors is
reported as the mean and standard deviation of the percents of the data sets correctly classified
across twenty iterations of the experiment procedure. While there are no trends which hold for all
three statistical feature extractors, observations about the classification accuracies can be made on
an individual basis:

• When the experimental factors are held constant except for data preprocessing, the classifi-
cation accuracies are higher when using truncation as compared to padding with the identity
and Fourier feature extraction methods for the normal data sets of each parameter. The classi-
fication accuracies are higher when using padding as compared to truncation with the wavelet
feature extraction method for the normal data sets of the lead 0 parameter; the classification
accuracies depend on the levels of the training set size and the training set composition factors
for the normal data sets of the lead 1 parameter.

• The classification accuracies with the identity and wavelet feature extraction methods are
generally better for normal data sets of the lead 1 parameter versus the lead 0 parameter
across all combinations of the remaining experimental factors. The classification accuracies
with the Fourier feature extraction method are better for the normal data sets of the lead 0
parameter versus the lead 1 parameter for all combinations of the remaining experimental
factors.
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Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 78.2 (0.0) 84.0 (3.9) 86.1 (2.4)78.2 (0.0) 91.8 (2.2) 85.5 (5.8)
2 1 78.2 (0.0) 84.3 (3.5) 88.4 (2.1)78.3 (2.2) 90.3 (2.1) 82.6 (6.8)
4 0 78.2 (0.0) 84.4 (2.8) 87.0 (3.3)78.2 (0.0) 91.7 (1.5) 82.0 (6.8)
4 1 78.2 (0.0) 83.7 (2.3) 86.7 (4.2)79.4 (3.5) 90.8 (1.8) 80.2 (5.9)
4 2 78.2 (0.0) 83.5 (3.0) 86.9 (4.2)80.3 (4.2) 90.6 (1.9) 83.3 (6.2)
8 0 78.2 (0.0) 84.7 (2.3) 86.8 (1.9)77.8 (0.7) 91.8 (1.9) 83.3 (5.7)
8 1 78.2 (0.0) 84.7 (1.4) 87.7 (1.8)80.1 (4.3) 90.8 (2.0) 81.5 (5.9)
8 2 78.2 (0.0) 84.1 (2.8) 87.3 (1.9)81.2 (5.1) 90.1 (1.9) 81.6 (4.8)
8 4 78.2 (0.0) 84.4 (2.4) 87.4 (2.0)82.0 (5.3) 89.1 (1.1) 83.8 (5.2)
16 0 78.2 (0.0) 85.2 (0.4) 86.4 (1.6)77.4 (0.8) 90.8 (2.1) 83.0 (5.6)
16 1 78.2 (0.0) 84.9 (2.5) 86.5 (1.7)80.7 (5.0) 89.6 (1.9) 85.1 (2.7)
16 2 78.2 (0.0) 85.2 (1.1) 87.6 (2.3)82.1 (5.3) 89.4 (1.7) 84.9 (2.8)
16 4 78.2 (0.0) 84.6 (0.8) 87.3 (1.9)82.6 (5.2) 89.2 (1.4) 84.3 (4.7)
16 8 78.2 (0.0) 84.1 (2.0) 87.0 (3.1)85.1 (4.3) 88.7 (0.0) 85.3 (3.7)

Table 4.18 Normal, lead 0, statistical extractors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.

Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 84.4 (0.8) 81.5 (1.3) 90.3 (2.4)85.0 (1.5) 86.7 (0.7) 93.2 (0.0)
2 1 84.3 (0.5) 81.7 (1.6) 88.6 (2.8)86.4 (2.3) 85.8 (1.9) 88.0 (7.8)
4 0 84.2 (0.0) 81.4 (1.2) 89.1 (3.4)86.1 (1.9) 86.5 (0.8) 93.2 (0.0)
4 1 84.2 (0.0) 82.2 (2.1) 88.6 (2.8)87.5 (1.7) 86.1 (2.0) 88.7 (8.0)
4 2 84.4 (0.8) 82.8 (2.5) 87.9 (3.3)86.9 (4.4) 85.3 (2.5) 86.8 (8.8)
8 0 84.2 (0.0) 80.8 (0.6) 88.2 (3.1)87.6 (1.8) 86.2 (2.0) 90.5 (6.6)
8 1 84.2 (0.0) 81.3 (1.5) 87.2 (2.5)87.2 (2.5) 85.0 (2.4) 86.9 (8.8)
8 2 84.2 (0.0) 81.7 (2.0) 87.0 (4.6)86.8 (3.3) 83.9 (2.7) 82.4 (9.1)
8 4 84.2 (0.0) 82.7 (2.6) 87.5 (3.5)85.1 (6.2) 82.9 (2.0) 77.8 (6.3)
16 0 84.2 (0.0) 80.9 (0.6) 90.1 (1.9)88.9 (0.8) 84.9 (2.5) 86.0 (9.1)
16 1 84.2 (0.0) 81.3 (1.3) 90.3 (1.7)85.8 (5.2) 82.9 (1.9) 78.8 (7.4)
16 2 84.2 (0.0) 81.5 (1.9) 90.3 (1.7)84.7 (6.1) 82.7 (1.9) 77.9 (6.6)
16 4 84.2 (0.0) 82.2 (2.7) 88.8 (2.4)84.1 (6.9) 82.7 (2.0) 77.9 (6.6)
16 8 84.2 (0.0) 83.2 (3.0) 87.8 (2.2)83.1 (7.3) 81.9 (0.2) 75.2 (0.0)

Table 4.19 Normal, lead 1, statistical extractors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.
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Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 76.1 (0.0) 74.9 (4.4) 72.2 (2.8)76.1 (0.0) 76.3 (1.0) 72.8 (6.2)
2 1 76.1 (0.0) 73.3 (5.2) 73.2 (3.2)76.0 (2.5) 77.7 (3.6) 75.7 (6.9)
4 0 76.1 (0.0) 74.0 (3.9) 71.3 (3.7)76.1 (0.0) 76.1 (0.0) 76.5 (7.2)
4 1 76.1 (0.0) 75.6 (5.7) 73.7 (3.4)74.8 (4.0) 78.0 (3.3) 78.4 (6.0)
4 2 76.1 (0.0) 76.6 (6.4) 73.5 (3.6)73.7 (4.8) 78.7 (3.7) 74.9 (6.1)
8 0 76.1 (0.0) 72.9 (2.8) 72.1 (2.8)76.5 (0.7) 77.2 (2.7) 74.3 (6.5)
8 1 76.1 (0.0) 74.3 (4.5) 72.3 (2.9)73.9 (4.9) 78.7 (3.7) 76.3 (6.7)
8 2 76.1 (0.0) 75.2 (4.1) 72.1 (3.4)72.5 (5.8) 80.6 (3.8) 75.8 (5.0)
8 4 76.1 (0.0) 74.6 (6.5) 71.6 (4.0)71.6 (6.1) 82.5 (2.7) 74.6 (4.2)
16 0 76.1 (0.0) 73.1 (0.0) 72.0 (2.8)76.9 (0.8) 79.1 (3.8) 74.9 (6.4)
16 1 76.1 (0.0) 74.1 (3.6) 71.6 (2.6)73.1 (5.6) 82.1 (3.1) 72.7 (2.4)
16 2 76.1 (0.0) 73.6 (4.1) 72.1 (3.5)71.5 (6.0) 82.5 (2.7) 73.1 (2.0)
16 4 76.1 (0.0) 74.5 (6.4) 71.6 (3.3)70.9 (5.9) 82.5 (2.7) 74.0 (3.7)
16 8 76.1 (0.0) 76.6 (7.3) 73.3 (4.1)68.1 (4.9) 83.6 (0.0) 73.0 (1.8)

Table 4.20 Abnormal, lead 0, statistical extractors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.

Padding Truncation
r w Identity Fourier Wavelet Identity Fourier Wavelet
2 0 60.9 (1.3) 72.2 (2.7) 62.9 (4.4)60.0 (2.5) 74.8 (1.5) 70.1 (0.0)
2 1 60.8 (1.7) 70.6 (3.6) 62.8 (3.7)58.8 (3.9) 74.0 (1.8) 71.3 (3.9)
4 0 61.2 (0.0) 71.9 (2.1) 63.9 (4.3)58.2 (3.1) 74.3 (1.1) 70.1 (0.0)
4 1 61.2 (0.0) 70.1 (4.7) 63.8 (4.0)57.2 (4.3) 73.7 (1.1) 71.6 (2.7)
4 2 60.9 (1.3) 68.9 (5.9) 65.1 (4.9)58.7 (7.7) 73.4 (1.2) 71.9 (3.4)
8 0 61.2 (0.0) 71.8 (2.0) 63.7 (4.2)56.4 (2.5) 74.5 (1.4) 71.0 (2.2)
8 1 61.2 (0.0) 70.8 (3.2) 65.7 (3.7)59.4 (6.5) 74.0 (1.2) 72.2 (2.9)
8 2 61.2 (0.0) 70.2 (4.2) 65.4 (6.3)61.1 (7.7) 73.9 (1.1) 73.7 (3.0)
8 4 61.2 (0.0) 68.7 (5.7) 64.6 (3.7)63.8 (9.7) 73.4 (1.0) 75.4 (1.8)
16 0 61.2 (0.0) 71.6 (0.3) 63.1 (3.9)55.2 (0.0) 74.4 (1.4) 72.5 (3.0)
16 1 61.2 (0.0) 71.0 (2.7) 63.3 (4.1)61.2 (8.9) 73.6 (1.0) 74.9 (2.5)
16 2 61.2 (0.0) 70.4 (3.7) 63.0 (4.0)63.8 (9.7) 73.4 (0.9) 75.2 (2.2)
16 4 61.2 (0.0) 68.7 (5.0) 64.0 (3.6)64.9 (10.2) 73.4 (0.7) 75.2 (2.2)
16 8 61.2 (0.0) 66.9 (5.8) 64.7 (3.4)68.6 (8.9) 73.2 (0.3) 76.1 (0.0)

Table 4.21 Abnormal, lead 1, statistical extractors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.
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Normal Abnormal
Lead 0 Padding Truncation Padding Truncation
Identity 78.2 (0.0) 80.2 (4.3) 76.1 (0.0) 73.7 (4.9)
Fourier 84.4 (2.4) 90.3 (2.0) 74.5 (5.0) 79.7 (3.8)
Wavelet 87.1 (2.6) 83.3 (5.4) 72.3 (3.3) 74.8 (5.5)

Normal Abnormal
Lead 1 Padding Truncation Padding Truncation
Identity 84.2 (0.3) 86.1 (4.4) 61.1 (0.7) 60.5 (7.6)
Fourier 81.8 (2.0) 84.5 (2.5) 70.3 (4.2) 73.8 (1.3)
Wavelet 88.7 (3.0) 84.5 (9.0) 64.0 (4.2) 73.0 (3.1)

Table 4.22 Classification accuracies for the normal and abnormal data sets of the
lead 0 and lead 1 parameters averaged across the various levels of the training
set size and the training set composition experimental factors for the statistical
feature extractors. The means (and standard deviations) of the percents of the
data sets correctly classified are reported. When the experimental factors are
held constant except for data preprocessing, the pairwise differences between the
classification accuracies when using padding versus truncation are all statistically
significant (based on a one-tailed t-test with p < .001), except with the identity
feature extractor for the abnormal data sets of the lead 1 parameter.

Normal Abnormal
Lead 0 Lead 1 Lead 0 Lead 1

Identity Truncation Truncation Padding ∗
Fourier Truncation Truncation Truncation Truncation
Wavelet Padding Padding Truncation Truncation

Table 4.23 The more effective data preprocessing technique for the normal and
abnormal data sets of the lead 0 and lead 1 parameters averagedacross the various
levels of the training set size and the training set composition experimental factors
for the statistical feature extractors. The data preprocessing technique resulting in a
statistically significant increase in classification accuracy over the other is reported.
There is no statistical difference between the two data preprocessing techniques
with the identity feature extractor for the abnormal data sets of the lead 1 parameter.
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• When the experimental factors are held constant except for data preprocessing, the clas-
sification accuracies are higher using truncation as compared to padding with the Fourier
and wavelet feature extraction methods for the abnormal data sets of each parameter. The
classification accuracies are higher using padding as compared to truncation with the identity
feature extraction method for the abnormal data sets of the lead 0 parameter; the classification
accuracies are dependent on the levels of the training set size and the training set composition
factors for the abnormal data sets of the lead 1 parameter.

• The classification accuracies are generally better with the identity and Fourier feature ex-
traction methods for the abnormal data sets of the lead 0 parameter versus the abnormal data
sets of the lead 1 parameter for all combinations of the remaining experimental factors. The
classification accuracies are generally better with the wavelet feature extraction method for
the abnormal data sets of the lead 0 parameter versus the abnormal data sets of the lead 1
parameter when using padding for all combinations of the remaining experimental factors;
the classification accuracies depend on the values of the training set size and training set
composition factors for the abnormal data sets of both parameters.

The most interesting observation is that the classification accuracies with the identity and Fourier
feature extraction methods for the normal and abnormal data sets of each parameter are not influ-
enced by the values of the remaining experimental factors. In contrast, the classification accuracies
with the wavelet feature extraction method for the normal and abnormal data sets of both parameters
are affected by the values of the remaining experimental factors.

Table 4.22 reports the classification accuracies for the normal and abnormal data sets of the lead
0 and lead 1 parameters averaged across the various levels of the training set size and the training set
composition experimental factors for the statistical feature extractors. For each combination of the
feature extraction method and the data preprocessing experimental factors, the mean and standard
deviation of the percents of the data sets correctly classified are reported. When the experimental
factors are held constant except for data preprocessing, the pairwise differences between the clas-
sification accuracies when using padding versus truncation are all statistically significant (based on
a one-tailed t-test withp < .001), except with the identity feature extractor for the abnormal data
sets of the lead 1 parameter. Table 4.23 reports the more effective data preprocessing technique for
the normal and abnormal data sets of the lead 0 and lead 1 parameters averaged across the various
levels of the training set size and the training set composition experimental factors for the statistical
feature extractors. The data preprocessing technique resulting in a statistically significant increase
in classification accuracy over the other is reported. For the normal data sets of each parameter,
the identity and Fourier feature extraction methods result in a higher classification accuracy when
using truncation as compared to padding; the wavelet feature extraction method results in a higher
classification accuracy when using padding as compared to truncation. For the abnormal data
sets, the wavelet and Fourier feature extractors result in a higher classification accuracy when
using truncation as compared to padding; the identity feature extraction method results in a higher
classification accuracy when using padding as compared to truncation.

Tables 4.24 and 4.26 report the classification accuracies for the normal and abnormal data sets,
respectively, of the lead 0 parameter using the structure detectors and broken down by combinations
of the experimental factors. Tables 4.25 and 4.27 report the parallel results for the lead 1 parameter.
The classification accuracy for each combination of experimental factors is reported as the mean
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r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 85.2 (5.0) 88.0 (0.0) 87.0 (1.1) 90.3 (2.6) 87.4 (1.2) 83.0 (4.3) 87.1 (1.2)
2 1 83.6 (3.7) 87.9 (0.5) 87.2 (0.8) 90.2 (2.6) 86.9 (1.8) 82.6 (3.8) 86.5 (2.0)
4 0 86.5 (4.6) 88.0 (0.0) 87.1 (0.8) 90.9 (2.2) 87.8 (0.7) 82.1 (3.9) 87.2 (0.9)
4 1 85.3 (5.0) 88.0 (0.0) 86.9 (1.1) 91.0 (1.8) 87.7 (0.9) 82.6 (4.2) 87.1 (1.2)
4 2 84.9 (4.6) 87.7 (1.2) 87.3 (1.1) 91.0 (1.8) 87.5 (1.1) 84.3 (4.6) 86.6 (1.2)
8 0 86.1 (1.8) 88.0 (0.0) 86.9 (0.7) 91.5 (0.8) 88.0 (0.0) 81.1 (3.3) 87.2 (0.0)
8 1 86.1 (1.8) 88.0 (0.0) 86.8 (0.6) 91.7 (0.0) 88.0 (0.0) 82.0 (4.0) 87.2 (0.0)
8 2 85.7 (2.7) 88.0 (0.0) 87.0 (0.7) 91.7 (0.0) 87.7 (0.9) 81.5 (3.7) 87.1 (0.7)
8 4 85.7 (4.6) 88.0 (0.0) 87.2 (0.8) 91.5 (0.8) 87.5 (1.1) 82.4 (4.2) 86.9 (0.9)
16 0 85.7 (0.0) 88.0 (0.0) 86.8 (0.7) 91.7 (0.0) 88.0 (0.0) 82.0 (4.0) 87.2 (0.0)
16 1 86.1 (1.8) 88.0 (0.0) 86.8 (0.7) 91.7 (0.0) 88.0 (0.0) 82.0 (4.0) 87.2 (0.0)
16 2 87.4 (3.4) 88.0 (0.0) 86.8 (0.7) 91.7 (0.0) 88.0 (0.0) 81.1 (3.3) 87.2 (0.0)
16 4 87.8 (3.7) 88.0 (0.0) 86.8 (0.7) 91.7 (0.0) 88.0 (0.0) 82.0 (4.0) 87.2 (0.0)
16 8 87.0 (3.0) 88.0 (0.0) 86.8 (0.6) 91.7 (0.0) 87.4 (1.2) 79.7 (0.0) 87.1 (0.7)

Table 4.24 Normal, lead 0, structure detectors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.

r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 88.2 (0.9) 84.9 (3.5) 78.3 (1.9) 91.0 (3.1) 77.4 (0.0) 78.9 (0.3) 80.1 (3.7)
2 1 88.4 (1.6) 85.2 (3.4) 80.1 (3.4) 91.4 (2.8) 79.7 (4.6) 78.9 (0.0) 80.1 (3.7)
4 0 88.4 (0.7) 84.2 (3.5) 79.2 (2.3) 91.7 (2.3) 77.4 (0.0) 78.9 (0.0) 78.9 (3.1)
4 1 88.2 (0.9) 85.3 (3.4) 79.5 (2.3) 91.4 (2.8) 77.4 (0.0) 78.9 (0.0) 79.7 (3.5)
4 2 88.4 (1.5) 85.2 (3.4) 80.2 (2.9) 91.0 (3.1) 77.4 (0.0) 78.9 (0.0) 80.1 (3.7)
8 0 88.5 (0.6) 85.9 (3.2) 78.6 (2.0) 91.7 (2.3) 77.4 (0.0) 78.9 (0.0) 78.9 (3.1)
8 1 88.3 (0.8) 85.6 (3.3) 78.1 (1.7) 91.7 (2.3) 77.4 (0.0) 78.9 (0.0) 79.7 (3.5)
8 2 88.2 (0.8) 84.2 (3.5) 79.7 (2.3) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 79.3 (3.3)
8 4 88.0 (1.0) 85.6 (3.3) 79.7 (2.3) 91.4 (2.8) 77.4 (0.0) 78.9 (0.0) 80.5 (3.8)
16 0 88.6 (0.3) 84.9 (3.5) 78.8 (2.1) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 78.6 (2.8)
16 1 88.6 (0.5) 84.2 (3.5) 78.6 (2.0) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 78.2 (2.3)
16 2 88.3 (0.7) 84.9 (3.5) 79.5 (2.3) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 78.9 (3.1)
16 4 88.2 (0.8) 84.2 (3.5) 79.5 (2.3) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 80.1 (3.7)
16 8 87.9 (0.8) 86.3 (3.0) 79.7 (2.3) 92.5 (0.0) 77.4 (0.0) 78.9 (0.0) 82.3 (3.7)

Table 4.25 Normal, lead 1, structure detectors: The classification accuracies are
broken down by combinations of the experimental factors where r is the training set
size and w is the training set composition. The means (and standard deviations) of
the percents of the normal data sets correctly classified are reported.
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r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 76.0 (9.1) 67.5 (8.8) 73.8 (2.2) 79.1 (2.7) 81.9 (1.6) 81.3 (1.9) 73.3 (3.5)
2 1 78.7 (7.3) 72.1 (9.2) 73.9 (2.3) 78.8 (2.8) 82.3 (1.0) 81.4 (3.7) 72.5 (2.0)
4 0 73.6 (8.1) 68.4 (9.0) 73.4 (2.3) 79.7 (2.2) 81.7 (1.4) 81.6 (1.8) 72.5 (2.6)
4 1 75.9 (9.1) 71.0 (9.1) 73.6 (2.2) 79.7 (2.2) 81.8 (1.5) 81.5 (1.8) 73.3 (3.5)
4 2 76.6 (8.5) 73.0 (8.9) 74.7 (2.1) 79.7 (2.2) 81.9 (1.6) 80.7 (1.8) 72.8 (2.5)
8 0 74.0 (3.0) 67.5 (8.8) 73.0 (2.1) 80.3 (1.3) 82.1 (0.0) 81.6 (1.1) 71.6 (0.0)
8 1 74.0 (3.0) 66.6 (8.4) 72.5 (1.8) 80.6 (0.0) 82.1 (0.0) 81.3 (1.3) 71.6 (0.0)
8 2 74.8 (4.9) 68.4 (9.0) 73.2 (2.2) 80.6 (0.0) 82.2 (0.5) 81.5 (1.2) 71.9 (1.3)
8 4 75.1 (8.4) 71.9 (9.0) 73.9 (2.3) 80.3 (1.3) 82.3 (0.5) 81.2 (1.4) 72.2 (1.8)
16 0 74.6 (0.0) 70.1 (9.2) 72.8 (2.0) 80.6 (0.0) 82.1 (0.0) 81.3 (1.3) 71.6 (0.0)
16 1 74.0 (3.0) 70.1 (9.2) 72.8 (2.0) 80.6 (0.0) 82.1 (0.0) 81.3 (1.3) 71.6 (0.0)
16 2 71.9 (5.5) 69.3 (9.1) 72.8 (2.0) 80.6 (0.0) 82.1 (0.0) 81.6 (1.1) 71.6 (0.0)
16 4 71.3 (6.0) 67.5 (8.8) 72.8 (2.0) 80.6 (0.0) 82.1 (0.0) 81.3 (1.3) 71.6 (0.0)
16 8 72.6 (4.9) 67.5 (8.8) 72.5 (1.8) 80.6 (0.0) 82.4 (0.6) 82.1 (0.0) 71.9 (1.3)

Table 4.26 Abnormal, lead 0, structure detectors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.

r w Constant Straight Exponential Sinusoidal Triangular Trapezoidal Composite
2 0 75.7 (3.6) 76.0 (1.5) 87.5 (7.4) 78.8 (0.6) 91.0 (0.0) 85.3 (1.0) 82.8 (7.3)
2 1 74.6 (3.3) 75.5 (2.2) 83.3 (8.8) 78.9 (0.5) 87.8 (6.7) 85.1 (0.0) 82.8 (7.3)
4 0 75.7 (3.9) 76.3 (1.5) 83.9 (9.0) 79.0 (0.5) 91.0 (0.0) 85.1 (0.0) 85.1 (6.1)
4 1 75.1 (4.1) 75.8 (1.5) 83.0 (9.1) 78.9 (0.5) 91.0 (0.0) 85.1 (0.0) 83.6 (7.0)
4 2 74.6 (4.0) 75.5 (2.2) 81.3 (9.0) 78.8 (0.6) 91.0 (0.0) 85.1 (0.0) 82.8 (7.3)
8 0 76.8 (2.6) 75.5 (1.4) 86.6 (8.0) 79.0 (0.5) 91.0 (0.0) 85.1 (0.0) 85.1 (6.1)
8 1 75.2 (4.3) 75.7 (1.5) 88.4 (6.6) 79.0 (0.5) 91.0 (0.0) 85.1 (0.0) 83.6 (7.0)
8 2 74.9 (4.4) 76.3 (1.5) 82.1 (9.2) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 84.3 (6.6)
8 4 74.7 (3.9) 75.7 (1.5) 82.1 (9.2) 78.9 (0.5) 91.0 (0.0) 85.1 (0.0) 82.1 (7.5)
16 0 77.1 (2.3) 76.0 (1.5) 85.7 (8.4) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 85.8 (5.5)
16 1 76.6 (3.2) 76.3 (1.5) 86.6 (8.0) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 86.6 (4.6)
16 2 75.0 (4.6) 76.0 (1.5) 83.0 (9.1) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 85.1 (6.1)
16 4 74.2 (4.9) 76.3 (1.5) 83.0 (9.1) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 82.8 (7.3)
16 8 72.6 (5.2) 75.4 (1.3) 82.1 (9.2) 79.1 (0.0) 91.0 (0.0) 85.1 (0.0) 78.4 (7.3)

Table 4.27 Abnormal, lead 1, structure detectors: The classification accuracies
are broken down by combinations of the experimental factors where r is the training
set size andw is the training set composition. The means (and standard deviations)
of the percents of the abnormal data sets correctly classified are reported.
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Normal Abnormal
Lead 0 Lead 1 Lead 0 Lead 1

Constant 85.9 (3.6) 88.3 (0.9) 74.5 (6.5) 75.2 (4.0)
Straight 87.9 (0.3) 85.1 (3.4) 69.3 (9.0) 75.9 (1.6)
Exponential 87.0 (0.8) 79.2 (2.4) 73.3 (2.1) 84.2 (8.7)
Sinusoidal 91.3 (1.4) 91.9 (2.1) 80.1 (1.6) 79.0 (0.4)
Triangular 87.7 (0.9) 77.6 (1.3) 82.1 (0.9) 90.8 (2.0)
Trapezoidal 82.0 (3.9) 78.9 (0.1) 81.4 (1.7) 85.1 (0.3)
Composite 87.1 (0.9) 79.7 (3.4) 72.2 (1.9) 83.6 (6.8)

Table 4.28 Classification accuracies for the normal and abnormal data sets of the
lead 0 and lead 1 parameters averaged across the various levels of the training
set size and the training set composition experimental factors for the structure
detectors. The means (and standard deviations) of the percents of the data sets
correctly classified are reported.

Normal Abnormal
Lead 0 Lead 1 Lead 0 Lead 1

Sinusoidal Sinusoidal Triangular Triangular
Straight Constant Trapezoidal Trapezoidal
Triangular Straight Sinusoidal Exponential
Composite Composite Constant Composite
Exponential Exponential Exponential Sinusoidal
Constant Trapezoidal Composite Straight
Trapezoidal Triangular Straight Constant

Table 4.29 The structure detectors ordered by classification accuracy for the nor-
mal and abnormal data sets of the lead 0 and lead 1 parameters. The structure
detectors are listed from most (top) to least (bottom) accurate.
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and standard deviation of the percents of the data sets correctly classified across twenty iterations
of the experiment procedure. Several trends are apparent:

• While the classification accuracies fluctuate across the combinations of the experimental
factors for the normal and abnormal data sets of each parameter, the effect of the training set
size and the training set composition is minimal.

• The classification accuracies with each structure detector (except constant and sinusoidal) are
better for the normal data sets of the lead 0 parameter than for the abnormal data sets of the
lead 1 parameter for all combinations of the remaining experimental factors. The accuracies
with each structure detector (except constant and sinusoidal) are better for the abnormal data
sets of the lead 1 parameter than for the abnormal data sets of the lead 0 parameter for all
combinations of the remaining experimental factors.

• The classification accuracies for the normal data sets of lead 0 parameter are better than
the classification accuracies for the abnormal data sets of the lead 0 parameter across the
experimental factors. The differences between the classification accuracies for the normal
and abnormal data sets of lead 1 depend on the feature extraction method.

Notice that the classification accuracies when using the composite structure detector, which com-
bines the heterogeneous structure detectors to extract features from a data set, are never the best and
yet rarely the worst as compared to the classification accuracies when using each heterogeneous
structure detector individually. The underlying cause for this counterintuitive result is discussed in
Section 4.5.

Table 4.28 reports the classification accuracies for the normal and abnormal data sets of the lead
0 and lead 1 parameters averaged across the various levels of the training set size and the training set
composition experimental factors for the structure detectors. The classification accuracies for the
normal and abnormal data sets for each parameter are dependent on the feature extraction method.
Table 4.29 lists the structure detectors sorted by the classification accuracies for the normal and
abnormal data sets of each parameter. The sinusoidal structure detector is best for normal data
sets regardless of parameter, and the triangular structure detector is best for abnormal data sets
regardless of parameter. No one structure detector, however, stands out as being consistently
superior to the others.

To compare the efficacy of the structure detectors versus the statistical feature extraction meth-
ods, the overall ability to correctly classify both the normal and abnormal data sets of each parameter
must be examined. Figures 4.16 and 4.17 illustrate the relative classification accuracies of the ten
feature extraction methods (note that the scales of the x and y axes on each graph are not uniform and
differ between the two graphs). Each feature extraction method is plotted using the mean percent of
the normal and abnormal data sets correctly classified as coordinates: the results in Table 4.22 are
used to plot the statistical feature extraction methods (the results with both padding and truncation
are used), and the results in Table 4.28 are used to plot the structure detectors. A dashed line
encloses the three statistical feature extraction methods using both types of data preprocessing; the
structure detectors with better classification accuracies are those which are plotted further towards
the upper-right of the graph relative to the dashed area. For the lead 0 parameter, the sinusoidal
structure detector performs slightly better overall than the statistical feature extraction methods.
The triangular and trapezoidal structure detectors are superior to the statistical feature extraction
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Percent Normal Data Sets Correctly Classified
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Figure 4.16 The relative classification accuracies for all feature extraction meth-
ods for the lead 0 parameter. Each feature extraction method is plotted using the
mean percent of the normal and abnormal data sets correctly classified as coordi-
nates. A dashed line encloses the three statistical feature extractors for both types
of data preprocessing: padding (plotted with solid bullets) and truncation (plotted
with hollow bullets).

Percent Normal Data Sets Correctly Classified
78 80 82 84 86 88 90 92

P
er

ce
n

t 
A

b
n

o
rm

al
 D

at
a 

S
et

s 
C

o
rr

ec
tl

y 
C

la
ss

if
ie

d

60

65

70

75

80

85

90

95

55
76

Identity

Fourier

Wavelet
Identity

Fourier

Wavelet

Constant

Straight

Exponential

Sinusoidal

Triangular

Trapezoidal

Composite

Figure 4.17 The relative classification accuracies for all feature extraction meth-
ods for the lead 1 parameter. Each feature extraction method is plotted using the
mean percent of the normal and abnormal data sets correctly classified as coordi-
nates. A dashed line encloses the three statistical feature extractors for both types
of data preprocessing: padding (plotted with solid bullets) and truncation (plotted
with hollow bullets).
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methods in terms of their classification accuracies for the abnormal data sets, while the straight
structure detector performs notably poorly. For the lead 1 parameter, the constant and sinusoidal
structure detectors perform better overall than the statistical feature extraction methods. Moreover,
the remaining structure detectors all are superior to the statistical feature extraction methods in
terms of the classification accuracies for the abnormal data sets.

4.5. Discussion

Two demonstrably different domains, namely semiconductor fabrication and electrocardiography,
were used to assess the efficacy of the structure detectors as general-purpose feature extractors for
structural pattern recognition. The classification accuracies achieved using features extracted by
the structure detectors under a range of conditions influencing the outcome of the associated train-
ing phase were compared to the corresponding accuracies achieved by commonly-used statistical
methods. The overall conclusions of the experiment are as follows:

• The classification accuracies achieved by the structure detectors are generally as good as or
better than those achieved by the statistical feature extraction methods. Rarely did any of the
structure detectors perform poorer overall than the statistical feature extraction methods.

• The effect on classification accuracy by the padding and truncation data preprocessing tech-
niques is dependent on the feature extraction method and the characteristics of the data—
sometimes padding results in better classification accuracy than truncation, and sometimes
the reverse is true. Common wisdom recommends zero padding over truncation for data
preprocessing, but these results to not bear this out. Alternative data preprocessing tech-
niques (e.g., extrapolation) may avoid the drawbacks associated with both zero padding and
truncation.

• While the training set size and the training set composition influence the classification ac-
curacy for all feature extraction methods, the effect is inconsistent. It should be noted,
however, that acceptable classification accuracies can be achieved with small training set
sizes, regardless of the training set composition.

No one structure detector consistently produced the best classification accuracies. The inability
of the composite structure detector to fill this role is counterintuitive: the composite structure
detector incorporates each of the heterogeneous structure detectors and, therefore, should be able
to perform at least as well as the best heterogeneous structure detector. The failure of the composite
structure detector to consistently outperform the heterogeneous structure detectors is rooted in
the methodology employed to select among the six morphology types: the structure that has the
smallest sum of squared error is used to represent each subregion. The composite structure detector,
therefore, extracts features based upon how closely the data is represented rather than how well the
features discriminate among groups. Additionally, the outcome of the training phase associated
with the structure detectors only determines the number of subregions, thus allowing the sequence
of morphology types used by the composite structure detector to vary among the data sets. Using
different morphology types to represent the same subregion across data sets with the same group
label introduces variability that can confuse the classifier. Modifying the training phase associated
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with the composite structure detector to determine a fixed sequence of morphology types may
improve the overall performance of the composite structure detector.

The ability of the structure detectors to achieve classification accuracies as good as or better
than the baseline statistical methods in the experiment demonstrates that the structure detectors
are worthwhile feature extractors that perform well on data with disparate characteristics. No one
structure detector performed well across all experimental conditions, raising the question of how
best to proceed when confronted with a new, unexplored data set. A simplistic approach would be
to run all structure detectors and select the one that results in the most accurate classification. A
more rigorous approach involves creating a taxonomy of time-series data based on characteristics
of data drawn from different sources and identifying the efficacy of each structure detector within
various subregions of the taxonomy. Given such a mapping from a set of data characteristics to a
structure detector, the characteristics of a new data set can be used to select the structure detector
that is likely to be most effective. A third, more interactive, approach would allow a user to select
structures to fit to subregions of the data, evaluate the resulting classification, and iterate until a
satisfactory result is obtained.



Chapter 5

Conclusions

Structural pattern recognition can be a powerful analysis tool within domains where a descrip-
tion composed of morphological subpatterns and their interrelationships is paramount to accurate
classification decisions. A structural pattern recognition system typically includes feature extrac-
tors to identify instances of morphological characteristics of the data which, in turn, are used as
the basis for classification using syntactic grammars. The domain knowledge necessary to guide
feature extractor and grammar development is gathered using knowledge acquisition techniques.
However, such techniques are time consuming, inexact, and do not always produce a complete
knowledge base of the domain. Consequently, structural approaches to pattern recognition are dif-
ficult to apply to unexplored or poorly-understood domains, thus limiting them to domains where
the feature types and the syntactic grammars have either become established in the literature or
are obvious upon inspection of the data. Eliminating the effort necessary to implement feature
extraction and classification for structural pattern recognition systems will widen the applicability
of structural approaches to complex, poorly-understood domains. This can be accomplished using
domain-independent techniques for feature extraction and classification.

A domain-independent structural pattern recognition system is one that is capable of extracting
features and performing classification without the need for domain knowledge. Such a system
can be implemented using a hybrid approach that incorporates structural features with statistical
techniques for classification: the structural features retain the morphological information necessary
for discrimination, while the statistical classifier avoids the need to develop syntactic grammars that
are inherently domain- and application-specific. The solution to making feature extraction domain-
independent is to employ generalized feature extraction to identify instances of morphologies which
have proven to be useful across domains.

To address the problem of generalized feature extraction within domains involving time-series
data, a suite of structure detectors based on structural features commonly cited as useful in the
pattern recognition literature and used in signal processing was developed. Structure detectors
were implemented to approximate a time-series data set with one of six morphologies—constant,
straight, exponential, sinusoidal, triangular, and trapezoidal. A methodology for applying these
structure detectors to a time-series data set in a piecewise fashion was developed, producing either
a homogeneous or heterogeneous sequence of structures that together best approximate the entire
time series. The efficacy of these structure detectors to generate morphological features suitable for
classification was assessed against three standard statistical techniques for feature extraction—the
identity, Fourier, and wavelet transformations—using two databases having markedly different
characteristics. The classification accuracies achieved when using the structure detectors were
at least as good as (and often superior to) the classification accuracies achieved when using the
statistical feature extractors.

95
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The ability of the structure detectors to generate morphological features that result in classi-
fication accuracies better than the baseline established by commonly-used statistical techniques
demonstrates that the morphologies identified by the suite of structure detectors constitute a useful
set of structural feature types. Moreover, the classification accuracies achieved on the two disparate
databases illustrate that the suite of structure detectors is capable of extracting features from data
with various characteristics. Certainly it is possible to produce better classification accuracies
with domain- and application-specific feature extractors developed with the assistance of a domain
expert, but this is burdensome for well-understood domains and impossible for domains that are
poorly understood. What this suite of structure detectors offers is a starting point for extracting
features which have been shown to be generally effective for classification, providing a springboard
for domain exploration and the subsequent refinement of these structure detectors with the goal of
producing a structural pattern recognition system targeted to a particular domain and application.

5.1. Contributions

Several contributions within the field of pattern recognition have been made in the course of this
research. Those contributions include the following:

• A suite of structure detectors was designed and implemented, as described in Chapter 3, to
extract structural features in time-series data based on morphologies suggested by both the
pattern recognition literature and the field of signal processing.

• An evaluation was performed to compare the classification accuracies achieved when using
the structure detectors to extract features versus commonly-used statistical feature extraction
methods, as described in Chapter 4. The classification accuracies achieved by the structure
detectors were at least as good as those achieved by the baseline methods.

• Empirical evidence that refutes the generally-accepted heuristic to use zero padding for data
preprocessing was produced by the experiment performed to evaluate the structure detectors.
The evidence suggests that zero padding does not consistently result in superior classification
accuracy, as discussed in Section 4.5.

• A technique for characterizing the aggregate structural composition of time-series data using
chain codes was proposed and used to demonstrate the differences between databases, as
described in Section 4.3.

5.2. Future Work

The development and evaluation of the suite of structure detectors for generalized feature extraction
in time-series data serves as a solid foundation for continuing research within the fields of pattern
recognition and knowledge acquisition. Topics of investigation include the following:

• The suite of structure detectors can be used as a cue generator to suggest morphologies that
may have significance within a domain. In this way, the structure detectors can assist an
expert to recall implicit domain knowledge and provide a foundation for expressing that
knowledge.



5.2. Future Work 97

• The structure detectors can be used to produce a baseline morphological description from
which improvements can be made iteratively until converging on an acceptable set of features
to extract. Using such an approach for knowledge acquisition could reduce the overall effort
associated with assembling domain knowledge.

• Solving tedious, expert-level problems could be accomplished by novices by focusing their
attention on the discriminatory features. The suite of structure detectors could be used to
achieve this goal by eliminating noise from time-series data, thus clarifying the underlying
morphology of the waveform and elucidating for the novice the previously-obscured fea-
tures. Using such an approach could enable novices to discriminate among classes to a level
comparable to that of experts.

• Evaluating the generality of feature extractors necessarily requires that they be applied to a
variety of databases which span the range of data characteristics. Chain codes is one approach
that can be employed to describe time-series data in terms of the frequency and degree to
which the data change over time. A more inclusive methodology is required to capture
other pertinent aspects of the data—such as the duration and magnitude of morphological
events—to arrive at a more descriptive taxonomy of time-series data. Once completed, such a
taxonomy can be used to evaluate the generality of feature extractors by analyzing databases
that represent various combinations of data characteristics.

• Only one classifier was used in the experiment to evaluate the efficacy of the structure
detectors. A natural question is whether the results reported here are applicable when other
classifiers are used. To address this issue, additional experiments can be performed with other
classifiers (essentially introducing the selection of the classifier as an additional experimental
factor). For example, the efficacy of neural networks across the various combinations of
values for the experimental factors would be worthwhile to investigate.

• Classification was performed using the features generated by an individual structure detec-
tor. Generating features using combinations of structure detectors could result in increased
classification accuracies. Experiments can be performed to determine which combinations
are most effective and how best to unify their results (e.g., perform classification using all
of the features extracted by multiple structure detectors, or weight the outcomes of multiple
classifications performed using features extracted by individual structure detectors).

• Classification was performed using feature vectors comprising features extracted from only
one parameter at a time. Classification accuracy could be improved by extracting features
from all parameters and combining them into the same feature vector. For example, the data
sets in the wafer database were classified based on the features extracted from either the 405
nm parameter or the 520 nm parameter; concatenating the individual feature vectors for each
parameter into one large feature vector could improve classification accuracy.

• The structure detectors can be used to compress time-series data. The degree of compression
is determined by the number of subregions used by the structure detectors to approximate the
raw data: the more subregions, the higher the accuracy but at the expense of less compression.
The efficacy of the structure detectors for data compression can be evaluated using various
data sets to determine the degree and accuracy of the resulting compression.
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• The suite of structure detectors was limited to univariate features (i.e., morphologies that
manifest in the consecutive data points of a single time-series data set). In some situations,
multivariate features (i.e., morphologies that manifest in the relationship between consecutive
data points across time-series data sets) would be appropriate and would require structure
detectors specifically designed to extract features comprising multiple time-series data sets.
Alternatively, a technique for combining the output of univariate structure detectors into
multivariate features could also be effective.

• The composite superstructure allows the particular sequence of morphologies fitted to a
collection of time-series data sets to change, selecting the sequence that minimizes the sum
of squared error for each data set. This contributes variability to the features and may
result in a reduction in classification accuracy. To eliminate this problem, the composite
superstructure can be modified so as to approximate a collection of time-series data sets
using a fixed sequence of morphologies. The particular sequence of morphologies to extract
can be determined using a modified version of the structure detector training algorithm that
analyzes a training set to determine both the optimal number of subregions and the type of
structure to fit to each subregion.



Appendix A

Feature Vector Examples

A statistical classifier can be used to discriminate among time-series data sets based upon a col-
lection of associated feature vectors such that each vector contains features extracted from one
of the time-series data sets under analysis and each data set is represented by a vector within
the collection. For a particular feature extraction method, each feature vector is expected to be
formated so that theith feature in each vector describes the same characteristic in each data set. To
satisfy this requirement, each of the statistical feature extraction methods—identity, Fourier, and
wavelet transformations—and the structure detectors have a specific format into which the extracted
features are arranged, as described in Section 4.2. To generate a feature vector that represents a
time-series data set for classification, the feature extraction method is applied to the data set, an
approximation to the data is generated, and the individual components of the approximation are
arranged into a feature vector that is formated according to the particular feature extraction method
employed.

For example, each of the feature extraction methods was applied to the same time-series data
set having a lengthn equal to ten. Figure A.1 shows the approximations to the data set generated
by the identity, Fourier, and wavelet transformations as well as the structure detectors when used
to produce a composite, or heterogeneous, approximation. Each graph shows the input time-series
data plotted with hollow bullets overlaid with a solid line representing the approximation. For the
identity transformation, the data set was neither truncated nor padded, remaining at its length of
ten. For the Fourier and wavelet transformations, the data set was padded to a length of sixteen (i.e.,
six values oft were added, each associated with aY (t) value of zero), and the top two frequencies
or transformations were allowed to contribute to the approximations. For the structure detectors,
two subregions were used and are separated by a vertical dashed line: the first subregion was
approximated with an exponential structure, and the second with a constant structure.

The feature vector used to represent this data set depends on the feature extraction method. The
approximationŶ (t) generated by the identity transformation shown in Figure A.1(a) is

Ŷ (t) = Y (t)

whereY (t) is a value in the original data set such that 1≤ t ≤ n. The feature vector assembled
from the components of this approximation is

1.0 2.0 3.0 6.0 12.0 24.0 5.0 5.0 5.0 5.0

where elementi of the feature vector (from left to right) is equal tôY (i) such that 1≤ i ≤ 10.
Note that since the length of the original data set is ten, the resulting feature vector contains a total
of ten elements.
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(d) Structure Detectors

Figure A.1 The approximations to a common data set generated by the identity,
Fourier, and wavelet transformations as well as the structure detectors when used
to produce a composite, or heterogeneous, approximation. Each graph shows the
input time-series data plotted with hollow bullets overlaid with a solid line repre-
senting the approximation. For the identity transformation, the data set was neither
truncated nor padded. For the Fourier and wavelet transformations, the data set
was padded, and the top two frequencies or transformations were allowed to con-
tribute to the approximations. For the structuredetectors, two subregionswere used
and are separated by a vertical dashed line: the first subregion was approximated
with an exponential structure, and the second with a constant structure.
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The approximation̂Y (t) generated by the Fourier transformation shown in Figure A.1(b) is

Ŷ (t) =
∑
j∈B

(aj cosjt+ bj sinjt)

where the subset of frequenciesB is {0,1}, a0 is equal to 4.3,b0 is equal to 0.0,a1 is equal to -2.5,
andb1 is equal to 5.8. The feature vector assembled from the components of this approximation is

4.3 0.0 −2.5 5.8

where the first and second elements of the feature vector (from left to right) are equal toa0 andb0,
respectively, and the third and fourth elements are equal toa1 andb1, respectively. Note that since
only the top two frequencies were allowed to contribute to the approximation, the resulting feature
vector contains two pairs of values and has a total of four elements.

The approximation̂Y (t) generated by the wavelet transformation shown in Figure A.1(c) is

Ŷ (t) =
∑
j∈B

φjψj(t)

where the subset of transformationsB is {1,5}, φ1 is equal to 22.9, andφ5 is equal to 17.0. The
feature vector assembled from the components of this approximation is

22.9 17.0

where the first element of the feature vector (from left to right) is equal toφ1, and the second
element is equal toφ5. Note that since only the top two transformations were allowed to contribute
to the approximation, the resulting feature vector contains a total of two elements.

The approximation̂Y (t) generated by the structure detectors shown in Figure A.1(d) is

Ŷ (t) = h(Y (t))

where the functionh is defined in Section 3.4. The first subregion includes the first six values of
t, with an onset att = 1 and an offset att = 6, and is approximated with an exponential structure
with the function

f(Y (t)) = a ∗ |b|t + c

wherea is equal to 0.6,b is equal to 36.3, andc is equal to 0.4. The second subregion includes the
last four values oft, with an onset att = 7 and an offset att = 10, and is approximated with a
constant structure with the function

f(Y (t)) = a

wherea is equal to 5.0. The difference between the subregions (i.e., betweenY (6) andY (7)) is
-19.0. The feature vector assembled from the components of this approximation is

3 0.0 0.0 0.0 0.6 36.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 6 6 −19.0

1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 10 4

where the feature vector has been split across two lines due to its length. The first nineteen elements
(from left to right, top to bottom) describe the approximation of the first subregion, the twentieth
element describes the difference between the two subregions, and the final nineteen elements
describe the approximation of the second subregion. The first nineteen elements are set as follows:
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1 The structure type used to approximate the subregion. Set to 3.
2 The value of the free parametera in the constant structure. Set to 0.0.
3 The value of the free parametera in the straight structure. Set to 0.0.
4 The value of the free parameterb in the straight structure. Set to 0.0.
5 The value of the free parametera in the exponential structure. Set to 0.6.
6 The value of the free parameterb in the exponential structure. Set to 36.3.
7 The value of the free parameterc in the exponential structure. Set to 0.4.
8 The value of the free parametera in the sinusoidal structure. Set to 0.0.
9 The value of the free parameterb in the sinusoidal structure. Set to 0.0.

10 The value of the free parameterc in the sinusoidal structure. Set to 0.0.
11 The value of the free parametera in the triangular structure. Set to 0.0.
12 The value of the free parameterb in the triangular structure. Set to 0.0.
13 The value of the free parameterc in the triangular structure. Set to 0.0.
14 The value of the free parametera in the trapezoidal structure. Set to 0.0.
15 The value of the free parameterb in the trapezoidal structure. Set to 0.0.
16 The value of the free parameterc in the trapezoidal structure. Set to 0.0.
17 The onset of the subregion. Set to 1.
18 The offset of the subregion. Set to 6.
19 The length of the subregion. Set to 6.

The twentieth element is set to the difference between the subregions, which is -19.0. The final
nineteen elements are set as follows:

21 The structure type used to approximate the subregion. Set to 1.
22 The value of the free parametera in the constant structure. Set to 5.0.
23 The value of the free parametera in the straight structure. Set to 0.0.
24 The value of the free parameterb in the straight structure. Set to 0.0.
25 The value of the free parametera in the exponential structure. Set to 0.0.
26 The value of the free parameterb in the exponential structure. Set to 0.0.
27 The value of the free parameterc in the exponential structure. Set to 0.0.
28 The value of the free parametera in the sinusoidal structure. Set to 0.0.
29 The value of the free parameterb in the sinusoidal structure. Set to 0.0.
30 The value of the free parameterc in the sinusoidal structure. Set to 0.0.
31 The value of the free parametera in the triangular structure. Set to 0.0.
32 The value of the free parameterb in the triangular structure. Set to 0.0.
33 The value of the free parameterc in the triangular structure. Set to 0.0.
34 The value of the free parametera in the trapezoidal structure. Set to 0.0.
35 The value of the free parameterb in the trapezoidal structure. Set to 0.0.
36 The value of the free parameterc in the trapezoidal structure. Set to 0.0.
37 The onset of the subregion. Set to 7.
38 The offset of the subregion. Set to 10.
39 The length of the subregion. Set to 4.

The numeric value which indicates the structure type used to approximate each subregion is ar-
bitrary: the values from one to six are assigned, in order, to the constant, straight, exponential,
sinusoidal, triangular, and trapezoidal structures. Note that since two subregions were used, two
groups of nineteen elements plus an additional element to describe the difference between the
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subregions were used, resulting in a feature vector having a total of thirty-nine elements. Had the
structure detectors been used to generate a heterogeneous approximation using two subregions, the
resulting feature vector would have been formated exactly the same and would have had the same
length, however the particular values in the feature vector would have been different.

A collection of feature vectors for classification is generated by applying a feature extraction
method to each data set under analysis and arranging the extracted features into a fixed-length
feature vector associated with each data set. For instance, if the wavelet transformation is applied
as described above, then each data set is represented by a feature vector that contains exactly two
elements. To apply the Fourier transformation, a separate collection of feature vectors would be
generated where, in this case, each vector would contain exactly four elements. Classification
could then be performed separately on each individual collection of feature vectors.
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