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Abstract

We present a new method to reconstruct the shape of an unknown object using tactile
sensors, without requiring object immobilization. Instead, sensing and nonprehen-
sile manipulation occur simultaneously. The robot infers the shape, motion and
center of mass of the object based on the motion of the contact points as measured
by the tactile sensors. We present analytic results and simulation results assuming
quasistatic dynamics. We prove that the shape and motion are observable in both
the quasistatic and the fully dynamic case.
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1 Introduction

Robotic manipulators typically cannot deal very well with objects of partially unknown shape
and weight. Humans, on the other hand, seem to have few problems with manipulating

objects of unknown shape and weight. For example, Klatzky et al. (1985) showed that blindfolded
human observers identified 100 common objects with over 96% accuracy, in only 1 to 2 seconds
for most objects. Besides recognizing shape and size, humans also use touch to determine
various features such as texture, hardness, thermal qualities, weight and movement (Lederman
and Browse, 1988).

It seems unlikely that people mentally keep track of theexact position, shape and mass
properties of the objects in their environment. So somehow during the manipulation of an
unknown object the tactile sensors in the human hand give enough information to find the pose
and shape of that object. At the same time some mass properties of the object are inferred to
determine a good grasp. These observations are an important motivation for our research. To
recover the shape of an unknown object with tactile sensors either the motion of the object needs
to be known, or we need many sensors (in order to reconstruct the shape and motion of the object
simultaneously). Typically parts are assumed to be in a fixture. But how can we put an object in
a fixture if we do not know its shape?

Let a palm be defined as aplanar surface covered with tactile sensors.Suppose we have
an unknown smooth convex object resting in contact with a number of palms (two palms in
two dimensions, three in three dimensions); the only forces acting on the object are gravity and
the normal forces. For simplicity we assume that there is no friction. We can realize these
assumptions by moving the palms slowly enough so that the object is always in a local potential
energy minimum. Moving the palms slowly is not sufficient to guarantee that the object is in a
potential energy minimum. We also let the palms vibrate in order to break the frictional forces.
As we continuously move the palms, the object will move to a (piecewise) continuously changing
minimum of a potential energy well. The motion of the object will be a function of the palms’
motion, the object’s shape and center of mass. In this report we present methods for deriving
the shape and center of mass of unknown objects in terms of palm motions and sensor values.
Currently, the results are limited to planar smooth convex objects. Numerical simulation with
limited resolution (in time) shows the feasibility of the analytic results.

Figure 1.1 illustrates the basic idea. There are two palms that each have one rotational degree
of freedom at the point where they connect. That allows us to change the angle between palm 1
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and palm 2 and between the palms and the global frame. As we change the palm angles we keep
track of the contact points through tactile elements on the palms. The palms can be mounted on
an air table to simulate a planar world. We are using touchpads as tactile sensors on the palms.
Some preliminary experiments have shown that we can track a contact point on a touchpad with
approximately 0.1mm accuracy at 100Hz. Figure 1.2 shows a possible arrangement of three
palms in three dimensions. Palm 2 and palm 3 are free to rotate around their line of intersection.
This axis is connected to palm 1. Palm 1 can rotate around its bottom edge.

palm 2
palm 1

(a) Two palms

φ2
φ1

2s 1s

X

Y

O

contact pt. 2

contact pt. 1

gravity
‘palm’ 2

‘palm’ 1

(b) Two fingers

Figure 1.1: Two possible arrangements of a smooth convex object resting on palms that are
covered with tactile sensors.

Figure 1.2: An object resting on three palms.



2 Related Work

Our research builds on many different areas in robotics. These areas can be roughly divided
into four different categories: probing, nonprehensile manipulation, grasping, and tactile

sensing. We can divide the related work in tactile sensing further into three subcategories: shape
and pose recognition with tactile sensors, tactile exploration, and tactile sensor design. We now
briefly discuss some of the research in these areas.

2.1 Probing

Shape sensing can be approached purely geometrically and algorithmically. Sensing is then often
called probing. One can define different kinds of probes that correspond to abstractions of sensor
devices. For instance, afinger probecorresponds to a robotic finger moving along a line until it
contacts an object (or misses the object). The probe outcome is then the point where the probe
contacted the object. Typical questions are:

• How many probes are sufficient to reconstruct the shape of an object?
• How many probes are sufficient to recognize the pose of a known object?

Often these problems are restricted to a class of shapes (such as polygons). We can relax
the questions above by trying to solve for the number of probes needed for a bounded error
approximation of the exact answers. Cole and Yap (1987) showed that the answer to the first
question using finger probes is 3n for a convexn-sided polygon. Furthermore, they showed that
3n − 1 probes are necessary. If we assume that a finger probe outcome is never exactly a vertex
of the polygon, then 3n probes are necessary. Shortly after (Cole and Yap, 1987) Dobkin et al.
(1986) investigated the complexity of determining the shape and pose of convex polytopes for a
variety of different probes, including probes with errors. Boissonnat and Yvinec (1992) extended
the probe model of Cole and Yap: their probe outcome includes the normal at the contact point.
With this probe model they showed that at most 3n − 3 probes are needed for simplenon-convex
polygons with no collinear edges. Their results can be extended to probe a set of polygons and
to probe a set of polyhedra.

Li (1988) gave algorithms that reconstruct convex polygons with 3n + 1 line probesor with
3n − 2 projection probes. Line probes slide a straight line in a particular direction over the plane
until it hits the object. Projection probes consist of two line probes that move in opposite directions
towards each other. Lindenbaum and Bruckstein (1994) gave an approximation algorithm for
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arbitraryplanar convexshapes using line probes. Kölzow et al. (1989) presented an approximation
algorithm using projection probes, but their projection probes are defined as the length of the
intersection of a line with the object. In (Lindenbaum and Bruckstein, 1991) bounds were given
on the number ofparallel probes that are necessary to recover the shape of a planar polygon.
With parallel probes,k probes (k > 1) are performed at the same time. Skiena (1989) observed
that the line probe can be generalized to a new kind of probe which is the dual of the finger probe,
so that there is a one-to-one correspondence between algorithms that use finger probes and ones
that use this generalized line probe.

Rao and Goldberg (1994) studied the problem of determining the shape of a convex polygon
using diameter measurements from a parallel jaw gripper. They showed that there is an infinite
set of polygonal shapes for a given set of diameter measurements. However, it is possible to
recognize a shape from a known (finite) set of shapes. Rao and Goldberg presented sensing
plans that require no more thann measurements, wheren is the number of stable faces. Arkin
et al. (1998) proved that finding a minimal length plan isNP-hard and gave a polynomial-time
approximation algorithm with a good performance guarantee. Akella and Mason (1998) showed
how to orient and distinguish (sets of) polygonal parts using diameter measurements.

Skiena (1989) described many different probes and many (open) problems in probing. An
overview of research on probing can be found in (Romanik, 1995).

2.2 Nonprehensile Manipulation

The basic idea behind nonprehensile manipulation is that robots can manipulate objects even if
the robots do not have full control over these objects. This idea was pioneered by Mason. In his
Ph.D. thesis (Mason, 1982) and the companion paper (Mason, 1985) nonprehensile manipulation
took the form of pushing an object in the plane to reduce uncertainty about the object’s pose.
Further work by Peshkin and colleagues (Peshkin and Sanderson, 1988; Wiegley et al., 1996)
analyzed the pushing problem and showed how to design fences for a conveyor belt system. Lynch
(1997) further built on Mason’s work. In his Ph.D. thesis Lynch described a path planner for
quasistatically pushing objects among obstacles. He also investigated controllability of dynamic
nonprehensile manipulation such as throwing and catching a part. Lynch et al. (1998) showed how
to make a robotic manipulator perform a certain juggling motion with a suitable parameterization
of the shape and motion of the manipulator. Much research on juggling balls has been done in
Koditschek’s research group (see e.g. (Rizzi and Koditschek, 1993) and (Whitcomb et al., 1993)).
Rizzi and Koditschek (1993) described a system consisting of a robot arm and a camera that can
juggle two balls. In (Abell and Erdmann, 1995) nonprehensile manipulation took the (abstract)
form of moving two frictionless contacts on a polygonal part in a planar gravitational field. Abell
and Erdmann presented an algorithm to orient such a polygonal part by moving the contact points
and performing hand-offs between two pairs of contact points.

Erdmann and Mason (1988) described sensorless manipulation within the formal framework
of the pre-image methodology. In particular, Erdmann and Mason showed how to orient a planar
object by a tray tilting device: first, the object is placed in a random pose in the tray and, second,
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the tray is tilted at a sequence of angles to bring the object in a unique pose. In (Erdmann et al.,
1993) the tray tilting idea was extended to polyhedra.

One of the first papers in palmar manipulation is (Salisbury, 1987). Salisbury suggested
a new approach to manipulation in which the whole robot arm is used as opposed to just the
fingertips. Paljug et al. (1994) investigated the problem of multi-arm manipulation. Paljug et al.
presented a nonlinear feedback scheme for simultaneous control of the trajectory of the object
being manipulated as well as the contact conditions. Erdmann (1998a) showed how to manipulate
a known object with two palms. He also presented methods for determining the contact modes of
each palm: rolling, sliding and holding the object. Zumel (1997) described a palmar system like
the one shown in figure 1.1(b), but without tactile sensors. Zumel derived sufficient conditions
for orienting known polygonal parts with these palms. She also showed that an orienting plan
for a polygon can be computed inO(N2) and that the length isO(N), whereN is the number of
stable edges of the polygon.

2.3 Grasping

The problem of grasping has been widely studied. This section will not try to give a complete
overview of the results in this area, but instead just mention some of the work that is most important
to our problem. Much of the grasp research focuses on computing grasps that establishforce-
closure(the ability to resist external forces) andform-closure(a kinematic constraint condition
that prevents all motion). Important work includes (Salisbury, 1982), (Cutkosky, 1985), (Fearing,
1984), (Kerr and Roth, 1986), (Mishra et al., 1987), (Montana, 1988), (Nguyen, 1988), (Trinkle
et al., 1988), (Hong et al., 1990), (Markenscoff et al., 1990) and (Ponce et al., 1997). For an
overview of grasp synthesis algorithms see e.g. (Shimoga, 1996).

In order to grasp an object we need to understand the kinematics of contact. Independently,
Montana (1988) and Cai and Roth (1986, 1987) derived the relationship between the relative
motion of two objects and the motion of their contact point. In (Montana, 1995) these results
were extended to multi-fingered manipulation.

Sudsang et al. (2000) looked at the problem of manipulating three-dimensional objects with
a reconfigurable gripper. The gripper consisted of two horizontal plates, of which the top one
had a regular grid of actuated pins. They presented a planner that computed a sequence of pin
configurations that brought an object from one configuration to another usingso-called immobility
regions. For each (intermediate) configuration only three pins were needed. Plans were restricted
to ones where the object maintains the same set of contact points with the bottom plate. Rao
et al. (1994, 1995) showed how to reorient a polyhedral object withpivoting grasps: the object
was grasped with two hard finger contacts so that it pivoted under gravity when lifted. Often
only one pivot grasp was sufficient to bring the object from one stable pose to another (provided
the friction coefficient is large enough).

Trinkle and colleagues (Trinkle et al., 1993; Trinkle and Hunter, 1991; Trinkle and Paul,
1990; Trinkle et al., 1988) investigated the problem of dexterous manipulation with frictionless
contact. They analyzed the problem of lifting and manipulating an object with enveloping grasps.
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Yoshikawa et al. (1993) did not assume frictionless contacts and showed how to regrasp an object
using quasistatic slip motion. Nagata et al. (1993) described a method of repeatedly regrasping
an object to build up a model of its shape.

Teichmann and Mishra (2000) presented an algorithm that determines a good grasp for
an unknown object using a parallel-jaw gripper equipped with light beam sensors. This paper
presented a tight integration of sensing and manipulation. Interestingly, the object is not disturbed
until good grasp points are found. Recently, Jia (2000) showed how to achieve an antipodal grasp
of a curved planar object with two fingers. By rolling the fingers around the object the pose of
the object is determined and then the fingers are rolled to two antipodal points.

2.4 Shape and Pose Recognition

The problem of shape and pose recognition can be stated as follows: suppose we have a known
set of objects, how can we recognize one of the objects if it is in an unknown pose? For an infinite
set of objects the problem is often phrased as: suppose we have a class of parametrized shapes,
can we establish the parameters for an object from that class in an unknown pose? Schneiter
and Sheridan (1990) developed a method for determining sensor paths to solve the first problem.
In Siegel (1991) a different approach is taken: the pose of an object is determined by using an
enveloping grasp. This method uses only joint angle and torque sensing.

Jia and Erdmann (1996) proposed a ‘probing-style’ solution: they determined possible poses
for polygons from a finite set of possible poses. One can think of this finite set as the stable
poses (for some sense of stable). One method determines the pose by bounding the polygon by
supporting lines. The second method they propose is to sense by point sampling. They prove that
solving this problem isNP-complete and present a polynomial time approximation algorithm.

Keren et al. (1998) proposed a method for recognizing three-dimensional objects using curve
invariants. This idea was motivated by the fact that tactile sensor data often takes the form of a
curve on the object. They apply their method to geometric primitives like spheres and cylinders.

Jia and Erdmann (1999) investigated the problem of determining not only the pose, but also
the motion of a known object. The motion of the object is induced by having a robotic finger
push the object. By tracking the contact point on the finger, they were able to recover the pose
and motion using nonlinear observer theory.

2.5 Tactile Exploration

With tactile exploration the goal is to build up an accurate model of the shape of an unknown
object. One early paper by Goldberg and Bajcsy (1984) described a system requiring very
little information to reconstruct an unknown shape. The system consisted of a cylindrical finger
covered with 133 tactile elements. The finger could translate and tap different parts of an object.

Often the unknown shape is assumed to be a member of a parametrized class of shapes, so
one could argue that this is really just shape recognition. Nevertheless, with some parametrized
shape models, a large variety of shapes can still be characterized. In (Fearing, 1990), for instance,
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results are given for recovering generalized cylinders. In (Chen et al., 1996) tactile data are fit
to a general quadratic form. Finally, (Roberts, 1990) proposed a tactile exploration method for
polyhedra.

Allen and Michelman (1990) presented methods for exploring shapes in three stages, from
coarse to fine: grasping by containment, planar surface exploring and surface contour following.
Montana (1988) described a method to estimate curvature based on a number of probes. Montana
also presented a control law for contour following. Charlebois et al. (1996, 1997) introduced
two different tactile exploration methods. The first method is based on rolling a finger around
the object to estimate the curvature using Montana’s contact equations. Charlebois et al. analyze
the sensitivity of this method to noise. With the second method a B-spline surface is fitted to the
contact points and normals obtained by sliding multiple fingers along an unknown object.

Marigo et al. (1997) showed how to manipulate a known polyhedral part by rolling it between
the two palms of a parallel-jaw gripper. Recently, (Bicchi et al., 1999) extended these results to
tactile exploration of unknown objects with a parallel-jaw gripper equipped with tactile sensors.
The two palms of the gripper roll the object without slipping and track the contact points. Using
tools from regularization theory they produce spline-like models that best fit the sensor data. A
different approach is taken by Kaneko and Tsuji (2000), who try to recover the shape by pulling
a finger over the surface. With this finger they can also probe concavities. In (Okamura and
Cutkosky, 1999; Okamura et al., 1999, 2000) the emphasis is on detecting fine surface features
such as bumps and ridges. Sensing is done by rolling a finger around the object. (Okamura
et al., 1999) show how one can measure friction by dragging a block over a surface at different
velocities, measure the forces and solve for the unknowns.

Much of our work builds forth on (Erdmann, 1998b). There, the shape of planar objects is
recognized by three palms; two palms are at a fixed angle, the third palm can translate compliantly,
ensuring that the object touches all three palms. Erdmann derives the shape of an unknown object
with an unknown motion as a function of the sensor values. In our work we restrict the motion
of the object: we assume quasistatic dynamics and we assume there is no friction. Only gravity
and the contact forces are acting on the object. As a result we can recover the shape with fewer
sensors. We can realize these assumptions by moving the palms slowly enough so that the object
is always in a local potential energy minimum.

2.6 Tactile Sensor Design

Despite the large body of work in tactile sensing and haptics, making reliable and accurate
tactile sensors has proven to be very hard. Many different designs have been proposed. This
section will mention just a few. For an overview of sensing technologies, see e.g. (Howe and
Cutkosky, 1992). Fearing and Binford (1988) describe a cylindrical tactile sensor to determine
the curvature of convex unknown shapes. Speeter (1990) describes a tactile sensing system
consisting of up to 16 arrays of 256 tactile elements that can be accessed in parallel. He discusses
the implementation issues involved with using these sensors with the Utah/MIT Hand. The
underlying tactile technology is based on force sensing resistors from Interlink Electronics. Choi
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et al. (1998) present a different design for tactile sensors for multifingered robots based on
capacitive tactile elements. They compare their experimental results with Montana’s contact
equations (Montana, 1988).

In our own experiments we are relying on off-the-shelf components. The tactile sensors are
touchpads, as found on many notebooks. Most touchpads use capacitive technology, but the ones
we are using are based on force-sensing resistors. In section 3.5 we report on our findings so far.



3 Quasistatic Shape Reconstruction

In this chapter we will present a quasistatic method for reconstructing the shape of an unknown
smooth convex object. The object is placed between the two palms, and we can vary the angles

between the palms and the world frame. We say that the object is inforce/torque balanceif and
only if all forces and torques acting on the object add up to 0. Below, we will show that if we
assume that the object is always in force/torque balance and if there is no friction between the
object and the palms, then we can reconstruct the shape with two palms.

Figure 3.1 shows the two inputs and the two sensor outputs. The inputs areφ1, the angle
between palm 1 and the X-axis of the global frame, andφ2, the angle between palm 1 and 2. The
tactile sensor elements return the contact pointss1 ands2 on palm 1 and 2, respectively. Gravity
acts in the negative Y direction. If the object is at rest, there is force/torque balance. In that case,
since we assume there is no friction, the lines through the normal forces at the contact points
and gravity acting on the center of mass intersect at a common point. In other words, the sensor
values tell us where the X-coordinate of the center of mass is in the global frame. Below we
will show that this constraint on the position of the center of mass and the constraints induced
by the sensor values will allow us to derive an expression for the curvature at the contact points.
However, this expression depends on the initial position of the center of mass. We can search for

φ
φ2

1
1

2

s

s

OX

Y

palm 2

contact pt. 1

contact pt. 2 palm 1

gravity

COM

COR

Figure 3.1: Input values areφ1 andφ2, output values are the contact point locationss1 ands2. The
contact normals intersect at the center of rotation (COR), which lies on the vertical line through
the center of mass (COM).
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θn(  )
t θ(  )

r θ(  )
x θ(  ) θd(  )

θ
ψ

global frame
object frame

OX

Figure 3.2: The contact support function(r (θ),d(θ)) and the object frame.OX denotes the
X-axis of the object frame.

this position with an initial pose observer that minimizes the error between what the curvature
expression predicts and what the sensor values tell us.

3.1 Notation

Frames A useful tool for recovering the shape of the object will be the radius function (see
e.g. (Santaló, 1976)). Figure 3.2 shows the basic idea. We assume that the object is smooth and
convex. We also assume that the origin of the object frame is at the center of mass. For every
angleθ there exists a pointx(θ) on the surface of the object such that the outward pointing normal
n(θ) at that point is(cosθ, sinθ)T . Let the tangentt(θ) be equal to(sinθ,− cosθ)T so that[t,n]
constitutes a right-handed frame. We can also define right-handed frames at the contact points
with respect to the palms:{

n̄1 = ( − sinφ1, cosφ1

)T

t̄1 = (
cosφ1, sinφ1

)T and

{
n̄2 = (

sin(φ1 + φ2),− cos(φ1 + φ2)
)T

t̄2 = ( − cos(φ1 + φ2),− sin(φ1 + φ2)
)T

Note thatn̄1 andn̄2 point into the free space between the palms. Letψ be the angle between the
object frame and the global frame, such that a rotation matrixR(ψ)maps a point from the object
frame to the global frame:

R(ψ) =
(

cosψ − sinψ
sinψ cosψ

)

The object and palm frames are then related in the following way:(
n̄1 t̄1

) = −R(ψ)
(
n(θ) t(θ)

)
(
n̄2 t̄2

) = −R(ψ)
(
n(θ + φ2 − π) t(θ + φ2 − π)

)
The different frames are shown in figure 3.3. From these relationships it follows that

θ = φ1 − ψ − π

2
(3.1)
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(θ+φ −π)2

(θ+φ −π)2
(θ+φ −π2 )x
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(θ
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t1
t2
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Figure 3.3: The different coordinate frames

Differentiation We will use ‘̇ ’ to represent differentiation with respect to timet and ‘′’ to
represent differentiation with respect to a function’s parameter. So, for instance,ẋ(θ) = x′(θ)θ̇ .
From the Frenet formulas it follows that the parameterization velocityv(θ) = ‖x′(θ)‖ is the
radius of curvature of the shape at the pointx(θ). We can writev(θ) as−x′(θ) · t(θ) andx′(θ)
as−v(θ)t(θ).

Support Functions We now definer (θ) to be the projection of the contact pointx(θ) onto the
normaln(θ):

r (θ) = x(θ) · n(θ)

This function is called aradius functionor support function.For our shape recovery analysis it
will be useful to define another function,d(θ), to be the projection of the contact pointx(θ) onto
the tangentt(θ):

d(θ) = x(θ) · t(θ)

We will refer to the pair(r (θ),d(θ)) as acontact support function.The goal is now to derive a
solution forx(θ) as we change the palm anglesφ1 andφ2.

One final bit of notation we need is a generalization of the contact support function, which we
will define as a projection of the vector between the two contact points. We definethe generalized
contact support function relative to contact point 1as:

r̃1(θ) = (
x(θ)− x(θ + φ2 − π)

) · n(θ) (3.2)

d̃1(θ) = (
x(θ)− x(θ + φ2 − π)

) · t(θ) (3.3)

Similarly, we can definethe generalized contact support function relative to contact point 2as:

r̃2(θ) = (
x(θ)− x(θ + φ2 − π)

) · n(θ + φ2 − π) (3.4)

d̃2(θ) = (
x(θ)− x(θ + φ2 − π)

) · t(θ + φ2 − π) (3.5)
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Figure 3.4: The generalized contact support functions.

Below we drop the function arguments where it does not lead to confusion, and instead use
subscripts ‘1’ and ‘2’ to denote the contact point on palm 1 and 2. So we will write e.g.Rn2 for
R(ψ)n(θ + φ2 − π).

The generalizedcontact support functions have the property that they can be expresseddirectly
in terms of the palm angles and sensor values (assuming the object is in two-point contact):{

r̃1 = s2 sinφ2

d̃1 = s2 cosφ2 − s1

or

{
r̃2 = −s1 sinφ2

d̃2 = s1 cosφ2 − s2

(3.6)

These equalities can be obtained by inspection from figures 3.1 and 3.4. We can also obtain these
equalities analytically. First, we write the constraints that two-point contact induces as

s1t̄1 = cm + Rx1 (3.7)

−s2t̄2 = cm + Rx2, (3.8)

wherecm is the position of the center of mass. Next, we can eliminatecm from these equations
and write

R (x1 − x2) = s1t̄1 + s2t̄2 (3.9)

The expressions in 3.6 then follow by computing the dot product on both sides of expression 3.9
with the palm normals and tangents.

Above we have shown that although the generalized contact support functions were defined
in the object frame, we can also express them directly in terms of sensor values and palm angles.
This is useful because it can be shown (Erdmann, 1998b) that the radii of curvature at the contact
points can be written in terms of the generalized contact support functions as

v1 = − r̃ ′
2 + d̃2

sinφ2
(3.10)

v2 = − r̃ ′
1 + d̃1

sinφ2
(3.11)
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2
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1
2

φ2

s1

2
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1s

x −x

r r
d

−d

Figure 3.5: The dependencies between sensor values, the support function and the angle between
the palms when the object makes two-point contact

The derivation of these expressions is included in the appendix. Note that these expressions
arenot sufficient to observe the local shape, even though the generalized support functions are
directly observable. To observe the shape we will also need an expression for thetimederivative
of the function parameters. This is the topic of section 3.3.

Equation 3.9 can also be rewritten in terms of the contact support function:

−(r1n̄1 + d1t̄1)+ (r2n̄2 + d2t̄2) = s1t̄1 + s2t̄2 (3.12)

Solving this constraint ford1 andd2 we get:

d1 = r1 cosφ2 + r2

sinφ2
− s1 (3.13)

d2 = −r2 cosφ2 + r1

sinφ2
+ s2 (3.14)

See also figure 3.5. Note that by constructionr ′(θ) = −d(θ). So a solution forr (θ) can be
used in two ways to arrive at a solution ford(θ): (1) using the propertyd(θ) = −r ′(θ) of the
radius function, or (2) using expressions 3.13 and 3.14. In other words, to recover the shape it is
sufficient to reconstruct the radius function.

3.2 Geometric Interpretation of Force/Torque Balance and Shape

Before we will derive the equations for the local shape of the object as a function of the palm
angles and sensor values, we will take a step back and analyze how stable poses relate to palm
angles and orientation. This is important for deciding whether we canglobally reconstruct the
shape. In other words, we would like to answer the question: is it always possible to reconstruct
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the entire shape? To answer this question it will be useful to consider the motion of the center of
mass and the center of rotation relative to each other.

For force/torque balance the lines through the normals at the contact points and the gravity
force acting on the center of mass intersect at one point called thecenter of rotation(see figure 3.1).
The lines through the normals can be described by:

`1 : q1 7→ s1t̄1 + q1n̄1 (3.15)

`2 : q2 7→ −s2t̄2 + q2n̄2 (3.16)

These lines intersect if and only if

q1 = s2−s1 cosφ2
sinφ2

andq2 = s1−s2 cosφ2
sinφ2

.

Using the generalized contact support functions we can simplify this toq1 = −d̃2/ sinφ2 and
q2 = −d̃1/ sinφ2. So we can write the following equations for the center of mass,cm, and the
center or rotation,cr :

cm(ψ, φ1, φ2) = s1t̄1 − Rx1

= −r̃2t̄1/ sinφ2 − Rx1 (3.17)

cr (ψ, φ1, φ2) = s1t̄1 + q1n̄1

= s1t̄1 − d̃2n̄1/ sinφ2

= −(r̃2t̄1 + d̃2n̄1)/ sinφ2 (3.18)

In the appendix it is shown that the partial derivatives ofcm andcr can be written as

∂cm

∂ψ
= − d̃2t̄1

sinφ2
−

( ∂

∂ψ
R

)
x1, (3.19)

∂cr

∂ψ
= −(

v1n̄2 − v2n̄1 − r̃2n̄1 + d̃2t̄1

)
/ sinφ2. (3.20)

and that we can rewrite equation 3.19 in terms of the relative distance between the center of mass
and the center of rotation:

∂cm

∂ψ
=

(
0 −1
1 0

)
(cm − cr ) . (3.21)

With the results above we can easily describe all the stable poses of an object. We define a
stable poseas a local minimum of the potential energy function with respect toψ . The potential
energy of an object in two-point contact with the palms is simply the Y coordinate ofcm, which

can be written ascm ·
(

0
1

)
. At a local minimum the first derivative with respect toψ of this

expression will be equal to 0. We can write this condition using equation 3.21 as(cm − cr ) ·
(

1
0

)
.

In other words, at the minima of the potential energy function the X coordinates ofcm andcr
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φ  + φ  = π21
outside boundary

inside boundary

(a) The stable pose surface in configuration space (b) The corresponding object shape

Figure 3.6: Stable poses for a particular shape. Note that only one 2π period ofψ is shown in (a)
and the surface extends from−∞ to ∞ in theψ direction, i.e., the inside and outside boundary
do not meet.

have to be equal. Since we assume that the object is always in force/torque balance and, hence,
at a minimum of the potential energy function, we can directly observe the X coordinate of the
center of mass. Or, equivalently, we can directly observe the projection onto the X-axis of the
vector from the center of mass to contact point 1 by using expressions 3.17 and 3.18:

(cm − cr ) ·
(

1
0

)
= 0 ⇒ (Rx1) ·

(
1
0

)
= −d̃2

sinφ1
sinφ2

(3.22)

For a local minimum of the potential energy function the Y coordinate of the second partial
derivative ofcm with respect toψ has to be greater than 0, i.e.,∂

∂ψ

(
(cm − cr ) · (

1
0

) )
> 0. The

stable poses induce a two-dimensional subset of the(φ1, φ2, ψ)-configuration space. Figure 3.6
shows all the stable poses for a given shape. These stable configurations form a spiraling surface.
From figure 3.6 it follows that for this particular shape it is indeed possible to reconstruct the
entire shape, because there exists a path on the surface of stable configurations between any two
stable configurations. Below we will show that this is true in general, i.e., we will prove that:

For any smooth convex shape there exists a surface of stable configurations such
that we can bring the object from any orientation to any other orientation by moving
along the surface.

We prove this statement by considering the boundaries of the stable configuration surface. Let
us define theinside boundaryas those configurations where both the first and second derivative
with respect toψ of the potential energy function vanish. Using expressions 3.17– 3.22 we can
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write these two constraints as:

(cm − cr ) · (1
0

) = −d̃2 sinφ1/ sinφ2 − (cosψ
− sinψ

) · x1 = 0, (3.23)

∂

∂ψ

(
(cm − cr ) · (

1
0

) ) = (
v1 sin(φ1 + φ2)+ (v2 + r̃2) sinφ1

)
/ sinφ2 + (sinψ

cosψ

) · x1 = 0. (3.24)

The outside boundaryof the stable configuration surface is determined by limits on the palm
angles:φ1, φ2 > 0 andφ1 + φ2 < π . These limits can be geometrically interpreted as follows:

φ1 = 0+, 0 < φ2 < π : Whenφ2 = π−, both palms are nearly horizontal, pointing in nearly
opposite directions. In the limit, asφ2 approachesπ , s1 = s2 = 0, and the contact point is
a minimum of the radius function (since the center of mass is right above the contact point
and thereforer ′(θ) = −d(θ) = 0). Asφ2 decreases, contact point 2 covers nearly half
the shape. Asφ2 approaches 0, the palms form an antipodal grasp. The contact points are

then at a minimum of the diameter functionD(θ)
def≡ r (θ)+ r (θ − π).

φ2 = 0+, 0 < φ1 < π : Whenφ1 = 0+, this boundary connects to the previous one. Asφ1

increases, the palms maintain an antipodal grasp, so the contact points do not change. As
φ1 approachesπ , palm 1 and 2 both point to the left.

0 < φ1 < π, φ2 = π− − φ1: This case is symmetrical to the first one. Now contact point 1
covers nearly half the shape.

From this geometric interpretation it is clear that we can bring the object to any orientation by
moving along these outside boundaries. More importantly, by following these boundaries we
can reconstruct the entire shape. However, the boundary itself is not part of the surface, so
the question is whether there always exist stable configurations arbitrarily close to the outside
boundary. The answer is “yes”,provided the inside and outside boundary do not meet. Let a
generic smooth convex objectbe defined as a smooth convex object in general position such that
none of the singular cases described below apply. Below we will prove that for a generic smooth
convex shape the inside boundarynever(with probability 1) meets the outside boundary and,
hence, there exists a path on the surface connecting any two orientations of the object. For each
outside boundary condition we can analyze what conditions must hold for the inside boundary
to meet the outside boundary:

φ1 = 0+: Without loss of generality, we can assume thatψ = 0, in this case and below. If
φ1 = 0+, then equations 3.23 and 3.24 simplify tox1 · (1

0

) = 0 andx1 · (0
1

) = −v1. In other
words, contact point 1 is right below the center of mass. Furthermore, if we draw a circle
with radius equal tov1 and tangent to the contact point, its center coincides with the center
of mass. For each point on the shape we can determine the center of the circle with radius
v1 and tangent to that point. The locus of these circle centers forms a curve. For a generic
smooth object the center of mass is not on this curve.
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Figure 3.7: Forφ2 = 0 the inside and outside boundary meet if the sum of the radii of curvature
of two antipodal points is equal to the distance between these points.

φ2 = 0+: Since the palms make an antipodal grasp, the possible contact points on the object are
restricted to a finite set. Now for the inside boundary to meet the outside boundary we
have the following condition:

lim
φ2↓0

(
(v1 sin(φ1 + φ2)+ (v2 + r̃2) sinφ1)/ sinφ2 + x1 · (

0
1

) ) = 0. (3.25)

This limit only converges if

lim
φ2↓0

(
v1 sin(φ1 + φ2)+ (v2 + r̃2) sinφ1

) = 0. (3.26)

−r̃2 will converge to the distance between the contact points. So expression 3.26 converges
if the sum of the radii of curvature at the contact points is equal to the distance between
the contact points. A geometric interpretation of this constraint is shown in figure 3.7. A
generic smooth object does not have such a pair of antipodal points.

φ1 + φ2 = π : This case is, as before, symmetrical to the first one.

For practical reasons it is undesirable to plan paths on the surface that are close to the
boundary. First, we would need palms of infinite length for an antipodal grasp. We can get
around this by removing the joint between the palms, thereby allowing the palms to move freely.
For the analysis it is not essential that the palms are connected; the analysis just depends on
relative orientations of the palms. The second reason that moving on the boundary of the stable
configuration surface is undesirable is that for a wide angle between the palms, we are relying
heavily on the assumption that there is no friction. Even the slightest amount of friction will
throw off our estimate of the X-coordinate of the center of mass.

Figure 3.6 also shows that for almost all combinations orφ1 andφ2 there exist exactly two
stable poses. However, it is possible that for a givenφ1 andφ2 there are many stable poses. We
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palm 2 palm 1

Figure 3.8: Many stable poses are possible for a given palm configuration that produce the same
sensor readings.

can construct a shape with an arbitrary number of stable poses for a given palm configuration
in the following way. Consider the arrangement of lines through the contact normals and the
line through the center of mass (along the direction of gravity). We can rotate this arrangement
around the center of mass and then translate along the line through the center of mass to create
a new stable configuration. We pick the new contact points to be at the same distance from the
intersection of the lines as in the original arrangement. This means that this new configuration
produces the same sensor readings as well. We can repeat this process, picking a different amount
of translation at each step to create an arbitrary number of stable configurations. We can create
a smooth convex shape that has these stable poses in the following way. Consider the convex
polygon that has the contact points of all these stable poses as vertices. If such a polygon does
not exist we remove the poses that cause the concavities. The arrangement of lines described
above corresponds to critical points of the potential energy function. To make sure that all the
critical points are local minima we need to consider the second derivative of the potential energy
function (see equation 3.24). For each contact point we can pick the radius of curvature to be
arbitrarily large such that the second derivative is greater than 0. We can locally deform the
polygon around each vertex such that at the contact point the radius of curvature is as desired and
the shape remains convex. Figure 3.8 illustrates this geometric construction. Since the polygon
induced by the contact points is convex, there exists a smooth convex shape with these stable
poses.
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3.3 Recovering Shape

We can write the derivativėx of the functionx(θ) that describes the shape asθ̇v(θ)t(θ). So if
we can solve foṙθ , v(θ) and the initial conditions, we can find the shape by integratingẋ. In
other words, if we can observe the curvature at the contact points and the rotational velocity of
the object, we can recover the shape of an unknown object. By differentiating the generalized
support functions with respect to time, we can rewrite expressions 3.10 and 3.11 as

v1 = −
˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sinφ2

(3.27)

v2 = −
˙̃r1 + θ̇ d̃1

(θ̇ + φ̇2) sinφ2

(3.28)

See the appendix for details. So in order to observe the curvature at the contact points, we need
to derive an expression for the rotational velocity of the object that depends only on palm angles,
sensor values and their derivatives. Note that we can not observe the curvature at the two contact
points if θ̇ = 0 or θ̇ + φ̇2 = 0, respectively.

We can recover the rotational velocity by looking at the constraint the force/torque balance
imposes on the motion of the object. Recall equation 3.22:

(Rx1) ·
(

1
0

)
= −d̃2

sinφ1
sinφ2

(3.29)

The left-hand side of this equation can be rewritten as

(Rx1) ·
(

1
0

)
= (R(r1n1 + d1t1)) ·

(
1
0

)
(3.30)

= r1 sinφ1 − d1 cosφ1 (3.31)

This expression (implicitly) depends on the orientation of the object. In the appendix it is shown
how by differentiating this expression and the right-hand side of equation 3.29 we can obtain the
following expression for the rotational velocity of the object:

ψ̇ =
˙̃r2 cosφ1 − ˙̃d2 sinφ1 + d̃2φ̇2

sinφ12
sinφ2

r1 sinφ12 + (r2 + r̃2) sinφ1 + d̃2 cosφ1

, (3.32)

whereφ12 = φ1 + φ2. This expression foṙψ depends on the control inputs, the sensor values,
their derivatives and the current values of radius function at the contact points. The system of
differential equations describing the (sensed) shape and motion can be summarized as follows:

ṙ1 = −d1(φ̇1 − ψ̇) (3.33)

ṙ2 = −d2(φ̇12 − ψ̇) (3.34)

ψ̇ =
˙̃r2 cosφ1 − ˙̃d2 sinφ1 + d̃2φ̇2

sinφ12
sinφ2

r1 sinφ12 + (r2 + r̃2) sinφ1 + d̃2 cosφ1

(3.35)



24 Mark Moll & Michael Erdmann

So far we have assumed that we have sensor data that is continuous and without any error. In
practice sensors will be discrete, both in time and space, and there will also be errors. We would
like to recover the shape of an unknown object in such a setting as well. There are two main
directly observable error terms at each time step. First, one can check the error in the force/torque
balance constraint (equation 3.29). Let that error be denoted byef . So att = ti , i = 1,2, . . .,
ef (ti ) is equal to

ef (ti ) = [
(R(ψ̂)x̂1) ·

(
1
0

)
+ d̃2

sinφ1
sinφ2

]∣∣∣
t=ti
, (3.36)

where ‘̂ ’ denotes the estimated value of a variable. The second observable error is the error in
the two-point contact constraint (equation 3.9). Let this error be denoted byec. In other words,

ec(ti ) = [
R(ψ̂)(x̂1 − x̂2)− s1t̄1 − s2t̄2

]∣∣∣
t=ti

(3.37)

Our program searches for the initial conditions of our system by minimizing the sum of all locally
observable errors.

In our current implementation we use a fourth-order Adams-Bashforth-Moulton predictor-
corrector method to integrate equations 3.33–3.35. This high-order method tends to filter out
most of the noise and numerical errors. In our simulation results hardly any error accumulates
during integration (see section 3.4).

3.4 Simulation Results

Figure 3.9 shows an example of the shape reconstruction process. The results are based on
numerical simulation. 270 measurements were used to reconstruct the shape. In each frame the
part of the shape that has been observed up to that point in time is shown. Also drawn are the
contact points, the center of mass, and the palms. Notice how the (observed) shape sometimes
intersects the palms. This means that there is a conflict between the currently observed shape
and the previously observed shape, which could potentially be used to guide the search for initial
conditions. The motion of the palms is open-loop. Initially palm 1 and palm 2 are nearly
horizontal; the object is squeezed (but without friction!) between the palms. The motion of the
palms can roughly be described as a sequence of squeeze-and-rotate motions and motions where
one of the palms stays put and the other palm opens up. Notice how in the penultimate frame the
simulator misgauges the shape, but has recovered in the last frame.

In figure 3.10 the differences are shown between the reconstructed and actual shape and
motion of the object. One can not directly observe the errors inψ̇ andψ , but onecanobserve the
error in the X-coordinate of the center of mass and the error in the two-point contact constraint.
These errors are shown in figure 3.11. Note that the big errors in error plot 3.11(d) occur at the
same times as when the rotational speed of the object was misgauged. This suggests that our
system could at least detect where the observed shape will be wrong. It is possible that the system
could even detect that such a situation is approaching and maybe even prevent it by changing the
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motion of the palms. Also, the error in the norm of the contact point vector is very small, but
does not appear to be completely random, suggesting that there is still room for improvement in
the integration step.
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 t=0.03  t=0.07  t=0.11  t=0.14

 t=0.18  t=0.22  t=0.26  t=0.29

 t=0.33  t=0.37  t=0.41  t=0.44

 t=0.48  t=0.52  t=0.55  t=0.59

 t=0.63  t=0.67  t=0.70  t=0.74

 t=0.78  t=0.81  t=0.85  t=0.89

 t=0.93  t=0.96  t=1.00

Figure 3.9: The frames show the reconstructed shape after 10, 20,…,270 measurements. The
three large dots indicate the center of mass and the contact points at each time, the smaller dots
show the part of the shape that has been reconstructed at that time.
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(a) The actual shape and the observed shape.
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Figure 3.10: The differences between the actual and observed shape.
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Figure 3.11: The observable error for the reconstructed shape.
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(a) The contact point of a marble being rolled on
a touchpad. X and Y are measured in ‘tactels.’
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Figure 3.12: Resolution and sensing frequency of the VersaPad

3.5 Experimental Results

The tactile sensors we are using are touchpads made by Interlink Electronics (http://www.
interlinkelec.com). These touchpads are most commonly used in notebook computers. They
use so-called force sensing resistors to measure the location and the applied pressure at the con-
tact point. One of the advantages of this technology, according to Interlink, is that it does not
suffer as much from electrostatic contamination as capacitance-based touchpads. If there is more
than one contact point, the pad returns the centroid. The physical pad has a resolution of 1000
counts per inch (CPI) in the X and Y direction, but the firmware limits the resolution to 200CPI.
It can report 128 pressure levels. The pad measures 55.5 × 39.5mm2. Sensor data can be read
out through aRS232 serial port connection.

Figure 3.12 shows the results of a simple test to establish the feasibility of the touchpad.
The test consisted of rolling a marble around on the touchpad and tracking the contact point.
Figure 3.12(a) shows the ‘curve’ traced out by the contact point. Figure 3.12(b) shows how fast
we can get sensor readings from the touchpad. Notice how the times between measurements are
roughly centered around 3 bands. This could be related to the way our driver polls the touchpad
for data; further tweaking might increase the speed at which measurements are reported.

For the actual palms, we are using an AdeptSCARA-type arm to control two planar surfaces
connected with hinges. The Adept robot arm holds the endpoint of one palm. The endpoint of
the other palm is attached to a fixed base. Figure 3.13 shows the basic idea (not to scale). The
touchpads are mounted on the two surfaces and connected to aPC. It is important to realize
that this experimental setup is just meant to be a proof of concept. Mechanically the sensing
mechanism can be much simpler. More importantly, the palms do not need to be connected at all:
the analysis only depends on the relative angle between the palms and the world. So in theory,
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Figure 3.13: Setup of the palms

our proposed sensing strategies can also be applied to a robot hand equipped with tactile sensors.
Our actual experimental setup is shown in figure 3.14. The white arrows on the object and the
palms are tracked by an Adept vision system in order to establish ‘ground truth’, which can be
compared with the shape and motion inferred from the tactile data.

Figures 3.15(a) and 3.15(b) show the reconstructed shape and motion, respectively. The
observed motion is far from perfect, but the observed shape comes close to the actual shape.
This seems to suggest that the system of differential equations 3.33–3.35 is fairly stable in this
case, i.e., the errors in the motion did not cause the radius function to shoot off to infinity. The
palms made back-and-forth motions in order to cover the shape several times. This means that
we can prune those parts of the reconstructed shape that have been touched only once. For
instance, in figure 3.15(a) we can eliminate the sparse point distribution in the top right and
bottom middle. To determine which parts to eliminate one can draw a curve interpolating the
points(ti , r (θ(ti ))), i = 1, . . . The points we can eliminate are those for which(ti , r (θ(ti ))) is
the only intersection with the linet = ti .
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Figure 3.14: Experimental setup
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Figure 3.15: Experimental Results



4 Dynamic Shape Reconstruction

In this chapter we drop the assumption that force/torque balance is maintained at all time. It
turns out that it is still possible to observe the shape, but now we will need to consider second-

order effects. Our approach is to construct anobserverfor our system. The first step is to write
our system in the following form:

q̇ = f (q)+ τ1g1(q)+ τ2g2(q), (4.1)

y = h(q) (4.2)

whereq is a state vector,f , g1 andg2 are vector fields, andh is called the output function. In
our case, the state is a vector of sensor readings and the configuration of the robot and the output
function returns (a function of) the sensor readings. The vector fieldsg1 andg2 are called the
input vector fieldsand describe the rate of change of our system as torques are being applied on
palm 1 and palm 2, respectively, at their point of intersection. The vector fieldf is called thedrift
vector field. It includes the effects of gravity.

The second step is to find out whether the system described by equations 4.1 and 4.2 is
observable. Informally, this notion can be defined as: for any two states there exists a control
strategy such that the output function will return a different value after some time.

The final step is then to construct the actual observer, which is basically a control law. We can
estimate the initial state and if our estimate is not too far from the true initial state, the observer
will rapidly converge to the actual state. For more on nonlinear control and nonlinear observers
see, e.g., (Isidori, 1995) and (Nijmeijer and van der Schaft, 1990).

4.1 Equations of Motion

The dynamics of our simple model are very straightforward. We assume the effect of gravity on
the palms is negligible. As in the previous chapter we assume there is no friction. The contact
forces exert a pure torque on the palms. LetFc1 = fc1n̄1 andFc2 = fc2n̄2 be equal to the contact
forces acting on the object. The torques generated by the two contact forces on the object are
then

τc1 = (Rx1)× Fc1 = − fc1d1 (4.3)

τc2 = (Rx2)× Fc2 = − fc2d2 (4.4)

32
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Figure 4.1: Forces acting on the palms and the object.

The dynamics of the system are described by the following equations (see also figure 4.1):

ma0 = Fz + Fc1 + Fc2 (4.5)

I0α0 = τc1 + τc2 = − fc1d1 − fc2d2, fc1, fc2 ≥ 0 (4.6)

I1α1 = τ1 − fc1s1 (4.7)

I2(α1 + α2) = τ2 + fc2s2 (4.8)

Here the subscripti , (i = 0,1,2) refers to the object, palm 1 and palm 2, respectively.Fz = mg is
the gravitational force on the object. Note thatα2 is the angular acceleration of palm 2 measured
with respect to palm 1, so thatφ̈2 = α2. Solving fora0 andα0, we get

a0 = − I1α1 − τ1

ms1
n̄1 + I2(α1 + α2)− τ2

ms2
n̄2 + g (4.9)

α0 = I1α1 − τ1

mρ2s1
d1 − I2(α1 + α2)− τ2

mρ2s2
d2 (4.10)

whereρ = √
I0/m is the radius of gyration of the object.

We can measure the massm by letting the object come to rest. In that casea0 = 0 and we can
solve form by usingm = −(Fc1 + Fc2)/g. We have to solve for the radius of gyration by other
means, shown in the next section. The mass properties of the palms are assumed to be known.

4.2 General Case

We will now rewrite the constraints on the shape and motion of the object in the form of equa-
tion 4.1. We will introduce the state variablesω0,ω1 andω2 to denoteψ̇ , φ̇1 andφ̇2, respectively.
Recall the position constraint on contact point 1 (equation 3.7):

s1t̄1 = cm + Rx1
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We can differentiate this constraint twice to get a constraint on the acceleration of contact point 1.
The right-hand side will contain a term with the curvature at contact point 1. In the appendix
it is shown how the acceleration constraint can be turned into the following constraint on the
curvature at contact point 1:

v1 = 2ṡ1ω1 + s1α1 − ω2
0r1 − a0 · n̄1 + α0d1

ω2
1 − ω2

0

(4.11)

From before (equations 3.6 and 3.27) we had:

v1 = −
˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sinφ2

= −(−ṡ1 sinφ2 − s1ω2 cosφ2)+ (ω12 − ω0)(s1 cosφ2 − s2)

(ω1 − ω0) sinφ2
,

(4.12)

whereω12 is equal toω1 + ω2. We can equate these two expressions forv1 and solve foṙs1:

ṡ1 = −s1α1 − ω2
0r1 − a0 · n̄1 + α0d1

ω1 − ω0
− ω1 + ω0

tanφ2
s1 + (ω1 + ω0)(ω12 − ω0)

(ω1 − ω0) sinφ2
s2

Similarly we can derive an expression forṡ2. The differential equations describing our system
can be summarized as follows:

ṙ1 = −d1(ω1 − ω0) (4.13)

ṙ2 = −d2(ω12 − ω0) (4.14)

ω̇0 = α0 (4.15)

ṡ1 = −s1α1 − ω2
0r1 − a0 · n̄1 + α0d1

ω1 − ω0
− ω1 + ω0

tanφ2
s1 + (ω1 + ω0)(ω12 − ω0)

(ω1 − ω0) sinφ2
s2 (4.16)

ṡ2 = −s2α12 − ω2
0r2 − a0 · n̄2 + α0d2

ω12 − ω0
+ ω12 + ω0

tanφ2
s2 − (ω12 + ω0)(ω1 − ω0)

(ω12 − ω0) sinφ2
s1 (4.17)

φ̇1 = ω1 (4.18)

ω̇1 = α1 (4.19)

φ̇2 = ω2 (4.20)

ω̇2 = α2 (4.21)

ρ̇ = 0 (4.22)

Equation 4.13 and 4.14 follow from the properties of the radius function. Recall from section 3.1
that d1 andd2 can be written in terms ofs1, s2, r1, r2 andφ2. Therefored1 andd2 do not need
to be part of the state of our system. Leaving redundancies in the state would also make it hard,
if not impossible, to prove observability of the system. Note also that the control inputsτ1 and
τ2 are ‘hidden’ insidea0 andα0. The expressions−a0 · n̄1 + α0d1 and−a0 · n̄2 + α0d2 can be
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rewritten using equations 4.9 and 4.10 as

−a0 · n̄1 + α0d1 = (I1α1 − τ1)(ρ
2 + d2

1)

mρ2s1
+ (I2α12 − τ2)(ρ

2 cosφ2 − d1d2)

mρ2s2
− g cosφ1,

(4.23)

−a0 · n̄2 + α0d2 = −(I1α1 − τ1)(ρ
2 cosφ2 − d1d2)

mρ2s1
− (I2α12 − τ2)(ρ

2 + d2
2)

mρ2s2
+ g cosφ12,

(4.24)

whereα12 = α1 + α2 andφ12 = φ1 + φ2.
Let q = (r1, r2, ω0, s1, s2, φ1, ω1, φ2, ω2, ρ)

T be our state vector. Sinceτ1 and τ2 appear
linearly in equations 4.13–4.22, our system fits the format of equation 4.1. The drift vector field
is

f (q) =




−d1(ω1 − ω0)

−d2(ω12 − ω0)
I1α1d1
mρ2s1

− I2α12d2
mρ2s2

−s1α1+ω2
0r1+g cosφ1

ω1−ω0
− I1α1(ρ

2+d2
1)

mρ2s1(ω1−ω0)
− I2α12(ρ

2 cosφ2−d1d2)

mρ2s2(ω1−ω0)
− ω1+ω0

tanφ2
s1 + (ω1+ω0)(ω12−ω0)

(ω1−ω0) sinφ2
s2

−s2α12−ω2
0r2+g cosφ12

ω12−ω0
− I1α1(ρ

2 cosφ2−d1d2)

mρ2s1(ω12−ω0)
− I2α12(ρ

2+d2
2)

mρ2s2(ω12−ω0)
+ ω12+ω0

tanφ2
s2 − (ω12+ω0)(ω1−ω0)

(ω12−ω0) sinφ2
s1

ω1

α1

ω2

α2

0




,

(4.25)

The input vector fields are

g1(q) =




0
0

− d1
mρ2s1

ρ2+d2
1

mρ2s1(ω1−ω0)
ρ2 cosφ2−d1d2
mρ2s1(ω12−ω0)

0
0
0
0
0




and g2(q) =




0
0
d2

mρ2s2
ρ2 cosφ2−d1d2
mρ2s2(ω1−ω0)

ρ2+d2
2

mρ2s2(ω12−ω0)

0
0
0
0
0




. (4.26)

Finally, our output functionh(q) = (
h1(q), . . . ,hk(q)

)T
is

h(q) = (s1, s2, φ1, ω1, φ2, ω2)
T . (4.27)
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Before we can determine the observability of this system we need to introduce some more
notation. We define thedifferential dφ of a functionφ defined on a subset ofRn as

dφ(x) = (
∂φ

∂x1
, . . . ,

∂φ

∂xn

)
The Lie derivative of a functionφ along a vector fieldX, denotedL Xφ, is defined as

L Xφ = X · dφ

Todetermine whether the system above is observable we have toconsider theobservationspaceO.
The observation space is defined as the linear space of functions that includesh1, . . . ,hk, and all
repeated Lie derivatives

L X1 L X2 · · · L Xl h j , j = 1, . . . , k, l = 1,2, . . . (4.28)

whereXi ∈ {f ,g1,g2}, 1 ≤ i ≤ l . Let theobservability codistributionat a stateq be defined as

dO = span{d H(q)|H ∈ O}. (4.29)

Then the system described by equation 4.1 is locally observable at stateq if dim dO(q) = n,
wheren is the dimensionality of the state space (Hermann and Krener, 1977). For the system
described by equations 4.13–4.22 this condition is too complicated to verify analytically, but one
can still do this numerically.

The differentials of the components of the output function are

ds1 = (0,0,0,1,0,0,0,0,0,0)T (4.30)

ds2 = (0,0,0,0,1,0,0,0,0,0)T (4.31)

dφ1 = (0,0,0,0,0,1,0,0,0,0)T (4.32)

dω1 = (0,0,0,0,0,0,1,0,0,0)T (4.33)

dφ2 = (0,0,0,0,0,0,0,1,0,0)T (4.34)

dω2 = (0,0,0,0,0,0,0,0,1,0). (4.35)

To determine whether the system is observable we need to compute (numerically) the differentials
of at least four Lie derivatives. In generaldLg1s1, dLg2s2, dLg1 Lg1s1 anddLg2 Lg2s2 and the
differentials above will span the observability codistributiondO. Note that we can not use the
vector fieldf , because we do not have expressions forα1 andα2 in terms of the state variables
and, hence, we can not compute the differentials of Lie derivatives alongf .

The results above show that in general we will be able to observe the shape of an unkown
object. Moreover, the output function contains enough information to recover a constant like the
radius of gyration. This leads us to suspect that it may be possible to recover another constant as
well: the coefficient of friction. Currently friction is not modeled, but we plan to address this in
future work.
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4.3 Moving the Palms at a Constant Rate

Although we have shown that the system in the previous section is observable, this does not
directly translate to an actual observer. The observability tells us that an observer exists, but
constructing a well-behaved observer for a nonlinear system is nontrivial and is still an active
area of research. Many observers (such as those proposed by Gauthier et al. (1992) and Zimmer
(1994)) rely on Lie derivatives of the drift field. If we want to use such an observer we have
to constrain the motion of the palms by restricting them to move at a constant rate, i.e.,α1 =
α2 = 0. With this constraint the angular acceleration of the palms vanishes and we do not
have to compute derivatives of the accelerations with respect to the state variables. Provided the
palms are sufficiently stiff compared to the object, we can easily realize this. Note that this is an
assumptionand that in general a torque-based control system does not automatically translate to
a velocity-based or position-based control system. For simplicity we will also assume that we
already have recovered the radius of gyration.

Suppose we move palm 1 and 2 at the same rate. Thenω2 = 0, since it measures the relative
rate of palm 2 to palm 1. Our state vector then reduces toq = (r1, r2, ω0, s1, s2, φ1)

T . The output
function is nowh(q) = (s1, s2, φ1)

T and the drift vector field simplifies to

f (q) =




−d1(ω1 − ω0)

−d2(ω1 − ω0)

0
ω2

0r1+g cosφ1

ω1−ω0
+ (ω1 + ω0)(s2 − s1 cosφ2)/ sinφ2

−ω2
0r2+g cosφ12

ω1−ω0
+ (ω1 + ω0)(s2 cosφ2 − s1)/ sinφ2

ω1



. (4.36)

We can compute the differentials and Lie derivatives that are necessary to prove the observability:

ds1 = (0,0,0,1,0,0)T (4.37)

ds2 = (0,0,0,0,1,0)T (4.38)

dφ1 = (0,0,0,0,0,1)T (4.39)

L f s1 = f · ds1 = ω2
0r1+g cosφ1

ω1−ω0
+ (ω1 + ω0)(s2 − s1 cosφ2)/ sinφ2 (4.40)

dLf s1 = ( ω2
0

ω1−ω0
, 0, r1ω0(2ω1−ω0)+g cosφ1

(ω1−ω0)
2 + s2−s1 cosφ2

sinφ2
, −ω1+ω0

tanφ2
,
ω1+ω0
sinφ2

, − g sinφ1
ω1−ω0

)T
(4.41)

L f s2 = −ω2
0r2 + g cosφ12

ω1 − ω0
+ (ω1 + ω0)(s2 cosφ2 − s1)/ sinφ2 (4.42)

dLf s2 = (
0,

−ω2
0

ω1−ω0
,

−r2ω0(2ω1−ω0)+g cosφ12
(ω1−ω0)

2 + s2 cosφ2−s1
sinφ2

, −ω1+ω0
sinφ2

,
ω1+ω0
tanφ2

, − g sinφ12
ω1−ω0

)T
(4.43)

L f L f s1 = − 2ω2
0ω1(r1 cosφ2+r2)

(ω1−ω0) sinφ2
− s1ω1(2ω0 + ω1)− g sinφ1(ω0+2ω1)

ω1−ω0
(4.44)

dLf L f s1 = ( −2ω2
0ω1

(ω1−ω0) tanφ2
,

−2ω2
0ω1

(ω1−ω0) sinφ2
,

−2ω0ω1(2ω1−ω0)(r1 cosφ2+r2)

(ω1−ω0)
2 sinφ2

− 2s1ω1 − 3ω1g sinφ1
(ω1−ω0)

2 ,

− ω1(2ω0 + ω1), 0, −g cosφ1(ω0+2ω1)

ω1−ω0

)T
(4.45)
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It can be shown that the determinant of the matrix that has columsds1, ds2, dφ1, dLf s1, dLf s2

anddLf L f s1 is equal to

gω4
0ω1 sinφ1

(ω1 − ω0)4
(4.46)

In other words, the system is observable as long asω0 andω1 are nonzero and not equal to each
other. Note that the system is observable solely in terms of the drift vector field.

Let us now consider the caseω1 = 0: palm 1 is fixed and palm 2 is moving at a constant
rate. The state vector then reduces toq = (r1, r2, ω0, s1, s2, φ2)

T . The output function is now
h(q) = (s1, s2, φ2)

T and the drift vector field simplifies to

f (q) =




d1ω0

−d2(ω2 − ω0)

0

−ω2
0r1+g cosφ1

ω0
− ω0s1

tanφ2
− (ω2−ω0)s2

sinφ2
−ω2

0r2+g cosφ12

ω2−ω0
+ (ω2+ω0)s2

tanφ2
+ (ω2+ω0)ω0s1

(ω2−ω0) sinφ2

ω2




(4.47)

As before, we need to compute the differentials and Lie derivatives to determine observability:

ds1 = (0,0,0,1,0,0)T (4.48)

ds2 = (0,0,0,0,1,0)T (4.49)

dφ2 = (0,0,0,0,0,1)T (4.50)

L f s2 = −ω2
0r1+g cosφ1

ω0
− ω0s1

tanφ2
− (ω2−ω0)s2

sinφ2
(4.51)

dLf s1 = ( − ω0, 0, −r1 + g cosφ1
ω2

0
− s1

tanφ2
+ s2

sinφ2
, − ω0

tanφ2
, −ω2−ω0

sinφ2
,
ω0s1+(ω2−ω0)s2 cosφ2

sin2 φ2

)T

(4.52)

L f s2 = −ω2
0r2+g cosφ12

ω2−ω0
+ (ω2+ω0)s2

tanφ2
+ (ω2+ω0)ω0s1

(ω2−ω0) sinφ2
(4.53)

dLf s2 = (
0,

−ω2
0

ω2−ω0
,

−r2ω0(2ω2−ω0)+g cosφ12
(ω2−ω0)

2 + s2
tanφ2

− s1(ω
2
2+2ω0ω2−ω2

0)

(ω2−ω0)
2 sinφ2

,
(ω2+ω0)ω0

(ω2−ω0) sinφ2
,

ω2+ω0
tanφ2

,
−g sinφ12
ω2−ω0

− s2(ω2+ω0)

sin2 φ2
− (ω2+ω0)ω0s1 cosφ2

(ω2−ω0) sin2 φ2

)T
(4.54)

L f L f s2 = − 2ω2
0ω2(r1+r2 cosφ2)

(ω2−ω0) sinφ2
− s2ω2(2ω0 + ω2)− g(ω0+2ω2) sinφ12

ω2−ω0
(4.55)

dLf L f s2 = ( −2ω2
0ω2

(ω2−ω0) sinφ2
,

−2ω2
0ω2

(ω2−ω0) tanφ2
,

−2ω0ω2(2ω2−ω0)(r1+r2 cosφ2)

(ω2−ω0)
2 sinφ2

− 2s2ω2 − 3ω2g sinφ12
(ω2−ω0)

2 ,

0,−ω2(2ω0 + ω2),
2ω2

0ω2(r1 cosφ2+r2)

(ω2−ω0) sin2 φ2
− −g cosφ12(ω0+2ω2)

ω2−ω0

)T
(4.56)

It can be shown that the determinant of the matrix that has columsds1, ds2, dφ1, dLf s1, dLf s2

anddLf L f s2 is equal to

− 2ω3
0ω

2
2

(ω2 − ω0)
3 sinφ2

[( cosφ1
ω0

+ sinφ1 sinφ12
2ω2

)
g + ω0r1 + s1(ω2+ω0)

tanφ2
+ s2(ω2−ω0)

sinφ2

]
. (4.57)



Shape Reconstruction in a Planar Dynamic Environment 39

This determinant is generally nonzero ifω0 andω2 are nonzero and not equal to each other. So
even if we move only palm 2 at a constant rate and hold palm 1 fixed, the system is still locally
observable.

4.4 Fixed Palms

For illustrative purposes we will now consider one more special case, where it is possible to
analytically determine observability. Suppose our control strategy consists of keeping the palms
in the same position. In other words,ω1 = ω2 = α1 = α2 = 0. Note that this is not the same
as clamping the palms, since we still assume that the palms are actively controlled. We can
then reduce our state even further toq = (r1, r2, ω0, s1, s2)

T . The input and control vector fields
simplify to

f (q) =




d1ω0

d2ω0

0
− g cosφ1

ω0
− ω0

(
r1 + s1

tanφ2
− s2

sinφ2

)
− g cosφ12

ω0
+ ω0

(
r2 + s2

tanφ2
− s1

sinφ2

)


 ,

g1(q) =




0
0

− d1
mρ2s1

− ρ2+d2
1

mρ2s1ω0

− ρ2 cosφ2−d1d2
mρ2s1ω0



, and g2(q) =




0
0
d2

mρ2s2

− ρ2 cosφ2−d1d2
mρ2s2ω0

− ρ2+d2
2

mρ2s2ω0



. (4.58)

The output function is now simplyh(q) = (s1, s2)
T . Since the output function has two com-

ponents and our state space is five-dimensional, we need to take at least three Lie derivatives.
Consider the following differentials and Lie derivatives:

ds1 = (0,0,0,1,0)T (4.59)

ds2 = (0,0,0,0,1)T (4.60)

L f s1 = − g cosφ1
ω0

− ω0

(
r1 + s1

tanφ2
− s2

sinφ2

)
(4.61)

dLf s1 =
(

− ω0,0,
g cosφ1
ω2

0
− (

r1 + s1
tanφ2

− s2
sinφ2

)
,− ω0

tanφ2
,

ω0
sinφ2

)T

(4.62)

L f s2 = − g cosφ12
ω0

− ω0

(
r2 + s2

tanφ2
− s1

sinφ2

)
(4.63)

dLf s2 =
(
0,−ω0,− g cosφ12

ω2
0

− (
r2 + s2

tanφ2
− s1

sinφ2

)
,

ω0
sinφ2

,− ω0
tanφ2

)T

(4.64)

L f L f s1 = ω2
0(−d1 + r1

tanφ2
+ r2

sinφ2
− s1)+ g sinφ1 = g sinφ1 (4.65)

dLf L f s1 = (0,0,0,0,0)T (4.66)
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The step in equation 4.65 follows from expression 3.13. Because of symmetrydLf L f s2 is equal
to the0 vector as well. This means that with fixed palms the system isnot observable in terms of
just the drift fieldf . Now suppose we compute the Lie derivative ofs1 alongg1 and its differential:

Lg1s1 = − ρ2 + d2
1

mρ2s1ω0
(4.67)

dLg1s1 = 1
mρ2s1ω0

( −2d1
tanφ2

,
−2d1
sinφ2

,
ρ2+d2

1
ω0

, 2d1 + ρ2+d2
1

s1
, 0

)T
(4.68)

The differentialsds1, ds2, dLf s1, dLf s2 anddLg1s1 generally span the observability codistribution
and, hence, the system is observable. It is important to remember that the palms are actively
controlled, i.e., the palms are not clamped. Otherwise we would not know the torques exerted
by the palms. We need the torques in order to integrate (by using an observer) the differential
equation 4.1. As mentioned before, the construction of an observer that relies on the control
vector fields is nontrivial. Since the motion of the palms is so constrained, the system is likely
to observe only a small fraction of an unknown shape. Therefore we suspect that if one were to
construct an observer it would have very limited practical value.



5 Discussion

In this report we have shown how to reconstruct the shape of an unknown smooth convex
planar shape using two tactile sensors. We presented the analysis, simulation results and

experimental results for the quasistatic case. Firstly, we showed that any generic smooth shape is
globally observable. Secondly, we derived expressions for the curvature at the contact points and
the rotational speed of the object. This completely describes the shape and motion of an unknown
object as a system of differential equations. The simulation results showed that our approach
works reasonably well, but further research is needed on finding the initial conditions for this
system of differential equations. Our experimental results show that our approach also works in
practice. Athough there were large errors in the reconstructed motion of our experimental object,
the reconstructed shape was close to the actual shape.

In chapter 4 we addressed the dynamic case, where force/torque balance is no longer assumed.
We established that it is possible to reconstruct the shape locally in this case too, as long as at
least one of the palms is moving. By moving the palms slowly enough, we can approximate the
quasistatic case. This seems to suggest that we may be able to achieve global observability in
the dynamic case as well. Further research is needed to confirm this intuition. If both palms are
motionless, the shape is still observable. However, the construction of an observer for this case
is very nontrivial and of limited practical value.

In future work we hope to extend our analytic results in the following ways. Firstly, we are
planning to model friction. We hope to reconstruct the value of the friction coefficient using a
nonlinear observer (cf. the radius of gyration in chapter 4). Secondly, we will analyze the three-
dimensional case. In 3D we cannot expect to reconstruct the entire shape, since the contact points
trace out only curves on the surface of the object. Nevertheless, by constructing a sufficiently
fine mesh with these curves, we can create a good approximation. The quasistatic approach will
most likely not work in 3D, because in 3D the rotation velocity has three degrees of freedom and
force/torque balance only gives us two constraints.

Other Sensing Strategies

Besides the model of two planar palms, there are many other ways to reconstruct the shape of
an unknown moving object with tactile sensors. The simplest extension is to change the shape
of the palms. Figure 5.1 shows palms shaped as arcs of a circle. One advantage is that with less
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Figure 5.1: Curved palms

manipulation we can cover more of the shape, since a grasp with these palms comes closer to
an enveloping grasp. Further research is needed to quantify this claim. The radius of curvature
of the palms should be chosen such that there is always just one contact point on each palm.
However, if we can detect multiple contacts, it makes more sense to maximize the number of
contact points (e.g., by using deformable palms).

Figure 5.2 shows an entirely different sensing strategy. An object is grasped by a robot arm
using a pivoting gripper (Rao et al., 1994, 1995). With such a gripper the object is free to rotate
around the line through the grasp contact points. The sensing strategy consists of dragging or
pushing the object over a surface coated with tactile sensors. We think it would be interesting to
determine whether this system is observable as well.

tactile sensor

object

robot gripper

pivot

Figure 5.2: Dragging an object over a tactile sensor with a pivoting grasp



A Derivations

A.1 Quasistatic Shape Reconstruction

A.1.1 Curvature at the Contact Points

The expressions for the curvature at the contact points can be found by differentiating the gener-
alized contact support functions:

r̃ ′
1 = (x′

1 − x′
2) · n1 + (x1 − x2) · n′

1

= v2t2 · n1 − (x1 − x2) · t1
= −v2 sinφ2 − d1 (A.1)

˙̃r1 = (ẋ1 − ẋ2) · n1 + (x1 − x2) · ṅ1

= (θ̇x′
1 − (θ̇ + φ̇2)x

′
2) · n1 + (x1 − x2) · (θ̇n′

1)

= −v2(θ̇ + φ̇2) sinφ2 − θ̇d1 (A.2)

r̃ ′
2 = (x′

1 − x′
2) · n2 + (x1 − x2) · n′

2

= −v1t1 · n2 − (x1 − x2) · t2
= −v1 sinφ2 − d2 (A.3)

˙̃r2 = (ẋ1 − ẋ2) · n2 + (x1 − x2) · ṅ2

= (θ̇x′
1 − (θ̇ + φ̇2)x

′
2) · n2 + (x1 − x2) · ((θ̇ + φ̇2)n

′
2)

= −v1θ̇ sinφ2 − (θ̇ + φ̇2)d2 (A.4)

From these expressions it follows that the curvature at the contact points can be written as

v1 = − r̃ ′
2 + d̃2

sinφ2
= −

˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sinφ2

(A.5)

v2 = − r̃ ′
1 + d̃1

sinφ2
= −

˙̃r1 + θ̇ d̃1

(θ̇ + φ̇2) sinφ2

(A.6)
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A.1.2 Derivatives of Center of Mass and Center of Rotation

Recall the following expressions for the center of mass and the center of rotation:

cm(ψ, φ1, φ2) = −r̃2t̄1/ sinφ2 − Rx1 (A.7)

cr (ψ, φ1, φ2) = −(r̃2t̄1 + d̃2n̄1)/ sinφ2 (A.8)

We are interested in the partial derivatives of these expressions with respect toψ , because they
tell us something about the stable poses of the object. In the previous section we computed
derivatives with respect to curve parameters. The partial derivative of the curve parameterθ with
respect toψ is equal to -1. This follows fromθ = φ1 − ψ − π/2 (equation 3.1, p. 14). The
partial derivatives with respect toψ of equations A.7 and A.8 are therefore

∂cm

∂ψ
= r̃ ′

2t̄1/ sinφ2 − (
∂

∂ψ
R

)
x1 + v1t̄1 (A.9)

= −(v1 sinφ2 + d2)t̄1/ sinφ2 − (
∂

∂ψ
R

)
x1 + v1t̄1 (A.10)

= − d̃2t̄1

sinφ2
− (

∂

∂ψ
R

)
x1, (A.11)

∂cr

∂ψ
= (r̃ ′

2t̄1 + d̃′
2n̄1)/ sinφ2 (A.12)

= (−(v1 sinφ2 + d2)t̄1 + (v1 cosφ2 + v2 + r2)n̄1)/ sinφ2 (A.13)

= ( − v1n̄2 + v2n̄1 + r̃2n̄1 − d̃2t̄1

)
/ sinφ2. (A.14)

The derivative ofd̃2 can be obtained in a similar fashion as the derivatives ofr̃1 and r̃2 in
section A.1.1. Notice that equation A.11 is very similar tocm − cr :

cm − cr = d̃2n̄1/ sinφ2 − Rx1 (A.15)

In fact, upon careful inspection we see that

∂cm

∂ψ
=

(
0 −1
1 0

)
(cm − cr ) . (A.16)

A.1.3 Rotational Velocity

In section 3.3 it was shown that the force/torque balance constraint can be written as

r1 sinφ1 − d1 cosφ1 = −d̃2
sinφ1
sinφ2

. (A.17)

Differentiating the left-hand side of this equation we get:
d
dt
(r1 sinφ1 − d1 cosφ1) = (ṙ1 + d1φ̇1) sinφ1 + (r1φ̇1 − ḋ1) cosφ1 (A.18)

= d1(φ̇1 − θ̇ ) sinφ1 + r1(φ̇1 − θ̇ ) cosφ1 − ˙̃r2+(θ̇+φ̇2)d̃2
sinφ2

cosφ1 (A.19)

= d1ψ̇ sinφ1 + r1ψ̇ cosφ1 − ˙̃r2+(φ̇1+φ̇2−ψ̇)d̃2
sinφ2

cosφ1 (A.20)

= ψ̇
(
d1 sinφ1 + r1 cosφ1 + d̃2

cosφ1
sinφ2

) − ˙̃r2+(φ̇1+φ̇2)d̃2
sinφ2

cosφ1 (A.21)
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The step in equation A.19 follows from properties of the contact support function:r ′(θ) = −d(θ)
andd′(θ) = r (θ)− v(θ). The derivative of the right-hand side of equation A.17 can be written
as

d
dt
(−d̃2

sinφ1
sinφ2

) = ( − ˙̃d2 sinφ1 − d̃2φ̇1 cosφ1 + d̃2φ̇2 sinφ1 cotφ2

)
/ sinφ2 (A.22)

Equating expressions A.21 and A.22, substituting expression 3.13 ford1, and solving forψ̇ we
arrive at the following expression foṙψ :

ψ̇ =
˙̃r2 cosφ1 − ˙̃d2 sinφ1 + d̃2φ̇2

sinφ12
sinφ2

r1 sinφ12 + (r2 + r̃2) sinφ1 + d̃2 cosφ1

, (A.23)

whereφ12 = φ1 + φ2.

A.2 Dynamic Shape Reconstruction: Velocity of the Contact Points

Recall the position constraint on contact point 1 (equation 3.7, p. 16):

s1t̄1 = cm + Rx1

We can differentiate this constraint to get a constraint on the velocity of contact point 1:

ṡ1t̄1 + s1ω1n̄1 = ċm + ω0 × (Rx1)+ Rẋ1

= ċm + ω0 × (Rx1)+ (ω1 − ω0)v1t̄1

This follows fromθ = φ1 − ψ − π

2 and from our parametrization of the shape of the object.
Differentiating again results in the following constraint on the acceleration:

s̈1t̄1 + 2ṡ1ω1n̄1 + s1α1n̄1 − s1ω
2
1t̄1 = a0 + α0 × (Rx1)+ ω0 × (

ω0 × (Rx1)+ (ω1 − ω0)v1t̄1

)
+ (α1 − α0)v1t̄1 + (ω1 − ω0)(v̇1t̄1 + ω1v1n̄1)

= a0 + α0 × (Rx1)− ω2
0Rx1 + (ω2

1 − ω2
0)v1n̄1

+ (α1 − α0)v1t̄1 + (ω1 − ω0)v̇1t̄1

The acceleration constraint in then̄1 direction is therefore:

2ṡ1ω1 + s1α1 = a0 · n̄1 + ω2
0r1 − α0d1 + (ω2

1 − ω2
0)v1.

We can solve this constraint forv1:

v1 = 2ṡ1ω1 + s1α1 − ω2
0r1 − a0 · n̄1 + α0d1

ω2
1 − ω2

0

(A.24)

From before (equations 3.6 and 3.27) we had:

v1 = −
˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sinφ2

= −(−ṡ1 sinφ2 − s1ω2 cosφ2)+ (ω12 − ω0)(s1 cosφ2 − s2)

(ω1 − ω0) sinφ2
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(A.25)

We can equate these two expressions forv1 and solve foṙs1:

ṡ1 = −s1α1 − ω2
0r1 − a0 · n̄1 + α0d1

ω1 − ω0
− ω1 + ω0

tanφ2
s1 + (ω1 + ω0)(ω12 − ω0)

(ω1 − ω0) sinφ2
s2

Similarly we can derive an expression forṡ2:

ṡ2 = −s2α12 − ω2
0r2 − a0 · n̄2 + α0d2

ω12 − ω0
+ ω12 + ω0

tanφ2
s2 − (ω12 + ω0)(ω1 − ω0)

(ω12 − ω0) sinφ2
s1
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