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Abstract

Ordered binary decision diagrams (OBDDs) are graph-based data structures for repre-
senting Boolean functions. They have found widespread use in computer-aided design
and in formal veri�cation of digital circuits. Minimal trellises are graphical representa-
tions of error-correcting codes that play a prominent role in coding theory. This paper
establishes a close connection between these two graphical models, as follows. Let C
be a binary code of length n, and let fC (x1; : : : ; xn) be the Boolean function that takes
the value 0 at x1; : : : ; xn if and only if (x1; : : : ; xn)2 C . Given this natural one-to-one
correspondence between Boolean functions and binary codes, we prove that the minimal
proper trellis for a code C with minimum distance d > 1 is isomorphic to the single-
terminal OBDD for its Boolean indicator function fC (x1; : : : ; xn). Prior to this result,
the extensive research during the past decade on binary decision diagrams { in computer
engineering { and on minimal trellises { in coding theory { has been carried out inde-
pendently. As outlined in this work, the realization that binary decision diagrams and
minimal trellises are essentially the same data structure opens up a range of promising
possibilities for transfer of ideas between these disciplines.





1. Introduction

Algorithms on graphical structures play a central role in both communications and com-
puter engineering. Most modern communications systems make use of error-correcting
codes in order to increase reliability and manage resources such as power and spectrum.
In this context, trellises [75] and related graphs [37, 38] have emerged as a unifying frame-
work for understanding, manipulating, and decoding error-correcting codes of all types.
In computer engineering, ordered binary decision diagrams [14, 16] and their variants
have found widespread use for a range of applications, including circuit checking, logic
synthesis, and test generation. Binary decision diagrams are at the core of many tools
for formal veri�cation, and have been a major reason for recent advances in this area.

In this paper, we show that there is a very close relationship between trellises and binary
decision diagrams. In particular, we show that if a binary error-correcting code C has
minimum distance greater than one, then the minimal proper trellis for C is isomorphic
to the single-terminal ordered binary decision diagram (OBDD) for this code, viewed
as a Boolean function. Our proof is based on a direct argument using a vertex-merging
construction of OBDDs due to Bryant [14, 16], along with some basic results on minimal
trellises. We thus establish a bridge between previously disparate areas of research that
makes possible coordinated exploration and transfer of ideas between them. One of our
goals in this paper is to make the two research communities aware of each other.

Prior to this result, the historical development of ideas surrounding OBDDs and trel-
lises was independent, yet remarkably parallel. In coding, trellises were introduced by
Forney [30], and �rst used to represent and decode block codes by Bahl, Cocke, Jelinek,
and Raviv [5]. However, the subject remained dormant until the publication of [34, 63]
in 1988, that ignited a 
urry of research during the past decade. To date, the study
of trellises for block codes encompasses a sizable body of results | a comprehensive
bibliography, consisting of some 100 references, may be found in the recent survey [75].
In a similar fashion, the idea of representing Boolean functions as decision graphs was
recorded in the early papers of Lee [57] and Akers [2]. However, their widespread use as
the data structure of choice for symbolic Boolean manipulation started with the work of
Bryant [14] in 1986, who formulated a set of algorithms for constructing binary decision
diagrams, and operating upon them. Key to this algorithmic formulation was the require-
ment that the variables along every path from the root to a leaf occur in a �xed order,
which is analogous to the well-de�ned depth property of trellises. During the past decade,
binary decision diagrams have been a very active research topic in automated logic design
and veri�cation, and the subject has now accumulated a vast body of literature.

Not surprisingly, the key results and the central research problems in the two areas share
much in common. A fundamental theorem in the study of trellises is due to Muder [63],
who showed that every block code has a minimal proper trellis representation, and any
two minimal proper trellises for the same code are isomorphic. On the other hand,
Bryant [14] proved that the OBDD representation of a Boolean function is canonical: for
a given ordering of variables, two OBDDs for the same function are isomorphic. We now
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realize that these are two instances of the same result, described in di�erent languages.
A central problem in the study of OBDDs is how to order the variables for a given func-
tion so that the size of the resulting decision diagram is minimized. A similar problem
for trellises, known [61, 75] as the art of trellis decoding or the permutation problem,
asks how the time axis for a given code should be permuted in order to minimize the
complexity of the resulting trellis. Once again, these are essentially two instances of the
same problem. In both cases, the research is centered around techniques for combating
the exponential growth in the size of the graph; but the methods that have been devel-
oped are complementary. The close relationship between OBDDs and minimal trellises
that we establish here may therefore lead to useful results for each discipline.

We point out that the possibility of connection between binary decision diagrams and
trellises was noted in passing by Horn and Kschischang [43], who wrote that \block-
code trellises appear to be closely related to graphs called binary decision diagrams that
are used to represent Boolean functions." However, to the best of our knowledge, this
connection was never pursued in the literature beyond the single sentence quoted above.

The rest of this paper is organized as follows. In order to make our results accessible to
both communities | computer engineering and coding | we start with a brief overview
of the basic concepts concerning BDDs and trellises in the next two sections. These two
sections also contain pointers to the literature on their respective subjects. In Section 4,
we prove our main result: the correspondence between OBDDs and minimal trellises.
Some directions for transfer of ideas between the two areas are then discussed in Section 5.

2. Binary decision diagrams

Binary decision diagrams are a graph-based data structure for representing Boolean
functions [14, 16]. They have found widespread use in computer-aided design of digital
circuits, and form the heart of many tools for formal veri�cation [3, 21, 26]. They are
also used extensively in logic synthesis [67], and in various aspects� of circuit testing [9].

The success of binary decision diagrams has led to research e�orts on a number of fronts,
as surveyed in [18]. First, there have been many improvements to the core technology,
re�ning the algorithms and representation techniques for improved performance [12, 40,
64, 66]. Secondly, a number of extensions to the data structure have been developed,
leading to a more general class of representations known as decision diagrams. Some
of these extensions attempt to improve the compactness of representation [7, 28], while

�The importance and potential impact of these methods can be gauged by the highly-publicized Intel
Pentium 
oating-point divider bug in 1994, which cost the company an estimated $475 million. It has
been shown [17] that Intel could have used ordered binary decision diagrams to detect and correct the
erroneous table entries in the Pentium 
oating-point divider.
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others extend the class of functions that can be represented [20, 4, 23, 24, 27, 56]. Finally,
decision diagrams have been applied to a wider range of tasks in [60].

In this section, we review the basics of binary decision diagrams, and in particular present
the canonical algorithm [14, 16] for building the OBDD for a Boolean function. This
algorithm will be used in Section 4 to construct the minimal trellis for a binary code.

2.1. Construction of ordered binary decision diagrams

A binary decision diagram represents a Boolean function as a rooted, directed acyclic
graph. The leaves (vertices of degree zero) in this graph are called terminal vertices, or
simply terminals. The terminals are labeled 0 or 1, corresponding to the possible function
values. Each nonterminal vertex v is labeled by a function variable var(v) and has two
outgoing edges, corresponding to the cases where the variable takes on the value 0 or 1
and directed towards the two children of v, denoted ,!0(v) and ,!1(v), respectively. For
any truth assignment to the variables, the function value is determined by tracing a path
from the root to a terminal vertex, following the appropriate edge from each vertex.

One example of a binary decision diagram for a Boolean function f(x1; : : : ; xn) is a full

binary decision tree, which contains 2n terminals and 2n � 1 nonterminals. This is illus-
trated in Figure 1a for the function� (x1 + x2) � x3. However, binary decision diagrams
are usually much more compact. For example, a smaller BDD for the same function is
illustrated in Figure 1b, while Figure 1c depicts a BDD for the function x1 + x2 + x3.

x1

a.

0

x2

x3 x3
x3 x3

x2

0 0 1 0 1 0 1 0 1 0 1

x1

x2

x3

x1

x2

x3

b. c.

Figure 1. Examples of binary decision diagrams

A dashed, respectively solid, line indicates the edge that is followed
when the decision variable is 0, respectively 1.

To introduce ordered binary decision diagrams, we impose an arbitrary total order � on
the set of variables x1; : : : ; xn. Then the ordered binary decision diagram D for a Boolean
function f(x1; : : : ; xn) is de�ned by the following properties: a) every path from the root

�We use the symbols +, �, �, and to denote Boolean or, and, exclusive-or, and not, respectively.
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to a leaf inD encounters variables in ascending order, and b) it does not contain duplicate
terminals or nonterminals, or redundant tests (precise de�nitions of these terms follow
in the next paragraph). For example, the graphs in Figures 1b and 1c are OBDDs, if we
consider the variables to have the ordering x1 � x2 � x3.

Bryant [14] proved that the OBDD representation of a given function is unique | for
a given ordering, two OBDDs for the same function are isomorphic. He also showed
that the OBDD for an arbitrary Boolean function f(x1; : : : ; xn) can be constructed by
applying a set of reduction rules to the full binary decision tree for f(x1; : : : ; xn). First,
terminals in the decision tree having the same label are merged. This step, known as
merging duplicate terminals, results in a directed graph with only two terminals, labeled
0 and 1. A nonterminal v in this graph is said to be a redundant test if ,!0(v) = ,!1(v).
Redundant tests may be removed, without altering the function being represented, by
deleting v and redirecting all incoming edges to ,!0(v). Two nonterminals u and v are
said to be duplicate if ,!0(v) = ,!0(u), ,!1(v) = ,!1(u), and var(v) = var(u). Duplicate
nonterminals can be merged by deleting one of the two vertices and redirecting all incom-
ing edges to the other vertex. Again, this does not a�ect the function being represented.

The reduction algorithm proceeds by iteratively merging duplicate nonterminals and re-
moving redundant tests. It terminates when no redundant test or duplicate nonterminals
remain. This algorithm is summarized below.

ConstructionA

Input: Boolean function f(x1; : : : ; xn) and variable ordering x1 � � � � � xn.

Output: Ordered binary decision diagram for f(x1; : : : ; xn).

Algorithm: Starting with the full binary decision tree for f(x1; : : : ; xn), pro-
ceed as follows:

Step 1. Merge duplicate terminals.

Step 2. Merge all duplicate nonterminals.

Step 3. Remove all redundant tests.

Iterate steps 2 and 3 until no duplicate nonterminals or redundant tests remain.

It is easy to see that ConstructionA always produces the unique OBDD for f(x1; : : : ; xn).
To illustrate this construction, consider the Boolean function:

f(x1; x2; x3; x4; x5) = (x1 � x2 � x3) + (x1 � x4) + (x1 � x2 � x5)

Figure 2 shows the OBDD for this function, during the various stages of its construction:
the top part of the �gure depicts the binary decision tree with the terminals merged, the
center shows the result of merging duplicate nonterminals, and the bottom part shows
the BDD obtained after removing redundant tests. In this particular example, there are
no additional duplicate nonterminals generated by step3, so the algorithm terminates.
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Figure 2. The OBDD for (x1 � x2 � x3) + (x1 � x4) + (x1 � x2 � x5) with
respect to the ordering x1 � x2 � x3 � x4 � x5

The OBDD is shown during the various stages of its construction: after step 1 has
been carried out (top), after duplicate nonterminals have been merged (center), and
after redundant tests have been removed (bottom). Upon completion of steps 1{3,
there are no additional duplicate nonterminals, and the algorithm terminates. For
clarity, a pair of parallel edges between two vertices, is shown as a shaded line.
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2.2. Operations on ordered binary decision diagrams

A number of symbolic operations on Boolean functions can be implemented as simple
graph algorithms applied to their OBDD representations [14, 16]. These algorithms
typically have complexities that are polynomial in the size of their input. We give just
one example here. To describe this example, we will need some more notation and insight
into the structure of ordered binary decision diagrams.

Given a Boolean function f(x1; : : : ; xn), the function fx which replaces variable x by the
value 1 is called the positive cofactor of f with respect to x, while the function fx that
replaces variable x by the value 0 is called the negative cofactor . The Shannon expansion
(originally recognized by Boole [13]) expresses f(x1; : : : ; xn) as follows:

f = x � fx + x � fx (1)

Since at least one of the two terms in the sum above must evaluate to zero, this decom-
position splits an arbitrary function into two mutually exclusive cases.

Suppose that a vertex v in an OBDD represents some function f �. If var(v) = x, then
,!1(v) represents the function f �x and ,!0(v) represents the function f �x . We postulate
that the root vertex in the OBDD for a Boolean function f(x1; : : : ; xn) represents the
function f itself. Then following a path from the root to a leaf corresponds to taking suc-
cessive cofactors of f(x1; : : : ; xn) until it reduces to a constant. In other words, OBDDs
are graphical representations of the Shannon expansion (1) of a Boolean function.

One use of OBDDs is to test the equivalence of two logic circuits [14, 16]. If the circuits
are represented as OBDDs corresponding to two functions f and g, then the veri�cation
is carried out by computing f�g and testing whether the result is the constant function 0.
This can be done e�ciently using the fact that the cofactor operations distribute through
the Boolean operations; for example (f �g)x = fx�gx. Hence, we can compute f �g as
x � (fx � gx) + x � (fx � gx). As a consequence, the veri�cation can be e�ciently carried
out using a recursive graph traversal algorithm. For more details on this and many other
applications of OBDDs, we refer the reader to the survey by Bryant [16].

3. Minimal trellises for block codes

Trellises were introduced by Forney [30] in 1967 as a conceptual means to explain the
inner workings of the Viterbi algorithm [32] for decoding convolutional codes. IBM re-
searchers Bahl, Cocke, Jelinek, and Raviv [5] were the �rst to observe that linear block
codes may be also represented by a trellis, and showed how to construct such a trellis.
For a detailed survey of the trellis theory of block codes, we refer the reader to Vardy [75].

Today, trellises are used extensively in the construction and decoding of error-correcting
codes, where their applications range from deep-space communications (trellises were
used to transmit images from Mars in 1977), through high-speed modems, to household
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appliances such as CD players. Furthermore, trellises were also found useful in such ar-
eas as channel equalization [31], hidden Markov models [29], and speech recognition [6].

In this section we present the de�nition of a trellis, and only brie
y touch on some of
its properties. We also de�ne the minimal proper trellis for a given binary code. This
notion will be used in the next section to establish the connection with OBDDs.

Loosely speaking, a trellis T = (V;E;A) is an edge-labeled directed graph with the prop-
erty that every vertex in T has a well-de�ned depth. We will regard each labeled, directed
edge e2E as an ordered triple (v; v0; a), and say that this edge begins at v 2V , ends
at v0 2 V , and has label a2A. With this terminology, we have the following de�nition.

De�nition 1. A trellis T = (V;E;A) of depth n is an edge-labeled directed graph with

the following property: the vertex set V can be partitioned as

V = V0 [ V1 [ � � � [ Vn

such that every edge in T that begins at a vertex in Vi ends at a vertex in Vi+1, and

every vertex in T lies on at least one path from a vertex in V0 to a vertex in Vn.

For i = 0; 1; : : : ; n, we will refer to Vi as the set of vertices at time i, and call the ordered
index set I = f0; 1; : : : ; ng induced by the partition of the vertex set the time axis for T .
This temporal terminology is both natural and standard [75] in the study of trellises.

In most cases of interest, the subsets V0; Vn � V each consist of a single vertex, called
the root and the toor , respectively, and this will be assumed in the remainder of this
paper. A trellis T is said to be proper if the edges beginning at any given vertex of T are
labeled distinctly. It is said to be co-proper if this condition holds with the direction of
all edges reversed: namely, if the edges ending at any vertex of T are labeled distinctly.
A trellis T is said to be biproper if it is both proper and co-proper.

The set of binary n-tuples is denoted IFn
2 . For x; y 2 IF

n
2 , the Hamming distance d(x; y)

is the number of positions where x and y di�er. An [n;M; d ] binary block code C is
a subset of IFn

2 of cardinality M , such that minx;y2C d(x; y) = d. The elements of C are
called codewords. An (n; k; d) binary linear code is a subspace of IFn

2 of dimension k
and minimum distance d. An (n; k; d) binary linear code can be speci�ed either as the
row-space of a k � n binary generator matrix or as the kernel of an (n�k) � n binary
parity-check matrix. A block code C is said to be rectangular if for all choices of a; b; c; d,
the fact that (a; c); (a; d); (b; c)2 C implies that (b; d)2 C , where (� ; �) denotes string
concatenation. It is easy to see that every linear code is rectangular, but not vice versa.

De�nition 2. Let T = (V;E; IF2) be a trellis of depth n. Then the sequence of edge la-

bels along each path from the root to the toor in T de�nes an ordered binary n-tuple.
We say that T represents a binary block code C of length n, or simply that T is a trellis

for C , if the set of all such n-tuples is precisely the set of codewords of C .

The minimal trellis may be de�ned in a number of di�erent ways which, in most cases, are
all equivalent to the following de�nition. We say that a trellis T for a code C of length n
is minimal if it satis�es the following property: for each i = 0; 1; : : : ; n, the number of
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vertices at time i in T is less than or equal to the number of vertices at time i in any other
trellis for C . Given a code C , it is not at all obvious that there exists a minimal trellis
for C . Although it is known [51, 75, 76] that such a trellis exists (and is, in fact, unique
up to graph isomorphism) if the code C is rectangular, there are also examples [52] of
non-rectangular codes that do not admit a minimal trellis representation. On the other
hand, this problem does not arise if we restrict our attention to proper trellises.

De�nition 3. Let T be a proper trellis for a code C of length n. We say that T is the

minimal proper trellis for C if it satis�es the following property: for each i = 0; 1; : : : ; n,
the number of vertices at time i in T is less than or equal to the number of vertices at

time i in any other proper trellis for C .

One of the fundamental results in trellis theory, due to Muder [63], is that every block
code, whether it is rectangular or not, has a unique minimal proper trellis. For rectan-
gular codes (and, hence, also for linear codes), it is known [75] that the minimal proper
trellis and the minimal trellis coincide. For linear codes, the minimal trellis is sometimes
called the BCJR trellis, after the authors of [5] who �rst came up with the construction
of such a trellis. We elaborate upon the BCJR construction in Section 5.

Figure 3. Minimal trellis for the code C = f00000; 11010; 01101; 10111g

There are several natural measures of complexity for a given trellis, including the state
complexity s = maxi log jVij, the edge complexity jEj, and the Viterbi decoding com-
plexity D = 2jEj � jV j + 1. Recent work has clari�ed the relationship between these
parameters, and to a large extent they can be considered as equivalent, at least as the
block length n gets large. The minimal trellis uniquely minimizes all of these complexity
measures, given a �xed time axis for the code. The precise statement and proof of this
and other related facts is the subject of a number of recent papers [33, 62, 73, 76].

As a simple example, consider the (5; 2; 3) linear code C = f00000; 11010; 01101; 10111g.
The minimal trellis for this code is shown in Figure 3. The complexity measures for this
trellis, namely s = 2, jEj = 16, and D = 19, can be easily found by inspection.
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4. The main result: OBDDs and minimal trellises

In this section, we rigorously establish the connection between minimal proper trellises
and ordered binary decision diagrams. In doing so, we will make frequent use of concepts,
constructions, and theorems discussed in the foregoing two sections.

First, we observe that there is a natural one-to-one correspondence between Boolean
functions of n variables and binary codes of length n. Let C be a such a code, not nec-
essarily linear or rectangular. We de�ne the Boolean function fC (x1; : : : ; xn) as follows:

fC (x1; : : : ; xn)
def
=

n
0 if (x1; : : : ; xn)2 C
1 otherwise

We call fC (x1; : : : ; xn) the indicator function of C . To make the terminology concise, we
will often refer to a binary decision diagram for the indicator function of C simply as
a BDD for C . Equivalently, given a Boolean function f(x1; : : : ; xn), we de�ne the binary
block code C f of length n as the set of all truth assignments to x1; : : : ; xn such that
f(x1; : : : ; xn) = 0. Thus C f is just the o�-set of f , and f is the indicator function of C f .

Next, we de�ne the single-terminal OBDD for a Boolean function f(x1; : : : ; xn) by the
following procedure, analogous to ConstructionA. In fact, this procedure is exactly the
same as ConstructionA, except for one extra step, as summarized below.

ConstructionB

Input: Boolean function f(x1; : : : ; xn) and variable ordering x1 � � � � � xn.

Output: Single-terminal ordered binary decision diagram for f(x1; : : : ; xn).

Algorithm: Starting with the full binary decision tree for f(x1; : : : ; xn), pro-
ceed as follows:

Step 1. Merge duplicate terminals.

StepX. Prune away the 1-terminal.

Step 2. Merge all duplicate nonterminals.

Step 3. Remove all redundant tests.

Iterate steps 2 and 3 until no duplicate nonterminals or redundant tests remain.

Recall that after merging the duplicate terminals in step1, we have a directed graph with
exactly two terminal vertices, labeled 0 and 1. We then recursively remove all the edges
and vertices leading only to the terminal labeled 1. This is the step of pruning the one-

terminal in ConstructionB. Each nonterminal vertex in the resulting graph has either one
or two children. If a given vertex v has only one child, we set ,!0(v) = ? or ,!1(v) = ?,
by convention. With this convention, the de�nitions of redundant tests and duplicate
nonterminals remain as before, and the algorithm then continues as in ConstructionA.
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The resulting decision diagram has a single terminal vertex, corresponding to all the
sequences that evaluate to 0 by f(x1; : : : ; xn), or equivalently all of the codewords of C f .
It is important to note that since f(x1; : : : ; xn) is binary, this does not discard any infor-
mation, and the complete OBDD can be reconstructed from the single-terminal OBDD.

This observation shows that the single-terminal OBDD can be also obtained in a slightly
di�erent manner. Namely, the operation of pruning away the 1-terminal (step X) can
be carried out after the full OBDD for f(x1; : : : ; xn) is constructed. We will refer to this
variation as ConstructionC. Indeed, it is not di�cult to show that the graphs DB and DC

produced by Constructions B and C, respectively, are isomorphic. Each nonterminal
vertex in these graphs has out-degree one or two. In every instance where the out-degree
is one, the missing edge must correspond to a sequence that belongs to the on-set of
f(x1; : : : ; xn). Hence, by �rst appending a terminal labeled 1, and then adding an edge
from each unary vertex to this 1-terminal, labeling this edge so that the resulting graph
is proper, we obtain a complete OBDD for f(x1; : : : ; xn) from both DB and DC. However,
two complete OBDDs for the same function are isomorphic, and hence so are DB and DC.

10

Figure 4. The OBDD and the single-terminal OBDD for the

function f in (2), or equivalently for the code C de�ned by (3)

As a simple example for ConstructionB (or for ConstructionC), consider again the
Boolean function that was used in Section 2 to illustrate ConstructionA, namely:

f(x1; x2; x3; x4; x5) = (x1 � x2 � x3) + (x1 � x4) + (x1 � x2 � x5) (2)

Notice that f(x1; x2; x3; x4; x5) is also the indicator function of the (5; 2; 3) linear code
C = f00000; 11010; 01101; 10111g used as an example in Section 3. This becomes imme-
diately clear upon observing that a parity-check matrix for C is given by

H =

"
1 1 1 0 0
1 0 0 1 0
1 1 0 0 1

#
(3)

The OBDD and the single-terminal OBDD for C are shown in Figure 4. Notice that the
single-terminal OBDD is the same as the minimal proper trellis for C , shown in Figure 3.
Our main result is the following theorem, proving that this must always be the case.
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Theorem1. Let C be an arbitrary binary code with minimum distance d > 1. Then

the single-terminal OBDD for C is the unique minimal proper trellis for C .

Proof. It is easy to see that the graph resulting after steps 1 and X in ConstructionB
is a trellis for C . By the ,!0(v) = ,!0(u) and ,!1(v) = ,!1(u) property of duplicate non-
terminals, the merging procedure in step 2 does not create any new paths that are not
codewords. Furthermore, by the var(v) = var(u) property, this procedure also preserves
depth. Hence, the graph resulting after step 2 is still a trellis for C . Now, since d > 1,
there can be no redundant tests in any trellis for C . Thus step 3 in ConstructionB is
vacuous, and the single-terminal OBDD is a trellis for C . Furthermore, it is obvious
that the outgoing edges of every vertex in any binary decision diagram must be labeled
distinctly. Hence the single-terminal OBDD for C is a proper trellis for C .

It remains to show that the single-terminal OBDD is the minimal proper trellis for C .
To this end, we need to introduce some more notation and results from trellis theory.
For i = 1; 2; : : : ; n�1, we de�ne the projection of C on the past at time i as follows:

Pi(C )
def
=

n
(c1; c2; : : : ; ci) : (c1; : : : ; ci; ci+1; : : : ; cn)2 C for some ci+1; : : : ; cn 2 IF2

o
For each c2Pi(C ), we de�ne the future of c as F(c) = fx2 IFn�i

2 : (c; x)2 C g, and say
that c1; c2 2Pi(C ) are future-equivalent if F(c1) = F(c2). It is shown in [63] that a proper
trellis T = (V;E; IF2) for C is minimal if and only if for all i = 1; 2; : : : ; n�1, the number
of vertices at time i in T is equal to the number of future-equivalence classes de�ned by
this relation. From this, we can derive an alternative necessary and su�cient condition
for minimality as follows. Given a vertex v 2Vi, we de�ne:

FT (v)
def
=

n
x2 IFn�i

2 : x is a sequence of edge labels along a path in T starting at v
o

Then a proper trellis T is minimal if and only if for all i = 1; 2; : : : ; n�1 and for every
pair of vertices v; v0 2Vi, we have FT (v) 6= FT (v

0). Indeed, this condition implies that
c1; c2 2Pi(C ) are equivalent if and only if the paths corresponding to c1 and c2 end at the
same vertex of Vi. Thus jVij must be equal to the number of future-equivalence classes.

Now consider the single-terminal OBDD for C . We already know that this is a proper
trellis for C . Call this trellis T = (V;E; IF2), and assume to the contrary that there
exist two distinct vertices v; v0 2Vi with FT (v) = FT (v

0). By ConstructionB, at least
one of f,!0(v); ,!0(v

0)g or f,!1(v); ,!1(v
0)g must be a pair of distinct vertices, otherwise

v and v0 would have been merged as duplicate nonterminals. Notice that we allow for the
possibility that some of ,!0(v); ,!1(v); ,!0(v

0); ,!1(v
0) may be ?, which means that they

are not present in the single-terminal OBDD. However, if one of f,!0(v); ,!0(v
0)g is ?

then so is the other one, since otherwise FT (v) 6= FT (v
0). By a similar argument, either

,!1(v) = ,!1(v
0) = ? or both are present in the OBDD. Thus we may assume, w.l.o.g.,

that u = ,!0(v) and u0 = ,!0(v
0) are both present in the single-terminal OBDD, and

u 6= u0. But then FT (v) = FT (v
0) implies that FT (u) = FT (u

0). Thus, from the existence
of distinct vertices v; v0 2Vi with FT (v) = FT (v

0), we have deduced the existence of
distinct vertices u; u0 2Vi+1 with FT (u) = FT (u

0). Iterating this argument, we arrive at
a contradiction, since Vn consists of a single vertex by construction.
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As an immediate corollary to Theorem1 and the fact that the minimal proper trellis is
actually minimal for rectangular codes, we conclude that if C is rectangular and d > 1
then the single-terminal OBDD for C is isomorphic to the unique minimal trellis for C .

We point out that an alternative way to view these results comes from considering a bi-
nary code C or a Boolean function fC as de�ning a regular set in IF

n
2 . As such, the Myhill-

Nerode theorem [42] guarantees the uniqueness of the minimal deterministic �nite-state
automaton (DFA) accepting this set. It follows that when the distance of C is larger
than one, the state diagram of its DFA is the same as the minimal proper trellis, or the
single-terminal OBDD. This viewpoint is brie
y mentioned in the multilingual dictionary
of coding, systems theory, symbolic dynamics, and automata theory [35].

5. Directions for transfer of ideas

The connection between binary decision diagrams and trellises established in the previous
section makes it possible to translate knowledge accumulated in one discipline into the
language of the other. We will give just a few examples of this in what follows. In light
of the extensive work that has been done in each of these areas, many other possibilities
for transfer of results and ideas between the two disciplines surely exist.

5.1. From trellises to binary decision diagrams

We use results from trellis theory to analyze a certain structural property of binary
decision diagrams, provide lower bounds on the size of OBDDs, and derive a new type
of decision diagrams that are often more compact than OBDDs. We also comment on
the complexity of the variable ordering problem, and on alternative graphical models for
Boolean functions that may follow from the recent research in coding theory.

Biproper binary decision diagrams. Let D be an ordered binary decision diagram
for a Boolean function f(x1; : : : ; xn). It is obvious that the outgoing edges of every
nonterminal vertex in D must be labeled distinctly. When is it that the incoming edges
of every nonterminal vertex in D are also labeled distinctly? The following proposition,
which follows directly from Theorem1, provides an answer to this question.

Proposition2. Let f(x1; : : : ; xn) be a Boolean function, and let x1� � � ��xn be an order-
ing of its variables. If the corresponding binary code C f is rectangular then the incoming

edges of every nonterminal vertex in the OBDD for f(x1; : : : ; xn) are labeled distinctly.

Proof. It is known [69, 51, 75, 76] that the minimal proper trellis for a rectangular
code is biproper. Thus if C f is a rectangular code with minimum distance d(C f ) > 1,
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then the single-terminal OBDD for f(x1; : : : ; xn) is isomorphic to the minimal biproper
trellis for C f , and hence all the incoming edges in the single-terminal OBDD are labeled
distinctly. Since every nonterminal vertex in the complete OBDD for f(x1; : : : ; xn) is
also a vertex in the single-terminal OBDD, the proposition follows.

Now assume that C f is rectangular and d(C f ) = 1. Then the graph resulting after step 2
of ConstructionB is still a biproper trellis for C f . It remains to observe that removing
redundant tests in a biproper trellis does not create duplicate nonterminals, and that
the resulting graph remains biproper.

Borrowing the terminology of trellis theory, we will say that a binary decision diagram in
which the incoming edges of every nonterminal vertex are labeled distinctly is biproper.
A biproper single-terminal OBDD has the curious property that it can be used to evaluate
the function in two di�erent ways: either traversing from top to bottom | as is the
standard practice | or traversing from bottom to top. In other words, the root and
the single-terminal are interchangeable in a biproper single-terminal OBDD. This, in
particular, implies that the variable orderings x1 � � � � � xn and xn � � � � � x1 produce
isomorphic decision diagrams in this case.

0 1

x1

x2

x3 x3

Figure 5. A biproper OBDD for x1x3 + x1(x2x3 + x2x3)

Notice that whether the OBDD for f(x1; : : : ; xn) is biproper depends not only on the
function f(x1; : : : ; xn) itself, but also on the ordering of its variables. Indeed, there exist
codes [69] that are rectangular for some orderings of the time axis and non-rectangular
for other orderings. Finally, we observe that the su�cient condition for biproperness
given in Proposition 2 is \almost" necessary as well. It is known [51] that a code is
rectangular if and only if it admits a biproper trellis representation. Thus a Boolean
function f(x1; : : : ; xn) whose o�-set C f has distance d(C f ) > 1 can be represented by
a biproper OBDD if and only if C f is rectangular. However, if d(C f ) = 1, this is no
longer true in general. As an example, consider the Boolean function:

f(x1; x2; x3) = x1x3 + x1(x2x3 + x2x3)

whose o�-set is given by C f = f001; 010; 101; 111g. This function has a biproper OBDD,
shown in Figure 5, even though C f is not rectangular under any ordering.
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Lower bounds on the size of binary decision diagrams. Much work in coding
theory [33, 47, 53, 54, 63, 65] has been devoted to lower bounds on the size of the
minimal trellis for a given code, under all possible permutations of the time axis. Here,
we translate some of these bounds into the language of binary decision diagrams.

To this end, we �rst need to introduce the appropriate notation. Given a Boolean func-
tion f(x1; : : : ; xn), we let �0(f) and �1(f) denote the cardinalities of the o�-set and the
on-set of f , respectively. Thus �0(f) is just the number of codewords in C f . Next, we
elaborate the notation for cofactors of f(x1; : : : ; xn) that was introduced in Section 2.2.
Given a �xed string (a1; : : : ; am)2f0; 1g

m and a subset fi1; i2; : : : ; img � f1; 2; : : : ; ng,
we let f jxi1 ;���;xim=a1;���;am denote the function obtained from f(x1; : : : ; xn) by replacing
the variable xi1 by the value a1, the variable xi2 by the value a2, and so forth.

For each subset J = fi1; i2; : : : ; img � f1; 2; : : : ; ng, we can now de�ne a discrete random
variable XJ as follows: XJ takes on values in f0; 1gm with probabilities given by:

PrfXJ = (a1; : : : ; am)g
def
=

�0

�
f jxi1 ;���;xim=a1;���;am

�
�0(f)

(4)

Notice that for some values of a1; : : : ; am, the function f jxi1 ;���;xim=a1;���;am may be a tau-
tology, in which case PrfXJ = (a1; : : : ; am)g = 0. Thus the number of di�erent values
that XJ takes on may be less than 2m.

We next recall the de�nition of entropy. If X is a discrete random variable taking M
values with nonzero probabilities p1; p2; : : : ; pM , the entropy of X is given by:

H(X )
def
= p1 log

1

p1
+ p2 log

1

p2
+ � � � + pM log

1

pM

In terms of the notation introduced in the foregoing paragraphs, we are �nally ready to
de�ne the entropy pro�le of a Boolean function.

De�nition 4. Let f(x1; : : : ; xn) be a Boolean function of n variables. We de�ne �i(f) as
the minimum possible entropy of a set of i function variables, namely:

�i(f)
def
= min

J
H(XJ ) for i = 1; 2; : : : ; n

where the minimum is taken over all subsets J � f1; 2; : : : ; ng with jJ j = i. The sequ-
ence �1(f); �2(f); : : : ; �n(f) will be called the entropy pro�le of f(x1; : : : ; xn).

A powerful lower bound on the size of the OBDD for a Boolean function f(x1; : : : ; xn)
can be derived from its entropy pro�le, providing d(C f ) > 1. Notably, this bound limits
the size of the smallest OBDD that can be obtained under all possible orderings of the
variables x1; : : : ; xn. The bound was proved by Reuven and Be'ery [65] in the context of
trellises; it constitutes a culmination of a long line of work in trellis theory [63, 33, 54].
All we have done here is recast this result in the framework of binary decision diagrams,
using the correspondence between BDDs and trellises established in Theorem1.
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Theorem3. Let f(x1; : : : ; xn) be a Boolean function such that d(C f ) > 1. Then the

number of vertices at level i in the OBDD for f(x1; : : : ; xn) is lower bounded by

2�i(f) � 2�n�i(f)

�0(f)
(5)

where �1(f); �2(f); : : : ; �n(f) is the entropy pro�le of f . This holds for all i = 1; 2; : : : ; n
and for any total order on the support fx1; : : : ; xng.

We believe that it should be possible to extend the scope of Theorem3 to functions
that do not satisfy the requirement d(C f ) > 1. One such extension is immediate. It is
obvious, by symmetry, that the same result holds if we look at the on-set of the function
rather than at the o�-set, and replace �0(�) by �1(�) in equations (4) and (5). Thus
to apply Theorem3, it would su�ce to require that either C f or its complement in IFn

2

have minimum distance greater than one. Another possible extension might follow by
observing that this requirement essentially ensures that no redundant tests are encoun-
tered in the construction of the OBDD. If C f is a rectangular code with d(C f ) = 1, then
removing redundant tests does not create duplicate nonterminals (as noted in the proof
of Proposition 2). Thus, in most cases, this step will not reduce the size of the graph sig-
ni�cantly. Exploring to what extent the removal of redundant tests can reduce the size of
the OBDD beyond the bound of (5) would be an interesting problem for future research.

Sectionalized decision diagrams. Variable orderings for binary decision diagrams
correspond to permutations of the time axis for binary codes. Indeed, the problem of
�nding the best variable ordering for a given function, or equivalently the best permu-
tation of the time axis for a given code, is key in both areas. In trellis theory, another
operation on the time axis, called sectionalization, has been found useful in a variety of
contexts. To the best of our knowledge, the counterpart of this operation for binary
decision diagrams has not been investigated previously in the BDD literature.

In trellis theory, a sectionalization corresponds to a choice of the symbol alphabet at each
time index. For example, a binary code of length 2n may be thought of as a quaternary
code of length n if pairs of consecutive bits are grouped together. A wide variety of such
granularity adjustments [36] is possible, and each may substantially a�ect the number
of vertices, the number of edges, and the overall structure of the trellis.

The analogous operation for binary decision diagrams consists of grouping consecutive
variables together, and taking non-binary decisions at each level, based on the value of
all the variables that correspond to this level. Let us illustrate this idea by an example.
Consider the following Boolean function:

(x1�x2�x3�x4) + (x3�x4�x5�x6) + (x5�x6�x7�x8) + (x2�x3�x6�x7) (6)

The conventional single-terminal OBDD for this function corresponds to grouping its
variables into singletons fx1g; : : : ; fx8g. This decision diagram is shown in Figure 6a. In-
stead, suppose that we group the variables into pairs fx1; x2g; fx3; x4g; fx5; x6g; fx7; x8g
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and take four-way decisions at each of the resulting four levels, depending upon whether
the value of the variables in the corresponding pair is 00, 01, 10, or 11. The resulting
singe-terminal decision diagram is shown in Figure 6b. It is easy to see that this di-
agram is substantially more compact than the conventional OBDD, although we have
not changed the order of the variables (in fact, this order is known [75] to be optimal).
Also notice that a complete decision diagram for the function f(x1; : : : ; x8) in (6) can be
recovered from Figure 6b by adding 28 more edges, in such a way that the out degree of
each nonterminal vertex becomes 4, and directing all these edges to the 1-terminal.

b.a.

x1x2

x3x4

x5x6

x7x8

x5x6

x7x8

x3x4

x5x6

x7x8

x3x4

x5x6

x7x8

10
0111

00

00 01

00 01

00 10

10

00

00
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01
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11
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11 01

0

x3x4

x1

x2

x3

x4
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x8

x7

x2

x3

x4

x5

x6

x7

x8

x7 x7

x5 x5

x4

x6

x4

x6

x4

x6

x4

x6

x4

x6

x4

x6

x3 x3

0

Figure 6. Two decision diagrams for the Boolean function in (6)

The edge labels in Figure 6b correspond to the values of the decision
variables that result in the traversal of the edge.

In general, there are many di�erent ways to sectionalize a given BDD | that is, to parse
the variables x1; : : : ; xn into groups: the number of distinct parsings, or sectionalizations,
of x1; : : : ; xn is about 2n�1. The sectionalization problem thus consists of �nding the op-
timal parsing among the 2n�1 possibilities. In contrast to the variable ordering problem,
which is known to be NP-complete for OBDDs, it turns out that the sectionalization
problem has a polynomial-time solution. Lafourcade and Vardy [55] devised a section-

alization algorithm, based on a dynamic programming approach, that �nds the optimal
sectionalization of an arbitrary trellis in polynomial time. The algorithm of [55] works
for both linear and nonlinear codes, and easily accommodates a broad range of optimal-
ity criteria. With some modi�cations, this algorithm can be applied to binary decision
diagrams. If a given single-terminal OBDD represents a function f such that d(C f ) > 1,
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then the algorithm of [55] works as is. Otherwise, one would need a slightly more com-
plicated book-keeping mechanism for the composition and amalgamation operations de-
�ned in [55]. We leave the details of this modi�cation for future work.

For veri�cation purposes, one of the most important properties of OBDDs is that they
are canonical: two functions f(x1; : : : ; xn) and g(x1; : : : ; xn) are equal if and only if their
(single-terminal) OBDDs are isomorphic for the same order on x1; : : : ; xn. Thus the
sectionalization operation would be less useful if it did not preserve canonicity. However,
the algorithm of Lafourcade and Vardy [55] can be easily re�ned in such a way that
canonicity is preserved under sectionalization. If we start with two isomorphic trellises
and sectionalize them using the algorithm of [55], with respect to the same optimality cri-
terion, then the resulting decision diagrams will be isomorphic. The converse is also true:
if two sectionalized decision diagrams are isomorphic, they represent the same function.

Complexity of the variable ordering problem. It is known [10, 11, 43, 45, 74]
that the variable ordering problem for binary decision diagrams and the permutation
problem for trellises are both computationally hard. However, the known NP-hardness
results establish the intractability of di�erent aspects of these equivalent problems.

The primary intractability result in the OBDD literature is due to Bollig and Wege-
ner [11], who show that the following decision problem is NP-complete.

Instance: A Boolean function f(x1; : : : ; xn) speci�ed in terms of an ordered bi-
nary decision diagram, and a positive size bound s.

Question: Is there an ordering of x1; : : : ; xn such that the corresponding OBDD
for f(x1; : : : ; xn) has at most s vertices?

Notice that an implicit assumption in this result is that f(x1; : : : ; xn) can be speci�ed by
an OBDD whose size is polynomial in n. Indeed, if a function f(x1; : : : ; xn) is speci�ed
in terms of an OBDD with N = 
(2n) vertices, then the complexity of examining all n!
possible orderings of x1; : : : ; xn is only O(N

log logN). Furthermore, the reduction used in
the proof of [11] explicitly constructs an OBDD whose size is polynomial in n. Thus the
hard instances of the foregoing problem are those functions that have a compact OBDD
representation. On the other hand, it is known (see [58, 77] and the discussion in the next
subsection) that the fraction of such functions becomes vanishingly small as n!1.

The hardness results for trellises have a somewhat di�erent 
avor. Speci�cally, Horn and
Kschischang [43] prove that the following decision problem is NP-complete.

Instance: A binary linear code C of length n, speci�ed by its parity-check or
generator matrix, a positive integer i < n, and a positive size bound s.

Question: Is there a permutation of the time axis, such that the number of ver-
tices at time i in the corresponding minimal trellis for C is less than s?

It is furthermore shown in [74] that this problem remains NP-complete if the size bound
is restricted to s = 2i. When translated into the context of binary decision diagrams,
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using Theorem1, this implies the following result. Suppose we are given a positive
integer i < n and a Boolean function f(x1; : : : ; xn) speci�ed in terms of a data structure,
other than OBDD, whose size is polynomial in n. Then deciding whether there exists
an ordering of x1; : : : ; xn such that the corresponding OBDD for f(x1; : : : ; xn) has less
than 2i vertices at level i is NP-complete.

Alternative graphical models for Boolean functions. In recent years, a number of
new graphical models have emerged in coding theory, and evolved into a far-reaching gen-
eral framework for representing a code by a graph. In this context, one encounters various
generalizations of a trellis, such as tail-biting trellises [22] and trellis formations [49, 50],
as well as Tanner graphs [71] that are in some sense diametrically opposite to trel-
lises. All these representations are special cases of the general concept of a factor graph.
We refer the reader to [1, 37, 38, 79] for a detailed treatment of factor graphs and the
associated iterative manipulation algorithms: the min-sum and the sum-product.

The success of these graphical models in coding theory and communications has been
spectacular. For example, tail-biting trellis representations have been found in [22, 48] for
several well-known codes, whose complexity is the square root of the lowest complexity
achievable with the conventional minimal trellis. On a grander scale, turbo codes [8]
represented by a factor graph and decoded with an iterative sum-product algorithm have
been shown to approach channel capacity with feasible complexity, a goal that eluded
the research community for almost 50 years. More recently, similar results have been
established [59, 70] for low-density parity-check codes, represented by a Tanner graph.

It remains to be seen whether any of the graphical models mentioned in the foregoing
paragraphs can be used to e�ciently represent Boolean functions in the context of logic
synthesis and veri�cation. As an example, consider the well-known hidden weighted bit

Boolean function, de�ned by

fhw(x1; : : : ; xn)
def
=

�
0 if wt(x) = 0
xwt(x) if wt(x) > 0

where wt(x) is the number of non-zeros in (x1; x2; : : : ; xn). Bryant [15] proved that any
OBDD representation of this function requires at least 
(1:14n) vertices, yet there exists
an alternative implementation of fhw(x1; : : : ; xn) with area-time complexity of O(n1+�).
We point out here that this alternative implementation is essentially a factor-graph
implementation [49]. We refrain from pursuing this any further in this paper. However,
we believe that this line of research holds great promise.

5.2. From binary decision diagrams to trellises

Since 1986, when ordered binary decision diagrams were introduced for veri�cation prob-
lems [14], many re�nements and variations of the basic data structures and algorithms
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have been proposed. Here, we discuss how these and other results pertaining to binary
decision diagrams may be applied to trellises.

Almost all codes have exponential trellis complexity. It is known [39, 58, 77]
that almost all n-variable Boolean functions cannot be represented by an OBDD with
less than 2n=2n vertices, regardless of the variable ordering. More precisely, Liaw and
Lin [58] establish� the following result. Let !(n) = 22

n

be the total number of n-variable
Boolean functions, or equivalently binary codes of length n, and let 
(n) denote the
number of n-variable functions whose OBDD, under optimal variable order, has less
than 2n=2n vertices. It is shown in [58] that

lim
n!1


(n)

!(n)
= 0 (7)

We know from Theorem1 that the minimal proper trellis for C has at least as many
vertices as the OBDD for fC . Thus the result of (7) transfers directly to minimal proper
trellises. This was not previously known in the trellis literature. It is known that all
asymptotically good codes have exponential trellis complexity [53], and almost all linear
codes are asymptotically good [72, p.77]. However, it is not di�cult to see that almost
all nonlinear codes are not asymptotically good.

Liaw and Lin [58] also consider quasi-reduced OBDDs, obtained by applying only the
merging rule (step 2 in ConstructionA) and not the redundant-tests deletion rule (step 3
in ConstructionA). It is obvious from Theorem1 that a quasi-reduced OBDD for a func-
tion f is precisely the minimal proper trellis for C f , whether d(C f ) > 1 or d(C f ) = 1.
Asymptotically as n!1, Liaw and Lin [58] observe that for virtually all Boolean func-
tions, the merging rule contributes a factor of 1=n to the overall reduction in the size of
the OBDD, whereas the redundant-test deletion rule contributes only a constant factor.
For �xed n, Liaw and Lin [58] �nd empirically that the merging rule alone accounts for
over 99% of the average reduction in the size of the OBDD, whenever n � 15. They thus
suggest that under certain circumstances, it is more advantageous to use quasi-reduced
OBDDs (namely, trellises!), since then the level-index �eld can be eliminated from the
vertex record, resulting in more signi�cant savings in the overall storage space than those
obtained by the redundant-tests deletion rule.

Liaw and Lin [58] also show that for all n-variable Boolean functions, the quasi-reduced
OBDD has at most (2+�)(2n=n) vertices for all su�ciently large n, regardless of the vari-
able ordering. Clearly, this bound transfers directly to trellises. An intersting conclusion
from this result, in conjunction with (7), is that the complexity of the minimal proper
trellis for almost all binary codes is not sensitive to permutations of the time axis: the
trellis has at least 2n=2n vertices for the best possible permutation, and at most 4 times
as many vertices for the worst possible permutation. This insensitivity phenomenon,
well-known [39, 58, 77] in the OBDD literature, was not previously observed for trellises.

�A similar result was established by Shannon [68] in the context of two-terminal contact networks.
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Multi-terminal trellises/syndrome decision diagrams. Multi-terminal binary
decision diagrams [23] are extensions of BDDs for representing functions f : f0; 1gn 7! S,
where S is any �nite set. A multi-terminal BDD di�ers from a conventional OBDD only
in that it may have multiple terminals, rather than two terminals labeled 0 and 1.

The notion of multi-terminal BDDs can be exploited to construct a multi-terminal trellis

that simultaneously represents a binary linear code C as well as all the cosets of C , in IFn
2

or in a given subspace of IFn
2 . Multi-terminal trellises were used by Ytrehus [41, 80] to

represent the parallel branch codes encountered in the decoding of partial unit memory
convolutional codes. In general, such trellises are useful whenever one needs to decode
a partition of a given space into cosets of a given code. This task is at the core of the
coset-decoding technique [25] and is frequently encountered in multilevel coding [34, 44].

Another application of multi-terminal trellises is as an attractive alternative to the well-
known standard array decoding technique, which we now brie
y describe. Let C be an
(n; k; d) binary linear code, and let H = [h1; : : : ; hn] be a parity-check matrix for C .
The standard array for C is the 2n�k� 2k matrix with entries from IFn

2 , having the cosets
of C in IFn

2 as its rows. For each coset, we may pre-compute the coset leader v, de�ned
as the vector of minimal Hamming weight in the coset. For each x2 IFn

2 , the syndrome

of x with respect to H is de�ned as Hxt. Given the channel output y 2 IFn
2 , we �rst

compute the syndrome s = Hyt, and then decode y to bc = y�v 2 C , where v is the coset
leader of the coset consisting of all the vectors whose syndrome with respect to H is s.
This procedure, known as standard array decoding and illustrated in Figure 7, achieves
hard-decision maximum-likelihood decoding of C on a binary symmetric channel.

received
vector, y syndrome s

Hyt
coset
leader
table

coset
leader, v

closest
codeword

ĉ=y–v

+
–

Figure 7. Standard array decoding

With a multi-terminal trellis, we can represent the standard array compactly, avoid the
brute-force enumeration of cosets, and obtain a linear time procedure for both syndrome
computation and decoding. The idea is to construct a multi-terminal BDD for the func-
tion hC (x1; : : : ; xn) = Hxt, using a procedure analogous to the BCJR construction [5].
In addition, we will carry out dynamic programming during the construction to label
each vertex by the minimum weight path that leads to it.

The BCJR trellis T = (V;E; IF2) for a linear code C of length n is constructed [5] by
identifying vertices with partial codeword syndromes:

Vi
def
=

n
c1h1 + � � �+ cihi : (c1; : : : ; cn)2 C for some ci+1; : : : ; cn 2 IF2

o
(8)

with V0 = 0 by convention. There is an edge e2Ei from v 2Vi�1 to u2Vi if and only
if there exists a codeword (c1; c2; : : : ; cn)2 C such that c1h1 + � � � + ci�1hi�1 = v and
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Figure 8. The syndrome decision diagram for C = f00000; 11010; 01101; 10111g

The terminal corresponding to y2 IFn2 is labeled by the syndrome Hyt, and the
arrows indicate paths to be taken to obtain a minimum weight error vector. The
syndrome may be calculated by trickling the received vector down the diagram.
For example, if the vector y = (10011) is received, the corresponding path from the
root ends in the terminal labeled Hyt = (100)t. Following the backpointers from
this terminal, the error vector is determined to be (00100).

c1h1 + � � �+ ci�1hi�1 + cihi = u. The label of this edge is �(e) = ci. The multi-terminal
trellis D = (V 0; E 0; IF2) may be constructed in a manner analogous to (8) by computing
partial syndromes for all vectors in IFn

2 , not just the codewords of C . Thus, we de�ne

V 0
i

def
=

n
x1h1 + � � �+ xihi : (x1; : : : ; xn)2 IF

n
2 for some xi+1; : : : ; xn 2 IF2

o
(9)

with V0 = 0 by convention. There is an edge e2E 0
i from v 2V 0

i�1 to u2V 0
i with label

�(e) = x2 IF2 if and only if u = v + xhi. It is easy to see that the resulting graph D is
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the multi-terminal BDD for the function hC (x1; : : : ; xn) = Hxt. Note that the minimal
trellis for C is contained in D as a proper subgraph. Also notice that by replacing IFn

2

in (9) by an arbitrary subspace S such that C � S � IFn
2 , we obtain the multi-terminal

trellis that represents the cosets of C in that subspace.

By carrying out a simple dynamic programming algorithm on D during its construction,
maintaining for each vertex the minimum weight path reaching that vertex and a corre-
sponding pointer back to the previous level, we can determine the minimum weight path
to every vertex in D, and therefore to every syndrome. The straightforward details are
omitted. The resulting data structure, which we call the syndrome decision diagram for C ,
is illustrated in Figure 8 for the (5; 2; 3) linear code C = f00000; 11010; 01101; 10111g.

Given a syndrome decision diagram D, a maximum-likelihood decoder for C can be
implemented as follows. First we evaluate the received vector y in D, thus computing
the function hC (y1; : : : ; yn) = Hyt which gives the syndrome of y, and then trace back
from the corresponding terminal to �nd a coset leader v in the coset of y.

The standard-array decoding procedure, illustrated in Figure 7, has space complexity
O(2n�k) and decoding complexity O(n2), since the computation of the syndrome s = Hyt

is in general quadratic in the block length. Construction of the syndrome decision dia-
gram requires O(n2n�k) space and time complexity. However, once the diagram is avail-
able, both syndrome computation and decoding can be accomplished in linear time.

In general, as a computational device that computes syndromes in linear time, syndrome
decision diagrams would be useful in many di�erent contexts in coding theory.

Reed-Muller expansions and OFDDs. One approach to obtaining more compact
representations of Boolean functions has been to change the interpretation of the vertices
within the data structure. As discussed in Section 2, OBDDs represent the Shannon
expansion (1) of a Boolean function. An alternative expansion of a Boolean function can
be expressed in terms of the exclusive-or operation:

f = fx � x � f�x = fx � x � f�x (10)

where f�x = fx � fx is the Boolean di�erence of f with respect to x. The �rst equality
in (10) is known as either the Reed-Muller or the negative Davio expansion, while the
second equality is referred to as the positive Davio expansion. These decompositions are
analogous to the Taylor expansion of a di�erentiable function.

The Reed-Muller expansion can be used [46] as the basis for graphical representations
called ordered functional decision diagrams. This representation is analogous to OBDDs,
except that the outgoing edges from a vertex represent the negative cofactor and Boolean
di�erence of the function with respect to the vertex variable. Ordered functional decision
diagrams (OFDDs) have many properties in common with OBDDs. For example, the
representation is canonical, and can be constructed using a similar algorithm for merging
and eliminating vertices, with a di�erent reduction rule for removing redundant tests.
The OFDD for our example code C = f00000; 11010; 01101; 10111g is shown in Figure 9.
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10 0 1

Figure 9. The OFDD and the OBDD for C = f00000; 11010; 01101; 10111g

For some classes of functions, OFDDs are exponentially smaller than the corresponding
OBDDs, although the reverse can also hold. One interesting direction for future re-
search would be to explore an application of OFDDs for channel coding, by investigating
decoding algorithms based on this representation.

One useful decoding algorithm for trellises is the forward-backward algorithm, also called
the BCJR algorithm after the authors of [5], who �rst developed this algorithm in the
trellis context. The forward-backward algorithm is widely used in practice, for example
in the decoding of turbo codes [8], to obtain maximum a posteriori likelihood (MAP)
decoding of each code symbol. The complexity of this algorithm is polynomial in the size
of the trellis, or equivalently the size of the single-terminal OBDD for the code. However,
we will now show that it is unlikely that the calculations required in the forward-backward
algorithm can be carried out e�ciently using the OFDD representation.

The forward-backward algorithm assumes knowledge of the channel transition probabil-
ity function p(yjx), where x2 C is the channel input and y is the vector observed at the
channel output. For a given binary code C , the algorithm e�ectively computes

S0(xi)
def
=

X
x2C
xi=0

p(yjx) and S1(xi)
def
=

X
x2C
xi=1

p(yjx) (11)

for all i = 1; 2; : : : ; n, and decodes the i-th code bit xi to either 0 or 1, according as
S0(xi) > S1(xi) or S1(xi) > S0(xi). Although the formulation of the forward-backward
algorithm in (11) is general, we will restrict our attention to the simplest possible channel
model: the binary symmetric channel with cross-over probability �. Thus the channel
output is binary, and the transition probability function is given by:

p�(yjx) = �d(x;y) (1� �)n�d(x;y) (12)

where d(x; y) is the Hamming distance and �2 [0; 1] is a real constant. The decoding
algorithm that we seek must work for any �, thought of as a parameter of the algorithm.
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Proposition4. Let C be an arbitrary binary block code, and let F be an OFDD for C .

Then there is no polynomial-time algorithm in the size of F for computing the expres-

sions S0(xi) and S1(xi) in (11) for the function p�(yjx) in (12), unless P = NP.

Proof. The key idea of the proof is to observe that on a binary symmetric channel
with � = 0:5, the forward-backward algorithm simply counts the number of codewords
that have 0, respectively 1, in the speci�ed position. Indeed, for � = 0:5, we have

S0(xi) + S1(xi) =
X
x2C
xi=0

(0:5)d(x;y) (0:5)n�d(x;y) +
X
x2C
xi=1

(0:5)d(x;y) (0:5)n�d(x;y) =
jC j

2n

Thus, as a special case, such an algorithm could be used to compute the size of the
code. It is shown in [78], however, that the problem of computing jC f j using the OFDD
representation of a Boolean function f(x1; : : : ; xn) is #P-complete.

We conclude that OFDDs are not suitable for the kind of calculations required in the
forward-backward algorithm, at least for general binary codes. It is still possible that
OFDDs can be used e�ciently in the context of the forward-backward algorithm in the
special case of linear codes. It is also possible that maximum-likelihood decoding, as op-
posed to symbol-by-symbol MAP decoding, can be implemented e�ciently with OFDDs.

Binary moment diagrams. There have been several e�orts to extend the concept
of BDDs to represent functions over Boolean variables, but having non-Boolean ranges,
such as the integers or the real numbers.

h

0 n

1

2

3

h

h

h

Figure 10. The BMD for a linear code with parity-check matrix H = [h1; h2; : : : ; hn]

One approach to representing numeric functions, especially those encountered in arith-
metic circuit veri�cation, involves changing the function decomposition with respect to
its variables, in a manner analogous to the use of Reed-Muller expansions for FDDs.
The moment decomposition of a function is obtained as

f = fx + x � (fx � fx) = fx + x � f@x

where f@x = fx � fx is called the linear moment of f with respect to x. The resulting
representation is known [20] as the binary moment diagram or BMD.
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Our conclusion with regard to binary moment diagrams is, again, negative. As pointed
out to us by Randy Bryant [19], this representation turns out not to be useful for codes.
Indeed, let C be an (n; k; d) linear code with parity-check matrix H = [h1; h2; : : : ; hn].
Then the binary moment diagram of the IFn�k

2 -valued function hC (x1; : : : ; xn) = Hxt is
the tree shown in Figure 10. Using the fact that the BMD representation is canonical [20],
this statement follows by a simple induction on the block length of the code.

6. Conclusions and discussion

We have established a correspondence between ordered binary decision diagrams and
minimal trellises, proving that the single-terminal OBDD for a binary code C , viewed as
a Boolean function, is isomorphic to the minimal proper trellis for C , provided d(C ) > 1.

Although we have emphasized the similarities between the two data structures through-
out this paper, one should also be aware of the di�erences between them. It appears
that the major distinction between trellises and OBDDs results from the elimination of
redundant tests, which does not preserve the depth structure of a trellis. This distinc-
tion becomes vacuous if d(C ) > 1. The restriction d(C ) > 1 does not have much of an
impact in coding theory: any useful code will have minimum distance greater than 1.
However, there is no reason why the o�-set of a useful Boolean function should satisfy
this requirement. Thus every reasonable trellis is an OBDD, but not vice versa.

Another signi�cant distinction between the theory of binary decision diagrams and trellis
theory stems from a di�erence in emphasis. While most of the research in channel coding
is focused on linear codes, the corresponding class of Boolean functions has not received
much attention in logic synthesis and formal veri�cation.

Despite the dissimilarities discussed above, we have demonstrated that the connection
between trellises and OBDDs opens up many possibilities for leveraging the extensive
work that has been carried out independently in two previously unconnected disciplines.
We hope that this paper will stimulate further research in this direction.

Acknowledgment. We would like to thank Randy Bryant for several helpful and
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