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Abstract

The order in which the variables of a linear system are processed determines the total amounts of
fill and work to perform LU decomposition on the system. We identify a trade-off between the
amounts of fill and work for a given order and the parallelism inherent in that order. We present two
algorithms: one that tries to parallelize sequential orders, and another that tries to produce low-fill
orders, while, in the process, producing somewhat sequential orders.

The first algorithm takes a sequential order for a matrix and produces a parallel one with at most
a constant factor more nonzeros and work. We also show that, for certain graphs, any parallel order
requires an amount of additional fill that is a function of the amount of parallelism exhibited. The
more parallel the order, the more fill it introduces.

We identified a particular “deficiency” of nested dissection that arises from the parallel nature
of the orders it produces. Thus, when shifting our goal towards fill and work minimization, we
choose to modify nested dissection to obtain a similar algorithm that produces orders that introduce
less fill and work than a traditional nested dissection order would, but that are also less parallel than
the orders that would be produced by the traditional nested dissection algorithm.

Our experimental work comparing this variant of nested dissection and a number of other pub-
licly available ordering algorithms indicates that while a few of the algorithms produce comparable-
quality orders, the minimum-degree algorithm stands out as the worst one. Contrary to common
belief, the minimum-degree algorithm produces poor quality orders in terms of fill and work. Our
variant of nested dissection compares favorably with state-of-the-art ordering algorithms, including
implementations of nested dissection, minimum-degree and their hybrids.
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Chapter 1

Introduction

Among the most common problems to be solved in both operations research and scientific com-
puting is that of finding a vectat that satisfies a linear system of equatiohs = b, whereA is

a known matrix and is a known vector. Systems of this sort arise in scientific computing when
modeling physical systems, such as the flow of air over an airfoil, and in operations research when
solving optimization problems, such as assigning production tasks to machines in a workshop.
Often these systems are quite large, making their solution on even the most powerful computers
challenging. Two common approaches to solving linear systems in practice are direct methods such
as Gaussian elimination, and iterative methods such as conjugate gradient. This thesis focuses on
Gaussian elimination.

A system of equationglz = b can be simplified if the matri¥l can first be decomposed into
the product of two matriced = L - U, wherelL is a lower triangular matrix, antl is an upper
triangular matrix. The solution;, can then be found by first solvingy = b for y, and then solving
Uz = y for . These two systems are easier to solve than the original sydtem b because
when the known matrix is upper or lower triangular, a fast algorithm called back substitution can be
applied. The factorizationl = L - U can be found through Gaussian elimination. One advantage
to solving linear systems through- U decomposition in the scientific computing domain is that
systems of the formdz = b are often solved repeatedly for a fixed matdxbut with different
matricesb. This scenario arises, for example, when using the popular finite-element method for
solving a set of partial differential equations describing a physical system. In this case, the cost of
factoring A into L - U can be amortized against the cost of repeatedly solving the system.

The basic step in Gaussian elimination is to add or subtract a multiple of one row of the matrix
A to another row ofd. In L - U decomposition, a multiple of thih row of A is subtracted from
each of the following rows in order to eliminate ttik entry of each of these rows. In particular, for
j > 14, amultiple ofA;; /A;; of theith row of A is subtracted from thgth row so that the new value
of Aj;is Aj; — (Aji/Aii) Ay = 0. This operation is referred to as pivoting dg;, and the multiple
Aji/A;; is recorded ad ;; = Aj;/A;. Processing théth row of A corresponds to eliminating the
ith variablex; from the system of equations. The rowsfare processed in order, so that once
the last row has been processédhas been reduced to an upper triangular mdfriAt this point,
A=L-U.
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When a multiple of theth row of A is subtracted from thgth row of A in order to eliminate
Aj;, the entries in row; in all columnsk beyond theith column are also subtracted from the
corresponding entries in thy¢h row. When the entryl;;, is non-zero, but the entry ;. is zero, we
say thatfill has occurred, because the new valuedgf is no longer non-zero. In general, fill is
considered to be undesirable because it increases the amount of memory required to store the linear
system and because there is a high correlation between the amount of fill and the total number of
floating point operations (thevork) required to complete thé - U factorization. Minimizing the
amount of memory required is crucial because in practice the size of the largest system that can
feasibly be solved is typically limited by the size of a computer’s main memory. Unfortunately, the
process of elimination may turn a sparse matiito a dense matrix/.

The L - U decomposition algorithm, as described so far, allows no freedom in the choice of
pivots, and hence provides no mechanism for avoiding fill. For the purposes of sdlving b,
however, the order in which the rows df (and henceé) appear does not affect the solution to the
system. Hence the rows df andb can be permuted by a permutation matfixand then Gaussian
elimination can be applied to the systdiRA)x = Pb rather thanAz = b. The permutation
specifies the order in which the original rows of the mattiare to be processed. Different orders
may create wildly different amounts of fill.

The matrix A can be viewed as a graph. In particular,rarxx n symmetric matrixA can be
viewed as an undirected graph consistinguafertices,{1,...,n}, with an edge between vertices
i andy if the matrix entryA;; = Aj; is non-zero. The operation of eliminating tita variable
x; then corresponds to the graph operation of removing veértexm the graph and adding edges
between all of the neighbors 660 that they form a clique [Par61, Ros70]. To see why such edges
must be added, note that in pivoting d;, a non-zero entry may be created4y, for any j such
that A;; > 0 (i.e., for any neighboy of ) and for anyk such that4;;, # 0 (i.e., for any neighbok
of 7). The newly added edges are calféidedges(or justfill). Minimizing either the fill or the work
by performing symmetric permutations of symmetric matrices, that is, by re-ordering the rows and
columns of the matrix, has been shown to be NP-hard [Yan81].

The Gaussian elimination algorithm discussed so far breaks down if it encounters alpivot
whose value is zero, since such a pivot cannot be used to eliminate non-zero elements in the follow-
ing rows. To dodge this issue, we restrict our discussion to the clagsrohetric positive definite
matrices If a matrix is symmetric positive definite, then during the course of Gaussian elimination,
no matter how the variables are ordered, no pivot elerdgnivill have value zero. Symmetric pos-
itive definite matrices are not unusual in practice. Furthermore, there are a variety of approaches
for dealing with a zero-valued pivot, including exchanging the row with another row, and replacing
the pivot value with a small non-zero value (and later adjusting the final solution).

In this thesis we identify a trade-off between the amounts of fill and work for a given order
and the parallelism inherent in that order. We present two algorithms: one that tries to parallelize
sequential orders, and another that tries to produce low-fill orders, while, in the process, producing
somewhat sequential orders.
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1.1 Existing ordering heuristics

Over the years a number of algorithms for producing elimination orders with low fill and work have
been proposed. The most popular of thesensiremum degregMar57, TW67, Liu85] anchested
dissection[Geo73, GL78, LRT79]. At each step, the minimum-degree heuristic selects a vertex
with the smallestlegree(number of neighbors), removes this vertex from the graph by pivoting
on it (making its neighborhood a clique), and then looks for the next vertex with the smallest
degree in the new graph. It proceeds in this fashion until all vertices have been selected. The
orders produced are typically good. There exist, however, minimum-degree orders with significant
amounts of fill. For example, minimum degree can produce orders §(tt°2:4) fill for the
toroidaln x n mesh [BS90], while the optimal order for the same graph requires@®(ly: log n)

fill.

Nested dissection, on the other hand, examines the graph as a whole before ordering it. Unlike
minimum degree, nested dissection orders the vertices of the graph backwards, that is, it begins by
deciding which vertices should be eliminated last. Nested dissection works by selestitegneed
separator i.e., a set of vertices that, when removed from the graph, partitions it into connected
components each of which has at most a constant fraction of the total number of vertices in the
graph. The vertices in the separator are placed last in the elimination order. Then nested dissec-
tion recursively orders each of the connected components until the whole graph has been ordered.
Because the separator is eliminated last, and there are no edges connecting vertices in different
connected components, no fill can be created between different components as they are eliminated.
Hence, the various components can be eliminated either sequentially or in parallel without affecting
the quality of the order in terms of both fill and work. For planar graphs and graphs with bounded
genus [GT87, LRT79], and for graphs with bounded degree [AKR93], nested dissection has been
shown to produce orders that have fill within a poly-logarithmic factor of the optimum.

Even though minimum-degree algorithms can produce elimination orders that introduce more
fill than the worst-case nested dissection order, minimum degree is usually preferred to nested
dissection, and is said, in practice, to produce orders with less fill. However, the “in practice”
wisdom on this is changing. The currently accepted champion algorithms are hybrids of nested
dissection and minimum degree [AL96, HR96] and benefit from the strengths of both methods but
do not, however, provide any performance guarantees.

1.2 Parallel elimination

The performance of Gaussian elimination can be improved on parallel computers by generalizing
the basic elimination step to allow for more than one vertex to be eliminated at a time. In order
for such an operation to make sense, the vertices that are eliminated in one step must form an
independent set.e., a set of vertices no two of which are adjacent. As an example, in the nested
dissection algorithm a set of vertices consisting of one from each of the connected components
constitutes an independent set, and hence can be eliminated in parallgkighif a graph is the
minimum number of parallel elimination steps needed to eliminate all of the vertices of the graph.

Finding the height of a graph is NP-hard [Pot88], but minimum-height orders may be found
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for specific classes of graphs. Aspvall and Heggernes [AH94] present an algorithm that finds elim-
ination orders with minimum height for interval graphs, but the orders produced have not been ana-
lyzed in terms of fill. A family of chordal graphs for which any minimum-height order must produce
fill that is more than a constant factor larger than the total number of nonzeros in a minimum-fill
decomposition is presented in [Asp95]. Manne [Man91] shows how to produce minimum-height
orders for trees with fill linear in the number of edges in the tree.

The height of an order is a measure of its parallelism. The more parallel an order, the smaller
its height. Some graphs are inherently more sequential than others. For example, the vertices
of aclique (a graph in which every pair of vertices is connected by an edge) must be eliminated
sequentially, because a clique contains no independent sets of size greater than one. More generally,
if a graph contains a clique, or if a clique is created during the course of elimination, then that clique
must be eliminated sequentially. There are, however, alternative parallel algorithms for solving
these dense linear systems of equations. This suggests modifying Gaussian elimination so that
when a large dense subgraph is encountered, a different algorithm is used to eliminate it. In a single
stageof such a hybrid algorithm, an independent set of cliques may be eliminated in parallel.

We begin our study by examining parallel orders for specific classes of graphs, namely interval
graphs and chordal graphs. The purpose of the study was twofold. First, the rich structure of these
graphs provides some insight into the problem of finding orders that minimize both fill and work.
Second, because chordal graphs are precisely those graphs with zero-fill elimination orders, any
graphG along with the fill edges introduced by a given order is a chordal graph, callethtndal
completionof G. This suggests that an algorithm designed to find a parallel order for a chordal
graph can be applied to the chordal completion of a gi@pyenerated by some other (possibly
sequential) ordering heuristic, and the resulting order, which may be more parallel, can then be
applied to the original grapty.

Although zero-fill orders for chordal and interval graphs can be computed in linear time [RTL76],
these orders do not necessarily have low height. Our goal was to obtain an algorithm that takes a
chordal graph and produces an order with low height and with fill linear in the number of edges
of the graph. Although zero fill is preferable, allowing linear fill increases the amount of space
required for Gaussian elimination by only a constant factor.

We started by analyzing nested dissection on the classes of interval and chordal graphs. We
showed that if the separators are required to partition the graph into components with no more than
half the number of vertices in the graph, then nested dissection may introduce a super-linear amount
of fill even on interval graphs. We also showed that by allowing a constant-factor imbalance in the
size of the subgraphs generated by the choice of the separator, a specific nested dissection algorithm
produces orders with linear fill and linear work for interval graphs.

The bounds we obtained for this nested dissection algorithm corroborate the common notion
that allowing some imbalance in the size of the subgraphs produced by removing a separator can
help produce better orders. With this imbalance, nested dissection is a suitable algorithm for pro-
ducing parallel orders for interval graphs. Unfortunately, we also showed that there exist chordal
graphs for which, even when allowing some constant-factor imbalance, the nested dissection algo-
rithm will produce orders with super-linear fill.

There is a trade-off between the parallelism exhibited by an order and the amount of extra
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fill introduced by that order. In fact, by slightly reducing the amount of parallelism in an order,
we obtained an algorithm that produces parallel orders for chordal graphs with linear fill. One
technique for “sequentializing” the order is the usesehtinels Sentinels are separators that help

to sequentialize an order just enough to localize the fill within subgraphs of a chordal graph. The
orders produced by our algorithm have linear fill and height withinOdivg? n) factor of the
optimal.

Our experience parallelizing and sequentializing elimination orders for chordal graphs led us
down an interesting avenue. Nested dissection produces orders that are naturally parallel. This
same parallelism is also responsible for some of the fill required by nested dissection orders. Thus,
perhaps nested dissection could be improved by reducing the amount of parallelism in the orders it
produces.

We have designed an algorithm that is a variant of nested dissection that produces orders with
low fill but which are usually less parallel than orders produced by standard nested dissection algo-
rithms. While still using separators to guide the ordering process, the algorithm does not necessarily
assume that a separator should be ordered last, but only that it should be used to avoid fill between
the different connected components it defines in the graph. That is, as long as the vertices within all
but one of the components are ordered before the separator vertices, then the requirement that the
separator vertices be ordered last no longer exists. Instead, the algorithm recurses on the subgraph
formed by the last of the components along with the, as yet unordered, separator vertices. The ac-
tual algorithm is more involved, and cannot always decide which component should be ordered last.
It sometimes reverts to regular nested dissection. This algorithm behaves very much like nested dis-
section, except that in certain cases when nested dissection misbehaves, this algorithm works better
and produces low-fill orders. Unfortunately, have not yet been able to provide a theoretical analysis
for this algorithm on general graphs. However we have proved that this algorithm produces zero-fill
orders when applied to chordal graphs, which is not, however, the case for nested dissection.

1.2.1 Empirical results

We performed experiments with an implementation of this variant of nested dissection and state-
of-the-art implementations of other ordering heuristics on matrices commonly used as benchmarks.
We observed that nested dissection performed on average almost as well as a hybrid of minimum
degree and nested dissection, the current champion algorithm. When given good enough separators,
our modified version of nested dissection outperformed this hybrid algorithm by about 5 percent in
terms of fill and 10 percent in terms of work on average, over the set of test matrices. It outper-
formed a minimum-degree ordering algorithm by about 20 percent in terms of fill, and 66 percent

in terms of work on average, on the same benchmarks.

Nested dissection versus minimum degree

Even though we advocate nested dissection as a better approach for producing elimination orders
than minimum degree, we cannot deny that, on certain graphs, minimum degree does generate
better elimination orders in terms of both fill and work.
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Nonzeros on nxk grids
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Figure 1.1: Number of nonzeros introduced by different elimination orders fork rectangular
grids relative to a special-purpose order.

Figures 1.1 and 1.2 show the number of nonzeros and the amount of work for decomposing
grids according to various ordering algorithms. In these experiments we used rectangular two-
dimensional grid graphs of various aspect ratios, each of which had a tat4l wértices. Four
ordering algorithms were applied to each graph, namely nested dissection (ND), the hybrid algo-
rithm that we mentioned previously (BEND) [HR96, HR97], our “less parallel” variation of nested
dissection (LPND) and a version of minimum degree (AMD) [ADD96]. We also applied a special-
purpose algorithm that works only on two-dimensional grids, and uses diagonal separators as a basis
for the ordering. The results for all orders were normalized to the results for this special-purpose
order.

On graphs with large aspect ratios, the minimum-degree algorithm does best in terms of fill, but
poorly in terms of parallelism. On these same graphs, the nested dissection and the hybrid algorithm
produce orders that are substantially more parallel, but require more fill and work. For each of the
orders produced by these algorithms we computed the minimum-height order that is equivalent to
the order produced, in the sense that the new order produces the same fill edges. The heights of
these minimum-height orders are shown in Figure 1.3, again, relative to the special-purpose order.
We note that the LPND algorithm produces very sequential orders that are only a few percent more
parallel than those produced by AMD. At least part of the additional fill experienced by the nested
dissection and hybrid orders is a function of the additional parallelism in these orders.
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Work on nxk grids

3.0
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Figure 1.2: Work for different orders relative to a special-purpose order.

The following results stand out:

1. Contrary to popular belief, our results indicate that even though minimum-degree orders have
low fill on graphs with large aspect ratios, in practice they are not very good for large graphs,
such as the ones found in a number of sparse matrix applications. For smaller graphs, and in
particular for small enough subgraphs of the input graphs, we often use minimum-degree as
an ordering heuristic.

2. There exists a trade-off between exposing parallelism and producing low-fill orders. This
trade-off can play a significant role when comparing orders that differ by only a few percent.
We show that to obtain a parallel order for certain graphs we must allow some extra fill. Since
nested dissection orders are highly parallel, this effect can sometimes make other ordering
heuristics more attractive. By limiting the amount of parallelism that is exposed, we obtained
a new algorithm that is a variant of nested dissection that, on our test cases, outperforms
existing algorithms on average.

3. Given a sequential order, our parallelizing algorithm will produce a parallel elimination order
with only a constant factor more fill and work than the initial order, while achieving a height
within a factor ofO(log? 1) of optimum.
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Chapter 2

Background and definitions

2.1 Gaussian elimination and LU decomposition

We start by reviewing Gaussian elimination and LU decomposition. Gaussian elimination solves a
linear system of: equations and variables by adding a multiple of the first equation to the remain-

ing equations so as to remove the first variable from those equations, in what we call an elimination
step. After the first elimination step we obtain a system ef1 equations ana — 1 variables, that

can be processed in the same fashion. This method results in a system that corresponds to an upper
triangular matrix, and can be easily solved by back-substitution.

Each of the elimination steps described above corresponds to multiplying the matrix represent-
ing the linear system by a matrix that is readily inverted. While multiplying this matrix by another
matrix adds a multiple of the pivot row to a number of other rows, multiplying its inverse by a
matrix subtracts that same multiple of the pivot row from the other rows. Thus, each one of these
matrices and their inverses have the same non-zero pattern. These matrices have non-zeros in the
diagonal and in the positions that correspond to each of the equations from which the variable is
being eliminated in the current step.

The process known dsV decomposition consists of “storing” the sequence of such elementary
operations. fE,, E», - - -, E, are the elementary matrices corresponding to the Gaussian elimina-
tion of a matrix A, then the matrixXJ obtained by Gaussian elimination can be writtenas=
(En-(Ep - (Ey-(Ey-A))---)). Thuswe havel = LU, whereL = E; ' - E; ' - B B!
is a lower triangular matrix. The non-zero structureLoforresponds to the non-zero structure of
all the matriceds; added together, that i&, can only have a non-zero in colunimow j if at least
one of the matrice&; also does. Each column df has non-zeros corresponding exactly to the
non-zero entries on that column, below and including the diagonal, at the time the corresponding
variable was eliminated.
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2.2 Definitions

Entries in the matrix. produced in the.U decomposition of a matrixl can be classified in two
categoriesoriginal entries that correspond to non-zerosdirandfill entries that correspond to new
non-zeros introduced during the elimination process. The total number of floating-point operations
to perform anL.U decomposition is called theork to decompose the matrix. The total amount

of fill and work for a matrix decomposition depends dnbut also depends on the order of the
equations and variables. Instead of decomposing the matnve first find a suitable order for the

rows and columns of the matrix. We can then either think of the decomposition process as choosing
a pivot at each step according to the order, or we can permute the matrix, so that the elements are
listed in the order they should be pivoted in. To maintain the symmetry of the matrix, we perform
both row and column permutations, that is, given a permutation m&trigr the matrix A we
actually decompose the matriRAP”". The order corresponding 18 is said to be arlimination

order. When dealing with sparse matrices, it is interesting to consider the problem of finding the
elimination order that minimizes either fill or work.

In order to understand and try to find low-fill and low-work orders, we model matrices as graphs,
and LU decomposition as a graph operation, following Parter and Rose [Par61, Ros70]. +et
(m; ;) be a squares x n matrix. We associate with/ the graphG with verticesv, - - -, v, and
edges(v;, vj;) iff m; ; # 0,1 # 5. WhenM is symmetricG is an undirected graph.

Given a graphG = (V, E) and a vertex in V we call N (v), the set of vertices adjacent to
in G, the neighborhoodof v in G. WhenG is unclear, we will refer taV(v) as N¢(v). A pair
of verticesv andw are said to béwinsif N(v) U {v} = N(w) U {w}. A cligueof G is a set of
vertices any two of which are adjacentGh A clique is said to benaximalif it is not contained in
any larger cligue. Aindependent seif vertices ofG is a set of vertices none of which are pairwise
adjacent. An independent senmmximalif it is not contained in any larger independent set.

pivot

Figure 2.1: The elimination of the vertex corresponding to the pivot in a given step introduces fill
edges between its neighbors.

Each step of Gaussian elimination on a symmetric mauixcorresponds to finding the next
variable and the corresponding verigxto be eliminated, adding edges @bwhere necessary to
makew;’s neighborhood into a clique, and then removipgrom G. The vertexy; is said to have
beeneliminatedfrom G. Any new edges introduced by the elimination of a vertex are céilled
edges, or simplyill, and have a one-to-one correspondence with the fill entrids iRigure 2.1
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illustrates the process of eliminating a vertex.

Alternatively, we can think of thd.U decomposition process in terms of a different graph
operation. In this case we do not remove the vertex being eliminated from the @rdpt rather
mark it, just so it is not included in later steps in the neighborhoods of other vertices. This process
augments into a supergrapltz* obtained fromG by inserting all the fill edges int6:. This
augmented grapti " is referred to as thélled graph Given two non-adjacent vertices andv;
in G, there exists a fill edgév;, v;) in G iff there exists a path from; to v; going only through
verticesuvy, k < min(i, j), wherevy, ve, - - -, v, IS the elimination order used to perform the LU
decomposition [RTL76]. Two elimination orders are said teehaivalentf they produce the same
filled graph.

An ordervy, vs, - - -, v, Of the vertices of7 is aperfect elimination ordeif the elimination of
the vertices of7 according to the order does not introduce any fill edges. A vertesimplicialin
a graphG if N(v) is a clique inG. Simplicial vertices are of special interest since the elimination

of a simplicial vertex does not introduce any fill edges. An orgdetws, - - -, v, is perfectiff v; is
simplicial inG \ {vy,---,vi1}.
G T Vg
v Ve Vs
s/ s
7/ /s Vg
7/ /
V3 Vq
Figure 2.2: A graplG and its elimination tre§ according to the order;, vs, . . . , vg.

We can represent an elimination order byedimination treei.e., a tree that encodes the actual
precedence relations between the vertices of the graph. Given a@rapkl the grapli: ™ obtained
from G by adding all the fill edges introduced by a given ordef the vertices of7, the elimination
tree of G corresponding tar is defined as follows: every vertex 6f is a vertex of the elimination
tree and the parent of a vertexs the first of the neighbors ofin G+ that is ordered after in «.
Figure 2.2 represents a graph and the graplé:* obtained by adding the fill edges corresponding
to the elimination orden,, vo, . .., v to G. The fill is represented in the figure by the dotted edges.
Figure 2.2 also shows the elimination tfEef G corresponding to the same elimination order.

Any vertices that do not have any children in the elimination tree can be eliminated in a sin-
gle parallel step. Thaeightof an elimination order is given by the height of the corresponding
elimination tree plus one. The height of an order corresponds to the minimum number of steps to
perform LU decomposition on the graph while respecting the precedence constraints imposed by
the order. Théneight H(G) of a graphG is the minimum height over all elimination orders for that
graph.
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If we implement LU decomposition as a parallel algorithm, we can, at each step of the algo-
rithm, eliminate an independent set of simplicial vertices. This parallel LU decomposition algo-
rithm must eliminate vertices in a clique sequentially. We can also conceive a parallel decompo-
sition algorithm that handles cliques as dense subgraphs. This new algorithm can take advantage
of the sparsity of a matrix while applying a different, parallel dense decomposition algorithm to
the dense sub-matrix corresponding to a clique, resulting in a very parallel algorithm. We define
the number ofstagesof an order as the minimum number of parallel clique elimination steps to
decompose a graph while respecting the precedence constraints imposed by the order.

Thereordering heighpf a graphG given an elimination order is the minimum height among
all orders ofG equivalent tor. The number of reordering stagesf a graphG given an order
m is defined analogously. The reordering height of a graph given an order can be computed effi-
ciently [JK82, LPP89], and so can the number of reordering stages of the graph.

A graphd is said to bechordalif and only if every simple cycle with more than three vertices
has achord that is, an edge connecting two non-consecutive vertices in the cycle. The class of
chordal graphs is also the class of perfect elimination graphs [Dir61, Ros70].

Now consider the grapl¥™ obtained from a grapli’ by adding all fill edges introduced by
some order. When eliminating™ according to the same order used to obt&ih form G, we
observe that no new fill is created, and in fa&t is a perfect elimination graph. Thus, we also
refer to the filled grapl&G™ as achordal completiorof G. Chordal graphs have also been studied
in other contexts, and have a number of interesting properties. Some NP-hard problems such as
k-coloring and finding a maximum clique have linear time solutions for chordal graphs. Chordal
graphs are also known by the names of triangulated graphs and rigid circuit graphs.

Chordal graphs have also been characterized as a particular class of intersection graphs. The
intersection graptof a family F of setsS; is the graph obtained by associating a veitewith each
setS;, and edgesgv;, v;) wheneversS; intersectsS;. Chordal graphs correspond to the intersection
graphs of subtrees of a tree, i.e., each of the Sgtiefining the intersection graph is a set of nodes
that induces a connected subgraph of a tree. We call the tree in questetetonof the chordal
graph. The skeleton along with the various subtrees foritneearepresentatiorof the graph. A
tree representation of a graghis said to beminimalif the associated skeleton has the minimum
number of nodes possible. Gavril [Gav74] and Buneman [Bun74] showed that in a minimal tree
representation there is a one-to-one correspondence between vertices of the $katetanaximal
cligues ofG. Thus, a minimal tree representation®is called aclique treeof G.

Figure 2.3 exhibits a chordal graghwith 8 vertices, numbered, throughvg. The clique tree
T of G (in this case unique) is also depicted in the figure. Each node of the clique tree corresponds
to a maximal clique ofZ, namely the set of vertices @ whose representative subtrees include
that node of the skeletdfi. Since all these subtrees include the particular node of the skeleton, the
corresponding vertices i¥ are connected and form a clique. For instance, the G4¢gin Figure
2.3 corresponds to the cliqgue formed4y v, andwvg in G.

Each vertex ofG can appear in a number of different maximal cligues. The representative
subtree for a vertex off is the subtree induced by the set of cliques that contain that vertex. For
instance, the vertex, is in the cliques’2g, Ca46s andCa34. These cliques induce the subtfEg
that represents, in the tree representation 6f. Vertexvs on the other hand, is in only one clique,
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so that its representative subtrég, corresponds to the node,s;,. These representative subtrees
are represented in the figure slightly off from the skeleton tree, which is drawn with thinner lines.
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Figure 2.3: A chordal graplif and its clique tred’. The nodes of’, labeledC' 25, C234, Ciyss,
Ce7s andCyygs, correspond to the maximal cliques@Gf

Interval graphs constitute an important subclass of chordal graphs. These are chordal graphs
that have paths for skeletons. In other wordsjraarval graphis the intersection graph of sub-
paths of a path. The skeleton in question can be thought of as the real line, and the sub-paths as
intervals, hence the name. A tree representation with a path for a skeleton is also caileaivah
representation An asteroidal tripleis an independent set of three vertices such that there is a path
between each pair of vertices that avoids the neighborhood of the third. Interval graphs correspond
to chordal graphs without asteroidal triples.

P |

Figure 2.4: Representations of an interval grdg@s an intersection graph.

Figure 2.4 shows equivalent representations of the interval gfaphis represented as the
intersection graph of subpaths of the p&tand as the intersection graph of intervals of the line

Throughout this thesis we refer to vertices in a graph, but we will usually use thentateto
refer to vertices that correspond to sets of vertices in some other graph. For instance, we will refer
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to vertices of a chordal graph, but nodes of its skeleton, for each node corresponds to a clique in the
chordal graph. Given a tree representation of a gi@ptne subtred’, is said tocovera node/edge

of the skeleton if that node/edge isif. Theply of an edge: of a skeleton is the number of distinct
subtreedl;, that covere. A terminal branchof T' is a maximal path from a leafto a nodew in T

that, except fow andw, contains only nodes of degree twdiin

Let G = (V, E) be a graph. We denote iy \ v andG \ S the subgraphs off induced by
V \vandV \ S respectively. Given a subgragti of G, theboundaryN¢(H) of H in G is the
set of vertices inG \ H that have neighbors i#. A separatorS of G is a set of vertices such
G \ S consists of two or more connected components. A separatainisalif it does not contain
any smaller separators. It can be shown that a graph is chordal if and only if every minimal vertex
separator is a clique.

An a-balanced separatoof G is a set of node$ C V such that no connected component of
G \ S has more tham - |V| vertices, for somer < 1. An a-balanced separator treef G is a
tree whose nodes arebalanced separators of the subgraphé&/ofThe root of the separator tree
corresponds to an-balanced separatéfof G, and its children correspond tebalanced separator
trees of the connected componentg70f.S. We also use the tertvalanced separatato refer to an
a-balanced separator, for some constanfA class of graphs satisfies diin)-separator theorem
with constantsy < 1 andg > 0 if every graphG with n vertices in the class has anbalanced
separatorS with no more tharg - f(n) vertices. Planar graphs satisfy/a-separator theorem with
a=2/3andB =2-/2[LT79].



Chapter 3

Related work

In this chapter we present some existing ordering heuristics and look at some of the many ways of
representing chordal graphs. We also mention related work on interval graph completion and work
on elimination orders with low height.

3.1 Fill minimizing heuristics

In this section we present a brief overview of some popular heuristics for producing orders with low
fill.

3.1.1 Minimum deficiency

The number of edges that are needed to make the neighborhood of awertexa clique is the
deficiencyof v, also known as thiecal fill atv. This corresponds to the amount of fill introduced by
the elimination ofv in G. The minimum deficiency heuristic [Mar57, TW67] is a greedy algorithm
that tries to minimize the overall amount of fill introduced by the elimination process by, at each
step, choosing to eliminate a vertex with minimum deficiency.

Every chordal graph has at least one vertex with zero deficiency (a simplicial vertex). Eliminat-
ing a simplicial vertex corresponds to removing that vertex from the graph since its neighborhood
already forms a clique. The graph obtained is an induced subgraph of the initial graph and is thus
chordal since any induced cycle of length greater than three in this new graph must have a chord
(for it had one in the initial chordal graph). By repeatedly applying this argument we find that every
chordal graph has a perfect elimination order, and that the minimum deficiency heuristic produces
perfect elimination orders on chordal graphs.

In practice, the minimum deficiency heuristic is discarded in favor of other ordering heuristics,
probably because of the large amount of time necessary to update the deficiency information as the
ordering algorithm progresses. Recently, however, Rothberg and Eisenstat [RE98] pointed out that,
in practice, the minimum deficiency heuristic produces elimination orders with low fill. In fact,

15



16 CHAPTER 3. RELATED WORK

in their experiments, the minimum-deficiency heuristic produced orders that were better than the
ones produced by the minimum-degree heuristic, which is often used in practice. We describe the
minimum-degree heuristic in the next section.

Rothberg and Eisenstat [RE98] propose approximate versions of the minimum deficiency heuris-
tic, that they callapproximate minimum local filAMF) andapproximate minimum mean local fill
(AMMF). These heuristics work by computing cheaper approximations of the deficiency of the
vertices in the graph, thus avoiding the prohibitive cost of computing a minimum deficiency order,
while still producing elimination orders with low fill.

3.1.2 Minimum-degree

The minimum-degredneuristic originated with the work of Markowitz in the late 50's and has
undergone several enhancements in the years since. In its simplest form, the minimum-degree
algorithm repeatedly finds a vertex of minimum degree and eliminates it. This very natural greedy
algorithm works surprisingly well in practice.

A simple enhancement that does not affect the quality of the orders but makes for a more
efficient algorithm, is the identification of twin vertices, i.e., vertices that have the same set of
neighbors, into sets calleslipervariablesor supernodes After a vertex within a supernode is
eliminated all other vertices within that same supernode become simplicial — for the elimination of
that first vertex makes its neighborhood into a clique. If the vertex removed had minimum degree in
the graph, then the remaining vertices in the same supernode must also have had minimum degree,
and still do, since their degree is reduced by one when the vertex is removed, and the minimum
degree in the graph wak so that after the removal of one vertex it must be at ldastl. Thus,
supernodes can be treated as a single vertex in the graph, reducing the amount of work needed to
compute an elimination order. All the heuristics that we describe can take advantage of supernodes.

To further reduce the running times for the minimum-degree algorithm, Liu proposed the mul-
tiple minimum-degree algorithm (MMD) [Liu85]. In this algorithm, an independent set of nodes
with minimum degree is eliminated at each step, thus allowing for a smaller number of degree
update steps, while producing a naturally parallel order.

Amestoy et al. [ADD96] proposed an approximate minimum degree algorithm (AMD). This al-
gorithm uses estimates for the degree of the vertices instead of actually computing the exact degrees.
The implementations of both the AMD and the MMD algorithms, state-of-the-art improvements
upon the minimum-degree heuristic, produce similar quality orders.

Another enhancement present in both AMD and MMD is the use of external degrees for the
supernodes. The external degree of a supernode is the degree of any vertex in that supernode minus
the number of neighbors of that vertex that are in that same supernode. This alternate measure tries
to compensate for the fact that after the first vertex is eliminated no additional fill is introduced by
the elimination of the remaining vertices in the supernode.

With all these algorithmic improvements, minimum-degree orders can be computed in very lit-
tle time. The orders produced usually have relatively low fill. Nonetheless, a minimum degree
algorithm algorithm can produce orders with large amounts of fill. Berman and Schnitger [BS90]
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show that on a toroidal square mesh there are orders consistent with the minimum degree heuristic
that exhibitQ(n'ez %) fill, substantially more than the the optimal fill for toroidal square meshes
which isO(nlogn). However, there do exist minimum-degree orders for the toroidal square mesh
with low fill. In any case, in the absence of a good tie-breaking strategy, a minimum-degree algo-
rithm is likely to exhibit, to some extent, the same behavior described by Berman and Schnitger,
namely the presence of large cliques in the chordal completion. We elaborate on their example in
Section 3.2.

3.1.3 Nested dissection

Nested dissectiomwas first proposed by George [Geo73] as a method for ordering vertices in a
mesh. It was later generalized by George and Liu [GL78] to work on arbitrary graphs. Unlike the
heuristics we have considered so far, nested dissection builds the elimination order in the reverse
direction, that is, it finds a vertex separator and orders those vertices to be eliminated last. It
then recurses on the connected components defined by the removal of the separator vertices. The
various components can be ordered in any relative order (or even be interleaved), without affecting
the work or fill for the order produced, since the separators stop any fill from forming between the
components.

Itis common to represent nested dissection orders as elimination or separator separator
treeis the tree we obtain by grouping the vertices in the top level separator into a node, and then
making its children correspond to the separator trees for the connected components obtained by the
removal of the top level separator. A nested dissection order corresponds to any order in which
every vertex is eliminated after its descendants in the separator tree.

Separator trees make for a convenient representation of elimination orders and the correspond-
ing fill. A separator “blocks” the creation of fill between sibling subtrees, so that fill can only occur
between vertices that have an ancestral relationship in the separator tree. As a component is elim-
inated, some fill is introduced between the vertices of the separator, which will typically become
a clique. Thus, it is advantageous to keep separators small to limit the amount of fill produced.
Local heuristics, such as minimum-degree and minimum local fill, cannot find good separators for
the higher levels of the separator tree in general. By examining the graphs as a whole and finding
small balanced separators, nested dissection produces orders that are provably good in terms of fill.

The first analysis for a variant of nested dissection for a class of graphs closed under subgraphs
(that is, a class of graphs such that every subgraph of a graph in the class is also in the class),
for which a/n-separator theorem holds, was given by Lipton, Rose and Tarjan [LRT79]. This
variant of nested dissection, LRT, produces orders With log n) fill on an n-node graph in these
classes. Subsequently, Gilbert and Tarjan [GT87] analyzed the original nested dissection algorithm
of George and Liu and showed that it also yietd§n logn) fill for planar graphs, graphs with
bounded genus, and graphs with bounded degree that(h@ye) separators [LT80]. They also
point out that this method does not work in general for graphs Witk/n) separators by con-
structing a counterexample, hence showing that the modifications in [LRT79] are essential in this
case. Unlike George and Liu’'s algorithm, LRT includes the separators in the recursive calls, that
is, if a separatof divides the graph into component#sand B then the original generalized nested
dissection algorithm would recurse ghand B, and would order the vertices il last. The LRT
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algorithm also orders the vertices$hast, but recurses aA U S andB U S, while taking note that
in the recursive calls all the nodes$hhave already been ordered, and are only present to help find
the appropriate separators.

Both versions of nested dissection [GT87, LRT79] produce orders(Mﬂ%) work on planar
graphs. Itis interesting to note that there araode planar graphs (square grids in particular) for
which any elimination ordering h&3(n log n) fill and @(ng) work [HMR73].

Agrawal et al. [AKR93] gave the first approximation algorithms for elimination orders that
simultaneously minimize the fill, height, and work, all within a polylogarithmic factor of optimal
when the degree of the input graph is bounded. In general, their elimination orders have fill within
a factor ofO(v/dlog* n) of the minimum number of nonzeros (including fill and original edges),
and height within a factor of)(log? ) of optimum whered is the maximum degree of the graph.
Their algorithm is the nested dissection algorithm using approximate minimum-sized balanced-
node separators [LR88] to construct the recursive decomposition. If they were actually able to
obtain minimum-sized balanced node separators their algorithm would produce an order with fill
within a factor ofO(v/d log? n) of the minimum number of nonzeros, and height within a factor of
O(log n) of the optimum.

Although the proof is not constructive, Gilbert [Gil87] showed that for any graph there exists a
nested dissection order with fill within a factor ©f(d log n) of optimal, whered is the maximum
degree of the vertices in the graph. In Section 4.2 we exhibit a graph for which a nested dissec-
tion algorithm that chooses minimal balanced separators produces orders that induce a factor of
Q(v/dlog n) more fill than the minimum number of nonzeros.

We note that in practice finding good separators accounts for the large running times of nested-
dissection-based algorithms when compared to other heuristics. It is common practice to finish off
a nested dissection order by applying a faster ordering algorithm to order small enough subgraphs.
Constrained minimum degrgiee., a minimum degree algorithm that orders vertices of a sub-graph
according to increasing degrees when eliminated from a larger graph, is usually the heuristic of
choice for these small graphs.

3.1.4 Hybrid algorithm

Once we have understood how the minimum-degree and nested dissection heuristics work and
what are the advantages and drawbacks of each, it is natural to consider hybrid algorithms that take
advantage of the best characteristics of each. Using a few levels of separators seems like the ideal
remedy to control the the amount of fill introduced by minimum degree orders.

Recently, Hendrickson and Rothberg [HR96] and independently, Liu and Ashcraft [AL96] pro-
posed hybrid algorithms that, in practice, produce orders that compare favorably with state-of-
the-art nested dissection and minimum degree algorithms. Neither hybrid algorithm has known
worst-case fill or work analyses.

We concentrate here on the hybrid algorithm of Hendrickson and Rothberg in [HR96, HR97],
which, to our knowledge, is the current champion as far as elimination order algorithms go. Hence-
forth, we refer to Hendrickson and Rothberg’s algorithmiteshybrid algorithm, or as they chose
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to refer to it, as the BEND algorithm.

The BEND algorithm works as follows. It finds a few levels of separators, just like nested
dissection would. It sets those vertices aside for elimination at the end. It then finds a constrained
minimum-degree order for each of the connected subgraphs formed. Finally, the algorithm re-orders
the vertices that it set aside, i.e., the vertices within the separators that were initially found. This
final step is accomplished by applying the AMD algorithm to the graph obtained by eliminating
the vertices that have already been ordered, i.e., the usual nested dissection order among separator
vertices is thrown away and a new order is computed.

This way, the algorithm is able to ignore the nested dissection assumptions as to what a good
elimination order should be, while still avoiding fill between the various subgraphs defined by
the separator vertices and keeping the boundaries of the subgraphs small. The resulting hybrid
algorithm produces orders with very little fill in a small amount of time.

Liu and Ashcraft’s algorithm is very similar to that of Hendrickson and Rothberg’s although itis
cast in a different light. Liu and Ashcraft’s algorithm finds a set of vertices that partitions the graph
in a large number of connected components at once, instead of finding multiple levels of separators
that, taken together, achieve a similar effect.

3.2 Elimination orders

Elimination orders can be viewed in different lights. We discuss a few of these different views in
this section.

3.2.1 Elimination trees

As we mentioned before, chordal graphs coincide with the class of graphs that have perfect elim-
ination orders, so that finding an order that produces the minimum amount of fill corresponds to
finding a chordal supergraph of an initial graph with the fewest possible number of edges. On the
other hand, chordal graphs correspond to intersection graphs of subtrees of a tree. In this section we
show how to construct a tree representation for a chordal completion of a graph based on a given
elimination order.

In an elimination tree, a vertex precedes its tree ancestors in the elimination order and any order
that respects the ancestral precedence constraints is equivalent to the initial one, in the sense that it
produces the same chordal completion. By construction, the edges of a(greghonly connect
vertices that have an ancestral relationship in its eliminationZfree

Figure 3.1 represents a grapghand its chordal completion according to the ordervs, vs,
v4, Us, Vg. The dotted edges represent the fill introduced during the elimination process. Figure 3.1
also depicts the elimination tree G6f according to the same order. Each vertex of the elimination
tree corresponds to a vertexn the original graph, and can be thought of as corresponding to the
maximal clique formed by and its neighbors at the timeis eliminated. We also represent these
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Figure 3.1: The chordal completion 6fand the corresponding elimination tree.

cliques in Figures 3.1 and 3.2. The lal#g},; for instance, corresponds to a clique formed by
vertices 1, 2 and 5 in the chordal completion of the graph

Figure 3.2 depicts two equivalent representations of the chordal completi@ntbé chordal
completion can be either viewed as the intersection graph of the sulffréeghe figure, or as
the graph obtained by connecting vertices whenever they both belong to one of thig sttat
correspond to cliques in the chordal completion. This representation also requires a tree structure
for the cligues, namely it requires that when we restrict our attention to the cliques that contain any
specific vertex, they span a connected subgraph of a fixed tree. This subgraph is exactly the tree
one would use to represent the vertex in the intersection-of-subtrees representation of the graph.

Both representations can be easily obtained from the elimination tred. hetan elimination
tree forG. LetT, be the maximal subtree of the elimination tfEeooted atv whose leaves are
neighbors ofv in G, that is, the tree obtained as the union of all paths w from the vertexv to
all neighborsw of v in G that are descendants ofin T. The elimination tred” along with the
subtreesT, form a tree representation of the chordal completiordizaforresponding to the order
given. That is to say, the chordal completion(éfs the intersection graph of the subtréés

Note that the nodes labelgds and C5¢ in Figure 3.2 do not add to the representation, since
they are superseded 6%5¢. Both nodes can be removed and replaced by an edge conn€gting
directly toCy56. In general, any chordal graph has a minimal tree representation with a one-to-one
correspondence between nodes and the maximal cliques of the chordal graph. Two nodes that are
adjacent in the tree representation can be contracted when the set corresponding to the first contains
the set corresponding to the second, since all adjacencies implied by the second are already implied
by the first. A minimal representation (in which every node corresponds to a maximal clique) can
always be obtained in this fashion.

For the sake of completeness, we also mention that a perfect elimination order can be obtained
from a tree representation of a chordal gradpfas follows. Let/ be a leaf of the skeleton for the
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Figure 3.2: Tree representation of the chordal completion of the graph in Figure 3.1. The $ybtree
corresponding to the vertax intersects all other subtrees, exceptTgr since after the fill edges
are insertedyg is adjacent to all vertices of the graph exceptdor

given tree representation. Either no representative subtree consists sdlelg afich case we

can removée from the skeleton tree, or there exists at least one such suBjref this caseT,
corresponds to a simplicial vertex and can be taken as the first vertex in the elimination agder of
We proceed by removing, from the tree representation and iterating the same algorithm, until all
vertices have been ordered. More than one elimination order can be produced in this fashion. In
the tree representation in Figure 3.1, for instance, the arder, vg, v5, v1, vo Would produce the

same chordal completion.

3.2.2 Graphs with “almost” planar representations

In this section we describe how elimination orders for certain graphs can be visualized in the plane.
This is yet another way of representing the process of eliminating a graph and can provide some
insight into different ordering heuristics.

We examine graphs that can be easily represented on a 2-D surface. These include planar
graphs, but also non-planar graphs, such as a torus. To more easily visualize some of these graphs
we will omit some of their edges so as to obtain a planar representation. For the sake of argument,
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we further assume that the faces that are internal in the planar representation correspond to cliques,
that is, we assume that each face represents a cliqgue formed by the vertices on the face. During the
elimination process we will remove vertices and make their neighborhoods into cliques. As long
as the vertex is not in the external face of the planar representation, its neighbors correspond to the
set of vertices that share a face with it in the planar graph. By removing that vertex we effectively
merge the various faces the vertex belongs to. Instead of adding the new fill edges, we maintain
the planar representation, and think of every internal face as corresponding to a clique. In practice
even if some small faces do not form cliques we can just consider them as forming cliques anyway,
without changing our understanding of the elimination process by much. Any elimination order
can be visualized in this somewhat imprecise fashion. This is essentially the same model used by
George in the early 70’s to describe and analyze nested dissection on square meshes [Geo73].

Figure 3.3(a) represents a stage in the elimination of a sg2axe32 grid according to a nested
dissection order. All of the vertices to the left of the center vertical line have already been eliminated
at this step, but instead of being removed from the picture, they were represented in gray. All other
vertices in gray have also been removed. From the progression of the elimination we notice that the
center vertical line corresponds to the top-level separator. Subsequent separators were chosen by
recursively cutting the graph approximately in half, horizontally and then vertically, as can be seen
in the figure.

After the vertices to the left of the center vertical line are removed the vertices on that line “see”
each other and form a clique. The vertices in the smaller faces that are created also form cliques.

(@) (b)
Figure 3.3: Partial elimination according to a nested dissection order.

A global view of a nested dissection order is given by the corresponding separator tree. Figure
3.3(a) implicitly depicts one of the branches of the separator tree. Instead, we can visualize the
elimination according to a different order, in which a few levels of leaf nodes of the separator tree
are eliminated, as shown in Figure 3.3(b). If we do not have an explicit separator tree, a parallel
order equivalent to a given nested-dissection order would achieve the same effect.

A minimum-degree order would look very different from Figure 3.3(a) but somewhat similar
to Figure 3.3(b). Vertices along the boundaries of the grid would be eliminated first, and then a
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Figure 3.4: Different points in the elimination of a square grid according to an AMD order.

large independent set of internal vertices would be eliminated. The minimum-degree order that
would follow would likely eliminate vertices not necessarily close in the graph in successive steps.
However, whenever a vertex is eliminated, its twins would be eliminated in the next few steps,
for they would have minimum degree at that time. The faces in the pictorial representation would
merge with neighboring faces and “grow” as the elimination progresses. Figure 3.4 depicts various
stages of Gaussian elimination o82x 32 grid, according to an order produced by AMD. When

a vertex internal to the grid is eliminated, its four neighbors become a clique, which is not clearly
indicated in the figure, for we did not include the corresponding diagonal edges. Nevertheless, we
can see how the order progresses.

Figure 3.5 shows a point in a parallel order that respects the precedence constraints of an
AMD order (a) and a point in a parallel order that respects the precedence constraints of a nested-
dissection order (b) for a square 256256 grid. In both cases about 5000 of the 65536 vertices still
remain to be eliminated. The grid given as input to each ordering algorithm had its vertices listed
in a random order. In this pictorial representation we can see that the faces created by the nested
dissection order are smoother, that is, have contours that are closer to straight lines, than the faces
from the AMD order.
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(@) (b)

Figure 3.5: Partially eliminated views of a square grid. The order used in (a) was produced by a
minimum-degree algorithm, while the one used in (b) was produced by a nested dissection algo-
rithm.

Berman and Schnitger [BS90] show that minimum-degree orders can produce very large faces.
By carefully breaking ties among vertices with the same degree, they were able to construct a
minimum-degree order for which the faces in our pictorial representation develop into fractals.
The resulting order haQ(n!°8:4) fill and Q(n!>'°8s %) work, while optimal orders for the same
graphs have)(n logn) fill and O(n!-3) work. On the other hand, nested dissection is guaranteed
to produce orders with fill and work within a constant of the optimal for these graphs.

The problem with minimum-degree orders lies in this fractaling effect. Berman and Schnitger
pointed out that since minimum-degree is a local heuristic it cannot adequately control the “shape”
of the faces. On small graphs, this is not much of an issue, but on larger graphs, long, irregular
boundaries form between faces. These boundaries correspond to large cliques in the chordal com-
pletion, and thus to additional fill and work. Figure 3.5 accurately reflects the difference in quality
between the two orders depicted; The AMD algorithm produced an order with 21 percent more fill
and 62 percent more work than the nested dissection order. If we do not present the vertices of the
input graph in a random order then both algorithms produce better orders. Local algorithms such as
minimum-degree are more susceptible to the initial order of the vertices, while nested dissection,
having a global view of the graph, should be less affected by the order.

Nested dissection on square grids

We can use the knowledge and intuition we gained from examining elimination orders in the previ-
ous sections to show how to obtain better elimination orders for square grids. This improves on the
more traditional horizontal and vertical separators for square grids. This result was first presented
in [BG73] but nonetheless is interesting to re-visit it.
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Traditionally, nested dissection on square grids and toroidal grids uses vertical and horizontal
separators, as depicted in Figure 3.3. The pictorial representation of the resulting elimination order
can help guide us through an analysis, similar to the original one presented by George [Geo73], that
shows that indeed the order produced fomar n grid (or torus) hag.75 - n? log n + O(n?) fill.

(@) (b)

Figure 3.6: Steps in the elimination of a 3232 grid according to a parallel nested dissection order
with diagonal separators.

Looking at pictures such as the one in Figure 3.5 we notice an interesting fact. In a grid graph,
the subgraph contained infax k square whose edges are horizontal and vertical cont&ins
vertices, while the subgraph contained ik & k£ square whose edges are diagonal has about twice
as many vertices. Figure 3.6 shows two steps in a nested dissection order obtained using diagonal
separators instead of the traditional horizontal and vertical ones.

This extra factor of two in the ratio between the perimeter of these (square) regions squared and
the number of vertices in the region, translates to an order that has a factor of 2 less fill than the
traditional nested dissection on square grids.

Take amn x n square toroidal grid, and a nested dissection order for that grid using diagonal
separators. Since a grid is a subgraph of the toroidal grid, the same analysis works for square
grids. The first step of that order eliminates every other vertex of the graph, as can be seen in
Figure 3.6(a). This step caus@$n?) fill to be introduced. The graph obtained can be thought of
as composed of twa/2 x n/2 square grids that have been rotated 45 degrees, and have had each
1 x 1 square made into a clique. But the same analysis that was used on square grids with horizontal
and vertical separators can be used to showkhatk grids such as these can be eliminated with
7.75 - k? log k + O(K?) fill. The total amount of fill for this nested dissection orderis7.75 -
(n/2)*log(n/2) + O(n?), i.e.,3.875 - n?logn + O(n?).
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3.3 Interval graph completion

Interval graph completion, that is, finding a set of edges of minimum cardinality that when added
to a graph make it into an interval graph, is closely related to the chordal completion problem. Just
as with chordal completion, we measure how close a solution is to optimal with respect to the total
number of edges in the interval completion.

Ravi et al. [RAK91] present a@(log® n) approximation algorithm for the interval graph com-
pletion problem. Even et al. [ENRS95] present an approximation algorithm that among other prob-
lems, solves the interval completion problem within@flog n - log log n) factor of optimal. Their
approach consists of casting a solution in terms of a linear program that includes a set of constraints
that try to ensure a good quality solution by imposing an average distance within sets of vertices,
in what is called &preading metricThe cost function is a lower bound on the cost of any solution
for this problem, so that a solution within a certain factor of the minimum cost is also within that
same factor of optimal. Rao and Richa [RR98] improve on their result by presenting an algorithm
that uses the same cost function and obtains a solution within(kg ) factor of the optimal.

3.4 Related work

3.4.1 Height

Computing an elimination ordering for a given graph with minimum height is NP-hard [Pot88], and
remains so even if an additive error in the estimate of the height is allowed [BGHK95]. However,
given a chordal graph there are efficient algorithms that find perfect elimination orders for the graph
with minimum height [JK82, Liu89].

Pan and Reif give one of the first analyses of the parallel height of nested dissection orderings
as well as how nested dissection can be used for solving the shortest-path problem in graphs [PR85,
Pan93]. Bodlaender et al. [BGHK95] uses an approach similar to [LRT79] and [AKR93] to find
elimination orders with bounds on the height and several related parameters. Both [AKR93] and
[BGHK95] give elimination orders with height at moét(log? n) times the minimum possible,
for any n-node graph. Numerous heuristics without performance guarantees are also known for
the problem of finding a chordal completion with minimum height [Gea90, JK82, LL87, LPP89,
Liu89, LM89].

Manne [Man91] shows how to produce optimal height orders for trees with fill linear in the
number of edges in the tree. Aspvall [Asp95] presents a class of chordal graphs for which a perfect
elimination order has height equal to the minimum possible height plus one, but for which every
minimum height elimination order has super-linear fill. Aspvall and Heggernes [AH94] present a
polynomial time algorithm that finds elimination orders with optimal height for interval graphs. We
discuss the trade-offs between low-height and low-fill orders in the next chapters.



Chapter 4

Parallel Gaussian elimination

We begin our study by examining parallel orders for specific classes of graphs, namely interval and
chordal graphs. The purpose of this study is twofold. First we note that any graph along with the fill
edges introduced by a given order is a chordal completion of the graph. We are thus studying how
we can, given a certain order (and the corresponding chordal graph), produce another order that
is parallel and does not have too much additional fill or work. Second, the rich structure of these
classes of graphs provides us with insight into the related problem of finding orders that minimize
fill and work.

Efficient algorithms that find perfect elimination orders for chordal and interval graphs are
known. However, perfect elimination orders might not be suitable for elimination in parallel. Our
goal is to obtain an algorithm that will take a chordal graph and produce a parallel elimination order
for that graph while introducing fill that is at most linear in the number of edges in the initial chordal
graph. We start by showing that for interval graphs a certain nested dissection algorithm has this
property. However, the same nested dissection algorithm can introduce a super-linear amount of
fill on chordal graphs. We accomplish our goal by introducing the notion of sentinels. Sentinels
are separators that sequentialize the orders just enough to localize the fill to within subgraphs. Our
final algorithm obtains orders witt () fill, work within a constant factor of optimal, and height
within an O (log? n) factor of optimal, on chordal graphs.

In this and in the next chapters, we measure how close an order is to having optimal fill as a
function of the total number of nonzeros in the minimum-fill elimination order of the graph. That
is, when we say an order has linear fill, we really mean that the amount of fill it introduces is at
most a constant times the total number of nonzeros in the minimum-fill elimination order of the
graph which includes both fill and original entries.

4.1 Nested dissection on interval graphs

Nested dissection produces naturally parallel orders. Empirical results suggest that nested dissec-
tion produces better elimination orders if allowed to choose slightly imbalanced but smaller separa-
tors. In this section we help substantiate this belief by showing that a 1/2-balanced nested dissection

27
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algorithm working on an interval graph can produce orders with uUp(te - v/log n) fill, while a
2/3rds-balanced nested dissection always produces an order with linear fill for interval graphs.

Nested dissection on interval (and chordal) graphs has a simple interpretation in terms of the
path (tree) representation of the graph. Consider one such representation. For non-trivial graphs
every minimal separator is a set of vertices that correspond to the intervals covering some edge
in the path representation (skeleton) of the graph. In these terms, each step in nested dissection
can be thought of as selecting an edge of the skeleton. The corresponding separator is formed
by the intervals that cover that edge and have not been included in previous separators. Some
representative intervals might span a single node of the skeleton, and thus will not be selected in
this process. Any such singletons are selected last, as leaves of the elimination tree. We cannot
guarantee the existence of arbalanced separator that covers an edge of the skeleton, due to the
existence of these intervals that only span a single node of the skeleton. By ordering these single
node intervals beforehand, as first to be eliminated, and not changing the tree representation of the
graph we can restrict ourselves to separators that cover an edge of the skeleton of the representation
of the graph. These intervals must correspond to singletons in the graph, and their elimination
causes no fill.

Throughout this section, we order separator trees of interval graphs so that an in-order traversal
of the tree corresponds to a left-to-right traversal of the skeleton path of the graph. When necessary
we will refer to anorderedseparator tree to make it clear that we are considering a separator tree
whose children are ordered as described here. In the lemmas that follow, we only consider non-
trivial interval graphs, that is, we assume that the graphs in question are not complete.

4.1.1 Balanced nested dissection

We proceed to derive an upper bound on the total number of fill edges introducedblyadanced
nested dissection algorithm on an interval graph. We show this bound is tight<or:, but not
for other values otv.

Figure 4.1: Fill among vertices in a separator tree of an interval graph.
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Figure 4.1 shows part of a separator tree of an interval gfapBach node in the tree corre-
sponds to a clique separator of the subgraph induced by the subtree rooted at that node. The shaded
subtrees correspond to vertices that are neighbofsaha given vertexv contained in the node
A, while the striped nodes contain vertices that have fill edgesndhe chordal completion af.

The striped edge betweenandw represents one such fill edge. A vertex has fill edgesifaat
least one of its descendants in the separator tree;,9ayadjacent ta, as represented by the solid
edge between andx. Moreover, when that is the case, all vertices betweandz in the in-order
traversal of the separator tree must also be adjacenirtd. When the separator tree is balanced,
we can use the edges between these vertices mdccount for the fill ta.

We define arinner-pathof a nodeA in an ordered binary tree as the path that starts with the
edge to the left or right child ofi, and goes all the way to the in-order predecessor or successor
of A, respectively. We say that a fill edge between a verted iand a vertex in a node id’s
inner-path is arnner fill edge. A fill edge between a vertex ihand a vertex that is a descendant
of A in the elimination tree but that is not i's inner-path is called aauter fill edge.

Figure 4.2: Right inner path of a node.
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Figure 4.2 depicts a nodé and its right inner-path. A vertexin A has an outer fill edge to
vertexw. That implies the existence of a noggalso not inA’s inner-path, that is adjacent tcand
is a descendant af in the elimination tree. The existence of the edge betwesmndx implies that
all vertices in the shaded area in Figure 4.2 are also adjacenife can use this fact to prove the
next lemma that states that the total amount of outer fill introduced by orders for interval graphs,
given by an ordered balanced separator tree(is).

Lemmal Let I be a connected interval graph. The total amount of outer fill in an ordered
balanced separator tree dfis at mostwm /(1 — «).

Proof. The lemma is proved via an amortized analysis of the total amount of outer fill introduced
by the elimination order, in which we use existing edges to help account for all outer fill. We
count each fill edge at its highest endpoint. bdie a vertex off and letA be the separator node
containingv. Let's examine the right subtree df. The left one is analogous. L& be a node on

A’s right inner-path, whose right subtree contains vertices that have fill ithen the vertices in

B and inB’s left subtree are all adjacent toin I, and no ancestor aB has vertices in its right
subtree with fill tov, for otherwise all vertices iB’s right subtree would have edgesddo start
with. Since the separator treedsbalancedy is adjacent to at least a fractidn— « of the vertices

in the subtree rooted &, and thusi(v) > (1 — «) - n’, wheren' is the number of vertices in the
subtree rooted aB. The total amount of outer fill from to its right subtree is at most- n’ which

is less than or equal ta - d(v)/(1 — «). By applying this same argument to every vertex in the
graph we can account for all outer fill and obtain a totakef /(1 — «) outer fill edges.m

Lemma 1 allows us to concentrate on inner fill. Now, consider one inner-path.

Lemma 2 LetI be a connected interval graph, and g be a node in an ordered separator tree
of I. LetVq, Vs, ..., Vi, be the nodes iiYy's right inner-path. The total amount of inner fill frof
to the vertices in its right inner-path is at mast{v/x - % , |Vi|?).

Proof. Letn; = |V;|. The total amount of inner fill fron¥, to vertices in its right inner-path is at
mostng - (n1 + ...+ ng). Letny + ne + ... + ni = d. We want to bound the amount of fill as a
function of the sum of the squares of thgs, which is on the order of the number of edges)ig,

since each nod¥; forms a clique and thus hag(n; — 1)/2 edges. The case; = 1 is dealt with

by noting that the graph is connected, so that each vertex has at least one edge incident to it. We
are looking for the smallest numbersatisfyingng - d < z - (X8, n?). But:F , n? > k(d/k)>.

Let's definef (z) = z-ng —d-ng + -d*/k > 0. For positiver, f(z) is positive for large enough

ng. The functionf (x) is non-negative if and only if the second degree equationdmas at most

one real root. Thus must satisfyd®> — 42%d?/k < 0, i.e.,z > V/k/2. Therefore the total amount

STk 2
of fill is at most%. m

A given separator is in at most 4 inner-paths: two starting at itself, one starting at its parent,
and possibly another starting at some other ancestor. Since a balanced separatoréezhgs
depth, Lemmas 1 and 2 give the following corollary:
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Corollary 1 LetI be a connected interval graph, with a balanced separator tree of clique separa-
tors. The total amount of fill induced by the order specified by the trééis - /logn).

Proof. According to Lemma 1, the total amount of fill is at ma@stm) plus the amount of fill in
inner-paths. Apply Lemma 2 to all inner-paths. Each separator is the root of at most one left and
one right inner-path and is in at most two other inner-paths. Since the tree is balanced, the largest
inner-path hag)(log n) length. All that remains to be shown is that the sum of the squares of the
sizes of the separators in the treei&n). But each separator is a clique, and each vertex occurs

in only one separator. Thus, a separator witlvertices has:;(n; — 1)/2 edges inG that do not

appear in any other separator. Fgr> 1, n? < 2(n;(n; — 1)). To handle the case; = 1 we note

that the graph is connected and thus every vertex must be adjacent to at least one other vertex in
the graph. The corresponding edge can be used to account for fill and we have the desired result.
[ ]

4.1.2 Strictly balanced nested dissection

In this section we show that there exist interval graphs on which the nested dissection algorithm that
chooses minimal 1/2-balanced separators produces an orde® with/log ) fill, thus matching
our upper bound.

We will build an example by constructing the appropriate separator tree. We start with a right
inner-path and construct the example as follows: we insert vertices into each of the nodes of the
inner-path so as to form cliques. We insegtvertices to form the top clique, andvertices to form
each of the cliques in the remaining nodes. Finally, we finish off the graph by inserting paths, each
corresponding to a balanced subtree of the separator tree being constructed, in a bottom-up fashion,
as depicted in Figure 4.3. We insert a single vertex between the root node’s clique and the node
that follows it in the in-order traversal of the inner path. We also attach a right subtree to each node
in the inner-path. Each subtree corresponds to a 1/2-balanced nested dissection of a path with as
many nodes as needed so as to make the subtree rooted at its parent node balanced. We insert a left
subtree so as to also make the top level separator a 1/2-balanced separator. We could either use a
mirrored version of the right subtree, or use a path with as many vertices as needed. The endpoints
of the inserted paths are made adjacent to the vertices in each of the pre-existing separator nodes
that “neighbor” it in this separator tree.

Fors > 1, a 1/2-balanced nested dissection order that uses minimal separators must be such
that its separator tree has the inner-path we started with as an inner-path, for those are the only
choices forl /2-balanced minimal separators.

A graph built in this fashion, withk + 1 nodes in the initial inner-path hag + 2 - N (k)
vertices total, wheréV (i) is the number of vertices in a subtree of heighgiven by N(0) = 1;
N@G@) =2-N(@—1)+s,i < k. If we makek = log,ng then the total number of vertices
n in the graph i0(ng - s). The vertices in each of the paths inserted have at most 2 neighbors,
except for possibly the first and last vertices of the path, which might have clique separators as their
neighbors. But each of the vertices within each clique has at most two neighbors in paths, so that
the total number of edges from these path®{&). The cliques along the root’s inner path have a
total of O(n2 + k- s%) edges, so the graph has a totalifn2 +ng - s + k- s?) edges. An elimination
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Figure 4.3: Separator tree and our example grapls for3.

order that removes the vertices of the root’s inner path in the order prescribed by the separator tree
will introduce edges from all vertices in the nodes along the root’s inner path to the root, giving a
total of Q(ng - s - logy n) fill. If we chooses = ng/+/log, no, the total number of edges (3(n?),

while the amount of fill i2(ng - \/log, no).

4.1.3 Adding a little freedom

We can change nested dissection to obtain an algorithm that produces orders with fill linear in the
number of edges in the initial interval graph. Instead of insisting on 1/2-balanced separators, we
can choose the smallest (with the minimum number of vertices) 2/3rds-balanced minimal separator,
and recurse. Unlike the case for 1/2-balanced nested dissection, there no longer exists an interval
graph for which this algorithm will incur more than linear fill. A separator will only be chosen as

the root of the separator tree if at least a third of the vertices in the graph are adjacent to at least as
many vertices as are present in the separator. That is to say, a large top level separator implies that
the graph must have many edges and thus can “support” considerable fill. As our analysis shows,
this is enough to ensure linear fill.
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Lemma 3 Let] be a connected interval graph withvertices, and lepy be the number of vertices
in its smallest 2/3rds-balanced minimal separator. Thdras at least/3 vertices of degregy.

Proof. The lemma is trivial if] is a complete graph. Otherwise a skeleton pathlfaontains

at least one edge, and every minimal separatof obrresponds to a set of intervals that cover
some edge of its skeleton path. Moreover, given two distinct skeleton edges corresponding to one-
third-two-thirds separators, every edge of the skeleton between those two edges also corresponds
to one-third-two-thirds separators. If we scan the edges from left to right, there is a leftmogt edge
and a rightmost edge such that all edges of the skeleton between and includanglr correspond

to one-third-two-thirds separators. There are less thy@nvertices whose representative intervals

are entirely contained to the left 6f Otherwise the edge to the left bfvould also correspond to

a one-third-two-thirds separator. Analogously there are lessrliavertices whose intervals are
entirely contained to the right of so that at least/3 vertices correspond to intervals that cover at
least one node in the path between and includingdr. Every edge in that path has ply at least

po, that is, is covered by at leggg intervals, thus concluding this proof. [

The next lemma allows us to distribute enough credits to each vertdx/ to pay for the
inner-fill from v to all its ancestors. Lé{v) be the level of a vertexin T'.

Lemma 4 Let] be a connected interval graph , and Etbe a separator tree obtained by applying
a one-third-two-thirds nested dissection algorithm/toLetVy, ..., V() be the nodes in the path
from the root off" to V(,), the node off" that containsy. Moreover, letpy, .. ., py,) be the number
of vertices inly, . .., V). Then we can assigR(v) = max;<;(,)(p;) credits to each vertexin I
such thaty”, .y P(v) is O(m).

Proof. We present an amortized analysis. In our analysis, we distrio\ig credits per edge,
i.e., each vertex in the graph initially ha$)(d(v)) credits to “spend”, so that the total amount of
credits distributed i$)(m). We will redistribute these credits.

We use Lemma 3 recursively. At the top level there are at lkegbvertices with degree at least
po, enough to distribute, /3 credits to each vertex ih. Since we want a total ab(m) credits, we
can actually distribute 3 credits per edge, and fhyusredits to each vertex.

The same vertices whose edges were used to help distribute credits at a given level might be
used in again in the analysis. Assume by induction that down to level we can distribute
max;<(;_1)(pi) to every vertex in the subtree rootedlat while using at mos8 - max;<_1)(p;)
credits from any single vertex in that subtree.

Let n; be the number of nodes in the subgraph induced/ts/subtree. Applying Lemma 3
to this subgraph we find that at least/3 vertices in that subgraph have degree at IgastBy
induction, we have used at mdstmax;<(;_1)(p;) credits from any vertex in that subgraph. Thus,
we can use an additiondl- (p; — max;<(;_1)(p;)) credits from then, /3 vertices of degree at least
p1, which is enough to distribute a total afax; ;) (p;) to each vertex in the subtree rootediat
If p; — max;<;_1)(p;) < 0 then the vertices already had enough credits and we do not need to
distribute any additional credits. [
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Lemma 5 The one-third-two-thirds balanced nested dissection algorithm produces an order that
has fill linear in the number of edges of the input interval grdph

Proof. Since the algorithm chooses balanced separators at each level, Lemma 1 allows us to only
consider fill within the inner-paths af's separator tree. Every nodé in the separator tree can

be the root of at most two inner-paths, and otherwise appears in at most two other inner-paths, one
rooted at its parent, and one rooted at another of its ancestorg.beghe number of vertices in the
largest of these two ancestorsigf AssigningO(m) total credits as described in Lemma 4, each
vertex inV; has potential at leagt, and can thus “pay” for the at mo3t p upward fill to the two

nodes on whose inner-pathslies. This accounts for all upward inner-fill, since an inner-fill edge
must connect a vertex with a vertex in one of the nodes that is its descendant in an inner-path. All
fill that remains unaccounted for is outer-fill, and by Lemma 1 a 2/3rds-balanced nested dissection
has at mosO (m) outer-fill. ]

An even simpler proof that does not use Lemma 1 can be obtained for the nested dissection
algorithm that includes the separator vertices in the recursive subgraphs, knowing, however, that
those vertices have already been ordered last. The proofs are identical, except that, since the sep-
arators are included in the recursive calls, all the upward fill is to the vertices in whose inner-path
the vertex lies, i.e., there is no outer fill. In this separator tree a vertex might appear multiple times,
but is ordered at its highest occurrence in the tree, that is, in the node closest to the root in which it
appears. Lemma 4 can be proved for this tree, which allows us to conclude the proof.

4.2 Parallel elimination orders for chordal graphs.

We proceed to show that although the one-third-two-thirds nested dissection we defined in the
previous section produces orders with linear fill for interval graphs it can produce orders with super-
linear fill for chordal graphs. We also show an algorithm that produces parallel orders that do
achieve linear fill on chordal graphs, but are less parallel than nested dissection orders.

4.2.1 Nested dissection.

Even though the one-third-two-thirds nested dissection is guaranteed to produce orders with linear
fill for interval graphs, it may create more than linear fill on chordal graphs. We proceed to show
an example that demonstrates this fact.

Just as we did for the example in Section 4.1.2, we build a graph based on the desired separator
tree. We start with what will end up being the inner-path of the root node of the nested dissection
separator tree. The root separator is made ofsjzeand all other nodes in the initial inner-path
are made of size. Unlike what we did in Section 4.1.2, we do not build a binary tree. We make
every node except the root have 3 children in the separator tree. Again, from bottom up, we add a
path (whose representation in terms of a separator tree can be a balanced binary tree) with as many
vertices as needed so as to make the subtrees have the same total number of vertices, just as we did
in Section 4.1.2; but we also add a second path, with as many vertices as the first one, and make only
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one of the endpoints of the path adjacent to the vertices in the node (from the original inner-path)
being considered. This extra path makes sure the node is the only choice for a one-third-two-thirds
minimal separator. We then attach to the root node a number of copiek, afahe graph we just
attached to the root node.

The total number of vertices in this graph is boundeduby 4% - s-1 4+ ng, wherek is the height
of the node path we started with. The number of edges in this graph is on the order of the number
of edges within each separator node, pli(®), that is,O(k - s? - I +n2 + n). On the other hand
we have at leas(/ - s - k - ng) fill. For k& = (logy n0)/2, s = \/no/+/logy no, andl = ny, we get
a total of no more tham = n2/./log, ng + no vertices and)(n?) edges in the graph. The total
amount of fill isQ(n3 - \/ng - log, n0/2), a factor ofQ2(/ng - log, ng) times the number of edges
in a perfect elimination order. Note thag is notQ(n), but rather roughi2(d), whered is the
maximum degree of the graph, sinegis about the degree of the vertices in the root node.

4.2.2 A (less) parallel order with linear fill

In this section we show how to find an elimination order for a chordal g@pby repeatedly
applying an interval graph algorithm to branche&:s skeleton. The resulting order has linear fill,
but has an extr&®(logn) factor in height when compared to the height of an order that a nested
dissection algorithm would produce, bringing us to a factaP@bg? n) off the optimal height.

To more easily describe our algorithm, we need additional definitions. An edge of a skeleton
treeT is said to be an extremity @ if one of its endpoints is a leaf. A path is said to be a terminal
branch ofT’ if it is a maximal path containing a leaf @f, and all its internal vertices have degree 2
in T. Given a tree representation of a chordal gréhhwith skeletonT” and representative subtrees
T;, we denoteP(, ) the interval graph obtained by restrictiggto the pathP; , between the edges
I andr (inclusive) of T; P(l,r) is the interval graph whose representation consists)pfand
representative subtre¢; | 7; N P, # 0}.

Let G be a chordal graph, and [Etbe the skeleton of a representatiorGhfVertices that appear
in a terminal branch, but also appear outside the branch are not to be ordered within that branch.
We shall refer to these vertices @spletedn the terminal branch, meaning edges between vertices
whose representative intervals lie entirely within a terminal branch to depleted vertices can help us
account for fill within the terminal branch, but edges between pairs of depleted vertices cannot, for
those edges can also be present in a number of other interval subgraphs that we will consider. The
vertices ofG whose representative subtrees are entirely contained in some terminal brdhcarof
be eliminated independently and in parallel with the vertices entirely contained in other terminal
branches.

We say a vertex of7 is pinnedat an edge of” if its representative subtree covers that edge.
Let A be an ordering algorithm for interval graphs. leeéind f be two edges of the skeleton of
an interval graph. LeK(e, f) denote the graph obtained frof\e, f) by removing all vertices
pinned atl as well as those that cover both skeleton edganrd f. Letr’ be an extremity off’,
and let/ be the other extremity of the terminal branchZothat containg’. To make it easier to
describe our algorithm, imagine an artificial edgeith zero ply, so that is the extremity of the
terminal branch, instead af. The algorithm works by pruning all terminal branchesiofind
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then recursing on what is left of the skeleton tBeuntil only a path is left for a skeleton. To

the interval graph corresponding to the last path, we can apply algodthlinectly. Each of the
terminal branches are ordered using the algorithm that follows. All branches obtained in a given
pruning step are processed in parallel, the vertices in the corresponding subgraphs being ordered
before those in later pruning steps. A totak®flog n) pruning steps are needed to order the whole
graph.

We apply the following algorithm to each terminal branch:

Kill (T,1,r)

Mark the edge. TraverseP, , from r to [ and mark the first edge df; , that is covered

by an interval pinned dt Keep scanning’ ,. towards/, and marking the next edge that

is covered by at least twice as many intervals pinnetlad did the last marked edge.
Call thesemilestoneedges. Mark the edges adjacent to the milestones, which are closer
to r than the corresponding milestone, and call thesatinels Also marki.

Letk + 1 be the number of edges marked, andelet < & be thei-th edge closest tb

that was selected, i.ezy = [ ande; = r. Remove the vertices pinnedldtom P (I, ).

Fori from 1 to k, order the vertices pinned gtlast among the remaining, unordered
vertices ofP(l,r), and remove them fron® (I, r).

Apply Homogenize to each of the subgrapkige;, e;+1).

:Y :Y :Y :Y sentinel
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Figure 4.4: The Kill procedure orders separators that we call sentinels and milestones last. The
subgraphs formed are then passed to the Homogenize procedure.

Figure 4.4 depicts the choice of sentinels and milestones on an interval graph. The intervals
that cover the leftmost edge of the skeleton are depleted. The sentinels play an important role in the
ordering algorithm. Along with the milestones, they impose a sequential step in the midst of the
parallel order and ultimately allow us to control the amount of fill introduced. Because the vertices
pinned ate; ande; 1 are ordered by the kill procedure, we cannot directly apply a regular interval
graph algorithm to the subgrapli§ (e;, e;+1) and expect to obtain low fill. Instead, we apply the
following algorithm to control the amount of fill that can be created to vertices whose intervals
cover eithere; or e.1. The algorithm we describe next divides an interval graph into somewhat
homogeneous subgraphs, for the vertices in each of them have some minimum degree guarantee,
namely every vertex in a subgraph obtained by the homogenize procedure has degree greater than
half of the number of intervals pinned at either the left or the rightmost edge of the skeleton path
that defines the subgraph.
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Homogeniz€T, ', r')

Mark ', and transvers@; , towardsr’, marking the first edge whose ply is at most half
the ply of the last marked edge. Repeat uritiis reached. Apply the same algorithm
fromr'tol’. Let f;,0 < ¢ < k + 1, be the edges that were marked ordered ftomr’,
including!’ = fy andr’ = fr.1. Number the as of yet unnumbered vertices pinned at
the various marked edges, in an arbitrary order, last among the verti¢gs.ofApply

the interval graph algorithm (A) to each of the subgraphs obtained by removing any
vertices pinned af; or f;1 from P(f;, fit+1).

Let I be an interval graph with vertices andn edges. Let's assume that when the interval
graph algorithmA is applied tof it produces an order with height(h(n) - H (1)), fill O(f(n)-m),
and workO(w(n) - W(I)), for non-decreasing function&(n), h(n) andw(n), each greater than
1, whereH (I), m and W (I) correspond to the height df, the number of edges if, and the
minimum amount of work to eliminaté, respectively. We can then prove the following lemmas
about the chordal graph algorithm we have just described:

Lemma 6 Our chordal graph algorithm produces an order with heightlogn - (h(n) + logn) -
H(QG)).

Proof. Only log n pruning steps are necessary to divide the entire graph into various interval graphs
each of which are passed to tki# algorithm. That is so because by pruning all the existing leaves
and corresponding terminal branches, the number of verticEsath degree not equal to two goes
down by at least a factor of two.

The kill procedure marks at mos?(logn) edges of a terminal branch of the skeleton, and
orders the cliques covering each edge sequentially. Since the size of any existing clique is a lower
bound on the height of any elimination order for a given graph, this part of the order has height
O(logn - H(G)). It then orders the subgraphs in parallel, using Homogenize.

Each call to Homogenize marks up 20 logn edges of a skeleton pafh. The total number
of vertices pinned at the various edges is at most 4 times the ply at the endpsititi largest
ply, for the edges are chosen so that they have plies that decrease geometrically, by a factor of 2
at each time. The vertices pinned at the largest of the two endpoidtsSain a clique, and thus
any elimination order fol must have height at least as large as the number of such vertices. Thus
Homogenize adds at most a constant tirflggr) to the height of the order.

Finally, the interval graph algorithm produces orders with heigtit(n) - H(G)).

Each terminal branch is ordered with height(4 + h(n) +1logn) - H(G)), and since there are
log n pruning steps, we get the desired bound. [

Lemma 7 When applied to an interval graph withn vertices andn edges, and using the interval
graph algorithmA, the Homogenize procedure produces an order Witlf (n) - m) fill.
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Proof. There is no fill between vertices in the different subgraphs to wHieh applied, regardless

of what order the proceduré produces, since there are separators between the various subgraphs.
The total amount of fill within all those subgraphsdéf(n) - m), sincef() is non-decreasing and

any given vertex of can appear in only one subgraph.

Leta andb be the number of vertices pinned at each of the endpoints of the skeletarsed in
the algorithm. Then at mo&t- (a + b) vertices are selected by the Homogenize procedure. The fill
between these vertices is at m@s{a + b)?, which is within a constant factor ¢(a — 1) + b(b —
1))/2, the number of edges in the cliques corresponding to the two endpoints, whenueithier
is larger than 1. Since the graghs connected, the case in whighandb are one can be handled
by noting that every vertex has at least one edge since the graph is connected and the existing edge
can be used to pay for a constant amount of fill. The only other source of fill is between the vertices
in the various subgraphs ordered usifigand those vertices that were selected. But there is only
fill to the vertices pinned at the two edges that delimit the skeleton path for a given subgraph. The
homogenize algorithm ensures that the ply at every edge within that path, and thus the degree of
the nodes in each subgraph, is at least half the number of vertices pinned at either extremity. Thus,
every vertex in the subgraph has enough edges to pay for its fill to the vertices pinned at the two
extremities of the skeleton path. Thus, the fill introduced is linear in the number of eddes of
[ ]

Let G be a chordal graph, with vertices andn edges:

Lemma 8 Our chordal graph algorithm applied t&' produces an order witklV(f (n) - m) fill.

Proof. There is no fill between vertices in the differefii(e;, e;+1) subgraphs, since the vertices
pinned at the various selected edges form separators between the subgraphs, and the vertices in the
separators are eliminated after the vertices within each of the subgraphs.

Any vertices removed fronk;(e;, e;+1) because they were pinned at bethande;; are
already adjacent to all vertices & (e;, e;+1), and thus have no fill to vertices #;(e;, e;+1).

If e; ande; 1 are a milestone and its sentinel then they are already adjacéht imnd no fill
is created between vertices pinned at those edges, for they were also adjacent to start with.

Let L be the set of vertices d?(/,r) pinned at. The sources of fill are:

1. Fill within each of the subgraphs that were created;
2. Fill between vertices pinned at edggsande;, 1, not including those vertices ib;

3. Fill between vertices oK;(I’,r') and L.

Fill of types (1) and (2) has been accounted for in Lemma 7.

We need to account for fill to vertices ib (type 3). We accomplish this by using already
existing edges from each vertex to a subsef offhe order imposed on the vertices pinned at the
edgese; ensures that any vertex that has fill to a subset of the verticessradjacent inG to at
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least half as many vertices ik, so that this component of the fill is linear in the number of edges
from K;(l,r) to L.

No edge is reused in the accounting, so that there is no over-counting when we apply the same
argument to the various terminal branches, in this and future pruning steps. Therefore, the total
amount of fill isO(f (n) - m), proving the lemma. ]

If we combine the results from Section 4.1.3 on the one-third-two-thirds nested dissection algo-
rithm with the results in this section, we get:

Corollary 2 Our chordal graph algorithm, using a one-third-two-thirds nested dissection algo-
rithm on interval graphs, produces orders with((logn)? - H(G)) height, andO (m) fill.

4.2.3 Work analysis

In this section we provide an analysis of the work to eliminate a graph according to an order pro-
duced by the linear fill algorithms we have presented so far. We show that the one-third-two-thirds
nested dissection algorithm on interval graphs and our chordal graph algorithm both produce orders
that are within a constant factor of optimal in terms of work. We proceed to prove these results.

We “charge’d + 1 + d? to eliminate a single vertex from a graphG, whered is the degree
of v in G, for this is proportional to the total number of floating-point operations to perform the
corresponding matrix operation. We use this charging scheme throughout this section whenever
analyzing the work of a given elimination order.

Let ¢, be the size of the largest clique Gfthat contains:

Lemma 9 The total work necessary to perform Gaussian elimination on a g@phk at least
2
W'(@G) = 2, (% + L5t

Proof. The base case, with a single vertex is trivial — it costs us 1 unit of work. Assume the lemma
holds for graphs with less thanvertices. Lew be the first vertex to be eliminated in a minimum
work elimination order of a graplir with & vertices. The lemma holds f@¥ — {v}. Letd be
the degree ob in G. For each of the neighbors of either the largest clique it is in has the same
size in bothG — {v} and inG, or it decreases by 1 whenis removed, in which case must be
part of that clique. Letv be a neighbor ofy in G such that the largest clique that containsn

G — {v} has sizer, while the largest clique containing in G has sizer + 1. Thenw contributes
1/2+ (22 — (z —1)?)/3 =1/2+ (2- 2 — 1)/3 more toW'(G) than toW'(G — {v}). Butz < d

so that the contributions of all neighbors:ofo W' (G) minus their contributions t&V' (G — {v})
add up to at most/2 + d - (2 - d — 1)/3. The contribution of the vertex to W’(G) is at most
(d+1)/2 + d?/3, so thatW'(G) — W'(G') < d+ 1 + d?.

By induction, the amount of work necessary to perform Gaussian eliminatiGhignat least
W'(G") plusd + 1 + d?, the amount of work to eliminate, and thus at least/’(G). m
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The next lemma is just a simple observation that allows us to account for work in a constant
number of parcels. It says that as long as we have at most a constant nuofilparts that can be
accounted for separately, then all of them taken together can also be accounted for, by increasing
the constants involved in th@() notation. Let'(z) = z + 1 + z2.

Lemma 10 LetG be a graph, and be a vertex ofz. If v has neighbors in at most c sets of vertices
Vi, Va, ..., V. whenu is eliminated from&, then the work involved in eliminating from G is at
mostw’ () wherez = [V, U Vo U ... U V| whichisO(w'(|V1]) + &' (|V2]) + ... + &' (|Ve])).

Proof. Follows from the facts thgt’; UV, U. ..UV, | is at most ¢ times the maximum ff; |, |Va|,
oo [Ve] @andw!(ex) < ¢ - W'(z) for z > 0. |

What follows is almost identical to Lemma 7 and its proof. We account for the amount of
work created by an order by usually showing that the amount of work to eliminate vertices within
a subgraph is within a certain bound, and then showing that the vertices of the graph have degree,
at the time the vertices are eliminated, which consists of the degree they had within that subgraph
at the time they were eliminated plus either edges that existed in the original graph or fill edges.
We show that the work associated with the existence of these edges is within a factor of amount of
work associated with cliques in the original graph (Lemma 9), and then use Lemma 10 to add the
various contributions to estimate the total amount of work for the given order.

Let A be an interval graph algorithm that produces orders Wit (n) - W (I)) work for any
interval graphl.

Lemma 11 When applied to an interval graph, with n vertices, and using the interval graph
algorithm A, the Homogenize procedure produces an order Withy(n) - W (I)) work.

Proof. We follow the steps of the proof of Lemma 7, and account for the work to eliminate each
vertex. The amount of work to eliminate a vertexds + d + 1, whered is the total number
neighbors the vertex has at the time it is eliminated. Thus, we need to examine each vertex, and
find the number of fill edges it has at the time it is eliminated.

Let H be one of the subgraphs to which algorithvnis applied, and let’ be the number
of vertices inH. The elimination ofH according to the order produced by requires at most
O(w(n') - W(H)) work. Consider fill edges betwedii and vertices of not in H. The vertices
of H can only have fill edges to the verticesof H that are pinned at the two edges that delimit
the skeleton path aff. By construction, the ply at every edge withifis skeleton path is within a
constant ofp, the number of vertices pinned at the endpoints of the skeleton. Therefore, given any
vertexv in H, the number of neighbors ofin '\ H is within a constant of the largest clique Bf
containingv. By Lemmas 9 and 10 the extra amount of work involved in the eliminatiold ahd
the other subgraphs to which algorith#nis applied as subgraphs padds up ta) (w(n) - W(I)).
Since the subgraphs are disjoint, the total amount of work to eliminate the subgraphs is also at most
O(w(n) - W(I)).

Finally, we need to account for the work to eliminate the vertices pinned at the various selected
edges. Let andb be the number of vertices pinned at each of the endpoints of the skelefon of
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used in the algorithm. Then there is a clique of size at lgast(a, b) in I, and even if we make alll
of the at mos® - (a + b) vertices that are selected by the Homogenize procedure into a clique, the
total amount of work to eliminate these vertices is withi(iV (I)). ]

Lemma 12 Our chordal graph algorithm produces an order withw(n) - W(G)) work.

Proof. Just as we did in the proof of the previous lemma, we consider the amount of work involved
in eliminating each of thds;(e;, e;11) subgraphs, and then the work to eliminate the remaining
vertices.

By Lemma 11, the work involved in eliminating eaéf)(e;, e;11) using an order produced by
applying Homogenize tal is O(w(n’) - W(K;(e;,ei+1))), wheren’ is the number of vertices in
Kl(ei, eH_l).

There is no fill between vertices in the differeli(e;, e;11), Since the vertices pinned at the
various selected edges form separators between the subgraphs, and the vertices in the separators are
eliminated after the vertices within each of the subgraphs.

Any vertices removed fronk;(e;, e;1+1) because they were pinned at bethande;; are
already adjacent to all vertices ff;(e;, e;+1) and form a clique. By Lemmas 9 and 10 the existence
of these edges adds at m@xuw(n)- W (G)) more work as a result of the elimination process, when
summed over all subgrapli§;(e;, e;11) ever created by the algorithm.

Let L be the set of vertices d?(/, r) pinned at. Vertices inL are not ordered at this step of the
algorithm, but there are fill edges to those vertices. The Kill algorithm ensures that any vertex that
has fill to a subset of the vertices Inis adjacent to at least half as many verticed.irSinceL is
a clique, Lemmas 9 and 10, and the repeated application of this argument to all terminal branches
ever ordered by the algorithm, imply that the total amount of work involved in eliminating
O(w(n) - W(G)). [ ]

To show that our algorithm produces orders with work within a constant factor of optimum, we
need to show that the one-third-two-thirds nested dissection produces orders with linear work.

Lemma 13 Let I be a connected interval graph. The one-third-two-thirds nested dissection algo-
rithm applied tol produces an order witld (W (1)) work, i.e., w(n) = O(1) for this algorithm.

Proof. To bound the amount of work involved in the elimination order, we need to count the number
of edges out of each vertex at the time it is eliminated.

We examine fill by looking at the ordered balanced elimination tree created by the algorithm.
Let's examine the fill from each vertex to vertices that lie in its ancestors in the separator tree. Let
v be a vertex in a nod¥ at levelk of the separator tree. Létand R be, respectively, the left and
right lowest ancestors df in the elimination tree. Any ancestor ofto which it is adjacent to at
the time it is eliminated must cover the edge of the skeleton corresponding to kitine.

Consider the fill fromw to vertices that covel. Fill to vertices coveringR is analogous. The
work caused by edges to vertices that are adjacentaiod coverL (and thus form a clique) adds
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up to at mosO (W (1)) over all vertices of, by Lemmas 9 and 10 and the fact that these are edges
in I. Let! and!’ be the number of vertices ifh and the number of vertices that coverbut are

not adjacent tw in I and are not included i, because they are part of higher-level separators,
respectively.

All vertices in L's left subtree must have edges (ijto thel’ vertices that covef. and are in
higher-level separators. Moreover, thdsgertices must form a clique id. Since the subtree is
balanced, this implies that at least a third of the vertices in the subtree rodteatratin cliques of
size at least’. No other subtree will use these cliques to account for work to a left ancestor node
(they might also be used to account for a right ancestor) so that again, by Lemmas 9 and 10 we
have a total oD (W (1)) work.

The last component of the work corresponds to fill to tiwertices in the separatdr. Again,
these form a clique, and we can proceed just as in the proof of Lemma 4.

Let p; be the number of vertices in a nodie at leveli of the separator tree. At the top level
there are at least/3 vertices ofI that are adjacent to a clique of size at lgastAt each recursive
level letn' be the number of vertices in a given subtree. Then, at l€gd8tof these vertices are
adjacent to a clique of size at least This adds up to enough potential for each vertex within a
subtree to pay for work related to a clique of sinex;<;(p;), while maintaining the sum of the
potentials of all vertices i within O(W (I)). Therefore,w can pay for its work related to tHe
vertices inL. By Lemma 10, we conclude the total amount of work induced by this order is indeed
O(W (I)). |

4.3 Empirical results

We implemented the linear fill and work algorithm described in the previous sections. We present
here the results we obtained by applying that algorithm as a post-processing step to orders obtained
using different heuristics.

The “becsstk” matrices used in our experiments come from structural engineering problems, and
were obtained from the Harwell-Boeing collection [IDL89], and from Timothy Davis’s “Univer-
sity of Florida Sparse Matrix Collection” [Dav94] (the matrices were provided to Davis by Roger
Grimes, at Boeing.) The nasasrb matrix models the structure of the NASA Langley shuttle rocket
booster, while the “sf” matrices are used in the simulation of an earthquake in the San Fernando
Valley [OS96]. The “g” matrices ark x w grids. The number of vertices and edges in each graph
can be found in Table 4.1.

We applied our algorithm as a post-processing step to the orders produced by a version of the
approximate minimum-degree heuristic (AMDYADD96], to the nested dissection orders pro-
duced by METIS-3.6 [KK95], and to the orders produced by the BEND algorithm obtained from
Rothberg [HR96, HR97]. Given each order we applied our chordal algorithm to the corresponding
chordal completion. The order obtained was then used as an elimination order for the original,
non-chordal graph.

code from fip://ftp.cise.ufl.edu/pub/umfpack/AMD/
2code from ftp://ftp.cs.umn.edu/dept/users/kumar/metis/
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Matrix vertices edges
3dtube 45330 | 1584144
bcsstk30 28924 | 1007284
bcsstk31 35588 | 572914
bcsstk32 44609 985046
bcsstk33 8738 291583
bcsstk35 30237 709963
bcsstk36 23052 560044
bcsstk37 25503 557737
cfdl 70656 878854
cfd2 123440 | 1482229

g256x256 65536 | 130560
g64x1024 65536 | 129984

gearbox 153746 | 4463329
hex256 393216 | 2359296
hex64 24576 147456
hsct16k 16152 376432
nasasrb 54870 | 1311227
pwt 36519 144794
sf10 7294 44922
sf5 30169 190377
shuttle-eddy | 10429 46585
struct3 53570 560062

Table 4.1: Number of vertices and edges in each test graph

Table 4.2 shows the fill produced by the various orders, and the amount of fill our post-processing
order induces, relative to the amount of fill the original order induces, that is, we divide the amount
of fill of the post-processed order by the amount of fill for the order used as an input to our algo-
rithm, whether produced by AMD, BEND or Metis. The amount of fill includes entries that are in
the original graph as well as any fill entries, bellow and including the diagonal.

Table 4.3 shows the amount of work involved in performing Gaussian elimination according to
each of the initial orders and the amount of work for the post-processed orders relative to the initial
orders.

The heights measured correspond to the reordering heights for the various orders and are pre-
sented in Table 4.4 while the number of reordering stages, that is, the number of parallel dense
elimination steps, for the various orders are presented in Table 4.5.

Our results indicate that our algorithm usually produces orders that have a small amount of extra
fill when compared to the chordal completion it starts with. In some cases, our post-processing ac-
tually produces small improvements in the number of non-zeros. Contrary to what we expected, for
most graphs, the AMD orders were very parallel, thus making it harder for us to obtain significant
improvements in the height or number of stages. It is interesting to notice that for grids with large
aspect ratio the AMD orders cannot be directly parallelized. In those test cases, our orders induce
a slightly lower number of non-zero entries than the nested dissection orders, and a small constant
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Matrix AMD (x10%) | Postfill | BEND (x10%) | Postfill | Metis (x10%) | Postfill
3dtube 26355 1.019 17906 1.002 18468 0.999
bcsstk30 3854 1.108 3892 1.026 4439 0.993
bcsstk31 5557 1.064 4183 1.015 4412 0.998
bcsstk32 4987 1.033 5067 1.018 5731 0.996
bcsstk33 2571 1.004 1880 1.015 2307 0.997
bcsstk35 2732 1.038 2776 1.011 3132 0.992
bcsstk36 2733 1.012 2555 1.022 3037 0.994
bcsstk37 2799 1.033 2693 1.017 3146 0.987
cfdl 37734 1.105 22386 1.011 22845 0.999
cfd2 75008 1.014 39026 1.034 38937 1.000
g256x256 1971 1.014 1675 1.006 1760 0.997
g64x1024 1425 1.190 1351 1.026 1455 0.996
gearbox 48556 1.042 38089 1.012 38147 0.999
hex256 54841 1.000 50091 1.001 45434 0.999
hex64 2422 1.000 2080 1.006 2017 0.998
hsct16k 2680 1.018 2479 1.004 2817 0.993
nasasrb 11954 1.168 9765 1.051 10582 0.996
pwt 1592 1.011 1494 1.005 1389 0.996
sf10 676 1.030 531 1.010 570 1.000
sf5 5244 1.020 3873 1.083 3997 1.000
shuttle-eddy 327 1.123 330 1.062 368 0.998
struct3 5093 1.013 4452 1.008 4574 0.992

Table 4.2: Amount of fill for each order and the corresponding post processed order

factor more nonzeros than the AMD orders. In these cases, the orders our algorithm produced are
significantly more parallel then the original AMD orders, and only slightly less parallel than the
nested dissection orders. The hybrid algorithm produces orders that are usually good in terms of
both fill and height.

In the next chapter we provide some indication that this trade-off between low-fill and low-
height orders is inherent to the chordal completion problem.
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Matrix AMD (x108) | Postwork | BEND (x108) | Postwork | Metis (x10%) | Postwork
3dtube 30030 1.064 12740 1.005 12130 0.999
bcsstk30 942 1.406 936 1.089 1179 0.993
bcsstk31 2898 1.214 1159 1.045 1190 1.003
bcsstk32 948 1.098 959 1.061 1288 0.996
bcsstk33 1240 1.004 590 1.033 896 0.996
bcsstk35 383 1.145 394 1.026 509 0.990
bcsstk36 620 1.045 483 1.099 706 0.993
bcsstk37 532 1.131 477 1.071 691 0.981
cfdl 44520 1.278 13360 1.031 17930 1.000
cfd2 136400 1.037 28710 1.130 34340 1.000
g256x256 261 1.066 190 1.028 223 0.999
g64x1024 85 1.909 83 1.123 98 0.998
gearbox 47020 1.189 22020 1.032 23330 1.000
hex256 47860 1.000 41620 1.001 34960 1.000
hex64 691 1.000 562 1.028 468 1.000
hsct16k 718 1.057 578 1.005 784 0.991
nasasrb 4771 1.724 2820 1.188 3548 0.993
pwt 172 1.039 140 1.014 112 0.985
sf10 137 1.090 71 1.025 80 1.002
sf5 2781 1.055 1275 1.358 1374 1.001
shuttle-eddy 17 1.514 18 1.237 23 0.998
struct3 1091 1.049 706 1.031 769 0.993

Table 4.3: Amount of work for each order and the corresponding post processed order
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Matrix AMD | Postheight| BEND | Post height| Metis | Post height
3dtube 5041 0.867 3477 0.905 | 2655 1.000
bcsstk30 2764 0.747 1800 0.833 | 1350 0.963
bcsstk31 2285 1.021 1641 1.000 | 1291 0.997
bcsstk32 2457 0.818 1774 0.931| 1386 0.953
bcsstk33 1792 1.000 1534 0.961 | 1250 0.999
bcsstk35 1262 0.948 1084 0.989 970 0.939
bcsstk36 1540 0.932 1255 1.042 | 1166 0.990
bcsstk37 1333 1.065 1162 1.022 | 1232 1.000
cfdl 7921 0.878 3438 1.003 | 3228 1.000
cfd2 9494 1.000 5538 0.967 | 4068 1.000
g256x256 1617 0.978 995 0.997 744 0.999
g64x1024 2791 0.319 979 0.733 438 0.995
gearbox 5589 1.124 3899 1.000 | 3640 1.000
hex256 4549 1.000 5423 1.002 | 4362 0.999
hex64 1105 1.000 1226 1.076 | 1018 0.988
hsct16k 1917 0.942 1307 0.995| 1163 1.000
nasasrb 4829 0.549 3360 0.725 | 1662 1112
pwt 944 0.935 778 0.857 571 0.993
sfl0 793 0.974 703 0.983 557 1.000
sf5 2341 1.000 1830 1.033 | 1523 0.998
shuttle-eddy 851 0.677 659 0.730 335 0.988
struct3 1542 0.982 1440 1.002 | 1093 0.992

Table 4.4: Reordering height of each order
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Matrix AMD | Poststages BEND | Poststages Metis | Post stages
3dtube 17 0.941 18 1.000 23 1.043
bcsstk30 38 0.684 24 0.917 23 0.826
bcsstk31 29 0.931 30 0.967 30 0.833
bcsstk32 40 0.775 27 0.963 30 0.867
bcsstk33 23 1.043 22 0.864 19 1.000
bcsstk35 32 0.844 29 0.966 30 0.833
bcsstk36 24 0.958 24 1.000 26 0.769
bcsstk37 31 0.935 27 0.926 29 0.793
cfdl 48 0.812 35 1.000 38 0.737
cfd2 38 1.000 40 0.925 34 0.853
g256x256 52 0.942 46 0.913 33 0.788
g64x1024 109 0.413 47 0.809 31 0.774
gearbox 33 0.939 30 1.000 32 0.969
hex256 16 1.000 22 1.000 37 0.730
hex64 12 1.000 17 0.941 29 0.759
hsct16k 28 0.964 25 0.880 23 0.870
nasasrb 33 0.606 28 0.821 30 0.800
pwt 25 1.000 43 1.000 28 0.857
sf10 24 0.958 31 0.903 32 0.812
sf5 29 0.966 38 0.947 41 0.878
shuttle-eddy 39 0.667 26 0.769 21 0.857
struct3 29 0.966 30 0.967 27 0.815

Table 4.5: Number of reordered stages

47
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Chapter 5

Parallelism and fill minimization

Itis interesting to look at the quality of the orders that nested dissection produces on chordal graphs,
as we did in Chapter 4. The analysis of nested dissection on chordal graphs indicates that even if we
had an oracle that could provide us with the minimal separators that form cliques in the minimum-
fill solution, nested dissection would still produce orders with an amount of fill that is more than a
constant times the size of the minimum-fill completion of the graph.

In this chapter we show that there exist graphs for which any parallel elimination order must
have at leasf)(n) extra fill. We also present an algorithm that is a variation of nested dissection
that tries to obtain low fill orders that are less parallel than regular nested dissection orders. When
applied to chordal graphs this new algorithm produces zero fill. Our algorithm is very similar to
nested dissection, but does not have the performance guarantees in terms of fill, height and work
that make nested dissection so attractive from a theoretical point of view, except when applied to
chordal graphs. Our experiments show this algorithm outperforms, on average, previous state-of-
the-art implementations of other ordering heuristics, including minimum-degree, nested dissection
and a hybrid of minimum-degree and nested dissection.

5.1 Studying height

The lemmas that follow help us analyze parallel elimination orders, and allow us to change a given
order into a more parallel one without introducing any fill.

Lemma 14 (Jess and Kess [JK82]) The set of simplicial vertices of a gréptonsists of discon-
nected cliques.

Based on this fact, Jess and Kess proposed an algorithm to produce elimination orders with low
height, namely to recursively eliminating at each step of the algorithm a maximal set of independent
simplicial vertices. Liu later proved that this algorithm indeed produces orders that achieve the
reordering height on chordal graphs, as stated in the next lemma.

49
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Lemma 15 (Liu [Liu89] ) Let G be a chordal graph. Then a perfect elimination order owith
minimum height can be obtained by applying the algorithm of Jess and Kess described above. The
height corresponds to the number of maximal independent sets the algorithm eliminates.

An order for a graph can be used for any of its subgraphs. We thus obtain the following lemma:

Lemma 16 (Manne [Man91]) LetH be a subgraph of a grapti¥. Then the height off is less
than or equal to the height @F.

The notion of optimal height of a graph allows for fill to be introduced into the graph. However,
we can still eliminate a maximal independent set of simplicial vertices at each step, without com-
promising the final height of the order. In general, however, some non-simplicial vertices might be
included in the maximal independent set to be eliminated in a given step of a parallel elimination
order. This is indicated in the lemmas that follow.

Lemma 17 Let G be a graph and letr be an order for the vertices @F with heighth that intro-
ducesf fill and w work. There exists an order in which any set of independent vertices that are
simplicial in G are eliminated in the first parallel elimination step, the amount of fill is no larger
than f, the amount of work is no larger than, and the height is no larger thain

Proof. It suffices to show that a simplicial vertexcan be added to the first step or can replace a
vertex to which it is adjacent in the first step of the elimination.

If v andw are two adjacent simplicial vertices, ands in the first step of the elimination, then
we can simply replace it by, sincev andw must be twins.

If a simplicial vertexv is adjacent tav, andw is not simplicial but appears in the first stepnof
again we can replace by v. In this case, the neighborhood ®fs contained in the neighborhood
of w, and thus the graph obtained by the eliminatiom & isomorphic to a subgraph of the graph
obtained by the removal ab. This subgraph can be eliminated with no more height (by Lemma
16), fill or work than the graph obtained by the eliminatioruo&ind the remaining vertices in the
first step of the elimination, simply because it is a subgraph of that graph. The same argument is
valid no matter how many vertices get replaced by simplicial neighbors.

The only case remaining is the case in whidh simplicial but neither nor any of its neighbors
are in the first step of the elimination order. Consider the first (future) step in which eithene of
its neighbors is eliminated according#o At that point, by the argument in the previous paragraph,
we can insist that be eliminated in that step. Since noneutsf neighbors are eliminated before
that step, we can moweto any earlier elimination step. [

The next lemma allows us to only consider elimination orders that eliminate twin vertices in
consecutive steps.

Lemma 18 Let v and w be twin vertices in a graplé. Then given any elimination order fa@¥
there exists another elimination order in whigtandw are eliminated in consecutive steps and for
which neither the fill, work or height exceed that of the original order.
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Proof. If v andw are twins, they remain so until eitheror w is eliminated fromG. Sayw is
eliminated first. Once is eliminated,w becomes a simplicial vertex, and by Lemma 17 there
exists an order for the graph obtained by the elimination wfth no more height, fill or work than
the original order, and such thatis eliminated in the first step of the order. [

The next lemmas indicate that there exists an interesting trade-off in producing elimination
orders that are optimized for height or fill, at least on some simple graphs.

Lemma 19 Let P be a path withn vertices. Any elimination order faP with heighth requires at
leastn — 2 - A fill.

Proof. Eliminating any vertex ofP produces a path one vertex shorter. Eliminating a leaf node
produces no fill, while eliminating an internal node produces one fill edge. Since there are only
two leafs at every step of the elimination process, at est leafs can be eliminated ih steps.
Therefore, at least—2-h other vertices that are also to be eliminated during thosteps introduce

one fill edge each. ]

Lemma 20 Let G be a graph, and lefd be an induced subgraph ¢. If any elimination order
for H with heighth requires at leastf () fill, where f (k) is a non-increasing function, then any
elimination order forG with heighth' requires at leasy (h') fill.

Proof. Since H is an induced subgraph @f, any elimination order of height’ for G is also
an elimination order forf and has height less than or equalifo Since f is non-increasing,
eliminating H according to this order introduces at legst’) fill. Since H is an induced subgraph
of G, this same order must introduce at lea&t’) fill in G. ]

Now consider the following graph. Take a path of lengthnd replace each node by a clique
with & vertices. Also introduce all possible edges between cliques that are in adjacent nodes of the
path. Call this &-path of lengthn.

Lemma 21 Any elimination order for thek-path of lengthn with height /4 introduces at least
k% - (n—2-h/k)fil.

Proof. If we identify all the twin vertices of thé-path graph we obtain a path of lengthevery

node of which representsvertices of the original graph. According to Lemma 18 any order for the
k-path can be modified so that when a vertex is eliminated all its twins are eliminated in successive
steps. Thus an order with heightfor the k-path corresponds to an order of heigh# for the n-

node path graph. Every fill edge introduced in the elimination ofitm®de path graph corresponds

to k2 fill edges in the originak-path elimination. By Lemma 19 any elimination order for thpath

has at leask? - (n. — 2 - h/k) fill. n

It is interesting to note that thie-path graph is very similar to a graph created during the elim-
ination of 2-dimensional grids with large aspect ratio. We triangulatedalB0 rectangular grid
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and then ordered its vertices using the BEND algorithm. Figure 5.1 represents a step in the elimina-
tion of this graph according to the order produced by BEND. The vertices in grey have already been
eliminated. The vertices that remain to be eliminated appear to be part of the top level separators
that the BEND algorithm uses to partition the graph into smaller subgraphs (that are then ordered
using minimum-degree.) At this particular point of the elimination it is not possible to distinguish
between this order and a parallel nested dissection order. The partially filled graph obtained at this
step is very similar to thé-path.

Figure 5.1: Partial elimination of a graph, according to a BEND order.

Consider the nested dissection ordering for a grid with wid#nd height, £ << n. A likely
nested dissection order would involve selecting roughfy: vertical separators witlt vertices
each. Thek x k subgraphs obtained this way would be recursively ordered, causing fill between
consecutive separators. Each separator would become itself a clique. At this stage of the elimination
process, the graph would correspond tegath of lengthn /k. Therefore by Lemma 21, after this
point, any elimination order with low height would require an additidnét, - k) fill.

This explains in part why nested dissection produces orders with higher amounts of fill than
other ordering heuristics on such graphs. In an attempt to show this effect empirically, we performed
an additional experiment. We took rectangular grids of different aspect ratios and computed an
AMD and a nested dissection order for each graph. We then applied the parallelizing algorithm
of the previous chapter as a post processing step to the AMD orders. We used a special purpose
ordering algorithm for rectangular grids as the base for normalizing all the results. This algorithm
is based on nested dissection and diagonal separators, but does not use the nested dissection order
for the top levels of separators.

Although not conclusive, the results obtained corroborate the hypothesis that the trade-off be-
tween minimizing height and minimizing fill and work plays an important role in the comparison
between minimum-degree and nested dissection orders. The parallel orders obtained required a
little more fill and work than the corresponding nested dissection orders, as seen in Figure 5.2.

5.2 Aless parallel nested dissection algorithm

Our goal was to redeem nested dissection by obtaining a new algorithm that would behave much
like nested dissection, but would produce orders with less fill and work. We propose the following
algorithm that takes a subgraphof a graphH and the sef’ = H \ G of vertices to be eliminated

after the vertices off and produces an elimination order for the vertice6;oHenceforth, we call

this algorithm the less parallel nested dissection algorithm (LPND).

The algorithm starts with an empty sEf and finds a minimal separatsrof GG, and the con-



5.2. ALESS PARALLEL NESTED DISSECTION ALGORITHM 53

Fill on nxk grids Work on nxk grids

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
log(n/k) log(n/k)

Height on nxk grids

—&— AMD
——ND
—4A— PAMD

0 2 4 6 8 10 12 14 16
log(n/k)

Figure 5.2: Comparison between orders produced by nested dissection (ND), minimum-degree
(AMD), and the order obtained by applying the parallelizing algorithm of the previous chapter as a
post processing step to the AMD order (PAMD).

nected components; of G\S. If a non-trivial minimal separator cannot be found then it must be
the case thaf? is a clique. In this case its vertices are ordered according to increasing degrees, that
is, according to the number of neighbors each vertex h@s it each step, if a non-trivial minimal
separator can be found, the algorithm computes the number of neighbors that each corfiponent
has inT'. If at least two components have the maximum number of neighbdsower all compo-
nentsGy, then the algorithm recurses on each compoignas a subgraph af, U S U T (with a

setT’ = T U S), exactly like nested dissection would. Vertices within each component are num-
bered so as to be eliminated before the verticeS,iexactly like nested dissection would number
them. Then the vertices ¢f are ordered according to increasing degrees in the graph induced by
S UT. If however, a subgrapy; has a number of neighbors Ththat is larger than the number of
neighbors any other component haginthen the algorithm treat§; andS in a different manner.

All components of7 \ S except forG; are recursively ordered, just as before. However, instead of
recursing orG;, the algorithm recurses on the subgrapfu S of G; U SUT, after inserting edges
corresponding to the fill created by the elimination of the other componerds\df. The vertices

in G; U S are numbered after the vertices in the other componer@s\o§.

We start by proving a lemma that says that, under certain conditions, the step of the LPND
algorithm that orders the vertices of a clique does not introduce any fill.
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Lemma 22 LetC be aclique in a chordal grapli, such thatVy (C) is also a clique. The vertices
of C can be eliminated fronf/ according to any minimum-degree order with zero fill.

Proof. Since bothC and Ny (C) are cliques we have to show thatifandw are vertices inC'
such thatd(w) > d(v) thenw is adjacent to all neighbors of which implies that any vertex with
minimum degree irC is simplicial in H.

Assume by contradiction that this is not the case. Siide a clique, it must be the case that
there exists a vertex, ¢ C' that is adjacent to but not tow. Also, sinced(w) > d(v), there must
exist a vertexa,, ¢ C' that is adjacent ta but not tov. But thenn, andn,, are both inNg(C),
and thus are adjacent. That forms a chordless cycle of length four and contradicts the assumption
that H is chordal. [

The next lemma allows us to show that the LPND algorithm produces perfect elimination orders
for chordal graphs.

Lemma 23 Let G be an induced subgraph of a chordal gragh such thatNy(G) is a clique.
Then the LPND algorithm orders the vertices(vso that they can be eliminated frofh with zero
fill.

Proof. If G is a clique then it has no non-trivial minimal separators, and the algorithm orders the
graph using minimum degree, so that we can apply Lemma 22 proving the result. AGssmet

a clique. Then it has a minimal separatthat will be used by the algorithm to partitigs into
connected componen€s,, ..., G,,n > 1. SinceG is an induced subgraph &f it is also chordal.
Every minimal separator of a chordal graph is a clique, and $hissa clique.

If there is a componen®; that has more neighbors ¥y (G) than any of the other component
of G\ S, then the algorithm will first order the vertices within the components other@haand
then order the vertices @f; U S. By induction, we can assume that the order producedrfar S
will eliminate these vertices frortr; U S U (H \ G) with zero fill, since the set of neighbors of
G;USin H\ G is contained il (G), which is a clique by hypothesis. Next, we will show that if
a componeng’;, does not have more neighborsiiy (G) than any other component, théh; (Gy,)
is a clique. In this casé&’;, can be eliminated with zero-fill by induction.

Without loss of generality, take a componé&rt of G \ S. AssumeNy(G1) is not a clique.
Then there must exist vertices in S andt; in Ny (G) that are adjacent to vertices @ but are
not adjacent to each other. Singes a minimal separator, all other compone@tsof G \ S have
at least one vertex adjacent ¢, for otherwises; could be removed fron$. Either G is the
component with the largest number of neighborsVin(G) or there exists some other component
G2 with no less neighbors iV (G) than Gy, so that some vertices @f, are, without loss of
generality, either adjacent tg or to a vertexts in Ny (G) that does not have neighborsah .

In the first case, consider a shortest path betweamdt; going only throughs,, ¢; and vertices
in G; and a shortest path betweenand#; going only thoroughs, ¢; and vertices irGs. There
are no edges between verticesGh and vertices inGe. SinceH is chordal the cycle formed by
these paths must have a chord. The only place where this chord can be is betves®ht,, a
contradiction.
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If no vertex of G, is adjacent td@;, then again take a shortest path betweeandt; in G;. The
vertext, is adjacent td;, and eithett; is also adjacent te;, in which case the shortest path@h
along with the patly; — to — ¢ is chordless, a contradiction, ey andt, are not adjacent. In this
case we consider the cycle composed of the shortest pathsfroo; in G, along with the edge
(t1,t2) and a shortest path betweenands; in G». This cycle is again chordless, a contradiction.
This concludes the proof that the subgraghsare ordered with zero fill.

The only case that remains is when all component§ §fS are eliminated first, and the set of
verticesS is left to be eliminated at the end (as nested dissection would do)S Bua clique, and
soisNy(S), sinceNy (G) is clique. Thus we can apply Lemma 22. ]

Corollary 3 The LPND algorithm produces a perfect elimination order when applied to a chordal
graph.

Proof. Let H be a chordal graph. Iff is a clique, then any order will produce zero fill. Otherwise,
the algorithm finds a minimal separat8r S is a clique sinceH is chordal. The algorithm orders
the vertices ofS last. As long as all other vertices have been eliminated, the verticExan be
eliminated in any order with zero fill. The algorithm will recurse on each of the components of
H\ S, and by Lemma 23 it will order each of these components with zero fill. [

Unlike nested dissection, the algorithm we described will not necessarily generate orders with
low height. In particular, given a path of length this algorithm will not introduce any fill edges
so that any order it produces must have height at be#at

5.3 Experimental results

We implemented the algorithm described in Section 5.2 and performed experiments that compare
the orders it produces with orders produced by state-of-the-art implementations of a number of other
heuristics. We proceed to describe a few aspects of the implementation of the LPND algorithm.

Separators:

The algorithm only requires minimal separators, without any balance constraints. However,
in the actual implementation the algorithm tries to obtain separators with a bounded amount
of imbalance allowed, thus mimicking nested dissection.

Obtaining small balanced separators is an NP-hard problem on its own, but there are provably
good approximation algorithms for finding separators as well as a number of algorithms that,
in practice, produce very good separators. We side-stepped the issues associated with finding
separators and use vertex separators produced by Cllc®4, HL95], a graph partitioning
algorithm by Hendrickson and Leland at Sandia Labs.

Chaco is a multilevel algorithm that works by coarsening the graph into smaller and smaller
graphs that approximate the initial graph. The smallest such graph is partitioned. This par-
tition is mapped to a partition of the next smallest graph, from which the coarse graph was

http://www.cs.sandia.gov/CRF/chac.html
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obtained. The process proceeds, as partitions are propagated back to finer and finer graphs.
Every so many of these mapping steps, a variant of the Kernigan-Lin algorithm is applied
as a local refinement method that improves the partitioning. Chaco uses this combination of
heuristics to directly produce high quality edge and vertex separators. Parameters to Chaco
affect our algorithm and the orders it produces. Among the parameters to Chaco is the permis-
sible fraction of imbalance between the partitions to be produced. Chaco uses randomization,
most noticeably in the coarsening steps. This makes our ordering algorithm also sensitive to
the initial random seeds used. Even though Chaco produces good separators, we noticed that
we obtain even better solutions at the cost of speed, by running Chaco more than once with
different random seeds on the same input graph and then choosing the smallest separator
produced.

Minimum degree:

Most descriptions of nested dissection do not prescribe any ordering for vertices within a
given separator because these vertices usually end up forming a clique after the components
into which the separator breaks the graph have been eliminated. It is natural however, to
try to minimize the fill from vertices in a separator to vertices higher up in the separator
tree. An important part of the LPND algorithm is the use of a constrained minimum-degree
rule to order the vertices within separators and to order the vertices in subgraphs that could
not be further divided. The constrained minimum-degree heuristic orders the vertices in
the subgraphs by eliminating first the vertex of minimum degree among the vertices of the
subgraph, while however considering the degrees measured in the whole graph.

We also used constrained minimum degree as the ordering heuristic for subgraphs that were
smaller than some threshold. This widely adopted practice allows us to reduce the amount of
time needed to produce our orders, while not affecting the quality of the orders produced by
much.

Sorting recursive subproblems:

The step that differentiates the LPND algorithm from nested dissection involves choosing
whether to treat all subgraphs defined by the separator identically, or to save one subgraph
for last and merge it with the separator. As we have shown with Corollary 3, the choice of
which subgraph should be left for last is clear when the graph being ordered is already a
chordal graph. In practice we made the conditions under which the algorithm deviates from
nested dissection more strict. Instead of requiring a component to have a number of neighbors
outside the subgraph being ordered that is larger than the number of neighbors of any other
component, in the implementation, we actually require that this component have at least some
constant fraction more neighbors than any other component. This is a conservative measure
that tries to avoid making bad decisions based on the imperfect information that is available
during the computation by defaulting to the nested dissection behavior.

We also implemented a version of the Lipton, Rose and Tarjan (LRT) nested dissection algo-

rithm that uses the same separator and minimum-degree algorithms that were used in implementing
our own algorithm. In the tables that follow we report the results obtained for our LPND algorithm,
our implementation of the LRT algorithm, as well as the AMRIgorithm [ADD96], the BEND

2code from ftp://ftp.cise.ufl.edu/pub/umfpack/AMD/
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algorithm, obtained from Rothberg [HR96, HR97], and the nested dissection order produced by
METIS-3.0% [KK95]. As for the results reported for the approximate minimum deficiency algo-
rithm (AMMF), these are quoted from [RE98], and are not available for all the test matrices. Any
unavailable results are represented with a “-” in the tables that follow.

As described in the previous chapter, the “bcsstk” matrices used in our experiments come from
structural engineering problems, and were obtained from the Harwell-Boeing collection, and from
Timothy Davis’s “University of Florida Sparse Matrix Collection” [Dav94] (the matrices were pro-
vided to Davis by Roger Grimes, at Boeing). The “cfd”, gearbox and struct3 matrices were provided
by Rothberg, while the nasasrb, pwt and shuttle-eddy matrices came from NASA. All these matri-
ces can be obtained from the University of Florida Sparse Matrix collection. The “sf” matrices
come from the simulation of an earthquake in the San Fernando Valley [OS96]. The “g” matrices
aren x k grids, while the “hex” matrices are meshes of hexagons. The CAR, hsctl6k, 50K, 172K
and 178K matrices came from Olaf Storaasli at NASA Langey.

Matrix vertices edges| c-vertices | |L|/10> | work/1(P | height | stages| front
shuttle-eddy | 10429 46585 10363 330 18 659 26 143
sf10 7294 44922 7294 531 71 703 31 296
g64x1024 65536 | 129984 65536 1351 83 979 47 188
pwt 36519 | 144794 36515 1494 140 778 43 222
0256x256 65536 | 130560 65536 1675 190 995 46 390
bcsstk35 30237 | 709963 6611 2776 394 | 1084 29 | 430
bcsstk37 25503 | 557737 7093 2693 477 1162 27 518
bcsstk36 23052 | 560044 4351 2555 483 1255 24 | 536
hex64 24576 | 147456 24576 2080 562 1226 17 814
hsct16k 16152 | 376432 7911 2479 578 1307 25| 491
bcsstk33 8738 | 291583 4344 1880 590 1534 22 677
struct3 53570 | 560062 41644 4452 706 1440 30 | 446
bcsstk30 28924 | 1007284 9289 3892 936 1800 24 | 579
bcsstk32 44609 | 985046 14821 5067 959 1774 27 564
bcsstk31 35588 | 572914 17403 4183 1159 | 1641 30 | 623
sf5 30169 | 190377 30169 3873 1275 | 1830 38 829
50K 49790 | 1253700 11224 7313 2235 | 2716 36 879
nasasrb 54870 | 1311227 24954 9765 2820 | 3360 28 620
3dtube 45330 | 1584144 15909 17906 12740 | 3477 18 | 1607
cfdl 70656 | 878854 70656 | 22386 13360 | 3438 35 | 1417
CAR 263574 | 6292129 61983 | 34352 13970 | 3824 40 | 1571
gearbox 153746 | 4463329 56175 | 38089 22020 | 3899 30 | 1846
172K 172400 | 7229603 36062 | 35601 24700 | 4790 26 | 2073
cfd2 123440 | 1482229 123440 | 39026 28710 | 5538 40 | 1754
hex256 393216 | 2359296 393216 | 50091 41620 | 5423 22 | 3319
178K 178044 | 6277614 145112 | 132100 183110 - - -
sf2 378747 | 2509064 378747 | 188240 339500 - - -

Table 5.1: Matrices and statistics for a BEND order

3code from ftp://ftp.cs.umn.edu/dept/users/kumar/metis/
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The number of vertices and edges in each graph/matrix can be found in Table 5.1. Under the
label “c-vertices” this table lists the number of vertices in the compressed graph that is obtained by
identifying each set of twin vertices into a supernode. We applied the BEND algorithm to order
each of these matrices, and use the numbers obtained to normalize the results that are presented in
the next tables. The results for the BEND order are also included in Table 5.1. The fill and work
entries indicate the number of nonzeros in the mafriand the amount of work to decompose
each matrix according to the BEND order. This and the remaining tables that we present are sorted
according to increasing amounts of work. Finally, the height, stages, and front entries correspond to
the reordering height, to the number of reordering stages, and to the front size for the BEND order.
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Figure 5.3: Histograms of the fill of each order for the various matrices relative to the BEND order.
They-axis indicates the number of matrices whose fill-ratio is in each bucket.

Tables 5.2 and 5.3 present the number of nonzeros (below and including the diagonal, i.e,
the number of nonzeros ih) and work for decomposing each matrix according to the various
orders produced. Both LRT and LPND usweb calls to Chaco per separator. These results are
presented as ratios with respect to the BEND order. Numbers smaller than 1 indicate an order that
compares favorably with the BEND order. In an attempt to summarize the results in each table, we
included the average and standard deviation of these normalized results, as well as the histograms
in Figures 5.3 and 5.4.
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Figure 5.4: Histograms of the work of each order for the various matrices relative to the BEND
order. They-axis indicates the number of matrices whose work-ratio is in each bucket.

These results indicate that both LRT and LPND orders are on average slightly better than the
BEND order. However, the differences observed are of only a few percent, making it difficult to
draw any definite conclusions. The running times for both LRT and LPND are comparable and are
significantly higher than those for the BEND algorithm. Table 5.4 compares the amount of time to
produce the BEND and the LPND orders for the various matrices. Itis unclear how much the BEND
orders could improve if the algorithm were given more time to compute the orders. However, these
results indicate that significant gains in terms of both fill and work might justify investing more
time into obtaining good elimination orders.

The fill and work results for the AMD orders stand out. Although occasionally better in individ-
ual cases, the AMD algorithm produces orders that are significantly worse than the orders produced
by the remaining algorithms. This is consistent with the results obtained by Hendrickson and Roth-
berg in [HR96], when they found that their implementation of the nested dissection algorithm was
significantly better than the minimum-degree algorithms, and that the BEND algorithm was a few
percent better than their own implementation of the nested dissection algorithm.
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Figure 5.5: Histograms of the reordering height of each order for the various matrices relative to
the BEND order. They-axis indicates the number of matrices whose reordering-height ratio is in
each bucket.

Tables 5.5 and 5.6 show the reordering height and number of reordering stages for each of
the orders. The results for the AMMF order are not available. The results for the two largest cases
are omitted, for they would take too long to compute. As expected, we can see in the tables that
the orders produced by the LPND algorithm are less parallel than the corresponding LRT orders
while the AMD orders are even less parallel than the LPND orders in terms of height, but in most
cases are more parallel than the LPND orders in terms of the number of stages. This difference
indicates that AMD orders are probably likely to produce larger cliques than the LPND orders, as
corroborated by Table 5.7, which lists the maximum front size for each order (again, except for the
AMMF orders).

We also performed an additional experiment using the 7 largest matrices in the test set. We ran
the LPND algorithm 10 times using different random seeds (the numbers 1 through 10) and one
call to Chaco per separator (LPND1) and another 10 times, with two calls to Chaco per separator
(LPND2). In the first call the same seeds (1 through 10) were used, and in the second call the seed
was obtained by applying a fixed affine function to the original seed. Figure 5.6 shows the average
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Ratio AMD | AMMF | METIS LRT | LPND
shuttle-eddy| 0.9910 - | 1.1144| 1.0139| 0.9415
sf10 1.2726 - | 1.0737 | 1.0205| 0.9905
064x1024 1.0553 - | 1.0771| 0.9686 | 0.8757
pwt 1.0656 | 1.1205| 0.9295| 0.8740| 0.8754
g256x256 1.1772 - | 1.0512| 0.9056 | 0.8986
bcsstk35 0.9843 | 0.9645| 1.1284| 0.9944 | 0.9733
bcsstk37 1.0395| 1.0154| 1.1682 | 0.9564 | 0.9567
bcsstk36 1.0695 | 1.0375| 1.1887 | 1.0145| 1.0028
hex64 1.1644 - | 0.9699| 0.9105| 0.9103
hsct16k 1.0808 - | 1.1361| 1.0276 | 1.0080
bcsstk33 1.3680 | 1.2757| 1.2271 | 1.0929| 1.0775
struct3 1.1441 | 1.1185| 1.0274 | 0.9468 | 0.9667
bcsstk30 0.9903 | 0.8869 | 1.1407 | 1.0196 | 0.9102
bcsstk32 0.9840 | 0.9541| 1.1310| 1.0135| 0.9824
bcsstk31 1.3286 | 1.0525| 1.0549 | 0.9449| 0.9575
sf5 1.3541 - | 1.0320 | 0.9595| 0.9521
50K 1.2086 - | 1.1721 | 1.0003 | 0.9982
nasasrb 1.2242 - | 1.0837| 1.0086 | 0.9560
3dtube 1.4719 | 1.5511| 1.0314 | 0.9548 | 0.9548
cfdl 1.6856 | 1.3106| 1.0205| 0.8597| 0.8047
CAR 1.1028 - | 1.0631| 0.9769 | 0.9846
gearbox 1.2748 | 1.2614| 1.0015| 0.9227| 0.9166
172K 0.8196 - | 1.0203| 0.9249 | 0.9010
cfd2 1.9220 | 1.6969 | 0.9977 | 0.9218| 0.9411
hex256 1.0948 - | 0.9070 | 0.8420| 0.8420
178K 1.7301 - | 0.9272| 0.8650 | 0.8645
sf2 2.0333 - | 0.8558| 0.8311| 0.8306
AVERAGE | 1.2458 | 1.1727| 1.0567 | 0.9545| 0.9360
STDEV 0.2959 | 0.2400| 0.0911| 0.0650| 0.0618

Table 5.2: Fill relative to the BEND order

results normalized by dividing each average by the corresponding result for the BEND order. Each
average is accompanied by an error bar corresponding to the normalized standard deviation over
each set of 10 runs. These deviations are sometimes too small to show up in the figure. Again,
these results indicate that the orders produced are on average slightly better than the ones produced

by the BEND algorithm.
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Ratio AMD | AMMF | METIS LRT LPND
shuttle-eddy | 0.9642 - 1.2855| 1.1027 | 0.8422
sf10 1.9313 - 1.1294 | 1.0865 | 0.9736
g64x1024 1.0160 - 1.1778 | 0.9716 | 0.6271
pwt 1.2305| 1.3761| 0.8017 | 0.7194 | 0.7215
g256x256 1.3736 - | 1.1728| 0.8519 | 0.8087
bcsstk35 0.9721| 0.9110| 1.2905| 1.0233 | 0.9642
bcsstk37 1.1150 | 1.0106 | 1.4479| 0.8705| 0.8869
bcsstk36 1.2833| 1.1255| 1.4609 | 1.0786 | 1.0075
hex64 1.2301 - | 0.8330| 0.7139 | 0.7137
hsctl6k 1.2415 - 1.3558 | 1.0901 | 1.0337
bcsstk33 2.1035| 1.6197 | 1.5193| 1.2053| 1.1730
struct3 1.5455| 1.4126 | 1.0895| 0.9266 | 0.9841
bcsstk30 1.0057 | 0.7022 | 1.2592 | 1.1182 | 0.7630
bcsstk32 0.9885 | 0.9305| 1.3432| 1.1273| 1.0396
bcsstk31 2.5004 | 1.3932| 1.0267 | 0.8645| 0.9077
sf5 2.1812 - 1.0776 | 0.8996 | 0.8824
50K 2.2367 - 1.4872 | 1.0224 | 1.0336
nasasrb 1.6918 - 1.2582 | 1.1411| 0.9199
3dtube 2.3571| 2.4563| 0.9521| 0.8673| 0.8673
cfdl 3.3323 | 1.7663 | 1.3421| 0.8293 | 0.6635
CAR 1.6600 - | 1.0014| 0.9556 | 1.0193
gearbox 2.1353 | 2.0058 | 1.0595| 0.9382| 0.9260
172K 0.6138 - 0.9425 | 0.7854 | 0.7186
cfd2 47510 | 3.4315| 1.1961 | 0.9871| 1.0355
hex256 1.1499 - 0.8400 | 0.6540 | 0.6540
178K 3.8589 - 1.0334 | 0.9012 | 0.8941
sf2 5.5022 - 0.8999 | 0.8315 | 0.8031
AVERAGE 1.9249 | 1.5493 | 1.1586 | 0.9468 | 0.8838
STDEV 1.1934 | 0.7459 | 0.2100 | 0.1441 | 0.1409

Table 5.3: Work relative to the BEND order
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Matrix BEND(secs)| Slow-down: LPND/BEND
shuttle-eddy 0.981 3.258
sf10 0.962 3.534
g64x1024 4.730 4.599
pwt 3.049 3.938
g256x256 4.407 4.975
bcsstk35 7.365 0.351
bcsstk37 5.539 0.610
bcsstk36 5.400 0.313
hex64 2.805 3.646
hsct16k 3.322 2.079
bcsstk33 2.133 1.915
struct3 7.131 3.565
becsstk30 7.680 0.893
besstk32 10.142 0.837
besstk31 7.063 1.684
sf5 3.491 5.916
50K 11.594 0.465
nasasrb 11.817 1.805
3dtube 12.485 0.988
cfdl 13.385 8.632
CAR 42.983 0.850
gearbox 33.132 1.378
172K 47.357 0.688
cfd2 18.237 13.141
hex256 41.574 6.313
178K 54.393 9.461
sf2 59.876 17.186

Table 5.4: Amount of time to compute BEND order, in seconds, and ratio between the time to
compute the LPND order and the BEND order
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Ratio AMD | METIS LRT | LPND
shuttle-eddy| 1.2914 | 0.5083 | 0.4431 | 1.1897
sf10 1.1280| 0.7923| 0.8990 | 0.9900
g64x1024 2.8509 | 0.4474 | 0.5455| 2.0409
pwt 1.2134| 0.7339| 0.6530 | 0.7558

g256x256 1.6251| 0.7477| 0.8151 | 0.9980
bcsstk35 1.1642| 0.8948 | 0.8792 | 1.0563
bcsstk37 1.1472| 1.0602| 0.8614 | 1.0258
bcsstk36 1.2271| 0.9291| 0.9211 | 0.9793

hex64 0.9013| 0.8303 | 0.8051| 0.8051
hsct16k 1.4667 | 0.8898 | 0.9082 | 1.2754
bcsstk33 1.1682 | 0.8149| 0.7640 | 0.7823
struct3 1.0708 | 0.7590| 0.6479 | 0.9868

becsstk30 1.5356 | 0.7500| 0.7361 | 1.4728
becsstk32 1.3850 | 0.7813| 0.7418 | 1.2272
bcsstk31 1.3924 | 0.7867 | 0.7569 | 1.0049

sf5 1.2792 | 0.8322 | 0.8066 | 1.0443
50K 1.0670| 0.7323 | 0.6116 | 0.6554
nasasrb 1.4372| 0.4946 | 0.4726 | 1.2711
3dtube 1.4498 | 0.7636 | 0.8332 | 0.8332
cfdl 2.3040 | 0.9389 | 0.7833 | 1.5852
CAR 1.2644 | 0.7858 | 0.8413| 1.1462
gearbox 1.4334| 0.9336| 0.9646 | 1.1749
172K 0.9305| 0.7931 | 0.7975| 0.8929
cfd2 1.7143| 0.7346| 0.6844 | 1.1685
hex256 0.8388 | 0.8044 | 0.7640 | 0.7533
178K - - - -

sf2 - - - -

AVERAGE 1.3714| 0.7816| 0.7575| 1.0846
STDEV 0.4301 | 0.1380| 0.1348| 0.2999

Table 5.5: Reordering height relative to the BEND order
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Ratio AMD METIS LRT | LPND

shuttle-eddy| 1.5000 | 0.8077 | 0.6538 | 1.4615
sf10 0.7742 | 1.0323 | 0.8387 | 1.1290
g64x1024 2.3191 | 0.6596 | 0.5319 | 2.0213
pwt 0.5814 | 0.6512 | 0.6977 | 0.7674
g256x256 1.1304 | 0.7174 | 0.5435| 0.7391
bcsstk35 1.1034 | 1.0345| 0.9655 | 1.1379
bcsstk37 1.1481| 1.0741 | 1.0000 | 1.1481
bcsstk36 1.0000| 1.0833 | 0.8333 | 0.9583
hex64 0.7059 | 1.7059 | 1.0588 | 1.0588
hsct16k 1.1200 | 0.9200 | 0.7600 | 1.1200
bcsstk33 1.0455| 0.8636 | 0.8636 | 0.9545
struct3 0.9667 | 0.9000 | 0.7667 | 1.0333
bcsstk30 1.5833 | 0.9583 | 0.8750 | 1.6667
bcsstk32 1.4815| 1.1111 | 0.9630| 1.7778
bcsstk31 0.9667 | 1.0000 | 1.0000 | 1.2333
sf5 0.7632 | 1.0789 | 1.0526 | 1.3158
50K 0.7778 | 1.5000 | 0.8611 | 0.9722
nasasrb 1.1786 | 1.0714 | 0.6786 | 1.5714
3dtube 0.9444 | 1.2778 | 1.0000 | 1.0000
cfdl 1.3714 | 1.0857 | 0.7143 | 1.4857
CAR 1.4000 | 0.8500 | 0.8250 | 1.0500
gearbox 1.1000 | 1.0667 | 1.0667 | 1.3000
172K 1.0385| 1.2308 | 0.8462 | 1.1154
cfd2 0.9500 | 0.8500 | 0.7000 | 1.4750
hex256 0.7273 | 1.6818 | 1.0909 | 1.0909
178K - - - -

sf2 - - - -

AVERAGE 1.1071| 1.0485| 0.8475| 1.2233
STDEV 0.3642 | 0.2717 | 0.1617 | 0.3108

Table 5.6: Number of reordered stages relative to the BEND order
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Ratio AMD | METIS LRT | LPND
shuttle-eddy | 0.8462 | 1.1748| 1.1049 | 0.7762
sf10 1.5135| 1.0980| 1.1858 | 0.9155
g64x1024 0.7766 | 1.0266 | 1.0160 | 0.6755
pwt 1.1351| 1.1577| 0.8649 | 0.8559

g256x256 1.0974| 1.1103| 1.0179 | 1.0179
bcsstk35 0.8814 | 1.0442| 1.0977 | 0.9953
bcsstk37 1.0174| 1.2046 | 0.8301 | 0.9093
bcsstk36 1.2705| 1.0989 | 1.2425| 0.9757

hex64 0.9349 | 0.7850 | 0.7064 | 0.7064
hsct16k 1.2077| 1.3910| 1.2322 | 1.2688
bcsstk33 1.3870| 1.1152| 1.0295| 1.0295
struct3 1.4507 | 1.5045| 1.0067 | 1.0942

bcsstk30 1.0294 | 1.2003 | 1.1796 | 0.8497
bcsstk32 0.9521| 1.2801| 1.1915| 1.2305
bcsstk31 1.9695| 0.9791| 0.9310 | 0.9727

sf5 1.5416 | 1.0567 | 0.8492 | 0.8480
50K 1.8794| 1.4710| 0.9317 | 0.9807
nasasrb 1.5339| 1.3339| 1.3403| 1.1016
3dtube 1.3759 | 0.8693| 0.8693 | 0.8693
cfdl 2.0487 | 1.4912| 1.0974 | 0.8772
CAR 1.3997 | 0.9236| 1.0102 | 1.0993
gearbox 1.4588 | 1.1647 | 1.1712 | 1.1712
172K 0.8997 | 0.8886 | 0.8886 | 0.8886
cfd2 2.3176 | 1.3871| 1.2229| 1.1431
hex256 0.9235| 0.8566 | 0.6939 | 0.6939
178K - - - -

sf2 - - - -

AVERAGE 1.3139 | 1.1445| 1.0285 | 0.9578
STDEV 0.4106 | 0.2047| 0.1721| 0.1613

Table 5.7: Front sizes relative to the BEND order
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Figure 5.6: Average and standard deviation of 10 orders produced by the LPND algorithm with 1
and 2 calls to Chaco, relative to the orders produced by BEND.
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Chapter 6

Final remarks

In this thesis we identify a trade-off between low-fill and low-height elimination orders and present
two opposing ideas as to how to produce good elimination orders. We provide a parallelizing
algorithm that takes an order and produces a parallel order with height witiir{lag? ) factor

of the optimal height of the chordal completion of the graph according to the original order. To
obtain such parallel orders we incur some extra overhead in terms of both fill and work. We show
that the parallel order obtained creates at most a constant factor more nonzeros and work than the
original order.

On the other hand, we obtain an algorithm that produces low-fill orders that are fairly sequen-
tial. The sequential nature of the orders is the price we pay to obtain low fill. Even though this
algorithm is based on nested dissection, we do not, as of yet, have any performance guarantees for
this algorithm on general graphs. Our experiments show that the orders produced are competitive
with the orders produced by the current-champion ordering algorithm (BEND). While the orders
we produce usually require a little less fill, the BEND algorithm is usually faster in producing its or-
ders. This indicates that if the BEND algorithm spent more time in producing its order, say, looking
for better separators, it might produce even better orders.

While the first algorithm we presented tries to parallelize orders and the second one tries to
produce fairly sequential ones, they both indicate that there exists a trade-off between producing
low-fill elimination orders and producing elimination orders that are very parallel. It is interesting
that, in order to produce parallel orders with only a constant factor more nonzeros than the chordal
completion the algorithm starts with, an important step of the parallelizing algorithm was to in-
troduce sentinels, which are nothing more than separators used to sequentialize the elimination of
certain vertices in the graph. This is a compromise that allows us to produce very parallel orders
while limiting the amount of fill introduced.

In a side remark, we observe that in our experiments, as well as in the experiments performed
by Hendrickson and Rothberg in [HR96], a state-of-the-art minimum-degree algorithm performed
poorly in comparison with nested dissection and the BEND algorithm. Our algorithm produced
orders that on average required about half the amount of work, and &bbtis of the number of
nonzeros the minimum-degree orders required.
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A comparison of these ordering algorithms on square grids shows that the minimum-degree
algorithm is the best on grids with large aspect ratio. These are graphs for which nested dissection
and the BEND algorithm both produce very parallel orders, in contrast with the very sequential
orders produced by minimum-degree. Minimum-degree orders can be computed in very little time.
However, unlike the BEND algorithm, minimum-degree is unlikely to benefit much from any ad-
ditional allotted running time. The comparison of the various ordering algorithms on graphs from
a number of different areas reflects poorly on the quality of minimum-degree orders, and certainly
justifies the additional time to compute better orders.

We list some areas that deserve further attention. Among other things, we would like to be able
to obtain:

e a more comprehensive study of parallelism versus fill/work;

tighter lower/upper bounds on the fill in chordal completions of grid graphs;

non-trivial lower bounds on the size of the chordal completion of planar graphs and graphs
in general,

an analysis of the minimum-degree heuristic on chordal and interval graphs;

ordering algorithms and analyses for asymmetric matrices.
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