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Abstract

The Kahn Principle states that each node in an asynchronous deterministic
network computes a continuous function from input histories to output his-
tories, and the behavior of the network can be characterized as a least �xed
point. Fairness plays a vital but implicit role: the Kahn Principle is only

sound when network execution is assumed to be (weakly) fair. Kahn's model
does not extend easily to non-deterministic networks, since the obvious gen-
eralization to continuous relations on histories is not compositional. Previous
attempts to model non-deterministic networks have sought to remain faith-
ful to Kahn's spirit by retaining some form of continuity assumption; these

approaches typically apply only to a limited class of network and do not
deal adequately with fairness. We argue that for non-deterministic networks
the assumption of continuity is not operationally justi�able, whereas fairness
is still vital. We provide a compositional model for fair non-deterministic
networks, based on trace sets which can be regarded as history relations

\extended in time" to allow for the possibility of interference during exe-

cution. For a deterministic network one can extract the Kahn-style history
function from the network's trace set, showing that our model is a natural
generalization of Kahn's.





1 Introduction

Kahn networks [Kah77, KM77] provide an abstract model of the interactive

behavior of systems of parallel asynchronous deterministic processes. A net-

work can be viewed as a graph whose nodes represent computing agents and

whose arcs represent communication channels. Each node performs some

deterministic sequential computation, consuming input and producing out-

put; channels are interpreted as unbounded bu�ers. Nodes are executed in

parallel, subject to the obvious constraints that a node attempting to input

from an empty channel must wait until the channel receives some input. The

assumption of determinism has an obvious advantage, since it permits the
use of an extremely simple and intuitive semantic model that abstracts away
from operational details concerning execution order.

Kahn gave an elegant mathematical model of network behavior based on
a simple semantic domain of streams or histories, which represent the actual
or potential tra�c along a communication channel. When V is the set of

data values appropriate for transmission along a channel, the corresponding
domain of histories is the set V 1 = V � [ V ! of �nite and in�nite sequences,
ordered by pre�x. Operational intuition then suggests that each node com-
putes a continuous function from the histories of its input channels to the
histories of its output channels. Kahn's rationale for assuming continuity is

based on the following intuitive remarks about the input-output behavior of
a node:

� Each output is \caused" by the consumption of a �nite amount of input.

� Availability of more input can only provoke more output.

� An in�nite output \occurs" only as the limit of its �nite pre�xes.

Of course an in�nite history should be regarded as \potential" rather than

having actually occurred, since at any stage in execution only a �nite amount

of data can have been communicated so far. For example, a \bu�er" process
carrying data from the set V , with a single input channel and a single output
channel, computes the identity function from V 1 to V 1. If supplied with

a longer and longer sequence of input the bu�er produces a correspondingly

longer and longer sequence of output; the potential availability of in�nite
input is transformed into the potential for in�nite output.
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Taken collectively, the nodes of a network compute a tuple of mutually re-

cursive continuous functions, with recursion re
ecting feedback cycles in the

network's communication graph. The Kahn Principle states that the opera-

tional behavior of the network corresponds to the input-output function ob-

tained as the least �xed point of the corresponding functional [Tar55, Sco82].

This gives rise to a powerful methodology for reasoning about deterministic

networks, using standard domain-theoretic �xed-point theorems.

Kahn's approach has several advantages. The programming notation used

for nodes and networks is appealingly straightforward. The graphical nota-

tion is very intuitive, and gives rise to a simple network \calculus" based on
a few natural graph-theoretic operations: juxtaposition (parallel composition

of disjoint networks), cascading (linking the outputs of one network with the
inputs of another), and feedback (feeding outputs from part of a network
back to serve as inputs for another part of the network). Kahn's functional
semantics for these network constructs is particularly simple: juxtaposition
amounts to forming the product of two input-output functions, cascading

amounts to composition of input-output functions, and feedback is handled
by introducing a recursively de�ned history.

Although Kahn did not explicitly describe an operational semantics for
networks, so that the validity of his Principle was not formally demonstrated,
he did provide informal justi�cation and a series of compelling examples. It
was shown later that Kahn's semantics is sound with respect to an operational

semantics based on \token-pushing" [Fau82].

Notation

For illustration we adopt a notation similar to Kahn's, combining a CSP-like

syntax for communication primitives with an Algol-like syntax for processes,

subject to a few syntactic constraints enforcing determinism1. In contrast

to CSP [Hoa78], communication is taken to be asynchronous: an output can
occur \autonomously", but an attempt to input from an empty channel will
block until data becomes available. As in Kahn's presentation, we use the

keyword process rather than procedure (as in Algol), and each kind of node

is speci�ed as a process de�nition parameterized over the node's input and

1No process is allowed to attempt input simultaneously on two channels; no pair of
nodes in a network is permitted to share an input channel or an output channel.
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output channel names. Consequently, for the purposes of this paper we need

only consider (the analogues of) �rst-order procedures. We also use local

variables where necessary to represent internal data maintained by a node.

For example the syntax local h in P describes a process P equipped with a

local variable h; the usual scoping conventions apply, so that for instance in

(local h in P )kQ

the process Q does not have access to the local variable.

Our notation is (usually implicitly) typed, with chan[� ] representing the
type of channels carrying messages of datatype � , and var[� ] representing
the type of variables of datatype � . Datatypes include int (integers), bool

(truth values) and unit (the unit type, with sole member ?). We let proc be
the type of \processes". Thus, for instance, a process de�nition with a single
integer input channel and a single integer output channel would be given the
procedure type chan[int]� chan[int]! proc.

An example

To demonstrate Kahn's methodology, consider a family of networks built
from \register", \duplicator", and \adder" nodes de�ned as follows:

process reg(i; o) =
local x in

(o!0; while true do (i?x; o!x));

process dup(h; o1; o2) =
local x in

while true do (h?x; o1!x; o2!x);

process add(i1; i2; o) =
local x; y in

while true do (i1?x; i2?y; o!(x+ y));

These nodes may be instantiated and linked to form a \sum" network, by

joining the output of an add node to the input of a dup node, joining the
second output of the dup node to the input of a reg node, and joining the

output of the reg node to the second input of the add node, as in Figure 1. The

joined channels then become \internal", so that the overall network produced
in this manner has a single input channel and a single output channel; this
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Figure 1: The sum network

is indicated in the Figure by the use of dotted lines for internal channels.

Using the programming notation the above network can be represented as:

process sum(in; out) =
local in0; on; out0 in

add(in; in0; on) k dup(on; out; out0) k reg(out0; in0)

Note the explicit localization of \internal" channels, and the use of parallel
composition. The type of sum is chan[int]� chan[int]! proc.

Kahn's graphical notation abstracts away from certain syntactic details
that become apparent when using the process language. For example, the

above network can also be constructed in stages, corresponding to the fol-

lowing three alternative process de�nitions:

process sum1 =

local out0; in0 in

(reg k local on in (add k dup));

process sum2 =
local on; out0 in

(dup k local in0 in (reg k add));

process sum3 =

local in0; on in

(add k local out0 in (dup k reg));
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Figure 2: The networks sum1, sum2, and sum3.

These alternative formulations represent what happens when the order of
composition is chosen in the three obvious ways. For example in sum1 we
�rst \cascade" add onto dup, identifying the output channel of add with the
input channel of dup; then cascade the second output of dup onto reg; then

feed the output of the reg node back in as the second input to add. These
three alternatives are displayed in Figure 2, using dashed lines to indicate sub-
network structure. Obviously these four networks ought to be behaviorally
equivalent, and any reasonable semantic model should make this clear.

Following Kahn's approach, the functional behavior of the nodes is de-

scribed as follows, using the standard list-manipulation primitives. For each

node we specify a continuous function from input histories to output histo-
ries.

The equation de�ning the behavior of the add node is:

Fadd (in; in
0) = if in = � _ in0 = � then � else

(hd(in) + hd(in0)) ::Fadd(tl(in); tl(in
0))

Here in and in 0 range over V 1

int , and :: is the usual in�x \cons" operator. This

equation thus re
ects the intuition that an add node waits for its two input
channels to produce an integer, whereupon it consumes them, outputs their

sum, and recurses. Actually this function de�nition is itself recursive, but it
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is easy to see that the least �xed point of the corresponding functional is the

intended function Fadd ; representing the correct operational behavior.

The equations for dup and reg nodes are simpler: dup merely copies its

input onto both of its output channels, so we will use the same equation for

both output channels; reg outputs an initial zero and thereafter copies input

to output. Letting on and out 0 range over the domain of integer histories,

we therefore have:
Fdup(on) = on

Freg(out
0) = 0 :: out0

Next we examine the network for sum, taking into account the channel
linkages between nodes, leading to the following \network equations":

on = Fadd(in; in
0)

out = Fdup(on)
out0 = Fdup(on)
in0 = Freg(out

0)

By substitution and algebraic manipulation we can then extract the following
recursive formulation for out as a function of in:

out = if in = � then � else hd(in) ::Fadd(tl(in); out)

Kahn's semantics thus predicts that for a particular input history in, the
output produced on channel out is the least �xed point of the continuous

functional

G(in) = �out: if in = � then � else hd(in) ::Fadd (tl(in); out)

It can then be shown, by analyzing the least �xed point of this function for

�xed values of in, that when in is a �nite sequence [v1; : : : vn] the output is
the sequence [v1; (v1+v2); : : : ; (v1+ � � �+vn)] of \pre�x sums", and when in is
in�nite the output is the corresponding in�nite sequence of pre�x sums2. In

particular, when in is empty so is out. Note that the causality relationship

2The proof for �nite input is by induction on the length of in, using the fact that the
least �xed point of G(in) is the limit of the sequence built by iterating the application of
G(in) to the empty history. The case when in is in�nite then follows by continuity.
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between inputs and outputs is accurately represented by this simple func-

tional description, in that the length of the output is always equal to the

length of the input { each input triggers the availability of the next output3.

The three alternative decompositions of the sum network each give rise to

slightly di�erent sets of functional equations, but in each case the equation

de�ning out has the same least �xed point. This property relies on some

elementary �xed point theory, in particular using Bekic's Theorem on the

replacement of a simultaneous mutually recursive de�nition by a nested se-

quence of single recursions, so that one can \solve" the network equations in

any order. This property, although seemingly obvious at an intuitive level,
is actually important in justifying Kahn's use of graphical notation: even

though the notation is syntactically ambiguous, the same graph represent-
ing many alternative \concrete" networks di�ering in the order in which the
nodes are combined, the notation is semantically unambiguous.

As the above example shows, Kahn's semantics can be used to prove non-
trivial properties of networks. In particular, although the semantics describes

only complete (potential) histories, it still supports analysis of many safety

and liveness properties. For example, it follows from the above analysis that
the sum network satis�es the safety property that the output forms a non-
decreasing sequence of integers, and the liveness property that if the input is
in�nite then so is the output.

Operational considerations

Kahn's Principle can be interpreted as stating that the least �xed point
characterization of network behavior is operationally justi�ed, in that the
input-output behavior predicted by the �xed-point construction is an accu-

rate abstraction from operational behavior. Of course the reason why such an

abstraction is desirable is obvious: to avoid having to reason about details of
scheduling and timing that are beyond the programmer's control and would

anyway complicate matters excessively. Although Kahn did not formally
specify an operational semantics for networks it seems to have been gener-

3Actually the use of the word \always" is slightly misleading, since the functional
description only characterizes the \�nal" output history that will be produced eventually

when the network is supplied with a given input sequence. At various stages during
execution the length of the output produced so far might lag behind the number of input
items consumed so far, but the input-output history function is insensitive to such details.
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ally accepted as almost obvious that Kahn's intuitions were sound. Indeed

it has been shown that Kahn's model is consistent with a form of \token-

pushing" operational semantics [Fau82], and for non-deterministic networks

various models have been suggested and connections have been established

with operational semantics based on I/O automata [Sta89, LS89].

Kahn tacitly assumed the existence of an operational semantics based on

a weakly fair execution [Par79], so that every node that has not yet termi-

nated will eventually be given a chance to run4. Any reasonable scheduling

strategy, such as round-robin, has this property; assuming fairness thus al-

lows us to abstract away from the details of any particular scheduler and
this weak form of fairness is a valid abstraction from \realistic" network

implementation. The soundness of Kahn's model relies on the fact that the
input-output function of a deterministic network is independent of scheduling
details, provided fairness is assumed. It can be shown that Kahn's semantics
of deterministic networks is consistent with a standard operational semantics
of networks, in which parallel composition is interpreted as fair interleaving.

(See Appendix A for the relevant transition rules.)
Without this fairness assumption the Kahn Principle ceases to be valid,

since it becomes impossible to justify the use of continuous functions to repre-
sent the abstract behavior of networks. For example, consider the pre�x-sum
network discussed earlier. If implemented unfairly, by a scheduler which �x-
ates on the duplicator node, no output will ever get produced, contradicting

the predicted functional behavior. If we abstract over all possible schedulers,
including unfair ones, the best we can say about this network is that it com-
putes a relation on histories, since more than one output history is possible
for a given input history.

2 Limitations of Kahn's model

We next identify three major limitations: Kahn's model is too abstract for
many purposes, lacking discriminatory power in many cases where there is

a good operational reason to distinguish between processes; Kahn's model

4Kahn commented that \a parallel program can be safely simulated on a sequential
machine, provided the scheduling algorithm is fair enough, i.e. it eventually attributes
some more computing time to a process which wants it". He also remarked that if the
scheduler is unfair the programmight produce \less output than what could be expected".
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applies only to deterministic systems; and the semantics lacks homogeneity.

Too abstract

Kahn's semantics ignores many potentially signi�cant attributes of a net-

work's behavior, by focussing entirely on the relationship between complete

input histories and complete output histories. To illustrate this consider the

following \bu�er" processes:

process bu�(i; o) = local x in while true do (i?x; o!x);
process bu�s(i; o) = local h in (bu�(i; h) k bu�(h; o))

The one-place bu�er node bu� (i; o) clearly operates by repeatedly absorbing
a single input datum and then outputting it, whereas the network bu�s(i; o)

obtained by linking two such nodes in a chain, connected by a local channel,
behaves like an unbounded �nite bu�er capable of absorbing an arbitrary
number of inputs before outputting. Yet both compute the same input-
output function, the identity function on V 1. The point here is that Kahn's
semantics is too abstract to support reasoning about the stimulus-response

attributes of a process. Although the one-place bu�er node cannot absorb a
second input item before it has emitted the �rst this property is not re
ected
in the node's input-output function. By identifying these two processes as se-
mantically equivalent the model is incapable of distinguishing between them
in any context, despite their operationally distinct characteristics.

Determinism

Kahn's model is applicable only to deterministic networks. To ensure deter-
minism Kahn imposed certain syntactic constraints, notably:

� at any given time, each node is either computing, or waiting for input

on one of its input channels;

� each node is sequential.

Consequently, no node can ever be waiting for data to arrive on more than

one input channel. For similar reasons nodes are not permitted to share
output channels. These constraints were enforced syntactically, for instance
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by restricting the use of input and output inside nodes and forbidding parallel

composition inside a node.

As Kahn realized, non-deterministic networks arise naturally in practice.

For example, if we allow the sharing of an output channel it becomes possible

to design a non-deterministic \merge" network capable of merging two input

channels into a single output channel:

process merge(left; right; out) =

local x; y in

while true do (left?x; out!x)
kwhile true do (right?y; out!y)

Similarly, if we allow sharing of input channels one can design a \spraying"
network that splits the input from one channel onto two output channels:

process spray(in; left; right) =
local x in

while true do (in?x; left!x)
kwhile true do (in?x; right!x)

And if we allow a node to use a channel for both input and output it becomes
possible to specify a bi-directional pipeline network5:

process pipe(a; b) =
local x; y in

while true do (a?xkb?y; a!ykb!x)

Moreover, the pre�x-sum network discussed earlier can easily be recast as a
non-deterministic network, replacing the addition and duplication nodes by

the following non-deterministic variants:

process dup0(h; o1; o2) =

local x in

while true do (h?x; (o1!x k o2!x));
process add 0(i1; i2; o) =

local x; y in

while true do ((i1?x k i2?y); o!(x+ y));

5Of course in this example it no longer makes sense to characterize each stream as
being either an input stream or an output stream.
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We then obtain the non-deterministic network

process sum0(in; out) =

local in0; on; out0 in

add 0(in; in0; on) k dup0(on; out; out0) k reg(out0; in0)

This network violates Kahn's syntactic restrictions, since the add 0 node waits

on two input channels simultaneously, and both add 0 and dup0 nodes involve

parallel composition. Yet it is intuitively obvious that the network still be-

haves deterministically, computing the same input-output function as before.

Of course this cannot be shown within Kahn's functional framework. This
provides a simple example in which a network built from non-deterministic
components may still exhibit deterministic behavior.

It would be useful to extend Kahn's ideas to incorporate non-deterministic

systems, but clearly continuous input-output functions no longer su�ce. The
actual behavior of a non-deterministic network may depend on scheduling
details, in that the output produced from a given input stream may depend
on the order in which individual nodes get executed, and such a network
cannot properly be viewed as computing a function from input streams to

output streams. Given the desire to abstract away from scheduling details,
it makes sense instead to view each of these nodes as computing a relation

on histories. For example, assuming a fair scheduler, the merge node should
be regarded as computing the fairmerge relation [Par79], i.e. the set of all
triples (�; �; 
) over V 1 such that 
 is an interleaving of all of � with all of
�. Unfortunately the obvious relational generalization of Kahn's model lacks

compositionality, as we will discuss later [BA81]. We mention this here simply
to point out that Kahn's limitation to deterministic systems is inherent in
his approach and cannot easily be overcome with a minor modi�cation.

Lack of homogeneity

Kahn's semantics treats nodes and networks in disparate ways [Kah77]. Each
node determines a 
owchart, from which its input-output function is ex-

tracted, and the input-output behavior of a network is then obtained by

forming a mutually recursive family of functional equations and taking the
least �xed point. This is a two-stage construction: �rst consider the indi-
vidual nodes (in an essentially operational manner), then analyze the entire

network (in a denotational manner). The separation into phases follows the
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same pattern as the syntactic constraints built into Kahn's framework: nodes

execute sequential programs for which 
owcharts can be used, whereas net-

works involve parallelism and do not correspond to 
owcharts.

Perhaps it is less clear why one cannot simply treat nodes and networks

on a more equable basis, by giving a denotational (compositional) description

of the input-output semantics of the sequential programming language used

\inside" nodes. It turns out that this is impossible, because the input-output

semantics of a sequential composition N1;N2 cannot be deduced from the

input-output semantics of N1 and N2. A simple example shows this: the

input-output functions of i?x and skip coincide (both equalling �� 2 V 1:�),
but the input-output functions of i?x; o!0 and skip; o!0 di�er (only the latter

maps the empty input sequence to [0]).
This lack of homogeneity is aesthetically unattractive, since it would be

more natural to treat nodes and networks on exactly the same semantic
footing, and this is required in order to perform hierarchical network analysis.
Indeed, for this very reason Kahn suggested that it is sometimes desirable to

treat a subnetwork as a single node. However, taken literally and exploited
in full generality this is inconsistent with the constraints imposed to ensure
determinism: a subnetwork built from deterministic nodes may fail to satisfy
the determinism constraints. For example, consider the network obtained by
juxtaposing two disjoint one-place bu�ers:

bu�(i1; o1) k bu�(i2; o2);

where we assume for simplicity that each channel has the same type chan[� ].

Each bu�er node by itself is deterministic, and the network built this way
is perfectly well-behaved, computing the identity function on V 1

� � V 1

� .

However, this network obviously waits for input on two channels, because of

the use of parallel composition. When viewed as a single node it therefore
violates the original intention that nodes be sequential and that nodes wait
on at most one channel at a time.

Rather than dismiss these issues as minor quibbles we feel that they

indicate that lack of homogeneity is a serious methodological problem.
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3 Generalizing Kahn

As we indicated above, a non-deterministic network can be regarded as com-

puting an input-output relation. However, it is well known that Kahn's Prin-

ciple does not immediately generalize to the relational setting in the obvi-

ous way, because the input-output relation of a non-deterministic network

cannot be de�ned compositionally. We summarize brie
y the classic Brock-

Ackerman anomaly that demonstrates the problem [BA81].

The Brock-Ackerman anomaly

Let us write str[[N ]] for the history relation computed by networkN . Consider
the following pair of nodes, with input channel i and output channel o:

process P1(i; o) = local x; y in (i?x; o!x; i?y; o!y)
process P2(i; o) = local x; y in (i?x; i?y; o!x; o!y)

Clearly these nodes compute di�erent relations, because P1 needs only a
single input datum to trigger its �rst output but P2 needs two inputs. Thus

str[[P1]] 6= str[[P2]]:

Now consider the following context S[�], with a \hole" into which we may
plug P1 or P2:

S[�] = local on; on0; i in

double(in; on) k double(in0; on0) kmerge(on; on0; i) k [�]

where merge is the merge process de�ned earlier and double is given by:

process double(in; on) = local z in (in?z; on!z; on!z)

The networks formed by substituting P1 and P2 into this context are shown

in Figure 3. Neither of the networks S[P1] or S[P2] produces any output

unless it receives input. If one or more input items are available on either
input channel the double nodes ensure that the internal Pk node receives at
least two inputs, thus masking the di�erence between P1 and P2, so that

str[[S[P1]]] = str[[S[P2]]]:
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Now consider the following context:

T [�] = local o; in0; out0 in

spread(o; out; out0) k plus1(out0; in0) k [�]

where the nodes spread and plus1 are given by

process spread(o; out; out0) = local z in

while true do (o?z; out!z; out0!z)

process plus1(out0; in0) = local z in

while true do (out0?z; in0!(z + 1))

Plugging in S[P1] or S[P2] into this context produces networks T [S[P1]] and
T [S[P2]], also shown in Figure 3. These networks have di�erent input-output
behavior, i.e.

str[[T [S[P1]]]] 6= str[[T [S[P2]]]]:

For instance, suppose the network T [S[P1]] is supplied with a single input
value 5 on channel in. This value will pass through the �rst double node, then
through merge, through P1 and through spread to become the �rst output
on channel out. The spread node will also send a 5 to plus1, causing a 6 to

appear on in0, and the second double node can thus pass a 6 on to the merge

node. The merge node now has a choice of consuming either the second 5 or
this 6. Consequently the network can output a 5 followed either by a 5 or
a 6. However, if T [S[P2]] is supplied with a single input value 5 its P2 node
cannot produce output until it has received a second input; thus eventually
(by fairness) the merge node must consume both of the 5's produced by the

�rst double node, and the only possible output of the network begins with 5

followed by 5.
Thus we have two networks with the same history relation but which in-

duce di�erent history relations when used as components in a larger network.

The conclusion is that the input-output relation of a non-deterministic net-

work cannot be computed compositionally from the input-output relations of
its components. Note also that this failure of compositionality cannot be side-

stepped by banishing or limiting the use of the relevant program construct:
the problem occurs with the fundamental network primitives (juxtaposition,

feedback and cascading).
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Figure 3: The networks S[Pk] and T [S[Pk]] (for k = 1; 2)

This anomaly led to the search for an appropriate compositional seman-

tics generalizing Kahn's model to incorporate non-determinism. A variety
of models has been proposed, including hiatons [Fau82], scenarios [BA81],
I/O automata [Sta89, RT89], and sets of continuous functions [Abr90]. Vari-
ous trace-theoretic models have also been proposed, including [KP84, Kok87,
Jon89, Rus90]. Although each of these models attempted to stay faithful to
Kahn's spirit, typically retaining some form of continuity assumption, none is

as simple and elegant as Kahn's original model. Moreover these approaches
have achieved only limited success, usually being incapable of properly mod-
elling fairness. Rather than reviewing the details of these previous models
we will re-examine the operational rationale behind Kahn's original model

and show that in the non-deterministic setting the rationale ceases to be

justi�able.

Is continuity a fair assumption?

We argued above, echoing Kahn, that it is operationally reasonable to model

the behavior of a deterministic node as a continuous function from input

streams to output streams. A key point in rationalizing the decision to as-
sume continuity was that a deterministic process capable of generating an
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in�nite output sequence must in fact generate successively longer �nite pre-

�xes of its output from successively longer pre�xes of its input. If we imagine

running the process repeatedly from the start, each time supplying a longer

portion of the input sequence, we would expect to observe a correspondingly

longer portion of the output, since the node is deterministic and therefore

executing the same code in each run. In the limit, if an in�nite supply of

input is available the node would eventually produce the entire in�nite out-

put. However, if the process is non-deterministic this argument ceases to be

valid, since there is no longer any guarantee that the process behaves the

same way in di�erent runs when supplied with the same (or longer) input
sequence. Thus the rationale for assuming continuity is no longer justi�ed in

the non-deterministic setting.
Another example helps to make this point. Consider the following three

kinds of bu�er-like node, assuming that each channel has type chan[int]:

process bu�(i; o) = local x in

while true do (i?x; o!x)

process bu� 0(i; o) = local x in

while true do (skip or (i?x; o!x))

process bu�
�
(i; o) = local x; n in

n:=?; for i:=1 to n do (i?x; o!x)

Here n:=? is assumed to be a random assignment setting n to an arbitrary

non-negative integer. Intuitively bu� { as discussed earlier { is a conventional

one-place bu�er, and is obviously deterministic; bu� 0 is a non-deterministic
node that keeps making a choice either to behave like a bu�er for one step
or to \skip"; and bu�

�
chooses an arbitrary �nite bound on the number

of times it will behave like a bu�er, after which it stops inputting. Non-

determinism in these latter two cases means that the node has more than
one possible execution, and for a given input history the output depends on

which execution occurs. For bu� 0 it is clear that the output will always be
a pre�x of the input, and that for each input sequence there is an execution

that faithfully outputs all of the input, even if the input is in�nite. For bu�
�

again the output is a pre�x of the available input, but only a �nite sequence
of output will be produced. The stream relations computed by these nodes
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are, correspondingly:

str[[bu�(i; o)]] = f(�; �) j � 2 V 1g

str[[bu� 0(i; o)]] = f(�; �) j � � � & �; � 2 V 1g

str[[bu�
�
(i; o)]] = f(�; �) j � � � & � 2 V 1 & � 2 V �g:

We write � � � to indicate that � is a pre�x of �.

The important point to note here is that in the third case the relation

is not continuous, since the presence of the input-output pair (0k; 0k) for

all k � 0 does not imply the presence of (0!; 0!). Indeed, there is no op-
erational justi�cation for forcing the input-output relation of bu�

�
(i; o) to

contain (0!; 0!), because each of the \approximations" (0k; 0k) represents a
behavior observed along a di�erent computation, and no single computation
exists along which, if in�nitely many 0's were available as input, in�nitely
many outputs would also occur. Contrast this with bu� 0(i; o), which does

have a computation involving in�nite input and output, since it is possible
for the node to keep choosing the \active" branch. If we chose to enforce
continuity, thereby equating bu�

�
with bu� 0, we would be forced to ignore

the fact that these two nodes are not operationally equivalent.

4 A model for fair networks

We have already mentioned the fundamental role played by fairness in the
operational underpinnings of Kahn's semantics. For non-deterministic net-
works fairness is, of course, still fundamental, again providing us with a way
to abstract away from irrelevant scheduling details. We propose a model

of fair networks, in which nodes are (possibly non-deterministic) comput-

ing agents, communicating asynchronously on bu�ered channels, executing

fairly. We allow full use of sequential and parallel composition, both at the
node level and at the network level. We allow sharing of input- or output-

channels, and we even allow channels to be used in a bi-directional manner.
We treat nodes and networks homogeneously, so that from now on we will

only use the neutral term \process".
Our model is an adaptation of transition traces [Bro93] to incorporate

asynchronous communication, along lines sketched in [Bro97]. Each process

denotes a trace set, amounting intuitively to an \input-output relation ex-
tended in time"; we do not impose any continuity constraint. The trace
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set of an entire network is obtained by fair parallel composition of the trace

sets of its nodes. We provide a �xed-point characterization of fair parallel

composition, thus making good on our claim that we maintain the spirit of

Kahn's Principle. The trace set of a recursively de�ned network is also char-

acterized as a �xed-point. Our semantics is operationally justi�ed in that the

traces of a network correspond precisely to fair executions of the network, as

prescribed by a standard operational semantics outlined in Appendix A.

Our approach is compositional: in particular, sequential composition

amounts to concatenation of trace sets, and we no longer need to treat nodes

and networks separately. Trace semantics is useful for safety and liveness
analysis, as well as general analysis of the stimulus-response behavior of net-

works. Fairness is often a vital assumption in liveness arguments, and our
model is well suited for this purpose. Because our semantics is homogeneous
we support hierarchical analysis. We can also handle dynamic networks, in
which the number of active processes changes as the network evolves.

Moreover, for networks in which each channel is used unambiguously by

each node either for input or for output we can extract an input-output rela-

tion from the network's trace set. In the case of a deterministic network this
coincides with the graph of the input-output function predicted by Kahn's
semantics, so that we do indeed obtain a true generalization of Kahn's se-
mantics.

We provide here only a sketch of the main semantic ideas and de�nitions.

For fuller details the reader should consult [Bro93, Bro96, Bro97]. Even
without detailed analysis of the semantic de�nitions it should be possible to
understand the general concepts and see how our semantics works out when
applied to the examples under discussion.

States

A key feature in our framework is the way we model state. A state of a
network is a tuple w = (�v; ��) giving the values of all non-local variables used
in the network and the current contents of channels. We assume that each

variable and channel is typed, and we let V� be the set of data values of

type � . Since channels are modelled as unbounded queues the contents of
a channel of type chan[� ] will belong to the set V �

� of �nite sequences. A

typical state set is thus a cartesian product of form W = (V1 � � � �Vm) �
(V �

m+1 � � � � V �

n ). Our semantic de�nitions are parameterized in terms of the
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choice of current state set. This permits smooth handling of local variable

declarations [Rey81, Ole82]. For each type � (such as proc, var[� ], and

chan[� ]) and each state set W we de�ne a set of meanings of type � \over"

W .

Variables and channels

A variable of type � can be modelled as an acceptor, a function acc of type

V� ! (W ! W ) describing the e�ect of assignment to the variable, together

with an expression value, i.e. a function val of type W ! V� describing the
(state-dependent) current value of the variable. This is exactly as in the

Reynolds/Oles semantics of Idealized Algol [Rey81, Ole82].
Similarly a channel can be modelled as a put operation, i.e. a function

of type V� ! (W ! W ) describing the e�ect of \sending" to the channel,
together with a get operation, a function of type W ! (V� �W )option de-
scribing the e�ect of \receiving" from the channel. We use the mathematical

analog here of the ML \option" type constructor; thus for any state w at-
tempting a get will either produce some(v;w0) or none. In the former case
v is the \next" remaining item in the channel's queue, and w0 is the state
produced by removal of that item. The none case occurs when the channel
queue is empty.

For example, over state set W � V � the channel corresponding to the
second component is represented by the pair (put ; get) with the functions

put : V ! W � V � !W � V �

get : W � V � ! (V � (W � V �))option

given by
put(v)(w; �) = (w; �v)

get (w; �) = none

get (w; v�) = some(v; (w; �))

for all � 2 V �, w 2 W , and v 2 V . A \put" appends the new item at the end
of the current queue and a \get" removes the �rst item of the current queue.

Note that we use the notation �v or v� as appropriate.
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Processes

A trace of a process is a �nite or in�nite sequence of state changes

hw0; w
0

0ihw1; w
0

1i : : : hwn; w
0

ni : : :

representing a fair interactive computation; each step hwi; w
0

ii models a �nite

sequence of atomic actions executed by the process, and each \external"

change from w0i to wi+1 represents a state change caused by the process's

\environment". With our view of state and channels, communication causes

a state change. We model an attempt to input from an empty channel as a
\busy wait", i.e. an in�nite trace consisting entirely of stuttering steps.

A process denotes a trace set, intuitively a total relation on states, ex-
tended in time to allow for the potential for interference. Such a trace set

speci�es a complete recipe for predicting all possible fair interactive compu-
tations of a process. Trace sets are closed under stuttering and mumbling,
so that for instance

�� 2 t & w 2 W ) �hw;wi� 2 t stuttering

�hw;w0ihw0; w00i� 2 t ) �hw;w00i� 2 t mumbling

We write T y for the closure of T , de�ned as the smallest closed set of traces
containing T as a subset6.

Closed trace sets form a domain, ordered by reverse inclusion. This or-
dering can be regarded as a measure of non-determinism: the least element
is the set of all traces, corresponding to the most non-deterministic process
of all.

Although traces themselves { as a form of sequence { form a domain

under the pre�x ordering, our domain of closed trace sets is not constructed

as a powerdomain [Smy78] over a domain of traces. The use of powerdomains
would cause di�culties with the incorporation of fairness and in any case a
simpler model serves our purposes.

Note also that we do not assume that the trace sets denoted by processes

are pre�x-closed or closed under limit, in contrast to most traditional semantic

models of CSP-like languages [Ros98]. This is because we use a trace to

represent an entire computation: incomplete or partial traces do not occur

6The closure conditions speci�ed above generalize in the obvious way to allow stuttering
and mumbling at in�nitely many positions in an in�nite trace.
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in our trace sets. Enforcing closure under limit, so that an in�nite trace

is deemed to be present if each of its �nite-length approximants is present,

would cause di�culty with fairness. By working with \complete" traces we

are able to avoid this problem.

Environments

An environment over state set W is a �nite mapping from identi�ers to

variables over W , and channel identi�ers to channels over W ; each variable

and channel corresponds to a component of the state. For the most part in
this presentation we will suppress details of binding and scope, since the ideas

can be conveyed more simply by factoring out these book-keeping details
when we discuss speci�c examples.

Semantic de�nitions

We now de�ne the trace semantics of processes. For simplicitywe assume that
expressions (such as x + y) are evaluated atomically, cause no side-e�ects,
and always terminate. It would be straightforward to adapt the semantic
de�nitions to allow for fully general expression evaluation, as in [Bro93].

Whenever P is a process, W is a set of states, and u is an environment

mapping the free identi�ers of P into variables and channels over W , the
trace set

traces[[P ]]Wu

is de�ned as follows, by structural induction on P . In each case it is to be

understood that the trace set being de�ned also includes all traces obtained
by stuttering and mumbling from traces mentioned explicitly. In cases where

W and u can be assumed known we may refer simply to traces[[P ]].

� The process skip has traces of form hw0; w0i : : : hwk; wki; i.e. �nite
stuttering, re
ecting termination without changing the state, regardless

of interruption. These traces are obtainable from singleton stuttering

traces by closure, so that traces[[skip]]Wu = fhw;wi j w 2 Wgy.

� If h denotes the channel (put ; get ) and x denotes the variable (acc; val),
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the input command h?x has traces of form

hw; acc(v)w0i where get (w) = some(v;w0)

hw0; w0i : : : hwk; wki : : : where 8k � 0: get(wk) = none

� When h denotes the channel (put ; get) the output command h!v has

traces of form hw; put(v)wi.

� Sequential composition corresponds to concatenation of traces:

traces[[P1;P2]]Wu = f�1�2 j �1 2 traces[[P1]]Wu & �2 2 traces[[P2]]Wugy

� Parallel composition corresponds to fair merging of traces

traces[[P1kP2]]Wu = f
 j 9� 2 traces[[P1]]Wu; � 2 traces[[P2]]Wu:

(�; �; 
) 2 fairmergeW�W g
y;

where for each set A the relation fairmergeA 2 P(A1 � A1 � A1) is
given by

fairmergeA = both� � one [ both!

where
both = f(�; �; ��); (�; �; ��) j �; � 2 A+g

one = f(�; �; �); (�; �; �) j �; � 2 A1g

Here we have used the obvious generalizations of concatenation and
�nite and in�nite iteration to triples of traces, and to sets of triples.

A+ is the set of non-empty �nite sequences over A. Thus in particular
every triple (�; �; 
) 2 fairmergeA for which both � and � are in�nite

can be decomposed into the form

� = �1�2 : : :

� = �1�2 : : :


 = �1�1�2�2 : : :

or its symmetric variant 
 = �1�1�2�2 : : :, each �i and �i being non-
empty �nite sequences. The case where one or more of � and � is �nite

has a similar decomposition. This formal speci�cation of fairmerge

clearly corresponds precisely to the fair merge operation mentioned

earlier in the merge example.

22



The fairmerge relation can also be characterized as the least �xed point

of the functional

�R: both �R [ one;

whereR ranges over the lattice of relations overA1�A1�A1, ordered

by reverse inclusion. The least element of this lattice is the universal

relation, and the �xed point can be calculated as an intersection.

� The traces of

local h : chan[� ] in P

over state set W are obtained by projection onto W from the traces

of P over W � V �

� , in a suitably expanded environment, along which
the local channel is initially empty and its contents are never changed
across step boundaries. In the expanded environment h is bound to the
channel value (put; get) whose operations refer to the V �

� component of
the expanded state set W � V �

� .

This de�nition generalizes in an obvious manner to local h = � in P ,

in which the initial value assumed for the local channel is the given
sequence � 2 V �

� .

The semantics of local x : var[� ] in P is de�ned in a similar manner.

� For simplicity we assume that recursive process de�nitions are syntac-

tically guarded, in that each occurrence of the recursive process name is
preceded by a communication or some other atomic action7. For each
state set W such a recursive process de�nition determines a guarded
continuous function F on trace sets over W , and denotes the (closure
of the) least �xed point of this function. Recall that trace sets over W

form a domain under reverse set inclusion, with least element the set
of all traces (W �W )1. The �xed point can therefore be calculated
by forming the intersection of the sets F n((W �W )1) for n � 0.

7This constraint can be removed, allowing arbitrary recursive de�nitions, if we insert a
\semantic guard" in the form of an initial stuttering step. The mechanics of this approach
are explained in [Bro96]. Note that for technical reasons it is necessary to take the �xed
point of a functional over arbitrary trace sets, and then to form the closure. This guarantees
that a divergent process de�nition such as process div = skip; div is given the correct
denotation fhw;wi j w 2 Wg!, i.e. in�nite stuttering, rather than (W �W )!.
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For example, assume that the state set is V � � V � and that a and

b correspond to the �rst and second components respectively. The

recursive process de�nition

process B = local x in (a?x; b!x;B);

essentially the one-place bu�er example discussed earlier, determines

the guarded function

F (t) = (a?�)! [
[

v2V

a?v; b!v; t;

where we write

a?� = fh(�; �); (�; �)i j � 2 V �g

a?v = fh(v�; �); (�; �)i j �; � 2 V �g

b!v = fh(�; �); (�; �v)i j �; � 2 V �g:

The least �xed point of this function is, as expected by the intended

operational behavior, the trace set given by:

fa?v; b!v j v 2 V g! [ fa?v; b!v j v 2 V g�(a?�)!:

� For a conditional command we de�ne

traces[[ifB then P1 elseP2]] = [[B]]
true

; traces[[P1]] [ [[B]]
false

; traces[[P2]];

where [[B]]
true

= fh(w;w)i j w 2 W & [[B]]w = trueg. Here we write
[[B]] : W ! Vbool for the semantic function for boolean expressions,
which is assumed given. We use a similar convention for [[B]]

false
.

� The meaning of a while-loop involves iteration:

traces[[while B do P ]] = ([[B]]
true

; traces[[P ]])�; [[B]]
false

[ ([[B]]
true

; traces[[P ]])!:

Equivalently, this trace set is the closure of the least �xed point of the

functional
�T: [[B]]

true
; traces[[P ]];T [ [[B]]

false
:

For example, the traces of while true do skip are in�nite stuttering

sequences, i.e.

traces[[while true do skip]] = fh(w;w)i j w 2 Wg!:

Similarly, the traces of the one-place bu�er node bu� (speci�ed as a

while-loop) are as expected.
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5 Advantages of trace semantics

Our semantics is speci�cally designed to handle non-deterministic networks,

is compositional, and permits operationally justi�ed discrimination between

processes. Thus we avoid the problems inherent in Kahn's approach.

Compositionality

With the trace semantics the Brock-Ackerman anomaly does not cause a

problem: although P1 and P2 denoted the same input-output function they

do not have the same traces, so it is unsurprising that they also induce
di�erent trace semantics in context S[�] and also in context T [�]. Similarly
the problem with sequential composition goes away, since i?x and skip do
not have the same traces. In fact we are able (as above) to specify the traces
of N1;N2 in terms of the traces of N1 and the traces of N2.

Trace semantics is compositional, so that it can be used to support syntax-
directed reasoning about non-deterministic processes. In particular, our se-
mantics supports a hierarchical approach to network analysis and synthesis.
When analyzing a network built out of several sub-networks all one needs to
know or assume about a sub-network is its trace set. One can replace any
node or sub-network by another with the same traces, without a�ecting the

traces of the overall network.

Discriminative power

The variant forms of one-place bu�er discussed earlier have pairwise distinct

trace sets. Adapting the notation introduced above, we have (modulo clo-
sure):

traces[[bu� (i; o)]] = fi?v; o!v j v 2 V g! [ fi?v; o!v j v 2 V g�(i?�)!

traces[[bu� 0(i; o)]] = fi?v; o!v j v 2 V g! [ fi?v; o!v j v 2 V g�STUT!

traces[[bu�
�
(i; o)]] = fi?v; o!v j v 2 V g+ [ fi?v; o!v j v 2 V g�(i?�)!

where STUT = fh(�; �); (�; �)i j �; � 2 V �g.
For bu�s we need the obvious extension of the above notation to non-

empty �nite sequences of inputs and outputs, so that when � = [v1; : : : ; vn]

we write i?� for i?v1; : : : i?vn. The trace set of bu�s consists of all traces of
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the form
i?�1; o!�1; : : : i?�k; o!�k : : :

or i?�1; o!�1; : : : i?�n; o!�n; (i?�)
!

such that

� every input is eventually output, i.e.

8k:9m� k: �1 : : : �k � �1 : : : �m:

� every output was previously input, i.e.

8k: �1 : : : �k � �1 : : : �k:

Here the �k and �k range over all non-empty �nite sequences, k ranges over
the positive integers, and n ranges over the natural numbers.

In particular we are not forced (by any desire to impose continuity) to

equate any pair of these processes. For each pair there is a good operational
reason to avoid such identi�cation, and our semantics re
ects this well. These
bu�er examples show that the trace semantics permits distinctions to be
made between processes based on their stimulus-response behavior.

6 Laws of process equivalence

A signi�cant bene�t of Kahn's approach is that input-output functions are
easy to deal with; for instance, cascading corresponds to composition of

input-output functions. Moreover one can appeal to a battery of standard

�xed-point theorems (due to Scott, Bekic, Vuillemin and others) for help
in proving equivalences between networks and in proving correctness of a

network with respect to a speci�cation.

Trace sets are obviously more complex mathematically than input-output
functions or input-output relations. Nevertheless a trace set can be regarded

as an input-output relation \extended in time", in which state changes are
\strung along" in a sequence and the potential for interference is built in.

This description, albeit informal, expresses an intuition helpful when trying
to understand our semantics. Moreover, trace set speci�cations such as those

given for the bu�er processes can be very helpful.
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Rather than relying on the semantic de�nitions themselves directly in

reasoning about network behavior we prefer to list a number of useful laws

of program equivalence validated by our semantics. Each law, written as

an equation of form P1 = P2, should be interpreted as asserting that in all

worlds W and suitable environments u, the traces of P1 coincide with the

traces of P2.

Scope contraction

� local h in (PkQ) = (local h in P )kQ
if h does not occur free in Q.

This law is useful in establishing, for instance, that the summation network
sum and its three variants sum1, sum2, and sum3 are semantically equivalent.

Symmetry

� local h1 in local h2 in P = local h2 in local h1 in P

This equivalence justi�es our use of the abbreviation local h1; h2 in P .

Asynchrony

� local h in (h!e;P ) = P

if h does not occur free in P

� local h in (h?x;P ) = while true do skip

These two laws emphasize the asynchronous mode of communication: an

output just happens, but an input must wait. Note also that local variables

and local channels are not recorded in the overall traces. An operation such
as outputting to a local channel appears as a stuttering step to the overall
program, since it has no e�ect on the non-local part of the state, and is thus

absorbed by closure.
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Local input and output

� local h = v� in Pk(h?x;Q) = local h = � in Pk(x:=v;Q)

provided h? does not occur free in P .

� local h = � in Pk(h!v;Q) = local h = �v in PkQ

provided h! does not occur free in P .

These laws show that under certain circumstances we lose no generality in

assuming that a suitably enabled communication involving a local channel

occurs immediately, regardless of the enabledness of other activity.
Note also the following slight generalization of the obvious corollary:

� local h = � in Pk(h?x;Q)k(h!v;R) = local h = � in Pk(x:=v;Q)kR

provided h does not occur free in P and h? does not occur free in R.

Another special case shows that a local output and a local input done con-
currently is equivalent to a \distributed" assignment:

� local h in (h!vkh?x) = x:=v.

Global promotion

� local h = � in (h?x;P )k(Q1;Q2) = Q1; local h = � in (h?x;P )kQ2

if h does not occur free in Q1.

The soundness of this law relies crucially on fairness. It can be used to
simplify reasoning in cases where local channels are used to enforce synchro-
nization. The signi�cance of this law, and of its obvious generalization to the

case when there are several components waiting on local channels, is that it

allows one to \move to the front" (or \promote") an initial segment of code
performable by a parallel component, provided that code is \global" in that

it does not a�ect any local channel, and provided the \rest" of the parallel
composition is waiting on a local channel that is currently empty. This per-

mits reasoning to assume without loss of generality that the \visible" piece

of code happens �rst, even though operationally what really happens is that
the two parallel components are interleaved fairly. No generality is lost be-
cause the blocked component contributes only stuttering steps to the traces,

and these steps are absorbed by the closure rules.
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Cyclic synchronization

A common technique to enforce synchronization involves a cyclic communi-

cation pattern of requests and acknowledgements. The simplest case, for two

processes, corresponds to the following law:

local h1; h2 in = (P1kP2);

(P1; h1!?; h2??; Q1) local h1; h2 in (Q1kQ2)

k (P2; h2!?; h1??; Q2)

provided P1 and P2 do not use h1 or h2. Here we have assumed that the
two channels have type chan[unit] since the content of the message used for
synchronization is immaterial. More generally, when none of the Pi use any

of the hj,
local h0; : : : ; hn in

kni=0(Pi; hi!?; hi	1??; Qi)

is equivalent to (kni=1Pi); local h0; : : : ; hn in (kni=1Qi). Again these laws rely
on fairness.

A bu�er property

Recall the process bu� which behaves like a one-place bu�er. It satis�es
the following general law, which codi�es the sense in which when suitably
localized to prevent interaction with extraneous processes its e�ect is trivial.
This is an analogue in the non-deterministic setting of the fact that bu�

computes the identity relation on histories:

local h; h0 in (P k bu�(h; h0)) = local h0 in P [h0=h];

provided h? and h0! do not occur free in P . Here P [h0=h] denotes the process

obtained from P by replacing every output on h by output on h0. Note that

the law becomes invalid if we remove the enclosing local variable declara-
tion for h0, i.e. under the same assumptions about h,h0 and P the process
local h in (P k bu�(h; h0)) is not generally equivalent to P [h0=h].
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7 Reasoning about networks

We now return again to the pre�x-summation network. The fact that the

three di�erent decompositions of the network (sum1, sum2, and sum3) have

the same semantics, and that this coincides with the trace set of the \
at"

version (sum), falls out immediately from the scope contraction law and

symmetry, together with the obvious laws of associativity and commutativity

for parallel composition. For example,

sum1 = local out0; in0 in (reg k local on in (add k dup))
= local out0; in0 in local on in (reg k (add k dup))
= local out0; in0; on in (reg k (add k dup))
= local out0; in0; on in (add k reg k dup)

= sum

The �rst step in the above proof, using scope contraction, relies on the fact
that reg does not use the channel on.

To prove the correctness of the sum network we �rst need to specify what
correctness should mean. Although the most obvious speci�cation might be
that the network should be capable of inputting a sequence of integers and
outputting their sum, this description is insu�ciently precise to characterize
the network's behavior accurately. In fact the network is capable of inputting
two integers before emitting the �rst pre�x sum, and this pattern recurs

persistently. Instead we use the following speci�cation:

sum =
S
v2Vint

in?v;SUM(v) [ (in?�)!

SUM(v) =
S
v02Vint

(in?v0 k out!v);SUM(v + v0) [ out!v; (in?�)!

Note that the speci�cation implies that each input triggers the availability of

the next output. Moreover if at any stage the input gets blocked any pending

output will eventually get emitted.
The proof that sum has the trace set speci�ed here is straightforward,

using the laws of the previous section. Of particular relevance are the laws
for local input, local output, global promotion, cyclic synchronization, and

the bu�er property. In fact there are several di�erent proofs possible, essen-

tially corresponding to the di�erent ways in which we might decompose the
network into sub-networks, as in sum1, sum2 and sum3. Again this mirrors

the situation with Kahn's treatment for the same network.
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process �lter(p; a; b) =

local x in

while true do

(a?x; if x mod p 6= 0 then b!x);

process sift(a; out) =

local b; p in

begin

a?p; out!p;
�lter(p; a; b) k sift(b; out)

end;

process nats(k; a) = a!k;nats(k + 1; a);

process primes(out) =

local a in (nats(2; a) k sift(a; out))

Figure 4: The primes network

It is also easy to show (with only a minor alteration to the proof for sum)
that the non-deterministic network sum0 has exactly the same traces and

therefore satis�es the same speci�cation. The non-determinism here occurs
\invisibly", since it only a�ects local activity. Similarly it makes no di�erence
if we reverse the order in which the add node waits for its two input channels,
or even if we allow it to wait in parallel. In all of these cases the proof is

straightforward.

As an example of dynamic networks, Figure 4 lists the nodes of a network
based on the Sieve of Eratosthenes, as discussed in Kahn's paper. Intuitively,

primes(out) is a dynamically evolving network whose structure at any time
is a chain of �lter nodes connecting a nats node to a sift node. It produces,

on channel out, the in�nite ascending sequence of prime numbers. The cor-

rectness of this network can also be proved in a straightforward manner.
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8 Recovering Kahn

The trace semantics given above makes sense for non-deterministic networks

as well as for deterministic ones. We now show that the trace set of a deter-

ministic network is a natural generalization of its Kahn-style history function,

in the sense that the history function can be extracted directly from the trace

set by focussing on traces of a special format.

Given a network in which all free channels are unidirectional, we can

extract an input-output history relation from the traces of the network as

follows. Suppose for simplicity that the network has states of the form (�; �),

where � 2 I = I�1 � � � � � I�k represents the input channels and � 2 O =
O�

1 � � � � �O�

n represents the output channels. Let T be a trace set over the
corresponding state set I �O. Let I1 stand for I11 � � � �� I1k and similarly
for O1. The relation rel(T ) � I1 �O1 is de�ned to be

rel(T ) = f(�; �) j � = h�ni; � = h�ni &
h(�0; �); (�0; �0)i
h(�0�1; �); (�1; �1)i
: : : : : : : : : : : :

h(�n�1�n; �); (�n; �n)i

: : : : : : : : : : : : 2 Tg

Note that by convention we write �! = �, so that the same format can serve
both for �nite and in�nite histories.

Intuitively, input history � is related by rel(T ) to output history � when
there is a \decomposition" h�ni, expressing � as a sequence of �nite chunks,
and a corresponding decomposition of � into h�ni, such that when the input

chunks are supplied \successively" the corresponding output chunks are pro-
duced. We may refer to a trace of the above format as a justifying trace for

(�; �). Given the above assumptions on channel usage, the trace structure
implies that �0 is a su�x of �0, �1 is a su�x of �0�1, and so on.

In fact it is easy to see that input and output are \oblivious" in the sense
that the potential for input or output to occur does not go away if channels

are primed with \extra" data in the following sense:

� A process has a trace of form �h(v�; �); (�; �0)i� if and only if it has
the trace �h(v��; �); (��; �0)i�, for all � 2 I.
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� A process has a trace of form �h(�; �); (�0; �v)i� if and only if it has

the trace �h(�; �); (�0; v)i�.

As a consequence, we can give the following alternative (but equivalent)

formulation of rel(T ), which is sometimes easier to work with:

rel(T ) = f(�; �) j � = h�ni; � = h�ni &

h(�0; �); (�0; �0)i

h(�0�1; �0); (�1; �0�1)i

: : : : : : : : : : : :

h(�n�1�n; �0 : : : �n�1); (�n; �0 : : : �n)i

: : : : : : : : : : : : 2 Tg:

Another important feature of rel(T ) is the following Decomposition Property:
the presence of a particular input-output history pair (�; �) in rel(T ) can be
shown by choosing any decomposition of � and �nding a corresponding de-
composition for �; the trace set is guaranteed to contain a suitably structured
trace of the format required to establish that (�; �) 2 rel(T ).

The de�nition of trace-based history relation makes sense for any network,
deterministic or non-deterministic, provided the network uses each channel
unequivocally either for input or for output. To illustrate, we return again
to the bu�er processes. According to the above de�nition, the (determinis-
tic) one-place and unbounded bu�er processes each determine the identity

function on histories:

rel(traces[[bu�]]) = f(�; �) j � 2 V 1g

rel(traces[[bu�s]]) = f(�; �) j � 2 V 1g

Similarly, each (non-deterministic) variant also determines the intended his-

tory relation:

rel(traces[[bu� 0]]) = f(�; �) j � � � & �; � 2 V 1g

rel(traces[[bu�
�
]]) = f(�; �) j � � � & � 2 V 1 & � 2 V �g:

Now recalling some of our other non-deterministic examples, the relations

obtained from the merge and spray processes are also as expected:

rel(traces[[merge]]) = fairmergeV
rel(traces[[spray]]) = f(�; �1; �2) j (�1; �2; �) 2 fairmergeV g:
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Moreover, it is easy to see from the characterization given earlier for the

traces of sum that rel(traces[[sum]]) is indeed the (graph of the) pre�x-sum

function. It follows easily that the deterministic networks sum1, sum2, sum3

and the non-deterministic network sum0 also determine the same relation,

since they all have the same trace set as sum.

The prescription given above for rel(T ) is rather intuitive, but di�ers

slightly from Kahn's approach in that we did not build in continuity. For

example, we have

rel(traces[[skip]]) = f(�; �) j � 2 V �g

rel(traces[[while true do skip]]) = f(�; �) j � 2 V 1g;

since skip has only �nite traces. In Kahn's setting both of these processes

denote the same function, i.e. �� 2 V 1:�. This inability of Kahn's model
to distinguish between termination and divergence is insigni�cant in Kahn's
setting, primarily since sequential composition is not allowed at the network
level. In our setting it makes sense to make the distinction. For comparison
to Kahn's model we must therefore focus on the limit-closure of rel(T ), which

we de�ne to be the smallest relation R containing rel(T ) such that whenever
�0 � �1 � : : : and �0 � �1 � : : : are increasing sequences of �nite histories
with limits � and �, the presence of (�n; �n) in R for all n implies that
(�; �) belongs to R. For example it is easy to see that the limit-closure
of f(�; �) j � 2 V �g is f(�; �) j � 2 V 1g, as desired to make the above

identi�cation.
We are now in a position to state formally the sense in which our trace

semantics is a natural generalization of Kahn's model. When T is the trace

set of a uni-directional deterministic network the limit-closure of rel(T ) co-
incides with the graph of the network's input-output function as predicted
by Kahn's semantics. Using the terminology introduced earlier, we have

limit-closure(rel(traces[[P ]])) = str[[P ]]

for all Kahn-style deterministic networks P . We defer the details of this proof

to Appendix B.

As an important consequence of this result, whenever two networks have
the same traces they induce the same history relation in all contexts. This

follows by compositionality of the traces semantics.
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9 Conclusions

We have given a semantics for fair networks of non-deterministic asynchronous

communicating processes. We have shown that our model is a natural gener-

alization of Kahn-style input-output functions, extended to take into account

the potential for interference between processes. Fairness plays a vital role

in our semantics, a natural outgrowth of its understated supportive role in

Kahn's original semantics. Despite its historical reputation, fairness is not

especially problematic from the semantic point of view, and can be incorpo-

rated without di�culty.

We have shown that our semantics supports a number of useful laws of
program equivalence that may be used to simplify reasoning about network
behavior. Several of these laws rely crucially on fairness for their sound-
ness, and this can be an advantage when reasoning about liveness properties.
Local declarations can be used to great e�ect to build in non-interference as-
sumptions, such as the inability of one parallel component to modify private

data used by other components.
We have shown that our trace semantics is adequate for reasoning about

history relations, in the sense that processes (either nodes or entire sub-
networks) with the same traces can be interchanged in any network context
without a�ecting the history relation computed by the resulting network. It

would be interesting to see what additional programming language constructs
need to be added in order to guarantee the converse of this property, i.e. full
abstraction [Mil77, Sto88]. We conjecture that it su�ces to add a simple form
of conditional critical region construct, usually written as await B then C,
by analogy with the full abstraction result proven in [Bro93].

The idea of using traces of some kind to model concurrent processes is

widespread. Unlike many traditional models for communicating processes,
such as [Bro94, Hoa78], we work entirely with \complete" traces and we
build in fairness so that the semantics of a process provides a full and pre-

cise description of its potential behaviors under any reasonable scheduling

strategy. By blending channels into the state structure so that communica-
tion becomes a state change we are able to avoid using \process labels" or

\channel labels" to decorate the steps of a trace, and we can avoid the corre-
sponding book-keeping details that tend to clutter up labelled trace models.

For instance, we have avoided the need for \refusal sets" as a means of mod-
elling deadlock [Hoa78]. Instead, a deadlocked process manifests itself in our
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model as in�nite stuttering, which after all is how it will appear to any pro-

cess attempting to interact with it: a deadlocked process will never change

the state, and never terminates.

In contrast to several earlier trace-theoretic models [Jon89, Kok87, Rus90,

KP84] we take a di�erent view of state, and of the nature of a step in a

trace, and we build in a di�erent combination of closure conditions on trace

sets. Typically these earlier models were concerned with the search for fully

abstract models of Kahn networks, with respect to a kind of observable be-

havior based on Kahn-style input-output functions. Our model is designed

to provide more discriminatory power than Kahn's semantics, so that our
semantics solves a di�erent problem and �ts in a niche at a di�erent level of

abstraction than these models.
It would be interesting to investigate if our semantics can be used to

analyze the relative expressive power of communication primitives, perhaps
along lines suggested by [PS88]. In particular it seems obvious that the
expressive power of our language would be improved if we add a form of

channel probe, permitting a process to test for availability of data without
necessarily inputting it.
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10 Appendix A: Operational semantics

We present a structured operational semantics for processes. Con�gurations

have the form hP; si, where P is a process and s is a state in some state set S;

there is also assumed to be an environment u mapping all free identi�ers of

P to appropriate bindings over S. A con�guration is either terminal, or has

one or more enabled transitions. We write hP; si ! hP 0; s0i to indicate an

enabled transition. We write hP; siterm to indicate a terminal con�guration.

We assume given the transition rules for expressions. We write, for in-

stance, he; si !� v to indicate that e evaluates to value v in state w (and

the given environment). Expression evaluation is assumed to be free of side-
e�ects.

For simplicity in presenting the transition rules let s = (w; v; �) be a
state of shape W �V �V �, and let x and h be bound to the variable and the
channel represented by the �nal two components of the state, respectively.
We then write [s j x : v0] for the state (w; v0; �) obtained by updating the

x-component of s, and [s j h :!v0] for the state (w; v; �v0) obtained by sending
v0 to the h-component of s. We also write s(x) and s(h) for the value of the
respective component of s. We also assume that t is a state over W �V and
write (t; h : �) for the obvious corresponding state over W � V � V �.

The termination predicate term and the one-step transition relation are

de�ned to be the smallest relations satisfying the following rules.

hskip; siterm

he; si !� v

hx:=e; si ! hskip; [s j x : v]i

he; si !� v

hh!e; si ! [s j h :!v]

s(h) = v�

hh?x; si ! hskip; [s j x : v; h : �]

s(h) = �

hh?x; si ! hh?x; si
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hP1; si ! hP 0

1; s
0i

hP1;P2; si ! hP 0

1;P2; s0i

hP1; siterm

hP1;P2; si ! hP2; si

hB; si !�

tt

hif B then P1 else P2; si ! hP1; si

hB; si !�

ff

hif B then P1 else P2; si ! hP2; si

hwhile B do P; si ! hif B then P ; while B do P else skip; si

hP1; si ! hP 0

1; s
0i

hP1kP2; si ! hP 0

1kP2; s0i

hP2; si ! hP 0

2; s
0i

hP1kP2; si ! hP1kP
0

2; s
0i

hP1; siterm hP2; siterm

hP1kP2; siterm

hP; (t; h : �)i ! hP 0; (t0; h : �0)i

hlocal h = � in P; ti ! hlocal h = �0 in P 0; t0i

hP; (t; h : �)iterm

hlocal h = � in P; ti ! hP; ti
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11 Appendix B: Recovering Kahn

We sketch the main ideas behind the key result that connects our semantics

and Kahn's, i.e.

If each node P in a uni-directional deterministic network N

satis�es

limit-closure(rel(traces[[P ]])) = str[[P ]];

then the network as a whole also has this property, i.e.

limit-closure(rel(traces[[N ]])) = str[[N ]]:

The proof is by structural induction on the way the network N is built up

using Kahn-style constructs. There are three cases: juxtaposition, cascading,
and feedback.

Juxtaposition

Let P1 and P2 be disjoint networks. Assume without loss of generality that
the state set has shape W = (I1 � I2) � (O1 � O2), and that P1 has inputs
over I1 and outputs over O1, and similarly for P2. The network obtained by
juxtaposition of P1 and P2 is

juxtapose(P1; P2) =def P1kP2:

Each of its traces is therefore a fair merge of a trace of P1 with a trace of
P2. Since P1 does not use any of the channels of P2, these channels are left
unchanged in every step of every trace of P1; likewise for P2 and the channels
of P1. It is thus easy to see that whenever ((�1; �2); (�1; �2)) belongs to

rel(traces[[P1kP2]], a justifying trace of P1kP2 is built from a justifying trace
of P1 for (�1; �1) and a justifying trace of P2 for (�2; �2). The converse is also

true: merging a justifying trace for (�1; �1) with a justifying trace for (�2; �2)

yields a justifying trace for ((�1; �2); (�1; �2)). Thus

rel(traces[[P1kP2]]) = f((�1; �2); (�1; �2)) j

(�1; �1) 2 rel(traces[[P1]]) & (�2; �2) 2 rel(traces[[P2]])g:

The desired result for P1kP2 then follows from the induction hypothesis for
P1 and P2, since

str[[juxtapose(P1; P2)]] = f((�1; �2); (�1; �2)) j
(�1; �1) 2 str[[P1]] & (�2; �2) 2 str[[P2]]g:
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Cascading

For ease of presentation we consider only the case involving a single linking

channel. The fully general case can be treated analogously.

LetW = I�O, and let P1 be a process with input channels corresponding

to components of I and a single output channel named h of type chan[� ],

and let P2 have output channels in O and a single input channel h. The

network formed by cascading P1 onto P2 is

cascade(P1; h; P2) =def local h in (P1kP2):

We claim that

rel(traces[[cascade(P1; h; P2)]]) = (rel(traces[[P2]])) � (rel(traces[[P1]])):

� To show the inclusion from left to right, suppose

(�; �) 2 rel(traces[[cascade(P1; h; P2)]]):

Then there are decompositions � = h�ni and � = h�ni and a trace of

P1kP2 over I �O � V �

� of form

h(�0; �; �); (�
0

0; �; �0)i

h(�00; �; �0); (�
0

0; �0; �
0

0)i
h(�00�1; �0; �

0

0); (�
0

1; �0; �
0

0�1)i
h(�01; �0; �

0

0�1); (�
0

1; �0�1; �
0

1)i
h(�01�2; �0�1; �

0

1); (�
0

2; �0�1; �
0

1�2)i
: : : : : :

in which (without loss of generality) P1 and P2 contribute alternate
steps8. This trace arises as a fair merge of the traces

h(�0; �); (�
0

0; �0i

h(�00�1; �
0

0); (�
0

1; �
0

0�1)i

h(�01�2; �
0

1); (�
0

2; �
0

1�2)i

: : : : : :

of P1, and
h(�0; �); (�

0

0; �0)i
h(�00�1; �0); (�

0

1; �0�1)i

: : : : : :

8Any other trace of this process can be put into this form by inserting stuttering steps.
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of P2. Let � = �0�1 : : :. It follows that (�; �) belongs to rel(traces[[P1]])

and (�; �) belongs to rel(traces[[P2]]). Hence (�; �) belongs to the com-

position of these two relations, as required.

� For the reverse direction, suppose (�; �) 2 rel(traces[[P1]]) and (�; �) 2

rel(traces[[P2]]). Choose the \justifying" trace for (�; �) of P1 to match

the decomposition of � used in the justifying trace for (�; �) of P2.

(The ability to make this choice relies on the Decomposition Property

mentioned earlier.) Then interleave these traces in the obvious manner,

leaving the local channel unchanged across step boundaries, to obtain
a justifying trace for (�; �) of local h in (P1kP2), as required.

It then follows that if P1 and P2 satisfy the induction hypothesis, so does
cascade(P1; h; P2), since

str[[cascade(P1; h; P2)]] = str[[P2]] � str[[P2]]:

Feedback

Let P be a network using channel h for input and h0 for output, and assume
that the state set has shape W � V � � V �, the last two components repre-
senting these two channels respectively. The network obtained by feeding h0

back as input to h is:

feedback(P; h; h0) =def local h in [h0=h]P:

This feedback network has traces of the form

hw0; w
0

0ihw1; w
0

1ihw2; w
0

2i : : :

such that P has a trace of the form

h(w0; �; �); (w
0

0; �; �0)ih(w1; �0; �); (w
0

1; �
0

0; �1)ih(w2; �
0

0�1; �); (w
0

2; �
0

1; �2)i : : :

(Feedback is e�ected here, intuitively, by sliding messages from the h0-component
to the h-component.) According to Kahn's least-�xed-point characteriza-
tion a pair (�; �) belongs to the limit-closure of the input-output function of

the feedback network if and only if there are decompositions � = h�ni and

� = h�ni, and a sequence � = �0�1 : : : such that
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� ((�0; �); (�0; �0)) 2 str[[P ]];

� ((�0�1; �0); (�0�1; �0�1)) 2 str[[P ]];

� ((�0�1�2; �0�1); (�0�1�2; �0�1�2)) 2 str[[P ]]

and so on. Using this formulation, which echoes the way in which data

is transferred on the internal channel, it is straightforward to establish the

connection: the sequence �, �0, �0�1, and so on converges to the history (for

the feedback channel) corresponding to the least �xed point, as prescribed

by Kahn's semantics. Hence, if P satis�es the induction hypothesis, so does

feedback(P; h; h0).
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