
The Case for an Open Data Model

Brad A. Myers

August, 1998
CMU-CS-98-153

CMU-HCII- 98-101

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

bam@cs.cmu.edu
http://www.cs.cmu.edu/~bam

Abstract
The trend in modern software systems such as Java is to support “reflection” where
independent software can query to find out the properties of objects. We have been
investigating the implications of taking this property even further—so that all aspects of
an application are open and available to inspection by external software. By making the
fundamental data structures of the application have a standard format, external
components can access the information they need without requiring a complex protocol.
We have found that this gives the application developer and end users many important
benefits, including support for increased automation, extensive end-user customization
capabilities, external agents and tutors, sophisticated search and replace, scripting and
macros, alternative interfaces without re-implementing the application, plug-ins that
operate in the same space, and significantly higher re-use of common code. Many of
these benefits are demonstrated in our Amulet user interface development environment
which uses the open data model.

Copyright © 1998 — Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa Order
No. B326. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of
NCCOSC or the U.S. Government.

Keywords: Open Data Model, Object-Oriented Programming, Components, Toolkits,
User Interface Tools, User Interface Development Environments, User Interface
Management Systems (UIMSs).

Open Data Model - 1

1. Introduction

One of the reasons that the World-Wide Web spread so swiftly was the early adoption

of a common, standard data representation: HTML hypertext files and the GIF picture

format, which all Web applications can use and generate. This relatively simple format

allows people to use browsers from multiple vendors, enables many different ways for

people and programs to generate pages, and it allows computer programs such as search

engines to search and analyze pages fairly easily. The pipe mechanism in the Unix

operating system is successful for a similar reason: a common data format. In Unix,

applications generate and accept plain ASCII text, so one application can easily process

the output from another.

This is quite different from the world of today’s desktop applications, however. Each

application, such as the text programs MacWrite, Microsoft Word, Pagemaker, and

Framemaker, and the drawing programs MacDraw, Adobe Illustrator, and Microsoft

PowerPoint, use their own proprietary data structures, both on disk and in memory while

the application is running. This allows the data structures to be optimized for each

application, but it prevents a number of useful benefits that would arise if the applications

used a common data format.

This article argues that if all applications used a common data format, enormous

benefits would result, both for the application developer and for the end user. First, the

characteristics of the “open data model” are presented, followed by a discussion of the

benefits. The article then discusses how various current systems support open data.

We have been investigating the implications and implementation issues of using the

open data model for the last 10 years in our Garnet [18] and Amulet [20] user interface

development environments. Our current results are discussed next. Finally, some of the

potential concerns with the open data model are also discussed.

2. What is an Open Data Model?

In a completely open data model, the important application data structures would be in

a standard format that is completely accessible to all programs. The data could then be

read and manipulated by external programs that are not necessarily developed by the

same vendor.

Note that this goes beyond just having a standard format for disk files. External

applications need to access and manipulate an application’s data structures while the

application is running. The external application also needs to know what operations are

Open Data Model - 2

provided for operating on the data and to have the ability to monitor and execute those

operations. This includes every operation that is available to the user, as well as

additional monitoring and manipulation actions. As an example, when an open data

model is used for a drawing program like MacDraw or Microsoft PowerPoint, then an

external application could find out what objects are currently in the window and what

their properties are (“rectangle_001: position=(10,30,50,80) and color=red, circle_002:

position=(100,100,200,200) and color=blue”, etc.). Also available would be the full set

of operations available so the external application could manipulate the objects in any of

the ways available to the user (“delete rectangle_001”). The application would also be

able to monitor the user’s actions, and be notified whenever the user performs any

operation. In the object oriented community, the ability to find out the properties of

objects at run-time is called “reflection.” Reflection allows the class of any object to be

discovered, along with all of the public methods and data. Microsoft’s OLE provides

related facilities through the “OLE Automation” interfaces.

While reflection is important, it is not sufficient. The system must also have a set of

standards about what data will be called and what types will be used. For instance, if a

graphical object calls its position “location” or even worse, “ubicación” instead of

“position,” then other software will not be able to discover where the object is on the

screen even if the names and values of all slots are available.

Also required is the ability to investigate the behavior of an application. Although

reflection allows you to find out the methods of an object, this is not sufficient. We want

to inquire about what operations the user can do and the results of those operations.

Therefore, standards are also necessary for how operations and their parameters and

results are represented. For example, it must be possible to answer questions such as:

what are the commands in all of the menus, what does clicking the mouse in a window

do, how are objects moved, etc. Without a standard for representing this information,

there is no way to know which of the hundreds (or thousands) of methods and object

types are relevant to answering the question.

Lieberman’s defined the terms scriptability and examinability [12], and the open data

model supports both. “Scriptability” is available because external applications can record

the user’s actions and execute any recorded command. Therefore a scripting mechanism

can easily record macros or scripts and execute them later. “Examinability” is available

because external programs can examine and modify the data structures of an application.

Examinability implies a level of standardization of names, as discussed above, and

therefore goes beyond just reflection.

Open Data Model - 3

One way to provide an open data model is to define a standard data structure, require all

programs to use it for their internal data, and export the data structure. For example, all

information could be encoded using “attribute-value” pairs, where the names of the

attributes describe the purpose of the data, and the value itself is tagged with a type

inspectable at run-time. For example, in our Amulet toolkit (explained in section 5), all

objects are defined by attribute-value pairs, and a rectangle in a drawing program might

be defined in part by:

Slot Name Slot Value Slot Type
Prototype: Rectangle Object
Name: “rectangle_001” String
Left: 10 int
Top: 30 int
Width: 50 int
Height: 80 int
Color: red Style

Amulet defines a set of standard attribute names that are used for specific properties

whenever they appear, and applications are free to define new attributes as needed.

Routines are available for querying an object to get the list of the attributes, the values of

the attributes, and the types and data for the values. Behaviors are inspectable in Amulet

because special “Interactor” and “command” objects are used to represent all actions.

For the open data model to provide the maximum value, all applications will have to

use it. Therefore, the facilities that support the open data model should be provided by an

underlying toolkit or operating system that is used by all applications.

3. Benefits of an Open Data Model

There are many benefits that result from a widespread use of the open data model.

Some of these have been demonstrated in existing systems, and others are more

speculative.

3.1. Automation

Michael Dertouzos argues in his new book What Will Be [3] that to enable

communication and automation, all applications should be able to provide and accept

attribute-value pairs of information, which he calls “e-forms.” Rather than requiring

users to go to many different computer programs and web pages to enter and read

information, these programs could communicate with each other using e-forms. He calls

for the standardization of certain field names, with other fields specific to certain

industries or groups of applications. Although his complete scenario requires

sophisticated intelligent agents and speech recognition software, the e-forms are the glue

Open Data Model - 4

that allow these to work together. He claims that the result will be a productivity gain of

200 to 1 [3, p. 86].

3.2. End-User Customization and Macros

The open data model will help support end-user customization. Some applications, like

Microsoft Word, come with a sophisticated customization sub-system that allows users to

change the menus and keyboard accelerators for commands. However, most applications

still do not have such a facility because it is difficult to build. If the application were

written using an open data model, however, then a general-purpose customization

subsystem would be able to find out all the commands available to the application, and

would be able to query and modify the menus, toolbars, and keyboard accelerator lists.

Therefore, the customization facility could be available in the underlying toolkit, used by

all programs. Users would have this ability in all applications, and it would operate in the

same way for each one. Furthermore, programmers would not need to re-implement

customization dialogs for each new program.

The next step is to allow end users to create their own commands. Many applications

allow the user to create a “macro” or “script” by going into record mode, executing some

operations, and then stopping the recording. Some Microsoft products (e.g., Word and

Excel) support macros by constructing a Visual Basic program from the transcript. The

open data model can allow the scripting mechanism to be much more independent of the

application, since the scripting mechanism can monitor the commands that are executed

by the user, and can query the commands themselves to discover the appropriate

operators and parameters to record in the script. For example, Amulet’s scripting facility

is built into the toolkit and therefore is available to all applications without requiring any

extra work from the programmer [16].

More than just recording the exact transcript of operations, the recording system could

also be “intelligent” and look for repeated operations. For example, the Eager system [2]

continually watches the user’s actions in HyperCard and pops up an icon to propose that

the system finish the job when it detects a repetitive action.

Using an open data model means that there is a programmatic interface to the objects

and operations of all applications, so it becomes easier to supply a programming language

directly to the users, in the way that Visual Basic is available for Word and Excel. Third

parties could use the programming language interface to make highly customized

versions of applications for sub-markets, in the same way that there are now specialized

CAD programs for many kinds of design which have been created using AutoCAD’s

AutoLisp and C extension languages.

Open Data Model - 5

3.3. Agents and Tutors

When the operations of an application are observable and executable by other

programs, as they need to be to support the macro and customization facilities discussed

above, then it becomes much easier to supply tutors and agents for applications. An

intelligent tutorial could guide the user through an application, presenting information

about each operation, and monitoring whether the user performs the expected operations.

If the user performs a different operation, then the tutor could inspect the objects in the

application to see if the result is close enough. Because the tutor could discover where

objects are in the window, it is easy to support highlighting as in AppleGuide to direct the

user’s attention, even to things that change position. Intelligent “Tip Wizards” could be

created that would look for inefficient or inappropriate operations and pop up a helpful

dialog window (this could be linked to an Eager-like system that would offer to perform

the predicted operations for the user, as discussed in the previous section). Whereas

creating such tutors and agents might be a big job, they would only have to be created

once and then could be used for all applications, since the open data model means that all

of these facilities could be implemented without affecting the structure or coding of the

application itself.

Some of these capabilities are already demonstrated by the Microsoft Office Assistant

help agent (the “dancing paper clip” in Office’97). The Office Assistant needs to monitor

user’s actions and access the application’s current state. The “Show me” option available

in some help messages performs the operations using the application’s actual menus and

dialog boxes, so these must be interpretable to the program, even if the user has

customized the menus and moved menu items around. The Office Assistant has deep

knowledge about the implementation of the office applications. Using an open data

model would make this kind of agent available for all applications, and would make it

easier to connect it to the application.

Another issue is the agent’s ability to change the user interface of an application. An

open data model allows the agents to be external to the application and still change the

application’s user interface since the widgets1 are inspectable and manipulable externally.

As an example of why this might be useful, Eager [2] adds an icon of a cat that can be

clicked on, and it changes the color of one of the application’s menu items to show what

the agent thinks the user will do next.

1 A “widget,” sometimes called a “control,” is a way to input a particular type of value. Examples of
popular widgets include menus, scroll bars, buttons, text input fields, toolbars, etc.

Open Data Model - 6

3.4. Rich searching

One of the most useful of the Unix utilities is “grep” which searches through files to

find the ones that contains a particular string. The reason this works is that most files in

Unix are plain ASCII text, so a general-purpose search mechanism can look inside any

file. However, PC and Macintosh applications use a variety of file formats, and very little

information on a typical PC or Macintosh is stored in ASCII files. Earlier windowing

systems therefore did not let you look for text inside files, but Windows 95 now supports

this by using heuristics to find the ASCII content of files. Since it uses heuristics, it can

miss finding some matches if the application does not store the text contiguously. For

example, the RTF and Postscript disk formats break up words if a letter has different

formatting from the rest of the word. A better approach is to use the open data model for

files, so that all applications will use a standardized model which can be understood by

any application, including a smart search engine. This would also enable searches on

more than just ASCII text, such as “Find all the presentations that use this picture,” or

“Find the pages that do not have the word ‘CMU’ in red in the header.” Advances in

image processing and natural language understanding would immediately be available for

searching across all documents from all applications, because the search engine would be

able to identify the appropriate parts of the documents to process.

Whereas every text editor has find and replace commands, very few graphical programs

can search for graphical objects. Kurlander showed how to create a general search and

replace mechanism for graphics in 1988 [11], but this has never been provided in a

commercial program. One reason is that it is fairly complex and would have to be

reimplemented for each application in a conventional architecture. With the open data

model however, such a search and replace tool can be provided in the library and used by

all applications since it could look for and replace any property. For example, Amulet’s

graphical search tool works with any application because it can automatically determine

and query the properties of all objects (see Figure 1).

3.5. Beyond spell-checkers

For a spelling-checker to work, it must go into the internal data structures of the text

editor and find the words. The open data model allows this facility to be supplied easily,

and also to be significantly extended. Of course, spell checkers could be written once and

used in all applications, even in graphical applications (“check the spelling of the

comments of all my circuit elements”). In addition, other consistency checkers could be

developed. Some ideas are that a color checker might check whether all diagrams used a

Open Data Model - 7

standard color scheme, and a size checker might check whether all presentations will be

viewable when projected on a big screen at a conference.

Figure 1. The search (find) dialog box automatically created by Amulet for a simple graphical
editor. All the properties for all of the types of objects are shown. The values from an arc (oval)
have been loaded.

3.6. Semantic markings

In computer programs such as Microsoft’s NetMeeting for use by multiple people,

some of whom are on remote computers, there are usually telepointers to show where

each user’s mouse is located. However, some applications (unlike NetMeeting) allow

each user’s screen to be organized in a different way. For example, World-Wide Web

browsers put words on different lines depending on the width of the window. If one user

is pointing at a word in a browser window on one machine, his or her telepointer will be

in the wrong place when viewed on a different machine in a window with a different

width. A solution is to have the telepointer know about the content so a semantic

mapping can be performed on the telepointer to make it always point to the appropriate

Open Data Model - 8

word on each computer [5] (see Figure 2). A related problem is when remote user or

program wants to highlight or select an object to bring it to the attention of a user [23].

With conventional architectures, the telepointer or highlight must be reimplemented for

each application, but with an open data model, telepointers and highlights can be

implemented separately from the applications since they can interpret the data.

Figure 2. In a collaborative Web browser for use by multiple people, each person’s telepointer
must be placed in an appropriate place on everyone else’s screen. This requires knowing where
the individual words are since browsers reformat the text based on the current window width.
(Figure reproduced from [5] with permission.)

3.7. Alternative interfaces

One of the big problems reported by Mynatt [22] when trying to make a graphical user

interface accessible to blind people is that it is difficult to query about what operations are

available to the users. The goal was to provide a screen reader which mapped properties

of the widgets, such as the label, location, and whether it is grayed out or not, to

properties of the sound. Existing toolkits are not designed to allow external programs to

ask which widgets are available, to investigate the properties of those widgets, and to

execute the widgets as if the user had pressed the mouse. Furthermore, although in Motif,

Windows and the Macintosh, external programs can get some information about the

widgets, the parts of the interface that are not widgets are completely unavailable

externally. For example, in a drawing program like MacDraw, the screen reader would

have no access to the contents of the main windows, because they are drawn directly by

Open Data Model - 9

the program without using built-in widgets. If the widgets and the application’s custom

output used an open data model, then all aspects would be available to the screen reader,

and the alternative interfaces would have full access and control.

Similar problems arise when trying to add other kinds of new interfaces. A number of

speech systems are emerging that allow users to talk to their existing applications. For

example, DragonDictate [4] and IBM’s ViaVoice [9]. Because the system menubar is

easy to access, these systems allow the user to say the names of the menu items, rather

than requiring the use of the mouse or keyboard accelerators. However, other operations

cannot be executed using speech because the speech system cannot detect what

commands are available and what the user can do. An open data model would allow the

speech system to let the user give all the commands in the interface. Most sophisticated

research systems with speech or natural language interfaces have to be completely

implemented with these technologies in mind, since users often want to discuss objects in

the interface by their properties, for example, by saying “Delete all the red rectangles.” If

the objects in the system are described with an open data model, even systems created

with only a conventional direct-manipulation interface could have sophisticated

operations supported by add-on speech and natural language interfaces, since the speech

and natural language sub-system would be able to search to find the objects which match

the phrase, and then would be able to execute the specified operation.

3.8. Ability to have significant plug-ins that work in the same space

In the conventional component model, as supported by OLE, OpenDoc and Java Beans,

each component controls its own area of the screen. The main goal is to allow a

component to be embedded inside another component. There is another model of

composition, where all operations operate on the same part of the screen. This is

available to a small extent for third-party “plug-ins” for specific applications like Adobe

PhotoShop, and has been promoted by Jef Raskin as an overall system architecture [26].

For example, if you load in a spreadsheet capability, this can operate on numbers

anywhere in a document, not just in a rectangle that is called the spreadsheet part. The

spreadsheet capabilities could be used to compute the labels or even the positions of

objects in a drawing. As another example, if you have a simple drawing editor like

MacDraw, and you need a new kind of spline-curve, instead of throwing away your editor

and buying a new one like Adobe Illustrator, as would be required in all of today’s

architectures, you could instead just buy a spline capability and add it in to your existing

graphics editor. In this design, each command in a menu and each capability of an

application might be its own separate “micro-component,” all able to work together on

Open Data Model - 10

data created by all other micro-components. This might help usher in the age when small

pieces of functionality can be created and purchased separately and combined by end

users.

The open data model makes this vision possible, since all of the components can query

and modify the common data. New components can be created by different vendors and

can be dynamically added in, and they can all share and operate on the same document.

They can even share the same menubar, rather than requiring the menubar to switch

contents as the user clicks on different components as in today’s models like OLE. In the

open data model, a common operation like “Cut” can query the various selected objects

and execute the appropriate operation for each type of object. In this way, the fact that

there are different “components” could be entirely invisible to the user.

An analogy to the Unix pipe mechanism is relevant here. In Unix, there are many small

utilities which users string together to accomplish their own custom tasks. These work

because most files in Unix are plain ASCII text and the small utilities can read and emit

text. For example, “wc” is a general word (and line) counting program that can be used

to count the number of files in a directory, the number of words in any document, etc. In

Windows, Microsoft Word needs a custom word counting tool, since no utility could

work in Word and other word processors. Framemaker for Windows does not have a

word counting tool.2 With the open data model, these small utilities could again be

written since they would operate on the appropriate format of data from any application.

3.9. Easier for Implementers

You might think that with all these advantages, using the open data model might be

difficult to use for programmers. In fact, we have found that it is easier than

conventional approaches, primarily because of the higher-level of support that can be

provided by tools.

The Macintosh, Motif, Windows, and Java systems all specify how selection handles

are supposed to work for manipulating graphics like lines and rectangles (see Figure 3).

However, none of their toolkits support selection handles — each programmer is left to

implement them over again. Why? Because selection handles need to know where the

graphical objects are and how to move and resize them. With an open data model, the

selection handles can be supplied in the toolkit because this information is available.

Operations like cut, copy, duplicate, paste, to-top, to-bottom, etc. can also be supplied in

2 At least none that I could find in Framemaker 5.5 for Windows. Another problem with today’s large
applications is that there is no easy way to search for capabilities. Maybe with microcomponents, there
could be a system-wide way to search for capabilities, like “man –k” for Unix.

Open Data Model - 11

a library and often can be used without change even for application-specific objects, if

there is a standard protocol for determining and manipulating the selected objects. This

means that the programmers using the open data model have less to implement.

Figure 3. A collection of graphical objects in Amulet. The color of the star can be changed by
simply setting its color slot, and Amulet will redraw the star and the other objects that overlap it.
The Amulet toolkit includes selection handles (shown here around the rectangle) which support
selecting, moving and resizing objects.

Undo is often one of the more difficult operations to implement in applications,

especially if “unlimited” undo of multiple operations is required, like in Microsoft Word

V6 and after, rather than just single level undo like on the original Macintosh. The open

data model makes implementing undo easier since most operations in direct manipulation

interfaces involve small, local changes to the data structures, and undoing the operation

often is simply a matter of restoring the old value. Since the undo mechanism can query

and modify the data structures, and there is a standard protocol for most operations, often

undo can be supplied by the library as well. For example, in Amulet, all the standard

operations come with their own undo already supplied [19].

Automatic save and load of the application’s data structures to files can be provided

automatically if there is an open data model because the system can determine the

relevant parts of the objects to store and retrieve. As discussed below, the current version

of Java supports a partial open data model through the “reflection” mechanism, and also

supports save and load, which it calls “serialization.”

Many research system (e.g., Garnet [21], Amulet [20], EVAL/vite [7], and SubArctic

[8]) and some commercial systems (e.g., Galaxy [27]) have found that constraints are a

convenient way to implement parts of applications, especially the user interface. A

constraint is a relationship that is declared once and maintained by the system. Examples

include that a scrollbar must stay on the right of the window or that the wires must stay

attached to the nodes even if the nodes are moved. Constraints must be able to access the

Open Data Model - 12

properties of objects so that the values can be propagated to where they are needed.

Thus, using a constraint solver essentially requires an open data model so the constraints

can access and set the properties of objects.

The open data model also makes debugging much easier. For example, Amulet

provides an inspector (see Figure 4), which can display all the properties of any object.

This provides instant object visualization for all objects in all applications. Many users

report that this is one of the most helpful features of Amulet. Other systems with

advanced debugging features also rely on being able to access the content of objects, such

as the “magic lenses” of SubArctic which show the underlying structure and parameters

of the graphics [6].

Figure 4. Inspecting a wire object and the constraint in its IN_VALUE slot using Amulet [15].
The open data model allows the inspector to query all the properties of all objects. The slots
which are inherited are shown in blue.

4. Some Partially Open Systems

The beginnings of an open model are incorporated into some of today’s commercial

tools. OLE, AppleScript, Java and MIME are some examples. Even C++ has been

retrofitted with some of the required capabilities, with its new “Run-Time Type

Information” (RTTI) interface. The inclusion of these facilities gives further evidence as

to the importance of the open data model. In some sense, what we are therefore arguing

Open Data Model - 13

is to continue in the direction that these systems are already moving so that the next

generation of tools will support a fully open data model.

Microsoft’s OLE and ActiveX provide a protocol called “OLE Automation” where an

application can allow external applications to query and change some of their internal

state. For example, this can be used to find out the current value of a cell in a

spreadsheet. However, many applications do not support this protocol because it is quite

complex and it is much harder to implement applications that support it. Furthermore,

the ones that do support it only provide access to a small subset of the operations and

data.

AppleScript is another technology for providing some access to an application’s inner

workings. AppleScript is designed so one application can control another by giving

commands as if it were the user. However, there are essentially no capabilities for

querying the state of the application and for finding out the values of its data structures.

Thus, an external program might be able to set a spreadsheet cell to 20, but it could not

find out what the current value of a cell is. In particular, AppleScript does not support

external programs querying for a meaningful description of objects that are operated upon

– just the operation name and an opaque pointer are all that is available. ScriptAgent [12]

is a research system that tries to allow users to write scripts using Apple’s AppleScript

interface. Unfortunately, “several years after Apple introduced AppleScript scripting, and

asked application developers to [support it], sadly, few developers have done so. Many

applications are at least partially scriptable, but few provide either a complete scripting

interface or a usable recording capability” [12, p. 42].

The OpenDoc environment [1] from Apple (now canceled) was not going to improve

on this much. It contained a “services” protocol that was supposed to allow external

programs to access the application’s data, but this part of the OpenDoc specification was

apparently never finished.

The problem is that implementing a scriptable and examinable interface in these

systems is extra work for programmers since it must be done in addition to the

application’s functionality and user interface. In contrast, the open data model is easier

for programmers than conventional designs and the examinability and scriptability come

for free.

Java has taken a big step towards an open data model with the its “reflection” interface,

which allows properties of objects to be queried at run time. The Java Beans architecture

also defines a set of naming conventions that allow many properties of components

(called “beans”) to be discovered by their containers (called “bean boxes”). This

Open Data Model - 14

provides many advantages to the Java programmer, including automatic support for

“serialization” (saving to and loading from files) and a much simpler component model.

On the Internet, most of the data is currently stored in an open format. As mentioned

above, HTML files are examinable by any program. The Multipurpose Internet Mail

Extensions (MIME) standard supports dynamically tagged data in electronic mail and

World-Wide Web pages. The MIME types are easily inspected by people or programs,

and can be discovered at run-time. MIME defines some basic types of data that are

popular and universal, and makes it very easy to add new types as needed.

5. Amulet’s Open Data Model

The Amulet user interface development environment [20] incorporates many of the

features of the open data model. It is being developed as part of a research project at

CMU, and is distributed for free.3 Amulet supports the creation of user interfaces in C++

for Unix, Microsoft Windows 95 and NT, and the Macintosh. Amulet is downloaded

over 200 times a week (over 11,000 times in the last year alone), and many research and

commercial systems have been created with it, so many people have experimented with

the features described here. Amulet’s predecessor, called Garnet [21], was in Lisp and

was also used by many people. The best ideas from Garnet were carried forward into

Amulet, so the following focuses on the open data aspects of Amulet.

The main ways that Amulet supports the open data model is with an open and flexible

object model, and with inspectable and manipulable behavior objects.

5.1. Open Data Objects

Similar to Dertouzos’s “e-forms,” all objects in Amulet are implemented as attribute-

value pairs. Amulet’s objects use a prototype instance object system implemented on top

of the C++ object system. Each object is a collection of named “slots,” which correspond

to instance variables in other object systems. The attributes are the slot names, and the

values are the data in the slots. Unlike conventional class-instance systems such as C++

or SmallTalk, in a prototype-instance object system there is no distinction between

classes and instances. Any object can serve as a “prototype” for new instances, and

instances immediately inherit the slots of the prototype as the default values. Local

values can then be assigned to any slots. Another interesting feature in the Amulet design

is that there is no difference between method slots and data slots: a method is simply a

type of data, and can be local or inherited in any object. Slots in Amulet can be

3Amulet is in the public domain. You can download the source and documentation from
http://www.cs.cmu.edu/~amulet or send mail to amulet@cs.cmu.edu.

Open Data Model - 15

dynamically created at run time and they are dynamically typed, so the same slot can hold

an integer at one time and a string later.

A key feature of the object system is that the full information about an object is

examinable at run time. A program can query the type of an object (which corresponds to

what its prototype is). Also available is the list of the slots currently in the object along

with the type and data of the value in each slot. Method slots can be queried as easily as

the data slots. Figure 4 shows the inspector viewing the complete set of slots of an

object. Other “meta” information about the slots is also available, such as whether slot is

read-only, what kind of inheritance has been defined for the slot, etc. (see Amulet’s

reference manual [17] for complete details).

Often, objects will contain a list of other objects as components. For example, a

window object will contain a list of graphical objects that are in the window. Standard

methods are available to querying the component objects that are part of an object. This

allows external applications to find all the objects in an interface. Since widgets and

custom graphics are all implemented with Amulet objects, the complete contents of the

user interface is examinable.

Amulet establishes a set of conventions about the names of slots used for different

parameters to objects. All graphical objects must export their bounding box in slots

called LEFT, TOP, WIDTH, and HEIGHT which must have numeric values. Setting

these slots adjusts the object. This makes it possible for Amulet to supply a selection

handles widget, which in other toolkits must be re-implemented by each application (see

Figure 3). Other standard slots control the color and visibility of objects, and these can

be read and set. The VALUE slot is used by all objects which compute or allow the user

to enter a value. In a scroll bar widget, the VALUE slot holds a float or an integer to

specify the percent of the way up or down. In a text input widget, the VALUE slot will

hold the current input text string. Setting the VALUE slot changes the value of the

widget. The ACTIVE slot is used to control all objects that can be disabled, so setting the

ACTIVE slot to false will cause a widget to “gray out” so it cannot be operated. All

widgets that are labeled use the slot called LABEL. Of course, each kind of object will

add additional slots with specific meanings, but a program can count on some standard

slots always being available in objects of a particular kind.

The data put into slots in Amulet is “self-describing,” since the types of all values are

available at run time. There are well-known type descriptors for all of the built-in types,

such as integers, strings and floats, and we have added some other useful types such as

various forms of dynamic lists. Applications are free to create their own new custom

Open Data Model - 16

types, although this is often not necessary since many application-specific data structures

can be created just using Amulet objects and lists.

Amulet uses dynamic typing since a single slot can hold any type of value. A “boxed

type” called Am_Value is available for C++ programs that want to hold a value of any

type, and still be able to query the type and perform type-specific operations. As argued

by John Ousterhout, dynamically typed languages:

“are just as safe as system programming languages… [Dynamically typed

languages] do their type-checking at the last possible moment, when a value is

needed. Strong typing allows errors to be detected at compile time, so the cost of

run-time checks is avoided. However, the price to be paid for efficiency is

restrictions on how the information can be used; this results in more code and less

flexible programs” [24, p. 26].

The result of using the open data model in Amulet is that it is very easy to iterate

through all the objects in a window, and find out the types of each object, querying and

modifying appropriate slots. Dialog boxes are just windows with a “modal” bit set, so the

same iterators work to find the widgets in a dialog box. A program can easily find, for

example, all the text objects or all the widgets in another program, and get or set their

current values. The generalized searching (Figure 1) and inspecting (Figure 4) facilities

discussed above are therefore be easy to attach to any interface created using Amulet.

Like Java, Amulet has a built-in save and load mechanism that can be used by all

objects. The saved file is in a standard format, where the types of the values are tagged,

so a generalized search mechanism would be possible that could search in disk files for

graphics as well as text.

Amulet’s open data model allows it to supply constraints to help with the

implementation of user interfaces. Any slot of an object can contain a constraint instead

of a constant value. The constraint can contain arbitrary C++ code, and can return a value

of any type (so they are not restricted to being used just for numbers). Constraints can

access any value from any object, since all values are stored in a uniform manner.

Whenever any of the slots change that the constraint depends on, the constraint is

reevaluated, so the slot that the constraint is in will receive an updated value.

5.2. Open Behaviors

In addition to helping with the static graphics that are part of an application, the open

data model also helps with the dynamic behavior of the interface. The behavior is how

the objects respond to the user’s input events. In addition to scriptability—the ability to

Open Data Model - 17

observe, record and replay the user’s actions, Amulet also provides examinability for the

behaviors themselves—the ability to query an application to find out what the end user

can potentially do. This enables a wide range of new capabilities that are not provided by

other toolkits, such as customization, intelligent help, and generalization of scripts.

There are two important aspects to making the behavior open: access to what the user

has done, and access to what the user can do. Some systems offer access to what the user

has done through scripting mechanisms, such as AppleScript. Very few systems allow

the investigation of what operations are available to the user. Note that we are not talking

about access to the low-level input events (mouse left button down at (102, 45), or

control–v key hit), but rather a high-level description of the resulting operation and the

parameters to the operation.

Amulet supplies both kinds of access through the use of standard objects to represent all

behaviors. All high-level data operations are encapsulated into “Command” objects, and

low-level, direct manipulation interaction techniques are handled by “Interactor” objects.

The open data model enables these objects to work, and also enables the behavior objects

themselves to be investigated. Command objects for operations that have been executed

are available on the undo history list, and all potential commands and Interactors of an

application can be found by investigating the objects attached to the application’s

windows.

In Amulet, all high-level operations are encapsulated into “command objects” [19]. In

many other toolkits, when a widget like a button is used, the programmer must write a

“call back procedure” (in Motif) or an “event method” (in Visual Basic) to handle the

behavior. In Amulet, instead a command object is allocated, and its DO method is called.

One result of the open data model is that these command objects can be provided in the

library and used by many applications without change. Each command object contains

slots and methods to perform the operation, and also to handle undo, selective undo and

repeat, enabling and disabling the command (graying it out), and help messages. Thus,

unlike other uses of command objects, such as in MacApp [28] (where the information

about when a command is available is not programmed as a method of the command), the

command objects in Amulet provide a single place for describing all of a behavior.

The Amulet library contains built-in commands for move-object, create-object, change-

property, become-selected, cut, copy, paste, duplicate, quit, to-top and to-bottom, group

and ungroup, undo and redo, and drag-and-drop. In systems that do not have an open

data model, these operations must always be re-implemented by each application. As

with graphical objects, command objects observe a convention about which slots are

Open Data Model - 18

used, so that the effects of a command are inspectable. The objects which are modified

by a command are stored into the OBJECTS_MODIFIED slot of the command object,

and values are stored in the VALUE and OLD_VALUE slots. For example, this enables

the undo history to display useful information about each command in addition to the

command name (which is all that can be displayed by most other systems).

Figure 5. A simple circuit design program created with Amulet that supports full editing
operations (cut, copy, paste, moving with the selection handles, etc.), load and save, animation
(the red 0 is moving along the bottom left wire), and gesture recognition (drawing an “O” with
the right mouse button down creates an OR gate, drawing an “A” makes an AND gate, etc., so
the user doesn’t have to keep going back to the palette on the left). Scripting of operations is
also supported. Due to Amulet’s use of the open data model and other high-level features, this
entire application only requires about 850 lines of C++.

It is worth emphasizing that the open data model, in addition to making it possible for

the command objects to be used without change, also enables automatic support for undo

in many cases. Whenever programmers use the standard command objects, all operations

are automatically undoable without writing any extra code. If the programmer creates

custom commands that perform application-specific actions, then a custom undo method

will have to be written as well. For example, in a circuit program (see Figure 5), deleting

the gates is handled automatically (along with the Undo that puts them back), but the

programmer has to write a method to delete the attached wires when a gate is deleted, and

Open Data Model - 19

also a corresponding undo method that restores the wires. However, we have found that

the open data model makes writing undo methods very easy. Most operations are

implemented by modifying slots of the objects, so the DO method simply copies the old

values of the object’s slots into the OLD_VALUE slot of the command object before the

modification, and the Undo method simply restores the saved values. Usually the

application’s data structures do not need to be modified to support undo.

Figure 6. On the left is a drawing program created using Amulet showing the result of a script
which subdivides a triangle into 3 smaller triangles, applied 13 times. This is called a
“Sierpinski Gasket.” In the upper right is the script, and the lower window shows the dialog box
for generalizing references to objects.

The inspectable nature of the commands also supports scriptability. Amulet’s scripting

mechanism [16] copies commands from the undo history for use in the new script. The

open data model allows the scripting mechanism to be independent of the original

application—the parameters of the command can be inspected and generalized. As

shown in Figure 6, Amulet can detect references to objects, locations, and other values in

the scripts. In some cases, it can automatically generalize them. For example, when an

object is created during the script and subsequently modified, then when the script is run,

the newly created object will be modified rather than the original example object. The

Open Data Model - 20

user can also specify how to generalize or edit the parameters. The important point is that

the application (in this case, the drawing program) does not need to write extra code to

support scripting since the open data model gives the scripting facility sufficient power to

inspect the command objects and manipulate their values. When the script is to be re-

executed, the appropriate method of each command can simply be called.

The open data model also enables behaviors such as the standard direct manipulation

interaction techniques to be supplied in the Amulet library. In most other toolkits, when

application-specific graphical objects are to be manipulated by the user (for example, to

move a rectangle with the mouse), the programmer must write methods on the graphical

object itself to handle the mouse down and mouse move events. In Amulet, an entirely

different design is used. Built-in behavior objects, called Interactor objects, are attached

to the graphical objects, and the Interactor objects handle all the input [14]. There are six

basic kinds of Interactors, and most direct manipulation behaviors can be achieved by

simply creating an instance of a built-in Interactor and setting a few parameters. For

example, to move a rectangle, a Move-Grow-Interactor is attached to it, and this

Interactor waits for a down press on the rectangle, and handles moving the rectangle until

the release. An important advantage of the Interactor model is increased reusability since

common options like gridding, resizing objects from any side, dealing with minimum

sizes, allowing interactions to be aborted, etc., are all implemented as part of the built-in

Move-Grow-Interactor and can be enabled as needed. When the Interactor is finished, it

allocates a command object so the operation can be undone. Other Interactor types in

Amulet handle selecting one or more from a set of objects, creating new objects, text

editing, gesture recognition, etc.

The open data model allows Amulet to successfully separate the “Controller” from the

“View” in the “Model-View-Controller” idea from Smalltalk [10]. This is because the

open data model allows the Interactors (as the controllers) to search for graphical objects

(as the view), and always know how to manipulate the graphical objects, even if the

objects are custom and application-specific. Most previous systems, including the

original Smalltalk implementation, had the View and Controller tightly linked, in that the

controller would have to be re-implemented whenever the view was changed, and vice

versa. Indeed, many later systems such as Andrew [25] and InterViews [13] combined

the view and controller and called both the “View.” In contrast, the open data model

allows Amulet’s Interactors to be independent of graphics, and the Interactors can be

reused in many different contexts.

The ability to find and examine the behavior objects themselves allows external utilities

to find out what the end user can potentially do in an application. This is possible in

Open Data Model - 21

Amulet because each behavior is represented by an explicit Interactor object or command

object. For example, a customization facility can be independent from the application

because it can query to find out all the operations that are available. The help system and

intelligent agents can find where particular commands are located on the menus or dialog

boxes so these can be highlighted. The scripting mechanism can determine all the ways

there are to set a value, and provide these as options for generalizations. For example, if

the user writes a script to change the color of objects, the scripting mechanism can query

the widgets of the application to find out which ones change the color of objects, and

provide these as options for ways to choose the color when the script is run. Similarly,

agents, help systems and tutors in Amulet would have no problem executing commands

as if they were the user, since the appropriate command object can be found and its DO

method executed. The debugging facility in Amulet can provide facilities to investigate

why behaviors did or did not execute by examining the events that trigger them and the

objects they operate on. This allows the Inspector to answer questions such as “why did

this Interactor not run when I clicked the left button” or “why is this command not active

now” [15].

6. Concerns About the Open Data Model

The main concerns with the open data model are that it would be too expensive to

implement systems using it, that it does not provide sufficient information hiding, and

that it is politically and technically difficult to achieve.

As computers continue to get inexorably faster with bigger memory and bigger disks,

most of the new power is being devoted to the user interface. Yesterday’s computers

were already able in real-time to format documents, recalculate spreadsheets, and

maintain constraints in drawings. No new computing power is needed for the basic

functionality used by the vast majority of computer users. Yesterday’s disks were already

big enough to hold all the text that a person might read or create in a lifetime, so storing

files in a slightly less efficient format will not have much impact. Instead, we can afford

to use the increased power of computers to make the users’ and programmers’ lives

easier. Since the open data model has so many benefits for both users and programmers,

it is worth spending the extra resources needed by it.

The most serious issue with the open data model is information hiding and security.

How can an application’s implementation details be kept hidden? Whereas since it is a

research system, Amulet provides a completely open environment that allows anything to

inspected and modified, Java shows how an open model can be more secure. In Java,

properties of objects can be declared public or private, and the reflection capabilities can

Open Data Model - 22

be limited to only the public properties. Modifiability of the properties can be allowed

only through the object’s public methods.

A related question is that if all applications are required to publish their data formats,

then what happens when a new version needs new fields of the data structures, or if old

fields disappear or change types? Part of the answer is that external applications do not

need to be hard-wired with knowledge of a data structure’s format because they can

inquire as to the properties of objects. The Amulet architecture tags the data with types

and other meta-information, which allows external applications to determine the types of

data at run time. Java’s “reflection” mechanism supports the same kind of inspection of

an application’s data structures. Thus, the external applications will not necessarily need

to be recoded when the data structure evolves.

Can this vision be achieved? Technically, Amulet demonstrates that many of the

desirable characteristics can be implemented fairly easily, and section 3.9 argued that

using the open data model will be easier for programmers than today’s protocols.

Politically, all applications have been willing to adhere to some previous standards, if

there are clear benefits and they do not impose too much extra work. For example, Apple

stipulated that all applications for the Macintosh must support a standard set of formats

for the clipboard for Cut and Paste, including a textual format and a picture format.

Applications are free to add additional complexity if desired. Every Macintosh

application supports the clipboard. On the PC, Microsoft’s OLE integration capabilities

are being used by at least some of the Windows software, and would arguably be used by

many more if OLE was not so complex to adhere to. Building the capabilities into the

programming language, as in Java, makes the open data model even easier to support. If

a powerful vendor or consortium was to endorse the open data model, then end users and

programmers would benefit, so we can hope that the industry will continue to move in

this direction.

7. Conclusions

We are excited by the many possibilities enabled by the open data model. A number of

researchers are exploring this model, and some open data capabilities are becoming

available in new commercial systems like Java.

We hope that a full open data model will soon be available in commercial toolkits, so

that all of the advantages can be widely exploited. These include the built-in, ubiquitous

support for automation, macros and end user customization, agents and tutors, advanced

checkers, rich search and replace, semantic markings, alternative interfaces, and micro-

components. At the same time, the open data model makes it easier for the programmers

Open Data Model - 23

because more higher-level capabilities can be supplied by the toolkit and reused by

applications. For example, the Amulet toolkit demonstrates that selection handles, undo,

editing commands, scripting, searching, file save and load, and debugging can be

supplied in a library and used without changes by many applications. The result of using

the open data model is more features for users while at same time making it easier for

programmers, so we hope that it will be increasingly studies and adopted.

Acknowledgments

For help with this paper, I would like to thank Dan Olsen, Brad Vander Zanden, and

Rob Miller.

The Amulet toolkit has been developed by Brad A. Myers, Rich McDaniel, Rob Miller,

Alan Ferrency, Andrew Faulring, Ellen Borison, Bruce Kyle, Andy Mickish, Alex

Klimovitski, and Patrick Doane.

References

1. Curbow, D., et al., Human Interface Specification for the Macintosh Implementation.
Apple Computer, Inc., OpenDoc Version 1.0, Specification Version 1.0.3, 1995,
http://www.opendoc.apple.com/.

2. Cypher, A. “EAGER: Programming Repetitive Tasks by Example,” in Proceedings
SIGCHI'91: Human Factors in Computing Systems. 1991. New Orleans, LA: pp. 33-39.

3. Dertouzos, M., What Will Be. 1997, San Francisco: HarperEdge.

4. Dragon Systems Inc., “DragonDictate v3.0,” 1998. http://www.dragondictate.com/.

5. Greenberg, S., Gutwin, C., and Roseman, M. “Semantic Telepointers for Groupware,”
in OzCHI '96 Sixth Australian Conference on Computer-Human Interaction. 1996.
Hamilton, New Zealand: pp. 24-27.

6. Hudson, S., Rodenstein, R., and Smith, I. “Debugging Lenses: A New Class of
Transparent Tools for User Interface Debugging,” in Proceedings UIST'97: ACM
SIGGRAPH Symposium on User Interface Software and Technology. 1997. Banff,
Alberta, Canada: pp. 179-187.

7. Hudson, S.E., A System for Efficient and Flexible One-Way Constraint Evaluation in
C++. Graphics Visualization and Usability Center, College of Computing, Georgia
Institute of Technology, 1993,

8. Hudson, S.E. and Smith, I. “Ultra-Lightweight Constraints,” in Proceedings UIST'96:
ACM SIGGRAPH Symposium on User Interface Software and Technology. 1996. Seattle,
WA: pp. 147-155. http://www.cc.gatech.edu/gvu/ui/sub_arctic/.

9. IBM, “ViaVoice,” 1998. http://www.software.ibm.com/is/voicetype/.

Open Data Model - 24

10. Krasner, G.E. and Pope, S.T., “A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 system.” Journal of Object Oriented
Programming, 1988. 1(3): pp. 26-49.

11. Kurlander, D. and Bier, E.A. “Graphical Search and Replace,” in Proceedings
SIGGRAPH'88: Computer Graphics. 1988. Atlanta, GA: 22. pp. 113-120.

12. Lieberman, H. “Integrating User Interface Agents with Conventional Applications,”
in 1998 International Conference On Intelligent User Interfaces. 1998. San Francisco,
CA: pp. 39-46.

13. Linton, M.A., Vlissides, J.M., and Calder, P.R., “Composing user interfaces with
InterViews.” IEEE Computer, 1989. 22(2): pp. 8-22.

14. Myers, B.A., “A New Model for Handling Input.” ACM Transactions on Information
Systems, 1990. 8(3): pp. 289-320.

15. Myers, B.A., “Debugging 'Why-Not' Questions in Graphical User Interface
Software,” 1998. Submitted for Publication.

16. Myers, B.A. “Scripting Graphical Applications by Demonstration,” in Proceedings
SIGCHI'98: Human Factors in Computing Systems. 1998. Los Angeles, CA: pp. 534-
541.

17. Myers, B.A., et al., The Amulet V3.0 Reference Manual. Carnegie Mellon University
Computer Science Department, CMU-CS-95-166-R2, 1997,
http://www.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/Amulet_ManualTOC.doc.h
tml.

18. Myers, B.A., et al., “Garnet: Comprehensive Support for Graphical, Highly-
Interactive User Interfaces.” 1990. 23(11): pp. 71-85.

19. Myers, B.A. and Kosbie, D. “Reusable Hierarchical Command Objects,” in
Proceedings CHI'96: Human Factors in Computing Systems. 1996. Vancouver, BC,
Canada: pp. 260-267.

20. Myers, B.A., et al., “The Amulet Environment: New Models for Effective User
Interface Software Development.” IEEE Transactions on Software Engineering, 1997.
23(6): pp. 347-365. June.

21. Myers, B.A. and Vander Zanden, B., “Environment for Rapid Creation of Interactive
Design Tools.” The Visual Computer; International Journal of Computer Graphics,
1992. 8(2): pp. 94-116.

22. Mynatt, E. and Edwards, W.K. “Mapping GUIs to Auditory Interfaces,” in
Proceedings UIST'92: ACM SIGGRAPH Symposium on User Interface Software and
Technology. 1992. Monterey, CA: pp. 61-70.

23. Olsen Jr., D.R., et al. “Generalized Pointing: Enabling Multiagent Interaction,” in
Proceedings SIGCHI'98: Human Factors in Computing Systems. 1998. Los Angeles, CA:
pp. 526-533.

Open Data Model - 25

24. Ousterhout, J.K., “Scripting: Higher-Level Programming for the 21st Century.” IEEE
Computer, 1998. 31(3): pp. 23-30. March.

25. Palay, A.J., et al. “The Andrew Toolkit - An Overview,” in Proceedings Winter
Usenix Technical Conference. 1988. Dallas, Tex: pp. 9-21.

26. Raskin, J., “OpenDoc: Another Half a Loaf.” Interactions, 1997. 4(3): pp. 14-15.
May+June.

27. Visix Software Inc., “Galaxy Application Environment. 11440 Commerce Park
Drive, Reston VA 22091. (800) 832-8668,” 1997. Company dissolved in 1998.

28. Wilson, D., Programming with MacApp. 1990, Reading, MA: Addison-Wesley
Publishing Company.

