The Statistical Properties of Host Load

Peter A. Dinda

July 1998
CMU-CS-98-143

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

A version of this paper will appear in the Proceedings of the Fourth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR98).

Effort sponsored in part by the Advanced Research Projects Agency and Rome Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-96-1-0287, in part by the National Science Foundation under Grant
CMS-9318163, and in part by a grant from the Intel Corporation. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreteesasrily representing the official
policies or endorsements, either expressed or implied, of the Advanced Research Projects Agency, Rome Laboratory,
or the U.S. Government.



Keywords: load traces, load statistics, statistical analysis, time-series analysis, self-similarity,
epochal behavior



Abstract

Understanding how host load changes over time is instrumental in predicting the execution time of
tasks or jobs, such as in dynamic load balancing and distributed soft real-time systems. To improve
this understanding, we collected week-long, 1 Hz resolution Unix load average traces on 38 differ-
ent machines including production and research cluster machines, compute servers, and desktop
workstations Separate sets of traces were collected at two different times of the year. The traces
capture all of the dynamic load information available to user-level programs on these machines.
We present a detailed statistical analysis of these traces here, including summary statistics, distri-
butions, and time series analysis results. Two significant new results are that load is self-similar
and that it displays epochal behavior. All of the traces exhibit a high degree of self similarity with
Hurst parameters ranging from .63 to .97, strongly biased toward the top of that range. The traces
also display epochal behavior in that the local frequency content of the load signal remains quite
stable for long periods of time (150-450 seconds mean) and changes abruptly at epoch boundaries.






1 Introduction

The distributed computing environments to which most users have access consist of a collection
of loosely interconnected hosts running vendor operating systems. Tasks are initiated indepen-
dently by users and are scheduled locally by a vendor supplied operating system; there is no global
scheduler that controls access to the hosts. As users run their jobs the computational load on the
individual hosts changes over time.

Deciding how to map computations to hosts in systems with such dynamically changing loads
(what we will call themapping problernis a basic problem that arises in a number of important
contexts, such as dynamically load-balancing the tasks in a parallel program [20, 1, 22], and
scheduling tasks to meet deadlines in a distributed soft real-time system [12, 18, 19].

Host load has a significant effect on running time. Indeed, the running time of a compute bound
task is directly related to the average load it encounters during execution. Determining a good map-
ping of a task requires a prediction, either implicit or explicit, of the load on the prospective remote
hosts to which the task could be mapped. Making such predictions demands an understanding of
the qualitative and quantitative properties of load on real systems. If the tasks to be mapped are
short, this understanding of load should extend to correspondingly fine resolutions. Unfortunately,
to date there has been little work on characterizing the properties of load at fine resolutions. The
available studies concentrate on understanding functions of load, such as availability [17] or job
durations [6, 14, 8]. Furthermore, they deal with the coarse grain behavior of load — how it
changes over minutes, hours and days.

This paper is a first step to a better understanding the properties of load on real systems at
fine resolutions. We collected week-long, 1 Hz resolution traces of the Unix load average on 38
different machines that we classify as production and research cluster machines, compute servers,
or desktop workstations. We collected two sets of such traces at different times of the year. The 1
Hz sample rate is sufficient to capture all of the dynamic load information that is available to user-
level programs running on these machines. In this paper, we present a detailed statistical analysis
of the first set of traces, taken in August, 1997. The results are similar for the second set, so we
have omitted them to save space. We also contemplate the implications of those properties for the
mapping problem.

The basic question is whether load traces that might seem at first glance to be random and
unpredictable might have structure that could be exploited by a mapping algorithm. Our results
suggest that load traces do indeed have some structure in the form of clearly identifiable proper-
ties. In essence, our results characterize how load varies, which should be of interest not only to
developers of mapping and prediction algorithms, but also to those who need to generate realistic
synthetic loads in simulators or to those doing analytic work. Here is a summary of our results and
their implications:

(1) The traces exhibit low means but very high standard deviations and maximums. Only four
traces had mean loads near 1.0. The standard deviation is typically at least as large as the mean,
while the maximums can be as much as two orders of magnitude larger. The implication is that
these machines have plenty of cycles to spare to execute jobs, but the execution time of these jobs
will vary drastically.

(2) Standard deviation and maximum, which are absolute measures of variation, are positively
correlated with the mean, so a machine with a high mean load will also tend to have a large standard
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deviation and maximum. However, these measures do not grow as quickly as the mean, so their
corresponding relative measures actuahyink as the mean increases. The implication is that if

the mapping problem assumes a relative metric, it may not be unreasonable to use the host with
higher mean load.

(3) The traces have complex, rough, and often multimodal distributions that are not well fitted
by analytic distributions such as the normal or exponential distributions. Even for the traces which
exhibit unimodally distributed load, the normal distribution’s tail is too short while the exponen-
tial distribution’s tail is too long. The implication is that modeling and simulation that assumes
convenient analytical load distributions may be flawed.

(4) Time series analysis of the traces shows that load is strongly correlated over time. The au-
tocorrelation function typically decays very slowly while the periodogram shows a broad, almost
noise-like combination of all frequency components. An important implication is that history-
based load prediction schemes seem very feasible. However, the complex frequency domain be-
havior suggests that linear modeling schemes may have difficulty. From a modeling point of view,
it is clearly important that these dependencies between successive load measurements are captured.

(5) The traces are self-similar. Their Hurst parameters range from .63 to .97, with a strong bias
toward the top of that range. This tells us that load varies in complex ways on all time scales and is
long term dependent. This has several important implications. First, smoothing load by averaging
over an interval results in much smaller decreases in variance than if load were not long range
dependent. Variance decays with increasing interval lengtind Hurst parametei asm?" 2.

This ism =1 for signals without long range dependence and™ to m =% for the range of

H we measured. This suggests that task migration in the face of adverse load conditions may
be preferable to waiting for the adversity to be ameliorated over the long term. The self-similarity
result also suggests certain modeling approaches, such as fractional ARIMA models [9, 7, 3] which
can capture this property.

(6) The traces display epochal behavior. The local frequency content of the load signal re-
mains quite stable for long periods of time (150-450 seconds mean) and changes abruptly at the
boundaries of such epochs. This suggests that the problem of predicting load may be able to be
decomposed into a sequence of smaller subproblems.

2 Measurement methodology

The load on a Unix system at any given instant is the number of processes that are running or
are ready to run, which is the length of the ready queue maintained by the scheduler. The kernel
samples the length of the the ready queue at some rate and exponentially averages some number
of previous samples to produce a load average which can be accessed from a user program.

We developed a small tool to sample the Digital Unix (DUX) one minute load average at
one second intervals and log the resulting time series to a data file. The 1 Hz sample rate was
arrived at by subjecting DUX systems to varying loads and sampling at progressively higher rates
to determine the rate at which DUX actually updated the value. DUX updates the value at a rate
of 1/2 Hz, thus we chose a 1 Hz sample rate by the Nyquist criterion. This choice of sample rate
means we capture all of the dynamic load information the operating system makes available to user
programs. We ran this trace collection tool on 38 hosts belonging to the Computing, Media, and
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Figure 1: Correlation coefficients (CCs) between all of the discussed statistical properties.

Communication Laboratory (CMCL) at CMU and the Pittsburgh Supercomputing Center (PSC) for
slightly more than one week in late August, 1997. A second set of week-long traces was acquired
on almost exactly the same set of machines in late February and early March, 1998. The results of
the statistical analysis were similar for the two sets of traces. In this paper, we concentrate on the
August 1997 set.

All of the hosts in the August 1997 set were DEC Alpha DUX machines, and they form four
classes:

e Production Cluster13 hosts of the PSC'’s “Supercluster”, including two front-end machines
(axpfea, axpfeb), four interactive machines (axp0 through axp3), and seven batch machines
scheduled by a DQS [13] variant (axp4 through axp10.)

¢ Research Clusteright machines in an experimental cluster in the CMCL
(manchester-1 through manchester-8.)

¢ Compute servergwo high performance large memory machines used by the CMCL group
as compute servers for simulations and the like (mojave and sahara.)

e Desktops 15 desktop workstations owned by members of the CMCL (aphrodite through
zeno.)

3 Statistical analysis

We analyzed the individual load traces using summary statistics, histograms, fitting of analytic
distributions, and time series analysis. The picture that emerges is that load varies over a wide
range in very complex ways. Load distributions are rough and frequently multimodal. Even traces
with unimodal histograms are not well fitted by common analytic distributions, which have tails
that are either too short or too long. Time series analysis shows that load is strongly correlated
over time, but also has complex, almost noise-like frequency domain behavior.

We summarized each of our load traces in terms of our statistical measures and computed their
correlations to determine how the measures are related. Figure 1 contains the results. Each cell
of the table is the correlation coefficient (CC) between the row measure and the column measure,
computed over the 38 load traces. We will refer back to the highlighted cells throughout the paper.
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Figure 2: Mean load +/- one standard deviation.

It is important to note that these cross correlations can serve as a basis for clustering load traces
into rough equivalence classes.

Summary statistics:

Summarizing each load trace in terms of its mean, standard deviation, and maximum and minimum
illustrates the extent to which load varies. Figure 2 shows the mean load and the +/- one standard
deviation points for each of the traces. As we might expect, the mean load on desktop machines is
significantly lower than on other machines. However, we can also see a lack of uniformity within
each class, despite the long duration of the traces. This is most clear among the Production Cluster
machines, where four machines seem to be doing most of the work. This lack of uniformity even
over long time scales shows clear opportunity for load balancing or resource management systems.

From Figure 2 we can also see that desktop machines have smaller standard deviations than the
other machines. Indeed, the standard deviation, which shows how much load vaiE®iate
terms, grows with increasing mean load (CC=0.53 from Figure 1.) Howevee]ative terms,
variance shrinks with increasing mean load. This can be seen in Figure 3, which plots the coef-
ficient of variation (the standard deviation divided by the mean, abbreviated as the COV) and the
mean load for each of the load traces. Here we can see that desktop machines, with their smaller
mean loads, have large COVs compared to the other classes of machines. The CC between mean
load and the COV of load is -0.49. Itis clear that as load increases, it Vas&a relative terms
andmorein absolute terms.

This difference between absolute and relative behavior also holds true for the maximum load.
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Figure 3: COV of load and mean load.

Figure 4 shows the minimum, maximum, and mean load for each of the traces. The minimum load
is, not surprisingly, zero in every case. The maximum load is positively correlated with the mean
load (CC=0.60 in Figure 1.) Figure 5 plots the ratio max/mean and the mean load for each of the
traces. Itis clear that this relative measure is inversely related to mean load, and Figure 1 shows
that the CC is -0.36. It is also important to notice that while the differences in maximum load
between the hosts are rather small (Figure 4), the differences in the max/mean ratio can be quite
large (Figure 5.) Desktops are clearly more surprising machines in relative terms.

With respect to the mapping problem, the implication of the differences between relative and
absolute measures of variability is that lightly loaded (low mean load) hosts are not always prefer-
able over heavily loaded hosts. For example, if the performance metric is itself a relative one (that
the execution time not vary much relative to the mean execution time, say), then a more heavily
loaded host may be preferable.

Distributions:

We next treated each trace as arealization of an independent, identically dist(iidjstbchastic
process. Such a process is completely described by its probability distribution function (pdf),
which does not change over time. Since we have a vast number of data points for each trace,
histograms closely approximate this underlying pdf. We examined the histograms of each of our
load traces and fitted normal and exponential distributions to them. To illustrate the following
discussion, Figure 6 shows the histograms of load measurements on (a) axpO and (b) axp7 on
August 19, 1997 (86400 samples each.) AxpO has a high mean load, while axp7 is much more
lightly loaded.

Some of the traces, especially those with high mean loads, have multimodal histograms. Fig-
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Figure 4: Minimum, maximum, and mean load.

ure 6(a) is an example of such a multimodal distribution while Figure 6(b) shows a unimodal
distribution. Typically, the modes are integer multiples of 1.0 (and occasionally 0.5.) One explana-
tion for this behavior is that jobs on these machines are for the most part compute bound and thus
the ready queue length corresponds to the number of jobs. This seems plausible for the cluster ma-
chines, which run scientific workloads for the most part. However, such multimodal distributions
were also noticed on the some of the other machines.

The rough appearance of the histograms (consider Figure 6(b)) is due to the fact that the under-
lying quantity being measured (ready queue length) is discrete. Load typically takes on 600-3000
unique values in these traces. Shannon’s entropy measure [21] indicates that the load traces can
be encoded in 1.4 to 8.48 bits per value, depending on the trace. These observations and the
histograms suggest that load spends most of its time in one of a small number of levels.

The histograms share very few common characteristics and did not conform well to the analytic
distributions we fit to them. Quantile-quantile plots are a powerful way to assess how a distribution
fits data (cf. [11], pp. 196—200.) The quantiles (thguantile of a pdf (or histogram) is the value
at which100« % of the probability (or data) falls to the left @) of the data set are plotted against
the quantiles of the hypothetical analytic distribution. Regardless of the choice of parameters, the
plot will be linear if the data fits the distribution.

We fitted normal and exponential distributions to each of the load traces. The fits are atrocious
for the multimodal traces, and we do not discuss them here. For the unimodal traces, the fits are
slightly better. Figure 7 shows quantile-quantile plots for (a) normal and (b) exponential distri-
butions fitted to the unimodal axp7 load trace of Figure 6(b). Neither the normal or exponential
distribution correctly captures the tails of the load traces. This can be seen in the figure. The
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Figure 6: Histograms for load on axp0 and axp7 on August 19, 1997.

guantiles of the data grow faster than those of the normal distribution toward the right sides of
Figures 7(a). This indicates that the data has a longer or heavier tail than the normal distribution.
Conversely, the quantiles of the data grow more slowly than those of the exponential distribution,
as can be seen in Figures 7(b). This indicates that the data has a shorter tail than the exponential
distrib2ution. Notice that the exponential distribution goes&swhile the normal distribution goes

ase .
There are two implications of these complex distributions. First, simulation studies and analytic
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Figure 8: Time series analysis of axp7 load trace collected on August 19, 1997.

results predicated on simple, analytic distributions may produce erroneous results. Clearly, trace-
driven simulation studies are to be preferred. The second implication is that prediction algorithms
should not only reduce the overall variance of the load signal, but also produce errors that are better
fit an analytic distribution. One reason for this is to make confidence intervals easier to compute.
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Time series analysis:

We examined the autocorrelation function, partial autocorrelation function, and periodogram of
each of the load traces. These time series analysis tools show that past load values have a strong
influence on future load values. For illustration, Figure 8 shows (a) the axp7 load trace collected
on August 19, 1997, (b) its autocorrelation function to a lag of 600, and (c) its periodogram. The
autocorrelation function, which ranges from -1 to 1, shows how well a load value atttine
linearly correlated with its corresponding load value at timeA — in effect, how well the value

at timet predicts the value at time+ A. Autocorrelation is a function ah\, and in the figure we

show the results fob < A < 600. Notice that even af\ = 600 seconds, values are still strongly
correlated. This very strong, long range correlation is common to each of the load traces. For space
reasons, we do not discuss the partial autocorrelation results here. However, it is important to note
that the behavior of the autocorrelation and partial autocorrelation functions is instrumental to the
Box-Jenkins linear time series model identification process [4].

The periodogram of a load trace is the magnitude of the Fourier transform of the load data,
which we plot on a log scale (Figure 8(c).) The periodogram shows the contribution of different
frequencies (horizontal axis) to the signal. What is clear in the figure, and is true of all of the load
traces, is that there are significant contributions from all frequencies — the signal looks much like
noise. We believe the two noticeable peaks to be artifacts of the kernel sample rate — the kernel
is not sampling the length of the ready queue frequently enough to avoid aliasing. Only a few of
the other traces exhibit the smaller peaks, but they all share the broad noise-like appearance of this
trace.

There are several implications of this time series analysis. First, the existence of such strong
autocorrelation implies that load prediction based on past load values is feasible. It also suggests
that simulation models and analytical work that eschews this very clear dependence may be in
error. Finally, the almost noise-like periodograms suggest that quite complex, possibly nonlinear
models will be necessary to produce or predict load.

4 Self-similarity

The key observation of this section is that each of the load traces exhibits a high degree of self-
similarity. This is significant for two reasons. First, it means that load varies significantly across
all time-scales — it is not the case that increasing smoothing of the load quickly tames its variance.
A job will have a great deal of variance in its running time regardless of how long it is. Second, it
suggests that load is difficult to model and predict well. In particular, self-similarity is indicative of
long memory, possibly non-stationary stochastic processes such as fractional ARIMA models [9,
7, 3], and fitting such models to data and evaluating them can be quite expensive.

Figure 9 visually demonstrates the self similarity of the axp7 load trace. The top graph in the
figure plots the load on this machine versus time for 10 days. Each subsequent graph “zooms in” on
the highlighted central 25% of the previous graph, until we reach the bottom graph, which shows
the central 60 seconds of the trace. The plots are scaled to make the behavior on each time scale
obvious. In particular, over longer time scales, wider scales are necessary. Intuitively, a self-similar
signal is one that looks similar on different time scales given this rescaling. Although the behavior
on the different graphs is not identical, we can clearly see that there is significant variation on all
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Figure 10: Meaning of the Hurst parameter in frequency domain.

time scales.

An important point is that as we smooth the signal (as we do visually as we “zoom out” toward
the top of the page in Figure 9), the load signal strongly resists becoming uniform. This suggests
that low frequency components are significant in the overall mix of the signal, or, equivalently,
that there is significant long range dependence. It is this property of self-similar signals that most
strongly differentiates them and causes significant modeling difficulty.

Self-similarity is more than intuition — it is a well defined mathematical statement about the
relationship of the autocorrelation functions of increasingly smoothed versions of certain kinds of
long-memory stochastic processes. These stochastic processes model the sort of the mechanisms
that give rise to self-similar signals. We shall avoid a mathematical treatment here, but interested
readers may want to consult [15] or [16] for a treatment in the context of networking or [2] for its
connection to fractal geometry, or [3] for a treatment from a linear time series point of view.

The degree and nature of the self-similarity of a sequence is summarized by the Hurst param-
eter, H [10]. Intuitively, H describes the relative contribution of low and high frequency compo-
nents to the signal. Consider Figure 10, which plots the periodogram (the magnitude of the Fourier
transform) of the axp7 load trace of August 19, 1997 on a log-log scale. In this transformed form,
we can describe the trend with a line of slepg (meaning that the periodogram decays hyperbol-
ically with frequencyw asw=". The Hurst parametdt is then defined a&l = (1 + 3)/2. As we
can see in Figure 104 = 0.5 corresponds to a line of zero slope. This is the uncorrelated noise
case, where all frequencies make a roughly equal contributio®! Agreases beyontl5, we see
that low frequencies make more of a contribution. SimilarlyHagecreases below 5, low fre-
guencies make less of a contributidih.> 0.5 indicates self-similarity with positive near neighbor
correlation, whileH < 0.5 indicates self-similarity with negative near neighbor correlation.

We examined each of the 38 load traces for self-similarity and estimated each one’s Hurst pa-
rameter. There are many different estimators for the Hurst parameter [23], but there is no consensus
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Figure 11: Mean Hurst parameter estimates for traces +/- one standard deviation.

on how to best estimate the Hurst parameter of a measured series. The most common technique is
to use several Hurst parameter estimators and try to find agreement among them. The four Hurst
parameter estimators we used were R/S analysis, the variance-time method, dispersional analy-
sis, and power spectral analysis. A description of these estimators as well as several others may be
foundin [2]. The advantage of these estimators is that they make no assumptions about the stochas-
tic process that generated the sequence. However, they also cannot provide confidence intervals
for their estimates. Estimators such as the Whittle estimator [3] can provide confidence intervals,
but a stochastic process model must be assumed over whiEhcan be found that maximizes its
likelihood.

We implemented R/S analysis and the variance-time method using Matlab and performed dis-
persional analysis and power spectral analysis by hand on graphs prepared via Matlab. We val-
idated each method by examining degenerate series with kidbvand series with specifié/
generated using the random midpoint displacement method. The dispersional analysis method was
found to be rather weak faf values less than abo0i8 and the power spectral analysis method
gave the most consistent results.

Figure 11 presents our estimates of the Hurst parameters of each of the 38 load traces. In the
graph, each central point is the mean of the four estimates, while the outlying points are at +/-
one standard deviation. Notice that for sméllvalues, the standard deviation is high due to the
inaccuracy of dispersional analysis. The important point is that the mean Hurst estimates are all
significantly above thé/ = 0.5 line and except for three traces with lo# values, their +/- one
standard deviation points are also above the line.
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The traces exhibit self-similarity with Hurst parameters ranging from 0.63 to 0.97, with a strong
bias toward the top of that range. On examination of the correlation coefficients (CCs) of Figure 1,
we can see that the Hurst parameter has some correlation with mean load (CC=0.45), standard
deviation of load (CC=0.58), and is inversely correlated with the max/mean load ratio (CC=-0.49).
The latter seems somewhat surprising.

As we discussed above, self-similarity has implications for load modeling and for load smooth-
ing. The long memory stochastic process models that can capture self-similarity tend to be expen-
sive to fit to data and evaluate. Smoothing the load (by mapping large units of computations instead
of small units, for example) may be misguided since variance may not decline with increasing
smoothing intervals as quickly as quickly as expected. Consider smoothing load by averaging over
an interval of lengthn. Without long range dependenc# (= 0.5), variance would decay with
m asm ™'Y, while with long range dependence,a$”~% or m =™ andm "¢ for the range of
Hurst parameters we measured.

5 Epochal behavior

The key observation in this section is that while load changes in complex ways, the manner in
which it changes remains relatively constant for relatively long periods of time. We refer to a
period of time in which this stability holds true as an epoch. For example, the load signal could be

a 0.25 Hz Sin wave for a minute and a 0.125 Hz sawtooth wave the next minute — each minute
is an epoch. That these epochs exist and are long is significant because it suggests that modeling
load can be simplified by modeling epochs separately from modeling the behavior within an epoch.
Similarly, it suggests a two stage prediction process.

The spectrogram representation of a load trace immediately highlights the epochal behavior we
discuss in this section. A spectrogram combines the frequency domain and time domain represen-
tations of a time series. It shows how the frequency domain changes locally (for a small segment
of the signal) over time. For our purposes, this local frequency domain information is the “manner
in which [the load] changes” to which we referred earlier. To form a spectrogram, we slide a win-
dow of lengthw over the series, and at each offsetve Fourier-transform the elements in the
window to give usw complex Fourier coefficients. Since our load series is real-valued, only the
first w/2 of these coefficients are needed. We form a plot where: tbeordinate is the offse,
they coordinate is the coefficient numbeér2, ... w/2 and thez coordinate is the magnitude of
the coefficient. To simplify presentation, we collapse to two dimensions by mapping the logarithm
of thez coordinate (the magnitude of the coefficient) to color. The spectrogram is basically a mid-
point in the tradeoff between purely time-domain or frequency-domain representations. Along the
x axis we see the effects of time and along #hexis we see the effects of frequency.

Figure 12 shows a representative case, a 24 hour trace from the PSC host axp7, taken on August
19, 1997. The top graph shows the time domain representation, while the bottom graph shows the
corresponding spectrogram representation. What is important to note (and which occurs in all
the spectrograms of all the traces) are the relatively wide vertical bands. These indicate that the
frequency domain of the underlying signal stays relatively stable for long periods of time. We refer
to the width of a band as the duration of that frequency epoch.

That these epochs exist can be explained by programs executing different phases, programs
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Figure 12: Time domain and spectrogram representations of load for host axp7 on August 19,
1997.
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being started and shut down, and the like. The frequency content within an epoch contains energy
at higher frequencies because of events that happen on smallefraimes, such as user input,
device driver execution, and daemon execution.

We can algorithmically find the edges of these epochs by computing the difference in adja-
cent spectra in the spectrogram and then looking for those offsets where the differences exceed
a threshold. Specifically, we compute the sum of mean squared errors for each pair of adjacent
spectra. The elements of this error vector are compared to an epsilon (5% here) times the mean of
the vector. Where this threshold is exceeded, a new epoch is considered to begin. Having found
the epochs, we can examine their statistics. Figure 13 shows the mean epoch length and the +/- one
standard deviation levels for each of the load traces. The mean epoch length ranges from about 150
seconds to over 450 seconds, depending on which trace. The standard deviations are also relatively
high (80 seconds to over 600 seconds.) Itis the Production Cluster class which is clearly different
when it comes to epoch length. The machines in this class tend to have much higher means and
standard deviations than the other machines. One explanation might be that most of the machines
run batch-scheduled scientific jobs which may well have longer computation phases and running
times. However, two of the interactive machines also exhibit high means and standard deviations.
Interestingly, there is no correlation of the mean epoch length and standard deviation to the mean
load or to the Hurst parameter, as can be seen in Figure 1.

The standard deviations of epoch length in Figure 13 give us an absolute measure of the vari-
ance of epoch length. Figure 14 shows the coefficient of variance (COV) of epoch length and
mean epoch length for each trace. The COV is our relative measure of epoch length variance. Un-
like with load (Section 3), these absolute and relative measures of epoch length varidoa#hare
positively correlated with the mean epoch length. In addition, the correlation is especially strong
(CC=0.99 for standard deviation and CC=0.95 for COV). As epoch length increases, it varies more
in both absolute and relative terms. The statistical properties of epoch lengths are independent of

14



Research
Cluster

Production Cluster Desktops

1200

\4
A 4

1000 + v v
800
600

400 -

ZOOI

-200

Epoch Length (seconds)

+SDev
Mean
-SDev

»
>
»
>
B
»
>
»
>

»
| o
»
| o
»
| o
»
»

R U

axp0
axpl
axp2
axp3
axp4
axp5
axp6
axp7
axp8
axp9
axpl0
axp!
argus
asbury-park
bruce
cobain
darryl
hawaii
hestia
newark
pryor
rhea
rubix
themis
uranus
zeno

- -

aphrodite
asclepius

manches
manches
manches!
manches!
manches
- manches
3 manches

Figure 13: Mean epoch length +/- one standard deviation.

the statistical properties of load.

The implication of long epoch lengths is that the problem of predicting load may be able to be
decomposed into a segmentation problem (finding the epochs) and a sequence of smaller prediction
subproblems (predicting load within each epoch.)

Lack of seasonality:

It is important to note that the epochal behavior of the load traces is not the same thing as season-
ality in the time series analysis sense [5, 4]. Seasonality means that there are dominant (or at least
visible) underlying periodic signals on top of which are layered other signals. Itis not unreasonable
to expect seasonality given that other studies [17] have found that availability of compute resources
to change regularly over the hours of the working day and the days of the working week. However,
examination of the power spectrums and autocorrelations of the load traces suggests that load does
not exhibit seasonality. We feel this does not contradict the earlier results — the fluctuation of
resources simply is not sufficiently periodic to qualify as seasonality in the strict time series sense.

6 Conclusions and future work

We collected long, fine grain load measurements on a wide variety of machines at two different
times of the year. The results of an extensive statistical analysis of these traces and their implica-
tions are the following:
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Figure 14: COV of epoch length and mean epoch length.

. The traces exhibit low means but very high standard deviations and maximums. This implies
that these machines have plenty of cycles to spare to execute jobs, but the execution time of
these jobs will vary drastically.

. Absolute measures of variation are positively correlated with the mean while relative mea-
sures are negatively correlated. This suggests that it may not be unreasonable to map tasks
to heavily loaded machines under some performance metrics.

. The traces have complex, rough, and often multimodal distributions that are not well fitted by
analytic distributions such as the normal or exponential distributions, which are particularly
inept at capturing the tail of the distribution. This implies that modeling and simulation that
assumes convenient analytical load distributions may be flawed. Trace-driven simulation
may be preferable.

. Load is strongly correlated over time, but has a broad, almost noise-like frequency spectrum.
This implies that history-based load prediction schemes are feasible, but that linear methods
may have difficulty. Realistic load models should capture this dependence, or trace-driven
simulation should be used.

. The traces are self-similar with relatively high Hurst parameters. This means that load
smoothing will decrease variance much more slowly than expected. It may be preferable
to migrate tasks in the face of adverse load conditions instead of waiting for the adversity to
be ameliorated over the long term. Self-similarity also suggests certain modeling approaches
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such as fractional ARIMA models [9, 7, 3] and non-linear models which can capture the self
similarity property.

6. The traces display epochal behavior in that the local frequency content of the load signal
remains quite stable for long periods of time and changes abruptly at the boundaries of such
epochs. This suggests that the problem of predicting load may be able to be decomposed
into a sequence of smaller subproblems.

We are currently exploring how well the hierarchy of linear time series models [4] perform for
short term prediction of load. Part of this work involves quantifying the benefit of capturing the
self-similarity of load using fractional ARIMA models [7, 9, 3]. Initial results show that fractional
models provide as much as a 40% improvement in prediction error and rarely perform worse than
their non-fractional counterparts.

The context of our work is dynamically mapping real-time tasks to hosts in a distributed en-
vironment. In this context, we are interested in load models for classifying environments and
hosts, synthesizing realistic execution times in a simulator, and for predicting execution times on
remote hosts. We will gladly share the load traces we have collected with members of the research
community.
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