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Abstract

Recognizing a target in synthetic-aperture radar (SAR) images is an important, yet
challenging, application of the model-based vision technique. This paper describes a
model-based SAR recognition system based on invariant histograms and deformable
template matching techniques. An invariant histogram is a histogram of invariant val-
ues defined by geometric features such as points and lines in SAR images. Although a
few invariants are sufficient to recognize a target, we use a histogram of all invariant
values given by all possible target feature pairs. This redundant histogram enables
robust recognition under severe occlusions typical in SAR recognition scenarios.
Multi-step deformable template matching examines the existence of an object by
superimposing templates over potential energy field generated from images or primi-
tive features. It determines the template configuration which has the minimum defor-
mation and the best alignment of the template with features. The deformability of the
template absorbs the instability of SAR features. We have implemented the system and
evaluated the system performance using hybrid SAR images, generated from synthe-
sized model signatures and real SAR background signatures.
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1. Introduction

Recognizing a target in synthetic-aperture radar (SAR) images [1]-[2] is a difficult problem for
conventional computer vision systems. A SAR image is a collection of radar return signals, accu-
mulated along the flight path of aircrafts or satellites. They are not tightly related with surface
markers nor explicit object geometry such as edges. Rather, they are floating over a target surface
like specular spots on a metal surface, which we referred to as non-attached features. With slight
movements of the observer, features suddenly appear, disappear, and abruptly change their
shapes. Secondly, in SAR image recognition, objects are often intentionally hidden from an
observer. Thus, to achieve robust target recognition for SAR ATR scenarios, we must overcome

unstable features, occlusion, and camouflage.

Historically, target recognition in SAR images is attacked using three different approaches: statis-
tical pattern recognition [3], artificial neural networks [4], and model-based vision [5]-[6]. In
essence, a model-based system analyzes each image in detail and identifies each part of a signa-
ture’s contribution toward recognition, while pattern recognition and artificial neural network
based recognition system handle a target signature as a whole. This capability of part analysis in
the model-based vision approach provides greater potential for robustness with respect to partial
occlusion of the target and cluttered backgrounds. For these reasons, model-based approach [5]-

[17] is the most promising.

Among several proposed model-based techniques, pose clustering is suitable for determining the
object pose (and identifying the object) from sparse features typical of SAR images. Representa-
tive pose clustering techniques include: Hough transform and geometric hashing. Ballard [18]
generalized the Hough transform to detect arbitrary patterns. Recently, several alternative tech-
niques have been proposed by Lamdan and Wolfson [19], Dhome et al. [20], and Stockman [21].
Grimson [8] reported that searching pose space with Hough transforms is very effective for 2d
object recognition. Wolfson and Lamdan [22] also reported an effective recognition system using
geometric hashing. These pose clustering techniques are highly optimized so that each relation
among a pair of features can reduce the possible interpretations as much as possible. However,

pose clustering becomes unstable when relative relationships among features vary as in the case
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of non-attached SAR features.

Recently, several model-based recognition systems based on geometric invariants have been pro-
posed [27], [28]. Geometric invariants such as the cross-ratio provide very efficient clue for iden-
tifying 3d objects. In this paper, we will denote geometric invariants such as the cross-ratio of four
points as strong invariants. The utilization of strong invariants for object recognition requires the
correspondence problem to be solved prior to applying such invariants. This may be an easy prob-
lem when an object contains a few feature points; however, the combinatorics becomes unwieldy

when handling dense features typical of SAR images.

To avoid the difficult correspondence problem, this paper introduces an invariant histogram. Our
invariant histogram is based on weak invariants, defined by pairs of features. Though each invari-
ant is weak, we demonstrate that a histogram of observable weak invariant values can be used to
identify the object uniquely. Moreover, by utilizing all of the weak invariants in an image in a
highly redundant manner, our system can achieve robust recognition under severe occlusion with

unstable SAR features.

We have built a recognition system that consists of indexing and verification. The indexing mod-
ule quickly reduces the number of candidates using the invariant histogram representation. To
select the correct candidate, the verification module employs deformable template matching to
precisely locate and test for the existence of each predicted feature. Deformations are necessary

for fine-tuning each feature positions locally, since each SAR feature is non-attached and can vary

its position.

The system is designed under the vision algorithm compilation paradigm [16]. The system has
two modes: off-line and on-line. In off-line mode, model invariant histograms and deformable
templates are generated from target models using a sensor simulator. In on-line mode, an image
invariant and potential fields are computed from an input image and our indexing and verification

algorithms are applied.

Section 2 will introduce the concept of our invariant histogram technique, and Section 3 describes

how to use the technique for designing the indexing module. Our deformable template matching
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method will be discussed in Section 4. Section 5 presents our experimental results, and in Section

6 we present our conclusions.
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2. Invariant histogram

In order to achieve robust recognition under severe occlusion, camouflage, and unstable SAR fea-
tures, we introduce an invariant histogram based on weak invariants, defined by a pair of features.
Though each invariant is weak, we demonstrate that a histogram of observable weak invariant

values can be used to identify the object uniquely. We utilize all of the weak invariants in an

image in a highly redundant manner.

The invariant histogram is used by our indexing module. The indexing module is designed to
quickly reduce the number of the possible candidates before expensive candidate verification. It
employs a dictionary lookup method. The dictionary consists of the invariant histograms, associ-
ated with various poses. By comparing the observed invariant histogram with model histograms
in the dictionary, the module decides which candidate poses are the most likely ones. This process
requires a measure of the similarity between an input and a model invariant histogram. In this sec-

tion, we will discuss the similarity measure defined on the invariant histogram.

2.1. Concept of invariant histogram

Traditionally, invariants have been used as the key to identifying objects from a relatively small
set of features. In practice, invariants are not truly invariant due to quantization effects and noise.
Though only a few invariants are actually necessary for recognition, an invariant histogram stores
many invariant values from a target model, Thus, this invariant histogram forms a redundant rep-

resentation that is robust against variation in computed invariant values typical of SAR data.

This paper employs weak invariants, such as distances between two points or the slope of the
bisecting line between two lines. Strong invariants such as a cross ratio of four points on a line are
convenient for object recognition yet difficult to reliably extract from real data. We instead rely on
weak invariants defined using only pairs of primitive features in this system. This is because
strong invariants require too many primitives to be detected reliably (for example a cross ratio
needs four points to be identified in an image). In general the invariant nature does not hold if fea-

tures are unstable. Detecting a group of features is rarely possible in the SAR domain, where most
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features are quite unstable.

In our SAR recognition system, two kinds of primitive features are extracted from an image:
points and line segments. All feature points are detected by applying an interest operator. All line

segments are found using a line detector based on Canny’s edge detecting technique.

When a target rotates in 3D space, the appearance of the target in SAR images can drastically
change. On the other hand, as a target translates along the ground plane, the appearance is not sig-
nificantly altered. Thus, we use translation invariants to construct invariant histograms. Figure 1
shows six translation invariants which are used for constructing our invariant histograms.1 Each

invariant is between two features: two points (PP), two lines (LL), or a point and a line (PL).

The first two invariants we use are the distance and angular direction of the segment connectiong
a pair of points. These translation invariants are depicted in Figure 1(a) and represented in the 2D

Point-Point (PP) histogram spacez.

The second pair of invariants are computed using two line segments. The angle between two line
segments and the slope of their bisecting line are invariant to translation (Figure 1(b)). These

invariants are represented in the 2D Line-Line (LL) histogram spaces.

The last two invariants that we use are between a point and a line segment. The orthogonal dis-
tance from a point to a line is invariant to translation and rotation. The orthogonal direction from

a point to a line segment is also invariant to translation (Figure 1(c)). These are in the 2D Point-

1. In order to increase the robustness of the system against camouflage and surrounding noise, we do not use properties of peaks or
edges (such as brightness values of a peak or area size of a peak); we only use spatial relations among peaks and edges.

2. The 2D space is composed of a 2D atray, of which each cell has widths of 2 or 4 pixels along x- and y-axes in our implementation.
3. We do not use all the line segment pairs to make an LL histogram. A nearby subset is first generated from all the line segment pairs,
so that the minimum distance between two line segments is less than a threshold. The coupled invariant is then calculated over the line
pair subset. The resulting invariant histogram is in 2D space whose dimensions correspond to the angle and the slope of bisecting line.
Both the angle and the slope are quantized to 10 degree intervals in our implementation.
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Line (PL) histogram space4.
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Figure 1 Six invariants used in our implementation

2.2. Implementation

A two dimensional invariant histogram is implemented as a collection of tessellated bins. Each
pair of geometric features provides a pair of invariant values. Those values are then histo-
grammed into bins in the corresponding 2D invariant histogram. At the same time, the bin main-
tains pointers to keep track of the original primitive pairs that vote for it. Since several pairs may
lie in the same bin, each bin may contain multiple pointers. These pointers will be utilized later

for establishing initial correspondences for verification between image and model features.

Figure 2 shows a procedure for generating an invariant histogram from an image using PP as an
example. First, primitive features, point features in this example, are extracted from an image.
From point pairs, two invariant values are obtained: distance and direction. When making point
pairs, the system considers only local feature pairs, those within a certain distance of each other,

indicated by the circle in Figure 2. The horizontal axes in the figure indicate values of distance

4. To construct a PL histogram, a subset of point-line pairs is first made up from all the pairs, so that the foot of the perpendicular is
included in the line segment. Then the coupled invariant is calculated over the point-line pair subset. PL histograms are made in the 2D
space of which two axes correspond to the distance and the direction. The distance is quantized to intervals of 2 or 4 pixels, and the
direction is quantized to 10 degree intervals in our implementation
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and direction, and the vertical axis denotes the number of votes in each bin.

frequenc
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Input Image Features Local feature
pairs

direction

Invariant histogram for P-P

Figure 2 Making invariant histograms

To minimize problems due to quantization, we smooth the histogram over small neighborhoods.
We use weighted voting for the four nearest neighbor bins of the real point in the invariant space.
The weights are calculated so as to be inversely proportional to the distance from the centers of
the bins to the real point. The sum of four weights is normalized for each occurrence. At the same

time, the pointers to each feature pair are copied into these four bins.

3. Indexing by Dictionary Lookup

We have described the details of our invariant histogram representation. Now we will describe
how we utilize these histograms to screen or eliminate candidate hypotheses in our indexing mod-
ule. We can build invariants for each representative view, and use these histograms to compute
distance measures between an invariant histogram computed from the image and each candidate.
The candidates can be ranked by this distance measure and then pruned accordingly. In this pro-
cess we refer to the collection of invariant histograms as a dictionary which represents how a tar-
get object appears, and thus, invariant values change depending on pose parameters. This

dictionary is constructed from model appearances off-line.

3.1. Structure of a dictionary

Pose parameters can be decomposed into two categories, invariant and variant pose parameters,

with respect to a defined weak invariant. Invariant pose parameters do not alter the invariant
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value; variant pose parameters do. We assume that the target is on the ground plane and the image
is taken from a known depression angle. Thus, we have three degrees of freedom (DOF), two
translation DOF and one rotation DOF. In our current implementation, translation of a target does
not change our invariant values, while rotation does change their values. Thus, translation and
rotation parameters are invariant and variant pose parameters respectively with respect to our

weak invariants.

We will construct a dictionary, a collection of invariant histograms, to cover all of the variant
parameter space. The rotation parameter space is evenly sampled, and invariant histograms are
constructed at these sampled rotation values. Here,  each sampled rotation value is denoted as a

representative view.

Variant space (rotation)

wover | N |~ o

view 8, .~l — ©

view 8, E — 8

translation invariant

Figure 3 Invariant and variant spaces

We compute the average and variance histograms over an interval surrounding each representa-
tive view. Some features appear and disappear abruptly, while other features may be observable
from a wide range of viewing directions. Histogram values voted by such abrupt pairs are unsta-
ble and unreliable for indexing, while others are stable and reliable. A variance histogram con-
veys this reliability measure. We take a large number of neighboring images around each
representative view and generate histograms for each. Then the average and variance histograms
are computed from these surrounding histograms; this cumulative invariant histogram 1s used as a

histogram of the particular dictionary entry.
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3.2. Similarity measure for invariant histograms

This section will describe a similarity measure for comparison between image and model histo-
grams in a dictionary. A model histogram comprises average and variance histograms. Basically,
average values in a model histogram are compared with those from input image and, then, the dif-

ference will be weighted using the variance histogram.

One simple similarity measure is the L1 norm as follows:

L = Z|xi,j_mi,j’ (1)
LJ

where x; i is an image value in bin (3, j) , while m, i is a model value. This difference will be

calculated over the all of the histogram.

Some values in bins are less reliable than other values depending on the reliability of values at

bins; we will adjust the difference using a variance valued; jat each bin:

|xl ] m j
2 =L, @)
l, _]
The L, norm provides severe penalty, when some features are occluded and values disappear
from a histogram. In order to avoid such effect from occlusion, we further modify the measure by
introducing the saturation factor, k. Namely, if the difference between the observed and model

values are larger than this saturation factor, the penalty imposed is the saturation factor instead of

the real distance:

me[lx ._mi’jl k]. 3)
1 sat G. ]

1

When a histogram does not have a value in one bin, the variance, o, i is zero; we cannot evaluate
’

the value. To compensate, we add a constant variance G :

. |x., —m; I
Ly sar = me( it +<;o]’k - @
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The two constants, ¢ and k are obtained empirically.

3.3. Implementation of Indexing Algorithm

Using L, . similarity measure, we will design the following four step indexing algorithm.

Since there are three different histograms, PP, LL, and PL, their relative weights are adjusted

using normalization factors given by all the histograms.
Step 1: Absolute distance

For each of the PP, LL and PL histograms, the absolute distance is calculated between an image

and each model histograms. The absolute distance is given by the L, _ . of equation (4).
Step 2: Relative distance

For obtaining relative distance, the maximum distance between corresponding bins of the image

and model histograms is determined for each of the PP, LL and PL histograms using

A,y = maxm{LLmt(m)} . )

PP
where m is over the set of dictionary histograms. For example, we will use PP%M as the rela-

o . a
tive distance between two PP histograms. e

Step 3: Total distance

The total distance is the weighted sum:

PP LL PL
total L 1, sat + L 1, sat + L 1, sat

L =
1, sat PP LL PL
a4  max a max a max

(6

Step 4: Candidate screening by total distance

The most likely representative view is determined by the total distance between the input and
model histograms. Since the function of indexing is not to determine one particular view but to

select multiple possible candidate views, we select those with distance less than a certain thresh-
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old value below the best candidate.
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4. Pose clustering using Invariant histogram

After obtaining variant pose parameters (rotation parameters), we will determine the invariant
pose parameters (translation parameters) using the correspondences between image and dictio-
nary features through an invariant histogram. First, we will explain how to establish these corre-

spondences using invariant histograms. Then, we will describe our method for obtaining invariant

pose parameters by pose clustering.

4.1. Sampling correspondences

Each bin of an invariant histogram has pointers to the primitive features that vote for this bin. By
retrieving the pointers of corresponding bins of the input and model histograms, we can establish

correspondences between image and model primitive features.

Let us consider a case of the LL histogram as an example as shown in Figure 4. Using the point-
ers, three line pairs are retrieved in an image as candidates of one line pair of a model. The two
translation values are computed for each candidate. These translation values are computed by
comparison using the mid-points of the line segments. If these two translation values are similar,
the correspondence can be established. Then their average is combined, yielding the average
translation parameters and the transformation is given to the pose clustering algorithm. Other-

wise, the line pair correspondence is removed as a false correspondence.

Assume that n image feature pairs are referenced from an image histogram bin, and m model
feature pairs are referenced from the corresponding model histogram bin. We will consider mn
possible correspondences for this bin. Note that no more than min (m, n) ones are correct among
the mn correspondences, if the one-to-one mapping holds between the input and the model fea-
tures. These correct correspondences generate the correct pose candidates in the invariant param-
eter space, while the other correspondences generate false pose candidates. When the number of
possible correspondences is too large, we do not have to consider all of them. The possibility that
the values of the model’s invariants randomly occur in the input image is very low compared to

actual occurrences due to the object’s presence in the image. Thus, random sampling can achieve
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a large reduction of the computation time with little or no loss in the detection rate.
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Trans 1 = Trans 80
Reject this correspondence

Iterative
pose clustering

Figure 4 Pose clustering through an invariant histogram

4.2. Successive Pose Clustering

Several kinds of techniques have been used for pose clustering [18]-[25]. The most popular tech-
nique is the generalized Hough transform in which voting is applied to a quantized pose space.
Although these voting methods are easy to implement, we have to determine the size of each cell

in the quantized space before execution. The quantization is closely related to uncertainty which

is difficult to estimate.

We implement an iterative clustering algorithm to avoid the difficulty of quantization. This

method successively generates clusters without voting. By tracking pointers in bins, some feature
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correspondences are established and a candidate pose can be obtained. We first look for a cluster
within a certain distance of the pose candidate. If it is close to several clusters, the largest cluster
will be selected to include the new candidate. The average pose and the size of the cluster is

updated at each iteration.

The clustering process terminates either when the size of the largest cluster is large enough or
when the total number of generated pose candidates reaches a threshold. In both cases, the largest

cluster is selected as the final result.

Pose clustering provides a rough estimate of translation parameters (invariant parameters), while
a dictionary lookup gives a rough estimate of rotation parameters (variant parameters). Using
these estimates of the pose parameters, the precise pose is found using deformable template

matching.

5. Deformable Template Matching

Deformable template matching precisely examines the existence of a target by superimposing and
aligning deformable templates over potential energy fields defined by image features. Deforma-
tion is necessary to robustly verify the existence of an object since most features in SAR images
are non-attached. We employ multi-step deformable template matching to avoid local minima
given by these erroneous features. We start to examine the existence of a target object in the posi-
tion given by pose clustering. Multiple-level template and potential fields are progressively used

to refine the template parameters at coarse, medium, and fine levels.

5.1. Template Generation

The model templates are generated off-line from model appearances using a SAR simulator. The
first two levels of template matching, the coarse and medium level, share the same non-deform-
able template, while the fine level matching allows deformation of the template. These templates

are generated at each representative view used for the indexing dictionaries.
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5.1.1. Coarse/Medium level Template

Non-deformable templates are generated from binarized model images. First, we threshold noise-
free model images and binarize the output, / (x,y) . Then, we repeat this process eleven times
around a representative view and superimpose them taking the union. The resulting binarized
point distribution, Teo (x,y) , is the template at the central viewing direction, 8  (i.e., the repre-

sentative view).

0o —-5A 190 +5A

(x, ) U...Ieo (xy) ..U (x,y) . @)

Combining the templates is necessary to absorb all unstable SAR non-attached features in one

8,
T (x,y) =1

template.

For the coarse and medium templates, only translation (x,y,) is allowed; there is no relative
movement of each point. The total energy is provided as the sum of potential energy values at

each point position and the translation energy of the entire template:

E 8

total ~ Epotential+ trans’

E

where

60
= [[PenT" (x4x,y+y) dxdy, ©

Epatential -

D=

2 2
Etrans = kt(xt + yt ) : (10)
P (x,y) is the potential field function given from an input image and %, is a spring constant. Both

the coarse and medium level matching uses the same value for this spring constant. This transla-

tion term is introduced to give the priority to positions close to the one given by feature corre-

spondences.

5.1.2. Fine level template

The fine level matching employs deformable templates: each feature point moves freely relative

to other points. At this level, there is no translation of the entire template. The deformations are



page 18

necessary to account for typical variation in the position of SAR features.

These deformable templates are generated using a point feature extractor. First, a noise-free
model image of a target object, I (x, y) , is convolved with a Gaussian filter. From this smoothed

image, [ (x,y) , we extract isolated brightness peaks, I (x,y) using our regular point

gauss point

feature extractor. This is a binary distribution; Ipm.n , = 1 atapeak and O otherwise. In the same
way as the non-deformable templates, eleven such point distributions around a representative

view, 90 , are again combined:

8, P
D (xy) = Y 8(x-x,y-y) (1)

i=1

where p is the total number of points over eleven point distributions.

The total energy of this template is:

Etoml = Epotential +Edeform’ (2)
where
p
Epotential= z IJP (x,y) o (x— X = A)Cl., y=y;— Ayl) dxdy, (13)
i=1

1

P 2 2 2
Edeform = 2 kd{ (Axi) + (Ayi) Fo 14

i=1
5.1.3. Difference template
For many objects, confusion often occurs between one pose and its counter pose (rotated 180
degrees from the original pose). In order to avoid this pitfall, our system employs a difference-
template as the fourth step of matching. This template suppresses common parts and emphasizes
conflicting parts between the pair. Difference templates are used only when it is necessary to dis-

ambiguate a pair of candidates with close scores.
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In order to make a difference template prior to execution, first, the best possible alignment of a
pair of coarse-level templates is obtained. Let us denote a pair of poses as A and B . A coarse-
level potential field, P, is generated from a template 7. Then, the template T, will be applied
to the potential field, P, to obtain the necessary translation (Ax,, Ay,) for optimally superim-
posing template, 7, over the template, T, (See Figure 5). Using this translation value, we super-
impose a pair of fine-level templates to extract the common points in fine-level template, D, .

Then, the common points are suppressed in the template and the difference template for pose A

is:
Sy (x+Ax,,y+Ay,) =D, (x+Ax,,y+Ay,) —Dp(x,y) ®D, (x+Ax,,y+Ay,) . (15

By exchanging A and B, we will also obtain the difference template of pose B.

5.2. Generating the Potential Fields

Three potential fields, coarse, medium, and fine, are generated on-line from an input image. For
all these three potential fields, a threshold operation is applied to the original intensity distribution

of the input image and then, a Gaussian filter is applied to the binary image I, :

2 2
lu +v

2 S
Igauss (x,y) = _”I,;h (x—u,y-v)e dudv . (16)

Figure 6 shows the overview of this module.

5.2.1. Coarse level potential field

For the coarse level potential fields, to remove isolated bright pixels, we first apply the median fil-
ter; the median value is obtained among nine neighboring pixels, and then, is assigned to the cen-

tral pixel/, .. . Finally, we apply an exponential smoothing function with the width k.,

to this output:

[T

_kcoarse (u2 + V2)
L parse (xy) = .”Imedian (x—u,y-v)e dudv . (17
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The exponential function is preferred over the Gaussian function because it emphasizes the cen-

tral value and suppresses peripheral areas.

5.2.2. Medium level potential field
For this level, we directly apply an exponential function to the output of the Gaussian filter.

k is selected to make this exponential function narrower:

medium

1

_kme ium(u2+v )
Lodium (% Y) = jf[gauss (x—u,y-v)e . dudy . (18)

5.2.3. Fine level potential field

The third step is deformable template matching. This step allows each point to move to further
reduce the potential energy. For this step, we extract isolated brightness peaks, Ipoin (%)
using our regular point feature extractor. Then, we apply an even narrower exponential function to
the binary distribution:

i

2 2
—kﬂne (v +v")

P, (x,y) = ||l . (x—uy-v)e dudv (19)
fine point
Input Image
Noise Reduction
Gaussian Filter
Convolution

Coarse level Medium level Fine level
Figure 5 Potential field generation
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6. SAR ATR system

Figure 6 shows the overview of the SAR recognition system. It has two modes: off-line and on-
line. In off-line mode, the system generates dictionaries for targets using target models and
XPATCH S AR simulator, developed by Wright Research and Development Center, WPAFB, [30].
It also generates templates for verification module. In on-line mode, the system generates an
invariant histogram and potential fields from the input image. By using the invariant histogram,

the indexing module selects possible candidates. Then, the final decision is made by the verifica-

gtgl%%‘ggn "Q(l templates |_

XPATCH
dictionary ( . 1
SAR simulator generation dictionaries

tion module using the potential fields and templates.

environmental

parameters

off-line

on-line
invariant
histogram

input image - . . iti
?cl;%ening | verification
-" potential
fields
Figure 6 System overview
6.1. Off-line mode

In typical SAR image scenarios, the depression angle and resolution are fixed during image acqui-
sition. In this paper, we use 22.5 degrees as the depression angle and 30 cm/pixel as the scale. We
employ the XPATCH SAR simulator to generate simulated SAR images for the dictionary gener-
ation. Figure 7 shows three series of 36 generated images: KTANK, BMP, and BTR60. A dictio-

nary is constructed for 36 views rotated around the axis perpendicular to the ground plane,
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sampled every 10 degrees.

5.F15AR

Figure 7 Model SAR images for dictionary generation
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In order to obtain an estimate of the variance of each invariant value around a representative view,
19 images around each representative views are generated within 1 degree (0.1 degree intervals).
Each representative view of a dictionary consists of three invariant histograms: point-point, line-

line, and point-line as shown in Figure 8.

Dictionary
— View A (330) ~View A -
Dictionary | point-point |  line-line - point-line
Compiler N
Representative view generation —
e ———_ —
View B (320) Feature . .
Extracton | point-point
T y
. Invariant 1 by,
Histogram b ;
XPATCH I_. Generator e
View C310) | — lt. = ~View C
istic 1 int-poi )
Processor ] point-point ]
— |
19 images around ' .
the representative ' .
view (310) . .

Figure 8 Generating a dictionary

In off-line mode, coarse, medium and fine templates are also generate at each representative view.

For each template, eleven images around the representative view are utilized.

6.2. On-line mode

6.2.1. Hybrid SAR image

For the recognition experiments, hybrid SAR images, synthesized SAR simulated signatures of
target objects on real SAR background signatures (Lincoln Stockbridge Data), are used. The ratio
of signal level between simulated and real signatures are determined using a car parked in a park-

ing lot observed in the Stockbridge Data (MOOPSF8HH). Figure 9 shows the KTANK model at a
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rotation of 312 degrees superimposed in the lawn area in the Stockbridge Data [31].

Figure 9 Hybrid SAR image
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6.2.2. Indexing module

Figure 10 shows the flow of the indexing. From an input hybrid image (rotation of 312 degrees),
the module detects point and line features, and then generate three invariant histograms. The
indexing module eliminates unlikely candidates by measuring the distance between the input his-
togram and those in the dictionary and pruning the number of possible objects for recognition
using the similarity measure. Our similarity measure function, L1 sat me = Gl :J k|,
has two parameters: k and 6,. We use k = 10 and 6, = 0.5. In thid example the module
selects five candidates, including 110, 250 and 310 (the correct pose) of KTANK as the possible

candidates for verification.

Input Image (312) Lo
Indexing Module 'anmve Features———

Feature

Extractor

Points
Invariant
histogran)
_Generator Invariant histograms

point-point  line-line

Comparator
Candidates
(110) (250) (310)
Candidates :

Figure 10 Indexing module
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6.2.3. Verificatoin module

Figure 11 shows the flow of the verification module. It determines the initial template position
using the feature correspondences. Then, the module evaluates each candidate pose through a
three-step matching over potential energy fields given by images/features. It determines the tem-
plate configuration that has the minimum deformation (deformation energy) and the best align-
ment of the template with features (potential energy). In this example, the module correctly

identifies the template of 310 degrees, as the minium energy template (most likely pose).
Candidates

illOi (250) (310)
. . Pose: 110 Pose: 210 Pose: 310
d "';,1 2 » . eyt
\\f '%.{-l 3}
Iy “

Input Image

Verification Module mEm

Correspondences Potential Field
Sampler Generator

| |
v

Deformable Template Matching

I -
/ Energy: -215.8 Energy: -207.2 Energy: -544.4

Figure 11  Verification module



page 27

Figure 12 shows the KTANK model at an aspect of 310 degrees superimposed on the hybrid SAR

images containing the signature from KTANK rotated 312 degrees.

Fure 12 Recognition result

7. Recognition experiments

7.1. Single object database

In order to examine the performance of our recognition system, we have generated 180 hybrid
SAR images, from viewing directions sampled every 2 degrees over 360 degrees using the fol-

lowing models: KTANK, BMP, and BTR60.

We have tested the indexing module which determines the possible candidates for the verification.
For each test, 180 images of the object are given to the system with the single object’s dictionary
being used for the indexing. For these test images, 5 to 9 candidates were selected on average.
The rows in table 1 denotes the results for each object. When the candidate set contains the direc-
tion nearest to the input direction, the indexing is considered as success. The second column in the

table represents the correct indexing ratio.

Then, the verification module is executed using the templates of the candidate poses selected by
the indexing module. Here candidate templates are sampled every ten degrees. When the template
nearest to the input direction has the least energy, we consider that the correct recognition (in the

fourth column) as well as the correct verification (in the third column) is achieved.

In case that the candidate set given by the indexing does not contain the correct direction, this is
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the failure of the recognition (in the fourth column), However, for the calculation of the correct
verification ratio (in the third column), we discard this case.

Table 1: Recognition Results

Vehicle Indexing Verification System
KTANK 97.8% 90.3% 88.3%

BMP 92.8% 88.0% 81.7%
BTR60 99.4% 97.2% 96.7%

7.2. Occlusion

In order to evaluate the effect of occlusion, we generated five series of 180 images (64 x 64 pix-
els) with: O pixel shift, 8 pixel shift, 16 pixel shift, and 20 pixel shift. Each image is shifted a cer-
tain amount from the center position; if pixels move outside of the window (64 x64), we
consider them to be occluded. Thus, for example, for a 20 pixel shi roughly one half of the origi-
nal pixels are lost in the worst case. We evaluate the effect using five targets, KTANK, BMP, and

BTR60, M60, and F15AR. Tables 2-6 show the results, while Figure 13 and 14 summarize these

results
Table 2: KTANK

Occlusion(shift) Prescreening Verification System
0 pixel 97.8% 90.3% 88.3%

8 pixel 96.7% 90.8% 87.8%

12 pixel 96.7% 92.0% 88.9%
16pixel 92.8% 86.7% 80.0%

20 pixel 84.4% 74.3% 62.8%

24 pixel 36.7% 62.1% 22.8%

Table 3: BMP

Occlusion(shift) Prescreening Verification System
0 pixel 92.8% 88.0% 81.7%

8 pixel 95.0% 90.6% 86.1%

12 pixel 97.8% 88.6% 86.7%

16 pixel 97.8% 90.3% 88.3%

20 pixel 92.8% 86.8% 80.6%

24 pixel 54.4% 83.7% 45.6%




Table 4: BTR60
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Occlusion(shift) Prescreening Verification System
0 pixel 99.4% 97.2% 96.7%

8 pixel 98.9% 97.8% 96.7%

12 pixel 98.3% 95.5% 93.9%

16 pixel 98.3% 94.4% 92.8%

20 pixel 85.6% 90.9% 77.8%

24 pixel 35.0% 85.7% 30.6%

Table 5: M60

Occlusion(shift) Indexing Verification System
0 pixel 98.3% 98.3% 96.7%

8 pixel 97.8% 99.4% 97.2%

12 pixel 98.9% 98.9% 97.8%

16 pixel 96.7% 97.1% 93.9%

20 pixel 73.9% 88.7% 65.6%

24 pixel 21.1% 89.5% 18.9%

Table 6: F1SAR

Occlusion(shift) Indexing Verification System
0 pixel 80.6% 99.3% 80.0%

8 pixel 82.8% 99.3% 82.2%

12 pixel 80.0% 97.2% 77.8%

16 pixel 81.7% 97.3% 79.4%

20 pixel 67.2% 90.1% 60.6%

24 pixel 34.4% 93.5% 32.2%
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7.3. Camouflage

In order to simulate the effect of camouflage, we reduce the intensity of a target while maintaining
the same background intensity. In this experiment in Tables 7-11, the effect of the camouflage is
represented by the percentage of camouflaged features (extracted from the original intensity but

not in the reduced image). See Figures 15 and 16 for the graphical display of these results.

Table 7: KTANK

Camouflaged features Indexing Verification System

0.0% 98.3% 90.4% 88.9%

5.2% 98.9% 86.0% 85.0%

13.2% 98.3% 83.6% 82.2%

22.3% 93.9% 78.1% 73.3%

33.3% 92.2% 74.7% 68.9%

46.6% 91.1% 68.9% 46.6%

Table 8: BMP

Camouflaged features Indexing Verification System
0.0% 95.0% 87.7% 83.3%

3.8% 96.1% 86.7% 83.3%

12.4% 96.1% 82.1% 78.9%

21.0% 90.6% 78.5% 71.1%

34.9% 82.2% 79.7% 65.6%

67.6% 57.8% 52.9% 30.6%

Table 9: BTR60

Camouflaged features Indexing Verification System
0.0% 100.0% 96.6% 96.6%

3.3% 100.0% 94.4% 94.4%

7.7% 100.0% 95.0% 95.0%

14.6% 97.8% 90.9% 88.9%

22.3% 97.2% 79.4% 77.2%

43.4% 80.6% 69.0% 55.6%

Table 10: M60

Camouflaged features Indexing Verification System
0.0% 98.3% 97.2% 95.6%
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Table 10: M60

Camouflaged features Indexing Verification System
3.4% 98.3% 97.7% 96.1%

8.1% 98.9% 96.6% 95.6%

13.0% 98.9% 92.7% 91.7%

24.1% 93.9% 91.1% 85.6%

54.5% 70.6% 84.3% 59.4%

Table 11: F15AR

Camouflaged features Indexing Verification System
0.0% 76.7% 98.6% 75.6%

6.0% 86.7% 98.7% 85.6%

14.0% 87.8% 98.7% 86.7%

27.0% 78.3% 97.9% 76.7%

54.5% 51.1% 87.0% 44.4%

95.5% 26.7% 72.9% 19.4%
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7.4. Multiple object databases

We evaluated the effect of confusion among ground vehicles using BMP, BTR60 and KTANK.
We generated 90 hybrid SAR images of these vehicles, at 90 viewing directions sampled every 4
degrees over 360 degrees. Here, we use a model dictionary containing BMP, BTR60 and
KTANK. In Table 12, each row and column represents the input image and system response,
respectively. The number indicates the classification ratio by the system for each vehicle, while
the numbers in parentheses presents the ratio of the correct pose as well as correct vehicle class.

For example, the BMP was correctly identified in 90% of the tests, but only 75.6% found the cor-

rect pose.
Table 12:
Input\Response BMP BTR60 KTANK
BMP 90%(75.6%) 10% 0%
BTR60 6.7% 93.3%(86.7%) 0%
KTANK 10% 11.1% 78.9%(68.9%)

7.5. Optical Image Recognition

Our recognition system can be applied to other sensors by simply replacing the sensor simulator.
We have applied our recognition system to real specular images given by a specular sensor, a
CCD camera with a point light source mounted on it. In this example, the dictionary is obtained
directly from a sequence of real images instead of simulated image: an object is rotated using an

rotation table, and a sequence of images are captured.

The top row in Figure 17 (a) depicts input image and three potential fields. The second row shows
the point correspondences and the final position of the deformable template. Figure 17 (b) shows

the recognition result superimposed on the original image.
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8. Conclusion

This paper introduces the use of invariant histograms and deformable templates for SAR recogni-
tion. An invariant histogram is a histogram of geometric invariants given by many primitive fea-
ture sets. Deformable template matching precisely examines the existence of an object by
superimposing and aligning templates over potential energy field given by image features. The

deformation allows for precise localization of non-attached features typical of SAR data.

We have develop a SAR recognition system using these two techniques, and demonstrated the
effectiveness of these two techniques for robust SAR recognition through extensive evaluation of

the system using occluded and camouflaged target images.

This system has two modes: off-line and on-line. In off-line mode, the system generates a dictio-
nary for indexing and deformable templates for verification. Currently, it takes a half hour for this
compilation on SPARC 20. In on-line mode, by calculating an invariant histogram from an input
image, the system performs the indexing to reduce the number of possible candidates. Then, from
the potential fields from an input image and the deformable templates, the system determines the
most likely pose and class of the target. Indexing takes about 2 to 3 seconds, and verification takes
a few seconds per candidate pose. The run times include time to build invariant histograms from

the input image and compute potential fields.



page 38

Recently, several researchers have begun to develop appearance-based recognition systems. From
a large number of images, they effectively extract compress essential features, eigen-values in an
orthogonal eigen space, and use those eigen-values for object recognition. Turk and Pentland [32]
recognized human faces using eigen-vectors and Murase and Nayar [33] applied an eigen-space
analysis for illumination planning. The main focus of these techniques are how to effectively

reduce the size of necessary features for recognition.

In contrast to these compression-oriented approaches, this paper proposes a redundancy oriented
approach; by using a redundant representation of image features, this work shows it is possible to
build a robust recognition system, in particular for SAR recognition. These characteristics are par-
ticularly important when handling occluded target images consisting of unstable non-attached

features typical of SAR data.
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