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Abstract

Multicomputers consisting of off-the-shelf computers connected by commercial high-speed networks form
an economically attractive computing platform for a large class of applications. However, while high-
speed networks are fairly widely available (e.g. HIPPI and ATM), many computer systems have problems
delivering this high bandwidth to the applications, thus limiting the class of applications that can be supported
by multicomputers. The Gigabit Nectar project developed a network interface architecture that supports
efficient high-bandwidth end-end communication. This architecture has been implemented for workstations
(DEC Alpha) and distributed-memory systems (iWarp) and has been deployed in the Gigabit Nectar testbed.
This report describes the Nectar network interface and its implementation and performance, and summarizes
our application experience in the testbed.
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1 Introduction

Recent advances in network technology have made it feasible to build high-speed networks using links
operating at several 100s of Mbit/second. HIPPI networks based on the ANSI High-Performance Parallel
Interface (HIPPI) protocol [1] are an example. HIPPI supports a data rate of 800 Mbit/second or 1.6
Gbit/second and almost all commercially available supercomputers have a HIPPI interface. As a result,
HIPPI networks have become popular in supercomputing centers. In addition to HIPPI, there are a number
of high-speed network standards in use, including ATM (Asynchronous Transfer Mode) [18] and Fibre
Channel [2].

As network speeds increase, it is important that host interface speeds increase proportionally, so that
applications can benefit from the increased network performance. For bulk data transfer over high-speed
networks, the sending and receiving hosts typically form the bottleneck, and it is important to minimize
the communication overhead to achieve high application-level throughput. The communication cost can
be broken up in per-packet and per-byte costs. The per-packet cost can be optimized [14, 44, 11], and for
large packets, this overhead is amortized over a lot of data. However, the per-byte cost is not reduced by
increasing the packet size. Moreover, the per-byte cost depends strongly on the memory bandwidth, which
over time has not increased as quickly as CPU speed. As a result, it is mainly the per-byte costs that make
high speed communication over networks expensive and that ultimately limit throughput as the network
bandwidth increases.

We have designed a host-network interface architecture optimized to achieve high application-to-application
throughput for applications using the socket application programming interface (API) and the internet com-
munication protocols. Our interface architecture is based on a Communication Accelerator Block (CAB)
that provides support for key communication operations. The CAB is a network interface architecture that
can be used for a wide range of hosts, as opposed to an implementation for a specific host. Two CAB
implementations for HIPPI networks have been built by Network Systems Corporation (NSC), our compet-
itively selected industrial partner. The first implementation is for the iWarp parallel machine [6] and the
other one is for the DEC workstation using the Turbochannel bus [19]. The interfaces have been used in the
Gigabit Nectar testbed at Camegie Mellon University [38]. The testbed is used to distribute large scientific
applications across a variety of computer systems connected by a high-speed network.

The remainder of this report is organized as follows. We first present the hardware and software
architecture of the CAB-based interface (Section 2). We then describe the implementation of the workstation
(Section 3) and iWarp (Section 4) host interfaces and discuss their performance. Finally, we discuss some
of the applications that used the Gigabit Nectar interfaces in Section 5.

2 The Host-Network Interface Architecture

Many papers have been published that report measurements of the overheads associated with communicating
over networks [12, 14, 24, 34, 39, 44]. Even though it is difficult to compare these results because the
measurements are made for different architectures, protocols, communication interfaces, and benchmarks,
there is a common pattern: there is no single source of overhead. As a result, optimizations have to consider
the entire host interface and not just a single operation.

In the remainder of this section we discuss how we reduce communication overhead for applications that
use BSD sockets and intemet protocols, and how the CAB architecture supports these optimizations. Our
research focuses on a widely used API (sockets) because it provides application portability and on standard
communication protocols (TCP and UDP over IP) because it gives interoperability with other computer
systems. At the end of the section we look at the effect of using different APIs and protocols.



1 Introduction

Recent advances in network technology have made it feasible to build high-speed networks using links
operating at several 100s of Mbit/second. HIPPI networks based on the ANSI High-Performance Parallel
Interface (HIPPI) protocol [1] are an example. HIPPI supports a data rate of 800 Mbit/second or 1.6
Gbit/second and almost all commercially available supercomputers have a HIPPI interface. As a result,
HIPPI networks have become popular in supercomputing centers. In addition to HIPPI, there are a number
of high-speed network standards in use, including ATM (Asynchronous Transfer Mode) [18] and Fibre
Channel [2]. -

As network speeds increase, it is important that host interface speeds increase proportionally, so that
applications can benefit from the increased network performance. For bulk data transfer over high-speed
networks, the sending and receiving hosts typically form the bottleneck, and it is important to minimize
the communication overhead to achieve high application-level throughput. The communication cost can
be broken up in per-packet and per-byte costs. The per-packet cost can be optimized {14, 44, 11], and for
large packets, this overhead is amortized over a lot of data. However, the per-byte cost is not reduced by
increasing the packet size. Moreover, the per-byte cost depends strongly on the memory bandwidth, which
over time has not increased as quickly as CPU speed. As a result, it is mainly the per-byte costs that make
high speed communication over networks expensive and that ultimately limit throughput as the network
bandwidth increases.

We have designed a host-network interface architecture optimized to achieve high application-to-application
throughput for applications using the socket application programming interface (API) and the internet com-
munication protocols. Our interface architecture is based on a Communication Accelerator Block (CAB)
that provides support for key communication operations. The CAB is a network interface architecture that
can be used for a wide range of hosts, as opposed to an implementation for a specific host. Two CAB
implementations for HIPPI networks have been built by Network Systems Corporation (NSC), our compet-
itively selected industrial partner. The first implementation is for the iWarp parallel machine [6] and the
other one is for the DEC workstation using the Turbochannel bus [19]. The interfaces have been used in the
Gigabit Nectar testbed at Carnegie Mellon University [38]. The testbed is used to distribute large scientific
applications across a variety of computer systems connected by a high-speed network.

The remainder of this report is organized as follows. We first present the hardware and software
architecture of the CAB-based interface (Section 2). We then describe the implementation of the workstation
(Section 3) and iWarp (Section 4) host interfaces and discuss their performance. Finally, we discuss some
of the applications that used the Gigabit Nectar interfaces in Section 5.

2 The Host-Network Interface Architecture

Many papers have been published that report measurements of the overheads associated with communicating
over networks [12, 14, 24, 34, 39, 44]. Even though it is difficult to compare these results because the
measurements are made for different architectures, protocols, communication interfaces, and benchmarks,
there is a common pattern: there is no single source of overhead. As a result, optimizations have to consider
the entire host interface and not just a single operation.

In the remainder of this section we discuss how we reduce communication overhead for applications that
use BSD sockets and internet protocols, and how the CAB architecture supports these optimizations. Our
research focuses on a widely used API (sockets) because it provides application portability and on standard
communication protocols (TCP and UDP over IP) because it gives interoperability with other computer
systems. At the end of the section we look at the effect of using different APIs and protocols.



CPU
Application

CPU
Application |

CPU

Syste!

Network

Network Netwerk

Memory

(b) (©

Figure 1: Dataflow in (a) a traditional network interface, (b) a network interface with outboard buffering
and (c) a network interface using DMA

2.1 Optimizing communication

The time spent on sending and receiving data is distributed over several operations including per-packet
operations (protocol processing, interrupt handling, buffer management), and per-byte operations (copying
data, checksumming). As networks get faster, data copying and checksumming become the dominating
overheads, both because the other overheads are amortized over larger packets and because per-byte opera-
tions stress a critical resource (the memory bus), so we first look at per-byte operations. Figure 1(a) shows
the dataflow when sending a message using a traditional host interface; receives follow the inverse path.
The data is first copied from the user address space to kernel buffers. This copy is needed to implement the
copy semantics of the socket interface: when the send call returns, the application can safely overwrite the
data. The next per-byte operation is the TCP or UDP checksum calculation (dashed line), and finally, the
data is copied to the network device. This adds up to a total of five bus transfers for every word sent. On
some hosts there is an additional CPU copy to move the data between “system buffers” and “device buffers”,
which results in two more bus transfers.

We can reduce the number of bus transfers by moving the system buffers that are used to buffer the data
outboard, as is shown in Figure 1(b). The checksum is calculated while the data is copied. The number of
data transfers has been reduced to two. This interface corresponds to the “WITLESS” interface proposed
by Van Jacobson [26, 17]. Figure 1(c) shows how the number of data transfers can be further reduced to one
by using DMA for the data transfer between host memory and the buffers on the CAB. This is the minimum
number with the socket interface. Checksumming is still done while copying the data, i.e. checksumming
is done in hardware. Besides reducing the load on the bus, DMA has the advantage that it allows the use of
burst transfers. This is necessary to get good throughput on today’s high-speed I/O busses.

The per-packet operations include interrupt handling, TCP and IP protocol processing, and buffer man-
agement. Protocol processing is often held responsible for limiting communication throughput. Measure-
ments for optimized protocol implementation show that the combined cost of protocol processing on the
send and receive side can be as low as 200 instructions [14]. Moreover, moving these tasks outboard can
be very complex, so they are performed by the host. Interactions between the host and the network adapter
require accesses across the I/O bus and synchronization (e.g. interrupts). Since both are typically quite
expensive, the CAB architecture minimizes the number of host-adapter interactions. For each operation the
host requests from the CAB, it can specify whether an interrupt is needed when the operation is finished.
This convention allows the host to limit the number of interrupts to one per user write on transmit, and at
most one per packet and one per user read on receive.
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2.2 Adapter architecture

Figure 2 shows a block diagram of a Communication Acceleration Block (CAB) that supports the opti-
mizations discussed above. It consists of a transmit and a receive half. The core of each half is a memory
used for outboard buffering of packets (network memory). Each memory has two ports, each running at
100 MByte/second. Data is transferred between host memory and network memory using System DMA
(SDMA) and between network memory and the network using Media DMA (MDMA). The SDMA engines
have a scatter/gather capability so they can collect (distribute) the packet header and data from (to) different
buffers and user data from (to) multiple VM pages that are not adjacent in memory. The register file is used
to queue host requests and return CAB responses. The host interface implements the bus protocol for a
specific I/O bus, in our case the Turbochannel.

The most natural place to calculate the checksum is while the data is transferred to or from the network.
This is however not possible on transmit since TCP and UDP place the checksum in the header of the packet.
As a result, the transmit checksum is calculated when the data flows into network memory, and it is placed
in the header by the CAB in a location that is specified by the host as part of the SDMA request. On receive,
the checksum is calculated when the data flows from the network into network memory, so that it is available
to the host as soon as the message is available. Although this organization requires two checksum engines
instead of one, it is desirable since it allows hosts to process packets as soon as they are received.

Media access control is performed by hardware on the CAB, under control of the host. This component
of the CAB is network-specific. Our implementation is for HIPPI [21]. The simplest MAC algorithm for
a switch-based network is to send packets in FIFO order, but this does not make good use of the network
bandwidth because of Head of Line (HOL) blocking. Analysis shows that one can utilize at most 58% of the
network bandwidth, assuming random traffic [23, 33]. The CAB uses multiple “logical channels”, queues
of packets with different destinations, to get around this problem [47].

2.3 Host view

Several features of the CAB have an impact on the structure of the networking software. First, to insure full
bandwidth to the media, packets must start on a page boundary in CAB memory. This, together with the
fact that checksum calculation for internet packet transmissions is performed during the transfer into CAB
memory, dictates that individual packets are fully formed when they are transferred to the CAB.

To illustrate how host software interacts with the CAB hardware in normal usage, we present a walk-
through of a typical send and receive (with copy semantics). To handle a send, the system first examines
the size of the message and other factors and determines how many packets will be needed on the media. It
then creates the headers in kernel space and issues SDMA requests to the CAB, one per packet. The CAB
transfers the data from the user’s address space to the CAB network memory using DMA. In most cases, i.e.



if the TCP window is open, an MDMA request to perform the actual media transfer can be issued at the same
time, freeing the processor from any further involvement with individual packets. Only the final packet’s
SDMA request needs to be flagged to interrupt the host upon completion, so that the user process can be
scheduled. No interrupt is needed to flag the end of MDMA of TCP packets, since the TCP acknowledgment
will confirm that the data was sent.

Upon receiving a packet from the network, the CAB automatically DMAs the first L words of the packet
into auto-DMA buffers, i.e. preallocated buffers in host memory. The value L can be selected by the host.
The CAB then interrupts the host, which performs protocol processing. For TCP and UDP, only the packet’s
header needs to be examined as the data checksum has already been calculated by the hardware. The packet
is then logically queued for the appropriate user process. A user receive is handled by issuing one or more
SDMA operations to copy the data out of network memory into user buffers. The last SDMA operation is
flagged to generate an interrupt upon completion so that the user process can be scheduled.

2.4 Host interface taxonomy

BSD sockets and internet protocols are only one of many ways in which applications can communicate over
networks. [46] presents a taxonomy of host interfaces as a function of three parameters: the API to the
application (copy or share semantics), the characteristics of the transport-level checksum (placed in header
or in trailer), and the architecture of the adapter. The latter covers data movement support (programmed
1/0 versus DMA), data checksumming support, and nature of the data buffering (outboard buffering, no
buffering, or single packet buffering that allows insertion of a checksum in the header). The paper [46]
shows how the minimum number of bus transfers that are performed as part of an I/O operation is a direct
function of these three host interface features.

Table 1(a) summarizes the results: its entries list the nature of the data accesses that have to be performed
for the different host interface classes. The columns represent different adapter architectures and the rows the
API and checksum options. The types of data accesses are: programmed I/O (PIO), direct memory access
(DMA), and memory-memory copy (COPY), all of which can be combined with a checksum calculation
(PIO_C, DMA _C, and COPY_C), and checksum calculation (Read_C).

As a first approximation, the efficiency of a network interface can be characterized by the number of
times the data has to cross the memory bus. Table 1(b) shows how this number ranges from one (white) to
four (black) for the interfaces in Table 1(a). The most efficient interfaces have the data cross the memory
bus once: they perform one copy of the data using DMA and the checksum calculation takes place during
this transfer. Some interfaces require two or three crossings, either because a separate read of the data is
needed to calculate the checksum, or because programmed I/O is used, or both. Finally, some interfaces
require four crossings because data has to be copied twice. Note that in some cases, a “logical” copy can
be used for the memory-memory copy, i.e. page remapping or copy on write; this reduces the number of
crossings shown in Table 1.

The rows and columns in Table 1 clearly show some of the tradeoff in the area of host interface design.
First, in many scenarios (rows in the table) it is possible to improve performance by making the adapter
hardware more complex (more left to right). Second, for many adapter architectures (columns in the table),
applications that use an API with copy semantics will see less efficient communication than applications that
use an API based on shared buffers, which is harder to use. Finally, the CAB architecture (last column) is
the most complex architecture (highest degree of hardware support), but it is also the only architecture that
supports all API/protocol combinations with a single DMA transfer across the memory bus (Figure 1c).
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Table 1: Host interface taxonomy

3 The workstation interface

The CAB architecture was implemented using off-the-shelf components by NSC for DEC workstations with
a Turbochannel I/O bus [19]. The workstation CAB uses a single memory for both incoming and outgoing
packets and a single SDMA engine (Figure 3). Network memory is implemented using DRAM, and the
DMA engines are controlled using a 29K microprocessor. The workstation CAB sits in a separate box that
connects to a Turbochannel paddle card. While the CAB hardware is designed for bandwidths up to 300
Mbit/second, the microcode currently limits throughput to about 200 Mbit/second (Section 3.3).
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3.1 A single-copy protocol stack for BSD

To make efficient use of the CAB, data should be transferred directly from user space to CAB memory and
vice-versa, and this model is different from that found in Berkeley Unix operating systems, where data is
channeled through the system’s network buffer pool [32]. The difference in the models, together with the
restriction that data in CAB memory should be formatted into complete packets, means that decisions about
partitioning of user data into packets must be made before the data is transferred out of user space. This
requires that some of the functionality in the “layered” protocol stack be moved.

There are many ways of doing this reorganization, but the least disruptive solution is to maintain the
existing protocol stack structure and to pass data descriptors representing the data through the stack instead of
kernel buffers holding the data. Formatting operations on data, i.e. packetization, are done “symbolically” on
the descriptor and not by copying the data. All data-touching operations are combined into a single operation
that is performed in the driver. Figure 4 shows the control flow (gray arrows) through an original and a
modified stack: the black arrows show how the per-byte operations are moved to the driver and hardware.
To move the checksum calculation, information about the checksum calculation is associated with the data
descriptor for the packet, thus allowing the checksum to be set up or used in the transport layer, but calculated
in the driver. To support this software organization, the network device driver has to provide routines to
transfer packets between host and network memory, besides the traditional input and output routines.
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3.2 TImplementation in DEC OSF/1

This software architecture was implemented in a Net2 BSD protocol stack, as it exists in DEC OSF/1 v2.0.
We give a brief overview of the implementation. More details can be found in [27].

The single copy path can be added as a separate stack, or it can be merged with the traditional multi-copy
stack (Figure 5). Adding the single-copy path as a second, separate stack (Figure 5a), is more complicated
since it raises the issue of what stack to use for each read/write and each incoming packet, and it also
complicates operations that involve both stacks, such as IP routing. For this reason, we added a single-copy
path to the existing protocol stack (Figure 5b).

With a single stack implementation, data can flow through the protocol stack in three different formats:
data in kernel buffers, data in user space, and data in outboard buffers. In our implementation, all data
formats are represented by mbufs, with the latter two formats relying on the external mbuf mechanism that
was added to 4.3 BSD. External mbufs make it possible to store data in buffers that are managed separately
from the regular pool of kernel mbufs. We created two new mbuf types: one to represent data stored in the
user’s address space (M_UIO mbuf) and another to represent data stored in network memory (M-WCAB
mbuf). The new mbuf types include new data structures holding information on the checksum location, the
task that issued the read or write (used for notification), and location of data in the user’s address space or
the outboard memory.

An important result of working inside the mbuf framework is that most of the changes related to copy
optimization are hidden inside the macros and functions that operate on mbufs, and few changes had to be
made to the transport and network layers in the stack. The changes to the stack were limited to:

e The socket code was changed to create M_UIO mbufs (transmit) and to recognize M_WCAB mbufs
(receive).

e In the TCP layer, the code that copies a packet’s worth of data into an mbuf chain to be handed to the
driver was replaced by code that searches the transmit queue for a block of data at a specific offset.
Note that this search routine has to operate on a list that includes mbufs of different types, including
M_WCAB mbufs in the case of retransmit.

o The checksum routines were modified to use outboard checksumming. On transmit, the checksum
routines includes information about the location and offset of the checksum in the packet descriptor so
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that the CAB can calculate the checksum and insert it in the TCP/IP header. On receive, the checksum
routine uses the checksum that was calculated by the CAB hardware. descriptor

An alternative to using the existing mbuf framework would have been to defined a new data structure
to represent the different data formats. However, this would have required more substantial changes to the
code.
The CAB uses DMA to achieve good efficiency on the data transfer between the network memory and
host memory. DMA devices typically transfer data between kernel buffers and the device, but with the
single-copy stack, data is transferred directly between user space and the device. This means that user
buffers have to be pinned and remapped before they can be accessed by the CAB DMA engines. As a result
of this overhead, it is more efficient to use the original stack for small reads and writes, since it DMAs to
and from kernel buffers, which is more efficient, and also allows TCP to coalesce data.

Besides user-level applications communicating through the CAB, we also have to consider the following

scenarios:
e Many in-kernel applications make use of the network. They include I/O intensive applications such as
file servers, and applications with low bandwidth requirements such as ICMP. They use TCP or UDP
over IP, or raw IP.

e Hosts often have network interfaces other than the CAB, and these interfaces typically do not support
single-copy communication.

Figure 6 shows the different paths through the protocol stack. The single-copy path described in this
section is shown in black. Given the nature of the changes to the protocol stack, in-kernel applications
communicating through existing interfaces are not affected (thick gray arrow in Figure 6) since they use
“regular” mbufs, which are still supported.

However, in-kernel applications communicating through the CAB and applications using the socket
interface communicating through existing interface might create problems (thin arrows in Figure 6) as a
result of the new mbuf types. Making these paths work should not require modifying in-kernel applications
or drivers for existing devices. Not only would this significantly increase the amount of code that has



to be modified and maintained, but in many cases it is impossible because applications are distributed in
binary form only, i.e. even recompilation is not an option. Interoperability of the different code segments
is maintained by doing transformations on the data representation at the module boundaries. For example,
outboard data (M_WCAB mbuf) is DMAed into kernel buffers (regular mbufs) before it is passed into a file

Server.

3.3 Performance

We compare the performance of a single-copy stack with that of an unmodified stack.

3.3.1 Design of experiments

The single-copy stack was implemented in an OSF/1 v2.0 kernel running on a DEC Alpha 3000/400 with 64
MByte of memory. The OSF/1 protocol stack is based on Net2 BSD and also supports TCP window scaling
[7]. The network device used is the CAB [47] and the Maximum Transmission Unit (MTU) is 64 KBytes.
For all tests, the TCP window size is 512 KBytes. The implementation of the single-copy stack currently
supports user-level and in-kernel applications communicating through Ethernet and user-level applications
communicating through the CAB.

Which protocol stack is used will affect the efficiency of the communication, i.e. how much overhead
does communication introduce, and depending on the specific network adapter and host, the stack might
also have an impact on the throughput. For this reason, we will use both throughput and system utilization
as performance measures. Throughput is measured using ¢tcp, which measures user process to user process
throughput. Estimating the utilization accurately is more difficult. The CPU utilization of tcp is not a good
indicator, since certain communication overheads (e.g. ACK handling and any transmits it triggers) are not
charged to the process for which the action is performed (tfcp in our case), but to the process that happens
to be active when the interrupt takes place. To solve this problem, we ran a compute-bound low-priority
process called util at the same time as #tcp on both the sending and the receiving node. The wutil program is
started up and killed by tfcp and uses any cycles that are not used by #tcp, i.e. it can be viewed as a user
program doing useful work while communication is taking place. When calculating the utilization due to
communication, we charge any system time accumulated by util to ticp.

When using this method, we discovered that the sum of the CPU times charged to u#il and ttcp does
not add up to the elapsed time of the tests. Consistently, about 7-8% of the time is unaccounted for. This
time is likely spent in various background processes, including the idle process, and we will assume that it
should charged proportionally to util and #fcp, so our estimate for CPU utilization to support communication
is calculated as:

teep(user) + ttep(sys) + util(sys)
teep(user) + ttep(sys) + util(sys) + util(user)

utilization =

3.3.2 Experimental results

Figures 7(a) and (b) show the throughput and utilization as a function of the read/write size. The utilization
results are for the sender, but the results on the receiver are similar. Figure 7(a) includes the throughput
for raw HIPPI reads and writes. The raw HIPPI throughput test generates well-formed packets that can be
handled efficiently by the microcode, so the raw HIPPI results represent the highest throughput one can
expect for a given packet size. Note that the measurements for the modified stack always use the single-copy
path (i.e. it does not fall back to “regular” path for small writes as described in Section 3.2) and does not
coalesce the M_UIO mbufs generated by multiple writes into a single packet.
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Figure 7: Throughput, utilization and efficiency as a function of read/write size

The throughput results show that for small writes (16 KByte and less) the original stack provides a higher
throughput than the single-copy stack. This is a result both of a higher efficiency (see below) and the lack of
coalescing in the single-copy stack. For larger reads and writes the modified stack has a higher throughput:
the peak throughput is 172 Mbit/second for the modified stack versus 110 Mbit/second for the unmodified
stack. The utilization measurements shows that the modified stack uses fewer CPU cycles to provide the
higher throughput. The unmodified stack uses over 90% of the CPU, i.e. data copying and checksumming
by the CPU limits throughput, while the modified uses only 25% of the CPU, i.e. even at 170 Mbit/second
it still leaves many CPU cycles for use by applications.

To better evaluate the overhead we define the communication efficiency as how many Mbit/second of
communication can be supported if the full CPU were utilized for communication, i.e. the ratio of the
throughput and efficiency graphs in Figure 7(a) and (b). Figure 7(c) shows the efficiency for the both
implementations of the stack. We see that the single-copy stack is more than five times more efficient than
the unmodified stack for large writes, but less efficient for small writes. The cross over point is between
8 and 16 KByte, indicating that the single-copy stack will pay off, i.e. be more efficient, for writes of 16
KByte and higher. Note that the efficiency is a rough estimate of the communication throughput that the
host can sustain, ignoring limitations imposed by the network or the adapter.
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Figure 8: Connection of HIPPI network interface to iWarp distributed-memory system

4 The iWarp interface

The most powerful supercomputers today are distributed-memory systems that link a large number of
workstation-class processors together using a high performance interconnect. Their success can be attributed
to the fact that they are inherently scalable and provide relatively inexpensive computing cycles compared
with traditional supercomputers. However, while distributed-memory systems are effective compute engines,
network I/O has proven to be a problem. The reason is that network I/O is typically supported through an
I/O node with the same computational power of one of the compute nodes, i.e. a workstation-class node has
to support network I/O for a supercomputer. The I/O architecture used for the HIPPI interface for the iWarp
system [6] relies on a careful distribution of the network functions, e.g. protocol processing, data formatting
and connection management, between the distributed-memory system and the network interface to achieve
high-bandwidth network I/O.

4.1 1/O architecture

Distributed-memory systems communicate over a network through a network interface node connected both
to the external network (e.g. HIPPI) and the internal interconnect of the system (Figure 8). The role of
the network interface is to forward data between the internal and external network. The sequential network
interface tends to become a bottleneck.

In the iWarp HIPPI interface [45], these problems are addressed by mapping each task onto the subsystem
that is the most appropriate for it (network interface or distributed memory system):

1. Communication protocol processing (transport and network layers) generally does not parallelize well.
We map this task to the network interface, and use the CAB architecture to provide hardware support
for time-critical tasks (Section 4.2).

2. Managing connections between the distributed-memory system and the outside world through the
network interface translates into a problem of allocating resources in the system (e.g. link bandwidth,
buffer space, ..). This task is mapped onto the streams software (Section 4.3).

3. Data sent or received over the network is typically distributed over the private memories of the nodes.
This means that the communication software has to perform scatter or gather operations as part of the
I/O operation [20]. We map the task of combining/distributing the data onto the distributed-memory
system (Section 4.4).
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Note that these functions correspond to the transport, network, session and presentation layers of the OSI
network model (Figure 9).

Our implementation shows that this architecture is very effective. We have measured sustained through-
puts of 55 Mbyte/second for simple applications (e.g. displaying images on a HIPPI framebuffer), and 40
Mbyte/second for complex applications that send data to the PSC Cray C90.

4.2 iWarp CAB

Since protocol processing does not parallelize well, this task is performed by the network interface. Figure
10 shows the architecture of the iWarp-HIPPI network interface, or HIPPI Interface Board (HIB). It consists
of two iWarp processor and a CAB. The iWarp processors link the network interface into the iWarp torus
and perform protocol processing, while the CAB provides support for critical protocol processing operation:
data transfer, checksumming and buffering (Section 2). The operation of the network interface is similar to
that of a sequential system, except that the data source and sink is the distributed-memory system, and not
the memory of the iWarp processors on the interface.

Other distributed-memory systems also rely on the network interface to perform protocol processing.
While we run a relatively standard TCP/IP implementation on the network interface, others use outboard
protocol processing (e.g. [48]), or a customized protocol implementation relying heavily on hardware
support (e.g. [43]).

The HIB architecture has two iWarp processors instead of one because of data bandwidth requirements.
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The critical resource in the architecture is the memory bus of the iWarp processors since all data that is
sent/received has to flow over it, and the bus is also used for program and local data accesses. Using two
iWarp processors instead of one doubles the bandwidth available for these operations from 160 KByte/sec
to 320 KByte/sec.

The main role of the staging memories in the architecture is to efficiently gather data coming from the
different iWarp buses (transmit) or to scatter data (receive). They are implemented as dual-port RAMs with
a bandwidth of 160 MByte/second on the iWarp side and 100 MByte/second on the network side. Since the
DMA engines on the iWarp chip interleave the data on the iWarp memory bus in small blocks (8 bytes), it is
necessary to use static RAM to achieve high throughput. As a result, the staging memories are small: 128
KByte for each direction.

The implementation of the UDP/IP and TCP/IP protocol stack for iWarp differs from a traditional work-
station implementation in a number of ways. The most obvious difference is that processing is distributed
over two processors, so the transmit and receive components of TCP/IP have to be separated. A shared
memory (Figure 10) allows the two components to keep a consistent protocol state. Second, the protocol
stack has to be modified to make use of the outboard storage and checksum calculation. These changes are
similar to those discussed in Section 3.1, except that iWarp runs a light-weight runtime system (instead of
Unix) and interoperability with existing devices and applications is not a concern.

The iWarp CAB can send data at 75 MByte/sec for 64 KByte packets. Measurements for raw HIPPI and
UDP over IP give the same throughput results, i.e. the UDP/IP implementation is very efficient. The main
difference between the two cases is that the idle time on the network interface node is lower in the UDP case
(40%-56%) than in the raw HIPPI case (74%-79%). The current bottleneck in the system is the microcode
on the CAB: it limits us to sending about 3000 packets per second.

4.3 The streams package

The transfer of data between the application on the system and the network is a two phase process. In a first
phase (transmit), data is transferred from the system to the network interface, and in the second phase, the data
is sent over the network. The data transfer over the network is controlled by the communication protocols, as
described above. Managing the first phase is mainly a resource management problem: both the distributed-
memory system and the network interface have limited resources (memory, link bandwidth, ..), and how they
are allocated to support I/O will have a significant impact on performance. On sequential systems, this task
is traditionally performed by the operating system. However, applications on distributed-memory systems
can have very different I/O requirements. They can differ with respect to the distribution of the data, the use
of communication resources inside the distributed-memory system, and choice of communication library.
For this reason, a single solution built into the operating system or supported by a general library will not
be able to support I/O efficiently for a wide range of applications.

For iWarp, communication between the distributed memory system and the HIB is supported using the
streams package. It distinguishes between tasks that need to be performed on the distributed-memory system
and tasks that need to be performed on the network interface [22]:

e The Streams Manager on the network interface is responsible for efficient data movement from the
interconnect of the distributed-memory to the network for multiple streams. A stream is a connection
from the application on the distributed-memory system to another system connected to the external
HIPPI network. The streams manager is also responsible for invoking the appropriate communication
protocols, which format and prepend headers to each packet.

e The application on the distributed-memory system is responsible for distributing (or collecting) the
data to (or from) the network interface using existing communication libraries. This architecture
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does not imply that each application has to provide the code to transfer data to and from the network
interface. Rather, libraries can be built for common data distributions (Section 4.4).

The components interact through a control interface and a data interface:

e The data interface transfers data between the network interface and the application on the distributed
memory system. The main parameters controlling data transfers are the data format (quantity and
ordering if striping is used), and address information.

e The control interface allows the application to instruct the network interface on how it should perform
communication. Typical operations include opening or closing a connection, issuing an I/O operation,
or inquiring about status.

The streams package provides the flexibility needed to support application-specific I/O and a wide range
of applications have used the package to communicate over HIPPI [22]. Examples include MRI medical
image reconstruction, chemical flow sheeting, and real time video display.

If the distributed-memory systems is programmed using a programming tool, such as a parallelizing
compiler, that tool is in an ideal position to manage the I/O, e.g. select the right data movement libraries and
insert calls to stream manager. The tool already manages the resources in the distributed-memory system
based on an understanding of the characteristics of the application, and can optimize I/O operations internally
(between the compute nodes) and externally (to the network interface)

4.4 Data distribution

To efficiently utilize the large number of processors in a distributed-memory computer, applications typically
use data parallelism. Data is partitioned into equal-sized blocks, which are distributed across the processors,
and each processor operates on the data that is assigned to it. Both the type and granularity of data partitionings
varies widely between application. As a result, I/O operations include an extensive scatter/gather operation
that is application specific. The scatter/gather operation also has to deal with striping the data stream over
multiple links, if the link speed over the internal interconnect is lower than that of the external network.
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Figure 12: Performance of the Reshuffling Algorithm (left) and Throughput to HIB (right)

Distributed-memory machines can deal with the data distribution in a number of ways. In a first approach,
compute nodes send data to the interface independently and the data is sorted out and grouped by the interface.
This approach is simple to implement, but even if the overhead for sending and receiving blocks to or from
the internal interconnect is small, the interface will become a bottleneck for fine-grain data partitionings
[20].

In the approach we selected [8], the distributed-memory system is responsible for the scatter/gather
operation. On transmit, it constructs large messages and presents them to the interface in an efficient way,
for example striped across multiple links. On receive, it distributes the data across the processors. This
approach is attractive for two reasons. First, the network interface only has to deal with large blocks of data,
independent from the data partitioning inside the system. This minimizes the cost on the network interface of
exchanging data with the system. Second, distributed-memory machines typically support high-bandwidth
inter-node communication, and since reshuffling parallelizes very well, many links can be used at the same
time. As aresult, the distributed-memory system can reshuffle data efficiently. A similar approach has been
proposed for disk I/O, e.g. [5].

Figure 12 (left) shows the rate at which data can be reshuffled on an 8 by 8 iWarp system, the results
are for the reshuffling of a block-cyclic distribution with a certain block size (x axis) to a distribution with 8
KByte blocks, which is the optimal size for communication with the HIB. Even for very small block sizes,
reshuffling can be performed at rates that far exceed HIPPI network rate (100 MByte/second).

In a second experiment, data is transferred to the HIB, starting with the data mapped on the system using
block-cyclic distributions with different block sizes. Figure 12 (right) shows the throughput both with and
without reshuffling. We observe that when reshuffling is used, we can easily match the HIPPI bandwidth.
For comparison, the curve labeled “streaming” shows the maximum throughput. It was obtained by having
each node send the data blocks directly to the HIB, striped across 4 links, but ignoring the order of the data.

5 Gigabit Nectar testbed

The Gigabit Nectar iWarp and workstation interfaces were deployed in the Gigabit Nectar testbed (Figure
13). The testbed connects computer system on the CMU campus and at the Pittsburgh Supercomputer Center
(PSC) by a HIPPI network. The systems include an Intel iWarp and Paragon system and 24 DEC Alpha
3000/400 workstations on the CMU campus, and a Cray C90 and Thinking Machines CM2 at PSC. The
network consists of two local area HIPPI networks, one on the CMU campus and one at PSC, connected
by a serial HIPPI link and by an experimental ATM-SONET link [25, 13]. The ATM-SONET link (HAS

15



CMU Campus
Offices

DEC DEC
il Alpha Alpha

26 km
ATM-SONET

Pittsburgh Supercomputer Center
Server B Server
Frame iWarp

ey Parallel Data Lab

Vision Lab

Figure 13: The Gigabit Nectar testbed

for HIPPI-ATM-SONET) was developed jointly with Bellcore. The testbed is being used for a variety of
applications. '

5.1 Heterogeneous supercomputer applications

A first class of applications that makes use of the testbed consists of applications that are distributed across
a small number of supercomputers. Examples include a medical resonance imaging application [37] that
uses the iWarp, C90 and Paragon systems, and a chemical flow sheeting application [15] that was distributed
over the iWarp, C90 and CM2 systems. We include applications that use special purpose devices in the same
category. An example is a video capture application that captures a stream of images, processes them on
iWarp and displays them on a HIPPI framebuffer [49].

The use of heterogeneous systems makes it possible for each task in the application to run on the system
for which it is best suited. This is for example the case for the chemical flow sheeting application which
consists of a massively-parallel memory-intensive task (CM2), a highly parallel task (iWarp), and a scalar
task (C90).

Another important benefit of connecting heterogeneous systems with a high speed network is that it
simplifies code reuse. Many applications, e.g. interdisciplinary applications, are constructed by combining
existing programs. In many cases, these programs have been developed for different parallel systems,
and porting all programs to the same system so they can be integrated would be a significant effort. A
heterogeneous multicomputer makes it possible to avoid the porting step: each component executes on the
platform for which it was developed and the components in the combined application use the network to
exchange data. Since data sets are usually very large, the network must have a high bandwidth.

5.2 Workstation cluster applications

Workstation clusters (or “Network Of Workstations™) are an attractive platform for many applications. The
Nectar project [4, 30], the predecessor of Gigabit Nectar, started exploring issues in the areas of high-speed
communication in switched-based LANs [44, 16] and support for application distribution [31]. This work
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is being continued using the Gigabit Nectar cluster consisting of 24 Alpha workstations distributed across
labs and offices.

Applications that use the cluster include the NSF Grand Challenge applications on Environmental Mod-
eling [29] and on Ground Motion Modeling. However, the focus of the Gigabit Nectar cluster has been
on supporting research on programming tools for distributed computing. Implementing applications on
a network-based multicomputer is a non-trivial effort, and programming tools that simplify that task are
needed. In the context of the Nectar and Gigabit Nectar systems, we have demonstrated tools in three critical
areas: monitoring tools that help the programmer understand the behavior of their application [10, 9], support
for data sharing across the network [35, 36], and load balancing tools that help in distributing work to make
efficient use of the cycles on the nodes [51, 50, 41, 42, 40].

Recent research has focused on providing programming abstractions at a higher level than message
passing. The Fx parallelizing FORTRAN compiler [30] supports both data and task parallelism, and, as a
result, it can be used for a large number of application domains, including scientific computing and signal
processing. Other efforts include the Dome distributed object library [3], which provides runtime support
for load balancing and fault tolerance, and the DCABB environment [28] which supports distributed branch
and bound algorithms. The Scotch parallel file system is also connected to Gigabit Nectar.

6 Conclusion

The Gigabit Nectar project demonstrated that by optimizing per-byte operations, it is possible to communi-
cate over networks efficiently using standard communication protocols (internet protocols) and APIs (BSD
sockets). For workstations we use outboard buffering and checksumming and a modified BSD protocol
stack to achieve single copy communication, i.e. data is touched only once on its path from the application
space to the network. For the distributed memory systems such as iWarp, we rely on the distributed memory
system to create large contiguous blocks of data that can be handled efficiently by the network interface.
Protocol processing is performed on the network interface using hardware support for per-byte operations,
similar to that on the workstation interface.

The workstation and iWarp interfaces were deployed in the Gigabit Nectar testbed and were used both
in heterogeneous supercomputer and workstation cluster applications. One interesting result was that the
presence of a high-speed network allowed us to quickly build several complex applications by combining
application components that had been developed independently for different systems. Our workstation
cluster results also show that a higher speed network allows us to run applications more effectively, i.e. to
use more nodes and get better speedups.
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