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Abstract

This technical report contains the proofs of all theorems that are central to our Ma-
chine Learning Journal article “The Effect of Representation and Knowledge on Goal-
Directed Exploration with Reinforcement-Learning Algorithms,” in which we analyze
the complexity of on-line reinforcement-learning algorithms that are applied to goal-
directed exploration tasks: Previous work had concluded that, even in deterministic
state spaces, initially uninformed reinforcement learning was at least exponential for
such problems, or that it was of polynomial worst-case time-complexity only if the
learning methods were augmented. In the article we prove that, to the contrary, the
algorithms are tractable with only a simple change in the reward structure (“penalizing
the agent for action executions”) or in the initialization of the values that they main-
tain. In particular, we provide tight complexity bounds for both Watkins’ Q-learning
and Heger’s Q-hat-learning and show how their complexity depends on properties of
the state spaces. We also demonstrate how one can decrease the complexity even fur-
ther by either learning action models or utilizing prior knowledge of the topology of
the state spaces. Our results provide guidance for empirical reinforcement-learning
researchers on how to distinguish hard reinforcement-learning problems from easy ones
and how to represent them in a way that allows them to be solved efficiently.



This technical report contains the proofs of the theorems used in our Machine Learning
Journal article “The Effect of Representation and Knowledge on Goal-Directed Ex-
ploration with Reinforcement-Learning Algorithms” that we have not already proved
there. The report uses the terminology and definitions described in that article.

We assume that all state spaces are safely explorable and (without loss of generality)
that all states that cannot be reached from the start state or that can only be reached
by passing through a goal state have been deleted.

First, we prove several properties of consistent Q-values, for example how they relate to
admissible Q-values. We prove properties of admissible Q- or Q-learning in determin-
istic state spaces if the initial Q-values are consistent. Then, we show that the same
properties hold for admissible Q-learning in non-deterministic state spaces (which in-
clude deterministic state spaces as a special case) if the initial Q-values are admissible.
Finally, we prove our complexity results.

All proofs are for the undiscounted case with action-penalty representation. The trans-
formations of the Q-values that we have described in Sections 6.1.1.2. or 6.1.2. of the
article can then be used to transfer the results to discounted Q- or Q-learning with
action-penalty representation or goal-reward representation, respectively.

The time superscripts ¢ used in the following refer to the values of the variables imme-
diately before the agent executes the (¢ + 1)st action.

Theorem 1 If (Q-values are consistent for undiscounted Q- or Q-learning with action-
penalty representation, then —mingex d(s,s’) < U(s) <0 for all s € S, where X :=
{s € 5:U(s) =0}

Proof by induction on d'(s) := mingex d(s,s’). Note that d'(s) is finite for all s € 9,
since the state space is safely explorable and G C X.

o If d'(s) =0, then s € X and therefore U(s) = 0. Thus, —d'(s) = U(s) = 0.

o If d'(s) # 0, then s ¢ X O G and therefore s € S\ G. Let a :=
aTgMiNy ¢ 4(s) AKXy suce(s,a’) d'(s'). Assume that the theorem holds for all s” €
S with d'(s") < d'(s). Then, it holds for all s € succ(s,a), since
MaXy couce(s,a) @ (8') = d'(s) —1 < d'(s) and therefore d'(s") < d'(s). Thus,

Assumption Consistency

—d'(s) = —1 — Mmaxyesuece(s,a) 4'(5') < —1 4+ mingesuce(s,a) U(s")

Consistency

Q(Sa a) < mMaXa'cA(s) Q(S, a’) = U(S) < MmaXses,a’'cA(s) Q(SI7 a’) <

Theorem 2 If Q)-values are consistent for undiscounted Q- or Q-learm’ng with action-
penalty representation, then —1 — MaXygguce(s,) Mingrex d(s',5") < Q(s,a) <0 for all

s€ 85\ G and a € A(s), where X :={s € 5 :U(s) = 0}.
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. , " Theorem 1 . , Consistency
Proof: —1 — maXyesuce(s,) Mierex d(s’,8") < —1 4 mingesuce(s,a) U (")

Consistency

Q(s,a) < Oforallse S\ Gandace A(s).

Theorem 3 Consistent Q)-values for undiscounted ¢)- or Q:learning with action-
penalty representation are admissible for undiscounted Q- or Q-learning with action-

penalty representation.

Proof: Assume consistent Q-values. ((s,a) = 0 for all s € G and a € A(s).
It holds for all s € S\ G and a € A(s) that —1 — maXgeouee(s,a) 9d(s’) = —1 —

Theorem 1
. } 1" M / n
MaXy gsuce(s,a) Miereg d(8',8") < —1 — MaXggouee(s,) Mingrex d(s’,s") < -1+
Consistency Consistency

Milycguce(sia) U(s) < Qs,a) < 0, where G C X :={se€ §:U(s) =0}

Theorem 4 If Q)-values are admissible for undiscounted Q- or Q-learm’ng with action-
penalty representation, then —gd(s) < U(s) <0 forall s € S.

Proof: If s € G, then —gd(s) = 0 = max,ca(s) 0 Admizbility maXyea(s) @(s,a) = U(s).
It holds for all s € S\ G that —gd(s) = —(1 4 mingea(s) MaXy suce(s,a) 94(s)) =
Admissibility
maxXgeas)(—1 — MaXyesuco(s,a) 94(s’)) < maX,ca(s) @(s,a) = U(s) <
Admissibility

mMaXs'c s a'cA(s) Q(‘S/a al)

Consider the following algorithm Algl in a deterministic state space: Given arbitrary
Q-values, pick an arbitrary state s € 5\ G and determine a := argmax, ¢ 4(,)@(s, @').
(Ties can be broken arbitrarily.) Let s’ be the uniquely determined successor state if
a is executed in s, i.e. §' = suce(s,a). Set Q(s,a) := —1 + U(s') and leave the other
Q-values unchanged. Refer to the old Q-values as Q°(s,a) and to the new ones as

QR'(s,a), i.e.

(L oM — [ —
Q'(s",d) = { —1+U(s) ifs"=sanda’=a for all s” € .S and o’ € A(s")

R°(s",d’) otherwise
(Note that the value-update step of algorithm Algl is the value-update step used in

the first part of the definition of undiscounted admissible Q- or Q—learning with action-
penalty representation in deterministic state spaces.)

Theorem 5 If the QP-values are consistent for undiscounted Q- or Q-learning with
action-penalty representation, then

1. Q\(s",a') < Q°(s",d') for all s" € S and o € A(s"),
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2. UMs") < U°s") for all " € S, and

3. the Q'-values are consistent for undiscounted @)- or Q—learning with action-
penalty representation.

Proof:
1. QI(S”,CZI) = -1+ UO(S’) = -1+ minsmesucc(s”,a’) UO(S’”) Consi%tency QO(S”’ a,) for
s" = s and ¢’ = a, and Q'(s",a’) = Q°(s”,d’) otherwise. Thus, Q(s",a’) <
Q%(s",a’) for all 8" € S and o’ € A(s").

IN

2. According to the first part of this theorem, it holds that Q'(s”,a’)

Comnsistency

Q°%s",a’) < 0 for all " € S and @’ € A(s”). Then, U'(s")
MaXy’ e A(s") QI(S", a,,) < maXg/c A(s") QO(S", a') = UO(S”) for all " € S.

3. According to the second part of this theorem, it holds that U'(s") < U%(s") for
all s € S. Then, —1 4 mingmeuce(s a?) UNs") = -14UYs") < =14+ 0% =
QR (s",a') <0for s” = sand a' = a, Q'(s",a’) = Q%s",a’) = 0 for all s” € G and

a' € A(s"), and —14+U(succ(s”,a’)) < —14+U°(succ(s”,a’)) consgency R°(s",ad) =
Consistency

Q' (s",a') = Q°s",a’) < 0 otherwise. Thus, the Q'-values are consistent
for undiscounted Q- or Q-learning with action-penalty representation.

Theorem 6 If the initial Q-values of algorithm Algl (see Theorem 5) in a determin-
istic state space are consistent for undiscounted (- or Q-learning with action-penalty
representation, then they remain consistent after every action execution, and the ()-
values and U-values are monotonically decreasing.

Proof by induction on the number of action executions: The Q-values are consistent
before the first action execution. Assume that they are consistent before an arbitrary
action execution. According to Theorem 5, they are consistent after the action execu-
tion, and the Q-values and U-values are monotonically decreasing.

Consider the following algorithm Alg2 in a non-deterministic state space: Given
arbitrary Q-values, pick an arbitrary state s € S \ G and determine a :=
argmax e 4(5)@(8,a’). (Ties can be broken arbitrarily.) Let s’ be an arbitrary successor
state if @ is executed in s, i.e. s’ € suce(s,a). Set Q(s,a) := min(Q(s,a),—1+ U(s))
and leave the other Q-values unchanged. Refer to the old Q-values as Q°(s,a) and to
the new ones as Q'(s,a), i.e.

: Ot 1 _ O 7 ool — -
min(Q°(s",a"), -1+ U"(s")) if s sand o' =a for all s € § and a’ € A(s")

10 07 n __
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(Note that the value-update step of algorithm Alg2 is the value-update step used in
the definition of undiscounted admissible Q-learning with action-penalty representa-
tion in non-deterministic state spaces, of which the value-update step of the second
part of the definition of undiscounted admissible Q- or Q-learning with action-penalty
representation in deterministic state spaces is a special case.)

Theorem 7 If the Q®-values are admissible, then

1. Q¥ s",a") < Q%s",a') for all " € S and o' € A(S"),
2. U'(s") <U°(S") for all " € S, and

3. the Q' -values are admissible for undiscounted Q- or Q-learning with action-
penalty representation.

Proof:

Q'(s",d") = mln(QO(s" a'),—14+ U%s")) < Q°s",a') for 8" = s and @' = a, and
Q' (s", " ) Q°(s",a’') otherwise. Thus, Q'(s",a") < Q°(s",d’) for all s” € S and
’eA( .

2. According to the first part of this theorem, it holds that QR'(s",a") <
Q°(s", a) Admlzbmw 0 for all 8" € S and o' € A(s"). Then, U(s")
maX,re A(s") QI(SH’ al) < mMaXare A(s") QO(‘S”a al) = UO(S”) for all " € S.

a

3. —1 — maXyresuce(sn,ar) 9A(s”) < Q°(s”,a’) and —1 — maxyregyee(s oy gd(s") <
Theorem 4

-1 —gd(s) < —1+4+U°%) for 8" = s and &’ = a, therefore —1 —
MaXgmesuce(s”,a’) 9A(s") < min(Q°(s”,a’), —14+U°(s")) = Q'(s",a’) < 0 for s" = s
and o' = a. Q*(s",d') = Q°(s",a’) =0 for all s € G and a’ € A(s"), and —1 —
ma'Xs’”Esucc(s",a’) gd(slﬂ) Admlzblmy QO(S’IyaI) = QI(S”)G’,) = Q0(3”7 a‘l) e
otherwise. Thus, the Q!-values are admissible for undiscounted Q- or Q—learning
with action-penalty representation.

Theorem 8 If the initial Q-values of algorithm Alg2 (see Theorem 7) in a non-
deterministic state space are admissible for undiscounted Q- or Q learning with action-
penalty representation, then they remain admissible after every action execution, and
the Q-values and U-values are monotonically decreasing.

Proof by induction on the number of action executions: The Q-values are admissible
before the first action execution. Assume that they are admissible before an arbi-
trary action execution. According to Theorem 7, they are admissible after the action
execution, and the Q-values and U-values are monotonically decreasing.




Theorem 9 For allt € Ny (until termination) of (a) undiscounted admissible Q- or (-
learning with action-penalty representation in deterministic state spaces and (b) undis-
counted admissible Q-leamz’ng with action-penalty representation in non-deterministic
state spaces, it holds that U*(s") + Lses Laca(s) @°(5,a) = 1 2 Yies Yaea(s) @(s, a) +
U°(s%) —loop* and loop’ <3 ses Y aea(s) @°(5,0) —Yses Lacas) @ (s, a), where loop® :=
Ht' € {0,...,t — 1} : s = st"*}| (the number of actions executed before t that did not
change the state).

Proof by induction on ¢: The theorem trivially holds for ¢ = 0. Assume that it holds
for an arbitrary t. Note that Q*(s*,af) = U'(s*), due to the specific action-selection
step used. We distinguish two cases:

e The action executed at ¢ did not change the state:

Then, s*! = s* and loop™™! = 1+loop’. Depending on the value-update step used,
it holds that either @*t!(s?,af) = =14+ U'(s'*) = =14+ U'(s*) = —1 + Q*(s%, a?)
(for the first part of the definition of admissible Q- or Q—learning in deterministic
state spaces) or @*7'(s%,a") = min(Q*(s%, a*), -1+ U*(s")) = min(Q*(s*, a), -1+
Q'(s',a")) = —1 + Q'(s*,a") (otherwise). Thus, in both cases Q*F!(s%,af) =
—14 QY(st, at). UH(stH) = Ut(st) = maxgeaw) Q1 (s% a) > QUFL(st, af) =
—1+ Q'(st,a*) = —1 + U¥(s*). All other values do not change from ¢ to ¢ + 1.

UHE) 4 TiesTaan@(ss0) — (¢ + 1) > (-1 + UsH) +

ZsES ZaEA(s) QO('S) Cl,) - (t + ]-) = (Ut('st) + ESES ZaeA(s) QO('S) (I) - t) —2 g
(ZsES EaEA(s) Qt(saa’) + UO('SO) - loopt) -2 = (_1 + ZsGS ZaEA(s) Qt(sa a')) +
UO(SO) - (1 + lOOpt) = ZSES Za.EA(s) Qt+l (’57 a) & UO(SO) - lOOpt+1.

ssumption

A
lOOpH'l =1+ loopt < 1+ (ZSGS ZaEA(s) Q0(37 CL) - ZSES ZaeA(s) Qt(S) a‘)) =
ZSES ZaEA(s) QO(Sa (J,) - (_]— + ZsES ZaEA(s) Qt(sa d)) = ZSES ZaEA(s) Q0(57 a) -
ZsES ZaEA(s) QH-I(S’ a)'
In other words, the theorem also holds for ¢ + 1.

e The action executed at ¢ changed the state:

Then, st # s, loop*t! = loop’, and (for both possible value-update steps)

QU(stat) < —1 4 UHs'h) = —1 + U(s**1). All other values, except for

U(s?), do not change from t to ¢ + 1.

U (™) + Faes Paca() @°(s,a) = (t+1) = (U'(s") + oes Cacag) @°(s,0) —
Assumption

O+ U SH) —UNs) =1 2 (Toes Yacar) @(s,a) + U°(s®) — loop?) +

Ut+1(st+1) _ Ut(.st) -1 = (_1 + Ut+1(5t+1)) _ Ut(st) + ESES ZaEA(s) Qt(s,a) +

U°(s%)—loop* > (Q™'(s%,a") — Q¥ (%, ")+ X ses Laea(s) @(s, @) +U(s?)—loop* =

(ZSGS ZoLEA(s) Qt_l-l(‘sa a’)) + UD(SO) - lOOpt+1.

Assumption

loopt-H = lOOpt < ZsES ZaEA(s) QO(S7 a.) - ZsES EaeA(s) Qt(s’ a) <
ZsES ZaeA(s) QO(Sa a) - ESES EaEA(s) Qt+1(57 a)a since Qt+1(37 a) < Qt(57 a) for
all s € § and a € A(s) according to Theorems 6 and 8.
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In other words, the theorem also holds for ¢ + 1.

Theorem 10 (A) Undiscounted admissible Q- or O-learning with action-penalty rep-
resentation in deterministic state spaces and (b) undiscounted admissible Q—leaming
with action-penalty representation in non-deterministic state spaces reach a goal state
aﬁer at most 2 ZSGS\G ZaEA(s)(QO(Sa a‘) + ma‘xs’Esucc(s,a) gd(‘sl) + 1) - UO(SO) action ez-
ecutions in non-deterministic state spaces.

Proof: ¢ egm Ut(st) + stS ZaeA(s) QO(S7 a’) - ZsES zaEA(s) Qt(saa) - UO(SO) +

Theorem 9

lOOpt < Ut(st) + EsES EaEA(s) QO(S’G') - ESES ZaeA(s) Qt(saa) - UO(SO) +
(Fses 2aea(s) @°(5,0) — Cies YCaca(s) @(5,a)) = Us") + 2,65 Caca(s) @°(s, @) +
2T ses Yaca(s) —Q(s,a) — UP(s°) = U'(s") — U(s°) + 25 5e5 Caea(s)(@Q%(s; ) —
Qt(*s) a)) < _UO(SO) + 2ZsES\G ZaeA(s)(QO('Sa a) + IMaXs' csuce(s,a) gd(S’) + 1)’ since the

Q-values are admissible according to Theorems 6 and 3 or Theorem 8, and therefore
Q%s,a) = Q%(s,a) = 0 for all s € G and a € A(s), —1 — MaXyeuce(s,a) 9A(S') Admxgblmy
Theorem

Q'(s,a) for all s € S\ G and a € A(s), and U'(s) < "0foralls € S.

Theorem 11 (A) Undiscounted admissible Q- or Q-learning with action-penalty rep-
resentation in deterministic state spaces and (b) undiscounted admissible (-learning
with action-penalty representation in non-deterministic state spaces reach a goal state
after at most O(ed) action executions in non-deterministic state spaces.

Proof: The algorithm reaches a goal state after at most O(23,e5\6 Yaea(s)(@°(s,a) +
MaXyesuce(sia) 9A(8)+1)—U(s%)) < O(2 >ses\G LacA(s)(d+1)+d) < OQ2e(d+1)+d) =
O(ed) action executions according to Theorem 10, since the Q-values are admissible
according to Theorems 6 and 3 or Theorem 8, and therefore Q°(s, a) Adm?blmy 0 for all

Theorem 4

s€Sanda€ A(s),and —d < —gd(s) < U°(s)forallseS.

Thanks to Diana Gordon for pointing out a typo in the original manuscript.



