
1

Informed Prefetching and Caching

R. Hugo Patterson*, Garth A. Gibson†, Eka Ginting†, Daniel Stodolsky†, Jim Zelenka†

*Department of Electrical and Computer Engineering
†School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

{rhp, garth, eginting, danner, jimz}@cs.cmu.edu
http://www.cs.cmu.edu/Web/Groups/PDL/

Abstract

In this paper, we present aggressive, proactive mechanisms that
tailor file system resource management to the needs of I/O-inten-
sive applications. In particular, we show how to use application-
disclosed access patterns (hints) to expose and exploit I/O parallel-
ism, and to dynamically allocate file buffers among three compet-
ing demands: prefetching hinted blocks, caching hinted blocks for
reuse, and caching recently used data for unhinted accesses. Our
approach estimates the impact of alternative buffer allocations on
application execution time and applies cost-benefit analysis to
allocate buffers where they will have the greatest impact. We have
implemented informed prefetching and caching in Digital’s OSF/1
operating system and measured its performance on a 150 MHz
Alpha equipped with 15 disks running a range of applications.
Informed prefetching reduces the execution time of text search,
scientific visualization, relational database queries, speech recog-
nition, and object linking by 20-83%. Informed caching reduces
the execution time of computational physics by up to 42% and
contributes to the performance improvement of the object linker
and the database. Moreover, applied to multiprogrammed, I/O-
intensive workloads, informed prefetching and caching increase
overall throughput.

1 Introduction

Traditional disk and file buffer cache management is reactive;
disk accesses are initiated and buffers allocated in response to
application demands for file data. In this paper, we show that pro-
active disk and buffer management based on application-disclosed
hints can dramatically improve performance. We show how to use
these hints to prefetch aggressively, thus eliminating the I/O stalls

incurred by accesses that would otherwise have missed in the
cache, and how to keep hinted data in the cache in anticipation of
reuse. At the core of our approach is a cost-benefit analysis which
we use both to balance buffer usage for prefetching versus cach-
ing, and to integrate this proactive management with traditional
LRU (least-recently-used) cache management for non-hinted
accesses.

Three factors make proactive I/O management desirable and
possible:

1. the underutilization of storage parallelism,
2. the growing importance of file-access performance, and
3. the ability of I/O-intensive applications to offer hints about

their future I/O demands.
Storage parallelism is increasingly available in the form of

disk arrays and striping device drivers. These hardware and soft-
ware arrays promise the I/O throughput needed to balance ever-
faster CPUs by distributing the data of a single file system over
many disk arms [Salem86]. Trivially parallel I/O workloads bene-
fit immediately; very large accesses benefit from parallel transfer,
and multiple concurrent accesses benefit from independent disk
actuators. Unfortunately, many I/O workloads are not at all paral-
lel, but instead consist of serial streams of non-sequential accesses.
In such workloads, the service time of most disk accesses is domi-
nated by seek and rotational latencies. Moreover, these workloads
access one disk at a time while idling the other disks in an array.
Disk arrays, by themselves, do not improve I/O performance for
these workloads any more than multiprocessors improve the per-
formance of single-threaded programs. Prefetching strategies are
needed to “parallelize” these workloads.

The second factor encouraging our proactive I/O management
is that ever-faster CPUs are processing data more quickly and
encouraging the use of ever-larger data objects. Unless file-cache
miss ratios decrease in proportion to processor performance,
Amdahl’s law tells us that overall system performance will
increasingly depend on I/O-subsystem performance [Patterson88].
Unfortunately, simply growing the cache does not decrease cache-
miss ratios as much as one might expect. For example, the Sprite
group’s 1985 caching study led them to predict higher hit ratios for
larger caches. But in 1991, after larger caches had been installed,
hit ratios were not much changed — files had grown just as fast as
the caches [Ousterhout85, Baker91]. This suggests that new tech-
niques are needed to boost I/O performance.

The problem is especially acute for read-intensive applica-
tions. Write performance is less critical because the writing appli-
cation generally does not wait for the disk to be written. In this
common case, write behind can exploit storage parallelism even

This work was supported in part by Advanced Research Projects Agency contract
DABT63-93-C-0054, in part by National Science Foundation grant ECD-8907068,
and in part by donations and scholarships from Data General, Symbios Logic, IBM,
Digital, and Seagate. The United States government has certain rights in this material.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of any of the funding agencies.

© 1995 by the Association for Computing Machinery, Inc. Permission to make digi-
tal or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial
advantage and that new copies bear this notice and the full citation on the first page.
Copyrights for components of this WORK owned by others than ACM must be hon-
ored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc.,
Fax +1 (212) 869-0481, or <permissions@acm.org>.

Appears inProc. of the 15th Symp. on Operating System Principles, Dec. 1995

2

when the application’s writes are serial and non-sequential
[Rosenblum91, Solworth90]. Examples of read-intensive applica-
tions include: text search, 3D scientific visualization, relational
database queries, speech recognition, object code linkers, and
computational physics. In general, these programs process large
amounts of data relative to file-cache sizes, exhibit poor access
locality, perform frequent non-sequential accesses, and stall for
I/O for a significant fraction of their total execution time.

Yet, all of these applications’ access patterns are largely pre-
dictable. This predictability could be used directly by the applica-
tion to initiate asynchronous I/O accesses. But this sort of explicit
prefetching can cripple resource management. First, the depth to
which an application needs to prefetch depends on the throughput
of the application, which varies as other applications place
demands on the system. Second, asynchronously fetched data may
eject useful data from the file cache. Third, asynchronously
fetched file blocks end up indistinguishable from any other block
in virtual memory, requiring the programmer to be explicitly
aware of virtual image size to avoid losing far more to paging than
is gained from parallel I/O. Finally, the specializations a program-
mer puts into overcoming these problems may not be appropriate
when the program is ported to a different system.

Instead, we recommend using the predictability of these
applications to inform the file system of future demands on it. Spe-
cifically, we propose that applications disclose their future
accesses in hints to the file system. We show how to use this infor-
mation to exploit storage parallelism, balance caching against
prefetching, and distribute cache buffers among competing appli-
cations.

The rest of this paper explains and justifies proactive I/O
management based on informed prefetching and caching. Sections
2 and 3 review related work and describe disclosure-based hints.
Section 4 develops our cost-benefit model and Section 5 describes
its implementation in Digital’s OSF/1 v2.0A file system. Section 6
describes our experimental testbed. Benchmark applications and
single-application performance experiments are presented in Sec-
tion 7. Section 8 presents multiple application experimental
results. Finally, Sections 9 and 10 provide directions for future
research and conclusions.

2 Related work

Hints are a well established, broadly applicable technique for
improving system performance. Lampson reports their use in oper-
ating systems (Alto, Pilot), networking (Arpanet, Ethernet), and
language implementation (Smalltalk) [Lampson83]. Broadly,
these examples consult a possibly out-of-date cache as a hint to
short-circuit some expensive computation or blocking event.

In the context of file systems, historical information is often
used for both file caching and prefetching. The ubiquitous LRU
cache replacement algorithm relies on the history of recent
accesses to choose a buffer for replacement. For history-based
prefetching, the most successful approach is sequential readahead
[Feiertag71, McKusick84]. Digital’s OSF/1 is an aggressive exam-
ple, prefetching up to 64 blocks ahead when it detects long sequen-
tial runs. Others, notably Kotz, have looked at detecting more
complex access patterns and prefetching non-sequentially within a
file [Kotz91].

At the level of whole files or database objects, a number of
researchers have looked at inferring future accesses based on past
accesses [Korner90, Kotz91, Tait91, Palmer91, Curewitz93,

Griffioen94]. The danger in speculative prefetching based on his-
torical access patterns is that it risks hurting, rather than helping,
performance [Smith85]. As a result of this danger, speculative
prefetching is usually conservative, waiting until its theories are
confirmed by some number of demand accesses.

An alternate class of hints are those that express one system
component’s advance knowledge of its impact on another. Perhaps
the most familiar of these occurs in the form of policy advice from
an application to the virtual-memory or file-cache modules. In
these hints, the application recommends a resource management
policy that has been statically or dynamically determined to
improve performance for this application [Trivedi79, Sun88,
Cao94].

In large integrated applications, more detailed knowledge
may be available. The database community has long taken advan-
tage of this for buffer management. The buffer manager can use
the access plan for a query to help determine the number of buffers
to allocate [Sacco82, Chou85, Cornell89, Ng91, Chen93]. Ng,
Faloutsos and Sellis’s work on marginal gains considered the
question of how much benefit a query would derive from an addi-
tional buffer. Their work stimulated the development of our
approach to cache management. It also stimulated Chen and Rous-
sopoulos in their work to supplement knowledge of the access plan
with the history of past access patterns when the plan does not con-
tain sufficient detail.

Relatively little work has been done on the combination of
caching and prefetching. In one notable example, however, Cao,
Felton, Karlin and Li derive an aggressive prefetching policy with
excellent competitive performance characteristics in the context of
complete knowledge of future accesses [Cao95a]. These same
authors go on to show how to integrate prefetching according to
hints with application-supplied cache management advice
[Cao95b]. In contrast, we use the same hints, described in the next
section, for both caching and prefetching.

Much richer languages for expressing and exploiting disclo-
sure include collective I/O calls [Kotz94] and operations on struc-
tured files [Grimshaw91] or dynamic sets [Steere95].

3 Hints that disclose

The proactive management strategy described in this paper
depends on a reliable picture of future demands. We advocate a
form of hints based on advance knowledge which we calldisclo-
sure [Patterson93]. An applicationdiscloses its future resource
requirements when its hints describe its future requests in terms of
the existing request interface. For example, a disclosing hint might
indicate that a particular file is going to be read sequentially four
times in succession. Such hints stand in contrast to hints which
give advice. For example, an advising hint might specify that the
named file should be prefetched and cached with a caching policy
whose name is “MRU.” Advice exploits a programmer’s knowl-
edge of application and system implementations to recommend
how resources should be managed. Disclosure is simply a pro-
grammer revealing knowledge of the application’s behavior.

Disclosure has three advantages over advice. First, because it
expresses information independent of the system implementation,
it remains correct when the application’s execution environment,
system implementation or hardware platform changes. As such,
disclosure is a mechanism for portable I/O optimizations. Second,
because disclosure provides the evidence for a policy decision,
rather than the policy decision itself, it is more robust. Specifi-

3

cally, if the system cannot easily honor a particular piece of advice
— there being too little free memory to cache a given file, for
example — there is more information in disclosure that can be
used to choose a partial measure. Third, because disclosure is
expressed in terms of the interface that the application later uses to
issue its accesses; that is, in terms of file names, file descriptors,
and byte ranges, rather than inodes, cache buffers, or file blocks, it
conforms to software engineering principles of modularity.

In our implementations, disclosing hints are issued through
an I/O-control (ioctl) system call. As shown in Figure 1, hints
specify a file and an access pattern for the file. There may be mul-
tiple outstanding hints, and the order in which hints are given indi-
cates the order of the subsequent accesses.

Given disclosing hints, proactive management can deliver
three primary benefits:

Figure 1. The disclosure hint interface. Disclosure hints describe
future requests in the same terms as the existing interface. Thus,
our file system hints have two components, a file specifier and
pattern specifier. The file specifier describes the file either by name
or file descriptor. The pattern specifier describes the access pattern
within the file. Currently, we support two pattern specifiers: a file
read sequentially from beginning to end, or read according to an
ordered list of <offset, length> intervals. Thus, there are currently
four different forms of hints.

File Specifier Pattern Specifier

file name sequential whole file

file descriptor list of <offset, length>×
1. informed prefetching can “parallelize” the I/O request stream

and take advantage of disk arrays to eliminate I/O stalls;
2. informed caching can hold on to useful blocks and outper-

form LRU caching independent of prefetching; and
3. informed disk management can schedule future disk I/Os to

reduce access latency, and batch multiple requests for
increased access efficiency.

This paper demonstrates the first two of these benefits.

4 Cost-benefit analysis for I/O management

The I/O manager’s goal is to deploy its limited resources to
minimize I/O service time. At its disposal are disk arms and file
cache buffers. But, because we are primarily concerned with the
exploitation of storage parallelism, we assume an adequate supply
of disk arms and focus on the allocation of cache buffers.

Bidding to acquire cache buffers are two consumers: demand
accesses that miss in the cache, and prefetches of hinted blocks.
Holding out are two buffer suppliers: the traditional LRU cache,
and the cache of hinted blocks. The I/O manager must resolve this
tension between buffer consumers and suppliers.

In this section, we develop a framework for cache manage-
ment based on cost-benefit analysis. We show how to estimate the
benefit (decrease in I/O service time) of giving a buffer to a con-
sumer and the cost (increase in I/O service time) of taking a buffer
from a supplier. Finally, we show how to use these estimates to
decide whether a buffer should be reallocated from a supplier to
consumer, and, if so, how to pick the buffer for reallocation.

As shown in Figure 2, each potential buffer consumer and
supplier has anestimator that independently computes the value of
its use of a buffer. The buffer allocator continually compares these

hinted sequence

Figure 2. Informed cache manager schematic. Independent estimators express different strategies for reducing I/O service time. Demand
misses need a buffer immediately to minimize the stall that has already started. Informed prefetching would like a buffer to initiate a read
and avoid disk latency. To respond to these buffer requests, the buffer allocator compares their estimated benefit to the cost of freeing the
globally least-valuable buffer. To identify this buffer, the allocator consults the two types of buffer suppliers. The LRU queue uses the
traditional rule that the least recently used block is least valuable. In contrast, informed caching identifies as least valuable the block whose
next hinted access is furthest in the future. The buffer allocator takes the least-valuable buffer to fulfill a buffer demand when the estimated
benefit exceeds the estimated cost.

cached blocks

LRU queue

Buffer Consumers

Bufferdemand
benefit

Buffer Suppliers

Allocator

LRU cost

service
demand

miss

prefetch
benefit ejection cost

hinted sequence

prefetched blocks cached blocks hinted sequence

demand miss

prefetch

LRU cache

hinted cache

4

estimates and reallocates buffers when doing so would reduce I/O
service time.

When comparing the different estimates, the buffer allocator
must consider more than the absolute change in I/O service time; it
must consider how much of the limited buffer resource is
involved. Thus, we define the unit of buffer usage as the occupa-
tion of one buffer for one inter-access period and call it onebuffer-
access. Then we define thecommon currency for the expression of
all value estimates as themagnitude of the change in I/O service
time per buffer-access. With this common currency, the buffer
allocator can meaningfully compare the independent value esti-
mates and allocate buffers where they will have the greatest impact
on I/O service time.

In the following sections, we define our system model and
then develop each estimator’s strategy for valuing buffers.

4.1 System model
We assume a modern operating system with a file buffer

cache running on a uniprocessor with sufficient memory to make
available a substantial number of cache buffers. With respect to
our workload, consistent with our emphasis on read-intensive
applications, we assume that all application I/O accesses request a
single file block that can be read in a single disk access. Further,
we assume that system parameters such as disk access latency,
Tdisk, are constants. Lastly, as mentioned above, we assume
enough disk parallelism for there never to be any congestion (that
is, there is no disk queueing). As we shall see, distressing as these
assumptions may seem, the policies derived from this simple sys-
tem model behave well in a real system, even one with a single
congested disk.

The execution time,T, for an application is given by

, (1)

whereNI/O is the number of I/O accesses,TCPU is the inter-access
application CPU time, andTI/O is the time it takes to service an I/O
access. Figure 3 diagrams our system model.

T NI O⁄ TCPU TI O⁄+()=

File

disk

VM, net, etc.

User

Kernel

disk

TI/O

TCPU

Figure 3. Components of system execution. In our simplified
system model, application execution time,T, has two
components, computation and I/O. The computational
component,TCPU, consists of user-level application execution
plus time spent in kernel subsystems other than the file system.
The I/O component,TI/O, consists of time spent in the file system,
which includes time for reading blocks, allocating blocks for disk
I/Os, servicing disk interrupts, and waiting for a physical disk I/O
to complete.

Application Application

Buffer
Cachesystem

In our model, the I/O service time,TI/O, includes some sys-
tem CPU time. In particular, an access that hits in the cache experi-
ences timeThit to read the block from the cache. In the case of a
cache miss, the block needs to be fetched from disk before it may
be delivered to the application. In addition to the latency of the
fetch, Tdisk, these requests suffer the computational overhead,
Tdriver, of allocating a buffer, queuing the request at the drive, and
servicing the interrupt when the disk operation completes. The
total time to service an I/O access that misses in the cache,Tmiss, is
the sum of these times:

. (2)

In the terms of this model, allocating a buffer for prefetching
can mask some disk latency. Deallocating an LRU cache buffer
makes it more likely that an unhinted access misses in the cache
and must pay a delay ofTmiss instead ofThit. Ejecting a hinted
block from the cache means an extra disk read will be needed to
prefetch it back later. In the next sections, we quantify these
effects.

4.2 The benefit of allocating a buffer to a consumer
The two consumers of buffers are demand accesses that miss

in the cache and prefetches of hinted blocks. Since any delay in
servicing a demand miss adds to I/O service time, we treat requests
from demand misses as undeniable and assign them infinite value.
Computing the benefit of prefetching, explained below, is a bit
harder.

Prefetching a block according to a hint can mask some of the
latency of a disk read,Tdisk. Thus, in general, an application
accessing such a prefetched block will stall for less than the full
Tdisk. Suppose we are currently usingx buffers to prefetchx
accesses into the future. Then, stall time is a function ofx, Tstall(x),
and the service time for a hinted read, also a function ofx, is

. (3)

The benefit of using an additional buffer to prefetch one access
deeper is the change in the service time,

(4)

. (5)

Evaluating this expression requires an estimate ofTstall(x).
A key observation is that the application’s data consumption

rate is finite. Typically, the application reads a block from the
cache in timeThit, does some computation,TCPU, and pays an
overhead,Tdriver, for future accesses currently being prefetched.
Thus, even if all intervening accesses hit in the cache, the soonest
we might expect a blockx accesses into the future to be requested
is x(TCPU + Thit + Tdriver). Under our assumption of no disk con-
gestion, a prefetch of thisxth future block would complete inTdisk
time. Thus, the stall time when requesting this block is at most

. (6)

Figure 4 shows this worst case stall time as a function ofx.
This stall-time expression allows us to define the distance, in

terms of future accesses, at which informed prefetching yields a
zero stall time. We call this distance theprefetch horizon,

Tmiss Thit Tdriver Tdisk+ +=

Tpf x() Thit T+
driver

Tstall x()+=

∆Tpf x() Tpf x 1+() Tpf x()–=

Tstall x 1+() Tstall x()–=

Tstall x() Tdisk x TCPU T+
hit

Tdriver+()–≤

5

P(TCPU), recognizing that it is a function of a specific applica-
tion’s inter-access CPU time.

. (7)

Because there is no benefit from prefetching more deeply than the
prefetch horizon, we can easily bound the impact of informed
prefetching on effective cache size; prefetching a stream of hints
will not lead informed prefetching to acquire more thanP(TCPU)
buffers.

Equation (6) is an upper bound on the stall time experienced
by thexth future access assuming that the intervening accesses are
cache hits and do not stall. Unfortunately, it overestimates stall
time in practice. In steady state, multiple prefetches are in progress
and a stall for one access masks latency for another so that, on
average, only one inx accesses experiences the stall in Equation

x

Tdisk Tdisk/(TCPU+Tdriver+Thit)

prefetch horizon = P(TCPU)

Figure 4. Worst case stall time and the prefetch horizon. Data
consumption is limited by the time an application spends acquiring
and consuming each block. This graph shows the worst case
application stall time for a single prefetchx accesses in advance,
assuming adequate I/O bandwidth, and therefore no disk queues.
There is no benefit from prefetching further ahead than the
prefetch horizon.

stall
time

P TCPU()
Tdisk

TCPU T+
hit

Tdriver+()
---=

Figure 5. Average stall time when using a fixed number of buffers for parallel prefetching. This figure illustrates informed prefetching
as a pipeline. In this example, three prefetch buffers are used, prefetches proceed in parallel,TCPU is fixed, andP(TCPU) = 5. At time T=0,
the application gives hints for all its accesses and then requests the first block. Prefetches for the first three accesses are initiated
immediately. The first access stalls until the prefetch completes at T=5, at which point the data is consumed and the buffer is reused to
initiate the fourth prefetch. Accesses two and three proceed without stalls because the latency of prefetches for those accesses is overlapped
with the latency of the first prefetch. But, the fourth access stalls forTstall = Tdisk - 3(TCPU+Thit+Tdriver). The next two accesses don’t stall,
but the seventh does. The application settles into a pattern of stalling every third access. In general, whenx buffers are used for prefetching,
a stall occurs once everyx accesses.

access
number

Time (1 time-step =TCPU + Thit + Tdriver)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 I
2 I - - - - C
3 I - - - - C
4 I - -
5 I - - - -
6 I - - - -
7 I - -
8 I - - - -
9 I - - - -
10 I - -

- - - - C

- - C
C

C
- - C

C
C

- - C

I : initiate prefetch - : prefetch in progress C : block arrives in cache : consume block : stall

(6). Figure 5 diagrams this effect. Thus, the average stall per
access as a function of the prefetch depth,P(TCPU) > x > 0, is

. (8)

At x = 0, there is no prefetching, andTstall(0) = Tdisk. Similarly, for
x ≥ P(TCPU), Tstall(x) = 0. Figure 6 shows that this estimate,
though based on a simple model, is a good predictor of the actual
stall time experienced by a synthetic application running on a real
system.

We can now plug Equation (8) into Equation (5) and obtain
an expression for the impact on I/O service time of acquiring one
additional cache buffer to increase the prefetching depth,

. (9)

Every access that this additional buffer is used for prefetching ben-
efits from this reduction in the average I/O service time. Thus,
Equation (9) is the change in I/O service time per buffer-access,
and the magnitude of this change is the value of allocating a buffer
for prefetching in terms of the common currency.

Having estimated the benefit of giving a buffer to a demand
miss or prefetch consumer, we now consider the cost of freeing a
buffer that could be used to obtain these benefits. We estimate the
cost first of taking a buffer from the LRU queue and then of eject-
ing a hinted block to take the buffer it occupies.

4.3 The cost of shrinking the LRU cache
Over time, the portion of demand accesses that hit in the

cache is given by the cache-hit ratio,H(n), a function of the num-

Tstall x()
Tdisk x TCPU Thit Tdriver+ +()–

x
--=

∆Tpf x()

x 0= TCPU Thit Tdriver+ +()–

x P TCPU()<
T– disk

x x 1+()

x P TCPU()≥ 0







=

6

ber of buffers in the cache,n. GivenH(n), the average time to ser-
vice a demand I/O request, denotedTLRU(n), is

. (10)

Taking the least-recently-used buffer from a cache employing an
LRU replacement policy results in an increase in the average I/O
service time of

. (11)

SinceH(n) varies as the I/O workload changes, our LRU cache
estimator dynamically estimatesH(n) and the value of this expres-
sion as explained in Section 5.1.

Every access that the LRU cache is deprived of this buffer
will, on average, suffer this additional I/O service time. Thus,
Equation (11) is in terms of the common currency, magnitude of
change in I/O service time per buffer-access.

4.4 The cost of ejecting a hinted block
Though there is no benefit from prefetching beyond the

prefetch horizon, caching any block for reuse can avoid the cost of
prefetching it back later. Thus, ejecting a block increases the ser-
vice time for the eventual access of that block from a cache hit,
Thit, to the read of a prefetched block,Tpf. If the block is
prefetched backx accesses in advance, then the increase in I/O ser-
vice time caused by the ejection and subsequent prefetch is

(12)

. (13)

Though the stall time,Tstall(x), is zero whenx is greater than the
prefetch horizon,Tdriver represents the constant CPU overhead of
ejecting a block no matter how far into the future the block will be
accessed.

The cost of ejecting a block,∆Teject(x), does not affect every
access; it only affects the next access to the ejected block. Thus, to
express this cost in terms of the common currency, we must aver-
age this change in I/O service over the accesses that a buffer is
freed. If the hint indicates the block will be read iny accesses, and

Figure 6. Predicted and measured per-access stall time. To verify the
utility of Equation (8), we measured the stall time of a synthetic
microbenchmark as we varied prefetch depth. The benchmark does 2000
reads of random, unique 8K blocks from a 500 MB file striped over 15
disks. It has 1 millisecond of computation between reads, so =
1ms, and for the system described in Section 6,Thit+Tdriver = 823µs and
Tdisk = 15ms. Overall, Equation (8) has a maximum error of about 2
milliseconds, making it is a good predictor of actual stall time. The
equation underestimates stall time because the underlying model
neglects two factors, disk contention and variation inTdisk. Deeper
prefetching increases the chance that two or more accesses contend for
the same disk and add unmodelled stalls. Variability inTdisk has a more
subtle effect. Longer than average disk accesses may be balanced in
number and duration by shorter than average accesses, but the former
always add stall time to the measurement, while the latter only reduce
stall time if their access time is not fully overlapped. With deeper
prefetching most accesses are well overlapped, so shorter accesses do
not reduce measured stall time. Effectively, variability inTdisk makes a
constantTdisk appear longer.

TCPU

0 4 8 12 16
Prefetch Depth (x)

0.0

5.0

10.0

15.0

A
ve

ra
ge

 s
ta

ll
tim

e

measured stall
predicted stall

pe
r

ac
ce

ss
 (

m
se

c)
Average Stall Time vs. Prefetch Depth

TLRU n() H n() Thit 1 H n()–() Tmiss+=

∆TLRU n() TLRU n 1–() TLRU n()–=

H n() H n 1–()–() Tmiss Thit–()=

∆Teject x() Tpf x() Thit–=

Tdriver Tstall x()+=

the prefetch happensx accesses in advance, then ejection frees one
buffer for a total ofy−x buffer-accesses. Conceptually, if the block
is ejected and its buffer lent where it accrues an savings in average
I/O service time, then it will havey−x accesses to accrue a total
savings that exceeds the cost of ejecting the block.

Averaging overy−x accesses, the increase in service time per
buffer-access is

, (14)

whereTstall(x) is given by Equation (8). As we shall see in Section
5.3, our implementation simplifies this estimate further to elimi-
nate the dependence on the variablex.

4.5 Putting it all together: global min-max valuation
Figure 7 summarizes the absolute value of Equations (9),

(11), and (14) which the various estimators use to determine the
local value of a buffer. Before comparing these values, the buffer
allocator must normalize these local estimates by the relative rates
of accesses to each estimator. Thus, the LRU cache estimate is
multiplied by the rate of unhinted demand accesses,rd, while the
estimates for each hint sequence are multiplied by the rate of
accesses to that sequence,rh.

The buffer allocator uses these normalized estimates to
decide when to take a buffer from a supplier and use it to service a
request for a buffer. For example, deallocating a buffer from the
LRU cache and using it to prefetch a block would cause a net
reduction in aggregate I/O service time if

. For the greatest reduction, though,
the globally least-valuable buffer should be allocated. Our algo-
rithm for identifying this buffer is as follows.

Each supply estimator determines the costs of losing any of
its buffers. If multiple estimators claim the same buffer, which
happens, for example, when a hint refers to a block already in the
LRU queue, then each estimators independently values the buffer.
The global value of a buffer is the maximum of the normalized
values provided by each of the independent supply estimators. The
global value is not the sum because it only takes one disk I/O to
fetch a block no matter how many times the block is accessed
thereafter.

∆Teject x y,()
Tdriver Tstall x()+

y x–
--=

rd ∆TLRU n() rh ∆Tpf x()>

7

The globally least-valuable buffer is the one whose maximum
valuation is minimal over all buffers. Hence, our replacement pol-
icy employs a global min-max valuation of buffers. While the
overhead of this estimation scheme might seem high, in practice,
as we shall see in Section 5, the value of only a small number of
buffers needs to be determined to find the globally least-valuable.

4.6 An example: emulating MRU replacement
As an aid to understanding how informed caching ‘discovers’

good caching policy, we show how it exhibits MRU (most-
recently-used) behavior for a repeated access sequence. Figure 8
illustrates an example.

At the start of the first iteration through a sequence that
repeats every N accesses, the cache manager prefetches up to the
prefetch horizon. After the first block is consumed, it becomes a
candidate for replacement either for further prefetching or to ser-
vice demand misses. However, if the hit-ratio function,H(n), indi-
cates that the least-recently-used blocks in the LRU queue don’t
get many hits, then these blocks will be less valuable than the
hinted block just consumed. Prefetching continues, replacing
blocks from the LRU list and leaving the hinted blocks in the
cache after consumption.

As this process continues, more and more blocks are devoted
to caching for the repeated sequence and the number of LRU buff-
ers shrinks. For most common hit-ratio functions, the fewer the
buffers in the LRU cache, the more valuable they are. Eventually,
the cost of taking another LRU buffer exceeds the cost of ejecting
the most-recently-consumed hinted block. At the next prefetch,
this MRU block is ejected because, among the cached blocks with
outstanding hints, its next use is furthest in the future.

At this point, a wave of prefetching, consumption, and eject-
ing moves through the remaining blocks of the first iteration.

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

Figure 7. Local value estimates.Shown above are the locally
estimated magnitudes of the change in I/O service time per buffer-
access for the buffer consumers and suppliers of Figure 2. Since
demand misses must be satisfied immediately, they are treated as
having infinite value. The remaining three formulas are the
absolute values of Equations (11), (14), and (9), for the LRU
cache, hinted cache, and prefetch estimates, respectively.

Tdriver Tstall x()+

y x–

H n() H n 1–()–() Tmiss Thit–()

x 0= TCPU Thit Tdriver+ +

x P TCPU()<
Tdisk

x x 1+()

x P TCPU()≥ 0

∞

Because the prefetch horizon limits prefetching, there are never
more than the prefetch horizon,P(TCPU), buffers in this wave.
Even if a disk array delivers blocks faster than the application con-
sumes them, there is no risk that the cache manager will use the
cached blocks to prefetch further into the future. Thus, the MRU
behavior of the cache manager is assured. Further, the cache man-
ager strikes a balance in the number of buffers used for prefetch-
ing, caching hinted blocks, and LRU caching.

The informed cache manager discovers MRU caching with-
out being specifically coded to implement this policy. This behav-
ior is a result of valuing hinted, cached blocks and ejecting the
block whose next access is furthest in the future when a buffer is
needed. These techniques will improve cache performance for
arbitrary access sequences where blocks are reused with no partic-
ular pattern. All that is needed is a hint that discloses the access
sequence.

5 Implementation of informed caching and
prefetching

Our implementation of informed prefetching and caching,
which we call TIP, replaces the unified buffer cache (UBC) in ver-
sion 2.0A of Digital’s OSF/1 operating system. To service
unhinted demand accesses, TIP creates an LRU estimator to man-
age the LRU queue and estimate the value of its buffers. In addi-
tion, TIP creates an estimator for every process that issues hints to
manage its hint sequence and associated blocks.

To find the globally least-valuable buffer, it is sufficient that
each estimator be able to identify its least-valuable buffer and
declare its estimated value. From the LRU estimator’s perspective,
the least-recently-used buffer is least valuable. For a hint estima-
tor, because all disk accesses are assumed to take the same amount
of time, the least-valuable buffer contains the block whose next
access is furthest in the future. TIP takes these declared estimates,
normalizes them by the relative access rates, and ranks the estima-
tors by these normalized declared values.

When there is a demand for a buffer, TIP compares the nor-
malized benefit of servicing the demand to the normalized
declared cost of the lowest-ranked estimator. If there are multiple
consumers with outstanding requests, TIP considers the requests in
order of their expected normalized benefit. If the benefit exceeds

• • •

pattern repeats
after N accesses

next use

{P
prefetch
horizon{cached

blocks

Figure 8. MRU behavior of the informed cache manager on
repeated access sequences. The number of blocks allocated to
caching for a repeated access pattern grows until the caching
benefit is not sufficient to hold an additional buffer for the N
accesses before it is reused. At that point, the least-valuable buffer
is the one just consumed because its next access is furthest in the
future. This block is recycled to prefetch the next block within the
prefetch horizon. A wave of prefetching, consumption, and
recycling moves through the accesses until it joins up with the
blocks still cached from the last iteration through the data.

most recently

consumed next consumed

MRU replacement

8

the cost, TIP asks the lowest-ranked estimator to give up its least-
valuable buffer. After doing so, the estimator stopstracking this
buffer. As far as it is concerned, the buffer is gone. It identifies a
new least-valuable buffer from among the buffers it is still tracking
and declares its value. TIP then reranks the estimators if necessary.

Before the block is actually ejected, TIP checks to see if any
other estimator would value the buffer more than the cost of the
lowest-ranked estimator. If so, that estimator starts tracking the
buffer, including it when identifying its least-valuable buffer. The
request for a buffer is then reconsidered from the start. At some
later time, when this new estimator picks this almost-ejected
buffer for replacement, the first estimator will get a chance to
revalue the buffer and resume tracking it. A data structure keeps
track of which estimators value a buffer at all to make this search
for another estimator fast.

Once TIP is sure that no estimator values the buffer more than
the current global minimal amount, the block is ejected and the
buffer reallocated.

Since only tracked blocks are ever picked for replacement, all
blocks must be tracked by at least one estimator. If no estimator
considers a block valuable enough to track, then it is replaced. If
the block cannot be replaced immediately, for example because it
contains dirty data, then TIP uses a special orphan estimator to
track the block until it can be replaced.

5.1 Implementing LRU estimation
LRU block replacement is a stack algorithm, which means

that the ordering of blocks in the LRU queue is independent of the
size of the cache. By observing where, in a queue ofN buffers,
cache hits occur, it is possible to make a history-based estimate of
H(n), the cache-hit ratio as a function of the number of buffers,n,
in the cache for any cache size less thanN, 0 <n < N. Specifically,
H(n) is estimated by the sum of the number of hits with stack
depths less then or equal ton divided by the total number of
accesses to the LRU cache,A.

In TIP, the number of buffers in the LRU stack varies dynam-
ically. Thus, to determineH(n) for caches larger than the current
size, TIP uses ghost buffers. Ghost buffers are dataless buffer
headers which serve as placeholders to record when an access
would have been a hit had there been more buffers in the cache
[Ebling94]. The length of the LRU queue, including ghosts, is lim-
ited to the total number of buffers in the cache.

To reduce overhead costs and estimate variation, hit counts
are recorded not by individual stack depths, but by disjoint inter-
vals of stack depths, called segments. Shown in Figure 9, this
allows a piecewise estimation ofH(n).

The cost of losing an LRU buffer given in Equation (11)
requires an estimate of∆H(n)=H(n)-H(n-1). Direct evaluation with
a piecewise estimate ofH(n) yields a function that is zero every-
where, except at segment boundaries. Instead, we estimate∆H(n)
with the marginal hit ratio, , the slope ofH(n). Given our
piecewise estimate ofH(n), we can estimate∆H(n),

, (15)

wheren falls within segmentsi, A is the total number of accesses
to the LRU, and |si| represents the number of buffers in segmentsi.
In our implementation, |si| = 100.

A final complexity arises because, in general,H(n) may not
be similar to the smooth function suggested by Figure 9. There is

H' n()

∆H n() 1 H' n()⋅
hi

A si
----------≈ ≈

often a large jump in the hit ratio when the entire working set of an
application fits into the buffer cache. TIP’s LRU estimator uses a
simple mechanism to avoid being stuck in a local minima that
ignores the benefit of a much larger cache:∆H(n) is modified to be

; that is, the value of the marginal hit ratio is
rounded up to the value of any larger marginal hit ratio occurring
deeper in the LRU stack. Thus, if the LRU cache is currently
small, but a larger cache would achieve a much higher hit ratio,
this mechanism encourages the cache to grow.

This gives us the following expression for the cost of losing
an LRU buffer:

. (16)

5.2 Implementing informed prefetching estimations
Section 4 presents two expressions, Equation (7) for deter-

mining the prefetch horizon, and Equation (9) for estimating the
benefit of prefetching. To reduce estimation overhead and increase
tolerance to both variation in application inter-access computation,
TCPU, and the need to prefetch other blocks, TIP assumesTCPU =
0 and discounts the overhead of prefetching other blocks,Tdriver,
to arrive at a static, system-wide upper-bound on the prefetch hori-
zon, ,

. (17)

To simplify the prefetcher’s estimate of the value of acquiring a
buffer, we recognize that it will obtain at least a few buffers and
use the following variant of Equation (9)

. (18)

n

hit
ratio

cache
bufferss1

h2/A

h4/A

{ { { {

h1/A

s2 s3 s4

tracked
buffers

ghost
buffers

LRU list

least-valuable
tracked buffer

Figure 9. Piecewise estimation ofH(n). The LRU list is broken
into segments,s1, s2, s3, … Each buffer is tagged to indicate which
segment it is in. The tag is updated when a buffer passes from one
segment to the next. When there is a cache hit in segmenti, the
segment hit count,hi, is incremented. That segment’s contribution
to the hit ratio is thenhi/A, whereA is the total number of accesses
to the LRU cache.

h3/A slope is
marginal hit ratio,
H’(n)

maxi n≥ H' i(){ }

∆TLRU n() maxi n≥ H' i(){ } Tmiss Thit–()≈

P̂

P̂
Tdisk

Thit
------------=

∆Tpf x()

x 0= T– disk

x P̂<
T– disk

x x 1+()

x P̂≥ 0







≈

9

5.3 Implementing informed caching estimations
Equation (14) in Section 4 expresses the cost of ejecting a

hinted block in terms ofy, the number of accesses till the hinted
read, andx, how far in advance the block will be prefetched back.
To eliminate the overhead of determining the value ofx dynami-
cally, we simplify this expression by assuming that the prefetch
will occur at the (upper bound) prefetch horizon, . If the block is
already within the prefetch horizon, , we assume that the
prefetch will occur at the next access. Then, in accordance with the
assumptions of Section 5.2 used to compute , we setTCPU = 0,
neglectTdriver, and take , for 1 <y
< . Plugging into Equation (14), we get, for 1 <y <

. (19)

Unfortunately, using this equation could lead to prefetching a
block back shortly after ejecting it. To avoid this thrashing, there
should be hysteresis in the valuations; that is, we need

. Comparing
this expression to Equation (19), we see that the inequality does
not hold for all possible values ofTdriver, Tdisk, andThit. To guar-
antee robustness for all values of these parameters greater than
zero, we choose to addThit to ∆Teject(y) for 1< y < . Thus, we
have,

. (20)

Figure 10 summarizes the equations used to estimate buffer
values in our implementation.

P̂
y P̂<

P̂
Tstall y() Tdisk yThit–() y⁄≈

P̂ P̂

∆Teject y() Tdriver

Tdisk

y 1–
------------ Thit–+=

∆Teject y() ∆Tpf y 1–()> Tdisk y y 1–()⁄=

P̂

∆Teject y()

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
------------+

y P̂>
Tdriver

y P̂–











≈

Figure 10. Local value estimates in the implementation. Shown
above are the local estimates of the value per buffer-access for the
buffer consumers and suppliers of Figure 2. These estimates are
easy-to-compute approximations of the exact estimates of
Figure 7.

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

∞

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
-----------+

y P̂>
Tdriver

y P̂–

x 0= Tdisk

x P̂<
Tdisk

x x 1+()

x P̂≥ 0

maxi n≥ H' i(){ } Tmiss Thit–()

5.4 Exploiting OSF/1 clustering for prefetches
OSF/1 derives significant performance benefits from cluster-

ing the transfer of up to eight contiguous blocks into one disk
access. One might ask of the informed prefetcher: when should
buffers be allocated to prefetch secondary blocks as part of a clus-
ter?

If the decision to prefetch a block has already been made,
then the cost,Tdriver, of performing a disk read will be paid. Any
blocks that could piggyback on this read avoid most of the disk
related CPU costs. If there are hinted blocks that can cluster with
the required block, and they are not prefetched now in such a clus-
ter, their later prefetch will incur the full overhead of performing a
disk access and possibly the cost of any unmasked disk latency.
These are exactly the costs considered when deciding whether to
eject a hinted block. Thus, the decision to include an additional
hinted contiguous block in a cluster is the same as the decision not
to eject this additional hinted block once the prefetch is complete.
If the informed cache would decide not to eject the block if it were
in cache, then a buffer is allocated and the additional block is
included in the pending cluster read.

6 Experimental testbed

Our testbed is a Digital 3000/500 workstation
(SPECint92=84.4; SPECfp92=127.7), containing a 150 MHz
Alpha (21064) processor, 128 MB of memory and five KZTSA
fast SCSI-2 adapters each hosting three HP2247 1GB disks. This
machine runs version 2.0A of Digital’s OSF/1 monolithic kernel.
OSF/1’s file system contains a unified buffer cache (UBC) module
that dynamically trades memory between its file cache and virtual
memory. To eliminate buffer cache size as a factor in our experi-
ments, we fixed the cache size at 12 MB (1536 8 KB buffers).

The system’s 15 drives are bound into a disk array by a strip-
ing pseudo-device with a stripe unit of 64 KB. This device driver
maps and forwards accesses to the appropriate per-disk device
driver. Demand accesses are forwarded immediately, while
prefetch reads are forwarded whenever there are fewer than two
outstanding requests at the drive. We forward two prefetch
requests to reduce disk idle time between requests, and we don’t
forward more than two to limit priority inversion of prefetch over
demand requests. The striper sorts queued prefetch requests
according to C-SCAN.

System parameters for the TIP estimators were:Tdisk = 15
milliseconds,Thit = 243 microseconds, andTdriver = 580 microsec-
onds.Thit was measured by repeatedly reading a cached, hinted
file, and dividing the elapsed time by the number of blocks read.
Tdriver was derived by measuring the non-idle time of a trivial
application that hinted, then read, 2000 unique, non-sequential
blocks of a 500MB file with the assumption that non-idle time
equals 2000*(Thit+Tdriver). Tdisk was estimated from direct mea-
surements on a variety of applications.

In addition to the clustering fetches described in Section 5.4,
the default OSF/1 file system implements an aggressive readahead
mechanism that detects sequential accesses to a file. The longer
the run of sequential accesses, the further ahead it prefetches up to
a maximum of eight clusters of eight blocks each. For large
sequential accesses, such as “cat 1GB_file > /dev/null,” OSF/1
achieves 18.2 MB/s from 15 disks through our striper.

We report results from two modified OSF/1 systems, TIP-1
and TIP-2, in addition to the default OSF/1 system. TIP-1, our first

10

prototype, does informed prefetching but does not exploit hints for
caching. It is integrated with the unified buffer cache in OSF/1,
requiring only a few small hooks in the standard code. It uses a
simple mechanism to manage resources: it uses up to =62 cache
buffers to hold hinted but still unread data. Whenever the number
of such buffers is below the limit, TIP-1 prefetches according to
the next available hint. If the hinted block is already in the cache,
the block is promoted to the tail of OSF/1’s LRU list and counted
as an unread buffer. When an application accesses a hinted block
for the first time, TIP-1 reduces the count of unread buffers and
resumes prefetching. Hinted but unread blocks may age out of the
cache, triggering further prefetching, though this does not occur
with any of our test applications.

TIP-1 has been running since mid 1993 in the 4.3 BSD FFS
of Mach 2.5. Soon thereafter, it was ported to the UX server in a
Mach 3.0 system on a DECstation 5000/200. Equipped with four
disks and a user-level striper, this system was able to reduce the
elapsed time of a seek-intensive data visualization tool
(XDataSlice) by up to 70% [Patterson94]. During the summer of
1994 we ported TIP-1 to the current Alpha testbed to exploit its
greater CPU and disk performance.

During 1994, we designed and began implementation of a
second test system, TIP-2, which exploits hints for both informed
prefetching and informed caching. It completely replaces the uni-
fied buffer manager in OSF/1 as described in Sections 3, 4, and 5.

To estimate the overhead of our TIP-2 system, we timed the
complete build of an OSF/1 kernel. Table 1 summarizes the
results. TIP-2 adds about 2.4% CPU overhead and 2.8% elapsed
time for the build. CPU overhead for TIP-2 is dependent on I/O
intensity. Therefore, overheads for our suite of I/O-intensive
benchmarks, tend to be higher than this. They are: Davidson, 7%;
XDataSlice, 13%; Sphinx, 1.9%; Agrep, 13%; Gnuld, 10%; and
Postgres, 1.8% and 3.5% respectively for the low-match and high-
match joins. The current system is tuned only for fidelity in the
estimation ofH(n), and not for low overhead.

Our goal with informed prefetching is to exploit unused disk
parallelism and convert our benchmark applications from being
I/O-bound to being CPU-bound. Informed caching tries to further
reduce the number of I/Os. The key performance metrics are
elapsed time, I/O stall time, and CPU busy time. To obtain accu-
rate measures of elapsed time, we used the Alpha processor cycle
counter. To measure idle time, we kept a running counter of the
number of processor cycles spent in the idle loop, taking care to
exclude time spent servicing interrupts that occurred during the
idle loop.

P̂

Table 1. Kernel build times. This table shows the total (non-
hinting) build time for an OSF/1 2.0 kernel on an OSF/1 or TIP-1
kernel and on a TIP-2 kernel. All times are in seconds, and all
kernels had the buffer cache size fixed at 12MB. TIP-2 is about
2.5% slower than OSF/1.

Kernel CPU Time Elapsed Time

OSF/1, TIP-1 3,463 4,236

TIP-2 3,546 4,357

7 Single-application performance

In this section, we evaluate the performance of our informed
prefetching and caching systems with a suite of six I/O-intensive
benchmarks. All are single-threaded, synchronous, and I/O-bound
in common usage. Five derive substantial benefit from prefetching
alone. Three benefit from informed caching, especially when there
is insufficient disk bandwidth available.

We report the results of each application run without compe-
tition on arrays of 1 to 10 disks (performance with 15 disks is
essentially the same as with 10 disks). We report execution and
I/O stall time for each application when not giving hints and when
giving hints to the TIP-1 and TIP-2 systems. Each test was run on
a system with a cold cache. Before each sequence of five runs, the
file system was formatted (block size = fragment size = 8192,
inter-block rotational delay = 0, maximum blocks per file per cyl-
inder group = 10000, bytes per inodes = 32K, all other parameters
default), and the run’s data was copied into the file system. The
standard deviation for both the elapsed time and stall time was less
than 3% of the mean for all of these measurements.

7.1 MCHF Davidson algorithm
The Multi-Configuration Hartree-Fock, MCHF, is a suite of

computational-physics programs which we obtained from Vander-
bilt University where they are used for atomic-physics calcula-
tions. The Davidson algorithm [Stathopoulos94] is an element of
the suite that computes, by successive refinement, the extreme
eigenvalue-eigenvector pairs of a large, sparse, real, symmetric
matrix stored on disk. In our test, the size of this matrix is 16.3
MB.

The Davidson algorithm iteratively improves its estimate of
the extreme eigenpairs by computing the extreme eigenpairs of a
much smaller, derived matrix. Each iteration computes a new
derived matrix by a matrix-vector multiplication involving the
large, on-disk matrix. Thus, the algorithm repeatedly accesses the
same large file sequentially. Annotating this code to give hints was
straightforward. At the start of each iteration, the Davidson algo-
rithm discloses the whole-file, sequential read anticipated in the
next iteration.

Figure 11(a) reports the elapsed time of the entire computa-
tion on OSF/1 (TIP-1 without hints is just OSF/1), when not giving
hints to TIP-2, and when giving hints to TIP-1 and TIP-2. As with
most of the figures in this section, data is striped over 1 to 10
disks, and the cache size is 12 MB. With or without hints, David-
son benefits significantly from the extra bandwidth of a second
disk but then becomes CPU-bound. Because the hints disclose
only sequential access in one large file, OSF/1’s aggressive reada-
head matches the performance of TIP-1’s informed prefetching
and, in fact, performs slightly better because it incurs less over-
head.

Neither OSF/1 nor informed prefetching in TIP-1 uses the 12
MB of cache buffers well. Because the 16.3 MB matrix does not fit
in the cache, the LRU replacement algorithm ejects all of the
blocks before any of them are reused. The informed cache man-
ager in TIP-2, however, effectively reuses cache buffers, reducing
the number of blocks fetched from 125,340 to 53,200. On one
disk, this reduces elapsed time by over 30%. When disk bandwidth
is inadequate, improved caching avoids disk latency. On more
disks, prefetching masks disk latency, but informed caching still
reduces execution time more than 15% by avoiding the CPU over-
head of extra disk accesses, as can be seen by comparing TIP-2 no

11

hint and hint CPU times. Figure 11(b) shows Davidson’s elapsed
time with one disk on TIP-2 with and without hints as a function of
cache size. Without hints, extra buffers are of no use until the
entire dataset fits in the cache. In contrast, TIP-2’s min-max global
valuation of blocks yields the smooth exploitation of additional
cache buffers that is expected from an MRU replacement policy.
The prefetch horizon limits the use of buffers for prefetching, even
when there is more than enough disk bandwidth to flush the cache
with prefetched blocks. TIP-2 effectively balances the allocation
of cache buffers between prefetching and caching.

7.2 XDataSlice
XDataSlice (XDS) is an interactive scientific visualization

tool developed at the National Center for Supercomputer Applica-
tions at the University of Illinois [NCSA89]. Among other fea-
tures, XDS lets scientists view arbitrary planar slices through their
3-dimensional data with a false color mapping. The datasets may
originate from a broad range of applications such as airflow simu-
lations, pollution modelling, or magnetic resonance imaging, and
tend to be very large.

It is often assumed that because disks are so slow, good per-
formance is only possible when data is in main memory. Thus,
many applications, including XDS, require that the entire dataset
reside in memory. Because memory is still expensive, the amount
available often constrains scientists who would like to work with
higher resolution images and therefore larger datasets. Informed
prefetching invalidates the slow-disk assumption and makes out-
of-core computing practical, even for interactive applications. To
demonstrate this, we added an out-of-core capability to XDS.

To render a slice through an in-core dataset, XDS iteratively
determines which data point maps to the next pixel, reads the
datum from memory, applies false coloring, and writes the pixel in
the output pixel array. To render a slice from an out-of-core
dataset, XDS splits this loop in two. Both to manage its internal
cache and to generate hints, XDS first maps all of the pixels to

(b)(a)

Figure 11. Benefit of informed caching for repeated accesses. Figure (a) shows the performance of the Davidson algorithm applied to a
computational-physics problem. The algorithm repeatedly reads a large file sequentially. OSF/1’s aggressive readahead algorithm performs
about the same as TIP-1 with hints for this access pattern. Informed caching in TIP-2 reduces elapsed time by more than 30% on one disk by
avoiding disk latency. On more disks, prefetching masks disk latency, but informed caching still reduces execution time more than 15% by
avoiding the overhead of going to disk. Figure (b) shows that informed caching in TIP-2 discovers an MRU-like policy which uses
additional buffers to increase cache hits and reduce execution time. TIP-2 takes advantage of a 16 MB cache to reduce execution time by
42%. In contrast, LRU caching derives no benefit from additional buffers until there are enough of them to cache the entire dataset, which is
16.3 MB (2089 8K blocks).

700 1200 1700 2200 2700 3200
Cache size (8KB buffers)

0

50

100

150

200

250

300

E
la

ps
ed

 ti
m

e
(s

ec
)

Hinting
Unhinted

Davidson on one disk

0

50

100

150

200

250

300

E
la

ps
ed

 ti
m

e
(s

ec
)

Davidson

1 2 3 4 10

of disks

O
SF

/1
tip

1
hi

nt
tip

2
hi

nttip
2

no
hi

nt

CPU
IO

data-point coordinates and stores the mappings in an array. Having
determined which data blocks will be needed to render the current
slice, XDS ejects unneeded blocks from its cache, gives hints to
TIP, and reads the needed blocks from disk. In the second half of
the split loop, XDS reads the cached pixel mappings, reads the cor-
responding data from the cached blocks, and applies the false col-
oring [Patterson94].

Our test dataset consists of 5123 32-bit floating point values
requiring 512 MB of disk storage. The dataset is organized into
8 KB blocks of 16x16x8 data points and is stored on the disk in Z-
major order. Our test renders 25 random slices through the dataset.
Figure 12(a) reports the average elapsed time per slice on OSF/1,
TIP-1 and TIP-2.

While OSF/1 readahead is effective for the sequential access
pattern of Davidson, it is detrimental for XDS. XDS frequently
reads a short sequential run, which triggers an equal amount of
readahead by OSF/1. Only slices closely aligned with the Z-axis
read long runs of sequential blocks for which the readahead is
effective. Consequently, for this set of 25 slices, the nonhinting
version of XDS reads 1.86 times as much data from disk as the
application actually consumes. This combination of false reada-
head and lack of I/O parallelism causes XDS to take about 12 sec-
onds to render an arbitrary slice without hints, leading to
unacceptable interactive performance.

In contrast, informed prefetching both avoids false readahead
and exploits the concurrency of a disk array. TIP-1 eliminates 70%
of the I/O stall time on four disks, and 92% on 10 disks. On 10
disks, TIP-1 reduces the time to render a random slice by a factor
of 6 to about 2 seconds, resulting in a much more tolerable interac-
tive latency.

TIP-1 and TIP-2 perform similarly. However, because TIP-2
can use hints to coalesce into one disk read blocks that are contigu-
ous on disk but widely separated in the access sequence, TIP-2
reduces the number of distinct disk reads from 18,700 to 15,000.

12

This improved I/O efficiency contributes to the slight performance
advantage of TIP-2 over TIP-1.

7.3 Sphinx
Sphinx [Lee90] is a high-quality, speaker-independent, con-

tinuous-voice, speech-recognition system. In our experiments,
Sphinx is recognizing an 18-second recording commonly used in
Sphinx regression testing.

Sphinx represents acoustics with Hidden Markov Models and
uses a Viterbi beam search to prune unpromising word combina-
tions from these models. To achieve higher accuracy, Sphinx uses
a language model to effect a second level of pruning. The language
model is a table of the conditional probability of word-pairs and
word-triples. At the end of each 10 ms acoustical frame, the sec-
ond-level pruner is presented with the words likely to have ended
in that frame. For each of these potential words, the probability of
it being recognized is conditioned by the probability of it occurring
in a triple with the two most recently recognized words, or occur-
ring in a pair with the most recently recognized word when there is
no entry in the language model for the current triple. To further
improve accuracy, Sphinx makes three similar passes through the
search data structure, each time restricting the language model
based on the results of the previous pass.

Sphinx, like XDS, came to us as an in-core only system.
Since it was commonly used with a dictionary containing 60,000
words, the language model was several hundred megabytes in size.
With the addition of its internal caches and search data structures,
virtual-memory paging occurs even on a machine with 512 MB of
memory. We modified Sphinx to fetch from disk the language
model’s word-pairs and word-triples as needed. This enables
Sphinx to run on our 128 MB test machine 90% as fast as on a 512
MB machine.

We additionally modified Sphinx to disclose the word-pairs
and word-triples that will be needed to evaluate each of the poten-
tial words offered at the end of each frame. Because the language

Figure 12. Elapsed time of visualization, speech recognition and search. Figure (a) shows the elapsed time for rendering 25 random
slices through a 512 MB dataset. Without TIP, OSF/1 makes poor use of the disk array. But, informed by hints, TIP is able to prefetch in
parallel and mask the latency of the many seeks. There is very little data reuse, so the informed caching does not decrease elapsed time
relative to the simple prefetching in TIP-1. Figure (b) shows the benefits of informed prefetching for the Sphinx speech-recognition program.
Sphinx is almost CPU-bound, so the improvements are less dramatic. As for XDataSlice, there is little data reuse so informed caching
provides no benefit over TIP-1, and, in fact, incurs some additional overhead. Figure (c) reports the elapsed time for searches through files in
three different directories and shows the benefit of prefetching across files. Again, informed caching provides no improvement over
informed prefetching.

(a) (b) (c)
CPU
IO

0

100

200

300

400
E

la
ps

ed
 ti

m
e

(s
ec

)
XDataSlice

1 2 3 4 10

of disks

O
SF

/1
tip

1h
in

t
tip

2
hi

nt

0

50

100

150

200

250

300

E
la

ps
ed

 ti
m

e
(s

ec
)

Sphinx

1 2 3 4 10

of disks

O
SF

/1
tip

1h
in

t
tip

2
hi

nt

0

10

20

30

40

E
la

ps
ed

 ti
m

e
(s

ec
)

Agrep

1 2 3 4 10

of disks

O
SF

/1
tip

1h
in

t
tip

2
hi

nt

model is sparsely populated, at the end of each frame there are
about 100 byte ranges that must be consulted, of which all but a
few are in Sphinx’s internal cache. However, there is a high vari-
ance on the number of pairs and triples consulted and fetched, so
storage parallelism is often employed.

Figure 12(b) shows the elapsed time of Sphinx recognizing
the 18-second recording. Sphinx starts with one sequential read of
the 200MB language model which benefits from the array without
hints. But, with informed prefetching, it takes advantage of the
array even for the many small accesses and thereby reduces execu-
tion time by as much as 17%.

Sphinx’s internal cache and large datasets lead to little local-
ity in its file system accesses. Thus, the informed caching in TIP-2
does not improve upon the performance of simple informed
prefetching in TIP-1.

7.4 Agrep
Agrep, a variant of grep, was written by Wu and Manber at

the University of Arizona [Wu92]. It is a full-text pattern matching
program that allows errors. Invoked in its simplest form, it opens
the files specified on its command line one at a time, in argument
order, and reads each sequentially.

Since the arguments to Agrep completely determine the files
it will access, Agrep can issue hints for all accesses upon invoca-
tion. Agrep simply loops through the argument list and informs the
file system of the files it will read. When searching data collec-
tions such as software header files or mail messages, hints from
Agrep frequently specify hundreds of files too small to benefit
from history-based readahead. In such cases, informed prefetching
has the advantage of being able to prefetch across files and not just
within a single file.

In our benchmark, Agrep searches 1349 kernel source files
occupying 2922 disk blocks for a simple string that does not occur
in any of the files.

13

Figure 12(c) reports the elapsed time for this search. As was
the case for XDataSlice and Sphinx, there is little parallelism in
Agrep’s I/O workload. The files are searched serially and most are
small, so even OSF/1’s readahead does not achieve parallel trans-
fer. However, Agrep’s disclosure of future accesses exposes
potential I/O concurrency. On our testbed, arrays of as few as four
disks reduce execution time by 73% and 10 disks reduce execution
time by 83%.

7.5 Gnuld
Gnuld version 2.5.2 is the Free Software Foundation’s object

code linker which supports ECOFF, the default object file format
under OSF/1. Gnuld performs many passes over input object files
to produce the output linked executable. In the first pass, Gnuld
reads each file’s primary header, a secondary header, and its sym-
bol and string tables. Hints for the primary header reads are easily
given by replicating the loop that opens input files. The read of the
secondary header, whose location is data dependent, is not hinted.
Its contents provide the location and size of the symbol and string
tables for that file. A loop splitting technique similar to that in
XDataSlice is used to hint the symbol and string table reads.

After verifying that it has all the data needed to produce a
fully linked executable, Gnuld makes a pass over the object files to
read and process debugging symbol information. This involves up
to nine small, non-sequential reads from each file. Fortunately, the
previously read symbol tables determine the addresses of these
accesses, so Gnuld loops through these tables to generate hints for
its second pass.

During its second pass, Gnuld constructs up to five shuffle
lists which specify where in the executable file object-file debug-
ging information should be copied. When the second pass com-
pletes, Gnuld finalizes the link order of the input files, and thus the
organization of non-debugging ECOFF segments in the executable
file. Gnuld uses this order information and the shuffle lists to give
hints for the final passes.

Our test links the 562 object files of our TIP-1 kernel. These
objects file comprise approximately 64 MB, and produce an

Figure 13. Elapsed time of Gnuld and Postgres. Figure (a) shows the elapsed time for Gnuld to link an OSF/1 TIP-1 kernel. Figures (b)
and (c) show the elapsed time for two different joins in the standard Postgres relational database, a restructured Postgres that precomputes
offsets for the inner relation, and in the restructured Postgres when it gives hints. The restructuring improves access locality and therefore
cache performance, allowing it to run faster than standard Postgres. Delivering hints then dramatically reduces I/O stall time.

CPU
IO

(a) (b) (c)

0

20

40

60

80

100

120

140

E
la

ps
ed

 ti
m

e
(s

ec
)

Gnuld

1 2 3 4 10

of disks

O
SF

/1
tip

1h
in

t
tip

2
hi

nt

0

100

200

300

400

E
la

ps
ed

 ti
m

e
(s

ec
)

Postgres, 80% Match

1 2 3 4 10

of disks

O
SF

/1
tip

1
hi

nt
tip

2
hi

nt

pr
ec

om
p

0

20

40

60

80

100

120

140

E
la

ps
ed

 ti
m

e
(s

ec
)

Postgres, 20% Match

1 2 3 4 10

of disks

O
SF

/1
tip

1h
in

t
tip

2
hi

nt

pr
ec

om
p

8.8MB kernel. Figure 13(a) presents the elapsed and I/O stall time
for this test.

Like XDataSlice, Gnuld without hints incurs a substantial
amount of false readahead, causing it to read 125 MB from disk. In
contrast, Gnuld reads only 95 MB with hints on TIP-1. The
informed caching of TIP-2 further reduces the read volume to 85
MB. With hints, Gnuld eliminates 77% of its stall time with 4
disks and 87% with 10 disks. The remaining stall time is mostly
due to the remaining unhinted accesses that Gnuld performs.

7.6 Postgres
Postgres version 4.2 [Stonebraker86, Stonebraker90] is an

extensible, object-oriented relational database system from the
University of California at Berkeley. In our test, Postgres executes
a join of two relations. The outer relation contains 20,000 unin-
dexed tuples (3.2 MB) while the inner relation has 200,000 tuples
(32 MB) and is indexed (5 MB). We run two cases. In the first,
20% of the outer relation tuples find a match in the inner relation.
In the second, 80% find a match. One output tuple is written
sequentially for every tuple match.

To perform the join, Postgres reads the outer relation sequen-
tially. For each outer tuple, Postgres checks the inner relation’s
index for a matching inner tuple and, if there is one, reads that
tuple from the inner relation. From the perspective of storage,
accesses to the inner relation and its index are random, defeating
sequential readahead, and have poor locality, defeating caching.
Thus, most of these inner-relation accesses incur the full latency of
a disk read.

To disclose these inner-relation accesses, we employ a loop-
splitting technique similar to that used in XDS. In the precomputa-
tion phase, Postgres reads the outer relation (disclosing its sequen-
tial access), looks up each outer-relation tuple address in the index
(unhinted), and stores the addresses in an array. Postgres then dis-
closes these precomputed block addresses to TIP. In the second
pass, Postgres rereads the outer relation but skips the index lookup
and instead directly reads the inner-relation tuple whose address is
stored in the array.

14

Figures 13(b) and 13(c) show the elapsed time required for
the two joins under three conditions: standard Postgres, Postgres
with the precomputation loop but without giving hints, and Post-
gres giving hints with the precomputation loop. Simply splitting
the loop reduces elapsed time by about 20%. When the loop is
split, the buffer cache does a much better job of caching the index
since it is not polluted by the inner-relation data blocks. Even
though Postgres reads the outer relation twice, there are about 900
and 6,100 fewer total disk I/Os in the precomputation-based runs
of the first and second cases, respectively.

Invoking informed prefetching by issuing hints from the pre-
computation runs in TIP-1 allows concurrency for reads of inner-
relation blocks and reduces elapsed time by up to 45% and 64%
for the two cases, respectively. Compared to standard Postgres,
precomputation and informed prefetching in TIP-1 reduce execu-
tion time by up to 55% and 75%.

Enabling informed caching with hints in TIP-2 in general has
little effect on elapsed time because most I/O accesses are random
reads from the inner relation. However, on one disk, in the 80%
match case, TIP-2 gets an 11% reduction in elapsed time. While
part of this benefit arises from informed caching, a large fraction
arises from TIP-2’s exploitation of clustering described in Section
5.4. The availability of hints allows contiguous blocks to be read in
one disk I/O even though accesses to the two blocks may be
widely separated in time. Informed clustering allows Postgres on
TIP-2 to perform only 4,700 disk reads in the 20% match case and
8,600 disk reads in the 80% match case as compared to 6,700 and
12,300 on TIP-1, respectively. Clustering disk I/Os makes better
use of disk bandwidth, so the benefit of informed clustering, like
informed caching, is greatest when disk bandwidth is scarce (one
disk).

8 Multiple-application performance

Multiprogramming I/O-intensive applications does not gener-
ally lead to equitable or efficient use of resources because these
programs flush each other’s working set and disturb each other’s
disk head locality. However, it is inevitable that I/O-intensive pro-
grams will be multiprogrammed. In the rest of this section, we
present the implications of informed prefetching and caching on
multiprogrammed I/O-intensive applications.

When multiple applications are running concurrently, the
informed prefetching and caching system should exhibit three
basic properties. First and foremost, hints should increase overall
throughput. Second, an application that gives hints should improve
its own performance. Third, in the interest of fairness, non-hinting
applications should not suffer unduly when a competing applica-
tion gives hints. Our cost-benefit model attempts to reduce the sum
of the I/O overhead and stall time for all executing applications,
and thus, we expect our resource management algorithms to also
benefit multiprogrammed workloads.

To explore how well our system meets these performance
expectations, we report three pairs of application executions:
Gnuld/Agrep, Sphinx/Davidson, and XDS/Postgres. Here, Post-
gres performs the join with 80% matches and, precomputes its data
accesses even when it does not give hints. For each pair of applica-
tions, we ran all four hinting and non-hinting combinations on
TIP-2 starting the two applications simultaneously with a cold
cache. Figures 14 through 16 show selected results.

Figure 14 shows the impact of hints on throughput for the
three pairs of applications. We report the time until both applica-

tions complete, broken down by total CPU time and simultaneous
stall time. In all cases, the maximum elapsed time decreases when
one application gives hints, and decreases further still when both
applications give hints. Simultaneous I/O stall time is virtually
eliminated for two out of the three pairs when both applications
give hints and the parallelism of 10 disks is available.

Figure 15 and Figure 16 show each named application’s indi-
vidual elapsed time after being initiated in parallel with another
application (whose name is in parentheses). While vertical col-
umns of graphs in Figures 14, 15, and 16 correspond to the same
test runs, the middle two bars in any quartet of Figure 16 are
swapped relative to the middle two bars in the corresponding quar-
tets of Figures 14 and 15. So, for example, in Figure 15(a), ‘hint-
nohint’ means Gnuld hints while Agrep does not, whereas in Fig-
ure 16(a) ‘hint-nohint’ means Agrep hints while Gnuld does not.

To see the impact of giving hints on an individual applica-
tion’s execution time when a second non-hinting application is run
concurrently, compare bars one and two in Figures 15 and 16
Comparing bars three and four reveals the impact when the second
application is giving hints. In most cases, giving hints substantially
improves an application’s execution time. A notable exception is
Davidson when run with Sphinx as shown in Figure 16(b). When
Davidson gives hints, informed caching reduces its I/O require-
ments so Sphinx’s I/Os are serviced more quickly. Consequently,
Sphinx demands more CPU time at the expense of Davidson and
Davidson slows down. Recall, from Figure 14(b) that overall
throughput increases when Davidson gives hints.

To see the impact on a non-hinting application of another
application giving hints, compare the first and third bars in Figures
15 and 16. Comparing the second to fourth bars shows the impact
on a hinting application. In two of six applications, a non-hinting
application’s execution time is increased by another application’s
hints. For example, in Figure 16(b), when Sphinx gives hints, it
increases the execution time of a non-hinting Davidson. This is
because, by giving hints, Sphinx stalls less often for I/O, so it com-
petes more aggressively for the CPU at the expense of Davidson.

A more dramatic example is a non-hinting Agrep running
with Gnuld shown in Figure 16(a). Here, CPU utilization is low
even when the two applications run together; disk bandwidth
determines performance. When neither application gives hints,
they both usually have only one outstanding disk access at a time.
From a single disk, about 40% of the accesses and 35% of the data
transferred are attributable to Agrep over the course of its run.
When Gnuld gives hints, prefetches queue up at the drive. Even
though there is a limit of two prefetches queued in front of a
demand request, Agrep’s I/Os are more likely to be third in line
instead of second. Agrep’s share of disk accesses drops to about
24% and of data transferred to about 22%. Since Agrep is disk-
bound and getting a smaller fraction of disk utilization, it takes
longer to run.

In other cases, however, an application’s hints benefit the
other running application. For example, if either Postgres or XDS
gives hints, the non-hinting other’s elapsed time is substantially
reduced. Multiprogramming this pair of applications causes both
to run longer than the sum of their stand-alone elapsed times
because interleaving their accesses dramatically reduces disk
locality. So, when either gives hints, its I/Os are processed more
efficiently. This allows it to finish more quickly, getting out of the
way of the other, whose disk accesses are then more efficient. This
does not happen for Agrep when Gnuld runs because even when

15

0

250

500

750

1000

1250

M
ax

 E
la

ps
ed

 T
im

e
(s

ec
)

XDS and Postgres

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

Figure 14. Elapsed time for both applications to complete. Three pairs of multiprogrammed workloads, (a) Gnuld and Agrep, (b) Sphinx
and Davidson, and (c) XDataSlice and Postgres (80% of outer tuples match), are run on TIP-2 in parallel and the elapsed time of the last to
complete is reported along with the total CPU busy time. For each number of disks, four bars are shown. These represent the four hint/nohint
cases. For example, the second bar from the left in any quartet of (a) is Gnuld hinting and Agrep not hinting.

CPU
IO

0

250

500

750

M
ax

 E
la

ps
ed

 T
im

e
(s

ec
)

Sphinx and Davidson

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

(a) (b) (c)

0

50

100

150

200
M

ax
 E

la
ps

ed
 T

im
e

(s
ec

)
Gnuld and Agrep

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

Figure 15. Elapsed time for one of a pair of applications.These figures report data taken from the same runs on TIP-2 as reported in
Figure 14. However, the elapsed time shown represents only the named application’s execution. The hint/nohint combinations are identical
to Figure 14. Compare bars one and two or three and four to see the impact of giving hints when the other application is respectively hinting
or non-hinting. Compare bars one and three or two and four to see the impact of the second application giving hints.

(a) (b) (c)

0

250

500

750

E
la

ps
ed

 T
im

e
(s

ec
)

Sphinx (with Davidson)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

0

50

100

150

200

E
la

ps
ed

 T
im

e
(s

ec
)

Gnuld (with Agrep)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

0

250

500

750

1000

1250

E
la

ps
ed

 T
im

e
(s

ec
)

XDS (with Postgres)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

Figure 16. Elapsed time for the other of a pair of applications.These figures report data from the same set of runs as reported in Figures
14 and 15. However, the inner two bars are swapped relative to the inner two bars of the other figures. For example, the second bar from the
left in any quartet of (a) is Gnuld not hinting and Agrep hinting. Compare bars one and two or three and four to see the impact of giving hints
when the other application is respectively hinting or non-hinting. Compare bars one and three or two and four to see the impact of the second
application giving hints.

0

250

500

750

E
la

ps
ed

 T
im

e
(s

ec
)

Davidson (with Sphinx)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

(a) (b) (c)

0

50

100

150

200

E
la

ps
ed

 T
im

e
(s

ec
)

Agrep (with Gnuld)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

0

250

500

750

1000

1250

E
la

ps
ed

 T
im

e
(s

ec
)

Postgres (with XDS)

1 2 3 4 10

of disks

nohint-nohint
hint-nohint
nohint-hint

hint-hint

16

Gnuld gives hints, it runs longer than Agrep and so never gets out
of the way.

9 Future work

Together, informed caching and informed prefetching pro-
vide a powerful resource management scheme that takes advan-
tage of available storage concurrency and adapts to an
application’s use of buffers.

Although the results reported in this paper are taken from a
running system, there remain many interesting related questions.

In the area of hint generation, richer hint languages might sig-
nificantly improve the ability of programmers to disclose future
accesses. Even easier on the programmer would be the automatic
generation of high quality hints.

When all accessed devices have the same average access
time, as in our experiments, blocks should be prefetched in the
order they will be accessed [Cao95]. However, in the general case,
some data is on a local disk while other data may be on the far side
of a network. For the remote blocks,Tnetwork + Tserver + Tdisk could
be substituted forTdisk when determining the benefit of prefetch-
ing and the prefetch horizon. This will cause the benefit of
prefetching later, remote blocks to exceed that of prefetching ear-
lier, local blocks. This has far-reaching implications for informed
device scheduling, the third and unaddressed point of leverage for
hints based on disclosure.

Perhaps the most exciting future work lies in exploiting the
extensibility of our resource management framework. Because
value estimates are made independently with local information,
and then compared using a common currency, it should be possi-
ble to add new types of estimators. For example, a virtual-memory
estimator could track VM pages, thereby integrating VM and
buffer-cache management.

10 Conclusions

Traditional, shallow readahead and LRU file caching no
longer provide satisfactory resource management for the growing
number of I/O-bound applications. Disk parallelism and cache
buffers are squandered in the face of serial I/O workloads and
large working sets. We advocate the disclosure of application
knowledge of future accesses to enable informed prefetching and
informed caching. Together, these proactive resource managers
can expose workload parallelism to exploit storage parallelism,
and adapt caching policies to the dynamic needs of running appli-
cations. The key to achieving these goals is to strike a balance
between the desire to prefetch and the desire to cache.

We present a framework for informed caching based on a
cost-benefit model of the value of a buffer. We show how to make
independent local estimates of the value of caching a block in the
LRU queue, prefetching a block, and caching a block for hinted
reuse. We define a basis for comparing these estimates: the time
gained or lost per buffer per I/O-access interval, and we develop a
global min-max algorithm to arbitrate among these estimates and
maximize the global usefulness of every buffer.

Our results are taken from experiments with a suite of six I/O-
intensive applications executing on a Digital 3000/500 with an
array of 10 disks. Our applications include text search, data visual-
ization, database join, speech recognition, object linking, and com-
putational physics. With the exception of computational physics,
none of these applications, without hints, exploits the parallelism

of a disk array well. Informed prefetching with at least four disks
reduces the elapsed time of the other five applications by 20% to
85%. For the computational physics application, which repeatedly
reads a large file sequentially, OSF/1’s aggressive readahead does
as well as informed prefetching. However, informed caching’s
adaptive policy values this application’s recently used blocks
lower than older blocks and so “discovers” an MRU-like policy
that improves performance by up to 42%. Finally, our experimen-
tal multiprogramming results show that introducing hints always
increases throughput.

Instructions for obtaining access to the code in our TIP proto-
type can be found in our Internet World Wide Web pages:
http://www.cs.cmu.edu/afs/cs/Web/Groups/PDL.

11 Acknowledgments

We wish to thank a number of people who contributed to this
work including: Charlotte Fischer and the Atomic Structure Calcu-
lation Group in the Department of Computer Science at Vanderbilt
University for help with the Davidson algorithm; Ravi Mosur and
the Sphinx group at CMU; Jiawen Su, who did the initial port of
TIP to OSF/1 from Mach; David Golub for his debugging and cod-
ing contributions; Chris Demetriou, who wrote the striping driver;
Alex Wetmore, who ported our version of XDataSlice to the
Alpha; LeAnn Neal for help with words and graphics; M. Satya-
narayanan for his early contributions to our ideas; and the rest of
the members of the Parallel Data Libratory for their support during
this work.

12 References

[Baker91]Baker, M.G., Hartman, J.H., Kupfer, M.D., Shirriff,
K.W., Ousterhout, J.K., “Measurements of a Distributed File
System,”Proc. of the 13th Symp. on Operating System Prin-
ciples, Pacific Grove, CA, Oct. 1991, pp. 198-212.

[Cao94]Cao, P., Felten, E.W., Li, K., “Implementation and Perfor-
mance of Application-Controlled File Caching,”Proc. of the
First USENIX Symp. on Operating Systems Design and
Implementation, Monterey, CA, Nov., 1994, pp.165-178.

[Cao95a]Cao, P., Felten, E.W., Karlin, A., Li, K., “A Study of Inte-
grated Prefetching and Caching Strategies,”Proc. of the Joint
Int. Conf. on Measurement & Modeling of Computer Systems
(SIGMETRICS), Ottawa, Canada, May, 1995, pp. 188-197.

[Cao95b]Cao, P., Felten, E.W., Karlin, A., Li, K., “Implementation
and Performance of Integrated Application-Controlled Cach-
ing, Prefetching and Disk Scheduling,”Computer Science
Technical Report No. TR-CS-95-493, Princeton University,
1995.

[Chen93]Chen, C-M.M., Roussopoulos, N., “Adaptive Database
Buffer Allocation Using Query Feedback,”Proc. of the 19th
Int. Conf. on Very Large Data Bases, Dublin, Ireland, 1993,
pp. 342-353.

[Chou85]Chou, H. T., DeWitt, D. J., “An Evaluation of Buffer
Management Strategies for Relational Database Systems,”
Proc. of the 11th Int. Conf. on Very Large Data Bases, Stock-
holm, 1985, pp. 127-141.

[Cornell89]Cornell, D. W., Yu, P. S., “Integration of Buffer Man-
agement and Query Optimization in Relational Database
Environment,” Proc. of the 15th Int. Conf. on Very Large
Data Bases, Amsterdam, Aug. 1989, pp. 247-255.

[Curewitz93]Curewitz, K.M., Krishnan, P., Vitter, J.S., “Practical
Prefetching via Data Compression,”Proc. of the 1993 ACM
Conf. on Management of Data (SIGMOD), Washington, DC,
May 1993, pp. 257-66.

17

[Ebling94]Ebling, M.R., Mummert, L.B., Steere, D.C., “Overcom-
ing the Network Bottleneck in Mobile Computing,”Proc. of
the Workshop on Mobile Computing Systems and Applica-
tions, Dec. 1994.

[Feiertag71]Feiertag, R. J., Organisk, E. I., “The Multics
Input/Output System,”Proc. of the 3rd Symp. on Operating
System Principles, 1971, pp. 35-41.

[Griffioen94]Griffioen, J., Appleton, R., “Reducing File System
Latency using a Predictive Approach,”Proc. of the 1994
Summer USENIX Conference, Boston, MA, 1994.

[Grimshaw91]Grimshaw, A.S., Loyot Jr., E.C., “ELFS: Object-
Oriented Extensible File Systems,”Computer Science Tech-
nical Report No. TR-91-14, University of Virginia, 1991.

[Korner90]Korner, K., “Intelligent Caching for Remote File Ser-
vice, Proc. of the 10th Int. Conf. on Distributed Computing
Systems, 1990, pp.220-226.

[Kotz91] Kotz, D., Ellis, C.S., “Practical Prefetching Techniques
for Parallel File Systems,”Proc. First International Conf. on
Parallel and Distributed Information Systems, Miami Beach,
Florida, Dec. 4-6, 1991, pp. 182-189.

[Kotz94] Kotz, D., “Disk-directed I/O for MIMD Multiproces-
sors,”Proc. of the 1st USENIX Symp. on Operating Systems
Design and Implementation, Monterey, CA, Nov. 1994, pp.
61-74.

[Lampson83]Lampson, B.W., “Hints for Computer System
Design,”Proc. of the 9th Symp. on Operating System Princi-
ples, Bretton Woods, N.H., 1983, pp. 33-48.

[Lee90]Lee, K.-F., Hon, H.-W., Reddy, R.”An Overview of the
SPHINX Speech Recognition System,”IEEE Transactions
on Acoustics, Speech and Signal Processing, (USA), V 38
(1), Jan. 1990, pp. 35-45.

[McKusick84]McKusick, M. K., Joy, W. J., Leffler, S. J., Fabry, R.
S., “A Fast File System for Unix,”ACM Trans. on Computer
Systems, V 2 (3), Aug. 1984, pp. 181-197.

[NCSA89]National Center for Supercomputing Applications.
“XDataSlice for the X Window System,” http://www.
ncsa.uiuc.edu/, Univ. of Illinois at Urbana-Champaign, 1989.

[Ng91] Ng, R., Faloutsos, C., Sellis, T., “Flexible Buffer Allocation
Based on Marginal Gains,”Proc. of the 1991 ACM Conf. on
Management of Data (SIGMOD), pp. 387-396.

[Ousterhout85]Ousterhout, J.K., Da Costa, H., Harrison, D.,
Kunze, J.A., Kupfer, M., Thompson, J.G., “A Trace-Driven
Analysis of the UNIX 4.2 BSD File System,”Proc. of the
10th Symp. on Operating System Principles, Orcas Island,
WA, Dec. 1985, pp. 15-24.

[Palmer91]Palmer, M.L., Zdonik, S.B., “FIDO: A Cache that
Learns to Fetch,”Brown University Technical Report CS-90-
15, 1991.

[Patterson88]Patterson, D., Gibson, G., Katz, R., A, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”Proc. of

the 1988 ACM Conf. on Management of Data (SIGMOD),
Chicago, IL, Jun. 1988, pp. 109-116.

[Patterson93]Patterson, R.H., Gibson, G., Satyanarayanan, M., “A
Status Report on Research in Transparent Informed Prefetch-
ing,” ACM Operating Systems Review, V 27 (2), Apr. 1993,
pp. 21-34.

[Patterson94]Patterson, R.H., Gibson, G., “Exposing I/O Concur-
rency with Informed Prefetching,”Proc. of the 3rd Int. Conf.
on Parallel and Distributed Information Systems, Austin, TX,
Sept. 28-30, 1994, pp. 7-16.

[Rosenblum91]Rosenblum, M., Ousterhout, J.K., “The Design and
Implementation of a Log-Structured File System,”Proc. of
the 13th Symp. on Operating System Principles, Pacific
Grove, CA, Oct. 1991, pp. 1-15.

[Sacco82]Sacco, G.M., Schkolnick, M., “A Mechanism for Man-
aging the Buffer Pool in a Relational Database System Using
the Hot Set Model,”Proc. of the 8th Int. Conf. on Very Large
Data Bases, Sep. 1982, pp. 257-262.

[Salem86]Salem, K. Garcia-Molina, H., “Disk Striping,”Proc. of
the 2nd IEEE Int. Conf. on Data Engineering, 1986.

[Smith85]Smith, A.J., “Disk Cache — Miss Ratio Analysis and
Design Considerations,”ACM Trans. on Computer Systems,
V 3 (3), Aug. 1985, pp. 161-203.

[Solworth90] Solworth, J.A., Orji, C.U., “Write-Only Disk
Caches,”Proc. of the 1990 ACM Int. Conf. on Management
of Data (SIGMOD), pp. 123-132.

[Stathopoulos94]Stathopoulos, A., Fischer, C. F., “A Davidson
program for finding a few selected extreme eigenpairs of a
large, sparse, real, symmetric matrix,”Computer Physics
Communications, vol. 79, 1994, pp. 268-290.

[Steere95]Steere, D., Satyanarayanan, M., “Using Dynamic Sets to
Overcome High I/O Latencies during Search,”Proc. of the
5th Workshop on Hot Topics in Operating Systems, Orcas
Island, WA, May 4-5, 1995, pp. 136-140.

[Stonebraker86]Stonebraker, M., Rowe, L, “The Design of Post-
gres,”Proc. of 1986 ACM Int. Conf. on Management of Data
(SIGMOD), Washington, DC, USA, 28-30 May 1986.

[Stonebraker90]Stonebraker, M., Rowe, L.A., Hirohama, M., “The
implementation of POSTGRES,”IEEE Trans. on Knowledge
and Data Engineering, V 2 (1), Mar. 1990, pp. 125-42

[Sun88]Sun Microsystems, Inc., Sun OS Reference Manual, Part
Number 800-1751-10, Revision A, May 9, 1988.

[Tait91] Tait, C.D., Duchamp, D., “Detection and Exploitation of
File Working Sets,”Proc. of the 11th Int. Conf. on Distributed
Computing Systems, Arlington, TX, May, 1991, pp. 2-9.

[Trivedi79] Trivedi, K.S., “An Analysis of Prepaging”,Computing,
V 22 (3), 1979, pp. 191-210.

[Wu92] Wu, S. and Manber, U. “AGREP-a fast approximate pat-
tern-matching tool,”Proc. of the 1992 Winter USENIX Con-
ference, San Francisco, CA, Jan. 1992, pp. 20-24.

