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Abstract

This paper presents an analysis of the following load balancing algorithm. At each step, each node in a
network examines the number of tokens at each of its neighbors and sends a token to each neighbor with at
least 2d+ 1 fewer tokens, where d is the maximum degree of any node in the network. We show that within
O(A/a) steps, the algorithm reduces the maximum difference in tokens between any two nodes to at most
O((d?logn)/a), where A is the maximum difference between the number tokens at any node initially and
the average number of tokens, n is the number of nodes in the network, and « is the edge expansion of
the network. The time bound is tight in the sense that for any graph with edge expansion «, and for
any value A, there exists an initial distribution of tokens with imbalance A for which the time to reduce
the imbalance to even A/2 is at least Q(A/a). The bound on the final imbalance is tight in the sense
that there exists a class of networks that can be locally balanced everywhere (i.e., the maximum difference
in tokens between any two neighbors is at most 2d), while the global imbalance remains Q((d?logn)/c).
Furthermore, we show that upon reaching a state with a global imbalance of O((d%logn)/«a), the time
for this algorithm to locally balance the network can be as large as Q(nl/ ). We extend our analysis to
a variant of this algorithm for dynamic and asynchronous networks. We also present tight bounds for a
randomized algorithm in which each node sends at most one token in each step.






1 Introduction

A natural way to balance the workload in a distributed system is to have each work station periodically poll
the other stations to which it is connected, and send some of its work to stations with less work pending.
This paper analyzes the effectiveness of this local load balancing strategy in the simplified scenario in which
each work station has a collection of independent unit-size jobs (called tokens) that can be executed on any
other work station. We model a distributed system as a graph, where nodes correspond to work stations,
and edges correspond to connections between stations, and we assume that in one unit of time, at most
one token can be transmitted across an edge of the graph in each direction. Our analysis addresses only
the static load balancing aspect of this problem; we assume that each processor has an initial collection of
tokens, and that no tokens are created or destroyed while the tokens are being balanced.

We analyze the algorithms in this paper in terms of the initial imbalance of tokens, i.e., the maximum
difference between the number of tokens at any node and the average number of tokens, which we denote
A, the number of nodes in the graph, which we denote n, the maximum degree of the graph, d, and the
node and edge expansion of the graph. We define the node ezpansion p, of a graph G to be the largest
value such that every set S of n/2 or fewer nodes in G has at least p|S| neighbors outside of §. We define
the edge ezpansion «, of a graph G to be the largest value such that for every set S of n/2 or fewer nodes
in G, there are at least &S| edges in G with one endpoint in S and the other not in S.

The performance of an algorithm is characterized by the time that it takes to balance the tokens, and
by the final balance that it achieves. We say that an algorithm globally balances (or just balances) to within
t tokens if the maximum difference in the number of tokens between any two nodes in the graph is at most
t. We say that an algorithm locally balances to within ¢ tokens if the maximum difference in the number
of tokens between any neighboring nodes in the graph is at most ¢.

We analyze two different types of algorithms in this paper, single-port and multi-port. In the single-port
model, a node may transmit or receive at most one token in one unit of time. In the multi-port model, a
node may simultaneously transmit or receive a token across all of its edges (there may be as many as d) in
a single unit of time. Not surprisingly, the load balancing algorithms run faster in the multi-port model.
In practice, however, single-port nodes may be prefered to multi-port nodes because they are easier and
less costly to build.

1.1 Our results

This paper analyzes the simplest and most natural local algorithms in both the single-port and multi-port
models.

In the single-port algorithm, a matching is randomly chosen at each step. First, each (undirected) edge
in the network is independently selected to be a candidate with probability 1/4d. Then each candidate
edge (u,v) for which there is another candidate edge (u, z) or (y,v) is removed from the set of candidates.
The remaining candidates form a matching M in the graph. For each edge (u,v) in M, if » and v have the
same number of tokens, then nothing is sent across (u,v). Otherwise, a token is sent from the node with
more tokens to the node with fewer. This algorithm was first analyzed in [14].

We analyze the performance of the single-port algorithm in terms of both the edge expansion and the
node expansion of the graph. In terms of edge expansion, we show that the single-port algorithm balances
to within O(dlogn/a) tokens in O(dA/a) steps, with high probability. In terms of node expansion, the
final imbalance is O(logn/p), and the time is O(dA/u), with high probability. (To compare these bounds,
note that g < @ < du.) The time bounds are tight in the sense that for many values of n, d, @, and A,
there is an n-node maximum degree d graph with edge expansion « or node expansion p and an initial
placement of tokens with imbalance A where the time (for any algorithm) to balance to within even A/2
tokens is at least Q(dA/«). Similarly, in terms of node expansion, there exist classes of graphs where the
time to balance to within even A/2 tokens is at least Q(dA/p).



The multi-port algorithm is simpler and deterministic. At each step, a token is sent from node u to
node v across edge (u, v) if at the beginning of the step node u contained at least 2d + 1 more tokens than
node v. This algorithm was first analyzed in [2].

As in the single-port case, we analyze the multi-port algorithm in terms of both edge expansion and
node expansion. In terms of edge expansion, the algorithm balances to within O(d?logn/a) tokens in
O(A/a) steps. This bound is tight in the sense that for any network with edge expansion «, and any value
A, there exists an initial distribution of tokens with imbalance A such that the time to reduce the imbalance
to even A/2is Q(A/a). In terms of node expansion, the algorithm balances to within O(dlogn/u) tokens
in O(A/p) time. This bound is tight in the sense that for many values of d, n, and p, and any value
A, there exists an n-node, maximum degree d graph with node expansion g and an initial distribution of
tokens with imbalance A for which the time to balance to within A/2 tokens is Q(A/p).

Both the single-port and multi-port algorithms will eventually locally balance the network, the single-
port algorithm to within one token, and the multi-port algorithm to within 2d tokens. However, even after
reducing the global imbalance to a small value, the time for either of these algorithms to reach a locally
balanced state can be quite large. In particular, we show that after reaching a state that is globally balanced
to within O(dlogn/u) tokens, the multi-port algorithm may take another Q(nl/2) steps to reach a state
that is locally balanced to within 2d tokens. For networks with large node expansion and small degree,
e.g., # = (1) and d = O(1), and small initial imbalance, e.g., A = O(dlog® n/p), the time to locally
balance the network, Q(n'/?), may be much larger than the time, O(A/u) = O(dlog? n/u?) = O(log®n)
to reach a state that is globally balanced to within O(dlogn/u) tokens. We prove similar bounds in terms
of edge expansion and also for the single-port algorithm,

Thus far we have described a network model in which the nodes are synchronized by a global clock
(i.e., a synchronous network), and in which the edges are assumed not to fail. With minor modifications,
however, the load balancing algorithms can be made to work in both asynchronous and dynamic networks.
In a dynamic network, the set of edges in the network may vary at each time step. In any time step, a
live edge is one that can transmit one message in each direction. We assume that at each time step, each
node in a synchronous dynamic network knows which of its edges are live. In an asynchronous network,
the topology is fixed, but an adversary determines the speed at which each edge operates at every instant
of time. For every undirected edge between two nodes, we allow at most two messages to be in transit
at any instant in time. These messages may travel in opposite directions across the edge, or both may
travel in one direction, while no message travels in the opposite direction. An edge is said to be live for
a unit interval of time if every message that was in transit across the edge (in either direction) at the
beginning of the interval is guaranteed to reach the end of the edge by the end of the interval. We analyze
the performance of the multi-port load balancing algorithm under the assumption that at each time step,
the set of live edges has some edge expansion «, or node expansion pu.

We also study the off-line load balancing problem, in which every node has knowledge of the global state
of the network. This problem on has been studied on static synchronous networks in [28]. We use their
results to obtain tight bounds on off-line load balancing in terms of edge expansion and node expansion. In
particular, we prove that any network can be balanced off-line in [(14 )A/u] steps such that no node has
more than two tokens over the average. This result can be used to show that any network can be balanced
off-line to within three tokens in at most 2[(1 + u)A/u] steps in the single-port model. Moreover, there
exists a network and an initial token distribution for which any single-port off-line algorithm takes more
than [(1+ p)A/u] steps to balance the network to within one token. Similarly, in the multi-port model,
any network can be balanced off-line in at most [A/«]| steps so that no node contains more than d tokens
over the average. Using this result, we show that any network can be balanced to within d+ 1 tokens in at
most 2[A/a] steps. It is easy to observe that for any network G there exists an initial token distribution
such that any algorithm will take at least [A/a] steps to balance G to within one token.



1.2 Previous and related work

Load balancing has been studied extensively since it comes up in a wide variety of settings including
adaptive mesh partitioning [16, 38], fine grain functional programming [15], job scheduling in operating
systems [13, 24], and distributed game tree searching [21, 25]. A number of models have been proposed for
load balancing, differing chiefly in the amount of global information used by the algorithm [2, 11, 12, 14, 26,
30]. On these models, algorithms have been proposed for specific applications; also, proposed heuristics and
algorithms have been analyzed using simulations and queuing-theoretic techniques [27, 34, 36]. In what
follows, we focus on models that allow only local algorithms and on’prior work that takes an analytical
approach to the load balancing problem.

Local algorithms restricted to particular networks have been studied on counting networks [4, 22],
hypercubes [19, 33], and meshes [16, 28]. Another class of networks on which load balancing has been
studied is the class of expanders. Peleg and Upfal [31] pioneered this study by identifying certain small-
degree expanders as being suitable for load balancing. Their work has been extended in [9, 17, 32].
These algorithms either use strong expanders to approximately balance the network, or the AKS sorting
network [3] to perfectly balance the network. Thus, they do not work on networks of arbitrary topology.
Also, these algorithms work by setting up fixed paths through the network on which load is moved and
therefore fail when the network changes. In contrast, our local algorithm works on any arbitrary dynamic
network that remains connected.

On arbitrary topologies, load balancing has been studied under two models. In the first model, any
amount of load can be moved across a link in any time step [8, 12, 14, 18, 35]. The second model is the
one that we adopt here, namely one in which at most one unit load can be moved across a link in each
time step. Load balancing algorithms on the second model were first proposed and analyzed in [2] for
the multi-port variant and in [14] for the single-port variant. The upper bounds established by them are
suboptimal by a factor of Q(y/n) or Q(log(nrA)) in general. Our result here is an improved, in fact, an
optimal bound for the same problem.

As remarked earlier, our multi-port results (and those in [2]) hold even for dynamic or asynchronous
networks. In general, work on dynamic and asynchronous networks has been limited. In work related to load
balancing for instance, an end-to-end communication problem, namely one in which messages are routed
from a single source to a single destination, has been studied in [1, 7] on dynamic networks. Qur scenario
is substantially more involved since we are required to move load between several sources and destinations
simultaneously. Another result on dynamic networks is the recent analysis of a local algorithm for the
approximate multicommodity flow problem [5, 6]. While their result has several applications including the
end-to-end communication problem mentioned above, it does not seem to extend to load balancing. Our
result on load balancing is related to their work in the technique; however, our algorithm and analysis are
simpler and we obtain optimal bounds for our problem.

The convergence of local load balancing algorithms is related to that of random walks on Markov
Chains. Indeed the convergence bounds in both cases depend on the expansion properties of the underlying
graph and they are established using potential function arguments. There are however two important
differences. First, the analysis of the rapid convergence of random walks [20, 29] relies on averaging
arbitrary probabilities across any edge. This corresponds to sending an arbitrary (possibly nonintegral)
load along an edge which is forbidden in our model. In this sense, the analysis in [12] (and all references
in the unbounded capacity model) are similar to the random walk analysis. Second, our argument uses an
exponential potential function. The analyses in [12, 20, 29], in contrast, use quadratic potential functions.
Our potential function and our amortized analysis were necessary since a number of previous attempts
using quadratic potential functions yielded suboptimal results [2, 14] for local load balancing.



1.3 Outline

The remainder of this paper is organized as follows. Section 2 contains some definitions. Section 3.1
analyzes the performance of the single-port algorithm. Section 3.2 analyzes the performance of the multi-
port algorithm. In Section 4, we show that the time to reach a locally balanced state can be quite large,
even if the network starts in a state that is well balanced globally. Section 5 describes extensions to dynamic
and asynchronous networks. Finally, Section 6 presents tight bounds on off-line load balancing.

2 Preliminaries

For any network G = (V, E)) with n nodes, m edges, and edge expansion «, we denote the number of tokens
at v € V by w(v). We denote the average number of tokens by p. For simplicity, throughout this paper
we assume that p is an integer. We assign a unique rank from [1, w(v)] to every token at v. The height of
a token is its rank minus p. The height of a node is the maximum among the heights of all its tokens.

Consider a partition of V' given by {S;}, where the index 7 is an integer and .S; may be empty for any 4.
Let Ss; be U;s;S;. Similarly we define S>;, Sc;, and S<;. We define index i to be good if | S;| < @|S5:|/2d.
An index that is not good is called a dad index. For any bad index 4, we have |Ss;| < |S:|/(1+ a/(2d)).
Since |Sso|/(1+ o/ (2d))1°81+a/24) ™ < 1, there can be at most [l0g(14a/(2a)) 7] bad indices. It follows that
at least half of the indices in [1, 2[log(; 4 /(2a)) 7] are good.

3 Analysis for static synchronous networks

3.1 The single-port model

In this section, we analyze the single-port load balancing algorithm that is described in Section 1.1.

Theorem 3.1 For an arbitrary network G with n nodes, mazimum degree d, edge expansion o, and initial
imbalance A, the single-port algorithm balances within O((dlogn)/a) tokens in O((dA)/«) steps, with high
probability.

Before every step we partition the set of nodes according to how many tokens they contain. For every
integer ¢, we denote the set of nodes having p + ¢ tokens as .S;. Consider the first T steps of the algorithm,
with T to be specified later. It holds that either |Sso| < n/2 at the start of at least half the steps, or
|S<o| < m/2 at the start of at least half the steps. Without loss of generality, assume the former is true.
Since at least half of the indices in [1,2[log(1 +/(24)) »]] are good in any time step ¢, there exists an index
Jin [1,2[log(; 4 /(2a)) 7]] that is good in at least half of those time steps in which |S50| < 7/2. Hence j is
good in at least 7'/4 steps.

With every token at height 2 we associate a potential of ¢(h), where ¢ : N — R is defined as follows:

fo itz < g,
(o) = { (14 v)* otherwise, (1)

where v = a/(cd), and ¢ > 1 is a real constant to be specified later. The potential of the network is the
sum of the potentials of all tokens in the network. While transmitting a token, every node sends its token
with maximum height. Similarly, any token arriving into a node with height % is assigned height A + 1. Tt
follows from the definition of the potential function, and the fact that the height of a token never increases,
that the potential of the network never increases. In the following, we show that during any step when j
is good, the expected decrease in potential of the network is at least an ev? fraction of the potential before
the step, where € > 0 is a real constant to be specified later.

Before proving Theorem 3.1, we present an informal outline of the proof. For simplicity, let us assume
that G is a constant-degree expander, i.e., d = O(1) and g = (1). Consider the scenario in which all of
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the indices greater than j are bad. In this situation, for every ¢ greater than j, the size of the set S; grows
exponentially with decreasing i, and hence the number of tokens with height i grows exponentially with
decreasing ¢. If the growth of ¢(z) with increasing z is slower than the growth of S»; with decreasing 1,
then the total potential due to tokens at height i “dominates” the total potential due to tokens at height
greater than <. In such a case the potential of S ; is essentially a constant times the potential of tokens at
height j 4+ 1. In addition, if the potential of tokens of height at most j is zero, then in every step when j is
good, there is a constant fraction potential drop, because a constant fraction of nodes in S5 ; send tokens
to S¢; in such a step. The exponential function we have defined in Equation (1) satisfies the properties
described above.

In general, the indices greater than j could form any sequence of good and bad indices that respects
the upper bound on the number of bad indices. We consider the indices greater than j in reverse order
and show by an amortized analysis that for each index ¢ we can “view” all indices greater than or equal
to ¢ as bad. If ¢ is bad, then this view is trivially preserved; otherwise, there is a significant potential drop
across the cut (S<;, S»i), and this drop can be used to rearrange the potential of S, in order to maintain
the view that all indices greater than i are bad. We then invoke the argument for the case in which all
indices greater than j are bad and complete the proof.

Consider step ¢ of the algorithm. Let ®; denote the potential of the network after step ¢ > 0. Let M;
be the set of tokens that are sent from a node in Ss; to a node in S¢;. Let m; = |M;]. We say that a token
p has an i-drop of ¢(i+ 1) — ¢(¢), if p moves from a node in Sy; to a node in S¢;. Thus, the potential
drop due to a token moving on an edge from node u € S; to node v € Sy, ¢ > i’ + 1, can be expressed as
the sum of k-drops for ¢/ < k < 4. In Lemma 3.1, we use this notion of i-drops to relate the total potential

drop in step ¢, ¥, to the mis.

Lemma 3.1

i>j

= (Z miv(1+ 1/)’) +m (14 )t

Proof: Let M be the set of tokens that are moved from a node in S5;. (Note that tokens that start
from and end at nodes in S ; also belong to A.) For any token p, let a(p) (resp., b(p)) be the height of p
before (resp., after) step ¢.

T o= ) (¢(alp) - ¢(b(p))

pEM
= > D (D -e@+ Y 3 (#i+1)- ()
PEM, p¢M; b(p)<i<a(p) PEM; j<i<a(p)
- (S5 0ea)+ (5 arom)
1>7 pEM; pEM;

= (Z miv(l + V)’) + m;(1+v) T
i>]

(In the third step we rearrange the terms in the summations and also use the equation ¢(i + 1) — ¢(%) =
v(l4+v) foralli>j) M

We now describe the amortized analysis, alluded to earlier in this section, that we use to prove Theo-
rem 3.1. We associate a charge of cv2¢(h) with each token at height A. We show that we can pay for all
the charges using the expected potential drop E[¥], and thus place a lower bound on E[¥]. We consider
the indices in [j + 1,£] in reverse order, where £ is the maximum token height. Corresponding to every ¢
in [7, ¢], we maintain a “debt” term, given by I'; below, which is the difference between the charges due to



tokens at height greater than i and the sum of i’-drops for ¢’ > ¢. Hence I'; is calculated by subtracting
the sum of i-drop’s from I';1; and adding the charges due to tokens at height ¢. We will show that E[l}]
is such that the indices in [¢ + 1, ] can be viewed as a sequence of bad indices. In other words, we upper
bound E[T;] by O(v|S»i|(1+ v)). It follows from this upper bound and the informal argument outlined
earlier in this section that E[I';41], i.e., the expected total debt, can be paid for by the expected drop
across index j.

Formally, for any ¢ > j, we define

¥, = kav(l+v)k, and
k>

Is = (Evz)( > (1—|—1/)“(p)) - ;.

a(p)>i

We also define

I' = (ev?) ( o+ y)a(p)) —- .
pia(p)>i
Note that ¢;—; = E (1 +2)4?) is the total potential of Ss; prior to step ¢.
pia(p)>j
In order to prove the upper bound on E[I';], we place a lower bound on E[m;] that is obtained from
the following lemma of [14].

Lemma 3.2 ([14]) For any edge e € E, the probability that e is selected in the matching is at least 1/(8d).
L]

Lemma 3.3 There exists a real constant € > 0 such that for all i > j, we have E[I;] < (ev)|S>i|(1 + v)*.

Proof: The proof is by reverse induction on i. For ¢ > £, the claim holds trivially. Therefore, for the base
case we consider ¢ = £. Since my = 0, we have ¥y = 0. Thus, [, = (ev?)|S,|(1 + v)¢ < (ev)|S>el(1 + v)¢,
since v = a/(cd) < 1/e¢ < 1 by our choice of c.

For the induction step we consider two cases, depending on whether ¢ is good or bad. If 7 is good,
then |S;| < &|S>:|/2d. Since there are at most ®|Ss;|/2 edges from Ss; to S;, by the expansion property
of the graph we find that there are at least |Ss;|/2 edges from Ss; to S¢;. By Lemma 3.2 we have
E[m;] > a|Ss:|/(16d). Therefore, we have

BlTit] + (9|5l (1 + ) — ElmiJu(1+ v)
ElTist] + (607)]Sssl (1 + 9)' — cv?|Sil (1 + v)*/16
E[Tint] = 0)85il (1 +2)'(f (e, e, d) — )
(E)IS5il (1 +w) = ()85l (1 + ) (f(c, 2, d) —¢)
(e[Sl (14 )" (1 +v) = v(f(e, @, d) =€) [e),
where f(c,,d) = ¢/(16(1+ o/(2d))). (The third inequality follows from the fact that |Ss;| > |S>i|/(1+
a/(2d)). The fourth inequality follows from the induction hypothesis.)
The second case is when ¢ is bad. Thus |S;| > «|S5i|/(2d). We have

E[T]

IA AN IA DA

< Elli] + ()|l (L + )’ |
< (@)ISoil (L )™+ (@2)[S5il(1+ )’
< (@)IS5il(1 +v) (L4 2)/(L+ ev/2) +0).

E[l]
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We now complete the induction step by determining values for ¢ and ¢ such that the inequalities

(1+v)—v(f(e,o,d)—€)fe) <1 (2)
(AL+0)/(L+ev/D)+r <1 3)

hold, and thus establish the induction step. Since @ < d, we can set ¢ to be any constant greater than or
equal to (a/d)+4 (e.g., ¢ = 5). For this choice of ¢, » < (¢ —4) /¢, and hence v < (cv — cv?) /4. Therefore,

(I+v)/(1+ev/2)+v = (1+20+c?/2)/(1+cv/2)
< (IT+4ev/2)/(14cv/2) = 1.
Thus, Equation (3) is satisfied. Since o < d, we find that f(c,a,d) > ¢/24. We now set ¢ = ¢/48 to
establish Equation (2). (For example, ¢ =5 and € = 5/48.) W
Applying Lemma 3.3 with 1 = j + 1, it follows that E[';11] < (6v)|S>j+1|(1 4 »)*L. If j is good then

E[m;] > «|Ss;|/16d, and by the definitions of I', I';;1, and ¥, we have

E[T] E[Dja] = E[mg](1+ )+
ELj1] = @] S5 (1+v)*1/(16d)
(ev)IS51(1+ v+ — alS5] (1 +v) ™ /(16d)
Y1853l (L + ) (e — ¢/16)
0,

IA A IAIA

since ¢/16 > ¢.

By the definitions of ¥ and I', we have ®; < ®;_; — ¥ and ' = ev?®;_; — ¥. If j is good during
step t, we have E[I'] < 0, and therefore, E[®;] < ®;_1(1 — ev?), where the expectation is taken over the
random matching selected in step t. Thus, we have E[®; 7] < ®;(1 — ev?)T/4, where the expectation is
over all the random matchings in the T steps. By setting T = [(41n4)/(¢v?)], we obtain E[®, 1] < ®;/4.
By Markov’s inequality, the probability that ®;y7 > ®;/2 is at most 1/2. Therefore, using standard
Chernoff bounds [10], we can show that in 7" = 8aT'[(log ®¢ + logn)] steps, @7+ > 1 with probability
at most O(1/(®p)* + 1/n%) for any constant @ > 0. Since ®; < n(l + v)2* /v, we have log®y <
(A+1)(v)+log n—log v. Therefore, for 7! = O(Ad/a+d*log n/a?), we have ®; < 1 with high probability
which implies that after 7" steps, [S>21og, ray(2d) »| = 0 with high probability.

To establish balance in the number of tokens below the average, we use an averaging argument to show
that after 7" steps |S<—210g,,, Jea) »| < n/2 with high probability, and then repeat the above arguments
redefining the potential appropriately. This proves Theorem 3.1.

3.2 The multi-port model

In this section, we analyze the deterministic multi-port algorithm described in Section 1.1.

Theorem 3.2 For an arbitrary network G with n nodes, mazimum degree d, edge expansion «, and initial
imbalance A, the multi-port algorithm load balances to within O((d?logn)/a) tokens in O(A/q) steps.

The proof of Theorem 3.2 is similar to that of Theorem 3.1. We assign a potential to every token, that
grows exponentially with height. We then show by means of an amortized analysis that a suitable rear-
rangement of the potential reduces every instance of the problem to a special instance that we understand
well.

Before every step we partition the set of nodes according to how many tokens they contain, where
groups are separated by 2d. For every integer i, we denote the set of nodes having between p — d 4 2id and
p+ d— 1+ 2id tokens as S;.



Consider the first T steps of the algorithm with T to be specified later. Without loss of generality,
we assume that |Sso| < n/2 holds in at least half of these steps. By Section 2, there exists an index j in
[1,2[logy 44 /(24) 7] that is good in at least half of those steps in which |S50] < n/2. Hence in T steps of
the algorithm, j is good in at least 7°/4 steps.

With every token at height A we associate a potential of ¢(h), where ¢ : N — R is defined as follows:

o if ¢ < 2jd,
¢(2) = { (14 v)® otherwise,

where v = a/(cd?), and ¢ > 0 is a constant to be specified later. The potential of the network is the sum
of the potentials of all tokens in the network. While transmitting some number (say m) of tokens in a
particular step, a node sends the m highest-ranked tokens. Similarly if m tokens arrive at a node during a
step, they are assigned the m highest ranks within the node. Thus, tokens that do not move retain their
ranks after the step. It follows from the definition of the potential function and the fact that the height of
a token never increases that the network potential never increases. In the following we show that whenever
7 is good the potential of S5 ; decreases by a factor of ev2d?, where € > 0 is a real constant to be specified
later. (For the sake of simplicity, we assume that d is even. If d is odd, we can replace d by d + 1 in our
argument without affecting the bounds up to constant factors.)

Consider step ¢ of the algorithm. Let u be a node in S; with height . Let A (resp., B) be the set
of tokens that u receives from nodes in Ss; (resp., S<;). We assign new ranks to tokens in A and B such
that the rank of every token in A is less than that of every token in B. Let C be the set of tokens in A
that attain height at most k + (d/2) after the step. Since |4| < d, by the choice of our ranking, we have
|C| > |A]/2. We call C the set of primary tokens. Also, all tokens leaving node u are at height at least
h — d 4+ 1 prior to this step.

For any token p, let a(p) (resp., b(p)) be the index of the group of the node that contains p before (resp.,
after) the step. (Note that the indexing is done prior to the step.) Let M; be the set of primary tokens
received by nodes in S¢;. Let m; = |M;|. (Note that m; is at least half the number of edges joining some
node in S¢; and some node in S5;.) Lemma 3.4 establishes the relationship between the total potential
drop V¥ in step ¢t and the m;’s.

Lemma 3.4

1 : :

v > 5 > mvd(1+ p)EDL ) o (1 4 p) 24
>

Proof: Let M be the set of primary tokens that are moved from nodes in Ss;. (Note that primary

tokens that start from a node in Ss; and end at a node in Ss; are in M.) By the definition of primary

token, the height of p prior to the step is at least 2a(p)d — 2d + 1 and the height after the step is at most
2b(p)d + 3d/2. Moreover, p belongs to M; for all ¢ such that b(p) < ¢ < a(p).

T > D [4(2a(p)d —2d +1) — $(2b(p)d + 3d/2)]
peEM

> > [P+ 1)d - 2d+ 1) — $(2(: — 1)d + 3d/2)]

pEM,p¢M; b(p)<i<a(p)

+ > ( 3 [p2(i+ 1)d - 2d+ 1) — ¢(2(i — 1)d + 3d/2)] + $(2(j + 1)d — 2d + 1))

pPEM; \j<i<a(p)

v

- (%Z > udu+v>2“‘d) e

>3 pEM; peEM;



> (-21- Z mivd(1l+ V)Zid"d) + m;(1+ I/)Zjd‘*'l.
1>9
]

For any token p, let h(p) denote the height of p prior to the step. Thus 2a(p)d — d < h(p) < 2a(p)d+d— 1.
For ¢ > j and for a suitable constant £ > 0 to be specified later, we define

U, = %;mkvd(l—kv)%d“d, and

F,' = (81/2d2) ( Z (]. + Z/)h(p)) - ‘Ifi.
p:h(p)>2id—d
We also define
T = (ev2d?) ( 3 (1+u)h(P)) ~ .
p:h(p)>2jd

For any step t’, let ®; denote the total potential after step #/. Thus, ®;_, = Z (1+ v)h(p) is the
p:h(p)>25d
total potential prior to step ¢.

Lemma 3.5 There exists a real constant § > 0 such that for all i > 7, we have
I'; < (dvd?)| S5 (1 + v) ¥,

Proof: The proof is by reverse induction on i. Let £ be the maximum token height. For 7 > |(£+d)/2d],
the claim is trivial. Therefore, for the base case we consider 7 = | (£+ d)/2d]. Since ¥; = 0, we have

(2e12d%)|Si|(1 + v)*
< (261/2033) 1Sl (1 + V)Zd(i+1)—d
< (6vd?)| Szl (14 v) 2

I';

AN

where § and ¢ are chosen such that § > 2evd(1 + v)?¢. (Note that for ¢ sufficiently large, (1 + )¢ can be
set to an arbitrarily small constant.)

For the induction step we consider two cases. If 7 is good, then |S;| < a|S5;|/(2d) and m; > a|Ss;:|/2.
Therefore, we have

I, Tip1 + (28V2d3)|521;|(1 + 1/)%‘“"1_1 — mvd(1+ V)zid"d/2
Tip1 + (260%d%)|S5;| (1 4+ v)20H4=1 — v2d®| 85| (1 + )P4 /4
Tip1 ~ (2d%)[S5i| (1 + 1)~ (f(c, o, d) — 26(1 + v)*)
(6vd?)|S5il (L4 w)?CHDEE — (12d°)]S54|(1+ )24 (f (¢, @, d) — de)
(6vd?)| Sl (L + )244((1 + 1) ~ vd(f(c, o, d) - 46) /5),
where f(c,a,d) = ¢/(4(1 + o/(2d))). (The third inequality follows from the fact that |Ss;| > |S>:|/(1 +
a/(2d)). The fourth inequality follows from the induction hypothesis and the inequality (14 »)%¢ < 2 for
¢ sufficiently large.)
The second case is when ¢ is bad. Thus |S;| > @|Ss;|/(2d). We have

i1 + (2602d%)[S54|(1 4 v)2id+e-t
(6vd?)| S5 |(1 + v)2(HD9=d 1 961243 S 1|(1 4 w) 2idHd=2
(6vd®)|S»il (1 + )P 4((1 + v)** /(1 + o/ (2d)) + 2evd(1 + v)??/§).

IA A A IAIA

I;

IA N IA
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We now set c, 4, and € such that ¢ > 4, ¢/6 — 4 > 44, and c¢/4 — 2¢/6 > 4. (One set of choices is ¢ = 25,
d=1,and € = 1/24) Since a < d, we have f(c, @, d) > ¢/6. Since ¢ > 4, we have 2vd < 1/2, and hence
(1+ 1/)2'1 <1+ 3iso(2vd)! < 14 2vd/(1 - 2vd)’'< 1+ 4vd. Thus,

(14 2)* = vd(f(c, a,d) — 4¢) /8) < 1+ dvd — 4vd < 1.
Since a/(2d) < 1/2, we have 1/(1+ &/(2d)) < 1 — a/(4d), and hence,

Q+2)"/(1+ o/ (2d)) + evd(1+v)*/6 < (14v)*(1/(1+ /(2d)) + 2cvd/5)
(1+0)2(1 - a/4d + 2evd/6)

(1+ )% (1 — cvd/4 + 2evd/§)

< (14 4vd)(1 - 4vd) < 1.

INA

Thus, in both the cases, I'; < (6vd?)|S>;|(1 + v)24~2. This completes the inductive step. ®
Corollary 3.5.1 If j is good on step t then we have ¥ > ev?d®®;_;.

Proof: Applying Lemma 3.5 with ¢ = j + 1, it follows that Ijy1 < (6vd?)|Ssj41|(1 + v)20H4=4 If j is
good then |S;| < @|Ss;|/(2d) and m; > oz]S>J|/2 Therefore,

Djs +e2d%|S5|(1 4+ )1 — ]S, | (14 1) 44 /2

(%) 5511 + )21 1 (e 2a)|Ss (14 1)1 /2 — o] Sy | (1 -+ )01 /2
(vd®)[S5;|(1 +v)PEHDA(S 4 ea?/(2¢d’) - c/4)

0,

I =T;

IA A A A

for ¢, &, and € chosen above. (In the first inequality, the term ev2d3|S;|(1 + v)%/9+4=1 is an upper bound
on the contribution to I'; by tokens in S;. The third inequality follows from the fact that for ¢ > 4, we
have (1+v)? < 2.)

By the definitions of I and ¥, we have ®; < &;_; — ¥ and T' = ev2d?®;_; — U. If j is good during step
t, then I' < 0, and the desired claim follows.
By Corollary 3.5.1, if 7 is good during step ¢ then we have

B, < B;_1(1 —ev?d?).

After T = [4[In ®¢1/(ev2d?)] steps, we have &7 < By (1—ev2d?)T/* < 1. Since By < n(14+v)2+1 /v, In By =
O(Av + logn). Substituting for v, we obtain that within O(A/a + d?lnn/o?) steps, 15> 2108, 4 o2y 7l <
1S5 = 0.

We use an averaging argument to show that after T steps, |S<_21°gl+a/(2d) n| £ n/2. By redefining the
potential function and repeating the above analysis.in the other direction, we obtain that in another T
steps |S<—4log1+a/(2d) »| = 0. This completes the proof of Theorem 3.2.

3.3 Results in terms of node expansion

The proofs of Theorems 3.1 and 3.2 can be easily modified to analyze the algorithm in terms of the node
expansion y of the graph instead of the edge expansion «. (The primary modifications that need to be done
are to alter the definition of a good index, and to set v appropriately. We set v = p/c (resp., v = u/(ed))
for the single-port model (resp., multi-port model) and call index ¢ good if |5;] < u|S5:]/2.)

Theorem 3.3 For an arbitrary network G with n nodes, mazimum degree d, node expansion p, and initial
imbalance A, the single-port algorithm load balances within O((logn)/u) tokens in O(dA/u) steps with high
probability.
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Corollary 3.3.1 If A > (dlogn)/u, the single-port algorithm balances to within O(logn/u) tokens in
O((dA)/a) steps with high probability. If A < (dlogn)/u, the single-port algorithm balances to within
O(logn/u) tokens in O((dA)/p) steps with high probability.

Theorem 3.4 For an arbitrary network G with n nodes, mazimum degree d, node expansion p, and initial
imbalance A, the multi-port algorithm load balances to within O((dlogn)/u) tokens in O(A/u) steps.

Corollary 3.4.1 If A > (d?logn)/u, the multi-port algorithm balances to within O((dlogn)/u) tokens in
O(A/a) steps. If A < (d*logn)/u, the multi-port algorithm balances to within O((dlogn)/u) tokens in
O(A/p) steps.

4 Local load balancing can be expensive

In this section, we show that locally load balancing to within 2 tokens using the multi-port algorithm of [2]
described in Section 1.1 can take Q(n!/?) more time than globally load balancing to within O((dlogn)/u)
tokens. We extend this bound for the single-port algorithm presented in [14], i.e., the expected number
of additional steps this algorithm may take to perform local (to within one token) rather than global
balancing is Q(dn'/2). Furthermore, we show that in the single-port case, we may be one step away from
being locally balanced to within one token but have an expected running time of Q(un!/?) for reaching a
locally balanced state. Finally, we prove upper bounds on the time each algorithm takes to reach a locally
balanced state.

We will now construct a graph G' = (V, E)) on n nodes and show that this graph has expansion Q(u).
Let 0 < g < 1 (we will actually need 4 < 1/3, as seen below). Let V = (UE,L;) U (USZLR;), where I;
and R; are sets of (1+ )’ nodes each. For convenience, let L_; (resp., R_;) denote Ry (resp., Lg) and Ry
denote Ly. Note that each L; and each R; has size (1 +p)' = N(E;';%) IL;)+1= ,u.(zj;}) |R;]) + 1. Thus
k= O(logn/log(1l+ p)) = O(logn/p). Here we assume w.l.o.g. that & = logn/log(1 4 u) and that & is
even. Let 0 < p/ < 1/3 and p < p'.

For each ¢, 0 < @ < £, let every subset S of L; of size at most 3|L;|/4 have at least u'|S| neighbors
in L; \ S, and let L; have maximum degree d/2, for some suitable value of d, which depends on 1. Let
each node in L; have exactly d(1+ p)/(2(2+ p)) neighbors in L;41 and each node in L;1; have exactly
d/(2(2+4 p)) neighbors in L;, 0 < 7 < k — 1 (note that w.l.o.g. we will ignore integrality constraints, since
we can always find many values of d and u such that integrality holds). Using a counting argument on
the number of edges between levels that are adjacent to each node, we see that every S C L; has at least
(14 p)|S] neighbors in L;41. Now we consider how L;y; “expands” into L;. We can use a similar approach
as in [23, 37] to show that we can choose the edges between L; and L;;1, respecting the degree constraints
above, such that any S C L;y; such that |S| < |L;i41]/(1 + g)? has at least (1 + p)|S| neighbors in L;.
Let the only node in Lg be adjacent to every node in L;. We obtain a similar structure for the R;’s by
replacing L; by R; in this paragraph. Note that the maximum degree of G is < d.

Lemma 4.1 G has node expansion Q(uy').

Proof: Let S CV,|S|<n/2. Let S;=SNL;and S, =SNR;, 0<i<k. Let Ny(X)={yeY|(z,y) €
E,z € X}, for any X,Y C V; if the set Y is not specified, assume Y = V. Let 0 < ¢ < k:

1. If |S;] < 3|L;|/4, then S; has at least p/|S;| neighbors inside L; \ S;.
2. If i < k and |S;| > 2|L;|/3 and |S;41] < 2|Lit+1]/3, then:
(8) i€ 2IL41/3 < | < 3ILil /4 then N, (S)|—1Si 2 w2ILil/3 = (& /3)@IL) > (o'/3) (w528 L1+
|Lil) 2 (' /3) (=0 1L 1)
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(b) if |5i| > 3|Li|/4 then |Np,, (Si)| = |Sisa| > (1+p)3|Lil /4= 2| Ligal/3 = 3|Liz1]/4 2| Lina] /3 =
|Liga] /12 > (1/12)(3Z5=0 | L)

Thus |N(S;)| — |S] > (us'/12) (o 1S5

Similar results hold if we replace S; by S; and L; by E; in the items above.

Now we consider every S;, (resp., S{) such that |Si| > 2|L;|/3 (resp., |S!| > 2|R;|/3) but there is
no z > ¢ such that |S;| < 2|L,|/3 (resp., |S]] < 2|R,|/3). Let ¢ = max;{z > 1| |S;| > 2|L;|/3 and
|Si—1] < 2[L;i—1|/3} and 4, = maz;{j > 1| |S]| > 2|R;|/3 and |S]_;| < 2|R;_1|/3}. Let iz = 0 (resp.,
ir = 0), in case no such ¢ (resp., j) exists. If ¢, and 4, are not both equal to 0, then we must have either
St L > n/8 or gt Ry > /8 (since |S| < n/2). Assume w.lo.g. that the former is true. This
implies that |L;,| > pn/8. Then:

a. if [Si,| 2 |Li,|/(1+p)? then Ny, _, (Si,) = Lip—1 and [Ny, (Si,)| = [Sip-1] 2 |Lip—11/3 = |Li, |/ (3(1+
W) > w(Ti 1L/ B(L+ p) > pn/48 = (u/24)(n/2).

b if |Li,/(1 4+ )? > [Si,| > 3|Li,|/4 then |Np, _, (Si))l = [Sip—1] > (14 @)ISi,] ~ 2| Lip-1l/3 > (1 +
)31 Lig|/4 = 2|La [/ (B(1 4 ) > (1 + p)3|Li,|/4 = 2|Li,| /3 > | L4, | /12 > (um/8) /12 = (1n/48)(n/2);

c. if [8;,] < 3|Li,|/4 then INLI'[ (Sig| = Si| = p'|Ss,] > p'2IL3,|/3 2 (26 /3) (un/8) = (pus'/6) (n/2).

Hence, since we count each neighbor of S at most three times and we account for each S; and each S; at
least once in items (1) and (2), and in the preceding paragraph, S has Q(up'|S]) neighbors outside S in G.
|

Corollary 4.1.1 If i/ =1/3 then G has node ezpansion Q(p), 0 < p < 1/3.

Let Lo = {u} and Rp = {v}. Let G’ = (V, E’) be the graph obtained by adding an edge e connecting
v to u to G (see Figures 1, 2). Note that the node expansion of G cannot be reduced by the addition of
new edges and so the node expansion of G’ is also Q(uy’) (= Q(u), if we fix u’). We state all the results
in this section in terms of the node expansion of the network, rather than in terms of its edge expansion.
This is done for the sake of making our arguments more intuitive and clear.

We present the cases below according to the initial distribution of tokens over the nodes of G'. We use
w(z) to denote the number of tokens on node . We will use the fact that at any time step every node in
L; (resp. R;), 0 < i < k, has exactly the same number of tokens, if they had the same number of tokens
initially. We prove this using induction. W.l.o.g. we will prove it for sets L; only. The same proof holds if
we replace L; by R; below. Suppose every node in L; had the same number of tokens at time step ¢ — 1.
A node z € L; only sends a token to one of its neighbors in L;;; when it has at least 2d + 1 more tokens
than its neighbor has. Thus if at time ¢, z sends a token to some y € L;,; then it sends a token to all its
neighbors in that set, since all of them had the same number of tokens at time £ — 1 and the number of
neighbors of z in L;y; is at most d. Hence at time ¢, every edge between L; and L;y; is traversed by a
token. Since every node in L;;; sees exactly the same number of nodes in L;, they will have all received
the same number of tokens from L;. We can use a similar argument for tokens that move from L; to L;_1.
No token moves from a node in L; to another node inside L;, since all nodes in L; had the same number of
tokens at time t — 1. When ¢ = k, only consider tokens moving from L and Ry to L1 and Rj_q, resp..
From the remark above, we see that tokens never move inside each L; or R;, and so we ignore the edges
inside each of these sets.

We group the sets R;’s and L;’s into £ and R, groups of k/2 consecutive sets, and M, a group of
k + 1 consecutive sets (note that we have 2k + 1 distinct sets). Let £ = {Lo,L1,...,Lyj21}, R =
{Ro, R1,..., Ryjp_1} and M = {Ly/3, Lijay1, -y Li—t, Be(= Li), Rk—1, ..., Ri/2}. Our choice for £, M
and R is such that the number of sets in £ is roughly half the number of sets in M.
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4.1 The local algorithm may take Q(n!/?) steps to locally balance G’

Suppose for every node 2z in R, w(z) = m + 1 initially, where m is an integer such that m > 2kd. For all
2 € Ry, Ry € M, let w(z) = m —2(i — k/2)d; for all z € L;, L; € M, let w(z) = m — 2(3k/2 — i)d. For
all z € L;, L; € L, let w(z) =m —2(i+4 k/2+ 1)d. Then w is globally balanced to within O((dlogn)/u)
tokens, but it is not locally balanced to within 2d tokens since w(v) — w(u) > kd (> 2d). See Figure 1.

There are at least (14 p)*2~' = (1 + ,u)ﬁfl?r_ﬂ)_l =+/n/(1+ p) > 4/n/2 nodes in R, as there are in
L. We claim that in order for G’ to be locally balanced to within 2d, we need to move from R to.L at least
/1/2 tokens across edge e. Since at most one token at a time can traverse e, it will take time Q(n!/2) to
locally balance G’ to within 2d tokens. Qur proof proceeds as follows:

i. By observing how the tokens flow in G” - since every node in R; (resp., L;) is identical with respect
both to the number of tokens it has and to the number of neighbors it sees in B;_; and R;4; (resp.,
L;_y and L;;1) - we can see that no token ever moves from left to right (i.e. from L; to L;_; or from
R; to Ri41) in G'. In particular, no token ever moves from R to M or from M to L.

ii. Now we show that we can only have w(u) > m — (k+2)d and w(z) — w(y) < 2d, Yz € L;, Yy €
Lit1, VL; € L after v/n/2 steps. Suppose we reach such a configuration for w at some time ¢. Then
every node in £ has at least one more token than it had initially. That is, we haveat least |£| > /n/2
“extra” tokens in £ at time ¢, all of which must have reached £ by traversing e from v to u, since no
token moves from M to L. And since only one token at a time can traverse e, we have t > 1/n/2.

iii. We also show that we can only have: w(v) < m — kd and w(y) — w(z) < 2d, V2 € R;,Vy €
Riy1,VR; € R after /n/2 steps. A counting argument (similar to the one above) on the number of
tokens in R and the fact that no token is ever sent from R to M, is-sufficient to show this.

It follows from (ii) and (iii) that either v sends a token to u, or R or L is not 2d-locally balanced in any
of the first \/n/2 steps, and so G’ is not locally balanced before these steps. Hence the algorithm will take
additional time Q(1/n/2) to locally balance G'.

Note that the arguments above can be easily modified in order to hold for the single-port model (divide
the number of tokens above height m by 2d on each node not in R U Ry, consider differences of at most
one token between “adjacent” R;’s or L;’s, and consider randomization), since the lower bound on the
number of steps required to reach a locally balanced state is given only in terms of how many tokens need
to traverse the edge e. Any edge is selected with probability O(i) at each iteration of the single-port
algorithm. Thus the expected time for e being selected at some time step is ©(d). Hence we have that it
will take Q(dn!/?) expected time for G, if G’ is globally balanced to within O((logn)/u) tokens, to reach
a locally balanced state to within 1 token in the single-port model.

4.2 The local algorithm may take one step or Q(un'/?) expected time to reach local balance

Here we consider the single-port model. Suppose we have the following distribution of tokens: for all
2 € Ryjy_y, let w(z) = m+ 1 (where m is an integer such that m > k); for all z € R;, i < k/2 — 2 (note
that R; € R), let w(2) = m — (k/2—1i—1);for all z € Ryjy, let w(z) =m —1;forall z € By, 4> k/24+1
(note that R; € M), let w(z) =m — (i — k/2); for all z € L;, L; € M, let w(z) = m — (3k/2 — ). For all
z€ L;, Ly € L, let w(z) = m— (k/2+1). Thus w is globally balanced to within O((logn)/u) tokens but it
is not locally balanced to within 1 token, since w(z) —w(y) > 1, for any € Ryjo_; and y € Ry /U Ry/z_s-
See Figure 2.

The intuition for this case is that if all tokens move in the “right direction” initially, we reach a locally
balanced state in a single time step. Otherwise, if a large number of tokens move in the “wrong direction”
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in the first step, it will take a long time to reach such a state. If every node in Rj/,—; is matched with
some node in Ry/y (we can assume that every node in Rysa-1 has a distinct neighbor in Ryjs), G’ reaches
local balance in a single time step. On the other hand, if we move tokens across a matching between
the nodes in Ry/,_; and Ry then these tokens will clearly continue moving “down” (non-decreasing
indexes of R;), and never move “up”. The expected size of such a matching will be Q(|Ry/;—_1|/d) (each
node in Ry/y_; has exactly d/(2(2+ p)) > d/5 neighbors in Ry/y_5). Using a similar analysis (taking
care of randomization) as in the previous case, we see that no token ever moves from M to £ and that
w(v) >m —k/2+1 and w(u) = m — k/2, or LU R is not locally balanced, for each of the Q(|Ry/2—1|/d)
initial steps. Thus, once any of these tokens (that moved from Ryya—1 to Byjy_o in the first step) reaches
v, it will eventually traverse e onto u.

Hence, eventually all tokens that moved from Ry/;_; to Rg/p_5 in the initial step will reach u. Since

|Rija—1| > % and 1 < (1+ u)? < 2, and since the expected time for edge e to be in the selected

matching is £2(d), the expected time for G to reach local balance to within one token is Q(un'/?).

4.3 Convergence to a locally balanced state

We now prove that if the graph G is globally balanced to within A tokens, in O(nA?/d) subsequent steps
the multi-port algorithm locally balances G to within 2d tokens. Define the potential ® of the network as
S vev (w(v) —p)?. If the network is globally balanced to within A tokens, then ® = O(nA?2). At any step, if
there exists an edge (, v) such that |w(u)—w(v)| > 2d+1, then a token is transmitted along (u, v) resulting
in a potential drop of at least d. Thus, within O(nA?2/d) steps the network is globally balanced. Similarly,
we show that if the graph G is globally balanced to within A tokens, then the single-port algorithm locally
balances to within 1 token in O(ndA?) subsequent steps with high probability.

5 Extension to dynamic and asynchronous networks

In this section, we extend our results for the multi-port model of Section 3.2 to dynamic and asynchronous
networks. We first prove that a variant of the local multi-port algorithm is optimal on dynamic synchronous
networks in the same sense as for static synchronous networks. We then use a result of [2] that relates the
dynamic synchronous and asynchronous models, to extend our results to asynchronous networks.

In the dynamic synchronous model, the edges of the network may fail or succeed dynamically. An edge
e € F is live during step ¢ if e can transmit a message in each direction during step {. We assume that
at each step each node knows which of its adjacent edges are live. The local load balancing algorithm for
static synchronous networks can be modified to work on dynamic synchronous networks. The algorithm
presented here is essentially the same as in [2]. Every node « maintains an estimate e“(v) of the number
of tokens at v for every neighbor v of u. (The value of €*(v) at the start of the algorithm is arbitrary.) In
every step of the algorithm, which we call DS, each node u does the following:

(1) For each live neighbor v of u, if w(u) — e*(v) > 12d, u sends a message consisting of w(u) and a token,
otherwise u sends a message consisting only of w(u).

(2) For each message received from a live neighbor v, €*(v) is updated according to the message and if the
message contains a token, w(u) is increased by one.

For every integer ¢, we denote the set of nodes having between p — 12d + 24¢d and p + 12d — 1 4 24id
tokens as S;. Consider T steps of DS. We assume without loss of generality that |Sso| < n/2 at the start
of at least T'/2 steps. There exists an index j in [1, [21og) 4, /(2q) 7]] that is good in at least half the steps
at the start of which |Sso| < n/2. If index j is good at the start of step ¢, we call ¢t a good step. For any
token p, let h;(p) denote the height of p after step ¢, ¢ > 0. For convenience, we denote the height of p at
the start of DS by ho(p). Similarly, for t > 0, we define h;(u) for every node u and e} (v) for every edge

(u,v).
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With every token at height h, we associate a potential of ¢(h), where ¢ : N — R is defined as follows:

_Jo if # < 24j5d - 11d,
¢(z) { (14 v)*® otherwise,

where v = a/(cd?), and ¢ > 0 is a constant to be specified later. Let ®; denote the total potential of the
network after step ¢. Let ¥; denote the potential drop during step .

We analyze DS by means of an amortized analysis over the steps of the algorithm. Let E; be the set
{(u,v) : (u,v)is live, u € S5; and hy_1(u) — hs—1(v) > 24d}. For every step ¢, we assign an amortized
potential drop of

bi=o Y (Blha(e) ~ d) ~ bl (0) + ).
(u,v) EE;
h—1(u)>hy—1(v)
The definition of ¥, is analogous to the amount of potential drop that we use in step ¢ in the argument of
Section 3.2 for the static case. By modifying that argument slightly and choosing appropriate values for
the constants ¢ and ¢, we can show the following lemma.

Lemma 5.1 If the live edges of G have an edge expansion of a during every step of DS, then for every
good step t we have ¥, > ev?d*®;_,, where € is a constant chosen appropriately.

Proof Sketch: Let M; denote the set of live edges between nodes in S¢; and nodes in Ss;. Let m; = |M;].
For any node u, let g(u) represent the group to which u belongs prior to step ¢. We now place a lower
bound on ¥, which is analogous to that on ¥ in Lemma 3.4 of Section 3.2. By the definition of ¥;, we

have

&, = L ST (@lhei(u) = d) = (b1 (v) + ) + 5—0 Y (#(hoor(u) — &) — B(he—1(v) + d))

50 (u,v) EBy Ny
(u,v)¢M; (w,v)EM;
he_1(uw)>he_1(v) hi—1(¥)>hi_1(v)
= % > > (#(24(i+1)d — 13d) — ¢(24(i — 1)d + 13d))
fomlem 9@)<i<oly)
hy—1 (u)>h_1(v)
+@ > S ($(24(+1)d — 13d) — $(24(i — 1)d + 13d))
(u, "")EEt 7<i<g(u)
(u,v)EM.
hy—1(w)>hi 1(0)
22 _ _
> % S ($(24(i+ 1)d — 13d) — $(24(i — 1)d + 13d))
(u,i)>éMi
hy_q1(u)>he_1(v)
+% S $(24(5 +1)d — 13d)
(u,u)EMJ'
hy—1(w)>hi_1(v)
22 <dggstid 1 24jd+11d
Z 5 > wd(l+v) - S (1+v)
50 :->,- 50 5,
i hee1 (8 >he 1 (9)

che—q (w)>he_q(v)
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22 24id—11d 1 24jd411d
> 0 (;mivd(l +v) + %mj(l +v)*Y ;

(The second step can be verified by expanding the two inner summations indexed by i. The third step is
obtained from the second step by combining the two summations and redistributing the terms according
to the value of index ¢. In the fourth step we use the inequality (1+ z)22? > 1+ 22dz for z > 0.)

We can then establish claims similar to Lemma 3.5 and Corollary 3.5.1 of Section 3.2 by just modifying
the constants in the proofs. Thus we have ¥, > £02d2®,_; for constant ¢ chosen appropriately. W

The following crucial lemma relates the amortized potential drops to the actual potential drops.

Lemma 5.2 For any initial load distribution and any step t' > 0, we have

S, < (Z \I!t) — 28y — n?$(245d).

t<t! t<t!

The main result follows from Lemmas 5.1 and 5.2. We first show that within O(1/(ev2d?)) steps, there is
a step when the actual potential of the network either decreases by a factor of 2 or falls below a threshold
value.

Lemma 5.3 Let ¢ be any integer such that at least T/(ev?d?) of the first t steps are good. There exists
¥ <t such that ®y < max{®Pp/2,n?¢(245d)}.

Proof: If ® < n?¢(24jd), then the claim is proved for ¢ = 0. For the remainder of the proof, we assume
that &g > n?¢(24jd). If &y < ®y/2 for any t’ < t, the claim is proved. Otherwise, for all ¢ < t, we have
®, > By /2. In this case, we obtain

@t = @0 —_— Z \I}tl
<t
< 3%+ n’(24jd) - > ¥y
<t
< 49— D (e?dh) By

<t
t'good

< @y/2.

(In the second step, we invoke Lemma 5.2. In the third step, we invoke Lemma 5.1 and use the inequalities
Do > n¢(245d), and ¥y > 0 for every . In the fourth step, we use the fact that at least 7/(cv?d?) of the
t steps are good and the inequality ®y > $y/2 for every t' < ¢.) B

Theorem 5.1 For an arbitrary network G with n nodes, degree d and initial imbalance A, if the live
edges at every step t of G have edge expansion a, then the dynamic synchronous multi-port algorithm load
balances to within O(d?(logn)/a) tokens in O(A/e) steps.

Proof: By repeatedly invoking Lemma 5.3, we obtain that within [(7/(cv?d?))][log ®o| good steps,
there exists a step after which the potential of the network is at most n2¢(24jd). (Note that the fact
that Lemma 5.2 holds for arbitrary initial values of the estimates, the €“(v)’s, is crucial here.) Since at
least T'/4 of the first T steps are good, there exists ¢ < 4[(7/(v%d?))][log Do] such that ®; < n2¢(245d).
Since @y < n(1 4 v)A+) [y, we have log @ < (logn 4 (A + 1) log(1 + v) — logv). Since v = a/(cd?) and
log(14 v) = O(v), we have t = O((A/a) + d?(logn)/(a?)).
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Let h be the maximum height of any node after step ¢{. We thus have

¢(h) &,

IN A

Therefore h < max{24jd — 11d,log; ) (n?(1 + v)?49)}. Since log(1 + v) < v/2 for ¢ appropriately large,
we have

< 24jd+ (2logn)/log(1 + v)
< 24jd+ (4logn) /v
= 0((@logm)/a)

(The last step follows from the relations v = a/(cd?) and j = O((dlogn)/a).) Thus, at the end of step t,
no node has more than a = p+h tokens. We now prove by contradiction that for every step £ > /, no node
has more than a 4+ d tokens. Let ¢’ be the first step after step ¢ such that there exists some node u with
more than a+d tokens. (If no such ¢ exists, the claim holds trivially.) Of the d+ 1 highest tokens received
by u after step ¢, at least 2 tokens (say p and gq) were last sent by the same neighbor v of . Without loss
of generality, we assume that p arrived at u before ¢g. Let ¢; be the step when p was last sent by v to u.
Therefore, we have e}, (u) > hy, (p) — d > a — d. Hence ¢ can be sent to u only when v has height at least
a + 11d, which contradicts our choice of ¢'.

We have shown that after O(A/a+ (d?logn)/a?) steps, no node ever has more than p+0O((d?logn)/c)
tokens. An easy averaging argument shows that there exists £ = O((dlogn)/a) such that after every step
t' > t, |Sc—k| € n/2. By defining an appropriate potential function for tokens with heights below the
average and repeating the analysis done for S5 ;, we show that in another O((A/a) + d*(logn)/(a?)) steps,
all nodes have more than p — O(d?(logn)/c) tokens. M

We now prove Lemma 5.2. In order to do this, we need to address two issues that arise in the dynamic
setting: (i) potential gains, i.e., when a token gains height, and (ii) no actual potential drops across edges
that join nodes differing by at least 24d tokens. We show that for any of the above events to occur, “many”
tokens should have lost height in previous steps. We use a part of this prior potential drop to account for
(i) and (ii). We now define a notion of goodness of the tokens. Initially, all tokens are unmarked. After any
step ¢, for every token p that is moved along an edge, p is marked good if hi(p) — hi—1(p) > 6d; otherwise
p is marked bad. The marking of tokens that do not move is unchanged.

Lemma 5.4 For any two bad tokens py and p; present at any node u at the start of any step t, if py and
p2 were last sent to u by the same neighbor v of u, then |h:(p1) — he(p2)| > 4d.

Proof: Let ¢; (resp., t2) be the steps during which p; (resp., p2) are last sent to w. Without loss
of generality, we assume ¢; < 3. Thus we have hi(p1) < hi(pz). By the definition of the algorithm,
ey, (u) > p+hy, (p1)—d. Since p; remains at u during the interval [t;,%2), we find that e}, (u) > p+hy(p1) —d
for every step t' in [t1,t2). Therefore, hy,_1(p2) > hsy—1(v)—d > e}, (w)+11d > hy,_1(p1)+10d. Since p, is
bad, we also have hy, (p2) > he,—1(p2) —6d > hyy—1(p1) +4d. Since hy(p2) = hy, (p2) and he(p1) = he,—1(p1),
the lemma follows. B

Corollary 5.4.1 At any time, for any node v and integer i > 0, there are al most d bad tokens with
heights in [1,7+ 4d]. W

Proof of Lemma 5.2: Consider an arbitrary step ¢ of the algorithm. For every token p transferred
from % to v in step ¢, we assign some credit to every edge adjacent to u or v. Specifically, if p is marked
good after step ¢t we assign a credit of 9(¢(h:(p) + 6d) — ¢(h:(p)))/(20d) units to every edge adjacent to u
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or v. If p is marked bad we assign a credit of (¢(h:(p) + d) — ¢(h:(p)))/(20d) units to every edge adjacent
to u or v. For a token transferred from u to v, the credit assigned to edges adjacent to u (resp., v) is
called outgoing credit (resp., incoming credit). Also, for each pair (u,v), we assign an initial credit of
2 max{$(247d), (¢(ho(u) — d) + ¢(ho(v) — d))} units at the start of the analysis. The total initial credit I
is bounded as follows:

~
IA

(2)¢ (24jd)+ D 2(¢(ho(u) — d) + $(ho(v) - d))
(

u,v)EE
n?¢(245d) + 3 3 26(ho(u) — £)
u€V 0L4<d
n2¢p(24jd) + 2®q.

IA

IN

(This bound corresponds to the negative term in Equation (5.2).)

We now show that using the above accounting method, we can account for the amortized potential
drop of (¢(he—1(w) — d) — ¢(hs—1(v) + d))/50 units at step ¢ for every live edge (u,v) € E;. To accomplish
this, for every live edge (v, v) ((u,v) not necessarily in E;), we consider three cases: (i) a token p sent from
% to v is marked good, (ii) a token p sent from u to v is marked bad, (iii) no token is sent from u to v.

We first consider case (i). When a token p is marked good after being sent along (u, v), we pay for the
amortized drop D; as well as the credit 1Dy associated with p from the actual potential drop of p:

Di+ Dy = 2d[9(8(hs(p) + 6d) — $(hs(p)))]/(20d) + (¢(he-1(w) — d) — $(hs-1(v) + d)) /50
9(p(he-1(p)) — ¢(he(p))) /10 + ($(h-1(p)) — B(hu(p)))/50

¢(ht-1(p)) = ¢(hs(p))-

(The second step follows from the fact that p is a good token which implies that 2;(p) < hi—1(p) — 6d.)

We now consider case (ii). In this case we need to account for: (1) if h:(p) > hi—1(p), an amount
equal to the potential increase of Dy = ¢(h:(p)) — ¢(h:—1(p)) units, and (2) a credit of Dy < (¢(he(p) +
d) — ¢(ht(p)))/10 units. We have two subcases, depending on whether ¢ is the first step (u,v) is live
(subcase (a)) or not (subcase (b)). In subcase (a), if ho(u) > h:(p) — d, the initial credit Cy associated with
(u,v) is at least 2 max{¢(24;5d), ¢(h:(p) — 2d)}. It follows from Corollary A.1.1 that 3Cp/4 > ¢(h:(p)) and
Co/4 > ¢(h:(p) + d)/10. Therefore, we have Cy > D; + Ds.

We now consider subcase (a) under the assumption that ko(v) < h:(p)—d. In order to do the accounting,
we use part of the incoming credit associated with the edge (u, v) due to the set X of good tokens of v with
heights in the interval [ho(v), hi(p) — d]. (Note that each token in X is marked and thus, has contributed
incoming credit to all edges adjacent to v.) For each token z in X, we use ¢, units of credit, which equals
8(d(he(g) + 6d) — ¢(h:(q)))/(20d) units of the incoming credit assigned to (u,v) by z. Let Cy denote
> zex Cz- By invoking Corollary 5.4.1, we obtain:

Cy > Z (¢(he(p) — d — 4id + 6d) — $(hi(p) — d — 4id))
1gig | RlEl=grho ()

(3 -8)(¢(help) + d) — p(ho(v) + 4d))/20

6(¢(hi(p) + d) — $(ho(v) +4d)) /5.

Since p is marked bad after step ¢, we have h(p) > hi—1(p) — 6d. Therefore,

I

IA A

v

CotCr > 6(b(help) +d) - Blhov) +40)/5 + 2 max{$(24jd), $(ho(v) — d))
> 66(h(p) + 4)/5
> ¢(hs(p)) — $(he—1(p)) + ($(he(p) + d) — S(he(p)))/10
> Dy + Ds,.
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(In the second step we use the inequality 2 max{$(24;5d), ¢{ho(v) — d)} > 64 (ho(v) + 4d)/5 which follows
from Corollary A.1.1.)

We use a similar argument as above to handle subcase (b). The set X is the set of good tokens of v
with heights in the interval [e}’ ; (v) —p, h:(p) —d]. Let ¢, and C; be defined as in subcase (a). Let y denote
e 1 (v)—p+4d. We first observe that since u sent a token to v during step ¢, y < Ay (u)—8d < hy_1(p) —7d.
Also, since p is a bad token we have y < h;—1(p) — 7d < hi(p) — d. As in subcase (a), we have:

C1 2> 6(8(he(p) +4d) — ¢(y))/5
(¢(he(p) + d) — $(y)) + (¢(he(p) + d) ~ (y))/5
> ¢(h(p) +4d) — d(hi—1(p) + d) + (¢(he(p) + d) — d(hi(p))) /5
> ¢d(hi(p)) — ¢(hi-1(p)) + D2

Dy + Ds.

To complete the proof for case (ii), we show that for any token ¢ of v, any incoming credit assigned
by ¢ to edge (u,v) that is used at step ¢ for case (ii) is not used again for case (ii). To prove this, it is
enough to note that if ¢ belongs to X, for every further step ¢’ > ¢ until ¢ is transferred by u, we have
hy(g) 2 eji_y (v) — p.

We need to consider case (iii) only under the assumption that (u,v) € E;. In this case we account for
D = (¢(hi—1(u) — d) — ¢(hs—1(v) + d))/50 units of potential. Again we consider two subcases depending
on whether ¢ is the least step in which (u,v) is live (subcase (a)) or not (subcase (b)). We first consider
subcase (a). If ho(u) > hiy_1(u) — 12d, then we use Cy = 2max{¢(24jd), ¢(ho(u) — d)} units of the
initial credit associated with (u,v). It follows from Corollary A.1.1 that Cy > ¢(hs—1(n) — d)/50 > D.
If ho(u) < hi—y(u) — 12d, in addition to Cp, we also use part of the incoming credit associated with the
set of tokens Y = {y : y is a token of u and ho(u) < hi(y) < hs—y(u)}. Specifically, for every token y in
Y, we use (¢(hi(y) + d) — ¢(hi(y)))/(50d) units of incoming credit that is assigned to (u,v) by y. (Note
that since A:(y) > ho(u), token y has moved and hence has some associated credit. Moreover, at least
(¢(he(y) + d) — ¢(hi(y)))/(20d) units of incoming credit remains unused in the analysis of case (ii).) Let
this credit be denoted C7. Thus, we obtain

Co+C1 2 Co+ ( > (p(k+d) — ¢(k))/(50d))
ho (u)<E<he_1 (u)
= Co+ ($p(he-1(u)) — ¢(ho(u) + d))/50
> $(he-1(u))/50
> D.

(In the third step we use the inequality Co > ¢(ho(u) + d)/50 which follows from Corollary A.1.1.)

We now consider subcase (b) of (iii). Since no token was sent along (%, v) in step ¢, we have e}, (v)—p >
hi—1(u) — 12d (> 24jd). It follows that e¥ ; (v) — p > hi—1(v) + 12d. Since the last step in which (u,v) was
live, at least e}, (v) — p — hi—1(v) tokens have left v. We use the outgoing credit C; assigned to (u,v) due
to these token transmissions. We have

Cy; > > (¢(k + d) — $(k))/(204)
he—1(v)<k<el ; (v)—p

(¢(ef1(v) — p) — $(he-1(v) +d))/20
(¢(ef—1(v) — p + 11d) — ¢(he-1(v) + d))/50
(¢(ht-1(u) — d) — ¢(he—1(v) + d))/50

D.

AV AV A4
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(The third step follows from Lemma A.2. The fourth step follows from the inequality e¥_;(v) — p >
ht_l(u) — 12d)

We note that the outgoing credit due to any such token z associated with edge (u,v) is used at most
once in case (iii) because after step ¢, we have e} (v) — p > hy_1(v). W

A simple variant of DS, as suggested in [2], can be defined for the asynchronous network model in
which the topology is fixed, but an adversary determines the speed at which each edge operates at every
instant of time. An edge is said to be live for a unit interval of time, if every message that was in transit
across the edge (in either direction) at the beginning of the interval is guaranteed to reach the end of the
edge by the end of the interval. As shown in [2], the analysis for the dynamic synchronous case can be
used for asynchronous networks to yield the same time bounds, under the assumption that in every unit
interval of time the live edges of the network have edge expansion «.

6 Tight bounds on off-line load balancing

In this section, we analyze the load balancing problem in the off-line setting for both single-port and
multi-port models. We derive nearly tight bounds on the minimum number of steps required to balance on
arbitrary networks in terms of the node and edge expansion of the networks. We assume that the network
is synchronous.

We first consider the network G = (V, E) under the single-port model. For any subset X of V, let
X denote V \ X, m(X) denote the number of edges in a maximum matching between X and X, A(X)
denote the set {v € X : Jz € X such that (z,v) € E}, and B(X) denote the set {z € X : Ty €
A(X) such that (z,y) € E}. For subsets X and Y of V, let M(X,Y) denote the set of edges with one
endpoint in X and the other in Y.

Lemma 6.1 For any network G = (V, E} with node expansion p and any subset X of V, we have m(X) >
pmin{|X|, | X|}/(1+ w). Moreover, there exists a set X of size at most (1 + p)|V|/2 such that m(X) <

ul X1/ (1+ p).

Proof: Without loss of generality, assume that |X| < |X|. Consider the bipartite graph

H = (B(X),A(X),M(X,X)). A maximum matching in H is equal to a maximum flow in the graph
I=(BX)UAX)U{st}, M(X,X)U{(s,2) : ¢ € B(X)} U{(z,t) : z € A(X)}) from source s to sink
t. (All of the edges of I have unit capacity.) We will show that every cut C of / separating s and ¢ is of
cardinality at least p|X|/(14 u).

Consider any cut C = (§,T) with s € Sand t € T. Let Y = TN B(X) and Z = T N A(X). The
cardinality of C is |Y| + |[M(Y, A(X)\ Z2)| + |[M(B(X)\Y,Z2)|+ |[A(X)\ Z| > |Y|+ |[M(B(X)\Y,2)| +
AX)\ Z] > [A(X\Y)]. Since |C| > Y], and [A(X\ V)] > ulX \ Y], we have |C] > ulX|/(1+ 4.

For the second part of the lemma, consider set Y of size at most |V|/2 such that A(Y) = p|Y|. If we
set X =Y UA(Y), then m(X) < AY) = pu|X|/(1+p). W

Theorem 1 of [28] obtains tight bounds on the offline complexity of load balancing in terms of the
function m. By invoking Lemma 6.1, we obtain

Lemma 6.2 ([28]) Any network G with node ezpansion p and initial imbalance A can be balanced in at
most [A(1+ p)/p] steps so that every node has at most [p] + 1 tokens.. Moreover, there exists a network
G and an initial load distribution with imbalance A such that any algorithm takes at least [A(1 4+ p)/p]
steps to balance G such that every node has at most [p] tokens. W

By using the techniques of [28], we can modify the proof of Lemma 6.2 to show that any network G
with node expansion u and initial imbalance A can be globally balanced to within 3 tokens in at most
2[A(14p) /1] steps. Lemma 6.2 implies that our local single-port algorithm is not optimal for all networks.

20



However, there exists a class of graphs, e.g., constant-degree expanders, for which the local algorithm is
optimal. A network for which the local algorithm is not optimal is the hypercube. The local algorithm
balances in Q(Alogn) time, while there exists an O(A+/logn + log?n) time load balancing algorithm for
the hypercube [33] which is optimal for A sufficiently large.

The proof of Lemma 6.2 can be modified to establish the following result for the multi-port model.

Lemma 6.3 Any network G' with edge expansion o and initial imbalance A can balanced in at most [A/a]
steps so that every node has at most [p| + d tokens. Moreover, for every network G, there exists an initial
load distribution with imbalance A such that any algorithm takes at least [A/a] steps to balance G so that
every node has at most [p| tokens.

Proof Sketch: We prove that there exists an off-line algorithm that balances to within d tokens in

at most T = max [ﬂ{ljp__l?{ﬂ] steps, where I(X) is the number of tokens held by nodes in X in the
ocxcv' IMX.X)|

initial distribution. For all X C V, we have (i) [I(X) — p|X|| < Amin{|X|,|X|} and (ii) [M(X,X)] >
amin{|X|,|X|}. It follows from (i) and (ii) that 7' < [A/«a].

We essentially modify the proofs of Theorem 1 and Lemma 4 of [28] (where the single-port model
was assumed) to establish the desired claims for the multi-port model. We transform the load balancing
problem on G to a network flow problem on a directed graph H = (V’, E’) which is constructed as follows.
Let V; be {{(v,i) : v € V}, 0 < i <T. Let E; be {((u,7),{(v,t+ 1)) : (v,v}) € Foru=v},0<1i<T.
We set V' to {s} U Upcier Vi U {t}, and E" to {(s,(v,0)) : v € V} U Upcicr Bi U {({v,T),t) : v € V}.
For any v in V, the capacity of the edge (s,{v,0)) is w(v). For any (u,v) in F, the capacity of any edge
({(u,1),(v,i+ 1)), 0 < ¢ < T,is 1. For any v in V, the capacity of any edge ((v,3), {(v,i+1)),0<i< T, is
oo. For any v in V, the capacity of the edge ((v,T),?) is [p] + d.

We show that the value of the maximum integral flow in H is equal to the total number of tokens
N in V from which it follows that there exists an off-line algorithm that balances to within d tokens
in T steps. Consider any cut C = (5,7) of H separating s € Sand t € T. Let §; = SNV, and
D(S;)) ={veV:{vi)e S} If So =0, or St = Vr, or there is an edge of infinite capacity then the
capacity of C' is at least N. Otherwise, the number of edges from V; to V4 that belong to the cut is at
least | M (D(S;), D(S:))| — d(|Si+1] = |Si])- Thus the capacity of C is at least

T-1
S we)+ X (IM(D(S), DED) - d(Sisal - 15:D) + (16 + d)|z] > N.
»€Vo\So =0

Since capacity of the cut ({s}, V' \ {s}) equals N, the maximum flow in H is N.

To prove the second part of the lemma, given any network G' with a partition (V1, V5) of its nodes such
that |Vi] < n/2 and |M(V4, V3)| = «|Vi]|, we define an initial load distribution in which each node in V}
has A tokens and each node in V5 has zero tokens. It is easily verified that a proper choice of A establishes
the desired claim. B

Lemma 6.3 implies that the local multi-port algorithm is asymptotically optimal for all networks. As
in the single-port case, we can modify the above proof to obtain upper bounds on the off-line complexity
of globally balancing a network. We can show that any network G with edge expansion « and initial
imbalance A can globally balanced to within d 4+ 1 tokens in at most 2[A/a] steps.
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A Some Inequalities
Let v equal a/(cd?). For the following we set ¢ large enough so that (1 + v)1%¢ < 3/2,
Lemma A.1 For any integer z, if ¢(z) > 0, then ¢(z + 12d) < 3¢(z)/2.

Proof: Since ¢(z) > 0, we have

¢z +12d) = (1+v)g(2)
3¢(z)/2.

IN

Corollary A.1.1 For any integer x we have

max{¢(24jd), ¢(z — 12d)} > 2¢(z)/3

Lemma A.2 For any integer & and y, if ¢(z) > 0 and ¢ — y > 11d, then we have ¢(z) —

2(¢(z + 11d) — ¢(y))/5.
Proof:

2(¢(z +11d) - ¢(y))/5 = 2(¢(w +11d) - ¢(<))/5
+2(¢(2) — $(y))/5
2(1 + )1 (g(z) ~
+2(¢(2z) - ¢())/5
< 201+ 1) (g(2) - $(9))/5
+2(¢(z) - ¢())/5
< ¢2) - ¢(y).

IN

¢(z - 11d))/5

(y) >

(In the second step we use the inequality z—11d > y. In the last step we use the inequality (1+2)'¢ < 3/2.)
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Figure 1: The initial tokens distribution on G for the first case.
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Figure 2: The initial tokens distribution on G for the second case.
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