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Abstract

We show that testing reachability in a planar DAG can be performed in parallel in O(logn log* n)
time(O(log n) timeusing randomization) using O (n ) processors. In general wegiveaparadigmfor
reducing a planar DAG to a constant size and then expanding it back. This paradigm is developed
from a property of planar directed graphs we refer to as the Poincaré index formula. Using this
new paradigm we then “overlay” our application in a fashion similar to parallel tree contraction
[MR85, MR89]. We also discuss some of the changes needed to extend the reduction procedure
to work for general planar digraphs. Using the strongly-connected components algorithm of Kao
[Kao93] we can compute multiple-source reachability for general planar digraphsin O(Iog3 n)
timeusing O(n) processors. Thisimproves the results of Kao and Klein [KK90] who showed that
this problem could be performed in O(log® ») time using O(n) processors. Thiswork represents
initial results of an effort to apply similar techniques to arbitrary planar directed graphs, and to
develop efficient algorithmsfor certain problems encountered in parallel compilation.



1 Introduction

Testing if there exists a path from a vertex = to a vertex y in a directed graph is known as the
reachability problem. Many graph agorithms either implicitly or explicitly solve this problem.
For sequential algorithm design the two classic paradigms for solving this problem are BFS and
DFS. They only requiretime at most proportional to the size of the graph. Parallel polylogarithmic
time algorithms for the problem now use approximately O( M (n)) processors, where M (n) isthe
number of processors needed to multiply two n x n matricestogether in parallel. For sparse graphs
the situation is better, though still not optimal with respect to work: Ullman and Yannakakis give
a probabilistic parallel algorithm that works in O(y/n) time using n processors [UY90]. This
blow-up in the amount of work for parallel agorithms makes work with general directed graphs
on fine grain parallel machines virtually impossible. One possible way around this dilemma s
to find useful classes of graphs for which the problem can be solved efficiently. In pioneering
papers Kao [Kap93], Kao and Shannon [KS89] [KS93], and Kao and Klein [KK90] showed that
the reachability problem and many related problems could be solved in polylogarithmictimeusing
only alinear number of processorsfor planar digraphs. Theplanar reachability problem for multiple
start vertices is specifically addressed in [KK90]. The methods in that paper involve a series of
reductions between related problems; each reduction introduces more logarithmic factors to the
running time. In the end it takes O(log®) time to solve this problem.

In this paper we give agenera paradigm for reducing planar directed acyclic graphs (DAGS)
to a constant size. We will show that after O(logr ) rounds of reduction an »-node directed planar
DAG will be reduced to a constant size. There have been severa reduction rules proposed for
undirected planar graphs [Phi89, Gaz91] but thisisthefirst set for aclass of directed planar graphs.
After we present the rules for reduction it will be a relatively simple matter to “overlay” rules
necessary to compute multiple-source reachability.

The results in this report are part of a larger effort to develop a set of reduction rules for
arbitrary planar directed graphs (i.e., those with cycles as well as DAGs). We fedl that the class
of directed planar graphs are important for at least two reasons. First, the class includes severa
important subclasses including tree and series paralel graphs. Second, the flow graphs for many
structured programming languages without function calls are planar. Our goal is to develop the
basic agorithmic foundation for a class of planar graphs so that a theory of planar flow graphs
could be based on it.

This report presents the details of the reduction technique for the planar DAG case. This
case is aready quite complicated, and is sufficient to fill a report itself (although we do discuss
changes involved in extending the reduction procedure to the general case). Further, we fed that
our agorithm for planar DAGsisinterestinginitsownright. First, it doneis sufficient to improve
the computation of many-source reachability by afactor of log? n time by simply using the strong
connectivity of Kao [Kao93] (our agorithm for general planar digraphs should remove one further
logn factor). Second, it uses new topological techniques, in particular, the Poincaréindex formula.
This should be of interest in parallel agorithm design for digraphs.

Throughout the paper we will assume that the graph G = (V, A) is a directed embedded
planar graph. If an an embedding is not given we can construct one in O(logn) time using »
processors using the work of Gazit [Gaz91] and Ramachandran and Reif [RR89]. We assume that



the embedding is given in some nice combinatorial way such as the cyclic ordering of the arcs
radiating out of each vertex.

This paper isdivided into seven sections. The second gives the main definitions necessary to
define and analyze the directed graph reduction algorithm. The third gives the reduction agorithm
for specia case of of a planar DAG. The theorems in Sections 4 and 5 show that the reduction
agorithm for planar DAGsworksin alogarithmic number of reduction steps. Section 4 showsthat
at any step of the reduction process, a constant fraction of the edges are candidates for removal or
contraction; Section 5 showsthat a constant fraction of these candidates can be operated on without
affecting aset of invariantsthat we require for the graph structure. The sixth section explains how
the reduction procedure can be applied to the many-sources reachability problem and calculates
the running time. Finally, in Section 7 we discuss work in progress, including some of the steps
necessary to extend this result to the case of genera planar digraphs.

2 Preliminaries

2.1 Planar Directed Graphs

We will assume that the reader is familiar with basic definitions and results from graph theory
that apply to undirected graphs (see, for example, textbooks such as the one by Bondy and Murty
[BM76]).

A directed graph (digraph) G(V, A) isaset of verticesV and aset of arcs A. Eacharca € A
is an ordered pair drawn from V' x V. We say that arc ¢« = (u, v) isdirected from « to v; u isthe
tail and » isthe head of the arc. We say that an arc isout of itstail and intoitshead. Anarc a is
incident to avertex » if v isthehead or thetail of «. The degree of avertex » isthe number of arcs
incident to it; we represent this number as degree(v). Theindegree of avertex v isthe number of
arcs that have » astheir head; the outdegree of » isthe number of arcs with » astheir tail.

For any directed graph G we can define an undirected graph G’ on the same set of vertices
in the following way: for each arc (u,v) in G we include an edge (u,v) in /. We refer to G’
as the underlying graph of . In this report we will distinguish between edges and arcs: edges
are undirected and lie in the underlying graph, while arcs are directed. When we refer to arcsin
(G as edges, we are actually referring to the associated edges in G’. (We will use the notation E to
represent the set of edges of an undirected graph.)

A directed path isasequence of vertices (vg, v1 ... v ) such that the v;’s are distinct (with the
exception that we might have vg = v;) and for all 0 < ¢ < k we havethearc (v;—1,v;) in A. A
directed cycleis adirected path such that vp = v;. A digraph that contains no directed cyclesis
caled adirected acyclic graph (DAG).

For a directed path p that is not a cycle, we define the rank of avertex » on p as the number
of verticeson p that precede v.

A planar directed graph is a directed graph that can be drawn in the plane in such a way
that its arcs intersect only at vertices. There may be a number of different waysto draw a digraph
in the plane; any particular way can be specified by giving the cyclic ordering (either clockwise
or counterclockwise) of the arcs incident to each vertex. Such a specification is called a planar
embedding of the digraph.



If the points corresponding to the arcs in an embedded planar digraph are deleted, the plane
is divided into a number of connected regions. These regions are called faces. The boundary
of aface isthe set of arcs that are adjacent to that face. The size of aface is the number of arcs
encountered in atraversal of theface' s boundary (note that asingle arc could be counted more than
once in the size of someface). We denote the set of faces by £°. (The definitions of theseterms are
essentially the same for an undirected embedded planar graph.)

In an embedded planar digraph we define parallel arcs as two arcs that form a face of size
2. Parallel edges in an embedded planar graph are defined in the same way. We can extend this
relation by making it transitive; in that case we say that a set of arcs or edgesis mutually parallel.

There is an important formula developed by Euler (not surprisingly referred to as Euler’s
formula that relates the numbers of edges, vertices, and faces in planar graphs. Euler’s formula,
which holdsfor embedded connected planar graphs, is

VI=1El+|F] =2 (1)

If the graph isaso simple(i.e., it has no loops and no parallel edges) and has 3 or more vertices,
then each face will have at least three edges in its boundary, and it is easy to prove the following
inequality:

£} <3-|[V]|-6. (2)

Proofs that these formulas hold can be found in basic graph theory textbooks (e.g., [BM76]). The
formula corresponding to (1) (with | A| substituted for |F|) holds for embedded planar digraphs
that have a connected underlying graph since the orientations of the arcs do not affect the quantities
involved. Theinequality corresponding to (2) (with | A| substituted for | F'|) holdsfor an embedded
planar digraph ¢' with a connected underlying graph if G has no loops or parallel edges. Note
that thisimpliesthat it holds for embedded planar DAGs with connected underlying graphsiif the
DAGs contain no parallel arcs.

2.2 ThePoincarélndex Formula

Let G(V, A) be a connected embedded planar digraph with faces F. We say that a vertex of GG isa
sour ce(sink) if itsindegree(outdegree) iszero. Thealter nation number of avertex isthe number
of direction changes of the arcs (i.e., “out” to “in” or vice versa) as we cyclically examinethe arcs
radiating from that vertex. Observe that the alternation number is always even. Thus, a source or
asink has aternation number zero. A vertex issaid to be aflow vertex if its aternation number is
two. It isasaddle vertex if the alternation number is 4 or more. Vertex alternations are indicated
by asterisks in Figure 1. The aternation number of a face can be defined in a similar way. Here
we count the number of time the arcs on the boundary of the face change direction as we traverse
its boundary. Thus, a cycle face has aternation number zero, a flow face has aternation number
two, and a saddle face has an aternation number greater than two. Face aternations are indicated
by asterisks in Figure 2 below. We denote the alternation number of vertex v by a(v), and the
aternation number of face f by a( f) (it will be clear from the context whether « refers to a vertex
or aface, so we do not distinguish thisin our notation).
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source flow vertex saddl e vertex

Figure 1: Vertex Types

cycl e face flow face saddl e face

Figure 2: Face Types



A concept related to alternation number isindex. Theindex of avertex v (denoted index(v))
isdefined asindex(v) = a(v)/2 — 1. The corresponding definition holds for the index of aface.
Once again we do not distinguish between the notation used in these two cases.

Our approach depends on combinatorial arguments based on the following simple but funda-
mental theorem which werefer to asthe Poincaréindex formula. We show that it followsdirectly
from Euler’sformula
Theorem 2.1 For every embedded connected planar digraph, the following formula holds:

Z index(v) + Z index(f) = —-2.

veV fer

Proof: Consider thesituation at any vertex aswe cyclethroughitsincident arcsin order according
to the embedding. Each transition from one arc to the next resultsin exactly one alternation either
for the vertex or for the face for which the two arcs lie on the boundary (see Figure 3). If we sum
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vertex alternations face al ternations
at a vertex at a vertex

Figure 3: Alternations

the number of alternationsover all vertices, we seethat thetotal number of aternationsin the graph
isequa to the sum of the degrees of al the vertices, which is equal to twice the number of arcsin

the graph:
Z a(v) + Z a(f) = Z degree(v) = 2-|A|.
veV feF veV
Dividing by two and applying Euler’s formula, we get
a(v al f
Z—(Z)+Z—( LAl =i im) -2,

veV fer 2

which givesus
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which with some rearrangement and an application of the definition of index gives us

w — l) + (M — l) = index(v) + index =2
(% > (% 3 indea(o)+ 3 indea( )
O
Thisformulaisimportant becauseit tellsusagreat deal about the structure of a planar digraph
embedding. For example, we have defined various types of faces and vertices in terms of their
alternation numbers; this has implications with respect to the contributions of these structures in
the Poincaré Index Formula:

¢ Sinks, sources, and cycle faces each contribute —1. These are the only elements that make
negative contributions to the sums in the formula; since the total must be —2, it is clear
that every embedded planar digraph must have at least two such elements. For example,
a strongly connected planar digraph cannot have any sinks or sources, so it must have two
cycle faces.

¢ Flow faces and flow vertices have index O and contribute O to their respective sums. There
can be an arbitrary number of such elements. It is easy to see that a flow face has two
aternations on its boundary, one of which looks like a source with respect to the boundary,
the other of which looks like a sink. A useful implication of this fact is that at most one
source and at most one sink can lie on the boundary of aflow face.

¢ Saddleverticesand saddlefaces have positive (integer) indicesthat depend ontheir aternation
numbers and thus contribute positive (integer) amounts to their respective sums. Since the
formulatotal must aways be —2, the embedded graph must contain a sink, source, or cycle
face for every pair of aternations beyond thefirst on some saddle.

We will use the formula below to develop invariants and to help us count (for example, we use it
to count particular types of arcs).

2.3 Modelsof Parallel Computation

The reduction algorithm is specified for the Paralledl Random-Access M achine (PRAM) model
of computation. We discuss the agorithm for this model in the cases where memory accesses are
allowed to be concurrent read, concurrent write (CRCW). We a so assumethe ARBITRARY model
for concurrent writes (i.e., an arbitrary one of the values being written to amemory location during
aconcurrent write will end up in that location).

3 Graph Reduction

In this section we introduce a collection of reduction rules and an associated data structure for
planar DAGs. The reduction rules alow us to convert a graph into a smaller graph in order to
recursively solve our problem. Once the problem is solved for the reduced graph, we can expand
the graph out in reverse order and generate a solution for the origina graph. In Sections 4 and 5
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we show that at each stage the reduction process removes a constant fraction of the arcs; thus, the
rules could be implemented as an O(log | A| )-step reduction procedure for planar DAGs. Sincewe
will require our inputs to have no parallel arcs, Inequality (2) in Section 2.1 thusimplies that the
reduction procedure takes O(logn) steps (where n = |V| in the origina graph). The rules listed
bel ow represent an abstraction of the reduction procedure that can be applied with slight variations
to implement different algorithms. These variations involve a gorithm-specific actions performed
as each rule is applied; we will specify such actionsin the agorithm descriptionsin alater section.

Wewill assumethat our input isaconnected, embedded planar DAG  that hasno parallel arcs
(and hence no parallel edges). We preprocess the graph such that ¢ has the following properties
(these properties will remain true throughout the algorithm):

1. GG hasonly flow faces. This can be accomplished by putting a source in each saddle face,
and putting an arc from this source to every vertex that isaloca source with respect to the
saddle face boundary (Figure 4). It is straightforward to show that the number of arcs and
hence the number of vertices increases by at most a constant factor.

before preprocessing after preprocessing

Figure 4: Preprocessing Saddle Faces

2. No vertex has both indegree and outdegree of 1 (i.e., there are no degree-2 flow vertices).
Such vertices are considered to beinternal vertices of topological arcs; such arcs are treated
as single arcs with respect to the algorithm, though operations on these arcs may require the
internal vertices to perform operations such as splicing connectivity pointers.

It's not hard to see that any connected, embedded planar DAG can be transformed in O(logn)
time so that these conditions are true without changing the reachability of the graph.
3.1 Terminology

In order to simplify the presentation of the reduction rules, we first introduce some concepts and
terminology.



Let f beaflow face; then the arcs on its boundary decompose into two paths, aleft and aright
(we refer to any arc that is both on the left and the right path of a particular face as an internal
arc). Thereisalso auniquetop and a unique bottom vertex on f. Thusthe left path starts at the
top vertex and in a counter-clockwise fashion (with respect to the face) goes to the bottom vertex,
and the right path goes from top to bottom in a clockwise fashion®. A top(bottom) arc of f isany
arc out of(into) the top(bottom) vertex. An arc may be both a top and a bottom arc for the same
face. Anarcisreferred to simply astop(bottom) if it isthe top(bottom) arc for someflow face. We
will mark top arcs with “T” and bottom arcs with “B.”

In applying the rules we may modify the connectivity of the graph. Therefore we associate
flow faces with a data structure that allows us to maintain connectivity information. For each
vertex on aflow face that is neither atop or bottom vertex we have a cr oss-pointer, pointing from
|eft to right or right to left. Initialy each cross-pointer is set to the bottom vertex. Intuitively, the
connectivity on f as determined by its cross-pointers and boundary arcs should be the same as
obtained using using arcs and vertices on the boundary of f or thoseremoved from theinterior of f
by the reduction rules. For each vertex other than top and bottom on aflow face we will aso keep
the highest and lowest vertex on the opposite side of the face that pointsto thisvertex (initialy the
high point in will be set to bottom and the low point in will be set to top).

For both the left and right path of each flow face, the top arc will serve as the leader of the
path (if thetop arcisinterna it will serve asleader for both sides); each arc will know thetwo faces
common to it and the leaders on those faces. Leader is defined similarly for topological arcs. the
leader isthefirst arc from the original graph in thetopological arc (i.e., the arc into thefirst interna
vertex of thetopological arc). The rank of the vertices will be maintained on each topological arc.

Using concurrent reads, aleader for each face and topological arc, and the ranking of vertices
internal to topologica edges, the vertices can now coordinate their actions. For example, cross-
pointers can now be tested in constant time to see if they have become forward pointers. simply
test if the head and tail are on the same side of the face. (The coordination actionswe will usetake
constant timein the CRCW model.)

We will refer to saddle vertices by their indices. For example, “saddle vertices with index 1”
represents the set of saddle vertices with fewest aternations.

Some reduction rules depend on knowing whether an arc isthe unique arc into some vertex or
the unique arc out of some vertex. We will refer to such arcs as unique-in unigue-out arcs. Note
that it is possiblefor an arc to be both unique-in and unique-out. In some cases an arc a might not
be unique-in, but at the head of « the next arcs in both the clockwise and counterclockwise cyclic
ordering may be out-arcs. In that case we say that « islocally unique-in; a symmetric definition
holds for locally unique-out. Note that we will aways use“locally” to imply that thereis at least
one other edge into(out of) the head(tail), though that edge is not adjacent in the cyclic order.

The existence of topological arcs and the introduction of reachability pointers as described
above leads to complications in the application of reduction rules. In particular, we need to
distinguish certain unique-in and locally unique-in arcs out of asource. Wecall such an arc « out of
asource clean if it hasthefollowing properties: (1) « hasno internal vertices, and (2) for each face

Clockwise and counterclockwise with respect to a face can be understood in terms of the dual graph; the clockwise
order of arcs on the boundary of afaceisthe same asthe order of the corresponding arcsin the clockwise cyclic order at
the dual vertex corresponding to the face.



f that has ¢ on itsboundary, there are no pointersacross f into the head of «. Clean unique-out and
clean locally unique-out arcs into sinks are defined similarly, with the exception that the second
condition prohibits pointers across adjacent faces out of thetail of the arc.

We define the operation of arc contraction asfollows: the contracted arc is removed from the
graph, and the head and tail vertices are combined into asingle vertex. The cyclic order of the arcs
a this new vertex is the cyclic order at the tail with the arcs at the head vertex inserted (in their
origina order) where the contracted arc was.

3.2 Reduction Rules
We are now ready to list the reduction rules:

[TB Rule] If an arc « is marked both T and B then remove a. If « is topological, it may
have crosspointers incident to its internal vertices. A crosspointer into an internal vertex v is
adjusted by a process we refer to as pointer splicing: the cross-pointer into » is set to point to the
vertex pointed to by the cross-pointer out of v on the opposite side of «. The remaining pointersare
unchanged. Information on the structure of the face must be updated (e.g., theleft and right leaders
must be updated), and any new or changed topological arcs must be updated. Pointer updating is
shown in Figure 5 (the lighter arrows indicate pointers, the darker ones arcs). [Degree-1 Rule]

Figure 5: TB Rule Pointer Splicing

If a source or asink is of degree 1 then remove it and its arc. The leaders on the left and right
boundaries of the face are reset if necessary.

[Unique-in(Unique-out) Arc Contraction Rul€] If « is a clean unique-in arc out of a source,
contract «. The leaders on the affected faces are reset as necessary. The corresponding rule holds
for unique-out arcs into sinks.



[Adjacent Degree-2 Sources and Sinks Rule] If a degree-2 source and a degree-2 sink inci-
dent to clean arcs are in the configuration shown in Figure 6, remove the source and sink and their
arcs as shown. [Sour ce-Sink-Sour ce (s-t-s)/Sink-Sour ce-Sink (t-s-t) Rule] Let s beadegree-2 or

Figure 6: Adjacent Degree-2 Sources and Sinks Rule

degree-3 sourceincident only to clean locally unique-in arcs. Further, at two of the saddle vertices
11 and uo adjacent to s let there be locally unique-out arcs (respectively «a; and a;) such that a1
(a2) isadjacent in the cyclic order at u1 (u2) to thearc incident to s. If a1 and a; are also incident
to distinct sinkst; and ¢, take the following actions:

¢ If s has degree 2, remove the source and its arcs, and combine the two sinks into a single
sink (see Figure 7 —since all faces are flow faces, each sink will be at the bottom of one of
the two faces on the boundaries of which s lies).

o If s has degree 3, remove the arc out of s common to the two faces on the boundaries of
which the two sinkslie, then combine the two sinksinto asingle sink (Figure 8).

A corresponding rule applies for sinks and adjacent sources. If a large number of vertices are
combined into asingle vertex, a processor must be selected to represent that vertex. Although this
could take time O(logn), this computation can be done in parallel with the rest of the a gorithm
without affecting the running time.

[Consecutive Rule] Let s be a source incident to a clean locally unique-in arc a. At the head
of «, if the next arcs in both the clockwise and counterclockwise directions are clean locally
unique-out arcs into sinks, do the following: remove «, and combine the two sinks into a single
sink (see Figure 9). A corresponding rule appliesfor a sink and adjacent sources.

[Index-1 Saddle Rul€] If asource hasaclean arc to asaddlevertex of index 1 and if the only other
arc into the saddleis a clean arc from another source, then contract one or both? of thein-arcs (see

2Whether oneor both are contracted will be determined by the conflict resolution procedureas discussedin Section 5.1.
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Figure 7: Sink-Source-Sink Rule (Degree-2 Source)
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Figure 8: Sink-Source-Sink Rule (Degree-3 Source)
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Figure 9: Consecutive Rule
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Figure 10). A corresponding rule holds if there are exactly two clean out-arcs to sinks (Fig. 11).
Asfor the st-s and t-s-t Rules, if alarge number of vertices are combined into a single vertex, a
processor must be selected to represent that vertex.

If a source (sink) of degree 2 or 3 has two clean arcs to (from) a single index-1 saddle, note
that these two arcs divide the plane into two pieces. Split the graph into two pieces as follows:

¢ thearcsand verticesin theinterior piece of the plane(i.e., the piece not including the exterior
face), including the vertex that was an index-1 saddle in the graph prior to rule application;
and

o if the source or sink has degree 2, the arcs and vertices in the exterior piece of the plane
(including the vertex that was the saddle prior to rule application); if the source or sink
has degree 3, the arcs and vertices in the exterior piece of the plane with the third source
arc incident to the vertex that was the index-1 saddle. The resulting graph in either case
corresponds to the result of deleting the arcs and vertices in the interior piece and then
contracting the two arcs incident to the saddle.

Each of thetwo graphs has strictly fewer arcsthan the graph prior to splitting (see Figure 12 bel ow).

a a az
S1 1/>‘< 2 So * So

Figure 10: Index 1 Saddle Rule Applied to Sources— only arc a1 contracted

Inthe CRCW model itiseasy to determinein constant timeif the conditionsfor rule application
are met. These conditions can be checked locally in the graph. Ignoring the time to do conflict
resolution for now, rule applications can be done in constant time.

3.3 Cleaning Up the Graph

Many of the rules above require that the arcs involved be clean. Arcs in the configurations
corresponding to particular rules will not necessarily be clean, however. Therefore we introduce
a parallel agorithm for cleaning up arcs out of sources(into sinks) that runs in constant time in
the CRCW model. The cleanup agorithm will be run as a subroutine in the reduction algorithm.
Because the cleanup a gorithm can change the structure of the graph, we may requireit to preserve
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Figure 11: Index 1 Saddle Rule Applied to Sinks— both arcs contracted

Figure 12: Index 1 Saddle Rule — Single Degree-3 Source Case
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some invariant specific to the problem we are solving (e.g., in the case of many-source reachability
the invariant will be that the verticesin the current version of the graph that are reachable from one
of the original sources are either marked as reachable or have a path consisting of pointers and arcs
from some vertex with an active mark). Applying cleanup with respect to the invariant will add
computation to the cleanup algorithm; in general, we try to choose an invariant in such away that
it doesn’t increase the asymptotic running time of the basic cleanup agorithm.

We do not clean up al sources and sinks. To insure that cleanup doesn’t take too long (i.e.,
cleanup activities other than application-specific processing should take constant time), we will
clean up only sources (respectively sinks) of degreelessthan or equal to aconstant d (to be specified
later) that are incident only to unique-in or locally unique-in (respectively unique-out or locally
unique-out) arcs. Notethat such sources and sinksare not incident to parallel arcs. Wewill explain
the rationale for these restrictions in Section 4; intuitively, the conditions given here will allow us
to argue that we can remove a number of arcs proportional to the number of sources and sinks: the
reduction rules allow operation on parallel arcs (such arcs will be marked both T and B) and clean
arcs at sources and sinks. Thuswe expect to find an arc to operate on for each clean source or sink;
we'll show later that the number of sources and sinkswith no incident operable arc is small.

34 The Cleanup Algorithm

We define the frontier of a source s as the set of vertices at the heads of the arcs out of s. The
frontier of asink ¢ isthe set of vertices at the tails of the arcsintoz.

The cleanup algorithm consists of several steps. We note that application-specific processing
can be added prior to or after any step, and defer further discussion to Section 6, where we discuss
a particular application in detail.

At thefirst cleanup step, each source (respectively sink) determinesif it has degree lessthan or
equal to d, and if so, whether all incident arcs are either unique-in or locally unique-in (respectively
unique-out or locally unique-out). Any source or sink not meeting these conditions drops out of
the cleanup algorithm.

At the second cleanup step, for each arc out of each source still involved in the cleanup we
want to find the highest vertex on that arc (including its head) that can be reached from some other
frontier vertex. Here “highest” means closest to the source, and “reached” means there exists a
path of pointers from the frontier vertex to the high point, where each pointer has as its head and
tail some vertex that lies between the source and the frontier (inclusive of frontier vertices). We
aso need to know which frontier vertex can reach this high point, and whether the pointer path
proceeds in a clockwise or counterclockwise direction relative to the source. These things can be
determined by following the high pointer chains out of each frontier vertex first in the clockwise
direction and then in the counterclockwise direction. Note that if more than one frontier vertex
can reach the high point with respect to a single direction (e.g., clockwise around the source), we
will choose the one at the greatest distance in terms of the cyclic ordering. The high point can be
determined by comparing the location of the clockwise and counterclockwise high points relative
to therank ordering along the topological arc. If the same high point can be reached from both the
clockwise and counterclockwise directions, the tie can be broken arbitrarily.

The case for sinks is symmetric. For each arc into each sink still involved in the cleanup we

14



want tofind thelowest vertex on that arc (includingitstail) that can reach somefrontier vertex. Here
“reach” will mean there exists a path of pointers from the low point to the frontier vertex, where
each pointer hasasitshead and tail somevertex that lies between thefrontier and thesink (inclusive
of frontier vertices). Again, we also need to know which frontier vertex can be reached from this
low point, and whether the pointer path proceeds in a clockwise or counterclockwise direction
relative to the sink. These things can be determined by following the chain of low pointers in
reverse order, first in the clockwise direction and then in the counterclockwise direction. Note that
if more than one frontier vertex can be reached from the low point with respect to asingledirection
(e.g., counterclockwise with respect to the sink), we will choose the one at the greatest distancein
terms of the cyclic ordering. The low point can be determined by comparing the location of the
clockwise and counterclockwise low pointsrelative to the rank ordering along the topological arc.
If the same low point can reach the frontier in both the clockwise and counterclockwise directions,
the tie can be broken arbitrarily.

Note that for any cleaned source we must have at least one arc « out that has no high point.
Similarly, for any cleaned sink there must be at |east one arc b such that b has no low point. To see
this for sources, note that if an arc ¢ has a high point there is another frontier vertex v that has a
path to the head of « consisting of the pointer path to the high point plus the segment of « between
the high point and the head. We can construct a directed graph consisting of the frontier vertices
for this source and arcs representing the existence of a path from one frontier vertex to another.
Since the original graph is a DAG, the graph we have constructed must be acyclic. But if every
arc out of the source has a high point, then every frontier vertex in this graph must have an arc in,
which contradicts the fact that it is acyclic.

At thethird step we realign the graph as shown in Figure 13 below (the presentation hereisin
terms of sources; the actions for sinks are symmetric). First consider arcs that are reachable from

S
7< ,
Figure 13: Cleanup: Realignment at a Source

another frontier vertex: Each arc (if the high point is a frontier vertex) or arc segment (if the high
point isinternal to atopological arc) from the source to the high point is replaced by an arc (or, if
internal, an arc segment) from the most distant frontier vertex. If afrontier vertex reaches multiple
high points, the cyclic order of the new arcs at the frontier vertex is same as the cyclic order of the
deleted arcs to those vertices at the source. All pointers to vertices at or below the high point are
retained.

For arcs that are not reachable from another frontier vertex, if the arc is topological, replace
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the arc with an arc containing no internal vertices (i.e., al internal vertices between the source and
the high point are deleted).

Each source and sink that has been cleaned up is now marked as “cleaned up”. Each arc out
of acleaned source or into acleaned sink is marked as “ cleaned”.

Itiseasy toverify thefollowing claims. Every cleaned source hasat |east one arc out; every arc
out of acleaned sourceisclean. Likewise every cleaned sink has at least one arc in; every arc into
acleaned sink is clean. All the resulting faces are flow faces. The number of arcs and verticesin
the graph does not increase. The reachability for every vertex remaining in the graph is unchanged
in the following sense: Let  and » be any two vertices that are not internal to topological arcs. If
thereis apath of arcs and crosspointersfrom « to » prior to cleanup, then there is such a path after
cleanup.

In order to avoid any conflicts between arcs common to both a source and a sink these steps
can be run twice, once for sources and once for sinks.

These steps could be implemented in a number of ways. Because the degree of any cleaned
source or sink is bounded by a constant and because we can use the leader of each topological arc
to keep track of bookkeeping information, the cleanup agorithm can be programmed to executein
a constant number of stepsin the CRCW model provided that any application-specific processing
added will execute in constant time.

3.5 Overview of the General Reduction Process
The genera algorithm for reducing an embedded planar DAG can now be stated:

1. Preprocess the graph to make it consistent with our invariants.

2. Main Reduction Loop: Whilethere are arcs left in the graph, repeat the following sequence
of steps:

¢ Clean up the current graph, performing any application-specific actions where needed.
o Apply thereduction rulesinthe order they’relistedin Section 3.2. Application-specific
processing may be required as each ruleis applied.

3. Perform any application-specific processing needed prior to the expansion phase.

4. Reconstruct the graph by reversing the stepsin the reduction process (note that this requires
that we have stored, in order, al changes made during the reduction process).

This process will take constant time given that the conflict resolution steps noted take constant
time using randomization in the CRCW model; the deterministic algorithm takes time O(log* n)
for each reduction step. The proof that the graph will be reduced by applying this process O(logn)
times (thus giving an O(logn) time randomized algorithm or an O(logn log* n) deterministic
algorithm) is presented in the rest of the report.
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4 Operability Lemmas

Inthenext two sectionswe provethat the reduction procedure given aboveworksin O(logn log* »)
timeusing O(n) processors, provided that the application-specific processing takes at most constant
time per reduction phase. (We will use the convention that » = |V| throughout the rest of this
section.) The main result of this section is that at each pass through the main reduction loop a
constant fraction of the arcs are candidates for removal (we refer to such arcs as operable). We
start with two preliminary lemmas.

Lemma4.1 [Flow Face Operability] An arc a between two flow faces is operableif it is neither
unique-in, locally unique-in, unique-out, nor locally unique-oui.

Proof: Such an arc « must have an adjacent out-arc in the cyclic ordering at itstail vertex, which
must be the top vertex of one of the flow faces. Thereforea isaT arc. A symmetrical argument
showsthat « isalsoaB arc. Thus, a isoperableby the TB rule. O

Lemma4.2 [Unique-In and Unique-Out Arc Count] In a connected, embedded planar DAG
consistent with our invariantsthe number of unique-in and unique-out arcs not incident to degree-1
vertices isless than or equal to 2/3 the number of arcsin the graph.

Proof: We notethat in an embedded DA G the unique-in arcs (respectively unique-out arcs) form
aforest. For the purposes of this proof, we use the term unique-in(unique-out) tree to refer to
amaximal subgraph of such a DAG that consists of atree induced by unique-in(unique-out) arcs
in the DAG. The unigue-in(unique-out) tree may contain vertices that had degree 1 in the original
DAG; if these vertices and their incident arcs are deleted from the unique-in(unigue-out) tree, the
trimmed unique-in(unique-out) tree results. We will start by counting the number of arcs to
which each trimmed unique-in tree is incident in the current graph G that either 1) are neither
unique-in nor unique-out, or 2) are into degree-1 vertices, and proving that this number is greater
than the number of arcsin the tree (the proof for unique-out trees is symmetric).

Wefirst claim that every leaf » of atrimmed unique-in tree must have at least two arcsout in 7,
each of which either isaunique-in arc to a degree-1 vertex or is neither unique-in nor unique-out.
To see that there must be two or more arcs out, note that if » were of degree 1 in (, that would
contradict the fact that the tree is trimmed; if » were of degree 2, the second arc would have to
be an arc out, and » would be a degree-2 flow vertex, contradicting the conditions of the lemma.
We further claim that these arcs out of » must either be unique-in arcs to degree-1 vertices or be
neither unique-in nor unique-out. Since there are two out-arcs, they can’'t be unique-out; if they
are unique-in they must be to degree-1 vertices or we contradict the assumptionthat » isaleaf of a
trimmed unique-in tree, which by definition ismaximal. Therefore the claim must hold.

Next wewill pair each arcin thetrimmed treewith adistinct arc « in G out of sometree vertex
» such that « either isinto a vertex of degree 1 or is neither unique-in nor unique-out. Note that
each tree arc must be either into an internal node of the tree or into a leaf node. We pair each arc
into aleaf » with one of the arcs out of v in ; thisleaves one additional arc out of each leaf. To
handle internal nodes, we introduce the following terminology: if an internal node has exactly one
tree arc out, we call it a path node; otherwise it is a branch node. (For our purposes we will not
count theroot as an internal node, though it makes only minor technical differencesinthe statement
of thefollowing.) Each path nodein a unique-in tree must have at least onearc out in (G that either
isincident to a degree-1 vertex or is neither unique-in and nor unique-out; we pair one such arc
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with the unique tree arc into the path node. The only arcs we still have to pair up are those into
branch nodes, which we can associate with distinct arcs from the set of arcs out of the leaves as
follows: The number of leavesin atreeis easily shown to be greater than the number of branch
nodes. Therefore, since we have exactly one unique-in arc into any branch node, we have fewer
arcs into branch nodes than we have arcs left at the leaves. Thus al tree arcs have been paired
as claimed. The arcs we've associated with each trimmed unique-in tree arc are clearly distinct,
and, since we have only counted arcs out of trimmed unique-in trees, no arc we've counted could
be counted for more than one such tree. Therefore there is at least one distinct arc of one of our
two types for every unique-in arc in the graph that is not incident to a vertex of degree 1. This
compl etes the argument.

By a symmetric argument, there is either a distinct unique-out arc out of a node of degree 1
or adistinct neither-unique-in-nor-unique-out arc for every unique-out arc in the graph that is not
incident to a vertex of degree 1. To finish the proof, we observe that each neither-unique-in-nor-
unigue-out arc out of aunique-in tree could aso be an arc into a unique-out tree; thus, in the worst
case we might count each of these arcs twice. In that case the number of arcs we've found is at
least 1/3 the number of arcs in the graph, from which the lemmafollows. O

We can now state the main lemma of this section:

Lemma 4.3 [Operability Lemma] Inany connected, embedded planar DAG that hasbeen cleaned
up and that is consistent with our invariants, a constant fraction of the arcs are operable.

Proof: Thelemmafollowsimmediately from Lemmas 4.4 and 4.8 below, which prove the result
for the cases in which the number of sources and sinksisless than n /14 and greater than or equal
to n/14 respectively. O

Before proving these two lemmas, we'll give brief sketches of the proofs. Lemma 4.4 deals
with the case in which the number of sources and sinks is less than a specified fraction of the
number of verticesin the graph. Itsproof proceeds by showing that there are many arcs that either
are unique-in or unique-out and incident to degree-1 sources and sinks, or are neither unique-in
nor unique-out. This follows from the Unique-In, Unique-Out Arc Count Lemma (Lemma 4.2
above). Thisisn't quite enough to prove Lemma 4.4, however; we must then show that most of
the non-unique-in, non-unique-out arcs are neither locally unique-in nor locally unique-out. This
follows from the Poincaré Index Formula and the conditions of the lemma. By the Flow Face
Operability Lemma (Lemma 4.1 above), this is sufficient to show that a constant fraction of the
arcsin the graph are operable by the TB Rule.

Lemma 4.8 covers the case in which the number of sources and sinks is at least a specified
fraction of the verticesin the graph. We prove it using a counting argument. First we show that a
high degree source or sink v (i.e., asource or sink with degree greater than the constant d introduced
in Section 3.3) either isincident to a TB arc or is uncommon in the sense that the total number of
such sources and sinksislessthan a constant fraction of thetotal number of sourcesand sinksinthe
graph. Next we show that at least a constant fraction of the sources and sinks with degree < d are
incident to an operable arc. Thisis clearly true for such sources and sinks that are either degree-1
orincident toaTB or arc. Any other such sources or sinkswill be processed in the cleanup phase.
We will show that at least a constant fraction of the cleaned sources and sinks are incident to an
operable arc by a counting argument based on the Poincaré Index Formula. We can then show that,
excluding parallel arcs, a constant fraction of the arcs are operable, and since al paralel arcs are
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both T and B (and hence operable), the lemmafollows.

We now proceed with complete proofs:
Lemma 4.4 Inany connected, embedded planar DAG consistent with our invariantsand in which
the number of sources and sinksislessthan /14, 1/6 of the arcs are operable.
Proof: To prove thislemmawe show that in graphs meeting the stated conditions there are many
arcs that either are incident to degree-1 sources or sinks, or are operable by the TB Rule.

Let k& be the number of sources and sinks in the graph. To make the proof easier to read, we
will use the following notation to refer to specific sets of arcs:

o A1 will bethe set of arcs that are incident to degree-1 vertices.
e As will betheset of arcsnotin Ay (A2 = A\ A1).

o A3z will bethe set of arcsin A, that are neither unique-in nor unique-out. We can restate
Lemma4.2 asfollows: Al
|Ag| + [Aa] > 3

o Ay will bethe set of operablearcsin As.
e As will bethe set of inoperablearcsin Az (As = Az \ Ag).
o A,, will betheset of al operable arcs.

Before proceeding, it'suseful torecall that graphs meeting our invariantshave no degree-2 flow
vertices (such vertices become parts of topological arcs), so every vertex other than asource or sink
has degree 3 or more. Thusthenumber of arcsinthegraphisatleast3(n—k)/2+k/2 = 3n/2—k.
Sincedl arcsin A; are operable, we will give alower bound on |A;| 4 | A4/, whichisaso alower
bound on the number of operable arcs.

To get a lower bound on the size of A4, we first note that the graph only has flow faces, so
every arc in As lies between two flow faces. Thusby Lemma4.1 an arcin Az will be operableif
it isnot locally unique-in or unique-out. Recall that alocally unique-in or unique-out arc must be
incident to a saddle vertex.

We now apply the Poincaré Index Formula. We have no cycle or saddle faces, so we only
need to consider the indices of sources, sinks, and saddle vertices. Since sources and sinks each
contribute —1 to the sum and saddl es each contribute a positive amount, the total number of saddles
is less than or equa to £ — 2. The formula implies that for each source or sink beyond the first
two there are two aternations on some saddl e vertex; there are also two additional alternations per
saddle vertex. Thus, the graph can have at most 4k — 8 adternations at saddles vertices. We will
associate each alternation withasingle arc in thefollowing way: A vertex alternation is associated
with a pair of arcs; associate the alternation with the second arc of the aternation with respect
to the cyclic ordering of arcs around the saddle vertex (we refer to this arc as the one “following
the alternation”; the first arc of the alternation “precedes the aternation”). Note that each locally
unigue-in or unique-out arc must have an aternation associated with it: such arcs are by definition
immediately preceded and followed by aternations. Since each inoperable arc in A3 islocaly
unique-in or unique-out, each has an alternation associated with it. Each alternation is associated
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with exactly one arc, so there will be at most 4k — 8 inoperable arcsin A3. Thisgivesus an upper
bound on the size of As; since As and A4 partition Az, we have

|Aa| = |As| — |As| > |As] — 4k 4+ 8 > |A3| — 4k.

We can now use the fact above with Lemma4.2:

A
Aop > [Ag| + [Aa| > [Aa] + [As| — 4k > % — 4.

The lemma follows when we substitute using the condition that & < n/14 and the fact that
|A| > 3n/2 - k:
4]

Agp > — — 4k >

n 13k
3 2

n

— ? > 6
O

In order to prove Lemma 4.8 and thus complete the proof of Lemma 4.3, we first need to
introduce some terminology and preliminary lemmas. We will assume that the graph has been
cleaned up.

For analysis purposes we associate a value of : with each saddle vertex, where: isequal tothe
index of that saddle vertex. Thisvalueis distributed equally among the alternations at the saddle;
each alternation gets ¢/2(: + 1). The aternations assign their values to sources or sinks in the

following way:

¢ Vaueisassigned only to cleaned sources with only locally unique-in arcs out, or to cleaned
sinkswith only locally unique-out arcsin. We refer to such sources and sinksas dligible.

¢ Vaue from a particular saddle vertex is assigned only to eligible sources (or eligible sinks)
that are the tails (respectively heads) of arcs incident to that saddle (i.e., only to eligible
sources and sinks at distance 1 from that saddle).

¢ If only one source or sink can be assigned value from a particular saddle, that source or sink
receives that saddle’s full value. If value from a saddle can be assighed to more than one
source or sink, itisdone so inthefollowing way: for each eligible source or sink at distance
1 from this saddle, count the number of alternations between it and the next such digible
source or sink in both the clockwise and counterclockwise directions around the saddle. The
source or sink is assigned the value for half that number of aternations.

Clearly each saddle vertex assigns a total value of either 0 or itsindex to sources and sinks. Note
that the minimum value that an dligible source or sink can be assigned per locally unique-in or
locally unique-out arcis1/4.

Werefer to thetotal valueassigned to asource or sink asthevalue of that sourceor sink. Under
certain conditions presented in Lemma 4.6 we will allow particular sources or sinks to transfer
their value to other sinks or sources. Thistransfer will be done in such away that the total value
summed over al sources and sinkswill remain constant.

We will call a source or a sink with a value of 9/8 or greater uncommon; other sources
and sinks are common. In the arguments below, we' |l associate a distinct operable arc with each
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common source and with each common sink. Since each such arc can be associated with at most
one common source and one common sink, this will prove that the number of operable arcs is
proportional to the number of common sources and sinks.
Lemma 4.5 Inan embedded planar DAG with a total of £ sources and sinks, more than £ /9 of the
sources and sinks are common.
Proof: It follows from the remarks above and the Poincaré Index Formula that the total value
that can be assigned by al alternations at al saddle vertices is bounded above by k£ — 2. Each
uncommon source or sink gets value greater than or equal to 9/8. If 8/9 of the sources and sinks
were uncommon, their total value would be grester than or equal to (8%/9) - (9/8) = k, whichis
greater than the total value available for assignment. O
Lemma 4.6 In an embedded planar DAG meeting our invariants, every source incident only to
clean locally unique-in arcsis either uncommon or at thetail of an operablearc. Smilarly, every
sink incident only to clean locally unique-out arcsiseither uncommon or at the head of an operable
arc.
Proof: The sources and sinks meeting the conditions of the lemma are the digible sources and
sinks as described above. We will argue on the basis of the degree of the dligible source or sink.
Notefirst that if an eligiblesource or sink is of degree 1, theincident arc isoperable by the Degree-1
Rule. Further, if an eligible source or sink is of degree 5 or greater, it is uncommon (the minimum
value that an eligible source or sink can get from each adjacent saddlevertex is1/4). If an eigible
source or sink has degree 3 or 4, then either one of the incident arcs meets the conditions for
removal by the Consecutive Rule or it is uncommon (an eligible source or sink will get the value
of at least 3/2 alternation from any saddle vertex where the Consecutive Rule doesn't apply). Thus
we only need to prove that the result holds for digible sources and sinks of degree 2 to complete
the proof. We will prove the result for the case of sources; the proof for sinks is symmetric. To
simplify the arguments below, we refer to an eligible sink ¢ as adjacent to an eligible source s at
asaddle vertex w if ¢ isincident to arc a;, s isincident to arc a,, and a; and «, are adjacent in the
cyclic order at u.

For eligible sources of degree 2 where each arc out isincident to a different saddle, we have
the following cases.

¢ There are no adjacent eligible sinks at either saddle vertex. In this case the source gets the
value of at least 4 alternations. If either saddle has index greater than 1 then the source is
uncommon (recall that the value of an alternation at asaddleof index ¢ isi/2(i + 1)). If both
saddles are index 1 and the source has value 1, then each saddle must have an arc in from
another eligible source. In this last case the Index-1 Saddle Rule will hold and the source
has an operable arc out.

e Thereisasingleadjacent eligiblesink (i.e., an digiblesink is at the end of exactly one edge
out of one saddl€). In this case the source will get the value of at least three and one-half
aternations. There are three subcases: First, if both saddles have index of 2 or greater the
source will be uncommon. Second, if the saddle with no adjacent eligible sinkshasindex 1,
then either there is another eligible source with an edge into that saddle (in which case the
Index-1 Saddle Rule will hold and the source we are considering will have an operable arc
out) or the source gets the value of all alternations at that saddle (in which case the source
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isuncommon). Third, the saddle without the adjacent eligible sink has index greater than 1
and the saddle with the adjacent eligible sink hasindex 1. Again, at theindex-1 saddleeither
there is a second eligible source with edge into the saddle (in which case the Index-1 Saddle
Rule applies at the source under consideration) or the source gets a value of 1/2 from this
saddle and is uncommon.

There are at |east two adjacent eligible sinks. In this case there are two possibilities. If two
of the sinks are distinct then either the t-s-t Rule or the Consecutive Rule will hold and the
source will have an operable arc out. Otherwise we have the situation shown in Figure 14
below. There are numerous subcases to consider. In thefirst two the source has an operable

T
T

Figure 14: Degree-2 source with common adjacent eligible sink

arc out:
— The sink has degree 2. Then the Adjacent Degree-2 Sources and Sinks Rule applies
and the source has an operable arc out.
— Thesink has degree 3 or greater and one saddle hasindex 1 and another eligible source
with an arc in. Then the Index-1 Rule applies and the source has an operable arc out.

In the remaining subcases there are no rules that apply at the source and we must show it is
uncommon (we will refer to this as the problem source configuration:

— the source has degree 2 and the arcs out are incident to different saddles;

— asingledigiblesink of degree 3 or greater is adjacent at each saddle;

— and neither adjacent saddle hasindex 1 and is also adjacent to another eligible source.
). Note that such a source has avalue of at least 1 (it will get two aternations from saddles
of index 1 and at least 3/2 aternations at saddles of index 2 or greater). In some of these
subcases we transfer value between sources and sinks as mentioned above. In al cases
where we transfer value from sinks to sources, the sources must be in the problem source

configuration. When a sink transfers value, it divides the value equally among all adjacent
sources in such a configuration.
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— The sink is operable. In this case we can transfer all its value. The sink has a value
of at least degree(t)/4; since the number of problem configurations any sink can be
involved in isless than or equal to its degree, each source in a problem configuration
with this sink will get additional value of at least 1/4, making it uncommon.

— The sink ¢ has degree 3 or greater and is not operable. In this case we transfer value
equal to 1/4 from the sink to the source, making the source uncommon. We will show
below that such asink has sufficient value to transfer 1/4 to al such sources to which
it isadjacent and still remain uncommon.

For eligible sources of degree 2 where both arcs are incident to the same saddle, we have the
following cases:

¢ If the saddle hasindex 1, then the Index-1 Rule holds and the arcs out are operable.

o If the saddle has index 2 and there are no adjacent eligible sinks with respect to the source,
then the source gets at |east 4 dternations and is uncommon.

¢ Ifthesaddlehasindex 2 and thereisat | east one dligibleadjacent sink, we have two subcases.
Thefirst is as follows: We refer to the two arcs out of the source as a1 and a, respectively.
Note that the cyclic order around the saddle is divided into two segments, one between a4
and a» and the other between «, and a1 in the clockwise cyclic order at the saddle. Since the
source is eligible, two of the alternations must fall in one segment and four in the other. We
note that there can be an adjacent eligible sink in the segment with two alternationsonly if it
isadegree-1 sink that is adjacent to both ¢, and a». In this case the Consecutive Rule will
apply. Thisisshownin Figure 15 below.

ap

ajz

Figure 15: Adjacent eligible sink ¢ in two-alternation segment

¢ The only remaining case for an index 2 saddle is the case that there are adjacent eligible
sinks on the segment with 4 aternations. Note that if there is not an eigible sink adjacent
to both @1 and a», then the source will get at least 7/2 aternations and will be uncommon.
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Otherwise, there must be an arc to an digible sink adjacent to each arc out of the source.
Further, sincethe sink at the end of each such arc lies on the same face as the source, it must
be asingle sink (there is at most one sink on any flow face). We can treat this situation by
looking at the degree of the sink:

— If the sink is of degree 2, then the Adjacent Degree-2 Source and Sink Rule applies,
and the arcs out of the source are operable.

— If the sink has degree 3 or greater, then we are in a variant of the problem source
configuration, and we transfer value of 1/4 from the sink to the source, making the
source uncommon. Once again, the proof that making such a transfer is reasonableis
given at the end of the proof of the lemma.

¢ If thesaddle hasindex 3 or greater, then either the Consecutive Rule applies, or else each arc
out of the source gets 3/2 aternations, which gives the source value at least 9/8 and thus
makes it uncommon.

To complete the argument for degree-2 sources, and thus compl ete the proof of the lemmawe
must show that in the casesin which we transferred value, each inoperable vertex transferring value
retained enough valueto stay uncommon. We start by noting that all transfers will be from sinks of
degree 3 or higher to sources of degree 2, or (in the symmetrical argument for sinks) from sources
of degree 3 or higher to sinks of degree 2. Thus there will be no conflicting transfers. We will
prove that the sink-to-source transfers meet the stated conditions; the argument for source-to-sink
transfers will be symmetrical.

We start by noting that each such sink has a value of at least degree(t)/2. The sink must
receive value of at least 1/2 for each arc into asaddle (if the saddle hasindex 1 neither the Index-1
Rule nor the Consecutive Rule can apply to ¢, which isinoperable, so thereis at most one adjacent
eligible source at that saddle and ¢ gets value of at least 1/2; if the saddle has index 2 or greater
the Consecutive Rule cannot apply, so ¢ gets at least 3/2 aternations, which has avalue of 1/2 or
more).

Next we consider asink ¢ that transfers value to one or more sources. We observe that each
arc a into ¢ can be adjacent (in the cyclic order at the saddle at the «’s tail) to at most one arc out
of some source (if not, the Consecutive Rule would apply at that sink, which isinoperable). Since
each source that receives value from ¢ isincident to two arcs each of which is adjacent to a distinct
arc into ¢, the number of such sources can be at most |degree(¢)/2]. If we transfer 1/4 to each
such source, t’s remaining valueis at least

degree(t) degree(t) 1 3-degree(t)

2 2 4 8 ’

which is greater than or equal to 9/8 for sinkswith degree 3 or greater. Thusthe sinksthat transfer
value will remain uncommon.

This completes the proof of the lemma. O

The preceding lemma dealt with sources and sinks that have been cleaned up. However, the
cleanup agorithm is not applied to all sources and sinks. The next lemmawill show that there are
not too many sources and sinks that haven’t been cleaned and that are not adjacent to an operable
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arc. This, along with the fact that there aren’t too many uncommon sources and sinks, will allow
us to argue that the number of operable arcs is suitably large. We start with some definitions and
observations.

A problem high-degr ee source is a source of degree greater than the constant ¢ (introduced
in Section 3.3) with all arcs out either unique-in or locally unique-in. A problem high-degree
sink isasink of degree greater than d with all arcsin either unique-out or locally unique-out. Such
vertices are problems in the sense that they may have no operable arcs and they can’t be cleaned
up in constant time.

We define a simplified underlying graph of an embedded planar DAG G = (V, A) to be
the embedded planar graph G = (V”, E"') that results when each set of parallel edgesin G’ (the
underlying graph of &) isreplaced by asingle edge. G’ has the following properties:

¢ Any problem high-degree source or sink in G has no parallel arcs, and hence will have the
samedegreein G’ asit hasin G.

e All facesin G" have boundaries of length 3 or longer because there are no loops and because
facesin G’ with boundaries of length 2 are formed by parallel edges. Thus Inequality (2) in
Section 2.1 holds.

e The number of verticesisthesamein G andin G.

Given thesefacts, it's easy to prove the following lemma:

Lemma 4.7 In any embedded planar DAG consistent with our invariants the number of problem
high-degree sources and sinksislessthan 6n/d.

Proof: Let!bethenumber of verticesin G” that have degree greater than d. Because Inequality (2)
from Section 2.1 holds for G, we have

%<|E"|<3n—>l<g-n.

Since every problem high-degree source or sink in G has degree greater than d in G”, the number
of such sources and sinks must aso be less than 6n/d. O

Wenow set d = 1512, which by the argument in the preceding lemmaimpliesthat the number
of problem high-degree sources and sinks in the graph will be less than n /252.

Lemma 4.8 In any cleaned-up embedded planar DAG ' consistent with our invariantsin which
the number of sources and sinks is greater than or equal to n/14, a constant fraction of the arcs
are operable.

Proof:

Asin previous proofs, let k& be the number of sources and sinks.

We start with some preliminary observations: We can partition the arcs into two sets: those
that have another parallel arc and thosethat don’'t. Since ¢ hasno cycles, every arc parallel to some
other arc isboth T and B with respect to the face common to the two arcs, and is hence operable
by the TB Rule. From our discussion above about the simplified underlying graph ", the number
of arcsin (G without parallels plus the number of sets of mutually parallel arcsislessthan 3n (this
number is|E”| < 3n).
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Our goal isto specify a set of operable arcs such that the size of this set is a constant fraction
of the number of sources and sinksin the graph (i.e., a constant fraction of k). The operable arcs
we specify will correspond to edges in G”: they will be either arcs without parallels or single
representatives of sets of parallel edges. Because k is at least a constant fraction of n by the
conditionsof thelemma, and becausethearcsin G that don’t correspond to unique edgesin G” are
all parallel arcs (and thus operable), specifying this set of operable edges will imply that a constant
fraction of thearcsin (G are operable.

We now specify the set of operable arcs in the following way: For each source(sink) at the
tail(head) of at least one TB arc, put one such arc in the set; the arc is operable by one of the TB
Rules. (To be consistent with the condition that we choose only one arc corresponding to any edge
inG”, if thearcs specified for asource and asink both comefrom the same parallel set, thenasingle
arc representing the parallel set will be used for both the source and sink.) If the source or sink has
degree 1, then the incident arc is operable by the Degree-1 Rule and is added to the operable set.
The remaining sources al have only unique-in and locally unique-in arcs out; the remaining sinks
only have unique-out and locally unique-out arcsin. We will ignore problem high-degree sources
and sinks for the moment, so we can assume that al edges out of sources and into sinks are clean.
Thus, for any other source incident to a unique-in arc or sink incident to a unique-out arc we can
add such an arc to the set of operable arcs because of the Unique-In/Unique-Out Arc Contraction
Rule. Thisleaves only sources with clean locally unique-in arcs out and sinks with clean locally
unigue-out arcs in; by Lemma 4.6 every such source or sink is either uncommon or at the tail or
head respectively of an operable arc.

An operable arc has been specified for every source or sink that is not either a high degree
problem or uncommon. The number of problem high-degree sources and sinksisless than n /252
by Lemma 4.7 and the choice of d; thisisless than £/18 by the conditions of thislemma. The
number of uncommon sources and sinks is less than 8% /9 by Lemma 4.5. Thus the number of
sources and sinks for which an operable arc has not been specified is less than 174/18, which
means that an operable arc has been specified for more than 1/18 of the sources and sinks.

In order to complete the proof, we must show that we don’t have too many duplicate arcsinthe
set. Since every operable arc we' ve specified isincident to a source or asink, we' ve only included
duplicates when an arc in the set was specified for both a source and a sink. In that case we could
include an arc at most twice; thus, the size of the set is at least a constant fraction of £. O

5 Conflict Resolution

In the previous section we showed that in any embedded connected planar DAG meeting certain
invariants a constant proportion of the arcs are operable once the graph has been cleaned up.
However, applying the reduction rules to these operable arcs leads to two types of conflicts we
must dea with: intra-rule conflict, and inter-rule conflict.

Intra-rule conflict arises when we try to apply in paralel asingleruleto al arcs operable by
that rule. Doing so can lead to cases in which either invariants aren’t maintained or in which the
rule applications cannot be completed in some specified amount of time (for DAG reduction, this
will be constant time; in the general reduction algorithm this will be O(logn)). For example,
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removing two arcs, both of which are marked T and B, can result in a graph that doesn’'t meet the
invariant that al faces are flow faces (see Figure 16 below). Another potential problem is that

‘ ‘
face

Figure 16: Example of intra-rule conflict for TB Rule

removing multiple arcs viathe TB Rule could leave us with an arbitrary number of arcs that must
be combined into a single topological arc (see Figure 17 below). Updating the information for all
the internal components (e.g., determining leader information and rank ordering) could thus take
time O(log|A|). Likewise, it must be possibleto combine faces in constant time (since we don't

B
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B *
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Figure 17: Creation of topological arc with arbitrarily many segments

keep rank orders on face boundaries, it is possible to combine an unbounded number of faces into
asingleface, but we must show that this does not require excessive time).

Inter-rule conflict arises when applications of a particular rule make arcs that were operable
by another rule inoperable. Both types of conflict affect our counting argument aimed at showing
a constant proportion of the arcs are removed in each pass through the main loop.

Before wediscussconflictsand conflict resolutionin detail, werecall thefollowing observation
madein Section 2.2, which isuseful in a number of subsequent arguments. A flow face has at most
one source and one sink on its boundary:.
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5.1 Resolution of Intra-Rule Conflict

We will deal with conflicts between applications of a single rule by building aconflict graph that
relates the conflicting arcs. The graph consists of a vertex for each arc operable by the rule in
guestion, and an edge between each pair of these vertices where the removal of the corresponding
arcs causes aconflict. The edges can be undirected or directed, depending on whether the conflicts
are symmetric or asymmetric. It is clear that choosing an independent set from the conflict graph
will giveaset of arcsthat don’t conflict with each other. We will show how to find an independent
set that includes at least a constant proportion of the vertices in the conflict graph, and thus a
constant proportion of the arcs operable by a particular rule. In general, the conflict graphs have
bounded degree, so finding a maximal independent set (M1S) in the conflict graph will suffice.

The intra-rule conflict definitions for each rule follow. In all cases but one we state the max-
imum degree of the conflict graph. We argue that the “flow faces only” invariant is preserved.
We also argue that any changes resulting from removing non-conflicting arcs can be processed in
constant timein the CRCW modd; in particular, we show that we never haveto combinearbitrarily
many arcs into a single topologica arc, and that we never have to splice the arcs from arbitrarily
many vertices into consecutive places in the cyclic order at some vertex. Also, we must show that
where rules combine faces, the associated work can be done in constant time. The rule-by-rule
conflict definitions are as follows:

[TB Rule] For the TB Rule we break the conflict resolution into four stages. In each stage
we determine conflicts for a particular type of TB arc, then remove non-conflicting arcs of that
type. For purposes of the counting argument, we assume that we first determine al TB arcs, then
apply the conflict resolution procedure. At the time that conflict resolution for a particular type of
TB arc occurs, arcs of that type are specified. The reason for thisisthat as TB arcs are removed,
the formation of topological arcs can change the characteristics of a particular arc. For example,
an arc meeting the conditions for Type Il TB arcs prior to arc removal could meet the conditions
Typelll TB arcs after theremoval of aTypel TB arc. The four types are as follows:

o A Typel TB arcisnot marked both T and B for any single face.

e A Typell TB arc is marked both T and B for exactly one face f, and the other T and B
marksfor f are not commonto asinglearc.

e A Typelll TB arc is marked both T and B for exactly one face f, and the other T and B
marksfor f are commonto asingle arc.

e ATypelV TB arcisany TB arc that ismarked both T and B for two faces.
We describe the conflict resolution for each type of arc in turn:

[Typel TB Arcs] A Typel TB arc a conflicts with any other Type| TB arc that is marked
T or B with respect to aface for which a ismarked T or B. Each Type | arc conflicts with at
most 6 other arcs (an arc can lie on two different faces and there are up to 3 arcs on each face
with which it will conflict); these conflicts are symmetrical (an example of a conflict graph
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isshown in Figure 18 below). A MISis selected from the conflict graph and the associated
arcs are selected for removal.

Note that removal of these Type | arcs might either make certain Type Il and Type IV TB
arcs inoperable, or might make them into Type | arcs that won't get removed during this
arc-removal phase. For this to happen, however, these arcs must be marked T, B, or both
T and B on aface from which a Type | TB arc isremoved. Thus vertices corresponding to
these arcs could be added to the Type | conflict graph without increasing its maximum degree
and without changing thefact that the MISismaximal. (This extension of the conflict graph
is not necessary in the actua algorithm; it is a counting mechanism that will be used in the
proof that the conflict algorithm will allow us to remove a sufficient number of arcs. The
fact that aTypell or Typelll arc has become inoperable can be detected in a subsequent arc
removal step.) An example of how Type |l TB arcs can be added to the conflict graph is

5
4

Conflict Gaph for Type | TB Results for Type |I TB Arcs:
Arcs: Heavy Arcs are Type I, Heavy Arcs are Type | MS; Light
Light Lines Indicate Conflicts Lines Indicate Type Il Conflicts

Figure 18: TB Rule Conflict Graphs

To see that this conflict resolution procedure will preserve the “flow faces only” invariant,
note that saddles will result only if the removal of some set of arcs effectively changes the
marks on some other removed arc so that it isno longer marked both T and B. To create such
aconflict witha Type | TB arc a, we must remove an arc «’ that iscommon to aface f with
a, and that has the same mark as a with respect to f. Since we only remove Typel TB arcs
at thistime, such an arc must be Type I, and our conflict procedure rulesthis out.
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The TB Rule can never create cycle faces in aDAG, sinceit only removes arcs.

The following lemmashows that this procedure combines at most a constant number of arcs
into atopological arc:

Lemmab.1 At most 3 arcs can be combined into a single topological arc as a result of
removing Type | TB arcs.

Proof: We number the arcs that are incorporated into a new topological arc according to
their order of occurrence on this new arc, with the arc closest to the tail being numbered
1. We will refer to the i arc as a;. Suppose v is the tail of some a;, and that » becomes
internal to the new topological arc. Then every arc incident to » other than «;_; and a; must
be removed at the sametime. Note that if two such incident arcs were adjacent in the cyclic
order, the conflict resolution procedure for Typel TB arcs would prevent the removal of one
of them. Therefore if we consider the cyclic ordering at » in the clockwise direction, there
can beat most one Typel TB arc between «; 1 and a;, and at most one between «; and a;_1.

Now assume that removing Type | TB arcs can cause four or more arcs to be combined into
asingle new topological arc (the following argument isillustrated in Figure 19 below). This
impliesthat at least one arc incident to v4, the tail of a4, must be removed. We will refer this
arc as by. Without loss of generality, assumethat b4 lies between a3 and a4 in the clockwise
cyclic order at v4. bs and az are common to aface we will refer to as f;.

Another arc b3 incident to vz, the tail of a3, must al'so be removed. If b3 lies between a, and
a3 in the clockwise cyclic order at v3, then it aso is common to f1, and conflict resolution
will prevent the simultaneousremoval of b3 and b4. Therefore b3 must lie between a3 and a»
in the clockwise cyclic order at v3. b3 and a, are common to aface f>.

Finally, a Type | TB arc incident to v,, the tail of a,, must also be removed. However, if
thisarc lies between a, and a1 in the clockwise cyclic order at v, it is common to face f;
and conflicts with b3; if it islies between a1 and a; in the clockwise cyclic order at vy, itis
common to face f; and conflicts with b4 because there is no arc between a, and a3 in the
clockwise cyclic order at »3. Thus our assumption leadsto a contradiction, and thelemmais
proved. O

To see that at most two crosspointers get spliced into one, first note that if more than two
pointers are spliced together, then for any pointer other than the first or last, the arcs at both
its head and tail must be removed. This requires the removal of two arcs from one face,
which is prevented by the conflict resolution procedure.

Since we never remove more than one arc from any face, it is obviousthat we never remove
two arcs that are consecutive in the cyclic order at any vertex. Likewise, we never combine
more than two faces into one.

[Typell TB Arc] The conflict resolution procedure for Typell TB arcsisdifferent from the
procedure for most other rules because it involves the construction of two conflict graphsin
sequence, and it differs from all other rules because the first conflict graph is a forest and
may not be of bounded degree. The vertices of the first conflict graph represent Typell TB
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A Type | TB arc at vZ2 causes intra-rule conflict

Figure 19: Examplefor Topologica Arc Formation

arcs that remain operable after conflict resolution for Type | TB arcs is completed. (Recall
that we are considering arcs that were operable prior to the removal of any Typel TB arcs,
any newly-created Type |l TB arcs are considered inoperable, as are those made inoperable
by Type| conflict resolution. Also note that we are only considering arcs that are currently
Typell; any operable Type Il arcs that became Type I11 when Typel arcs were removed will
be considered later.) It iseasy to seethat any such arc meets two easily-tested conditions: it
was operable prior to Type | removal, and it currently meets the conditionsfor Typell TB
arcs. Each such Typell arc a ison the boundary of aunique face f for which « isnot both
T and B. If the opposite side of f is an operable Type Il arc b, direct an arc in the conflict
graph from the vertex representing « to the vertex representing b. The result is a directed
forest (see Figure 20). Removing Type Il TB arcs does not affect the operability of Type Il1
or TypelV TB arcs.

We could usetree contraction to find an independent set intheforest that containsat |east half
the vertices. However, that could teketime O(log|A|). Therefore we use a simpler method
that runs in constant time in the ARBITRARY CRCW model. To simplify the exposition,
we first introduce some terminology: achain vertex isany vertex in the conflict forest with
indegree 1, provided that the arc in is not incident to a leaf. The first conflict resolution
agorithmfor Typell TB arcs can how be stated:

— Add dl leavesin the forest to the set of arcs to be operated on.

— Form the subgraph induced by the chain vertices and replace the directed arcs by
undirected arcs. This subgraph will have maximum degree 2. Find a MIS in the
subgraph and add the corresponding arcs to the set of arcs to be removed.

Theargument that thisgivesusat least 1/3 of the operable Typell TB arcsisstraightforward.
Wefirst note that since the subgraph induced by the chain verticeshas maximum degree 2, the
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Conflict graph shown in Iighter col or

Figure 20: Conflict Graph for First Phase of Type Il TB Conflict Resolution

MIS has at least 1/3 of these vertices. Next we count the vertices other than chain vertices.
There are three types:

1. leaves

2. verticeswithindegree 2 or greater. We noted inthe proof to Lemma4.2 that the number
of such vertices must be less than the number of leaves.

3. vertices with indegree 1 for which the arc in isincident to aleaf. The number of such
verticesis at most the number of |eaves.

Thus the number of non-chain vertices is less than three times the number of leaves. Since
all arcs corresponding to leaves will be operated on, thisis greater than 1/3 of the remaining
arcs, and the claim is proved.

The second phase of conflict resolution prevents the creation of topological arcs out of more
than some constant number of arcs. The conflict ruleis as follows:. for each Typell TB arc
a selected in the first round of conflict resolution, consider the other T and B arcs on theface
f for which « ismarked both T and B. Each lies on the boundary of another face (f; and f>
respectively; they need not be distinct). If the T arc ismarked either T or B on fi, and if the
boundary of f; oppositefromthe T arcisa Typell TB arc marked both T and B on f; and
was chosen in the first round, put an edge between the vertices representing it and ¢ in the
conflict graph. Likewise, if the B arc is marked either T or B on f,, and if the boundary of
f2 oppositefromthe B arcisa Typell TB arc marked both T and B on f, and was chosen in
the first round, put an edge between the vertices representing it and « in the conflict graph.
These conflicts are symmetrical, so the degree of any vertex in the conflict graph isat most 2,
and aMIS from this graph will correspond to a set of arcsthat isat least a constant fraction
of the Type Il TB arcs that were operable at the start of this conflict resolution stage.
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To see that the two-step conflict resolution procedure will preserve the “flow faces only”
invariant, note that saddles will result only if the removal of some set of arcs effectively
changes the marks on some other removed arc « so that « isno longer marked both T and B.
If « isaTypell TB arc, thiswould require the removal of at least one arc marked either T or
B on the face for which « ismarked both T and B. Since we are only removing Type Il arcs
at this stage, thisisruled out by thefirst conflict rule.

Removal of thearcs selected by thisprocesswill cause at most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer p must lie
between two arcs that are removed; these arcs must be common to a single face. Our
reduction rules will insure that if two arcs are removed from a single face then neither is
marked both T and B on that common face (if both are, they are not Type Il TB arcs; if one
is then the two arcs conflict in the first half of the conflict resolution step). Therefore, any
pointer spliced to p must cross afaceto or from athe sideof aTypell TB arc that is marked
both T and B. But the Type |l TB arc istheonly one removed from such aface, and thechain
of splices can’'t extend any further. Thus at most three pointers get spliced into one (oneto a
Type Il arc, one from one Type |l arc to a second, and one from the second Type Il arc).

The same sort of argument shows that the maximum number of arcs consecutivein thecyclic
order that are removed at some vertex is at most two. Any pair of such arcs are common to
aface f. If the arcs have the same orientation (i.e., both are in-arcs), then by the argument
above neither is both T and B on the common face. If they have opposite orientations, then
neither can be both T and B on the common face. Therefore in either case they must be
marked both T and B on the other faces; no other arcs are removed from these faces, so the
next arcs in the cyclic order in either direction will not be removed.

We still need to show that the number of arcs that are combined into a single topological
arc is bounded by a constant. We have just shown that the algorithm will never remove
three consecutive arcs in the cyclic order at any vertex. We can apply thisfact at any » that
becomes internal to atopological arc, so we only need to consider the cases in which one
or two consecutive arcs are removed. |f two consecutive arcs are removed, we can limit the
possibilitiesto four as shown in Figure 21 below. The unlabeled arcs are components of the
topologica arc. In (a) both ¢1 and 2 could be Type Il TB arcs and could both be removed
without conflict. In (b) and (c), there is exactly one way in which both arcs could be Type |
TB arcs; in those cases the arcs will conflict by the first conflict resolution step. In (d) there
isno way that the two labeled arcs could both be Type Il TB arcs.

Now consider the possible configurations of arcs incident to a vertex v that will become
internal toatopological arc. Atleast onearcincidentto» mustberemoved. Theconfiguration
of arcs at one side of » (i.e., either clockwise in the cyclic order between the arc into » and
the arc out of », or clockwise in the cyclic order between the arc out of » and the arc into
») can be one of four things: no arcs, an arc in, an arc out, or two arcs as specified above.
We notethat if there isan in arc on each side of the topological arc at » then these two arcs
conflict by the second conflict resolution step; thisis also the case if there is an arc out on
each side. Therefore we are left with the four possibilities (plus their mirror images) shown
in Figure 22 below.
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Figure 21: Consecutive Typell TB Arc Incidences at a Vertex
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Figure 22: Nonconflicting Type Il TB Arc incidences at vertices that could becomeinterna
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Finally consider the configurations possible at two consecutive vertices » and v that become
internal to atopological arc. Specifically, let there be an arc from « to » that becomes part
of the topological arc, and let the arc out of v be the last arc in the sequence that becomes
the new topological arc. First consider the case in which thereisan in-arc a;,, incident to ».
Thisin-arc will conflict with an out-arc on the opposite side of u, and an out-arc at « on the
same side of thetopologica arc as a;, cannot be a Typell TB arc. If thereis no out-arc at
u, there must be an in-arc at «. However, such an arc will conflict with «;,, if it lies on the
same side of the topological arc. Thus, if configurations (1), (3), or (4) shown in Figure 22,
or their mirror images, occur at v, there is only one alowable configuration that can occur
at u: configuration (1), with the arc on the opposite side of the topological arc from a;,,. By
the same argument, the only configuration that can occur at the vertex preceding « on the
topologicd arc is configuration (1), with the arc on the same side of the topological arc as
a;,. But such an arc must conflict with a;,, by thefirst conflict resolution rule. Thusin this
case at most three arcs can be combined into a single topological arc.

Now consider the case in which the configuration at » is (2). If configuration (1), (3), or
(4) occurs at u, the previous argument says that at most three arcs preceding the arc out of
» will be combined into the topological arc, limiting the total number of arcs combined to
four. If configuration (2) occurs a u, the arc out of « must be on the opposite side of the
topologica arc from the arc out of v; if not, they’d conflict by the first conflict resolution
rule. Thisimpliesthat configuration (2) can’t occur at the vertex preceding «; if one of the
other configurations does occur at the preceding vertex, we again have the case discussed
above, and at most three more arcs can beincluded in the new topological arc. Thus, at most
five arcs can be combined into asingle arc as aresult of removing Type Il TB arcs.

Type Il TB arc removal is one case where an unbounded number of faces can be combined
intoone. Let f beaface such that an arc marked both T and B with respect to f isremoved.
The conflict resolution rules will prevent f from being combined with another such face.
However, severa faces such as f can be combined with a face f’ such that no Type Il TB
arc marked both T and B with respect to f’ isremoved. If this occurs, the processor for f’
will become the processor for the new face. To create this new face, f' needs to determine
if the leaders have changed as aresult of the removal of a Type |l TB arc. Then the various
faces to be combined with f’ need to set the processor of f’ asthe new processor. The edges
on the remaining boundaries of these faces can read the new processor number to complete
the change. This can all be done in constant time in the CRCW model, so combining an
arbitrary number of faces in thisway is not a problem.

[Typelll TB Arc] Recal that aTypelll TB arcismarked both T and B for exactly oneface
f, and the other T and B marks for f are common to asingle arc b. We apply the conflict
rulesfor Typelll TB arcsto any such arc that is currently operable. Such an arc a meetsthe
following two conditions. « was marked both T and B prior to the start of TB arc conflict
resolution, and a currently meets the conditionsfor TypeIll TB arcs.

Thefirst conflict rule saysthat if b isalso an operable Typelll TB arc, a conflictswith b and
viceversa.
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In addition, we need some conflict rules to prevent the formation of topological arcs from
arbitrarily many arcs. To understand these rules, it isfirst useful to discussthe situationsin
which vertices can become internal as aresult of Typelll TB arc removal.

The first conflict rule will assure that if Type Il TB arc « is removed, then an arc pardle
parald to a will remain in the graph. Thisimpliesthat the alternation number of any vertex
inthe graph will not decrease asaresult of Typelll TB arc removal. Thusonly flow vertices
can becomeinternal to topological arcs.

Also, for each arc b remaining after Type 1l TB removal, at most two Type 11 arcs paralléel
to b could have been removed. Thusif the outdegree (respectively indegree) of aflow vertex
isfour or more, that vertex cannot becomeinternal as aresult of theremoval of Typelll arcs.

The additional conflict rules will thus apply to operable Type Il TB arcs that are incident to
flow vertices that have indegree and outdegree less than or equal to 3. Let a be such an arc
and » be such aflow vertex at thetail of . Once again, b will denote the TB arc common to
the face for which « ismarked both T and B.

To determine these additional conflicts, consider the next arc in the cyclic order at v, where
the direction of the order is determined by & followed by «. If ¢ isout of », then « has no
conflicts with respect to itstail. If ¢ isinto », the following cases apply:

— If cisaType lll TB arc, the following conflicts can occur: « and ¢ conflict if ¢ is
operable; if the arc d opposite ¢ on ¢’s TB sideis an operable Type I1l TB arc, then «
also conflicts with d (thislast condition applies whether or not ¢ is operable).

— If ¢ isnot a Type lll TB arc, then we consider the indegree of ». If the indegree is
greater than one, « has no more conflicts with respect to ». If ¢ isthe only arc in, then
we consider the vertex « at the tail of ¢ (if the indegree of v isgreater than onein this
case, » will not become interna). If « isaflow vertex with indegree 3 or lessand ¢ is
the only arc out, then we consider the arcs into « (if « does not meet these conditions,
u Will not become an internal vertex). Let d be thearc into « on the face common with
a. If disaTypelll TB arc, the following conflicts can occur: « and d conflict if d is
operable; if the arc e opposite d on d’s TB sideis an operable Type |1l TB arc, then «
also conflicts with e (this last condition applies whether or not d is operable). If d is
not aTypelll TB arc, no conflicts occur.

These conflicts are illustrated in Figure 23 below. A symmetrical set of conflicts occur for
arcs out of the head of «.

Asin previous cases we build a conflict graph with vertices corresponding to the Typellll TB
arcs, and edges corresponding to conflicts. In this case conflicts may not be symmetrical;
however, for any operable Typelll TB arc there are at most five arcswithwhichit can conflict
and that can conflict with it. The degree of any vertex in the conflict graph is at most five.
Thus we can get a constant proportion of the vertices in the conflict graph by finding aMIS.
Aswas the case for Type | arcs, removal of Type Il arcs can affect the operability of other
typesof TB arcs. In particular, certain Type |V TB arcs can either become inoperable, or can
become Type Il TB arcs that won't be removed during this phase of arc removal. However,
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Figure 23: Typelll TB Arc Conflicts

all such Type IV arcs will be common to aface for which aremoved Type Il arc is marked
both T and B. Aswasthe casefor Type | conflict resolution, we can extend the conflict graph
to include these arcs after we' ve selected aMIS: If a isrepresented by avertex intheMISin
the conflict graph, and if « islabeled both T and B on aface f, and the oppositeside of f is
aTypelV TB arc b, add a corresponding vertex and edge to the conflict graph (again, thisis
done for counting purposes of the proof and need not be done in the actual agorithm). This
doesn’t increase the maximum degree of the conflict graph, and that, since every added edge
isincident to an e ement of the MIS, the MISisstill aMIS.

To see that this will preserve the “flow faces only” invariant, note that saddles will result
only if the removal of some set of arcs would effectively change the marks on some other
removed arc ¢ so that ¢« would no longer be marked both T and B. This can only occur for
Typelll TB arcsif we removetwo arcs both of which are marked both T and B on acommon
face. Thisisruled out by the conflict rules.

Removal of thearcs sel ected by thisprocesswill causeat most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer must lie
between two arcs that are removed; these arcs must be commonto asingleface. Our conflict
ruleswill insure that if two arcs are removed from a single face then neither is marked both
T and B on that common face (if either is, then by the definition of Type Ill TB arcs both
are, and they conflict). Therefore, any pointer spliced to such a pointer must cross a face to
or from athe side of a Typelll TB arc that is marked both T and B. But the Typelll TB arc
isthe only one removed from such a face, and the chain of splices can’t extend any further.
Thus at most three pointers get spliced into one (oneto a Type Il arc, one from one Type 11
arc to a second, and one from the second Type Il arc).

It is easy to see that no more than two arcs consecutive in the cyclic order at any vertex are
removed. The conflict rulesinsurethat if a Typelll arc a isremoved, then the other arc on
the face for which « ismarked both T and B is not removed. If two consecutive Typelll arcs
are removed, then neither can be marked both T and B on the face they share. Further, the
next arc in either direction in the cyclic order will remain.
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To see that no more than three arcs are combined into a single topological arc, first recall
that if avertex becomesinternal, either its outdegree, itsindegree, or both are reduced to one
(either the indegree or the outdegree could be one already). Because of thefirst conflict rule,
if the outdegree (respectively indegree) is reduced, we can conclude that it wastwo or three
prior to removal, and that the removed arcs were parallel to the remaining arc. It iseasy to
see that if a vertex v has both indegree and outdegree of two or three, then the additional
conflict rules will insure that » does not become internal (an example of such a vertex is
included in Figure 24 below as the “excluded” case; the arcs labeled « and b conflict since
the other two arcs must both be Type Il1 TB arcs even if they are no longer operable).

This allows us to reduce the number of cases we need to consider. There are four basic
cases as shown in Figure 24 below (cases 1 and 3 each represent two mirror-symmetric
configurations). Assumethat » isthelast vertex that will becomeinternal in the newly formed

YD <>J>

(1) (2) (3) excl uded

Figure 24: Cases for showing that Type I11 TB conflict resolution prevents the formation of long
topologica arcs

topological arc. Let a4, bethe arc with v asits head that isincluded in the topological arc,
and let u be thetail of a;,. If » aso could become internal and the configuration at » was
either 3 or 4, then the configuration at « would have to be 1 or 2 respectively (operable arcs
out of « would be arcs into », which are not consistent with the assumed configuration). In
either case conflicts occur and not al the arcs incident to « and » will be removed (note that
for configurations 1 and 3, the arc parallel to the Type Il TB arc must also be a Type 11l
arc). If the configuration at » is 1 or 2, then either configuration 3 or 4 occurs at « (the arcs
out of « are the arcs into »); in this case its clear that at the next vertex back from « on the
desired topological arc there will be conflicts as described above. In this caseit is possible
to combine three topological arcsinto asingle arc.

Removal of Typelll TB arcscan lead to the combination of an unbounded number of facesin
the same way as for Type |l TB arc removal. The method of combination and the argument
that it will take constant time are the same as in the Type || case above.

[TypelV TB Arc] Recdl that a TypelV TB arc ismarked both T and B for two faces. The
Type IV arcs that are removable at this step meet the easily-tested conditions that they were
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marked both T and B prior to TB arc removal, and that they currently meet the conditions
for TypelV TB arcs.

Each Type IV TB arc « lies on the boundary of two faces. If « is operable, it will conflict
with any operable Type IV TB arc that forms the opposite side of either of these faces. Thus
each such arc can conflict with at most two other arcs, and all conflicts are symmetrical. The
conflict graph has a maximum degree of 2.

Itiseasy to seethat two arcs consecutivein thecyclic order are never removed: if theopposite
sides of the faces bounded by a removed arc are not Type IV arcs, they are unaffected; if
they are Type IV arcs they will conflict with the removed arc and not be removed. Thus at
most one arc is removed from any face. When asingle Type IV TB arc between two faces
is removed, the two faces are merged into a single flowface, so no saddle faces are formed.
Also, at most two pointers can be spliced into one; if longer pointer chains were formed, two
arcs would have to be removed from some face, which is not possible.

It isaso clear that removal of a Type IV arc cannot create a topological arc. In genera the
conflict rules assure that both the top and bottom arcs on two faces stay incident to the head
andtail of theremoved arc. In the degenerate case in which the graph consists of two parallel
arcs, the arc that remainsis not combined with any other arc.

The conflict procedure for Type IV TB arcs prevents the remova of more than one such
arc from any face. Therefore at most two faces are combined. This can easily be done in
constant time.

This completes the conflict rules for various types of TB arcs. We can now argue that this
four-step procedure is sufficient to remove a constant fraction of the TB arcs. We note that
the maximum degree of the conflict graph for Type | TB arcsis 6, so the conflict resolution
procedure discussed in Section 5.1 above will yield aMISthat includesat least 1/7 of the set
that includes (1) arcs operable by thisrule and (2) Type Il and Type IV TB arcs that will not
be removed as a result of the removal of Type | arcs corresponding to vertices in the MIS.
Thearcs not in thisset are Typell, Typelll, and Type |V TB arcs that remain operable after
Type | removal.

The conflict resolution procedure for Type |l TB arcs removes a constant proportion of the
remaining operable Type |l arcs without affecting the operability of the remaining Type Il
and TypelV TB arcs.

The conflict resolution procedure for Type Ill TB arcs removes a constant proportion of the
remaining operable arcsthat are either (1) Typelll or (2) TypelV arcsthat won't be operated
on because of the remova of Typelll arcs. The argument is as for the Type | case.

Finaly, the Type IV conflict resolution procedure alows the removal of a constant fraction
of the remaining arcs. Thus a constant proportion of the arcs that were TB arcs prior to
conflict resolution will be removed.

[Degree-1 Rule] There are no conflicts between arcs operable by this rule, so the con-
flict graph has no edges. To see that no saddle or cycle faces are created, note that the
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removal of such an arc a changes only the face of which « ison the boundary. Furthermore,
removing adegree-1 vertex and itsarc causesthe number of face alternationseither to stay the
same or to decrease. Thus, given that al faces are flow faces, we start with two alternations
on the face. If the number of aternations goes down it must go to zero (there are aways
an even number of face alternations on a face), which would mean the face is a cycle face.
But that implies that the remaining boundary formed a cycle in the origina graph, which
contradicts the fact that the graph isa DAG.

Given that the graph being reduced contains no directed cycles and that there is at most one
source and one sink on aflow face, it is easy to show that there are at most two arcs operable
by this rule on any face and these arcs can’t be adjacent in the cyclic order at any vertex.
There are no problemswith processing time (i.e., with respect to pointer splicing or updating
topologica arc information) in this case.

The remaining rules affect only clean arcs. Therefore we don’t need to worry about splicing
pointers: A clean arc has no pointers through internal vertices, so its removal won't cause
any splicing. If it is contracted, the head will become top (respectively, the tail will become
bottom), and any incident pointers can be deleted (the conditions on clean arcs insure they
won’t become self-loops or backpointers). However, we do need to be careful that no more
than aconstant number of faces get combined into asingleface astheresult of theapplication
of somerule.

[Unique-In(Unique-Out) Arc Contraction Rule] An arc « operable by this rule conflicts
with itstwo neighborsin the cyclic order at the source(sink). The conflicts are symmetrical,
so the degree of any vertex in the conflict graph is at most 2. Contraction of a unique-
in(unique-out) arc won't create a cycle or saddle face: Only the two faces that have this
arc on a boundary are affected. Since the next arcs in a traversal of these faces have the
same orientation on the boundary as the contracted arc, the face remains aflow face, and the
“all flow faces’ invariant holds. The conflict rule insuresthat consecutive arcs in the cyclic
order won't be contracted, so changes in the cyclic order can be processed in constant time
in the CRCW model. There are no problems with either combining too many arcs into a
topological arc or combining too many faces together: no topological arcs can be formed
and no faces can be combined by thisrule.

(Note that there are no conflicts in which this rule applies to an arc at both a source and
asink; if a unigue-out arc from a source is the unique arc into a sink, then these vertices
plus the arc form a complete connected component. Since the reduction rules won't dis-
connect aDAG thissituationwon't arise except inthe case that the graph has exactly onearc.)

[Adjacent Degree-2 Sources and Sinks Rule] A conflict graph can be constructed as
follows: Vertices in the conflict graph will be the operable degree-2 sources. Each such
source s checks for each sink ¢ with which it is operable (there are at most 2) if thereis a
second source s’ that is operable with ¢, and if so adds an edge to s’ source in the conflict
graph.

Inaddition, s may lieon aface f that hasadegree-2 sink ¢ asitsbottom, and s isnot operable
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with ¢. However, t may be operable with another source s'; if thisisthe case, then s and s’
conflict. This conflict is defined in a symmetrical way with respect to s': if s’ is operable
withwithasink ¢, andif ¢ lieson aface f such that thetop of f isasource s that is operable,
but not with ¢, then s’ and s conflict. These conflicts are included to prevent the combination
of more than a constant number of faces or the creation of atopological arc from arbitrarily
many arcs.

Since the conflicts are symmetric, the maximum degree of any vertex in the conflict graphis
2. If any source selected for remova during conflict resolution is operable with more than
onesink, it chooses one of the sinks arbitrarily.

If only non-conflicting sources and their corresponding sinks are removed from a graph that
contains only flow faces, the conflict rules insure that each removal affects only three faces:
face f1 for which the source istop and the sink is bottom; face f, for which the sourceistop
and the sink is not on the boundary, and face f3 for which the sink is bottom and the source
isnot on the boundary (these faces are easily identifiablein Figure 3.3 in Section 3.2). When
the source and sink are removed, the remaining face consists of the paths from the top of f;
to the two saddle vertices and and the paths from the two saddles to the bottom of f3. This
forms a new flow face; the “all flow faces’ invariant continues to hold. The conflict rules
aso insure that no more than these three faces are combined into a single face.

It is obvious that no more than two consecutive arcs in the cyclic order at any vertex are
removedat once. Arcsareremovedinpairs, soif morethantwowereremoved simultaneously
there must be at least two conflicting sources.

It is straightforward to show that at most three arcs are combined into a single topological
arc. To see this, assume that four arcs could be combined into atopological arc consistent
with the conflict rules, and let «, v, and w be the vertices that become internal in the order
from tail to head of the topologica arc. Since w is not already internal, some incident arcs
must be removed. Assume that the removed arcs lie on a particular side of the topological
arc. The conflict rules will not alow al arcs to be removed from either » or « on the
same side of the topological arc. Therefore all arcs must be removed from » and « on
the other side of the topological arc, and at least one arc must be removed at each of those
vertices. But thiswouldinvolveremoving conflicting arcs, which contradictsour assumption.

[Sour ce-Sink-Sour ce (s-t-s)/Sink-Sour ce-Sink (t-s-t) Rule] To make the exposition sim-
pler, we will refer to the source involved in a potential application of the t-s-t rule as the
“operable source”, and the sink involved in apotentia s-t-s Rule application asthe “operable
sink”.

To prevent problems such as removing an arbitrary number of consecutive arcsin the cyclic
order at some vertex or combining an arbitrary number of faces, the algorithm will apply
these two rules in sequence (we will assume the t-s-t Rule is applied first, though the order
is not important). The specific procedure will be as follows: first, mark all sources and
sinks that are operable by these rules. Apply the t-s-t Rule (there are no conflicts between
operable sources). Test whether the sinks marked as operable remain operable, and apply
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the s-t-s Rule to those that do (again, there are no conflicts between operable sinks). We will
define conflicts between sources and sinks, though no conflict graph need be constructed -
thisis another case where we use conflicts for counting purposes only. To understand these
conflicts, note that applications of the t-s-t Rule could leave a neighboring operable sink
inoperable either because the number of neighboring sources drops to one, or because that
sink ends up with too high a degree. Thus, every operable sink will conflict with every
operable sink with which it is common to a face. Since operable sources have degree 3 or
less, the number of sinks that can become inoperable by a single s-t-s Rule application is
clearly bounded.

For a particular source at which the t-s-t Rule applies there may be more than one way to
apply the rule. The source can arbitrarily pick one of the ways; thisisn't a conflict in the
sense we use theterm. The same holds for applying the s-t-s Rule at some sink.

Each merging of cyclic orders at a source (for the st-s Rule) or a sink (for the t-s-t Rule)
occurs between two arcs that are not removed, so consecutive merges don't occur. Thus
there is no problem if a particular source appears in multiple s-t-s Rule applications or if a
sink appears in multiplet-s-t applications (note that a high-degree vertex may be created as
mentioned in the discussion of thisrulein Section 3.2).

To see that the remaining graph has only flow faces, note that the removal of the arc (or arcs)
out of any source affects only the structure of the two faces it borders (the case for sinksis
symmetric). These two faces are replaced by two new flow faces. The same observation
makesit clear that no arbitrary set of faces will be merged into one.

It is obviousthat no topological arcs are formed.

[Consecutive Rule] Let ¢ be an arc that is a candidate for removal by this rule, and let
the two faces of which « lies on the boundary be f1 and f>. Then a conflicts with any other
arcsthat lie on the boundariesof f1 and f> that are operable by the Consecutive Rule. These
conflicts are symmetric. The conflict graph in this case has maximum degree 6.

It is obvious that this rule prevents the removal of successive arcs in the cyclic order a a
source, sink or saddle vertex, and that the cyclic order at any combined sources or sinks can
be updated in constant time.

It is easy to see that the application of this rule cannot produce saddle or cycle faces. Any
single application of thisrule affects only the two faces of which the removed arc lies on the
boundary. These two flow faces are reconfigured into two new flow faces; the rest of the
graph is unaffected. The same argument shows that a Consecutive Rule application never
combines more than a constant number of faces into a new face. Also, no topological arcs
are produced since al removed arcs are incident only to saddle vertices and sources or sinks.

[Index-1 Saddle Rule] An arc « operable by thisrule conflicts with at most itstwo neighbors
in the cyclic order at the source(sink), provided that those neighbors are incident to different
saddles. It also may conflict with two arcs adjacent in the cyclic order at the saddle if these
arcs are incident to sinks(sources) at the saddle (i.e., when this rule is applied a a source
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there may be two sinks at the index-1 saddle that also are operable by thisrule). The degree
of any vertex in the conflict graph is at most 4 (the conflicts are symmetric).

This conflict rule insures that if an arc is contracted then none of the adjacent arcs in the
cyclic order at either end are affected, so there is no problem with splicing cyclic orders.
Applicationsof thisrulethat involve two sources(sinks) only contract arcs, so no topological
arcswill be formed, and faces will not be combined. In thiscase, the argument that no saddle
or cycle faces are created isthe same as for the Contraction Rule above.

Applications that involve a single source or sink adjacent to a saddle affect at most three
faces. The separation of the graph does not create any topol ogical arcs, and the affected faces
al remain flow faces, though their boundaries are changed. The cyclic orders at the affected
vertices can be modified in constant time.

With the exception of the first step of conflict resolution for Type Il TB arcs, the degree of each
vertex in the conflict graphs for each reduction rule is bounded by a constant. The conflict graphs
are not necessarily planar, however (e.g., it is easy to construct graphsfor which the Typel TB arc
conflict graph is not planar). They are easily constructed in constant timein the CRCW model.

It isobviousthat amaximal independent set (M1S) of vertices from a conflict graph represents
a set of vertices that can be removed in parallel without problems; it is aso obvious that a MIS
in a bounded-degree graph contains a constant fraction of the vertices. Therefore we can use the
techniques devel oped by Goldberg, Plotkin, and Shannon [GPS87] to resolve conflictsin O(log* n)
time.

If weintroduce randomi zati on, the running time can be reduced to constant timefor the CRCW
model. In particular, we can useLuby’sMonteCarlo Algorithm A (described in Reference [Lub86])
for finding aMIS in constant time.

5.2 Conflict Resolution Between Rules

We deal with the second type of conflict by proving the following lemma:

Lemmab.2 Giventheorder of ruleapplication specified inthe algorithmdescription, a singleap-
plication of any reduction rule reduces the number of arcs operable by subsequent rules (excluding
the arcs removed by this rule application) by at most a constant number.

Proof: The proof isby examining all cases.

The TB Rule affects the Degree-1 Rule only either where it lengthens (by making topological
or by adding a new topological segment) the arc incident to adegree-1 vertex, or whereit createsa
new degree-1 vertex. Thereis no reduction in the number of arcs operable by the Degree-1 Rule.

All of the other rules operate on clean unique-in or locally unigue-in arcs incident to sources
(respectively unique-out or locally unique-out arcsincident to sinks); the s-t-g/t-s-t Rule additionally
requires some locally unique-in/locally unique-out arcs that are not necessarily clean. These arcs
will not be removed by the TB Rule. Further, it isobviousthat a unique-in arc out of a source will
remain unique-in if other arcsincident to its head are removed. It is possiblethat such an arc could
become part of a topological arc if al but one arc out of the head are removed by the TB Rule,
however. Any TB arc removed will affect at most one unique-in arc at its tail. (The symmetric
argument holds for unique-out arcs into sinks.)
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Recall that locally unique-in (respectively locally unique-out) arcs are incident to saddle
vertices. Thusalocally unique-inarc a will remain locally unique-in: An arc adjacent inthe cyclic
order at the head of « is marked both T and B only if the next arc in the cyclic order has the same
orientation. However, at each step of TB arc removal, the conflict resolution procedure will not
alow the remova of two arcs with the same orientation that are adjacent in the cyclic order at
some vertex. Finally notethat if « isclean it will remain clean. If a pointer into its head were to
be created across aface of which it lies on the boundary, an in-arc adjacent at the head would have
to be removed. But the existence of such an adjacent arc would contradict the fact that thisarc is
locally unique-in. The argumentsfor locally unique-out arcs are symmetric.

Thus the application of the TB Rule doesn’t conflict with any arcs operable by subsequent
rules.

For Degree-1 Rule conflicts with subsequent rules, we first note that removal of an arc by
this rule will not make any clean arc dirty. Also note that the removal of such an arc changes the
structure of only oneface. Thusitiseasy to seethat at most one conflict can occur withthe Adjacent
Degree-2 Source and Sink Rule, and at most onewith either thes-t-s or t-s-t Rule. Since adegree-1
arc is adjacent to at most one other source or sink at a saddle vertex, at most one application of
the Consecutive Rule can be in conflict. A degree-1 arc can be adjacent to at most one index-1
saddle, so there can be at most three conflicts with the Index-1 Saddle Rule. It is obviousthat any
arc operable by the Unigue-In/Unique-Out Arc Contraction Rule is unaffected by the removal of
an arc by the Degree-1 Rule.

For the Unique-In/Unique-Out Arc Contraction Rule, two key observationsare that contraction
of such an arc will never change the face structure of the graph (e.g., top and bottom of every face
stays the same), and that arcs incident to saddle vertices will never be contracted. It is therefore
easy to see that arcs operable by the Adjacent Degree-2 Source and Sink Rule, the Consecutive
Rule, and the Index-1 Rule will not be affected. Recall that the st-s/t-s-t Rule is only applied at
sources or sinks that have either two or three locally unique-out (respectively locally unique-in)
arcs; this plus the observation that the face structure is unchanged imply that there will be no
Unique-In/Unique-Out Arc Contraction Rule conflicts with s-t-g/t-s-t Rule applications.

Next consider the Adjacent Degree-2 Source and Sink Rule. Since the arcs incident to the
source and sink involved are all removed, we don’t have a conflict with the Consecutive Rule
applied with either the source or sink as the center. This leaves at most four conflicts: a sink
adjacent to the source in the cyclic order at either saddle vertex, or a source adjacent in the cyclic
order to the sink at either saddle. For the st-s/t-st Rule there is a conflict if the sink might be
involved in a t-s-t Rule application and the source in an s-t-s application (recall from the lemma
statement that if an arc is operable by both rulesit isn't counted as a conflict). Since the s-t-sand
t-s-t Rules apply to sources and sinks that share faces, and since the degree of the source and sink
in question is 2, there is at most one conflicting t-s-t Rule application involving the sink, and at
most one s-t-s conflict involving the source. Finally, the source and sink are adjacent to at most
two vertices, so the number of Index-1 Saddle Rule applications affected is clearly bounded.

For the s-t-g/t-s-t Ruleg, first consider the Consecutive Rule. We will give the argument for an
application of the t-s-t Rule; the argument for an application of the s-t-s Rule is symmetric. There
are two ways to conflict with a potentia application of the Consecutive Rule: make one of the
arcs involved “dirty” or remove one of the arcs involved. In applying the t-s-t Rule, no clean arcs
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are made dirty, so only the second case applies. The t-s-t Rule will remove at most two arcs out
of asource, so at most four potential applications of the Consecutive Rule are affected (again, we
don’'t count cases in which the arc operable by a subsequent rule is operable by the current rule).
For t-st/st-s Rule conflicts with the Index-1 Saddle Rule, consider the case of an application of
the t-s-t Rule. At most two arcs incident to the source are removed; the two sinks are combined.
The only possible effects on potential Index-1 Saddle Rule applications are if theremoved arcs are
incident to index-1 saddles. No more than three conflicts are possibleat each saddle. The argument
for the s-t-sRule is symmetrical.

For Consecutive Rule conflicts with potential Index-1 Saddle Rule applications, we note that
the only way conflict can occur is through the removal of an arc incident to an index-1 saddle.
Since a Consecutive Rule application removes exactly one arc that isincident to a source or sink,
exactly oneindex-1 saddle can be affected. Asin previous cases of conflict withthe Index-1 Saddle
Rule, there are at most three conflicts at that saddle.

Since the Index-1 Saddle Rule is applied last, there is nothing else to prove.

O

5.3 Proof of Main Lemma

We are now ready to show that the reduction algorithm runs in a logarithmic number of iterations
of the main loop.

Lemmab5.3 [Main Lemma] For any embedded connected planar DAG consistent with our in-
variants, the generalized reduction algorithmwill work in O(log») iterations of the main loop.
Proof: Thiswill follow if we show that the reduction a gorithm removes a constant proportion of
the arcs in each pass through the main loop.

Consider the graph at the start of the main loop. After some application-specific processing
(which will not change the graph), the graph is cleaned up. Cleanup leaves the number of vertices,
sources, and sinks unchanged. The number of arcs does not increase; therefore it is sufficient to
show that we remove a constant proportion of the arcs|eft after cleanup. Lemma4.3 impliesthat a
constant proportion of these remaining arcs are operable. All that isleft isto show that we remove
at least aconstant proportion of the operable arcs.

To show this, we will argue that the total number of arcs knocked out by conflicts is bounded
by some constant times the number of arcs removed. In most cases this is obvious because the
total number of interrule and intrarule conflictsis bounded by a constant. The exceptionis TB arcs
(the first Type Il conflict graph does not have bounded degree). However, we have argued above
that a constant fraction of such operable arcs are removed, which implies that the total number of
arcs knocked out by intrarule conflictsis at most a constant times the number of TB arcs removed.
Since the number of interrule conflicts with TB arcs is bounded by a constant, the result holds.
Since every operable arc is either removed or is subject to a conflict with an arc that is removed,
thisimpliesat least a constant proportion of the operable arcs are removed.

O
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6 Applications

In this subsection we present an application that uses the abstract reduction procedure presented
above. We also present the running time and number of processors needed to run this application.

6.1 Planar DAG Many-Source Reachability

The abstract reduction procedure can be used to solve the many-source reachability problem for
planar DAGs. The problem can be stated as follows: given a planar DAG and an initial set of
vertices in that DAG as the input, compute the set of vertices that are reachable via directed paths
from the initial set. We will refer to the vertices reachable in this way as the solution set; we
include the initial set as a subset of the solution set. Our solution to this problem consists of a set
of application-specific actions taken at various points in the reduction agorithm; to show that it
works we introduce invariants that allow usto prove that the result is correctly computed.

We introduce two flags at each vertex: a*“reachable’ flag indicating whether or not the vertex
has been marked as reachable from one of the initial vertices, and an “active mark” flag that we
will use to determinewhether or not to propagate marks during the reduction phase. The agorithm
starts with the input set of vertices having both their “active mark” and “reachable” flags set. We
use the term correctly marked to indicate that a vertex in the solution set hasits “reachable” flag
set, and that a vertex not in the solution set does not.

The basic reduction algorithm combines vertices as the graph is processed. We need to
keep track of such vertices while we compute reachability. Therefore we introduce the following
terminology: A vertex in the current graph is an original vertex if it corresponds to exactly one
of the vertices in the graph prior to the start of the reduction process (we will consider sources
added during preprocessing to be origina vertices). The remaining vertices in the current graph
correspond to two or more vertices that have been combined by various reduction rules; we refer to
them as combined vertices. For each combined vertex we refer to the origina vertices that have
been combined into it asits components.

For the purpose of proving that the algorithm for the reachability application works, we define
the set of active vertices, which includesall original verticesthat are not sourcesor sinks, plusany
original sourcesthat have active marks.

For the reachability application we keep track of the status of each vertex (combined or
original).

We define areduction propagation step as follows:

o If avertex v isat the head of either a connectivity pointer or a directed arc such that the tail
of that pointer or arc is a vertex with an active mark, » sets both of its flags (we say that the
mark is propagated or passed over the arc or crosspointer). Thisrule also appliesto internal
vertices.

¢ If the directed arc over which amark is passed istopological, al internal vertices of that arc
are marked as reachable.

¢ If anyinternal vertex of atopological arc a receivesamark, the“ activemark” and “reachable”
flags of the head of « are both set.
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e The“reachable” and “active mark” flags are unset for every sink and combined vertex.
¢ Any sourcethat propagates an active mark unsetsits “active mark” flag.

An expansion propagation step isdefined similarly, except that all active vertices propagate their
marks whether or not the “active mark” flag is set or not.
The application-specific processing added to the basic reduction algorithm is as follows:

¢ At the start of each cleanup phase d propagation steps are performed, where d is the degree
limit introduced in Section 3.3. For each topological arc out of a source, if an active mark
exists at an interna vertex higher than the high point, then the high point gets an active
mark (this can be done in constant time in the CRCW modéd in constant time using the rank
order on the topological arc). During the realignment phase, if a topological segment s of
an arc out of a source isremoved or replaced by a segment with no internal vertices, and if s
contains amarked vertex, then the head of s isgiven an active mark (i.e., both flags are set).

¢ Whenever the TB Rule creates a topological arc «, if any interna vertex of « has an active
mark, the head of « is given an active mark.

¢ Just prior to the application of specific rules, various numbers of propagation steps are done
asfollows:

— One step is done before each of the Degree-1, Adjacent Degree-2 Source and Sink,
s-t-s/t-s-t, and Consecutive Rules.

— Two steps are done before the Unique-In/Unique-Out Contraction and Index-1 Saddle
Rules.

— For the TB Rule, one step is done prior to removing Typel TB arcs; two steps are done
prior to removing each of Typesll, Ill, and IV TB arcs.

¢ In rules where sources or sinks are combined with other vertices, the state of the vertices
before combination is saved for the expansion phase, and the combined vertex is unmarked
(i.e, neither of itsflags are set).

¢ For the case of the Index-1 Saddle Rule in which the graph is split, theindex-1 saddle vertex
becomes a source. The active flag at this new source should be unset.

Between the reduction and expansion phases, each topological arc that was removed marks
itself according to any marks at any of its vertices. More specifically, all vertices beyond the first
vertex marked as reachable are marked as reachable.

The application-specific steps added to the algorithm for the expansion phase are as follows:

¢ Oneexpansion propagation step isdone after arcs are restored for the Unique-1n/Unique-Out
Contraction and the Index-1 Saddle Rules; two are done for the Degree-1 Rule.

e AsTB arcs are added back to the graph their interna vertices may need to be marked. This
involves checking crosspointersand checking thetail of thearc. If thetail hasits*reachable”
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flag set, dl the internal vertices set their “reachable” flags. Otherwise, each internal vertex
checks the lowest point that can reach it on each face it borders and sets its “reachable’
flag accordingly. Also during expansion any vertices that became components of combined
vertices are marked as necessary as they revert to origina vertices. Note that the “active
mark” flag is not used in this process. This step is done twice after Type IV TB arcs, twice
after Typelll TB arcs, twice after Typell TB arcs, and once after Type | TB arcs are restored.

At the end of the expansion phase we remove the restriction that sinks cannot be marked and
do one more expansion propagation step to mark the sinks correctly.

Itiseasy to seethat given theinformation on faces and topol ogical arcs all of these application-
specific actions can be done in constant timein the CRCW model.

The following lemma is useful in the proof that the reduction invariant holds through the
cleanup phase (cleanup is discussed in Section 3.4, and some of the terminology used below is
introduced there as well). A similar argument will be used to show that the expansion invariant
holds through the reverse of the cleanup phase during expansion. For simplicity, in the text below
we will refer to the highest points reachable from the frontier or beyond as “high points’; if no
vertex isreachable from the frontier or below, then the frontier vertex is the high point.

Lemma 6.1 For each topological arc « out of a source of degree < d, let v be the the highest
internal vertex on « that both lies above the high point of « and is reachable from an active mark.
Then during reduction, after d — 1 mark propagation steps » is marked correctly.

Proof: Such avertex » is reachable only from marks that lie above the high points for this
source, so we can prove this claim by looking at the subgraph consisting of the source and all arcs
(or segments of arcs) out to the high point, and al pointers that lie between two vertices in this
subgraph. Note that there is such a» for each arc in the subgraph that is reachable from an active
mark. If » isthe source, the result istrivia. If v aready has an active mark, the result is again
trivial. If the source does not have an active mark and » is not yet marked, then thelast link in the
path from any mark must be a crosspointer. In particular, there must be a crosspointer from ', the
highest point reachable from amarked vertex on the other side of one of the adjacent faces. » must
be at the head of a crosspointer from some vertex « reachable from a mark; if « is not the highest
reachable vertex on its arc «’, then the pointer rules indicate that the highest reachable vertex on
a’ must have a crosspointer to avertex on « that isat least as high as v. Since such a crosspointer
could not be to a higher point than v (that would contradict the fact that v is the highest point
reachable from a mark), the crosspointer must be to ».

We continue extending this path of crosspointers back until it reaches a marked vertex. Note
that the path can never backtrack to an arc that has previously been visited: no higher point on
such an arc can lie on such a path (this contradicts the fact that the path includes only the highest
reachable vertices); no lower vertex or one already on the path could lie on such a path because
that would imply the existence of a cycle in the origina graph, which is a DAG. Thus the path
can have length at most d — 1, and the phase of propagation across pointers will cause the highest
points reachable from marks to be marked.

O

To prove that this marking process correctly marks the reachabl e verticeswe use the following

invariants, onefor the reduction phase and one for the expansion phase. The reduction invariantis
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asfollows:
Lemma 6.2 During the reduction phase, the following two conditions hold:

1. Thereisno path from one active vertex to another through a vertex that is not in the active
set (i.e., an original source with no active mark, a combined vertex, or a sink).

2. One or both of thefollowing conditionshold for a vertex » in the active set if and only if v is
in the solution set:

e vismarked; or

¢ thereexistsa path of arcs or crosspointersfroman active mark at an active vertexto v,
and the vertices on this path are all active vertices.

Proof: The proof proceeds by induction. The base case istheinitial graph. Thefirst part of the
invariant is obviously true since al vertices are in the active set. The second part of the invariant
holds by the definition of the problem (note that the preprocessing adds only sources, so no added
vertices violatethe invariant).

For the induction step we consider the effects of the mark propagation steps, cleanup, and
applying each rule in a single pass through the main loop. By the induction hypothesis, the
invariant holds at the start of a pass through the main loop; by the argument below, it holds at the
end as well, thus proving the lemma.

Cleanup: The first cleanup phase is application-specific processing, which for the current
application consists of d rounds of mark propagation. Since mark propagation doesn’t change any
path in the graph or combine any vertices, thefirst part of theinvariant obviously remains true.

It isalso obviousthat the second part of theinvariant continues to hold because it holds prior
to propagation by the induction hypothesis, and because marks are propagated only over paths of
arcs and crosspointers through active vertices.

At thispoint any sources or sinkswith degree higher than d (the cleanup degree constant) drop
out of the cleanup process. Since they are unaltered by further cleanup steps, no changes to the
invariant occur. We only need consider sources and sinks that are cleaned up.

The determination of the highest internal vertex on an arc out of a source reachable from the
frontier (respectively lowest internal vertex on an arc into a sink that can reach the frontier) does
not affect the invariant.

To show that the invariant holds after realignment, we first note that if » is an active vertex
that lies between ahigh point and its cleaned source or below alow point and its cleaned sink, then
v isremoved. Second, it is straightforward to see that there is a path between two vertices after
realignment only if there was a path between those vertices prior to realignment. In conjunction
with theinduction hypothesisand our previous arguments, thisimpliesboth that thefirst part of the
invariant continuesto hold, and that there is no path from an active mark to any active vertex not
in the solution set (i.e., the second part of the invariant holds for vertices not in the solution set).
Third, the second part of the invariant continues to hold for any marked active vertex. All that is
|eft to show is that the second part of the invariant continues to to hold for unmarked vertices in
the solution set.

Consider any path P from an active mark to a remaining unmarked active vertex such that P
existsprior to realignment. Since therealignment actionsdon’t disturb pathsthat don’t include any
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vertices above high pointsor below low points, if P issuch apathit will remain after realignment.
By definition of low point, once a path reaches a vertex below the low point on an arc into some
sink, all subsequent vertices on that path must be below the low point on some arc into that sink.
Thus, P cannot pass through a vertex below the low point at any sink (recall that no vertices below
low points remain after cleanup). The only remaining case to consider isif P passes through
vertices above the high point at some source. By the definition of high point, such a path cannot
include a vertex above a high point on an arc out of some source unless the path starts at such a
vertex at that source. Thusif P issuch apathit startsat an active mark above a high point at some
source. Assume that thisis the case. We need to show that any vertex on P that remains after
realignment remains reachable from an active mark.

Note that Lemma 6.1 above impliesthat any high point / reachable by such an active mark at
the same source will get an active mark as aresult of the application-specific processing:

¢ either some vertex above h is reachable by such amark, in which case the lemma shows that
the highest reachable point above i will be marked, which implies & will be marked when
marks are propagated to high points,

¢ or i will be the highest point on its arc « reachable by such amark. In thiscase thelast link
on the path from the mark to 7 must be a crosspointer from some vertex on an arc «’. But
then the crosspointer from «, the highest reachable point above the high point on «’, must
alsohave h asitshead (it must point at least ashigh as &, but no higher point on a isreachable
from such amark). By thelemma, « has been marked after d — 1 propagation steps; then A
will have been marked after the d propagation steps.

Thus the second part of the invariant holdsfor paths that go through high points.

If P doesnot go through a high point, there must be afirst vertex » on the path that lies below
a high point, and the path must follow a crosspointer from a vertex » above a high point to ». But
this implies that there is a crosspointer p from «’, the highest point marked on «’s arc, to some
point v’ a or above » on v’s side of the flow face. If v’ is above the high point, the high point will
be marked as per the previous paragraph. Otherwise Lemma6.1 saysthat «’ is marked by thetime
d — 1 propagation steps have occurred, so v’ will have been marked by the time d propagation steps
have occurred. Either way, the claim will hold.

TB Rules: The TB Rule does not combine vertices or create new paths, so thefirst part of the
invariant continuesto hold.

To show that the second part of the invariant continues to hold, we show that it holds after
each step in the rule application/conflict resolution procedure.

The rule is first applied for Type | TB arcs. Note that the conflict resolution for this step
ensures that at most one arc per face isremoved in this step. We first consider the paths left after
Type | TB arcs are removed. In particular, we want to show that for any pair of active vertices u
and » that remain after Type | arcs are removed, if therewas apath P from « to » prior to removal
then there is a path P’ from u to v after removal. Since the first part of the invariant holds at the
time of removal, the path left after removal will include only active vertices. There are four cases
to consider on the basis of how aremoved Type | arc a isinvolved in the origina path P:

e Thepath includesa. There are two possibilities: First, « may be replaced by a crosspointer,
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which replaces « in the path. Second, the tail of « may already have a crosspointer to
a point above a’s head on the other side of the face. In this case « will not be replaced
by a crosspointer. However, there is a path from the tail of « to the head of « across the
crosspointer and down the opposite side of the face. This path was in existence prior to the
removal of «. Since the second half of the invariant held previously, and since the head and
tail of a are active, al vertices on this path must be active. Since no other arcs on thisface
are removed, this path is not broken by the removal of any other Typel TB arc.

¢ The path enters the tail of « and leaves a viaa crosspointer out of an internal vertex across
face f. In this case we need to consider whether « ismarked T or B on f (recall that Type |
TB arcs are marked T on one adjacent face and B on the other, and that they are not both
T and B on any face). If itismarked T, then thetail of « isthe top of the face and there is
a path from the tail of « to the head of the crosspointer along the opposite side of the face
prior to a’s removal. Since at most one arc per face is removed, this path is not affected by
Type | arc removal. If it is marked B, the crosspointer at the tail of « pointsto a vertex on
the opposite face as high or higher than the crosspointer involved in the original path. Thus
using the crosspointer at thetail of « and part of the opposite side of the face boundary gives
an aternative path; again, this path is not affected by Type | arc removal.

¢ The path enters an internal vertex of « via a cross pointer across face f and leavesviaa’s
head. Let w betheinternal vertex on a where the crosspointer enters. Again, we consider the
casesinwhich a ismarked T or B with respect to f. If it is marked T, then the crosspointer
out of w on the other face f’ adjacent to a reaches a point at or above the head of a (a is
marked B with respect to f'); this provides that aternative path and is not affected by other
Typel arc removals. If « ismarked B with respect to f, then thereis a path from the tail of
the crosspointer to the head of « aong the side of f oppositeto a. Asin previous cases, this
path is not affected by removal of any other Typel TB arc.

¢ The path enters an internal vertex w of « via a crosspointer p across face f and leaves «
via a crosspointer p’ across face f’ out of interna vertex w’. By the specification of the
crosspointers, the crosspointer p” out of w across f reaches apoint on the oppositeside of f”
that isas high or higher than the point reached by p’. Thus after arc removal the crosspointer
that results from splicing p and p”” and possibly a segment of what was the opposite face of
/! will provide the alternative path.

The only other problem that could occur during Type | arc removal isthat an active mark at an

internal vertex might be deleted when the associated arc is removed. We must show that this does
not affect the invariant by leaving some unmarked active vertex in the solution set without a path
from an active mark. We will show that thisis prevented by the single step of mark propagation is
done prior to Type| arc removal.

To seethat any vertex reachable from an active mark is still reachable after the Typel TB arcs

are removed, consider the situation just after removal. Any active mark removed must be at an
internal vertex » of some topological arc a. There are two cases to consider. The first case is that
the mark started at ». In this case the propagation rules insure that if the head is an active vertex,
it will be marked with an active mark, which, given the argument above, impliesthat the invariant
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will continue to hold for any path from » through the head of the arc. The other paths out of »
are viacrosspointers. Note that the pointers out of » reach as high or higher than the crosspointers
out of vertices lower than » on a. Thus for any path out of a lower vertex we can find a path
out of a crosspointer at » and down the opposite side of some face; we only need to consider the
crosspointers out of ». The heads of v's crosspointers are marked by the propagation phase, and
since they lie on aface common to «, they are not removed when the Type | TB arcs are.

The second case to consider iswhen » receives an active mark as the result of the propagation
phase. If the mark propagates in via the tail of «, then «’s head is marked. Furthermore, since
a source cannot be at the tail of a Type | TB arc, the active mark remains at the tail. Thus, any
remaining vertex that was on the boundary of the face f for which « is marked T is reachable
from this active mark. The only paths left to consider are those that leave » through a crosspointer
on f’, the face for which « is marked B. But the crosspointer out of «’s tail reaches as high as
the crosspointer out of v and provides a path from the active mark at «’stail to any vertex on the
oppositesideof f’ reachablefrom ». Since no other arcson f or f/ areremoved, theclaim holds. If
v received the active mark across a crosspointer p, then again the head of « ismarked. If p isacross
face f, v's crosspointer on f isto apoint below the tail of p since the graph isa DAG. Thusthe
only paths |eft to worry about are those that cross a second face f/ of which « is on the boundary.
All these paths would be via a crosspointer p’ out of ». However, p and p’ will be spliced into a

new pointer that provides a path from thetail of p (where the active mark remains) to the head of
/

p.

The invariant therefore holds after Type | TB arc removal. We next consider the situation
when Type Il, Type Ill, and Type IV TB arcs are removed. These cases are similar and can be
treated together.

We start with the useful observation that an arc of these types is marked both T and B on at
least one face f, and that the conflict rules assure that no arcs are removed from the opposite side
of f. Thus, when such an arc isremoved a path from thetail to the head remains undisturbed.

We again havethe situationthat if apath from avertex « to avertex » existsbefore TB arcs of
any of these types are removed, then it exists after the arcs are removed. The arguments to show
this are similar to the to those used for Type | TB arcs. However, in this case there is the added
complication that two such arcs connected by a crosspointer can be removed simultaneously. Asa
result, there are more cases to consider when an arc « isremoved:

¢ Thepath enters thetail of ¢ and exits the head.

The path enters the tail of « and exits a crosspointer to a vertex that is not removed.
¢ Thepath enters « viaacrosspointer from avertex that is not removed and exits viathe head.

¢ The path enters a via a crosspointer from a vertex that is not removed and exits via via a
crosspointer to a vertex that is not removed.

¢ The path enters the tail of « and exits a crosspointer to a vertex on b, and exits via the head
of b.

e The path enters the tail of « and exits a crosspointer to a vertex on b, and exits via a
crosspointer to a vertex that is not removed.
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¢ Thepath entersa viaacrosspointer from avertex that is not removed, exits viaacrosspointer
to avertex on b, and exits the head of b.

¢ Thepath entersa viaacrosspointer from avertex that is not removed, exits viaacrosspointer
to avertex on b, and exits b viaa crosspointer to avertex that is not removed.

The details of the arguments for these cases are similar to those for the Type | TB arc arguments,
and are left to the reader.

The arguments that no active marks are lost are also similar to the arguments in the Type |
TB arc case. There may be one additional crosspointer to dea with; however, the two propagation
steps for these three types are sufficient to insure that the marks reach vertices that aren’t removed.
Once again the details are | eft to the reader.

This provesthe claim for the TB Rule.

Degree-1 Rule: Once again we note that application of this rule doesn’t create any new
paths, so by the induction hypothesis and the preceding arguments, the first part of the invariant
continues to hold. Also, no paths from active marks to vertices not in the solution set exist after
rule application, so the second part of the invariant continuesto hold for active vertices not in the
solution set.

To show that the second part of theinvariant continuesto hold for activeverticesinthe solution
set, we first consider a degree-1 source. Note that we can't assume that «,, the arc out, is clean,
because the application of the TB rules may have madethearc out alonger topological arc. Because
all faces are flow faces, a, is both the left path and the right path of the boundary of aflow face,
and is the top arc on both sides of the face. Thus there are no pointers into a, from any vertex
outsideit; such a pointer would be a backpointer and would imply that theinitial DAG had acycle,
which isimpossible. Thusthe only paths between active vertices that involve internal vertices on
a, or its head are those that start at such a vertex. Therefore if there is no mark internal to the
removed arc, theinvariant continuesto hold; if there is an active mark interna to the arc then any
vertex reachable from the mark is reachable via a path through the head of the arc, which will get
an active mark as aresult of the propagation step for this rule application, or will have one aready.

Thecasefor asinkissimple. Thearc a; into adegree-1 sink is the bottom arc on both sides of
aflow face. Therefore there can be no paths out of any vertices on «, to higher points on the face
because the graph started as a DAG. This implies there are no paths between any active vertices
that will remain after this rule application through these vertices, and no such paths that start at
these vertices. The arc a; can be removed without affecting paths from active marks to remaining
active vertices.

Unique-In(Unique-Out) Arc Contraction Rule: Note that a necessary condition for con-
traction of an arc to change the connectivity of the graph is that there be a path into some point
below the tail of the arc and a path out of some point above the head of the arc. If the arc is not
topological, thistranslates to a path into the head of the arc and a path out of thetail of the arc.

We first consider a unique-in arc a incident to a source s. Since thisrule is only applied if «
isclean, it is easy to show that the contraction of « doesn’t change the connectivity of the graph:
Because « is clean, there are no pointersinto « or its head across the faces of which « ison the
boundary, and, since « is the unique arc into its head, any pointers across any other faces into the
head of « would be backpointers and contradict the fact that the graph isa DAG. By the condition
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stated above, contraction of « cannot create any new paths, so thefirst part of the invariant and the
invariant condition on vertices not in the solution set continue to hold. It isaso easy to see that if
P isany path from an active mark to an active vertex such that neither s nor the head of « lie on
P, then P isunaffected by the contraction. The only cases |eft are if either s or the head of « had
an active mark prior to contraction. These cases are handled by the two propagation steps prior to
rule application, which will either mark the vertices reachable from these vertices or will leave an
active mark at an intermediate active vertex that is not affected by the application of thisrule.

For sinks, asymmetric argument showsthat no new pathsare added, whichimpliesthat thefirst
part of theinvariant and the invariant condition on active vertices not in the solution set continue
to hold. Also, any path that doesn’'t pass through the tail of the contracted arc is unaffected (the
sink is never an active vertex and has no paths through it). Since the only paths through the tail of
a must next cross ¢ and terminate at the sink, the condition on active verticesin the solution set is
unaffected.

Adjacent Degree-2 Sour ces and Sinks Rule: For thisrule we a remove a source and a sink
and their (clean) incident arcs. No new paths are created, so thefirst part of theinvariant continues
to hold, and the second part of the invariant continuesto hold for active vertices not in the solution
set. We aso need to show no paths from active marks to active vertices are broken. The only
such paths that can be broken are those that start at an active mark at the removed source, so the
propagation step will insure that any vertex reachable from a mark at the source is either marked
or reachable from an active mark at an intermediate vertex along the original path.

Sour ce-Sink-Sour ce (s-t-s)/Sink-Sour ce-Sink (t-s-t) Rule: First consider the s-t-srule. Two
sources get combined into a single vertex, which will no longer be active. The only new paths
created are those that start at one or the other of these sources, so no paths are created that violate
theinvariant condition for active vertices not in the solution set. Since there is a propagation step,
neither of these sources will be active and the first part of the invariant will continue to hold. We
aso need to worry about breaking paths from active marks to active vertices in the solution set to
compl ete the argument that the invariant holdsfor applications of thisrule. But the only such paths
that are affected by this rule are those that start at the sources (the sink is not in the active set, so
removal of an arc into it doesn’t break any such paths). The propagation step arguments used for
previous rules apply here and give the desired result.

For the t-s-t Rule, two sinks get combined into a single vertex, which is not active. No new
paths are created to any active vertex, so no paths are created that violate theinvariant condition for
active vertices not in the solution set, nor are any created that violate the first part of the invariant.
We again only need to worry about breaking paths from active marks to active vertices in the
solution set to complete the argument that the invariant holds for applications of thisrule. But the
only such paths that are affected by thisrule are those that start at the source that loses an arc. The
propagation step arguments used previously again apply and give the desired result.

Consecutive Rule: The arguments here are essentialy the same as those for the s-t-sand t-s-t
rules. aclean arc is deleted and two sources or sinks are combined. No new paths are created, so
the first part of the invariant is unaffected, as is the condition on vertices not in the solution set.
No paths from active vertices to other active vertices are affected with the exception of paths from
active marks at sources involved in the rule application; as in previous cases, the propagation step
for thisrule will insure that the invariant still holdsfor active vertices in the solution set.
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Index-1 Saddle Rule: There are two basic cases to consider: application with respect to
sources and application with respect to sinks. In the situation where the ruleis applied with respect
to sources, there are two subcases: applications that involve contraction of arcs, and applications
that separate the graph.

First consider the case of two distinct sources s; and s, with clean arcs into the saddle. By
the same kind of arguments used in the Unique-In/Unique-Out Arc Contraction Rule, the only
paths into the saddle are the two arcs out of the sources. If both arcs are contracted by the rule
application, the same argument applies as for the Contraction Rule; if only one arc is contracted
(w.l.0.g. assumethearc incident to s1), then the only new paths created are those starting at s, and
exiting the combined vertex via an arc that was out of s;. However, since two propagation phases
were performed prior to contracting the arc, s, no longer has an active mark (remember that the
“active mark” flag at a source is unset after propagation) and thus is not an active vertex, so the
invariant is not violated. Therest of the argument proceeds as for the Contraction Rule.

Next consider the case where the Index-1 Saddle Rule is applied at a source that is incident
to the only two arcs into the saddle. In this case the two arcs from the source to the saddle are
deleted and the graph is separated into two graphs. First consider the case for a degree-2 source.
By previous arguments used for other rules in which arcs were only deleted, the first part of the
invariant and the second part of the invariant’s condition on active vertices not in the solution set
will continueto hold since no new paths are created. If the source has degree 3, thetail of thethird
arc out of the source will become the former saddle, thus creating new paths. However, the former
saddle becomes a source and (as part of the application specific processing) loses any active mark.
Thus the new paths do not violate either the first part of the invariant or the second part of the
invariant’s condition on active vertices not in the solution set, which continue to hold. The rest of
the argument is the same in the case of either degree-2 or degree-3 sources. For active verticesin
the solution set we need to show that no paths from active marks to unmarked vertices are broken.
Since the only paths broken by splitting the graph are those that go through the saddle, and since
the only arcs into the saddle are from the source, we only need to worry about the case in which
the source has an active mark. However, by the same arguments used above, the two propagation
steps prior to rule application will insurethat the invariant continues to apply for active verticesin
the solution set, which are either marked or are reachable from someintermediate active vertex not
affected by the rule application.

Third, consider the case of two distinct sinks ¢, and ¢, with clean arcs out of the saddle. By
using arguments used for the Unique-In/Unique-Out Arc Contraction Rule, the only paths out of
the saddle are into the sinks. If both arcs are contracted, no new paths are added, which implies
that the first part of the invariant and the invariant condition on active vertices not in the solution
set continuesto hold. If only onearc is contracted, the only new paths created are thosethat extend
a path into the combined vertex created from the contracted sink (say ¢1) and the saddle. These
pathsall either end at the combined vertex or at ¢,. Since sinksand combined verticesare not in the
active set, the the first part of the invariant and the condition on active vertices not in the solution
set are again unaffected. For active verticesin the solution set, no paths are broken and the second
part of theinvariant continuesto hold.

Finally, consider the case where one sink is incident to the two clean arcs out of the saddle. In
this case the two arcs from the saddle to the sink are deleted and the graph is separated into two
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graphs. First consider the case for a degree-2 sink. By previous arguments used for other rulesin
which arcs were only deleted, the first part of the invariant and the invariant condition on active
vertices not in the solution set will continueto hold since no new paths between active vertices are
created. If the sink has degree 3, the head of the third arc into the sink will become the former
saddle, thus creating new paths. However, the former saddle becomes a sink, which is not in the
active set and will not be marked as part of the reduction application-specific processing. Thusthe
new paths do not violate either the first part of the invariant or the second part of the invariant’s
condition on active vertices not in the solution set, which continueto hold. Therest of the argument
isthe same in the case of either degree-2 or degree-3 sinks: For active vertices in the solution set
we need to show that no paths from active marks to unmarked vertices are broken. Since the only
paths broken by splitting the graph are those that go through the saddle, and since the only arcs
out of the saddle are to the sink, it is clear that for active vertices in the solution set, no paths are
broken and the invariant continuesto hold.

O

At the end of the reduction phase, consider the active vertices. If we stop reduction when the
graph is some constant size, all active vertices reachable from an active mark can be marked in
constant time.

As noted above, between the reduction and expansion phases all removed topological arcs are
correctly marked by propagation of any marks on internal vertices. Since the rank order of the
vertices on the topological arc is known at the time of removal, we can use standard techniquesto
determine the first marked internal vertex in constant time in the CRCW model. All vertices can
read thisrank and mark themselvesif they have ahigher rank. Thusall this processing can be done
in constant timein the CRCW model.

At this point the expansion phase begins. Expansion proceeds by reversing the reduction steps
of the basic reduction algorithm, with application-specific steps added as specified above. Our
moving of vertices between various sets for analysis purposes will also be reversed. Recall that
during the expansion phase we will allow all marks at original vertices to propagate.

The expansion invariant is as follows:

Lemma 6.3 During the expansion phase, all active vertices are correctly marked.

Proof: This proof aso works by induction on backward passes through the main loop. The
base case follows from the discussion above and the following observations about the reduction
procedure; First, since there are no active marks at vertices not in the active set, and since all mark
propagation is from vertices with active marks to active vertices, the reduction invariant therefore
impliesthat no active vertices are incorrectly marked.

We notethat for the Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule, the Consecutive
Rule, and the Adjacent Degree-2 Sources and Sinks Rule, the only change to the active set when
these rules were applied in the reduction phase was that some sources dropped from the active set.
In particular, sources that had an active mark propagated that mark out. By the argument above,
these vertices were correctly marked prior to rule application, and thus are marked correctly when
they arereturned to the set of active vertices. Thus, in reversing these steps the expansion invariant
remains unchanged.

For the Unique-In(Unigque-Out) Arc Contraction Rule and the Index-1 Saddle Rule, we note
that the only vertices that could be dropped from the active set when these rules are applied are

56



those at the head (respectively tail) of an arc contracted into a source (respectively sink), plus any
active source involved in the contraction. (In the case of the Index-1 Rule, these arcs may have
been removed rather than contracted).

We start by considering the case where an arc « incident to a source was contracted. In
expanding, if the source becomes active then by the definition of the active set it must have had an
active mark prior to contraction, and is thus marked. Because the reduction invariant held at the
time of contraction thismark iscorrect. If v, thehead of @, becomes active, then sincethereduction
invariant held prior to contraction either » ismarked correctly or there was an active mark at some
vertex with a path (through active vertices) to ». But we proved above that v is reachable only
from the one or two sources that have arcs into it, in which case if » was in the solution set but
was unmarked prior to rule application, then there must have been an active mark at such a source.
This mark would have marked » during the propagation step for thisrule.

In the case of an arc ¢ with tail v that was contracted with a sink ¢, we recall that sinks are
never in the active set, and thus we only need to consider the case when » becomes active upon rule
reversal. First consider the case when » isnot in the solution set. Since thereduction invariant held
prior to contraction, » is not marked, nor are any active vertices that have paths to ». Therefore
after the expansion propagation step » is still unmarked. If » isin the solution set, either » was
marked prior to contraction, or there was an active mark at some vertex « and a path form « to »
through active vertices. Thisimpliesthat prior to contraction there was an active vertex w with an
arc (or perhaps apointer) into ». By theinduction hypothesisand the fact that « was not combined
during thisrule(i.e., it remained active), w is correctly marked when « isrestored, so » is correctly
marked during the subsequent expansion propagation step.

For cases in which the Index-1 Rule separates the graph, first consider the case of a source
incident to both arcsinto an index-1 saddle ». If after restoring these arcs v is active, we have the
following cases:

e visinthesolution set and isaready marked. The invariant obviously holds here.

e v isnotin the solution set. We note that the only paths into v are the arcs from the source.
Then the reduction invariant implies the sources can’'t be marked. Thus » is not marked by
the propagation step and the invariant holds.

e v isin the solution set and not marked. By the reduction invariant that held prior to
rule application, the source must have been marked and the propagation step prior to rule
application would have marked », so this case doesn’t occur.

Now consider the case of asink incident to both out arcs from an index-1 saddle ». Each copy
of v (onein each of the graphs left after separation) became a sink and was subsequently inactive.
If v becomes active when the rule is reversed, the situation is basically the same as in the case of
expansion of aunique-out arc incident to asink. Inthiscaseif » isin the solution set but unmarked,
we can guarantee that an adjacent vertex remained active when this rule was applied (this follows
from the conflict resolution procedure for the Index-1 Rule and the two steps of propagation done
prior to applying this rule in the reduction process), and is now marked. Thiswill insurethat v is
marked during the expansion propagation step.
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Degree-1 Rule: When a degree-1 arc is restored, vertices interna to that arc may become
active. Consider such an arc a. As was noted above in the argument for the reduction invariant,
there are no crosspointersinto the internal verticeson a. To see that the invariant continuesto hold
we consider the following sets of vertices that become active:

¢ Vertices in the solution set that are marked. It is obvious that the invariant holds for these
vertices.

e Vertices in the solution set that are unmarked. Note that if these are internal vertices, at
the time of their removal the only path to them was through a higher vertex on the arc.
If ¢ isincident to a source, then the reduction invariant implies that there must be a mark
somewhere on « that was propagated to all reachable vertices in the step between expansion
and reduction. If ¢ isincident to a sink, then either the situation described above occurred,
or thetail of « was active. In this case there isa marked vertex with an arc or pointer to the
tail of ¢, and the two expansion propagation stepswill insure that the vertices of thistypeare
marked (the tail will become a sink when a is removed, so two steps are necessary).

¢ Verticesthat are not in the solution set. Recall that the reduction invariant implies that these
vertices are not marked, no higher vertex on the arc can be marked, and no vertex incident
to an arc into any vertex on a can have amark. Thus these vertices will remain unmarked.

TB Rules: Asin previous cases, the reduction invariant allows us to argue that vertices not in
the solution set will not be marked. Thuswe need only consider restored active vertices that arein
the solution set. Such verticesthat are already marked are consistent with theinvariant, so we only
need to consider unmarked restored vertices in the solution set.

In the expansion phase the algorithm may restore atopological arc withinternal verticesinthe
solution set that were not marked at the time of removal. To see that these vertices are properly
marked after the propagation step following thearc’ srestoration, first notethat any marksat interna
vertices were propagated correctly between the reduction and expansion phases. Thus we only
need to consider marks that come from outside the arc. By the reduction invariant, the only paths
through which such marks can reach the arc must be through active vertices either at thetail of this
arc or at thetails of pointersincident to internal verticeson the arc (as noted above, the marks could
be at thetail of apath of pointersthrough internal vertices on restored arcs, but such paths can have
length two at most). By the induction hypothesis these active vertices are correctly marked, so in
the case where there isa mark at the tail of some restored arc, the internal vertices will be marked
correctly by the expansion propagation step.

Now consider the case in which thereis an unmarked vertex » on restored arc a such that v is
in the solution set and the tail of « isunmarked. As noted above, there must be a path from some
marked vertex that first crosses a crosspointer into «, then travels along some (possibly empty)
segment of « to ». We now use thefollowing fact, whichiseasy to prove: Thereisamarked vertex
1 on the opposite side of aface f from » such that thereisa path from « to » of the form described
aboveif and only if the lowest vertex across f that can reach » is marked. Therefore the marking
process described in the application-specific processing will work (we note that the restoration of
Typell TB arcs can break pointers into three pieces, so two steps are necessary in that case).
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Cleanup: In reversing the cleanup process, the algorithm can restore some vertices that lie
above high points or below low points to the active set. Asin previous cases, vertices not in the
solution set are not marked, nor will they be marked upon restoration. Thus we again only need
worry about verticesin the solution set. If such vertices are marked, the reduction invariant implies
they are correctly marked; thus we only need to worry about unmarked vertices in the solution set
that become active.

For such vertices above high points, we argued above that the highest such points on each
topological arc at a cleaned source were marked prior to removal. This implies that all lower
vertices on the topologica were marked in the step between reduction and expansion, so no
unmarked vertices of the type we' re considering remain above high points.

Thuswe need only to show that unmarked vertices below low pointsand in the solution set are
correctly marked after the d expansion propagation steps following the restoration of the previous
graph structure. The argument is similar to that in Lemma6.1. The claim follows by noting that
for each arc containing a vertex that should be marked, thereis ahighest point at or below the low
point that should be marked. If this highest point is already marked, we can propagate the mark
along the topological arc to mark every active vertex on the arc as described below. If the highest
point » reachable by a mark is not yet marked, then the last link in the path from a mark must be
over a crosspointer. In particular, there must be a crosspointer from the highest point reachable
from a marked vertex on the other side of one of the adjacent faces: there must be a crosspointer
from a vertex u reachable from a mark; if « is not the highest reachable vertex on its arc, then
the pointer rules indicate that the highest reachable vertex on «’s arc must have a crosspointer to
avertex on v'sarc that is at least as high as ». Since such a crosspointer could not be to a higher
point than » (that would contradict the fact that » is the highest point reachable from a mark), the
crosspointer must beto ».

We continue extending this path back until it reaches a marked vertex. Note that the path can
never backtrack to an arc that has previously been visited: no higher point on such an arc can lie
on such a path (this contradicts the fact that the path includes only the highest reachabl e vertices);
no lower vertex or one already on the path could lie on such a path because that would imply
the existence of a cycle in the original graph, which is a DAG. There are two cases to consider.
First, the path works its way back to some marked vertex at or below the low point. Since no
arc can appear in the path more than once, the path will have length at most d, and the phase of
propagation across pointers will cause the highest points reachable from marks to be marked. The
propagation of marks along topological arcs will mark therest of the verticeson the arc. If the last
vertex at or below alow point is not marked, then the path from a mark must go higher than the
low point through some active vertex. In particular the path from a mark into thislast vertex must
be a crosspointer; the vertex at the tail of the crosspointer must be active (otherwise the reduction
invariant would have been contradicted) and thus must be marked by theinduction hypothesis. The
low point on bottom arc of the side of the face below the marked vertex is not on this path by the
construction since it will be marked or not active; thus the path is again of length at most d, and
will be marked by the propagation steps.

To see that we can propagate marks at internal vertices along topological arcs, recall that we
keep a rank ordering of the vertices on the topological arc. Thus, in the CRCW ARBITRARY
model we can use standard techniques to determine in constant time the highest marked interna
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vertex, and therefore in constant time we can have every lower vertex mark itself.
O

These invariants are sufficient to prove that at the completion of the agorithm the graph is
correctly marked.
Theorem 6.4 The marking procedure specified above solvesthe many-source reachability problem.
Proof: By Lemma6.3, every vertex in the graph is correctly marked at the end of the expansion
phase except sinks. Thus, the last step of marking sinks will mark each sink if and only if itisin

the solution set, and the theorem holds.
a

6.2 Running Time and Processor Count

The running timeis determined by observing that the main loop is executed O(logn) timesin the
reduction and expansion phases. The running time of the main loop is dominated by the O(log* »)
timeit can taketo resolve conflictsfor some of thereduction rules. Preprocessing timeisdominated
by thetimefor themain loop, so therunningtimeisO(logn log* ») (thiscan bereducedto O(logn)
through the use of randomization as noted above). The algorithm can be run using one processor
per face, vertex, and arc, whichislinear in the size of the input graph. When combined with Kao's
strongly connected components algorithm [Kao93] the running time becomes O(Iog3 n).

7 Reducing Planar Digraphswith Cycles

The techniques above can be expanded to work with planar graphs that have cycles. This is
particularly useful in that we can then compute strongly connected components, and thus we can
compute many-source reachability for any planar digraph (by first computing strongly connected
components and then contracting them, then computing many-source reachability, then expanding
back out the strongly connected components).

The reduction agorithm for the cyclic case is more complicated, as are the proofs of its
correctness. We summarize some of the differences below:

¢ We must introduce two new rules (an arc contraction rule and an arc removal rule) for cycle
faces. The structura invariant changes to alow cycle faces as well as flow faces.

¢ In addition to crosspointers on flow faces we must keep backpointers to the highest point
reachable on the same side of the face.

¢ Cleanup is more complex because of the backpointers. We must now clean up two levels
of arcs from sources or sinks. In addition, we must spend O(logn) time determining the
connectivity implied by the backpointers during cleanup.

¢ The operability proofs must be modified to take into account the existence of cycle facesin
the graph.

Details will be provided in afuture Technical Report.
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