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Abstract

Inferring scene geometry and camera motion from a stream of images is

possible in principle, but is an ill-conditioned problem when the objects are

distant with respect to their size. We have developed a factorization method

that can overcome this di�culty by recovering shape and motion without

computing depth as an intermediate step.

An image stream can be represented by the 2F � P measurement matrix of

the image coordinates of P points tracked through F frames. We show that

under orthographic projection this matrix is of rank 3.

Using this observation, the factorization method uses the singular value de-

composition technique to factor the measurement matrix into two matrices

which represent object shape and camera motion respectively. The method

can also handle and obtain a full solution from a partially �lled-in measure-

ment matrix, which occurs when features appear and disappear in the image

sequence due to occlusions or tracking failures.

The method gives accurate results, and does not introduce smoothing in

either shape or motion. We demonstrate this with a series of experiments on

laboratory and outdoor image streams, with and without occlusions.



Chapter 1

Introduction

The structure from motion problem { recovering scene geometry and camera

motion from a sequence of images { has attracted much of the attention of

the vision community over the last decade. Yet it is common knowledge

that existing solutions work well for perfect images, but are very sensitive

to noise. We present a new method called the factorization method which

can robustly recover shape and motion from a sequence of images without

assuming a model of motion, such as constant translation or rotation.

More speci�cally, an image sequence can be represented as a 2F � P

measurement matrix W , which is made up of the horizontal and vertical

coordinates of P points tracked through F frames. If image coordinates are

measured with respect to their centroid, we prove the rank theorem: under

orthography, the measurement matrix is of rank 3. As a consequence of

this theorem, we show that the measurement matrix can be factored into

the product of two matrices R and S. Here, R is a 2F � 3 matrix that

represents camera rotation, and S is a 3 � P matrix which represents shape

in a coordinate system attached to the object centroid. The two components

of the camera translation along the image plane are computed as averages of

the rows of W . When features appear and disappear in the image sequence

due to occlusions or tracking failures, the resultant measurement matrix W

is only partially �lled-in. The factorization method can handle this situation

by growing a partial solution obtained from an initial full submatrix into a

full solution with an iterative procedure.

The rank theorem precisely captures the nature of the redundancy that

exists in an image sequence, and permits a large number of points and frames
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to be processed in a conceptually simple and computationally e�cient way to

reduce the e�ects of noise. The resulting algorithm is based on the singular

value decomposition, which is numerically well-behaved and stable. The

robustness of the recovery algorithm in turn enables us to use an image

sequence with a very short interval between frames (an image stream), which

makes feature tracking relatively easy.

We have demonstrated the accuracy and robustness of the factorization

method in a series of experiments on laboratory and outdoor sequences, with

and without occlusions.
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Chapter 2

Relation to Previous Work

In Ullman's original proof of existence of a solution [Ullman, 1979] for the

structure from motion problem under orthography, as well as in the perspec-

tive formulation in [Roach and Aggarwal, 1979], the coordinates of feature

points in the world are expressed in a world-centered system of reference.

Since then, however, this choice has been replaced by most computer vision

researchers with that of a camera-centered representation of shape [Prazdny,

1980], [Bruss and Horn, 1983], [Tsai and Huang, 1984], [Adiv, 1985], [Wax-

man and Wohn, 1985], [Bolles et al., 1987], [Horn et al., 1988], [Heeger and

Jepson, 1989], [Heel, 1989], [Matthies et al., 1989], [Spetsakis and Aloimonos,

1989], [Broida et al., 1990]. With this representation, the position of feature

points is speci�ed by their image coordinates and by their depths, de�ned as

the distances between the camera center and the feature points, measured

along the optical axis. Unfortunately, although a camera-centered repre-

sentation simpli�es the equations for perspective projection, it makes shape

estimation di�cult, unstable, and noise sensitive.

There are two fundamental reasons for this. First, when camera motion

is small, e�ects of camera rotation and translation can be confused with

each other: for example, small rotation about the vertical axis and small

translation along the horizontal axis both generate a very similar change

in an image. Any attempt to recover or di�erentiate between these two

motions, though doable mathematically, is naturally noise sensitive. Second,

the computation of shape as relative depth, for example, the height of a

building as the di�erence of depths between the top and the bottom, is

very sensitive to noise, since it is a small di�erence between large values.
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These di�culties are especially magni�ed when the objects are distant from

the camera relative to their sizes, which is usually the case for interesting

applications such as site modeling.

The factorization method we present in this paper takes advantage of

the fact that both di�culties disappear when the problem is reformulated in

world-centered coordinates, unlike the conventional camera-centered formu-

lation. This new (old { in a sense) formulation links object-centered shape

to image motion directly, without using retinotopic depth as an intermedi-

ate quantity, and leads to a simple and well-behaved solution. Furthermore,

the mutual independence of shape and motion in world-centered coordinates

makes it possible to cast the structure-from-motion problem as a factorization

problem, in which a matrix representing image measurements is decomposed

directly into camera motion and object shape.

We �rst introduced this factorization method in [Tomasi and Kanade,

1990a, Tomasi and Kanade, 1990b], where we treated the case of single-

scanline images in a 
at, two-dimensional world. In [Tomasi and Kanade,

1991] we presented the theory for the case of arbitrary camera motion in

three dimensions and full two-dimensional images. This paper extends the

factorization method for dealing with feature occlusions as well as presenting

more experimental results with real-world images. Debrunner and Ahuja

have pursued an approach related to ours, but using a di�erent formalism
[Debrunner and Ahuja, 1990, Debrunner and Ahuja, 1991]. Assuming that

motion is constant over a period, they provide both closed-form expressions

for shape and motion and an incremental solution (one image at a time) for

multiple motions by taking advantage of the redundancy of measurements.

Boult and Brown have investigated the factorization method for multiple

motions [Boult and Brown, 1991], in which they count and segment separate

motions in the �eld of view of the camera.
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Chapter 3

The Factorization Method

Given an image stream, suppose that we have tracked P feature points over

F frames. We then obtain trajectories of image coordinates f(ufp; vfp) j f =

1; . . . ; F; p = 1; . . . ; P g. We write the horizontal feature coordinates ufp into

an F � P matrix U : we use one row per frame, and one column per feature

point. Similarly, an F � P matrix V is built from the vertical coordinates

vfp. The combined matrix of size 2F � P

W =

"
U

V

#

is called the measurement matrix. The rows of the matrices U and V are

then registered by subtracting from each entry the mean of the entries in the

same row: eufp = ufp � afevfp = vfp � bf ;
(3:1)

where

af =
1

P

PX
p=1

ufp

bf =
1

P

PX
p=1

vfp :

This produces two new F �P matrices eU = [eufp] and eV = [evfp]. The matrix

fW =

" eUeV
#
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is called the registered measurement matrix. This is the input to our factor-

ization method.

3.1 The Rank Theorem

We now analyze the relation between camera motion, shape, and the entries

of the registered measurement matrix fW . This analysis leads to the key

result that fW is highly rank-de�cient.

Referring to Figure 3.1, suppose we place the origin of the world reference

system x � y � z at the centroid of the P points sp = (xp; yp; zp)
T ; p =

1; . . . ; Pg, in space which correspond to the P feature points tracked in the

image stream. The orientation of the camera reference system corresponding

to frame number f is determined by a pair of unit vectors, ifand jf , pointing

along the scanlines and the columns of the image respectively, and de�ned

with respect to the world reference system. Under orthography, all projection

rays are then parallel to the cross product of ifand jf :

kf = if � jf :

From Figure 3.1 we see that the projection (ufp; vfp), i.e., the image feature

position, of point sp = (xp; yp; zp)
T onto frame f is given by the equations

ufp = if
T (sp � tf)

vfp = jf
T (sp � tf ) ;

where tf = (af ; bf ; cf )
T is the vector from the world origin to the origin of

image frame f . Here note that since the origin of the world coordinates is

placed at the centroid of object points,

1

P

PX
p=1

sp = 0 :

We can now write expressions for the entries eufp and evfp de�ned in (3.1) of
the registered measurement matrix. For the the registered horizontal image

projection we have

eufp = ufp � af
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Figure 3.1: The systems of reference used in our problem formulation.

= if
T (sp � tf )�

1

P

PX
q=1

if
T (sq � tf )

= if
T

0
@sp � 1

P

PX
q=1

sq

1
A

= if
Tsp : (3.2)

We can write a similar equation for evfp. To summarize,

eufp = if
Tspevfp = jf
T sp :

(3:3)

Because of the two sets of F�P equations (3.3), the registered measurement

matrix fW can be expressed in a matrix form:

fW = RS (3:4)

where

R =

2
66666666664

iT
1

...

iTF
jT
1

...

jTF

3
77777777775

(3:5)

represents the camera rotation, and

S =
h
s1 � � � sP

i
(3:6)
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is the shape matrix. In fact, the rows of R represent the orientations of the

horizontal and vertical camera reference axes throughout the stream, while

the columns of S are the coordinates of the P feature points with respect to

their centroid.

Since R is 2F �3 and S is 3�P , the equation (3.4) implies the following.

Rank Theorem: Without noise, the registered measurement ma-

trix fW is at most of rank three.

The rank theorem expresses the fact that the 2F � P image measurements

are highly redundant. Indeed, they could all be described concisely by giving

F frame reference systems and P point coordinate vectors, if only these were

known.

From the �rst and the last line of equation (3.2), the original unregistered

matrix W can be written as

W = RS + teTP ; (3:7)

where t = (a1; . . . ; aF ; b1; . . . ; bF )
T is a 2F -dimensional vector that collects

the projections of camera translation along the image plane (see equation

(3.2)), and eTP = (1; . . . ; 1) is a vector of P ones. In scalar form,

ufp = iTf sp + af

vfp = jTf sp + bf : (3.8)

Comparing with equations (3.1), we see that the two components of camera

translation along the image plane are simply the averages of the rows of W .

In the equations above, if and jf are mutually orthogonal unit vectors,

so they must satisfy the constraints

jif j = jjf j = 1 and iTf jf = 0 : (3.9)

Also, the rotation matrixR is unique if the system of reference for the solution

is aligned, say, with that of the �rst camera position, so that:

i1 = (1; 0; 0)T and j
1
= (0; 1; 0)T : (3.10)

The registered measurement matrix fW must be at most of rank three

without noise. When noise corrupts the images, however, fW will not be

exactly of rank 3. However, the rank theorem can be extended to the case

of noisy measurements in a well-de�ned manner. The next sectionintroduces

the notion of approximate rank, using the concept of singular value decom-

position [Golub and Reinsch, 1971].
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3.2 Approximate Rank

Assuming 1 that 2F � P , the matrix fW can be decomposed [Golub and

Reinsch, 1971] into a 2F � P matrix O1, a diagonal P � P matrix �, and a

P � P matrix O2, fW = O1�O2 ; (3:11)

such that OT
1
O1 = OT

2
O2 = O2O

T
2

= I, where I is the P � P identity

matrix. � is a diagonal matrix whose diagonal entries are the singular values

�1 � . . . � �P sorted in non-decreasing order. This is the Singular Value

Decomposition (SVD) of the matrix fW .

Suppose that we pay attention only to the �rst three columns of O1, the

�rst 3 � 3 submatrix of � and the �rst three rows of O2. If we partition the

matrices O1, �, and O2 as follows:

O1 =
h
O0

1
O00

1

i
g2F

|{z}
3

|{z}
P�3

� =

"
�0 0

0 �00

#
g3
gP�3

|{z}
3

|{z}
P�3

O2 =

"
O0

2

O00

2

#
g3
gP�3

|{z}
P

;

(3:12)

we have

O1�O2 = O0

1
�0O0

2
+O00

1
�00O00

2
:

Let fW �

be the ideal registered measurement matrix, that is, the matrix

we would obtain in the absence of noise. Because of the rank theorem, fW �

has at most three non-zero singular values. Since the singular values in �

are sorted in non-increasing order, �0 must contain all the singular values of

1This assumption is not crucial: if 2F < P , everything can be repeated for the transpose
of fW .
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fW �

that exceed the noise level. As a consequence, the term O00

1
�00O00

2
must

be due entirely to noise, and the best possible rank-3 approximation to the

ideal registered measurement matrix fW �

is the product:

Ŵ = O0

1
�0O0

2

We can now restate our rank theorem for the case of noisy measurements.

Rank Theorem for Noisy Measurements: All the shape and

rotation information in fW is contained in its three greatest sin-

gular values, together with the corresponding left and right eigen-

vectors.

Now if we de�ne

R̂ = O0

1
[�0]1=2

Ŝ = [�0]1=2O0

2
;

we can write

Ŵ = R̂Ŝ : (3:13)

The two matrices R̂ and Ŝ are of the same size as the desired rotation and

shape matrices R and S: R̂ is 2F � 3, and Ŝ is 3� P . However, the decom-

position (3.13) is not unique. In fact, if Q is any invertible 3� 3 matrix, the

matrices R̂Q and Q�1Ŝ are also a valid decomposition of Ŵ , since

(R̂Q)(Q�1Ŝ) = R̂(QQ�1)Ŝ = R̂Ŝ = Ŵ :

Thus, R̂ and Ŝ are in general di�erent from R and S. A striking fact,

however, is that except for noise the matrix R̂ is a linear transformation of

the true rotation matrix R, and the matrix Ŝ is a linear transformation of

the true shape matrix S. Indeed, in the absence of noise, R and R̂ both

span the column space of the registered measurement matrix fW = fW �

= Ŵ .

Since that column space is three-dimensional because of the rank theorem,

R and R̂ are di�erent bases for the same space, and there must be a linear

transformation between them.

Whether the noise level is low enough that it can be ignored at this

juncture depends also on the camera motion and on shape. Notice, however,

that the singular value decomposition yields su�cient information to make

this decision: the requirement is that the ratio between the third and the

fourth largest singular values of fW be su�ciently large.
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3.3 The Metric Constraints

We have found that the matrix R̂ is a linear transformation of the true

rotation matrix R. Likewise, Ŝ is a linear transformation of the true shape

matrix S. More speci�cally, there exists a 3� 3 matrix Q such that

R = R̂Q

S = Q�1Ŝ :
(3:14)

In order to �nd Q we observe that the rows of the true rotation matrix

R are unit vectors and the �rst F are orthogonal to corresponding F in

the second half of R. These metric constraints yield the over-constrained,

quadratic system

îf
T
QQT îf = 1

ĵf
T
QQT ĵf = 1

îf
T
QQT ĵf = 0

(3:15)

in the entries of Q. This is a simple data �tting problem which, though

nonlinear, can be solved e�ciently and reliably. Its solution is determined

up to a rotation of the whole reference system, since the orientation of the

world reference system was arbitrary. This arbitrariness can be removed by

enforcing the constraints (3.10), that is, selecting the x�y axes of the world

reference system to be parallel with those of the �rst frame.

3.4 Outline of the Complete Algorithm

Based on the development in the previous chapters, we now have a complete

algorithm for the factorization of the registered measurement matrix fW de-

rived from a stream of images into shape S and rotation R as de�ned in

equations (3.4) - (3.6).

1. Compute the singular-value decomposition fW = O1�O2.

2. De�ne R̂ = O0

1
(�0)1=2 and Ŝ = (�0)1=2O0

2
, where the primes refer to the

block partitioning de�ned in (3.12).

3. Compute the matrix Q in equations (3.14) by imposing the metric

constraints (equations (3.15)).
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4. Compute the rotation matrix R and the shape matrix S as R = R̂Q

and S = Q�1Ŝ.

5. If desired, align the �rst camera reference system with the world ref-

erence system by forming the products RR0 and RT
0
S, where the or-

thonormal matrix R0 = [i1 j
1
k1] rotates the �rst camera reference

system into the identity matrix.
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Chapter 4

Experiment

We test the factorization method with two real streams of images: one taken

in a controlled laboratory environment with ground-truth motion data, and

the other in an outdoor environment with a hand-held camcorder.

4.1 "Hotel" Image Stream in a Laboratory

Some frames in this stream are shown in �gure 4.1. The images depict a

small plastic model of a building. The camera is a Sony CCD camera with a

200 mm lens, and is moved by means of a high-precision positioning platform.

Camera pitch, yaw, and roll around the model are all varied as shown by the

dashed curves in �gure 4.2. The translation of the camera is such as to keep

the building within the �eld of view of the camera.

For feature tracking, we extended the Lucas-Kanade method described in
[Lucas and Kanade, 1981] to allow also for the automatic selection of image

features. The Lucas-Kanade method of tracking obtains the displacement

vector of the window around a feature as the solution of a linear 2�2 equation
system. As good image features we select those points for which the above

equation systems are stable. The details are presented in [Tomasi, 1991,

Tomasi and Kanade, 1992].

The entire set of 430 features thus selected is displayed in �gure 4.3, over-

laid on the �rst frame of the stream. Of these features, 42 were abandoned

during tracking because their appearance changed too much. The trajecto-

ries of the remaining 388 features are used as the measurement matrix for
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the computation of shape and motion.

The motion recovery is precise. The plots in �gure 4.2 compare the rota-

tion components computed by the factorization method (solid curves) with

the values measured mechanically from the mobile platform (dashed curves).

The di�erences are magni�ed in �gure 4.4. The errors are everywhere less

than 0.4 degrees and on average 0.2 degrees. The computed motion follows

closely also rotations with curved pro�les, such as the roll pro�le between

frames 1 and 20 (second plot in �gure 4.2), and faithfully preserves all dis-

continuities in the rotational velocities: the factorization method does not

smooth the results.

Between frames 60 and 80, yaw and pitch are nearly constant, and the

camera merely rotates about its optical axis. That is, the motion is actually

degenerate during this period, but still it has been correctly recovered. This

demonstrates that the factorization method can deal without di�culty with

streams that contain degenerate substreams, because the information in the

stream is used as a whole in the method.

The shape results are evaluated qualitatively in �gure 4.5, which shows

the computed shape viewed from above. The view in �gure 4.5 is similar

to that in �gure 4.6, included for visual comparison. Notice that the walls,

the windows on the roof, and the chimneys are recovered in their correct

positions.

To evaluate the shape performance quantitatively, we measured some

distances on the actual house model with a ruler and compared them with the

distances computed from the point coordinates in the shape results. Figure

4.7 shows the selected features. The diagram in �gure 4.8 shows the distances

between pairs of features measured on the actual model and those computed

by the factorization method. The measured distances between the steps along

the right side of the roof (7.2 mm) were obtained by measuring �ve steps

and dividing the total distance (36 mm) by �ve. The di�erences between

computed and measured results are of the order of the resolution of our ruler

measurements (one millimeter).

Part of the errors in the results is due to the use of orthography as the

projection model. However, it tends to be fairly small for many realistic

situations. In fact, it has been shown that errors due to the orthogrphic

distortion are approximately about the same percentage as the ratio of the

object size in depth to the distance of the object from the camera [Tomasi,

1991].

14



4.2 Outdoor "House" Image Stream

The factorization method has been tested with an image stream of a real

building, taken with a hand-held camera. Figure 4.9 shows some of the 180

frames of the building stream. The overall motion covers a relatively small

rotation angle, approximately 15 degrees. Outdoor images are harder to

process than those produced in a controlled environment of the laboratory,

because lighting changes less predictably and the motion of the camera is

more di�cult to control. As a consequence, features are harder to track:

the images are unpredictably blurred by motion, and corrupted by vibra-

tions of the video recorder's head, both during recording and digitization.

Furthermore, the camera's jumps and jerks produce a wide range of image

disparities.

The features found by the selection algorithm in the �rst frame are shown

in �gure 4.10. There are many false features. The re
ections in the window

partially visible in the top left of the image move non-rigidly. More false

features can be found in the lower left corner of the picture, where the vertical

bars of the handrail intersect the horizontal edges of the bricks of the wall

behind. We masked away these two parts of the image from the analysis.

In total, 376 features were found by the selection algorithm and tracked.

Figure 4.11 plots the tracks of some (60) of the features for illustration.

Notice the very jagged trajectories due to the vibrating motion of the hand-

held camera.

Figures 4.12 and 4.13 show a front and a top view of the building as re-

constructed by the factorization method. To render these �gures for display,

we triangulated the computed 3D points into a set of small surface patches

and mapped the pixel values in the �rst frame onto the resulting surface. The

structure of the visible part of the building's three walls has clearly been re-

constructed. In these �gures, the left wall appears to bend somewhat on the

right where it intersects the middle wall. This occurred because the feature

selector found features along the shadow of the roof just on the right of the

intersection of the two walls, rather than at the intersection itself. Thus,

the appearance of a bending wall is an artifact of the triangulation done for

rendering.

This experiment with an image stream taken outdoors with the jerky

motion produced by a hand-held camera demonstrates that the factorization

method does not require a smooth motion assumption. The identi�cation of
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false features, that is, of features that do not move rigidly with respect of

the environment, remains an open problem that must be solved for a fully

autonomous system. An initial e�ort has been seen in [Boult and Brown,

1991].
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Chapter 5

Occlusions

In reality, as the camera moves, features can appear and disappear from

the image, because of occlusions. Also, a feature tracking method will not

always succeed in tracking features throughout the image stream. These

phenomena are frequent enough to make a shape and motion computation

method unrealistic if it cannot deal with them.

Sequences with appearing and disappearing features result in a measure-

ment matrix W which is only partially �lled in. The factorization method

introduced in chapter3 cannot be applied directly. However, there is usually

su�cient information in the stream to determine all the camera positions and

all the three-dimensional feature point coordinates. If that is the case, we can

not only solve the shape and motion recovery problem from the incomplete

measurement matrix W , but we can even hallucinate the unknown entries of

W by projecting the computed three-dimensional feature coordinates onto

the computed camera positions.

5.1 Solution for Noise-Free Images

Suppose that a feature point is not visible in a certain frame. If the same

feature is seen often enough in other frames, its position in space should

be recoverable. Moreover, if the frame in question includes enough other

features, the corresponding camera position be recoverable as well. Then

from point and camera positions thus recovered, we should also be able to

reconstruct the missing image measurement. Formally, we have the following
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Figure 5.1: The Reconstruction Condition. If the dotted entries of the mea-

surement matrix are known, the two unknown ones (question marks) can be

reconstructed.

su�cient condition.

Condition for Reconstruction: In the absence of noise, an

unknown image measurement pair (ufp; vfp) in frame f can be

reconstructed if point p is visible in at least three more frames

f1; f2; f3, and if there are at least three more points p1; p2; p3 that

are visible in all the four frames: the original f and the additional

f1; f2; f3.

Referring to Figure 5.1, this means that the dotted entries must be known

to reconstruct the question marks. This is equivalent to Ullman's result [Ull-

man, 1979] that three views of four points determine structure and motion.

In this section, we prove the reconstruction condition in our formalism and

develop the reconstruction procedure. To this end, we notice that the rows

and columns of the noise-free measurement matrix W can always be per-

muted so that f1 = p1 = 1, f2 = p2 = 2, f3 = p3 = 3, f = p = 4. We can

therefore suppose that u44 and v44 are the only two unknown entries in the
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8� 4 matrix

W =

"
U

V

#
=

2
66666666666664

u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 ?

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 ?

3
77777777777775
:

Then, the factorization method can be applied to the �rst three rows of U

and V , that is, to the 6� 4 submatrix

W6�4 =

2
666666664

u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34

3
777777775

(5:1)

to produce the partial translation and rotation submatrices

t6�1 =

2
666666664

a1
a2
a3
b1
b2
b3

3
777777775

and R6�3 =

2
6666666664

iT
1

iT
2

iT
3

jT
1

jT
2

jT
3

3
7777777775

(5.2)

and the full shape matrix

S =
h
s1 s2 s3 s4

i
(5:3)

such that

W6�4 = R6�3S + t6�1e
T
4

where eT
4
= (1; 1; 1; 1).

To complete the rotation solution, we need to compute the vectors i4
and j

4
. However, a registration problem must be solved �rst. In fact, only

three points are visible in the fourth frame, while equation (5.3) yields all
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four points in space. Since the factorization method computes the space

coordinates with respect to the centroid of the points, we have s1+ s2+ s3+

s4 = 0, while the image coordinates in the fourth frame are measured with

respect to the centroid of just three observed points (1, 2, 3). Thus, before

we can compute i4 and j4 we must make the two origins coincide by referring

all coordinates to the centroid

c =
1

3
(s1 + s2 + s3)

of the three points that are visible in all four frames. In the fourth frame,

the projection of c has coordinates

a0
4

=
1

3
(u41 + u42 + u43)

b0
4

=
1

3
(v41 + v42 + v43) ;

so we can de�ne the new coordinates

s0p = sp � c for p = 1; 2; 3

in space and

u0
4p = u4p � a0

4

v0
4p = v4p � b0

4

for p = 1; 2; 3

in the fourth frame. Then, i4 and j4 are the solutions of the two 3�3 systems

h
u0
41

u0
42

u0
43

i
= iT

4

h
s0
1
s0
2
s0
3

i
h
v0
41

v0
42

v0
43

i
= jT

4

h
s0
1
s0
2
s0
3

i
(5.4)

derived from equation (3.4). The second equation in (5.2) and the solution

to (5.4) yield the entire rotation matrix R, while shape is given by equation

(5.3).

The components a4 and b4 of translation in the fourth frame with re-

spect to the centroid of all four points can be computed by postmultiplying

equation (3.7) by the vector �4 = (1; 1; 1; 0)T :

W�4 = RS�4 + teT
4
�4 :
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Since eT
4
�4 = 3, we obtain

t =
1

3
(W �RS)�4 : (5:5)

In particular, rows 4 and 8 of this equation yield a4 and b4. Notice that the

unknown entries u44 and v44 are multiplied by zeros in equation (5.5).

Now that both motion and shape are known, the missing entries u44,

v44 of the measurement matrix W can be found by orthographic projection

(equation (3.8)):

u44 = iT
4
s4 + a4

v44 = jT
4
s4 + b4 :

The procedure thus completed factors the full 6� 4 submatrix of W and

then reasons on the three points that are visible in all the frames to compute

motion for the fourth frame. Alternatively, one can �rst apply factorization

to the 8� 3 submatrix

W8�3 =

2
66666666666664

u11 u12 u13
u21 u22 u23
u31 u32 u33
u41 u42 u43
v11 v12 v13
v21 v22 v23
v31 v32 v33
v41 v42 v43

3
77777777777775

(5:6)

to produce the full translation and rotation submatrices

t0 =

2
66666666666664

a0
1

a0
2

a0
3

a0
4

b0
1

b0
2

b0
3

b0
4

3
77777777777775

and R =

2
666666666666664

iT
1

iT
2

iT
3

iT
4

jT
1

jT
2

jT
3

jT
4

3
777777777777775

(5.7)
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and the partial shape matrix

S3�3 =
h
s0
1
s0
2
s0
3

i
(5:8)

such that

W8�3 = RS0

3�3
+ t0eT

3
:

The primes here signal again that coordinates refer to the centroid of only

the �rst three points. Then, this partial solution can be extended to s0
4
by

solving the following overconstrained system of six equations in the three

unknown entries of s0
4
:2
6666666664

iT
1

iT
2

iT
3

jT
1

jT
2

jT
3

3
7777777775
s0
4
+

2
666666664

a0
1

a0
2

a0
3

b0
1

b0
2

b0
3

3
777777775
=

2
666666664

u0
14

u0
24

u0
34

v0
14

v0
24

v0
34

3
777777775

(5.9)

where

u0f4 = uf4 � a0f
v0f4 = vf4 � b0f

for f = 1; 2; 3 :

The "primed" shape coordinates can now be registered with respect to their

centroid to yield the "unprimed" coordinates:

sp = s0p �
1

4
S0e4 for p = 1; 2; 3; 4

and the "unprimed" translation can again be found from equation (5.5).

In summary, the full motion and shape solution can be found in either of

the following ways:

1. factor W6�4 to �nd a partial motion and full shape solution, and prop-

agate it to include motion for the remaining frame (equations (5.4)).

This will be used for reconstructing the complete W by row-wise ex-

tension.

2. factorW8�3 to �nd a full motion and partial shape solution, and propa-

gate it to include the remaining feature point (equation (5.9)). This will

be used for reconstructing the complete W by column-wise extension.
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5.2 Solution in the Presence of Noise

The solution propagation method introduced in the previous sectioncan be

extended to 2F � P measurement matrices with F � 4 and P � 4. In

fact, the only di�erence is that the propagation equations (5.4) and (5.9)

now become overconstrained. If the measurement matrix W is noisy, this

redundancy is bene�cial, since equations (5.4) and (5.9) can be solved in the

Least Square Error sense, and the e�ect of noise is reduced.

In the general case of a noisy 2F �P matrix W the solution propagation

method can be summarized as follows. A possibly large, full subblock of W

is �rst decomposed by factorization. Then, this initial solution is grown one

row or one column at a time by solving systems analogous to those in (5.4)

or (5.9) in the Least Square Error sense.

However, because of noise, the order in which the rows and columns

of W are incorporated into the solution can a�ect the exact values of the

�nal motion and shape solution. Consequently, once the solution has been

propagated to the entire measurement matrix W , it may be necessary to

re�ne the results with a steepest-descent minimization of the residue

kW �RS �
1

P
teTPk

(see equation (3.7)).

There remain the two problems of how to choose the initial full subblock

to which factorization is applied and in what order to grow the solution. In

fact, however, because of the �nal re�nement step, neither choice is critical

as long as the initial matrix is large enough to yield a good starting point.

We illustrate this point in the next chapterof experiments.

23



Chapter 6

More Experiments

We will �rst test the propagation method with image streams which include

substantial occlusions. We �rst use an image stream taken in a laboratory.

Then, we demonstrate the robustness of the factorization method with an-

other stream taken with a hand-held amateur camera.

6.1 "Ping-Pong Ball" Image Stream

A ping-pong ball with black dots marked on its surface is rotated 450 de-

grees in front of the camera, so features appear and disappear. The rotation

between adjacent frames is 2 degrees, so the stream is 226 frames long. Fig-

ure 6.14 shows the �rst frame of the stream, with the automatically selected

features overlaid.

Every 30 frames (60 degrees) of rotation, the feature tracker looks for

new features. In this way, features that disappear on one side around the

ball are replaced by new ones that appear on the other side. Figure 6.15

shows the tracks of 60 features, randomly chosen among the total 829 found

by the selector.

If all measurements are collected into the noisy measurement matrix W ,

the U and V parts of W have the same �ll pattern: if the x coordinate of

a measurement is known, so is the y coordinate. Figure 6.16 shows this �ll

matrix for our experiment. This matrix has the same size as either U or

V , that is, F � P . A column corresponds to a feature point, and a row to

a frame. Shaded regions denote known entries. The �ll matrix shown has

24



226 � 829 = 187354 entries, of which 30185 (about 16 percent) are known.

To start the motion and shape computation, the algorithm �nds a large

full submatrix by applying simple heuristics based on typical patterns of

the �ll matrix. The choice of the starting matrix is not critical, as long as

it leads to a reliable initialization of the motion and shape matrices. The

initial solution is then grown by repeatedly solving overconstrained versions

of the linear system corresponding to (5.4) to add new rows, and of the

system corresponding to (5.9) to add new columns. The rows and columns

to add are selected so as to maximize the redundancy of the linear systems.

Eventually, all of the motion and shape values are determined. As a result,

the unknown 84 percent of the measurement matrix can be hallucinated from

the known 16 percent.

Figure 6.17 shows two views of the �nal shape results, taken from the

top and from the side. The missing features at the bottom of the ball in the

side view correspond to the part of the ball that remained always invisible,

because it rested on the rotating platform.

To display the motion results, we look at the if and jf vectors directly. We

recall that these unit vectors point along the rows and columns of the image

frames f in 1; . . . ; F . Because the ping-pong ball rotates around a �xed axis,

both if and jf should sweep a cone in space, as shown in Figure 6.18. The

tips of if and jf should describe two circles in space, centered along the axis of

rotation. Figure 6.19 shows two views of these vector tips, from the top and

from the side. Those trajectories indicate that the motion recovery was done

correctly. Notice the double arc in the top part of �gure 6.19 corresponding

to more than 360 degrees rotation. If the motion reconstruction were perfect,

the two arcs would be indistinguishable.

6.2 "Cup and Hand" Image Stream

In this sectionwe describe an experiment with a natural scene including oc-

clusion as a dominant phenomenon. A hand holds a cup and rotates it by

about ninety degrees in front of the camera mounted on a �xed stand. Figure

6.20 shows four out of the 240 frames of the stream.

An additional need in this experiment is �gure/ground segmentation.

Since the camera was �xed, however, this problem is easily solved: features

that do not move belong to the background. Also, the stream includes some
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nonrigid motion: as the hand turns, the con�guration and relative position

of the �ngers changes slightly. This e�ect, however, is small and did not

a�ect the results appreciably.

A total of 207 features was selected. Occlusions were marked by hand

in this experiment. The �ll matrix of �gure 6.22 illustrates the occlusion

pattern. Figure 6.21 shows the image trajectory of 60 randomly selected

features.

Figures 6.23 and 6.24 show a front and a top view of the cup and the

visible �ngers as reconstructed by the propagation method. The shape of

the cup was recovered, as well as the rough shape of the �ngers. These

renderings were obtained, as for the "House" image stream in section4.1, by

triangulating the tracked feature points and mapping pixel values onto the

resulting surface.
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Chapter 7

Conclusion

The rank theorem, which is the basis of the factorization method, is both

surprising and powerful. Surprising because it states that the correlation

among measurements made in an image stream has a simple expression no

matter what the camera motion is and no matter what the shape of an object

is, thus making motion or surface assumptions (such as smooth, constant,

linear, planar and quadratic) fundamentally super
uous. Powerful because

the rank theorem leads to factorization of the measurement matrix into shape

and motion in a well-behaved and stable manner.

The factorization method exploits the redundancy of the measurement

matrix to counter the noise sensitivity of structure-from-motion and allows

using very short inter-frame camera motion to simplify feature tracking. The

structural insight into shape-from-motion a�orded by the rank theorem led to

a systematic procedure to solve the occlusion problem within the factorization

method. The experiments in the lab demonstrate the high accuracy of the

method, and the outdoor experiments show its robustness.

The rank theorem is strongly related to Ullman's twelve year old result

that three pictures of four points determine structure and motion under or-

thography. Thus, in a sense, the theoretical foundation of our result has been

around for a long time. The factorization method evolves the applicability of

that foundation from mathematical images to actual noisy image streams.
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