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Abstract

Sensing 3-D shape and motion is an important problem in autonomous navigation and manip-
ulation. Stereo vision is an attractive approach to this problem in several domains. We address
fundamental components of this problem by using stereo vision to estimate the 3-D structure or
"depth” of objects visible to a robot, as well as to estimate the motion of the robot as it travels
through an unknown environment.

We begin by using cameras on-board a robot vehicle to estimate the motion of the vehicle
by tracking 3-D feature-points or "landmarks". We formulate this task as a statistical estimation
problem, develop sequential methods for estimating the vehicle motion and updating the land-
mark model, and implement a system that successfully tracks landmarks through stereo image
sequences. In laboratory experiments, this system has achieved an accuracy of 2% of distance
over 5.5 meters and 55 stereo image pairs. These results establish the importance of statistical
modelling in this problem and demonstrate the feasibility of visual motion estimation in unknown
environments.

This work embodies a successful paradigm for feature-based depth and motion estimation,
but the feature-based approach results in a very limited 3-D model of the environment. To
extend this aspect of the system, we address the problem of estimating "depth maps" from stereo
images. Depth maps specify scene depth for each pixel in the image. We propose a system
architecture in which exploratory camera motion is used to acquire a narrow-baseline image pair
by moving one camera of the stereo system. Depth estimates obtained from this image pair are
used to "bootstrap” matching of a wide-baseline image pair acquired with both cameras of the
stereo system. We formulate the bootstrap operation statistically by modelling depth maps as
random fields and developing Bayesian matching algorithms in which depth information from
the narrow-baseline image pair forms the prior density for matching the wide baseline image
pair. This leads to efficient, area-based matching algorithms that are applied independently for
each pixel or each scanline of the image. Experimental results with scale models of complex,
outdoor scenes demonstrate the power of the approach.
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Chapter 1

Introduction

Autonomous robots are systems that can perform navigation and manipulation tasks without
human intervention. Such systems are required for tasks that are too expensive, too hazardous,
or too inaccessible for us to perform ourselves. Examples include repetitive manufacturing
operations, handling hazardous materials, and exploring the oceans or other planets. To perform
the full range of these tasks, robots must be able to sense their environments, build internal models
of those environments, and construct and execute plans for achieving their goals. Moreover,
these operations must be performed in a dynamic world in which both the robot and other
objects move and change shape over time. We apply stereo vision to this sensing problem by
developing algorithms for estimating the 3-D structure or depth of objects visible to a robot,
as well as for estimating the motion of a robot as it travels through an unknown environment.
These capabilities are the first milestones on the road to stereo systems that can estimate more
general models of depth and motion; that is, toward systems for dynamic stereo vision.

We address two specific problems. In the first, a robot vehicle travels through an unknown
environment and periodically uses on-board cameras to acquire a stereo image pair. The problem
is to use this stereo image sequence to track 3-D point features, or landmarks, to estimate
the motion of the vehicle. We model uncertainty in measured landmark coordinates with 3-D
Gaussian distributions, develop statistical procedures to estimate the rotation and translation of the
vehicle between successive stereo image pairs, and implement a system that tracks landmarks
through the stereo image sequence. In laboratory experiments, this system has achieved an
accuracy of 2% of distance over 5.5 meters and 55 stereo image pairs.

This work establishes a successful paradigm for feature-based depth and motion estimation.
However, it embodies a very limited model of the 3-D structure of the enviroment. To extend
this model, we develop methods for estimating depth maps, which specify depth at each pixel
in the image. Our approach has two key elements. The first is the use of exploratory camera
motions to reliably “bootstrap” matching between images. This involves estimating depth from a
narrow-baseline image pair obtained by moving one camera, then using this depth information to
constrain matching to a third, wide-baseline image acquired with the other camera. The second
key element in our approach is its statistical formulation, which employs a random field model
of the depth map and a Bayesian formulation of the matching problem. This formulation leads to
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Figure 1.1: The basics of stereo triangulation: given corresponding image points, p; and p,, and
the positions and orientations of both cameras, we can compute the depth or 3-D location of the
world point P.

simple, efficient matching algorithms based on correlation and dynamic programming. Results
obtained with images of complex scenes demonstrate the power of the approach.

Before describing this work further, we will develop some background and motivation for
the research.

1.1 Background and Motivation

Stereo vision is a triangulation-based range-finding technique in which two (or more) cameras
are used to reconstruct the three-dimensional structure of a scene, as illustrated in figure 1.1.
The fundamental computational problem in stereo is the correspondence problem, which requires
finding corresponding points p, and p, in the two images. Given such points and the relative
geometry of the cameras, it is a simple matter to compute the depth, or distance from the cameras,
of the associated world point P. In principle, we can find the distance to every point in the scene
by finding the corresponding point in the right image for every pixel in the left image. The
resulting representation of scene depth at every pixel in the image, known as a depth map, is a
starting point for computing a 3-D model of the scene. Relative motion between the cameras
and the scene can be estimated by tracking the 3-D model through a time sequence of stereo
images.
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Figure 1.2: Application scenario: autonomous navigation

Interest in stereo arises from its roles in aerial surveying and in biological and robotic
perception. We are concerned primarily with its role in robotics. In this case, we must ask why
consider stereo at all, when there are devices like sonar, radar, and laser that measure depth more
directly? There are a number of reasons for this, including the fact that stereo is:

e passive, because it doesn’t project energy into the scene;
¢ non-scanning, because all pixels in a 2-D image can be acquired at the same point in time;

¢ non-mechanical, because it doesn’t require mechanical scanning components, unlike laser
range-finders for example;

e potentially low-power, compared to sensors that actively project energy.

These characteristics make stereo a candidate for robotic tasks requiring navigation, manipulation,
or object recognition in civilian and military domains, including robotic operations in space.

As an example, in autonomous navigation a robot vehicle may use stereo cameras to survey
terrain, detect obstacles, and estimate relative motions of other vehicles in the vicinity (figure
1.2). This introduces two, related series of problems, one concerning depth and one concerning
motion (table 1.1). The depth problems require estimating:

¢ image-based depth models;

¢ 2-D and “2 1/2-D” world models;
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Depth Estimation

Image-based depth models

2-D and “2 1/2-D” world models
3-D world models

Motion Estimation

Single rigid-body
Multiple rigid-body
Deformable body

Table 1.1: Problem hierarchies for stereo-based depth and motion estimation.

¢ 3-D world models.

Image-based depth models are representations of depth as a function of the image coordinates.
These include the depth maps defined earlier, which specify depth at each pixel, and fearure-
based models that use sparse sets of points, line segments, or other geometric primitives defined
in the image plane. 2-D world models are representations of the robot’s locality that are functions
of two world coordinates, such as axes parallel to the ground plane. Examples include sets of
polygons in one plane and 2-D volumetric models such as the spatial occupancy map [Elfes89].
These representations are useful for problems involving navigation in two dimensions, such
as indoors. “2 1/2-D” models are representations defined over two coordinates that express
3-D structure; terrain elevation maps [Hebert89] are a primary example. 3-D world models
are defined over three spatial coordinates; they include boundary-based and volumetric object
models in three dimensions [Requicha80]. In most work, an image-based model of some form
is a necessary precursor to the various world models.

Motion problems add kinematics to the depth models. In order of increasing difficulty, these
problems require estimating the motion(s) of:

e a single rigid body;
o multiple rigid bodies;
o multiple rigid or deformable bodies.

In the single rigid-body problem, the entire field of view is describable by a single rigid motion.
This occurs when the robot vehicle travels through a static environment or when it observes
moving objects against an imperceptible background. In the multiple rigid-body problem, two
or more rigid motions are in view at once. This occurs when a single object moves against a
perceivable background, when two or more objects move across the field of view, or when an
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Figure 1.3: Estimating vehicle motion by tracking nearby landmarks

articulating object is in view. A robot vehicle operating in the presence of other vehicles is an
example of this situation. This problem introduces the need to segment both the images and
the world models into regions are that are consistent with distinct motions. In the final class
of problems, the motions being observed may or may not be rigid. In addition to segmentation
issues, this increases the complexity of modelling the motion and raises the issue of observability
of the model.

We have illustrated these problems with the example of autonomous navigation, and the
research we report here was largely motivated by this application. However, the problems
themselves are common to many robotic tasks. Therefore, the two problem hierarchies also
outline a general research agenda for robotic depth and motion estimation, using stereo or
a variety of other sensors. To some degree, appropriate mathematical models for depth and
motion already exist. However, the science of estimating such models from images still has
many gaps. Techniques exist at all levels of the depth hierarchy, though not even the first level
of depth map estimation has a complete mathematical and operational foundation leading to
reliable performance in real systems. With motion, open issues remain for the single rigid-body
case, while the problems of estimating multiple rigid and deformable motions are only beginning
to be solved. Finally, the relatively recent idea of controlling motion to improve the estimation
of depth, and consequently the motion itself, presents a host of new problems and opportunities
[Aloimonos87,Geiger87].

1.2 Problems Addressed

In this research, we address two basic problems in visual depth and motion estimation. For each,
we define the models to be estimated, develop a statistical formulation of the estimation problem,
design sensing and estimation procedures that lead to reliable performance, and demonstrate this
performance on real images of complex scenes.

The first problem is to estimate the rotation and translation of a robot vehicle as it travels
through an unknown environment (figure 1.3). This is achieved by using on-board cameras
to establish and track a 3-D world model consisting of point “landmarks” in the vicinity of
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the vehicle. In the language of the previous section, we use a feature-based depth model in
estimating a model of single, rigid-body motion. The results of this work establish the importance
of the statistical approach to this problem and give the first demonstration of accurate, reliable
visual motion estimation in unknown environments. Extension to several more advanced motion
problems appears to be fairly direct.

While this work is highly successful for motion estimation, the model of depth is very
limited. A possible extension of the depth model is to use other features, such as edges or line
segments. However, in complex environments, especially outdoors, these approaches appear
unlikely to achieve robust performance or provide adequate representations of the environment.
The same is true for related feature-based models, such as line junctions or curved segments.
This prompts us to examine an alternate paradigm in which correlation-like operators are used
to estimate depth “everywhere” in the image. In the discrete case, this implies using a “dense”,
pixel-based model of depth; that is, a depth map. The balance of our research considers how to
formalize this paradigm and how to design a system to estimate depth maps reliably. This leads
us to model depth maps as random fields and to develop Bayesian matching algorithms that use
exploratory camera motions to “bootstrap” reliable stereo matching. Experimental results with
images of complex scenes demonstrate that this approach is very successful. We conclude that
both the dense depth paradigm and the use of exploratory camera motion are promising avenues
for future research.

In the balance of this section, we review previous work on each of these problems and discuss
our approaches and results in greater detail.

1.2.1 Motion Estimation

A great deal of effort has been expended in trying to estimate single rigid-body motion, es-
pecially from monocular image sequences. Successful estimation has been demonstrated with
both monocular and stereo systems in contexts where the depth model is known in advance,
in particular in mock-up demonstrations of satellite rendevous [Gennery86,Tietz82, Wunsche86].
When the depth model is not known in advance, monocular approaches are fundamentally lim-
ited because they cannot observe the absolute scale of the scene; moreover, the observability
limitations become more severe in the context of more complex motion problems. Stereo does
not suffer this limitation because it measures absolute depth. The first work to use stereo for
motion estimation in unknown environments was the autonomous vehicle system developed by
Moravec [Moravec80]. This system was designed to navigate to a pre-specified goal position.
It used stereo first to create a world model consisting of 3-D point features (landmarks), then
to track the landmarks to estimate the vehicle’s position over time. The uncertainty models and
the estimation algorithms used in this the system were relatively unsophisticated; nevertheless,
promising performance was achieved.

The work here picks up where [Moravec80] leaves off. We develop a sequential, Bayesian
formulation of the problem of estimating the rotation and translation of the vehicle between
successive stereo image pairs. This formulation models uncertainty in the observed landmark
coordinates with 3-D Gaussian distributions and sequentially updates estimates of the landmark
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coordinates to reflect the entire observation history. The image processing algorithms for creating
and tracking the landmark model are refinements of algorithms developed in [Moravec80]. We
simulate the performance of the estimation algorithms to demonstrate the importance of the
statistical model. We also apply the entire system to sequences of images acquired by the
vehicle to demonstrate the successful performance of the system on real images.

The principle contributions of this work are the development of the statistical model for this
problem, the demonstration of the importance of this model in achieving reliable performance,
and the demonstration of the feasibility of visual motion estimation in unknown environments.
Extensions to more elaborate kinematic models and to other feature-based depth models are
relatively direct; relevant work is described in [Ayache88,Dickmanns88,Gennery86,Young88].
The principle limitation lies in the feature-based depth model. Therefore, we address this issue
next.

1.2.2 Depth Estimation

To develop systems that can operate effectively in complex environments, especially outdoors,
we require a deeper understanding of how to estimate depth than that afforded by typical feature-
based world models. Furthermore, it is not clear that we can define features that yield adequate
depth information and that can be used robustly in a wide variety of domains. Therefore, we
turn to depth map estimation to obtain a more general lowest level depth representation. As was
the case for motion estimation, this problem has two components: (1) what is an appropriate
formulation of the estimation problem, including its stochastic characteristics, and (2) how do
we design a system to generate reliable estimates?

Statistical formulations of depth map estimation have taken two distinct approaches. The
first approach, which is most common in photogrammetry, has focused on matching small image
patches, modelled the noise in the images, and derived the error variance of the resulting disparity
estimates [Forstner86,Forstner89,Gennery80]. In other words, such approaches use “area-based”
or correlation-type matching operators and derive uncertainty in the depth estimates at each
pixel; however, they do not explicitly model joint uncertainty in the depth estimates or in
prior depth information. The second approach, which was introduced to computer vision in
[Marroquin85,Marroquin87], deals with exactly the issue of joint uncertainty by modelling the
depth map as a Markov random field (MRF). In [Marroquin85], the MRF model was used as the
basis of a Bayesian approach to computing an “optimal” estimate of the disparity field. However,
in this approach the prior density was used only to impose heuristic smoothness constraints on
the estimated disparity field and no model was developed for the uncertainty in the resulting
depth estimates!. Another stochastic approach to stereo is described in [Barnard89]; however,
the stochastic aspect of this algorithm is a search method, rather than a statistical formulation of
the matching problem per se.

The approach taken here extends the statistical models used in photogrammetry and the
random field approach of [Marroquin85]. Because images are noisy, estimates of disparity must

"Extensions of this framework to depth estimation from image sequences are described in
[Matthies89,Szeliski88].
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Figure 1.4: Camera motion and image acquisition for the bootstrap operation. Depth estimated
by matching with images I;, and /;, is used to constrain matching between images I;, and /,.

be noisy. Therefore, we model the disparity map as a random field with a joint Gaussian density.
We define optimal disparity estimates with the maximum a posterior probability (MAP) criterion
and develop area-based matching algorithms to estimate the posterior mean and variance of the
disparity at each pixel in the image. Consideration of reliability leads us to propose a system
design in which the stereo cameras are mounted on a precise translation stage, which in turn is
mounted on the robot vehicle (see also [Geiger87]). Robust matching is achieved by using the
translation stage to move the cameras a small fraction of the inter-camera baseline to acquire an
image pair from one of the cameras. The relatively small baseline for this image pair assures
reliable matching. The resulting depth map is used to constrain matching of a wide-baseline
image pair obtained with both cameras (figure 1.4). We refer to this two-stage approach as
a bootstrap operation. The matching algorithms are simple, efficient, and perform very well
on images of complex scenes. Moreover, by using depth information from the narrow-baseline
image pair to constrain matching in the wide-baseline image pair, the bootstrap operation employs
knowledge about the scene itself to constrain matching, rather than the general smoothness
heuristics employed by many wide-baseline stereo algorithms.

1.3 Thesis Overview

We address motion estimation in chapter 2. We begin by defining the landmark model, the
coordinate frame conventions, and the rigid transformation equations that relate the coordinate
frames of successive stereo pairs. We then formulate the problem of jointly estimating the 3-D
coordinates of the landmarks and the rotations and translations of the vehicle between successive




CHAPTER 1. INTRODUCTION 9

stereo pairs, given the image coordinates of the landmarks in each stereo pair. This problem
is nonlinear and involves many unknowns, so we develop a solution in several stages. First,
we compute 3-D observations of the landmark coordinates and model the uncertainty in these
observations with 3-D, Gaussian probability densities. Then we derive least-squares, maximum-
likelihood, and sequential Bayesian algorithms for estimating first the vehicle motion between
frames, then both the vehicle motion and updated 3-D coordinates of the landmarks. These
algorithms are embedded in a system that uses coarse-to-fine correlation to track landmarks
through stereo image sequences. We use simulations to establish that motion estimates obtained
with the full 3-D Gaussian uncertainty model are substantially superior to those obtained with
a previous, simpler approach that used scalars to model landmark uncertainty. Finally, we do
laboratory trials to establish the ability of the overall system to produce accurate motion estimates
with stereo image sequences acquired by a real vehicle. We achieve an accuracy of 2% of distance
with a sequence of 55 stereo pairs covering 5.5 meters of vehicle travel. These results demonstrate
the importance of the uncertainty model and the practical feasibility of visual motion estimation
in unknown environments. Two appendices give the camera models and camera calibration
procedures used with the vehicle (appendix A), as well as detailed derivations of the estimators
(appendix B).

We address depth estimation in chapters 3 to 5. In chapter 3, we introduce the conceptual
framework that guides the rest of the work. This involves estimating the depth at each pixel,
modelling the uncertainty of depth estimates at each pixel, and using an area-based approach to
matching. We outline the steps we take in formalizing this as a statistical estimation problem.
These steps are similar to those followed in chapter 2, except that here the variables to be
estimated are the depth at each pixel, instead of the 3-D landmark coordinates and the vehicle
motions of chapter 2. As part of the formalization, we model the depth map as a Gaussian
random field and motivate the development of a Bayesian approach to the matching problem.
We then consider what is necessary to solve the depth map estimation problem reliably. We
conclude that redundant sensing is key and that one of the most attractive ways to achieve
redundant sensing is by using camera motion to acquire more than two images. This leads us to
propose an operational framework in which stereo cameras are mounted on a precise translation
stage; in turn, the translation stage is mounted on the robot vehicle. Camera translation is used to
acquire a narrow-baseline image pair from one of the cameras, plus a third image from the other
camera. This is the basis of a bootstrap operation in which depth estimates obtained from the
narrow-baseline image pair are used to constrain matching to the third, “wide-baseline” image.
Chapter 3 closes by summarizing the issues involved in this bootstrap operation, as well as
issues involved in extrapolating the bootstrap operation to depth estimation from stereo image
sequences obtained as the vehicle travels through its environment.

Chapters 4 and 5 elaborate components of the bootstrap operation. In chapter 4, we study
the model of depth at each pixel as a Gaussian random variable. To do so, we derive a basic,
maximum-likelihood approach to estimating depth at a given pixel. This involves comparing
intensities of two images in a window around the pixel and boils down to the familiar sum-
squared-error matching operator. However, our goal is to examine the uncertainty in disparity
estimates, so we derive a sub-pixel version of this operator and derive the variance of the
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estimation error. The balance of the chapter consists of experiments that examine the resulting
error distribution for synthetic and real images. We find, not too surprisingly, that the Gaussian
model is very good with synthetic images and reasonable, though not perfect, for real images.
We conclude that the approach is worth pursuing.

Chapter 5 then develops single-scale matching algorithms for the bootstrap operation per se.
We categorize possible algorithms into three classes:

e fully independent algorithms, which use windowed correlation methods to estimate depth
independently for each pixel;

o joint 1-D algorithms, which use coupled estimators to jointly estimate the depth for all
pixels in a single scanline, but estimate each scanline independently from other scanlines;

o joint 2-D algorithms, which couple the depth estimates within and across scanlines.

We judge the first two categories to be most practical and develop Bayesian matching algorithms
for them. These algorithms are extensions of the basic maximum-likelihood operator derived in
chapter 4. For the joint 1-D case, we develop two coupling models, one based on a heuristic,
disparity-gradient constraint and one based on a correlated model of prior disparity information.
Both lead to efficient, dynamic-programming algorithms for obtaining optimal disparity estimates
for the entire scanline. In this chapter, we also examine several questions concerning the chosen
direction and distance to translate the cameras to obtain the narrow and wide-baseline image
pairs. Finally, we demonstrate that the new matching algorithms perform very well with images
of complex scenes. We conclude that the overall framework we are pursuing is a successful and
very promising approach to general depth estimation.

Chapter 6 summarizes the work of the thesis, reviews our main conclusions, and outlines
directions for extension.




Chapter 2

Motion Estimation

In this chapter, we estimate the motion of a robot vehicle by using on-board cameras to track
3-D feature points, or landmarks, in the vicinity of the vehicle. This involves jointly estimating
the motion of the robot and the positions of the landmarks from the image sequence acquired
as the robot moves. We formulate the problem in a robot-centered coordinate frame; that is,
we maintain the coordinates of the landmarks relative to the robot and estimate the rotation and
translation of the robot between successive stereo image pairs. We formulate the problem as a
statistical estimation problem, develop a system that implements the estimation and the image
processing procedures necessary to accomplish the task, and demonstrate the performance of the
system on real image sequences.

We begin by reviewing the background of this problem in mapping and navigation and by
introducing relevant batch and recursive estimation paradigms. We then outline the structure
of our approach, showing both the estimation-related and the image processing-related aspects
of the processing cycle. Subsequent sections discuss the estimation side and then the image
processing side of the cycle. Simulations and experimental results obtained with real image
sequences are presented to show the performance of the system and to compare it to previous
work that used a simpler statistical model [Moravec80]. The results show a marked improvement
over the simpler model and demonstrate the feasibility of visual motion estimation in unknown
environments. '

The central issues in both the estimation and image processing aspects of this work are
important to related problems in global mapping and visual trajectory estimation. In the final
section of this chapter, we make these ties explicit by discussing related work and potential
extensions in mapping and trajectory estimation. We also discuss the limitations of this work
in terms of the depth information obtained. Following chapters will develop an approach to
reducing these limitations.

2.1 Background and Methodology

Figure 2.1 illustrates the visual motion estimation problem as it is approached in this chapter.
A robot vehicle, travelling through unknown terrain, uses sensors to detect highly localizable

11
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Figure 2.1: The robot navigation problem

(a) Robot in first position, establishes some landmarks; (b) robot in second position, picks more
landmarks and relates its own position to its first position; (c) robot in third position, repeating
the process. © is a vector of rotation angles and T is a translation vector.
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features of its environment. It designates these features as landmarks, determines their 3-D
coordinates, and stores the coordinates in a map. As the robot travels, it periodically observes
the landmarks again and uses these observations to update estimates of its own position and
the positions of the landmarks. Additional features of the environment may also be observed
and added to the map. This process is repeated throughout the course of the journey. Because
uncertainty will be present in all of the observations, estimates of the robot and landmark positions
will also be uncertain. Our goal is to obtain optimal estimates of the robot and the landmark
positions.

This problem may be approached in a global or a local manner. In the global approach,
the goal is to produce optimal estimates of all of the landmarks observed in the course of the
journey. In this case, a single map would contain all of the landmarks and note all of the
robot positions indicated in figure 2.1. The landmark positions are modelled in a frame of
reference that is fixed with respect to the ground. This is similar to problems in photogram-
metry and geodesy that involve mapping of ground points from blocks of aerial photographs
[Mikhail76,Slama80, Vanicek86]. The literatures in these areas contain well-developed paradigms
for modelling and solving such problems. These paradigms involve establishing the functional
relationships between observations and unknown parameters, modelling observational uncer-
tainties, filtering out gross observational errors, and obtaining estimates of the unknowns via
least squares estimation. In conventional aerial mapping applications, all of the observations
are used to determine all of the unknowns in a single batch optimization procedure. However,
both in photogrammetry and in robotics, there is interest in techniques that process observa-
tions on-line to incrementally update estimates of the unknowns. This is still a research issue;
it has been discussed in a photogrammetric context in [Gruen84] and in robotic contexts in
[DurrantWhyte88,Smith87].

While the global approach is appropriate for large-scale mapping applications, it is not
suitable for local navigation or for estimating the incremental motion of a robot vehicle. The
local approach is at the other end of the spectrum, in that it retains a model of only those
objects in the vicinity of the robot. Depending on the application, it may also represent these
objects in a robot-centered coordinate system. In this approach, successive observations are
used both for estimating the current robot position and to update the parameters of the local
3-D model. This approach lends itself readily to incremental or recursive estimation procedures
similar to the Kalman filter [Gelb74,Maybeck79]. The problems of feature tracking and recursive
estimation that are encountered in this approach make it very similar to trajectory estimation
problems in which the relative positions and velocities of two moving objects must be determined
[Broida86,Gennery86,Tietz82,Wunsche86]. The primary difference is that in the case addressed
here only position is estimated, so the kinematic model of robot motion is very simple.

Since the focus here is primarily on estimating robot position, we choose the local approach.
This leads to a processing loop that repeatedly makes new observations, estimates the robot’s
current position, and updates a local landmark model. We will outline this loop in the next
section, then explore the details and evaluate the performance of the resulting system in sub-
sequent sections. At the end of the chapter, we will show how this work relates to both the
global mapping and the trajectory estimation problems. We will also discuss the limitations of
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Figure 2.2: Processing loop

the depth estimation and 3-D modelling procedures used in this chapter, in preparation for the
more extensive depth estimation procedures developed in later chapters.

2.2 Structure of the Approach

The flowchart in figure 2.2 illustrates the structure of the approach. The system maintains a
local world model consisting of the 3-D coordinates of the landmark points, represented in a
robot-centered coordinate frame. This world model is initialized by finding correspondences in
the first stereo image pair. Subsequently, the system operates in a loop that involves repeatedly
moving the robot, locating the landmarks in the next image pair, estimating the motion of the
robot between pairs, and updating estimates of the landmark positions. As landmarks become
occluded or fall out of view, new landmarks are chosen from the new images and added to the
world model.

For discussion, it is convenient to split the system into those aspects that are primarily con-
cerned with estimation and those that are primarily concerned with image processing. The esti-
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mation aspects embrace the relevant equations of motion, models of the problem geometry, mod-
els of the observations and observation noise, and the procedures used for parameter estimation.
These issues are addressed with methods drawn from the geodesy [Mikhail76, Vanicek86], optimal
estimation [Gelb74,Maybeck79], and psychometric literatures [Schonemann66,Schonemann70].
The image processing aspects include algorithms for feature detection, stereo matching, and
feature tracking. The image processing algorithms used here are refinements of those developed
by Moravec [Moravec80].

We will discuss the estimation and the image-processing sub-systems in the following two
sections, respectively.

2.3 Estimation Loop

We will formulate the processing cycle of figure 2.2 as a sequential, Bayesian estimation problem.
This will lead to an estimation procedure that, on each cycle, uses the existing landmark model
and new observations of the landmark coordinates to compute the vehicle motion between frames
and to compute new estimates of the landmark coordinates relative to the current coordinate
frame. The steps necessary to formalize this problem are to define [Maybeck79]:

1. the variables to be estimated,
2. the measurements or observations available,

3. the mathematical model describing how the measurements are related to the variables of
interest,

4. the mathematical model of the uncertainties present, and
5. the performance evaluation criterion to judge which estimation algorithms are “best”.

These steps are instantiated in our problem as follows.

(1) First, at time #, corresponding to acquisition of the i* stereo image pair, the variables
to be estimated are the rotation and translation vectors ®;, T; that describe the vehicle motion
between the previous and the current stereo pair, plus the 3-D coordinates P; ; of the landmarks
in the current coordinate frame. In the notation P;j, the first subscript indexes the time step
and the second subscript indexes landmarks at each point in time. We define the coordinate
transformation between frames by

P, =RiPi_1;+Ti,

where R; is the rotation matrix corresponding to the vector ®;. This describes the change in
the true coordinates of the landmarks, relative to the vehicle position, from image to image and
formalizes step (b) in figure 2.2.

(2), 3), and (4) From each stereo pair, we measure the image coordinates q,; = [x;; i, ,.]T,
qr; =[x ; ¥, ).]T of each landmark in view (figure 2.3) and use these to compute an observation
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Figure 2.3: Stereo observation model

vector Q;; of the 3-D landmark coordinates relative to the current vehicle position. Since
the image coordinates contain some measurement error, the inferred 3-D coordinates will also
contain measurement error. We model this by treating each Q; ; as the sum of the true landmark
coordinates P; ; and a noise vector v; ;:

Qij=Pij+vi.

We model the noise vectors v; ; as zero-mean, Gaussian random vectors with covariance matrices
v, ;- We assume that no prior information is available about the 3-D coordinates of landmarks;
that is, the only information available about landmarks is obtained from the images. The initial
world model, that is the landmark estimates 130, j at fo, is equivalent to the observations made
with the first stereo image pair (appendix A):

Po, i= Qo, je

Therefore, the error covariance of Py ; is 2p,; = v, ;- The observations Qo,; and the resulting
world model 130, ;j formalize step (a) of figure 2.2. Subsequent observations Q; ; are made in step
(c). We assume that prior knowledge of the motion parameter vector M = [@; T;]7, if available,
can be modelled by treating M as a Gaussian random vector with known mean and covariance.

(5) Following [Maybeck79], we will formulate the estimator in Bayesian terms. Therefore,
at each iteration we will derive the probability distribution of the variables of interest and use
this distribution to define our estimates. The distribution will be described by the conditional
density

f®it, .. P, Mi|Qi1,...,Qin)
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of the current landmark and motion variables, given the most recent observations. We will use
the maximum a posterior probability (MAP) criterion to define optimal estimates.

This defines the main components of the estimation loop. The details of the observation
model and the estimation procedure are derived in the remainder of this section.

2.3.1 Observation Model

To simplify the notation, in describing the observation model we will dispense with the subscripts
i,j. As shown in figure 2.3, with each stereo pair we measure the image coordinates q; = [x; y;]"
and g, = [x, y,]7 of the projections of each landmark P = [X ¥ Z]” onto the left and right image,
respectively. Our observation model includes a model of the uncertainty in q; and q,, criteria for
computing an estimate or observation Q of the 3-D landmark coordinates from q; and q,, and a
model of the resulting uncertainty in Q. The observations Q are defined in a vehicle-centered
coordinate frame Cy (figure 2.3). We use left-handed coordinate frames for the vehicle and the
cameras. For each camera coordinate frame, the X axis extends parallel to the image plane from
left to right, the Y axis extends upward parallel to the image plane, and the Z axis coincides
with the optical axis of the camera. The origins of the camera coordinate frames coincide with
the centers of projection of the lenses. Image coordinates are denoted x and y, with axes parallel
to the camera coordinate frame.

Formally, the measured image coordinates are functions h; and h, of the landmark P with
additive noise v; and v,:

qQ = [xl}=h1(P)+Vz
yi
X,
, = "1 =h,P)+v,.
q [y} P)

The measurement functions h; and h, define models of the coordinate transformations between
the vehicle and the camera coordinate frames, as well as models of the perspective projection
within each camera. In this section, we assume that the camera coordinate axes are parallel to
the vehicle axes, with the origins placed symmetrically at distances +b/2 along the X axis of
the vehicle frame. Therefore, in the camera frames the landmark coordinates are

X [ b/2
P=1Y = P+ 0

| Z; | Y

X, T [ —b/2
P=|Y%Y = P+ 0 }

| Z, | 0

This model is idealized, because in general there will also be rotations and other translations
between the vehicle and camera coordinate frames. Appendix A describes the extensions nec-
essary to model the additional degrees of freedom and describes the calibration procedure that
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was used to determine the parameters of the camera models. The model above is very useful for
basic simulations and was used in the simulations described in section 2.5. Experiments with
real images used the extended model described in the appendix.

For both the simulations and the experiments with real images, the projection within each
camera is modelled as an ideal perspective projection followed by scaling and translation of
the image coordinates (see appendix A). The scaling and translation transform the ideal image
coordinates (e.g. Xi/Z;,Y;/Z)) into the coordinate system used for the actual images. The
complete transformation from P to measured image coordinates is

_ (w18 0 o (X+yb/2) +v 2.1
q = _yl_—Z_O s, Cy_ p ! .
1T 1] & = 5/2)
X, 1{s, 0 ¢
. = A x x Y . .
q 3. [7Z|0 5 ¢ ; }+v (2.2)

Here sy, §y, ¢x, ¢y denote the image plane scale and translation parameters. For the simulations,
these are the same for both cameras; for the real images, separate parameters are determined for
each camera.

We model the noise terms v;, v, as zero mean, Gaussian random vectors with covariance
matrices ¥; and X, respectively. Chapter 4 develops a sub-pixel matching procedure that can
be used to compute q; and g, to sub-pixel resolution and to estimate the covariance matrices.

Given the nonlinear measurement model of equations (2.1) and (2.2), our task is to compute
an estimate Q of the 3-D coordinates of P. For the idealized camera geometry, we compute

~ o~ 1T
Q=[X72| by inverting equations (2.1) and (2.2) to obtain

b(x; +x, — 2¢x)

T T
- bs:(yi +y, — 2¢)
Y 2.3
25y — x,) 23)
z = 2
X1 — Xr

Because the measured image coordinates are noisy, Q is noisy as well. The nonlinearity of
(2.3) makes the uncertainty in Q non-Gaussian. Nevertheless, we use standard error propagation
methods [Mikhail76] to approximate the uncertainty as Gaussian, with zero mean and with
covariance

By=J [ %’ 52 ]JT, 2.4)

where J is the matrix of first partial derivatives of (2.3) with respect to x;, y;, X,, ¥,, or the Jacobian.
In section 2.5, we demonstrate that this approximation is adequate for position estimation in
indoor navigation. The triangulation and uncertainty modelling procedures are summarized by
writing Q as

Q=P+v,
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where v is a zero-mean, Gaussian random vector with covariance Xy.
For non-ideal camera geometries the triangulation and error modelling procedures are similar,
but somewhat more complex. The details are described in Appendix A.

Figure 2.4 interprets the observation model geometrically. Constant probability contours of
the density of v describe ellipsoids that approximate the true error density. For nearby points
the contours will be close to spherical; the farther the points the more eccentric the contours
become (figure 2.4a). This illustrates the importance of modelling the uncertainty in Q by a full
3-D Gaussian density, rather than by a single scalar uncertainty factor s as done in earlier work
[Moravec80]. Scalar error models are equivalent to diagonal covariance matrices ¥ = sI, where
I is the 3 x 3 identity matrix. This model is appropriate when landmarks are very close to the
camera, but it breaks down rapidly with increasing distance. Figure 2.4b shows a qualitative
comparison of the Gaussian error model and the uncertainty regions that result from considering
only quantization error in the image coordinates. The similarity of the models suggests that the
Gaussian model will be useful even when quantization error is a significant component of the
uncertainty in the measured image coordinates’.

Where the Gaussian approximation breaks down is in failing to represent asymmetry in the
true error density. The nonlinearity of the triangulation operation will cause the true error density
to be skewed, not unlike the effects of quantization error shown in figure 2.4b. The skew is not
significant when points are close, but becomes more pronounced the more distant the points. A
possible consequence is biased estimation of point locations, which may lead to biased motion
estimates. We have not examined this issue in detail; however, we will see some of its effect in
simulations in section 2.5.

2.3.2 Estimation Procedure

Applying the foregoing model to each landmark gives a set of observations
Qij=Pij+v; (2.5)

for each stereo pair. In this section, we derive a sequential Bayesian estimator that uses this
sequence of observations together with the motion equation

P;,j = R,‘ P,'_]yj + T,' (26)

to compute estimates ©;, T; of the motion parameters and estimates P; ; of the landmark coordi-
nates. The landmark estimates are defined relative to the current coordinate frame and incorporate
information from the entire observation history.

Two issues that complicate the derivation are the nonlinearity of the motion equation (2.6) and
the large dimensionality involved in tracking many landmarks. We deal with the nonlinearity
by using a simplified, least-squares formulation to compute an initial estimate of the motion
parameters, then by linearizing the motion equation about the initial estimate and using iterative
solution methods. We reduce the dimensionality of the problem by partitioning it to obtain

1A non-Gaussian distribution to model the effects of quantization error only is derived in [Blostein87).
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(b)

Figure 2.4: Triangulation error: (a) error distribution is much more eccentric for distant points
than for nearby points; (b) the Gaussian error model is a reasonable approximation even if the
primary noise source is quantization of the image coordinates.




CHAPTER 2. MOTION ESTIMATION 21

estimates of the motion parameters and each of the landmarks from separate systems of equations
that are each no larger than 6 x 6.

For clarity, we present the derivation in several steps. First we discuss the least-squares initial
estimate of the motion parameters. Next, we describe the linearization and the iterative solution
method by deriving a maximum-likelihood estimate for the motion parameters alone. We then
derive the complete estimator, which is a sequential Bayesian procedure that jointly estimates
the motion and the landmark parameters. This procedure uses the maximum-likelihood motion
estimate as part of the solution and employs matrix partitioning methods to reduce dimensionality.
Finally, we give a concise summary of the the entire statistical model and the steps in computing
the solution.

Because the following derivations refer entirely to the “previous” and “current” coordinate
frames, we simplify the notation by dropping the subscript i from the motion parameters. We
also condense the subscripts on the observations and the landmarks by writing Q,;, Q, P, and
ch instead of Q,‘_l,j, Q,‘,_,', P,'__l,j, and Pi,j.

Least-squares Estimation of @ and T

From the observation (2.5) and motion (2.6) equations, the observations Q,;, Q. made from two
successive stereo pairs are related to the unknown motion and landmark parameters by

Qy = Ppt+v, (2.7)
ch Rij +T+ V- 2.8)

There is one such pair of equations for each landmark. To get initial estimates of the motion
parameters, we reduce these equations to an ordinary least-squares problem for which a solution
is known to exist. This is done by eliminating P,; from (2.7), (2.8) and rewriting the one
remaining equation in terms of a residual error vector e;:

€= ch — RQPj -T. (29)

Taking the squared length of each residual vector, applying scalar weighting factors w;, and
summing over all landmarks produces the cost expression

Y wiele;. (2.10)
: .

The least-squares estimates are obtained by minimizing this expression over ® and T. The
scalar weights w; are defined to reflect the quality of the observations Q,; and Q, for example
by letting w; = (det(3,)) + det(Ecj))‘l. Moravec used this formulation (with different w;) in an
earlier approach to the motion estimation problem [Moravec80].

Following the standard solution procedure by differentiating (2.10) with respect to © and T
does not lead to a linear optimization problem. However, a direct solution has been obtained in
work on a related problem in the analysis of psychometric data[Schonemann66,Schonemann70].
This solution augments (2.10) with Lagrange multipliers that constrain R to be orthogonal. The
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resulting equations can be solved via the singular-value decomposition for the unique, orthogonal
matrix R and vector T that minimize (2.10)>. Appendix B.1 gives a detailed derivation of this
solution, expressed in terms appropriate to our application. We extract the corresponding rotation
angles from R with well-known techniques ([Paul81, chapter 3]) and designate the resulting initial
estimates as ®p and T,.

Maximum Likelihood Estimation of ® and T

As we will see shortly, the least-squares estimator of ® and T is equivalent to a maximum-
likelihood estimator derived from an observation model in which the error covariance matrices
are scaled identity matrices, Xy = sI. The resulting motion estimates can be substantially inferior
to those derived with the full error model. Unfortunately, using the full error model leads to
a nonlinear optimization problem that does not appear to have a direct solution. To illustrate
this problem and to show how it is solved via linearization, we now use the full error model to
derive maximum likelihood estimates for ® and T. These estimates will prove to be part of the
larger solution for ®, T, and P,; that we derive subsequently.

Using (2.7) and (2.8) to eliminate P,; as before, we obtain

Q;=RQ,+T+v;,
where v; subsumes the uncertainties in Q.; and the product RQ,;. For simplicity, suppose for

the moment that Q,; is noise-free, so that v; = v, Then the joint conditional density of the
observations Q,; given ® and T is Gaussian,

1
f(chv--' ,anIQ,T) o< €Xp {—EZ e}TWjef} ’
J

where ¢ = Q; — RQ,; — T and W; is the inverse covariance matrix of v, The maximum
likelihood estimates of ® and T are those that maximize this density. This is equivalent to
finding ® and T that minimize the summation in the exponent:

> e Wie. @.11)
J

Note that letting W; = w;I reduces this expression to the objective function used in the least-
squares solution (2.10). Unfortunately, the minimization problem is again nonlinear and the
techniques that solve (2.10) do not to generalize to (2.11). Therefore, we resort to linearizing
the problem and computing the estimates iteratively.

The linearization is obtained by taking a first-order expansion of (2.8) with respect to the
rotation angles, evaluated at the initial estimate ©y:

ch = RPP_,' + T+ Vi

d(RP,)
~ RoPy + [ el ]o(@) — @) +T +vy

R()ij + Jj(@ — @o) +T+ \SE

Direct solutions that formulate the coordinate transformation in quaternion algebra are also known
[Hebert83,Wertz78].
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Ry denotes the rotation matrix for (-)0 and J; denotes the Jacobian® for landmark j, evaluated at
©® = ©@¢. Once again eliminating P,;, we obtain

ch = Ronj +Jj(® — @o) +T+ vj.
By error propagation, v; is approximately a zero-mean, Gaussian noise vector with covariance

3; =X, +RoX,RY. Finally, we rewrite this equation as

Q. — RoQ, +J;0 = { Ji I ] [ (;)‘ ] +; 2.12)

and abbreviate it to
()]
Qj=Hj{ T } +Vj,

where Q; = Q. —RoQ,;+J;© and H; = [J; I]. This equation models Q; as a linear measurement
of the unknowns @ and T, with additive Gaussian noise v;. Maximum likelihood estimates of
© and T are obtained by minimizing the objective function (2.11), with W; = (2, +RoZ,;R])~!
and with the error vector ¢; redefined as

®
8j=Qj—~Hj[ T ] .

Differentiating the linearized objective function with respect to ® and T and setting the deriva-
tives to zero, we obtain the linear system

®
{Z H/WH, { T ] =13 HJ-TWJ-QJ} : (2.13)
j J
Inverting this, estimates of the motion parameters are given by
5 -1
M= { T } = |2 HWH; |3 H,TW,-Q,] : (2.14)
J

The motion equation is then re-linearized about the new estimate (i.e. the new ©g) and the
solution is re-computed. The entire linearization and solution procedure is iterated until © ~ ©,.
Appendix B.2 shows that the solution can be decomposed so that © is computed first, then T
is obtained as a function of the optimal rotation. This allows the translation to be computed
outside the iteration loop. The error covariance matrix of M is

-1

M= (2.15)

> H/WH;
F

3A full derivation of J; and an efficient method for computing it are given in appendix B.2.
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This can be examined to evaluate the conditioning of the motion estimates. It will also be needed
later to compute estimates of the landmark coordinates.

To recapitulate, we have used the full Gaussian error model to derive maximum likelihood
estimates of © and T. Since the resulting optimization problem is nonlinear, we developed
a linearized formulation and iterated the solution starting from an initial estimate obtained by
least-squares. The iterative procedure is considerably more expensive than using the least-
squares estimate alone; however, it can produce motion estimates that are considerably superior
to least-squares. An intuitive explanation for why and when this is the case can be obtained
by recalling that the observational error density is relatively compact when landmarks are quite
close, but becomes increasingly eccentric as landmarks become more distant (figure 2.4a). The
least-squares objective function (2.10) provides an adequate model for the error density for the
nearby case but not for the distant case, since it cannot reflect the eccentricity of the density. The
objective function resulting from the maximum-likelihood approach (2.11) models both cases via
the inverse covariance matrices W;. That is, W; serves as a norm in measuring the length of
residual vector ¢;. When a landmark is close, W; is nearly equivalent to w;I. However, when
the landmark is distant, W; effectively gives less weight to triangulation errors along the line of
sight that perpendicular to the line of sight. Given the nature of triangulation, this is appropriate.
The relative quality of the motion estimates produced with the two methods is demonstrated by
experiments in section 2.5.

Sequential Bayesian Estimation of ©, T, and P;

In the foregoing stages of the solution, we eliminated P,; at the outset and solved only for
® and T. We will now formulate a Bayesian procedure for jointly estimating ®, T, and P,;.
This formulation allows us to incorporate prior information about the motion parameters into the
estimator; it also allows us to estimate the landmark coordinates in a sequential fashion, such that
the estimates at each point in time incorporate information from the entire observation history.
The estimator will encounter the difficulties with nonlinearity and large dimensionality we alluded
to earlier. We solve these problems by linearizing the motion equation, using partitioned matrix
methods to obtain the estimates from a series of low-dimensioned linear systems, and iterating the
solution until the estimates converge. In the process, the least-squares and maximum-likelihood
estimates of ® and T appear as intermediate steps in the solution. For conciseness, we will denote
the set of landmarks P; by the vector P = [PT;, ..., P 1" and the set of current observations Qy;
by the vector Q = [Q7},..., QT 1.

The estimator will be obtained from the conditional probability density f(P,M|Q) of P, M
given the current observations Q. From Bayes’s theorem, this density is given by

fQ[P,M)f(P,M)
fQ) '
F(P,M|Q) is referred to as the posterior density of P and M. f(P,M) is the prior density of

these parameters and f(Q|P, M) is the conditional density of the observations, given particular
values of the parameters. For a given set of observations, f(Q) is a constant scale factor that

f(Pa M‘Q) =
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does not appear in our estimation procedure. We define the estimates by the MAP criterion;
that is, the estimates M, P are those values of P, M that maximize the posterior density. For
Gaussians, the MAP estimate is equal to the mean of the posterior density [Maybeck79]. In this
case, the error in the estimate,

P_P

M-M |’

is a zero-mean, Gaussian random vector with covariance equal to the covariance of the posterior
density. The full covariance matrix has dimension (3n + 6) x (3n + 6), which is too large to
maintain. Therefore, the sequential estimation procedure maintains only the the 3 x 3 covariance
matrices of the individual landmarks and the 6 x 6 covariance matrix of the motion parameters.
These all lie on the main diagonal of the full posterior covariance matrix.

To obtain the estimator, we will now derive the prior density, the conditional density of
Q, and the posterior means and covariances. We adopt the superscripts “—"" and “+” from the
Kalman filtering literature [Maybeck79] to distinguish between estimates of a quantity before
incorporating new observations and updated estimates of the same quantity after incorporating
new observations. '

We will begin with the conditional density f(Q|M, P). From (2.5), observations made at the
current time are modelled by

ch = ch + V.

Because the noise terms v,; are independent, zero-mean Gaussians with inverse covariance Wy,
the joint conditional density of Q given P is

f(QIP) X €xp {*%Z ez';- WV,;,' er} )
J

where ey, = Q; — P,;. Since Q does not depend on M, f(Q|P) is equal to f(Q|P, M).

To derive the prior density, we start by considering the motion parameters alone. We assume
that any prior information available about the motion parameters is statistically independent from
step to step and that for each step the information can be modelled as a joint probability density
for M = [© TT]". We model this density as Gaussian with mean M~ and covariance ;.
Therefore, letting ey =M — M-, the prior density of M is

1
SfM) x exp {——5 eTM Wy eM} ,

where Wy = (S~
Prior information about the landmarks P,; is embodied in the estimates P; and error covari-

ances 2;,,,- obtained relative to the previous coordinate frame. To obtain a prior density for P,
we relate the previous estimates to P,; via the motion equation

P,;=RP,+T.
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Linearizing this about the initial motion estimate M, = [©] TZ17, we obtain

ch ~ Roij + Jj(@ - @0) + Ty + (T - To)

®-06
= Roij+T0+[Jj I] [ T_TOO}
= RoP,;+To+H;M — My). (2.16)

Note that Pj; is a Gaussian random vector with mean P" and covariance Xp . Therefore, we

see from (2.16) that the prior density of P, conditioned on M (.e. f(P; M), 1s Gaussian with
mean

ROP+ + Ty + HJ(M Mo)
and covariance p = RoXp RY. Letting Wp, = (Zp,)7", P; =RoP;; + Ty, and

p, =P — P — H;M — My),
the joint conditional density of P given M is
1 _
FPM) o exp {——2- 2 egj qu_ epj} .
i

The desired prior density of M and P is now given by
f®,M) = fPMfM)

1
o exp{-——z— (eTMWg{eM+Z efajwiq.epj)} .
j

Next, from Bayes’s theorem, the posterior density is

1
F®@,MIQ) ox exp {—5 (e& Wirem + 3 ef, Wi, ep, + 3 €, Wy, ev,-) } -
J J

The MAP estimate is obtained by finding M and P that maximize this expression. This is
equivalent to maximizing the log probability

1
Inf =~ (2; ey, Wy, ey, +,Z- ep, Wp, ep, + ey Wiy eM) +K, 217 -

where K is a constant. Therefore, the optimal estimates minimize the sum of the quadratic forms.

The algebra leading to the estimates and error covariances is presented in appendix B.3.
This involves partitioning the solution so that the motion estimates are generated first, then the
landmark coordinates are estimated individually from low-order systems. The end result is that
the linearized motion estimate is given by

-1
M* = [ (% ] = [WK« + Hj ijj} [Wg{ﬁ' +2H] WJQJ} (2.18)
j j
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with error covariance "
Y= [W;,, +3 HjTW,-H,-J : (2.19)
j

Here Q; = Q. — +JJ®0 and W; = (EP + %y,)~!; these are essentially the same as in the
maximum- hkehhood solutlon with the prev1ous obscrvauons replaced by the previous landmark
estimates.

To interpret these equations, note that the absence of prior motion information is modelled
by letting Wy; = O; in this case, the Bayesian estimate reduces to the maximum likelihood
estimate given in equations (2.14) and (2.15). When Wy; # 0, the motion estimate is a weighted
combination of the prior estimate and terms involving the new observations.

As in the maximum-likelihood case, the solution can be iterated by lincarizing about the
new estimate. Furthennore, the solution again can be partitioned to estimate e first, then to
give T* in terms of ®'. For simplicity, it may be preferable to iterate the maximum-likelihood
solution to convergence, then to do one iteration with (2.18) and (2.19) to incorporate the prior
information.

Having computed the optimal motion estimate, the estimated landmark coordinates are (ap-
pendix B.3) ~

Py = (W, + Wp )™ (Wy,Qq + Wg_P7), (2.20)

where 13° = ﬁ*f’* +T* is computed using M*. As given earlier, Ws, = (R02+ RT)‘ Finally,
the error covanancc for each landmark is

Tp, = Wy, + Wp )™+ (Wy, + Wp )™ ' Wi HEyH Wp_(Wy, + Wp )t (2.21)

Equations (2.20) and (2.21) are applied independently to each landmark.

The landmark coordinate estimate is easy to interpret; we simply transform the previous
estimate P+ to the new coordinate frame, obtaining ch, then combine it with the new observation
Qg welghtmg each according to their respective covariances. To gain insight into the new error
covariance, note that when the motion is known exactly (i.e. Wg; = 0) the covariance reduces
to

Ef’c,- - (chi + Wl_).cj)_l
(Wy, +RoWp RD)™.

That is, the covariance of the new landmark estimate is a function of the covariance of the new
observation and the covariance of the previous estimate as transformed into the current frame.
As aresult, p_ will be “smaller” than either its two component covariances. When the motion
is not known exactly, but is estimated from the landmarks themselves, the estimate is not exact.
Moreover, it is correlated with the landmarks. The additional term in (2.21) models these effects.

To summarize, we have derived a sequential Bayesian procedure for estimating the motion
parameters and the landmark coordinates relative to the current coordinate frame. The inputs to
the algorithm are the landmark estimates from the previous coordinate frame, the new landmark
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Figure 2.5: Sequential estimation procedure
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observations made in the current frame, and the prior density of the motion parameters (figure
2.5a). From these, the algorithm computes a posterior estimate of the motion parameters and
estimates of the landmark coordinates relative to the current coordinate frame (2.5b). Because
the landmark coordinates are effectively updated to reflect the entire observation history, the
estimation error for each landmark should decrease over time and the accuracy of the motion
estimates should correspondingly increase. This will be examined in simulation in section 2.5.

2.3.3 Summary

In this section we have presented a statistical model for the motion estimation problem and
derived procedures for sequentially estimating the frame-to-frame motion of the vehicle and the
landmark coordinates relative to each coordinate frame. We will now review the entire procedure
to bring together the main results.

Table 2.1 summarizes the statistical model and the estimation procedures. At each point in
time, we locate the landmarks P; ; in the current stereo pair, measure their image coordinates q;;
and g, ;, and estimate the covariance matrices ¥;; and X, ; of the measurements. Procedures
for this step are discussed in section 2.4 and in chapter 4. These measurements are used to
compute the “observed” 3-D coordinates Q;; and associated covariances 3y,; (section 2.3.1
and appendix A). An initial estimate M;, of the motion between the previous and the current
coordinate frame then is computed via least-squares and an adapted version of Schonemann’s
algorithm ([Schonemann66,Schonemann70], section 2.3.2, and appendix B.1). We described this
algorithm as it would be applied to observations from the current and previous coordinate frames;
however, in the sequential estimation context it would be applied to the current observations and
the previous landmark estimates, as shown in Table 2.1. Given this initial estimate, the motion
parameters are refined by linearizing the motion equation and iterating the procedure defined
by equations (2.18) and (2.19). Finally, the converged motion estimate is used to compute the
current estimates of the landmark coordinates via equations (2.20) and (2.21). The cycle then
repeats with the movement of the vehicle and the acquisition of a new stereo pair.

The linearizations and Gaussian approximations used in both the observation model and the
estimation procedures are potential weaknesses of this approach. As we discussed earlier, the
linearized observation model is reasonably valid so long as landmarks are not extremely distant;
we show later that performance with real images is quite good with this model. Also, the iterative
estimation procedures converge rapidly unless all landmarks are extremely distant; for example,
in the experiments reported later the final estimates were obtained after four to eight iterations.

Several other issues present possible limitations of or scope for extending the algorithms
presented here. First, the spatial distribution of the landmarks affects the conditioning of the
motion estimate. For example, if the landmarks happen to be collinear, one component of
the vehicle rotation will be undetermined. Poor conditioning can be detected by examining
the singular values [Golub83] of the covariance matrix of the computed motion parameters.
If necessary, new landmarks can be searched for in regions of space that will improve the
conditioning (see section 2.4.1). The second issue concerns calibrating the level of noise in the
statistical model. As we show in chapter 4, the covariance matrices X, ; and X, ; of the measured

Ti,j
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Variables P, 0, T

Motion equation P,-' j= RiP,'__l' it T;

Observed image QG =@ )+v,,, v, ~N©O,XZ, )

coordinates Q. =h@)+v,,;, v, ~N@OZZ, )
Observed 3-D Qij=Pij+vij, vij~NOZy, )
coordinates Inverse covariance: Wy, ; = (Zy, )~}
Landmark estimates | P§; =Qo, Tp,, =Zv,,
at 1 Inverse covariance: Wp == (Ei')o’j)‘l
Prior motion f(M,) = N(M;, Iy
information Inverse covariance: WI:/(.- = ()31;[‘_)‘l
Initial motion e;=Qij—~RPL ;- T
estimate min - w; ;€ e
R |

Solved to yield M;, = [©F TZ]"

Linearization Pi; =~ RyP_1;+J);i(©—0,)+T;

RioPi—l,j — Ji,j®io +H,',jM,'
=T . = lar 7117
where H; ;= [J;; ] and M; = [©] T/

Refined motion Let Q}; = Qij — RiyPLy;+Ji/©i, Tp,, =R Tp_, RT,
estimate and W;; = (Zy,, + 2;}_}_)“ .
Then

v, = [Wia,- +2 H{jwi’in»f} N
M} = Sy, [Wi M7 + 5 HL W, Q|

Tterate, relinearizing about M each time

Updated landmark | Let P;; =R;Pr, ;+T7 .
estimates Then
is:j = (WV-‘.f + Wl—’;, ;)~1(in.iQi,J' + Wf;.-, ,vi\)ijj)
f’.-, i (wvi.j + wl_’,-, ,-)—1'*'
(Wy,; + W;{J)"‘W;i’jﬂ,-, ,-E{;,L,H{ jWﬁ,J_(inl i+ Wl;.’,j)_l

Table 2.1: Summary of statistical model and estimator equations.
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image coordinates are directly proportional to the variance of the noise in the image. Thus, the
image noise level functions as a single, global scale factor on the uncertainty in the entire model.
In photogrammetry such a scale factor is referred to as the reference variance [Mikhail76].
Knowledge of the reference variance is not necessary for computing the parameter estimates,
but it is needed to obtain properly scaled covariance matrices and to determine thresholds for
error detection (appendix B.S5). If necessary, a “posterior” estimate of the reference variance
can be obtained at the end of the estimation cycle using techniques discussed in appendix B.4.
Doing so allows the entire system to automatically adapt to the level of image noise. Finally,
the procedures described in this section assume that no gross observation errors are present; in
particular, they assume that landmarks are tracked correctly from frame to frame. Since this
will not be true in practice, errors must be filtered out before or during the estimation process.
Procedures for doing so are described in section 2.4.4 and appendix B.5.

2.4 TImage Processing Loop

The previous section described the 3-D modelling and estimation aspects of the system loop
shown in figure 2.2. These aspects dealt entirely with geometric abstractions of the locations
of point landmarks, the projections of the landmarks in the image, the vehicle motion, and
the appropriate statistical models and estimation procedures. In this section, we discuss the
algorithms that provide input to the estimation loop by producing the measured image coordinates
q; and q,. Since these algorithms manipulate the images directly and correspond to components
of the system loop of figure 2.2, we refer to these algorithms collectively as the image processing
loop.

Image processing algorithms are associated with steps (a) and (c) of the system flowchart
(figure 2.2); that is, with those steps that produce observations of the world. In step (a), the
initial 3-D model is created by applying feature selection and stereo matching procedures to the
initial stereo image pair. Landmarks are defined by 3-D points whose projections p; and p, can
be precisely measured in successive stereo image pairs. Therefore, the feature selection process
identifies points q; in one image of a stereo pair that are likely to lead to trackable landmarks.
The stereo matching procedure uses a correlation-based search to find the corresponding point
q, in the other image of the stereo pair. The resulting image coordinates are then used for
triangulation in determining the initial 3-D model, f’o, j. Because landmarks continually drift
out of view as the vehicle moves, the feature selection and stereo matching procedures are also
applied at the end of the cycle (after step (d)) to replenish the landmark model.

Additional image processing operations are performed within the loop at step (c), when
existing landmarks must be located in new stereo pairs. That is, image matching operations
use the appearance of a landmark in the previous stereo pair to locate the landmark in the
images of the new stereo pair, thereby producing new measurements q; and q,. We refer to this
as feature mracking. The tracking operation is implemented by correlation-based searches very
similar to the stereo matching operation. The resulting image coordinates are converted into
new 3-D observations Q;; via triangulation. Observations produced by feature tracking may
include gross errors resulting from failure to locate landmarks. These errors are filtered out by
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thresholds applied to correlation coefficients, by 3-D rigidity tests applied after feature tracking,
and by outlier detection tests applied as part of the estimation procedures that compute vehicle
position.

The balance of this section describes the feature selection, stereo matching, feature tracking,
and error detection algorithms in more detail. At the end of this section, we will review the
system operation and present a more detailed flowchart that illustrates the combined estimation
and image processing operations.

2.4.1 Feature Selection

Because stereo matching and feature tracking are implemented by correlation between images,
the appearance of a landmark is modelled by a small patch of intensity around the landmark’s
projection in an image. For a landmark to be tracked reliably and accurately, the patch must
exhibit intensity variation that allows the landmark to be localized in subsequent images. For
example, pixels lying on extended edges cannot be localized in the direction parallel to the edge;
such regions are not acceptable landmarks. Pixels on object corners or in certain kinds of texture
are acceptable. Therefore, one issue to be addressed by the feature selection operator is how to
find points that can be precisely localized in other images. Since motion estimates will only be
well-conditioned if the landmarks are well-distributed in space, a second issue is how to select
features so as to obtain good spatial distributions of landmarks.

For the experiments described in this chapter, the localizability issue was addressed in
an informal manner by using the convolution-like interest operator developed by Moravec
[Moravec80] to identify regions of the image having high intensity variation in multiple di-
rections. This operator produces an interest value for each pixel in the image. The interest value
is large for pixels that are localizable, such as those near vertices in the image, and low for pixels
that are not localizable, such as pixels lying on extended edges or in areas of uniform intensity.
For an N x N region {2 around a given pixel, the operator computes directional variances my,
m,, mg1, and my, that respectively measure the intensity variation in the horizontal, vertical, and
both diagonal directions over the area of the region. The measures are defined by

my = Y [Ux,y)—Ix+ 1,y
x,yEQ

m, = Y Uxy—Ixy+DP
xyefd

my = Yy [UGx,y)—Ix+1,y+ 1))
xyefl

mn = Y Uxy)—Ix—1,y+ 1P
xyeld

‘The horizontal measure my, is illustrated in figure 2.6a. The interest value of the pixel at the
center of the region is defined as the minimum of the directional variance measures. This
operator accords high interest to regions with strong intensity variation in multiple directions,
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(a) (®)

© @

Figure 2.6: Interest operator

(a) One of the directional variance terms: m, is the sum of squares of differences of the pixels
joined with dashes. (b) Example image. (c) “Interest” value. (d) Selected feature points.
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less interest to regions with uni-directional intensity variation (such as regions along edges), and
no interest to homogeneous regions of the image. In practice, the operator selects features like
corners very well.

The notion of localizability can be defined formally in terms of the statistical uncertainty in
the location of correlation peaks that are obtained when region £ is matched in other images.
This uncertainty is modelled by the covariance matrices %; and X,. Following this reasoning
leads to a statistically-derived interest operator [Forstner88] that is very similar to the intuitively
obtained Moravec operator. This is pursued in chapter 4.

In addition to the localizability issue, it is also important to select pixels that will lead to
landmarks that are well distributed in space. For this implementation, this was addressed with
the simple expedient of partitioning each image into a 10 x 10 array of cells and identifying the
most interesting pixel in each cell. This produced 100 features for each image. When creating
the initial 3-D model, candidate landmarks were selected by sorting the features in descending
order of interestingness and choosing the top N, where N was the number of landmarks being
tracked (< 50 in the work here). When replenishing the 3-D model, enough features are chosen
to bring the number of landmarks back up to N; in this case, features are not chosen from grid
cells already containing a landmark. A more complete approach to the spatial distribution issue
is to search for features in areas of 3-D space that give good conditioning, rather than to settle for
dispersion in the image. An approach of this nature has been developed for an object-tracking
application described in [Wunsche86].

To illustrate the results obtained with this procedure, figure 2.6b shows one image from a
test sequence and figure 2.6¢c shows the interest values computed for the same image. High
interest pixels are black, low interest pixels are white. Note that strong intensity corners are
very interesting, whereas areas along edges are less interesting and areas of uniform intensity
are uninteresting. Figure 2.6d shows the selected features that result. Potential problems with
this operator are discussed in [Thorpe84]. These include the possibility of choosing features that
do not correspond to stationary points in 3-D; examples are the extremes of the barrel in figure
2.6 and chance alignments of foreground and background features at object boundaries.

2.4.2 Stereo Matching

Once features are extracted, corresponding points must be identified for each feature in the second
image of the stereo pair. This is achieved by defining search windows for each feature within
the second image and by using a coarse-to-fine, correlation-based search to find the best feature
correspondences within the windows. Figures 2.7a and 2.7b illustrate two selected features and
the corresponding search windows for a sample stereo pair. The coarse-to-fine search procedure
is illustrated in figure 2.7.

The search windows are defined from knowledge of the relative camera geometry and from
knowledge that the possible distance to a feature is confined to a pre-defined range [Z,,, Znaxl-
From figure 2.3, the camera geometry is such that corresponding pixels are on or near corre-
sponding scanlines in the two images. To allow for slight misalignment of the cameras, each
search window extends above and below the nominal scanline by a small amount; in experiments,
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(b)

(c)

Figure 2.7: Constrained image pyramid correlation for stereo matching

(a) Left image of a stereo pair, showing two particular feature points. (b) Right image of the
same stereo pair, showing search windows for each feature. (¢) Image pyramids and coarse-to-
fine correlation procedure. Matching begins with the lowest resolution image and proceeds to
the highest resolution.
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this was 5% of the image height. The pre-defined distance range is translated into a disparity
range that limits the horizontal extent of the search window. Z,;, was determined by the fact that
the cameras were set some distance back from the nose of the vehicle (yielding Z,,;, = 1.5m).
For indoor operation, Z,,, was determined by the size of the largest room in which the vehicle
operated (yielding Z,,, = 10m); for outdoor operation, Z,.,x can be set to infinity. Given the
baseline and lens focal length used in the experiments in section 2.5, the practical effect of this
range was to limit the search window to about seven degrees of the visual field, or less than
20% of the total image width.

The search itself is conducted by coarse-to-fine, correlation-based search through an image
pyramid [Moravec80] (figure 2.7¢c). Image pyramids are created for both images of the stereo
pair. In this work, each level of the pyramid was created from the previous by averaging over
2 x 2 or 4 x 4 regions of the higher resolution image, then reducing the resolution by half.
Resolutions from 480 x 512 down to 15 x 16 were computed. Then, starting with the lowest-
resolution images, a small patch around the feature from the left image is correlated over the
search window in the right image. For the experiments done here, the patch was 5x 5 pixels. The
correlation operation was Moravec’s pseudo-normalized correlation [Moravec80]; this is similar
to normalized correlation, but retains some sensitivity to bias and gain changes between the
images. The position of best match is noted and scaled up to the next higher resolution image.
The search window is reduced to a small region around the scaled up position of best match and
the search is repeated at the new level. This process continues until the feature is matched in
the highest resolution image. When features lie near the edges of the image, definitions of the
search windows are modified to account for boundary effects. Finally, the correlation coefficients
computed from the highest-resolution images are thresholded to eliminate features that match
poorly.

The search procedure is applied independently for each selected feature and produces the
left and right image coordinates, q; and q,, for each feature. In the implementation, the image
coordinates were computed only to pixel resolution and the covariance matrices were defaulted
to X; = X, = 1. Methods for obtaining sub-pixel resolution and realistic covariance estimates are
discussed in chapter 4. Finally, the image coordinates become input to the triangulation routines
discussed in section 2.3.1.

2.4.3 Feature Tracking

At each time ¢;, the feature tracking operation locates existing landmarks in the stereo pair
for ; and computes the respective image coordinates and covariance matrices qy, ;, G, ;» 21,
3, ;- This information becomes input to the triangulation algorithms that compute the 3-D
observations Q; ; and Xy, ;. Feature tracking is accomplished using correlation in much the same
way as stereo matching, subject to search constraints derived by applying prior knowledge of
the camera motion (e.g. M) to the previous landmark model, f’}’_l’ j- However, this basic idea
can be instantiated in many ways. We will describe the method implemented here, then discuss
alternatives and possible extensions.

Generally, some prior motion estimate M; will be available from odometry and the vehicle
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Figure 2.8: Feature tracking

Search windows are created in the left image of the new stereo pair using prior motion knowledge.
The coarse-to-fine search procedure is then used to locate landmarks in the left image and then
the right image of the new stereo pair.

controller. In the case of the Neptune vehicle used in section 2.5, the prior estimate was
determined by a open-loop vehicle controller because no other motion sensor feedback was
available from the vehicle. This information is used to transform the landmark estimates Af_l, i
forward in time to obtain the predicted coordinates relative to the next image pair, IA’,T'J.. The
transformed 3-D coordinates are then projected onto the new image pair to obtain predicted image
coordinates for each landmark. Search windows are established around each image prediction by
reasoning about the uncertainty in the prediction. When a statistical model for M is available,
the search window can be derived by propagating the random variable model into the predicted
image coordinates and taking confidence intervals. In this implementation, a statistical model
for ﬁf was not available, so search windows were established by propagating assumed worst-
case error margins for M; into the image coordinates. The prediction and window generation
operation is illustrated in figure 2.8.
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The prediction process generates search windows for both images of the new stereo pair.
Because the camera geometry is known, an additional constraint is available in the form that the
new image coordinates must lie on corresponding epipolar lines within the search windows. In
principle, the coarse-to-fine correlation procedure could be applied in parallel to both new images
to find new image coordinates satisfying both the search windows and the epipolar constraint®.
A more straightforward approach was used in the implementation. First, the landmark was
reacquired by using the correlator to find the landmark in just the left image of the new stereo
pair. The search window in the right image was then contracted around the resulting epipolar line
and the correlator was employed to match between the left and right images of the new stereo
pair (figure 2.8). As in the stereo matcher, image coordinates were computed to pixel resolution
and by default X;,; = %, . = LThe entire prediction, reacquisition, and matching operation is
performed independently for each landmark in the 3-D model; after triangulation, this yields
separate observations Q; j, Xq, ..

We have already noted that if a statistical model is available for M, this can be propagated
to produce prior probability distributions for the predicted image coordinates. Search windows
may be defined by confidence ellipses derived from these distributions. Furthermore, such
distributions could be used in a Bayesian matching scheme that effectively applies a non-uniform
weighting to the search window, making some pixels more likely matches than others a priori.
Such a method was not implemented in this chapter; however, a similar insight plays a central
role in later chapters. '

Two other possible extensions are worth noting. First, in most situations the uncertainty in
M; will grow as a function of the absolute distance moved between frames; therefore, the size
of the search windows will grow accordingly. Such growth will increase both the cost of feature
tracking and the likelihood of error in feature tracking. It may be possible to analyze this growth
to determine optimal image sampling rates. Finally, by tracking features independently, we fail to
capitalize on correlations between predicted image coordinates. That is, to a certain extent errors
between predicted and observed image coordinates must be consistent across all landmarks. This
is not enforced by the current tracking procedure. Algorithms that track all landmarks in parallel,
such as the global optimization approach developed in [Lucas84], in principle could enforce such
consistency and thereby achieve more robust tracking. We leave this possibility for the future.

2.4.4 Error Detection

The feature matching and feature tracking procedures are not perfect: correspondence errors do
occur. These errors must be detected, and the associated observation(s) must be rejected, before
they corrupt estimates of the motion or the landmark coordinates. Therefore, several error
detection mechanisms are incorporated within and following the stereo matching and feature
tracking operations. We will summarize these mechanisms here; details of the derivations are
given in appendix B.5.

First, the correlation coefficients computed by the coarse-to-fine search procedure are thresh-
olded to reject matches with poor correlation. Poor correlation can result from several factors:

“For tracking, the 5 x 5 “source image” patch is taken from the previous image pair.
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a landmark may have been occluded, may have fallen outside the field of view, or may have a
markedly different appearance from the current viewpoint than it did from the previous view-
point. In any event, the correlation threshold is an attempt to filter out such cases based on
image appearance alone.

Two further tests use 3-D consistency considerations to filter errors. In the first, all features
surviving the correlation threshold are subjected to a rigidity test. This is based on the constraint
that landmarks must be stationary; therefore, a given set of landmarks should appear as a
rigid cluster over time, with distances between landmarks remaining constant. The rigidity test
enforces this constraint by verifying that distances between pairs of new landmark observations,
Q:j, and Q; j,, are approximately the same as the distances between the same pairs of estimated
coordinates, f’,’-’_ 1,j, and P+ Lja in the current landmark model. The test employs a loop that
repeatedly rejects the landmark that appears to have shifted the most, until all changes are within
a threshold (details are given in appendixB.5.1). Surviving landmarks are passed on to the
motion estimation procedures. A major advantage of the rigidity test is that it can be performed
before estimating the motion M;, since it does not require knowledge of the motion parameters.

The second 3-D consistency test uses outlier detection mechanisms within the motion esti-
mation procedures. After computing a motion estimate M;, the outlier test computes residual
vectors

v,;=Qij—RP_ ; ~ T,
that reflect errors of fit between the existing landmark model, the new observations, and the
inferred motion. The magnitude of these errors is used to reject the most outlying observation(s),
after which the motion estimate is recomputed with the remaining landmarks. This process is
repeated until all residuals are within a threshold. Appendix B.5.2 discusses this process in
detail. For the experiments in section 2.5, only the rigidity test was employed.

24.5 Summary

We will conclude this section by summarizing the operation of the entire system, including the
estimation and the image processing components. Figure 2.9 shows the combined processing
loop. Before entering the loop, the system uses the feature selection and stereo matching pro-
cedures to obtain the image coordinates of a set of corresponding features from the first stereo
pair. The triangulation and error modelling procedures use these coordinates to create the initial
3-D landmark model 13* Entering the loop, the robot vehicle then moves and acquires a second
stereo pair. The known landmarks are located in the new images by using the a priori estimate
M7 of the vehicle motion to create search windows in the new images and then applying the fea-
ture reacquisition and stereo matching routines to locate the features within the search windows.
After triangulation, this produces the new 3-D observations Q,;. Since these observations may
include gross correspondence errors, rigidity tests are applied as a filter. Next, the prior motion
estimate, the previous landmark coordinates, and the new observations are used to compute a
posterior estimate M+ of the vehicle motion together with updated estimates P“ of the landmark
coordinates relative to the current coordinate frame. This estimation procedure may incorporate
an additional error detection algorithm based on an outlier test. At this point, the number of
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visible landmarks in the 3-D model will have been reduced due to matching errors and because
some will now be outside the field of view. Therefore, the final step in the loop is to re-run the
feature selection, stereo matching, and triangulation algorithms to replenish the world model.

In experiments, the system normally was configured to start with fifty landmarks in the world
model. This number was chosen heuristically, based on experience with the reliability of the
feature tracking operation. Field of view effects and error rejection tests typically reduced the
number of landmarks remaining at the end of the loop to between fifteen and forty; the exact
number was influenced by the amount of vehicle motion and the structure of the scene.

We examine the performance of the system in the following section.

2.5 Evaluation

The preceding sections have described the statistical formulation of our motion estimation prob-
lem, the numerical procedures used to solve it, and the image processing procedures used to
detect and track landmarks over time. In this section, we evaluate the performance of the
resulting system. The evaluation addresses three primary questions:

e How does performance with the full statistical model compare with the simpler model
used in previous work?

e How does performance of each model vary as a function of distance to the landmarks?

e How do the motion estimates behave over time, given landmark tracking and sequential
estimation?

We examine these questions via mathematical analysis, simulation, and laboratory experiments.
We begin with a mathematical analysis of the correlation between successive motion estimates
to see how the estimator should behave over time. We then use simulations to examine each of
the above questions. Finally, we show results obtained with two image sequences obtained by
driving a robot vehicle through a laboratory. These results confirm the conclusions drawn from
the correlation analysis and demonstrate the robustness of the system.

2.5.1 Mathematical Analysis

Our primary concern here is to gain some understanding of how the estimates will behave over
time. In particular, we wish to see what the effect is of continuing to track the same landmark
over many frames. This effect, if any, will be reflected in the variance of global position and
orientation estimates obtained by concatenating successive transformations M;. To examine this
effect, we derive this variance for two successive transformations. For simplicity, we consider
only translational motion.

Observations made at 1o and 7, can be written as

Qo = Py +vy
Qlj = Poj+T1+V1j
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Following the logic of section 2.3.2, we can eliminate Py; to write

Qig = Qi — Qo = T1 + vy,

where vio; has covariance Xy = Xy, + Bv,. We will denote the inverse of this covariance as
W 0. With this notation, the maximum likelihood estimate of the translation is

- ey —1 v

T = [ij} 10/Q105- (2.22)
Here the overline denotes summation over all landmarks. The covariance of T, is

S |
ETI = [ij]

We can derive the next motion estimate and its covariance in a similar fashion. The obser-
vations made at #; and ¢, can be written in terms of P; as

Qy = Py+vy
sz = P1j+T2+V2j.

From this, we obtain
Q2 = Qg — Qyj = T2 + vy,

where v;; has covariance 3y = By, + 3y, and Wyy; = )32“1}. The maximum likelihood estimate
of the translation is

- q-1
T, = [Way]~ WarQuy. (2.23)

with covariance 1
2’1‘2 = [ij] .
Since (2.22) and (2.23) give the translation estimates as linear transformations of the Gaus-
sian observations, stanAdarfl error propagation methods [Mikhail76] can be used to derive the
covariance matrix of [T] TZ]?. This is

2 ETI _2T1 (WIOJEVuWZIJ)ETz
T,T, = .
U —2, (Woy s, WigS, >r,

The diagonal elements are simply the separate covariance matrices of T; and T,. The interesting
observation is that the off-diagonal elements are negative; that is, T; and T, are negatively
correlated. To see this more clearly, suppose that all of the observations have covariance oI;
then 3,1, reduces to
2
o° | 2 ~I
ZTIT""—?[—I 21 }7

where a total of n landmarks are tracked. With this simplification, the covariance of T, +T, with
tracking is 20%/nl. In contrast, suppose that after estimating T;, we discard observations Qy;
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and make new ones, Q} j» to estimate T,. This will have the effect of decorrelating the motion
estimates, so that the off-diagonal elements of X1 1, are zero. Therefore, without tracking,
the covariance of T; + T, is 402/nl, or double what we have with tracking. We interpret this
difference by observing that the negative correlation produced by tracking implies that errors in
consecutive motion estimates tend to cancel each other.

Another useful way to view the same result is to consider the effect of an observation error
at time #; for a single landmark. Using the same assumptions about the error model to simplify
things, the translation estimates reduce to

- 1
T, = ;m)

~ 1]

T, = ;(sz — Q1.
Introducing an error E;j; into observation Qy; then yields

. 1 1
T, = ~ M)+;E1k

1 1
- Qi — Q) - ;Exk-

T
TZ

When we compute the total translation, these errors cancel: Ty + T, = T} + T4. In addition
to illustrating the results above regarding correlated errors, this example suggests that tracking
tends to make the estimator robust against the occurrence of single outliers. That is, a single
outlier may introduce a large error in the motion estimate for that time step; however, this error
will be compensated for at the next time step.

This analysis has not considered the effect of using sequential estimation to refine the esti-
mated landmark coordinates over time. Intuitively, we expect this to lead to more precise motion
estimation than tracking without sequential estimation. We will not examine this theoretically.
However, later we will use simulations to compare the performance of motion estimation without
tracking, motion estimation with tracking, and motion estimation with tracking and sequential
estimation.

2.5.2 Simulations

The simulations compare the performance of the least-squares estimator, the maximum-likelihood
estimator, and the sequential Bayesian estimator. Since the primary difference between the
least-squares estimator and the maximum-likelihood estimator is in the use of spherical versus
ellipsoidal error models, we also refer to these as the “spherical” and “ellipsoidal” cases.

We present three sets of simulation results. The first is a base case that compares the
standard deviations of position estimates obtained with each error model for a single step of
vehicle motion. That is, it considers motion between only two consecutive stereo pairs. This
illustrates the difference in the variability of position estimates with each model and reveals the
effects on the motion estimates of coupling between the translational and rotational degrees of
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freedom. The second set also considers only two consecutive stereo pairs and tests limiting
performance by tracking progressively more distant points. The last set examines the long range
performance over many images of several different versions of our estimator.

The simulations were generated as follows. The “scene” consisted of random points uni-
formly distributed in a 3-D volume in front of the simulated cameras. For the first set of
simulations, this volume extended 3 meters to either side of the cameras, 2 meters above and
1 meter below the cameras, and from 1.5 to 10 meters in front of the cameras. The cameras
themselves were simulated as having 480 x 512 pixels and a field of view of 36 degrees. The
stereo baseline was 0.2 meters. This duplicates fairly closely the conditions of the laboratory
experiments to be described later. Image coordinates were obtained by projecting the points onto
the images and adding Gaussian noise to the floating point image coordinates. These coordinates
were input to the triangulation and motion solving algorithms. For the ellipsoidal error model,
covariance matrices were computed as described in section 2.3.1. In the spherical case, weights
were derived by taking the Z variance from the covariance matrix. Weights obtained by several
other methods were tried and found to give very similar results. These include the volume
and length of the major axis of the standard error ellipsoid and Moravec’s half-pixel shift rule
[Moravec80]. Trials were also performed in which the noisy image coordinates were rounded to
pixel resolution, to simulate the effect of quantization error in the image coordinates. Since the
results of these trials were essentially the same as the results without quantization, we present
only the results obtained without quantization. The artificial noise in the image coordinates was
uncorrelated between x and y and had a standard deviation in each coordinate of 0.1 pixels.

Single step, variable number of landmarks

The first set of simulations determined the standard deviation of the estimated motion between
two consecutive stereo pairs when the true motion was 0.1 meters of forward translation, with
no motion in the parameters. The results are shown in figures 2.10 and 2.11 plotted against the
number of points used to compute the motion estimate.

For any given number of points tracked, the standard deviations are taken over 5000 random
trials with entirely new points generated for each trial. In both figures, the top three curves were
obtained with spherical modelling and the bottom three with ellipsoidal. Tilt implies rotation of
the camera up or down, pan is the rotation about the vertical axis, and roll the rotation about
the camera axis. The most significant thing to note is that the standard deviations obtained with
the ellipsoidal model are a factor of 5 to 10 less than those of the spherical model. The size
of the difference will vary with the distance to the points; for example, when they are within
1 to 2 meters of the cameras the factor is 2 to 4, and when they are within 2 to 5 meters it is
3 to 6. The case shown in the figures (points from 1.5 to 10 meters away) approximates the
conditions of the indoor run with real data described later. Another point to note is that with
the spherical model the estimates of roll and forward translation show less variation than the
remaining parameters. This is because lateral translations and panning rotations have coupled
effects on the errors of fit, as do vertical translations and tilting rotations. This shows up in
the covariance matrix of the computed motion parameters as larger correlations between these
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Figure 2.12: Mean estimated forward distance travelled vs. maximum distance to points

pairs of parameters than other pairs. These correlations are present with both error models, but
the effects on the variance of the individual parameters is more apparent in the spherical case.
Lastly, note that for a given level of performance fewer points are needed with the ellipsoidal
model than the spherical, offseting the greater expense of the iterative motion solution needed
in the ellipsoidal case. The exact relationship will depend on the camera configuration.

Single step, variable distance to landmarks

The second set of simulations illustrates the dependence of the standard deviation on the distance
to the points in the scene. The initial volume for generating points was 1.5 to 3 meters away;
this was expanded by moving the far limit back in stages until the final volume was 1.5 to 25
meters.

As with the previous experiment, for each volume 5000 random trials were performed with
different landmarks generated for each trial. Ten landmarks were used for each trial. Figure
2.12 shows the mean of the forward translation estimates as a function of the maximum distance
to the points. The true forward motion was 0.1 meter. Curves for a low-noise and a high-noise
case are shown. In the low-noise case, the standard deviation of noise in the image coordinates
was 0.1 pixels, as in the previous simulation; in the high-noise case, it was 4.0 pixels. Figure
2.13 shows the standard deviations of the motion estimates for just the low-noise case.

The standard deviation tells most of the story. With the ellipsoidal model, the standard
deviation ranges from 1.5 percent to 12 percent of the true motion. On the other hand, with the
spherical model the standard deviation is initially about seven percent of the actual motion and
grows rapidly to 150 percent The other motion parameters, though not shown, behave similarly.
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Figure 2.13: Standard deviation of estimated forward distance travelled vs. maximum distance
to points

Looking at the means, with the ellipsoidal model the mean in the low-noise case is within 0.5
percent of the true motion for all distances. For the low-noise case with the spherical model, there
is some bias toward over-estimation of the distance; however, the rapid growth of the standard
deviation makes further interpretation of little value. In the high-noise case, the ellipsoidal model
shows a gradually increasing bias toward under-estimation with increasing distance to the points.
This was anticipated in section 2.3.1 as a possible result of the non-linearity in the triangulation
operation. The existence of bias can be verified analytically, though we will not do so here.
For the spherical model, estimates obtained in the high-noise case are completely unusable and
the results are not shown. Thus, this experiment illustrates the strong contrast between the
algorithms that develops with increasing distance to points.

Multiple steps

The last simulation looked at motion over a long sequence of images in order to compare the
error growth experienced with different versions of the estimator. For this experiment, a single
set of 10 randomly-generated landmarks was used for all trials with all versions of the estimator;
thus, the only differences from trial to trial were the noise in the measured image coordinates
and the estimator that was applied. This allows direct comparison of different estimators. Four
variations of the estimator were examined:

o The maximum-likelihood estimator (ellipsoidal error model, equation(2.14)), with image
coordinates in both the current and the previous image pair remeasured to estimate motion
at each step. This is the uncorrelated case analyzed in section 2.5.1.
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¢ The maximum-likelihood estimator without remeasuring image coordinates. This is the
correlated case analyzed in section 2.5.1.

o The sequential Bayesian estimator (equations (2.18) through (2.20)).

o The least-squares estimator (spherical error model, from equation (2.10)), without remea-
suring and without updating the landmark coordinates.

For simplicity, only translation was included in the estimators. The landmarks in this simulation
were generated in a volume ranging from 1.5 to 10 meters in front of the cameras, with new
landmarks added when existing ones passed out of view. The simulation covered a total of 70
steps of 0.1 meters forward per step. The noise standard deviation was 0.1 pixels. This imitates
as closely as possible the first laboratory experiment described in the following section.

Figure 2.14 shows the standard deviations of the estimated total forward distance travelled,
as a function of the true distance travelled. The top, dotted curve gives the results with the
spherical error model; the remaining four curves give theoretical and experimental results with
the ellipsoidal error model. As we expect, the least-squares results are distinctly worse than
the other results. The fact that the curve does not rise steeply reflects the strong correlation
between successive motion estimates. The abrupt increases in the curve, particularly at 5.4
meters, result from changes in the landmark configuration that occur when landmarks falling
out of view are replaced by new landmarks. After each abrupt increase, the variance gradually
decreases for a period of time. This is probably a reflection of the strong, negative correlation
between successive motion estimates.

The second and third curves, that is the triple-dot-dash and double-dot-dash curves, show
the theoretical and experimental results using the ellipsoidal error model with remeasurement,
respectively. Based on the analysis in section 2.5.1, the theoretical curve is the function /nod,
where n is the step number and o? is the variance for the first step from the experimental
curve. The theoretical and experimental curves agree quite well. The fact that the experimental
curve is slightly below the theoretical curve is explained by noting that in steady-state operation,
landmarks will be somewhat closer on average than they are for the first few steps. Since the
theoretical curve is obtained by extrapolating the results for the first step, we expect it to be
somewhat higher than the steady-state results from the simulation.

The dashed and solid curves curves show results for the maximum-likelihood and sequential
Bayesian estimators, respectively, without remeasuring landmarks as above. After two steps,
the difference between the remeasured and non-remeasured maximum-likelihood estimates is
in almost perfect agreement with the analysis of section 2.5.1. Moreover, the ratio of errors
between the two approaches grows over time, so the importance of tracking is even greater than
indicated by our initial analysis. The sequential estimator performs very marginally better than
the maximum-likelihood estimator. We have not performed a thorough sensitivity analysis to
determine what difference is to be expected. However, repeating the analysis in section 2.5.1
for simple examples of one-dimensional motions and one-dimensional landmark measurements
suggests that little to no difference is to be expected. Therefore, it appears that, although
sequential estimation does improve the estimated landmark coordinates, it does not significantly
improve the estimates of vehicle motion.
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Figure 2.15: The robot vehicle “Neptune” used in the laboratory experiments

2.5.3 Laboratory Experiments

Experiments with the entire system were run with the “Neptune” robot vehicle [Podnar84]
(figure 2.15) in the Mobile Robot Lab at Carnegie Mellon University. Neptune is a tricyle-type
vehicle that provided a simple, mobile sensor platform for this and other research in autonomous
navigation. It was steered and driven via the front wheel, while the rear wheels trailed passively.
No on-board odometry was available. Power was supplied from off-board via a tether cable.
An on-board 68000 controlled the motors and the sensors; all vision processing was done off-
board on DEC Vax computers. Images were acquired with two, Sony CCD cameras set on a 20
centimeter baseline; 12.5 mm lenses were used, giving a field of view of roughly 36 degrees.
These are the same specifications as used in the foregoing simulations.

For the experiments described here, the vehicle was driven manually through the room to
acquire sequences of stereo image pairs. Two runs were made. For the first run, the vehicle was
driven in a straight line in steps of approximately 10 centimeters between images, producing a
sequence of 55 stereo pairs. The second run covered a curving trajectory, with each step not
exceeding 7.5 centimeters in distance and five degrees in rotation; the resulting image sequence
contained 94 stereo pairs. Figure 2.16 floor-plans of the laboratory, with dotted paths showing the
actual position of the vehicle when each stereo pair was acquired. Images from these sequences
were shown earlier in figures 2.6 and 2.7. The images were processed with the algorithms
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Figure 2.16: Floorplans of the Mobile Robot Lab showing true vehicle trajectories for the
experiments with straight and curved motion. Dots mark the vehicle positions where images
were acquired.
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described earlier, with the exception that the outlier detection detection algorithm described in
appendix B.5.2 was not implemented.

Figure 2.17 shows the vehicle positions estimated by the least-squares (LS) estimator and
the maximum-likelihood (ML) estimator for the straight-line trajectory. Both estimators were
constrained to estimate only motion in the floor plane; that is, two degrees of translation and one
degree of rotation. The ML estimates are fairly stable throughout the trajectory. On the other
hand, the LS estimates are fairly erratic early in the trajectory and only become relatively stable
in the latter half of the trajectory. Note that the experimental conditions resulted in the majority of
the landmarks being selected from the bookshelf against the far wall of the laboratory. Therefore,
the motion estimates are consistent with the simulation results: spherical error model leads to
poor performance when the landmarks are distance, better performance as the landmarks get
nearer, and the ellipsoidal error model leads to good performance throughout. The final position
obtained with the ellipsoidal error model was correct to within 2 percent of the distance and
1deg of orientation. With the spherical model, the corresponding figures were 8 percent and
7 deg.

Repeating the experiment with six degree-of-freedom estimators led to similar results. It was
notable that with the spherical model the error in roll was less than a degree, while in the other
rotations it was between 5deg and 12deg. This is consistent with the observation made from
the first simulation about correlations between estimates of rotation and translation.

The conditions of this experiment were very similar to those of the multi-step simulation.
The results of the experiment and the simulation are in good agreement. In both cases, the
LS estimator shows some erratic behavior, whereas the ML estimator is much more stable and
precise. Regarding the precision of the ML estimator, the 2 percent error in forward distance
achieved experimentally compares with a standard deviation of (.13 percent obtained in the
simulation. This difference of a factor of 15 is partly explained by the fact that in the simula-
tion, features were localized to roughly one tenth of a pixel, whereas the implemented system
computed correlation peaks only to pixel resolution. This suggests that a well-calibrated system
with sub-pixel localization of features may achieve a precision better than 1 percent of distance.
This compares favorably with odometry systems, which have been found to achieve about 1
percent [Marce86].

Figure 2.18 shows the estimated vehicle positions for the curved trajectory. In general, the
results are similar to those for the straight trajectory. Looking at the results with the spherical
error model for both the straight and curved trajectories, there is a tendency for large errors to
from step to step to compensate. This is consistent with the correlation analysis we conducted
earlier. For the ellipsoidal model, the estimated trajectories track the true trajectory fairly well
in both cases, with the exception of two large errors made near the end of the curved trajectory.
These are due to failures to reliably track a sufficiently large number of features to obtain accurate
motion estimates. We expect that this can be remedied by implementing the outlier detection
mechanism, plus additional mechanisms for monitoring conditioning and selecting landmarks
according.

In conclusion, the results of experiments with real images support the conclusions drawn from
the correlation analysis and the simulations. Moreover, the performance of the entire system is, on
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Figure 2.17: Resuits for straight line motion
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(a) Positions computed with LS estimator

(b) Positions computed with ML estimator

Figure 2.18: Results for curved motion
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the whole, accurate and reliable. As noted above, even better performance should be achievable
by tuning the implementation, as well as by using more precise calibration equipment than was
available for this work. Thus, the results show that visual motion estimation may be competitive
with other motion estimation systems on a precision basis; moreover, the whole system provides
a good foundation for extension to other motion estimation problems.

2.6 Extensions and Related Work

Extensions of this work can go in many directions. Starting with unfinished business within the
scope of this chapter, there are questions of performance and robustness with real image data that
are unresolved. These include implementing and evaluating the adequacy of the outlier detection
algorithm, estimating the noise level in the presence of outliers, and choosing landmarks so as
to maintain adequate conditioning.

A first level of extension beyond the present scope involves related motion estimation prob-
lems for a single rigid body. One such problem is to estimate the parameters of a more extensive
kinematic model. Appropriate kinematic models are well-developed in the engineering literature
(e.g. [Wertz78]). Within computer vision, several successful efforts have been made to estimate
single rigid-body motion when the object model is known in advance. This work has been done
primarily in the context of aerospace applications; for example, monocular and binocular systems
designed for docking or grasping satellites are described in [Gennery86,Tietz82,Wunsche86].
The general principles of recursive estimation of dynamic scene models are presented nicely in
[Dickmanns88], together with applications to satellite docking, autonomous road following, and
simulated aircraft landing. The next challenge is to extend such work to situations in which the
object model is not known in advance, as was the case in this chapter. The main difficulty in
doing so is to initialize a reliable scene description. The use of multiple image, together with
the rigidity and outlier testing methods described, here should provide a good starting point.

Other extensions include the use of additional geometric primitives in the world model,
global mapping of a static environment, and estimation in the presence of multiple rigid-body
or deformable motions. Uncertainty modelling for line segments and planar patches is discussed
in [Ayache88]. Recursive estimation of probabilistic world models for mobile robots is also
discussed in [Kriegman87]. The global mapping issue is reminiscent of mapping from aerial
photography, so we expect that closely related methods will be applicable. Relevant material
is described in [Mikhail76,Vanicek86]. Applications of batch and recursive methods to sim-
ilar problems in involving multiple coordinate frames in robotic workplaces are developed in
[DurrantWhyte88,Smith87]. Estimation in the presence of multiple rigid-body motions introduces
a new level of complexity, since it requires segmentation. A beginning is made on this problem
in [Mulligan89,Zhang88]. Finally, we anticipate that thorough treatments of multiple rigid-body
and deformable motion will require more complete models of disparity field estimation.
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2.7 Summary

In this chapter, we have used stereo vision to estimate the frame-to-frame rotation and translation
of a robot vehicle travelling through a static, unknown environment. This task is important
because of its direct applications, because of its relevance to other pose-estimation problems,
and because it is a precursor to more advanced problems in motion estimation.

Our approach was to track 3-D point landmarks and to use the apparent motion of the land-
marks to estimate the actual motion of the vehicle. We introduced a statistical formulation
of the estimation problem, using an estimation framework and Bayesian methods described in
[Maybeck79]. The presence of large rotations make this problem non-linear. To solve it, we
obtained initial estimates of the coordinate transformations by using an existing direct solution
for a simpler uncertainty model [Schonemann70]; then we linearized our formulation and used
iterative methods to refine the solution. We implemented a system for tracking point landmarks
through real image sequences by extending methods previously developed in [Moravec80]. Fi-
nally, through simulations and laboratory experiments, we demonstrated (1) that our statistical
formulation leads to a radical improvement in performance over previous work that did not em-
ploy an explicit statistical model, and (2) that the whole system performs accurately and reliably
on long sequences of real images.

We identify three principal contributions of this work:

e itintroduced statistical modelling of uncertainty to the problem of visual motion estimation
in unknown environments and demonstrated the importance of such modelling,

e it integrated the estimation methods, image processing methods, and error detection meth-
ods necessary to make a system work in practice, and

e it gave the first demonstration of the feasibility of visual motion estimation in unknown
gnvironments.

A number of possible extensions to this work have just been described. Insofar as these
concern estimation of rigid-body motion by tracking primitive geometric features, much relevant
material already exists. However, problems of shape and motion estimation in unstructured
environments require depth map estimation methods that go well beyond the selection and
matching of primitive geometric features. A satisfactory approach to estimating such depth
maps does not yet exist; therefore, we turn to this problem next.




Chapter 3

Depth Estimation: Overview

In the previous chapter, we solved a version of the single, rigid-body motion estimation problem
by developing a system to estimate the position of a robot vehicle. We did this with a depth
model consisting of 3-D point landmarks that we tracked through stereo image sequences. In
the balance of our work, we consider the complementary problem of estimating depth maps
from stereo image pairs. Our purpose in doing so is to build a more satisfactory foundation
for addressing depth and motion estimation problems in complex, unstructured environments, as
outlined in chapter 1.

To address this problem effectively, we must begin by developing perspective on what the
problem is and what will be necessary to solve it reliably. That is, we must define what
quantities we want to compute, we must formulate the problem of computing those quantities
as a mathematical estimation problem, and we must consider what characteristics are necessary
in the system design or operation to achieve a reliable solution. These are essentially the same
steps that were executed in developing the system described in the previous chapter.

In the following sections, we define the problem of estimating depth maps and we motivate
both the mathematical formulation and the system design we will employ. Components of the
formulation and its operationalization are developed in detail in subsequent chapters.

3.1 Defining the Problem

We will start by reconsidering what it means to estimate depth from a stereo image sequence.
The insight this provides will guide our approach to depth estimation with individual stereo
image pairs. After establishing this context, the balance of our work will develop methods to
estimate depth reliably for the first stereo pair in a sequence.

A stereo image sequence constitutes a pair of three-dimensional intensity functions I;(x, y, £)
and 7,(x,y,1), where ¢ is the time dimension (figure 3.1). Relative to one of the cameras, say
the left one, we denote scene depth by a function Z(x, y, t) that gives the distance to the nearest
object in the scene for all pixels of image sequence 1;. We assume that the stereo cameras are
aligned so that objects appearing on a given scanline for the left camera appear on the same
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Figure 3.1: Problem: use sampled versions of /; and /, to estimate a sampled version of d.

scanline for the right camera!. In this case, an object seen at [;(x, y, f) in the left sequence will
appear at I,(x — d(x,y,1),y,t) in the right sequence, where d, the stereo disparity, is inversely
proportional to the depth Z. With this, a simple model of the relationship between the intensities
of the left and right image sequences is

Il(xayat) = I(xvy,t)+nl(x7yat) (31)
L(x,y,1) Ix+d(x,y,0),y,0+n(x,y,1), (3.2)

where [ is an ideal, noise-free intensity signal, n; and n, represent noise in the images, and I;
and I, are the intensities actually measured. Finding corresponding points boils down to finding
d; likewise, maximizing the depth information extracted from the images amounts to estimating
the disparity function d(x,y, ) from the intensity functions I;(x,y,?) and I (x,y,?). Estimating
d(x,y,t) is the long-term goal our research addresses. To proceed successfully, we must consider
how to formulate this as an estimation problem and how achieve a reliable solution. These
issues are the subjects of the following two sections.

3.2 Formulating the Estimator

Because the images contain noise, disparity estimates inevitably will be noisy. This suggests
that we approach the above problem by formulating it as a statistical estimation problem, much
as we did for motion estimation in chapter 2. Recall that the steps we took there were to define:

1. the variables to be estimated,

1This corresponds to the idealized camera model described in section 2.3.1.
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2. the measurements available,

3. the mathematical model relating the measurements to the variables of interest,
4. the mathematical model of the uncertainties present, and

5. the performance criterion use to determine the “best” estimates.

We will proceed through the same steps here. In so doing, we are elaborating and adapting
a statistical framework originally proposed in [Marroquin85] for an abstract image model. To
keep things manageable, we will formulate the problem at a single scale of resolution.

(1) Whereas in chapter 2 the variables of interest were vehicle motion parameters M; and
3-D landmark coordinates P; ;, in focusing on depth maps the variables we wish to estimate are
the sampled disparities d(x,y, f) for every pixel in the image sequence. The set d(x,y) for each
point in time is equivalent to the depth map we referred to in chapter 1 and is also known as a
disparity field. In general, disparity can be a 2-D displacement vector; however, we will assume
idealized camera geometry, in which case disparity is just a horizontal displacement for each
pixel. We denote all pixels of the disparity field for each time ¢ by the vector d(z).

(2) and (3) The measurements available are some form of comparison between the two
image sequences. The comparison function can take many forms. We will consider just the
simplest comparison obtained by differencing the two images obtained at each time ¢. For
example (dropping the time index), to estimate the disparity at pixel (x;,y;), we measure the
intensity differences between the two images for candidate values of disparity:

e(x;, yj dxi, 7)) = I (x; — d(xi, ), y)) — Li(x;, y))- (3.3)

In practice, we actually examine intensity differences in a window around (x;,y;), with the
assumption that disparity is constant over the window. We elaborate this model in chapter 4,
where we also develop a linearized measurement model that approximates e as a linear function
of d.

(49 'We model the image noise functions n; and n, of equations (3.1) and (3.2) as stationary,
Gaussian white fields. This makes the differences e random variables with distributions that are
conditioned on the given value of disparity d. Therefore, for a given disparity field d, the vector
e of all measurements will have a conditional probability density f(e|d). Because we model the
image noise as Gaussian, our model of f(e|d) will also be Gaussian. Details of the model are
derived in chapters 4 and 5.

Prior information about d may be available from a number of sources, including terrain
maps, other range sensors, and from previously processed images. This information generates
uncertain predictions about the disparity at each pixel. We assume that this information can be
modelled as a prior probability density for d. The model we choose is to treat d as a Gaussian
random vector with mean d~ and inverse covariance matrix W . Therefore, for an image with
M rows and N columns, the prior density of d is

Fd) = @m) MV W[ exp {—% a—a]"w;[a- a—}} . (3.4)
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If Wy is diagonal, then this density models the prior information as independent for each pixel,
with prior means d- (x, y) and variances s~ (x,y). For example, such a model may be obtained by
projecting information from another sensor, such as a laser scanner, onto the image plane of the
cameras. The mean and variance at each pixel then characterize the predicted depth at each pixel
and the level of uncertainty in the prediction. A non-diagonal Wy implies correlation between
pixels of the disparity field; consequences of this will be discussed later. Note that this proba-
bilistic model makes the depth map a random field [Marroquin85,Marroquin87,Vanmarcke83].
(5)  Asin chapter 2, we use Bayes’ theorem to derive a posterior density

fleld)f(d)
fle)

from the prior and conditional densities and we employ the MAP criterion to define the “best”
estimate d* of the disparity field. In general, the posterior inverse covariance matrix W} expresses
the uncertainty in the estimated disparity field. We approximate only the diagonal elements of
this matrix by deriving estimates of the posterior variance at each pixel in order to model the
uncertainty in depth at each pixel. This is valuable, because this information may be very useful
when disparity estimates are used by other parts of the robot system. For example, if disparity
fields are used to build terrain maps for navigation, modelling the uncertainty in disparity allows
us to model uncertainty in the terrain map, hence to take terrain uncertainty into account in
motion planning.

The foregoing discussion gives a preview of how we will set up the estimation problem;
now we will give an indication of how we eventually solve it. In general terms, applying the
MAP criterion to (3.4) leads to an objective function defined over d; minimizing this function
defines our optimal estimate. To illustrate the nature of the objective function, as well as the
issues involved in finding the global minimum, we will present a small example based on stereo
algorithms in the literature. The objective function in the example is similar to one we obtain
in chapter 5.

It has been popular [Barnard89,Horn86,Poggio85,Witkin87] to formulate the matching prob-
lem for each image pair as a variational problem. In abstract terms, this approach seeks to
minimize an integral

fdle)= (3.5)

9@ = [ [Foy,dd,d,..) dx dy (3.6)

over possible disparity functions d, where F is a cost functional that measures the dissimilarity
of 1; and I, for candidate functions d. The functional may also depend on various derivatives of
d. Typically, F measures the intensity error between the two images for any given d, as well as
the departure of d from a pre-defined notion of how smooth it should be. A simple example is

q(d) = / / {Uh - dex,),5) — 106, 901 + M| Vd|[*} dx dy. 3.7

Here F measures the squared intensity error (¢? in the notation of equation (3.3)) and the squared
magnitude of the disparity gradient (|| Vd||®), with A serving as a blending constant. The gradient
term is a penalty function that biases the estimated disparity field to have low gradient. This
penalty is a heuristic intended to capture the intuitive notion that surfaces are generally “smooth”.




CHAPTER 3. DEPTH ESTIMATION: OVERVIEW 61

To make this example concrete, we discretize (3.7) by using forward differences to approxi-
mate Vd. This replaces (3.7) by

N M
q@d = 33 {Utx - der,y),y) ~ Lo y)P} +

x=1 y=1
N-1M-1

AY Y {[de+1,y) — doo )P + [dor,y + 1) — de, )1} (3.8)

=1 y=l

We would minimize this objective function by searching over possible disparity fields d. This
is closely related to the statistical framework discussed above. It has been shown that objective
functions of this form can be equated to Bayesian estimation, where the intensity error term
derives from the conditional density of the measurements and the disparity gradient term de-
rives from the prior density of the disparity field [Poggio85,Szeliski88]. We elaborate on this
connection in chapter 5, where we develop the statistical formulation in detail.

In practice, a number of problems make it difficult to find global minima of objective functions
like (3.8). In particular, false targets, or matching ambiguity caused by such things as repetitive
intensity patterns in the image, cause there to be multiple local minima. Discontinuities in the
depth function that occur at object boundaries also make the search space discontinuous. If an
initial estimate of the disparity field is available that is close to the true field, then it may be
possible to use gradient descent to achieve the global minimum and find the correct estimate.
The algorithm described in [Witkin87] takes this approach, using gradient descent in scale-space
with a more elaborate objective function. However, if a good initial estimate is not available,
gradient descent may not produce the correct result. In this case, a combinatorial search over
possible disparity fields is required.

To summarize all of the discussion so far, in the previous section we motivated the problem
of estimating disparity fields for a stereo image sequence. In this section, we chose to approach
this as a statistical estimation problem and, restricting the discussion to a single stereo pair,
we introduced the main steps we will take in formulating our approach. These steps will lead
to objective functions that are minimized to estimate the disparity field. Gradient descent may
be appropriate as the minimization algorithm if prior disparity estimates are available that are
close to the true disparity; if such information is not available, the minimization will involve
combinatorial search. To relate this back to stereo image sequences, the matching problem for the
first pair of images (time 1) is combinatorial. If images are acquired rapidly enough compared
with the rate of variation of d(x,y,1), then for ¢ > 7, the matching problem may be solvable
with either gradient descent or combinatorial search. If images are acquired less rapidly, then
the problem will involve combinatorial search for each pair of images.

The conclusion to draw from this discussion is that stereo matching reduces to an optimization
problem that is generally difficult to solve. This has always been the crux of stereo research;
the history of stereo research is largely one of trying to solve a combinatorial search problem
efficiently and reliably. Experience has shown that this is actually a problem of both algorithm
and system design. Therefore, our next step is to consider search algorithms and system design
together, in order to identify a promising combination of the two.
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3.3 Designing a Reliable System

Approaches to solving the stereo matching problem come in two basic types: those that aug-
ment the search algorithm and those that augment the sensor system. The first type seeks to
use powerful search algorithms or knowledge about the scene to help find the best disparity
field estimate for a given pair of images. Search algorithms include dynamic programming
[Baker82,0hta85], simulated annealing [Barnard89], methods based on accumulation of local
support [Drumheller86,Marr76,Prazdny85,Stewart88,Szeliski85], and gradient descent or related
methods that use multiple resolutions [Quam84,Witkin87]. Knowledge about the scene generally
takes the form of heuristic assumptions about surface structure and is embodied in a variety of
search constraints or penalty functions. These include the ordering constraints implicit in dynamic
programming [Baker82,0hta85], the “forbidden zones” discussed in [Drumheller86], penalty
functions derived from surface smoothness assumptions [Barnard89,Boult88,Poggio85,Witkin87],
and the various local support methods already mentioned. The search and knowledge-based al-
gorithms have varying degrees of complexity and achieve varying levels of success. To date,
there has not been a quantitative characterization of when or how well a given algorithm will
work. Similarity, specific advantages are associated with specific techniques, but there is no one
generally accepted set of search algorithms and knowledge sources that constitutes a “solution”
to the problem.

The second type of approach uses more sensing, such as more images or combinations
of images with other sensors, to constrain search or to resolve ambiguous image interpreta-
tions. Naturally, such methods can be used in place of or in addition to the methods above.
Examples include trinocular stereo [Hansen88,Milenkovic85,Stewart88], combining stereo with
focus [Krotkov88] or camera motion [Geiger87], and methods that process image sequences
[Baker88,Bolles87,Matthies89,Xu85]. Such approaches are fundamentally more powerful than
those that use only one stereo image pair, because disparity estimates can be verified by additional
data instead of by agreement with assumed scene characteristics.

It is clear that to achieve reliability in complex, unstructured domains, methods from the
second group must be employed. The problem is to find a combination of sensor configuration,
sensing strategy, and search algorithm that can eventually perform well for stereo image se-
quences. Strong arguments can be made for using each of the redundant sensing methods listed
above. Here, we observe that the use of fine motion to initialize stereo fusion is particularly
attractive, because it can be made to work for cases in which even trinocular stereo will have
difficulty and because it does not require controllable focus. It can also augment these other
methods. Therefore, we choose to pursue the stereo/motion combination here.

Figure 3.2a illustrates one way to use fine motion to initialize stereo fusion. One or both
cameras are mounted on a translation stage that can move the camera(s) parallel to the stereo
baseline. Motion of one of the cameras is used to acquire a narrow-baseline image pair. The
narrow baseline ensures that matching for this image pair will be comparatively easy; in the
limit, success can be almost assured by shrinking the baseline. Depth information from this
image pair is then used to constrain matching in a wide-baseline image pair acquired with both
cameras. We refer to this whole procedure as a bootstrap operation. Other strategies combining
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Figure 3.2: Operational framework: (a) bootstrap stage alone, (b) a larger scenario with bootstrap,

steady-state, and verification/error recovery modes of operation
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camera motion and stereo can be proposed [Geiger87]; however, this one is the simplest, is
effective, and provides a good starting point for formalizing the approach.

Availability of the translational degree of freedom in the camera system is useful in a larger
scenario involving stereo depth estimation over time. In this scenario, the bootstrap operation
is used to obtain stereo fusion initially (figure 3.2b); thereafter, as the robot system executes
task-oriented motions, depth maps for each new stereo pair are estimated using the depth map
for the previous image pair to constrain search. We refer to this as a steady-state mode of
operation. The correctness of such depth maps may degrade over time; if this can be detected,
then the system can stop and use camera motion to re-initialize the depth in a verification or
error-recovery operation.

This scenario raises many questions. In the remainder of this work, we confine ourselves to
applying the single-scale, statistical formulation outlined in the previous section to the bootstrap
operation. In chapter 4, we describe the measurement model in detail. This leads to a classical
maximum-likelihood (least-squared-error) estimator for matching single pair of images. We
derive the error variance of the estimator and experimentally examine the distribution of disparity
estimation errors at individual pixels. This provides support for the Gaussian random field model
of disparity. Chapter 4 also notes relationships between this estimator and the interest operator
of chapter 2. Chapter 5 extends the maximum-likelihood estimator to Bayesian formulations
for estimating the disparity field from the narrow and wide-baseline image pairs. This leads to
efficient, area-based matching algorithms that estimate depth, either independently for each pixel
or jointly for all pixels of each scanline. The performance of these algorithms is demonstrated
with scale models of complex, outdoor scenes.



Chapter 4

Depth Estimation: Basic Disparity and
Error Estimation

In the previous chapter, we outlined a statistical formulation of the depth map estimation problem.
This involved probabilistic models of uncertainties in measured image intensities, prior depth
information, and posterior depth estimates. Each of these uncertainties was modelled by a
Gaussian random variable or, when the entire image is taken into account, by a Gaussian random
field.

In this chapter, we begin to develop the details of the formulation and to validate the un-
certainty models experimentally. We use measurements of intensity differences between images
to derive a basic, maximum likelihood estimate of disparity and to derive the variance of the
estimation error. We also review several general properties of maximum likelihood estimators
that are important in our problem. These properties imply that the estimation error will tend
to be Gaussian distributed. We then examine the estimation error experimentally, using real
and synthetic images of constant-disparity scenes, to verify that these properties are observed
in practice. In summary, we find that the statistical model is extremely good with synthetic
images and satisfactory with real images. We also find that we can estimate the variance of
these distributions reasonably well from the images themselves. We conclude that the Gaussian
random field is a promising model of uncertainty for depth map estimation with real images.

We close this chapter by outlining some extensions to the basic estimator and by relating it to
the interest operator and the landmark observation model of chapter 2. In the following chapter,
we generalize the results of this chapter to Bayesian methods that incorporate prior disparity
information, examine formulations for jointly estimating larger units of the disparity field, and
apply these estimators to the bootstrap operation proposed in chapter 3.

4.1 Maximum-likelihood Disparity Estimation

Most area-based matching operators used in computer vision have their roots in statistical con-
siderations similar to those we will employ below. However, the goals of these operators
generally stopped at getting the best disparity estimate for pixels in an image. For the most part,
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the computer vision research community has only recently become concerned with the uncer-
tainty of the disparity estimate, although this has been a concern in photogrammetry for a long
time [Forstner86,Mikhail76,Ryan80,Vanicek86]. Exceptions to this statement are the area-based
matchers described in [Gennery80] and [Anandan84], the theoretical treatments of the variance
of extracted edge positions given in [Canny86,Nalwa86], and recent efforts to characterize the
uncertainty in optical flow [Heeger88,Rives86]. Since the uncertainty of the disparity estimate
is a central concern of ours, we will derive the disparity estimate and its error properties in de-
tail. Our treatment is drawn primarily from similar, previous derivations in the photogrammetry
literature [Forstner86,Ryan80] and from the thorough text by Van Trees [VanTrees68].

The disparity estimation problem requires finding the unknown shift between two noise-
corrupted images /;(x, y) and I,(x,y). When the disparity is treated as a deterministic, unknown
parameter, as it is in this chapter, maximum likelihood methods are appropriate for developing
an estimator [VanTrees68]. Doing so involves three steps:

1. Defining a set of observations as functions of the unknown disparity.
2. Formulating the probability density of the observations conditioned on the disparity.

3. Determihing the disparity estimate that maximizes the probability of the observations.

In general, the “disparity” may be a two-dimensional displacement vector. For clarity, we will
start by considering only 1-D displacements in 1-D images. The extension to 2-D displacements
in 2-D images is developed subsequently.

Formulation for 1-D Displacements

Before defining the observations, we will review our model of the stereo images themselves.
We model the images as displaced versions of the same deterministic signal, with noise added
separately to each image. Thus,

Ii(x)
I,(x)

I1(x) + ny(x)
I(x + d(x)) + n,(x) “4.1)

1

where I(x) is the underlying deterministic signal, d is the displacement between images I; and
I, and n; and n, are the noise functions. For simplicity, we assume that n; and n, are stationary,
Gaussian white noise processes with variance o7 and o2, respectively. Noise in real images
is more complex; however, we verify in section 4.3.3 that the estimator performs well on real
images despite of the simplicity of the noise model. The effect of perspective distortion between
the two images is not expressed by equations (4.1) and is currently beyond the scope of our
work.

We will define the observations as differences of a suitable representation of the local intensity
variation in the neighborhoods of potentially matching pixels. In this thesis, the representation
we use is the image itself and the observations are intensity differences in windows around the
pixels being matched. Other representations, such as expansions in terms of localized basis
functions [Adelson87,Kass84,Mallat87], may offer advantages in dealing with the issue of scale.
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To find the disparity at pixel J;(x;), we observe the intensity differences in a window around
this pixel for each candidate disparity. Assuming that disparity is constant over the window, this
gives a set of intensity errors

e(x,-+ij;d) =I,(x,-+ij——d)——I,(x,-+ij) i (42)

where Ax; indexes pixels in the window. We express the observations e(x; + Ax;; d) together as
the vector

e(x; d) = [e(x; + Axy; d), . .., e(x; + Ax,; d)],

where n is the size of the window. Under the noise model above, the conditional joint p.d.f. of
e given d is

_ 1 1oz
fleld) = o= exp (— S e) , @.3)

where 0% = 0% + 02 is the sum of the noise variances in both images. f(e|d) is called a likelihood
function and a choice of d that maximizes it is called a maximum likelihood estimate (MLE).
Maximizing (4.3) is equivalent to maximizing the log-likelihood,

Inf(eld)

1
= ———e’e+constant terms, (4.4)
202

£(d; e)

which in turn is equivalent to minimizing the quadratic form. This is the familiar “squared
intensity difference” matching criterion. This can be generalized by defining the observations
as differences of linear transformations of the image (ie. convolutions). For one such approach,
see [Kass86].

For digital images, minimizing (4.4) is accomplished in two steps. First, (4.4) is evaluated
for every discrete d in a predefined search range to find the minimum to pixel resolution. This
yields an initial estimate dp of d at pixel resolution. Then, an estimate of d at sub-pixel resolution
can be obtained by taking a first-order expansion of e about d = dp. This yields

e(x;+ Axj;dp) = L+ Axj — do) — I)(x; + Ax;)

IGx; + Axj +d — dp) — 10 + Axp) + n,(x; + Axj — dp) — mi(x; + Ax;)
BI(x; + Ax; +d — do)
ad

+ n,(xX; + Ax; — dp) — ni(x; + Ax;)
= I’(x‘- + ij)(d - do) -+ n,(x; + AXj — do) — n,(x; + Ax,)

~ I+ Ax) + (d — do)

:! —_ I(X,' + ij)
d=dy

Since we are modelling the noise terms as white, we can abbreviate n,(x;+Ax; — dp) — m(x; + Ax;)
by n(x; + Ax;) henceforth, where the variance of n(x; + Ax;)) is o?. Collecting all e(x; + Ax;; d),
I'(x; + Ax;), and n(x; + Ax;) into the vectors e, J, and n, we obtain

e J(d—dp)+n. 4.5)
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For implementation, the derivatives I’ are estimated from f;. Since I; is noisy, the derivative
estimates will also be noisy; this can be moderated by smoothing the image before differentiation.
With the linearized model of e in (4.5), the conditional density of e is

1 1
eld) = = oxp (~gogle — 3 - do)Te — Jd - o] (4.6)

Taking the log of this and setting the derivative with respect to d to zero, we obtain the following,
revised estimate of 4:
Je
Jy
This can be iterated to refine the disparity estimate. In practice, iterating will require estimating
the intensity errors e at positions between pixels. This can be done by fitting curves to the
discrete intensity image.

The uncertainty in the disparity estimate is expressed by the variance of the estimation error,
E[d?] = E[(d — d)*]. Assuming d is unbiased (E[d] = d), standard error propagation techniques
[Maybeck79] lead to the following estimate of the error variance:

2=d0+

~ 02 2
E[d) = 35 = o @.7

As we discuss below, this expression is actually a lower bound on the error variance.

The variance estimate o2 relates the precision of the disparity estimate to the noise level
o? and the “edginess” of the images, as expressed by the squared intensity derivatives J7J
[Forstner86]. Since these derivatives can be computed from [; before attempting to match,
the variance estimate can be used as an interest operator to decide where matching should be
attempted [Forstmer88]. In fact, the directional variance terms of the Moravec interest operator
[Moravec80] used in chapter 2 are essentially the same as 3. Thus, (4.7) offers a specific
definition of interest operators in terms of the achievable precision of disparity estimates at that
point in the image. Equivalent expressions that relate the error variance to the image power
spectrum are given in [Forstner89] and [Ryang&0].

If o2 is not known in advance, it can be estimated from the residual intensity errors after
matching is done. The estimate is given by

7= — 3~ &) — LT,
h— 1%

where n is the number of pixels in the window. This is a special case of the posterior estimate
of the reference variance [Mikhail76,Vanicek86] discussed in chapter 2 and appendix B.4. The
denominator in this expression is the number of degrees of freedom in the data, which in this
case is n— 1 because it has been used to estimate one unknown. Note that 52 is a random variable
itself, so consideration must be given to the variance of 53 before it is used. Since (n — 1)53/0?
has a x? distribution with n — 1 degrees of freedom [Mikhail76] and variance 2(n — 1), the law
for variance propagation through linear transformations implies that the variance of 3 will be
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20*/(n — 1). To see what this means in practice, in our experience a typical value for o2 in
8-bit images is about 1.3. For the 5 x 5 matching window used in our experiments, this leads
to a standard deviation of &3 of almost 0.5, which is very high relative to the true value. Better
precision can be obtained by averaging over many non-overlapping windows.

Finally, we observe that the overlap of matching windows for nearby pixels will cause
disparity estimates to be correlated for pixels separated by distances 7 < w, where w is the
width of the matching window!. The existence of this correlation will be of interest later when
we consider Bayesian formulations of the matching problem, so we will derive a model of the
correlation here. From preceding results, for pixels x; and x; = x;+7 we obtain disparity estimates
as follows:

Jae(x:; d(x:)
JG)TI )
Jxpe(x; d(x;))
JGHNTI(x)
We will abbreviate the quantities in these expressions by replacing the parameters x; and x; by

the subscripts i and j. By definition, the covariance of d; and d is o = El(d; — d)(d d;)].
Assuming that the disparity estimates are unbiased, this can be expanded to:

dx) = do(x)+

dx) = do(x)+

oy = E[(d; — d)(d; — d)] = Eldd}] — did;

-  Jdie L Je ¥
- | (d35) (0 JTJJ)] ad

_ YTE[eel1);
ATIATI)

When 7 = 0, the above expression reduces to o2/J7J;, as we expect. For 7 # 0, E[e,eT] is a
matrix with all elements zero except for a diagonal of 1’s at a distance T from the main dlagonal
Making the approximation that all elements of J; and J; are equal to the same constant c, the
expression reduces to

~ |7)o?
w2c?
where w is the width of the window. Thus, the covariance function is approximately triangular
for |r| < w and zero for 7 outside this region. Given the symmetric, tapering nature of the
function, it may be reasonable to make the further approximation of modelling the covariance
function K,(i,) as exponential,

"j ~ )

Ku(i,)) = 010501,

for some p € (0, 1), where o; and o; denote the standard deviations obtained at x; and x;,
respectively. We will use this approximation in chapter 5 to design a joint Bayesian formulation
of the stereo matching problem.

IThe presence of correlated noise in the images would also induce correlation in the disparity estimates.
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Formulation for 2-D Displacements

Estimating 2-D image displacements is important when epipolar lines do not correspond to scan-
lines, when tracking feature points through image sequences as in chapter 2, and when estimating
2-D optical flow [Anandan84,Heeger88]. In the 2-D case, we model the displacement estimate
as a 2-D, Gaussian random vector and characterize the estimation error by the 2 x 2 covariance
matrix of the probability density. Extending the 1-D formulation to 2-D is straightforward and
has been done before. For completeness, we include the following derivation, which is based
on that in [Forstner86]. Related derivations, both statistical and heuristic, have been given in
several papers dealing with optical flow estimation [Anandan84,Heeger88,Nagel86).

First, let x; = [x,, yq]T denote a 2-D image coordinate vector, let Ax; = [Ax,, Ay,]” index
pixels in a window around x;, and let d = [d,,dy]T denote a 2-D image displacement vector.
Then the observation equation (4.2) can be rewritten for 2-D as

e(x; d) = I,(x; + Ax; — d) — Ii(x; + Ax;).

Taking the first order expansion with respect to the vector d about an initial estimate d, and
proceeding as in the 1-D case, the updated estimate of the displacement vector is

d =do+ 73" e,

where e is the vector of intensity errors [ey, ..., e,]7 and the Jacobian matrix
681 Bel
dd, dd,
J = E s ?
Oe, Oe,
od, dd,

is evaluated at the initial estimate dy. As before, this estimate can be iterated until the correction
is near zero. The 2 x 2 covariance matrix of the displacement estimate is

Ba=a2J 7L (4.8)

The eigenvalues of this matrix determine the size of ellipses of constant probability; therefore,
they determine how well localized is the displacement estimate. The ratio of the eigenvalues
determines the eccentricity of the ellipses; the degree of eccentricity characterizes whether the
displacement estimate is well localized in zero, one, or both dimensions. Being well localized
in both dimensions is important in tracking feature points; thus, the interest operator of chapter
2 is closely related to (4.8). The degree of eccentricity also has significance in optical flow
estimation; this is discussed in [Anandan84,Heeger88,Nagel86].

4.2 Properties of the Estimator

Several properties of maximum likelihood estimators are relevant to the performance of the
operator above and to the experimental evaluation performed in section 4.3. These are whether
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the operator is unbiased, whether it achieves minimum variance, and whether the estimation
errors are in fact Gaussian distributed.

An unbiased estimator is one for which the expected value of the estimation error, E[d], is
zero. For linear estimation problems with zero-mean, Gaussian noise, the MLE will always be
unbiased. Therefore, disparity estimates will be unbiased when the images consist of a linear
intensity ramp with added noise, I(x) = ax+b+n(x). For arbitrary, nonlinear intensity variations,
unbiasedness is not guaranteed. However, the MLE converges in probability to the correct value
of the unknown parameter as the number of observations tends to infinity (ie. asymptotically). In
image matching, this implies that larger windows are less likely to suffer from bias than smaller
windows.

Regarding variance, it can be shown [VanTrees68] that for observations Y of an unknown
parameter vector X,

Y=fX)+n,

where n is noise, a lower bound for the variance of any unbiased estimator is given by the

expression 1
g | (2InP@IX) 48
X '

This is known as the Cramer-Rao bound (CRB) and any estimator that achieves this bound
1s called efficient. The bound is achieved for linear problems with Gaussian noise. In other
cases, the variance of a given estimator may be higher, but it will approach the lower bound
asymptotically and will be close to the lower bound whenever the magnitudes of the estimation
errors are small relative to the degree of nonlinearity [VanTrees68]. For our model of the
disparity estimation problem, the CRB is the same as the variance estimate in equation (4.7).
Therefore, for a linear ramp image we expect the error variance to be given accurately by (4.7),
whereas for nonlinear intensity variations the actual variance of the estimator may be higher.
The asymptotic property implies that the variance will approach the lower bound as the window
size increases.

Finally, since our disparity field representation models depth estimates as Gaussian, we would
like to know how well this model matches the actual sample distribution. Asymptotically, the
MLE is Gaussian with mean equal to the true value of the unknown variable and variance equal
to the CRB.

In summary, for linear ramp images with Gaussian white noise, the MLE 1is unbiased,
minimum-variance, and Gaussian; for nonlinear images with possibly non-Gaussian, non-white
noise, the MLE has these properties asymptotically. In the following section, we see to what
extent these properties are observed experimentally with a specific size of match window.

4.3 Evaluation

The goal of our experimental evaluation was to verify that the estimator behaves approximately
in accord with the foregoing mathematical model. This was done by checking for bias in the
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disparity estimates, by comparing the sample variance of the estimates against the theoretical
lower bound, and by testing the normality of the sampling distribution. Three sets of experiments
were performed. The first used synthetic, linear ramp images corrupted with synthetic, Gaussian
white noise to verify the mathematical model under the conditions to which it applies exactly.
The second used real images with synthetic noise to test the behavior when the intensity signal is
realistic but the noise is ideal. Finally, the last experiment examines the behavior of the estimator
with real images and real noise.

Implementing the operator requires computing intensity differences at arbitrary points be-
tween pixels, which in turn requires interpolating the image. Since we did not wish to make a
study of the interpolation issue, we simply fitted the image with a cubic interpolating spline?.
Intensity differences were computed by evaluating the spline at the given disparity value. Deriva-
tives were estimated by central differences.

4.3.1 Linear Image with Synthetic Noise

With a linear ramp image, we expect estimates for small windows to be unbiased, to achieve the
CRB, and to be Gaussian distributed. For this set of experiments, we generated reference images
I,(x) = ax with slopes a of 2.0, 4.0, and 8.0. We then generated target images /,(x) = a(x + d)
with offsets d of — 0.2, 0.0, and + 0.2 pixels and added noise with variance ¢% = 1 to each
target image. For each offset, we performed 5000 trials of matching the reference to the target
images with 5 x 5 windows around each pixel. At each pixel, we computed the sample mean
and sample variance of the 5000 disparity estimates. These sample statistics were then averaged
over several hundred pixels to get an impression of the general behavior of the estimator.

Table 4.1 summarizes the results. There is no appreciable bias. The sample variances are in
close agreement with the lower bound. In fact, they average slightly below the lower bound for
image gradients of 4.0 and 8.0. We have not explained this, but expect that it is due to minor
numerical problems or imperfections in the random number generator. Figure 4.1 illustrates these
results graphically by plotting histograms of the sample means for approximately 600 pixels. The
histograms confirm the impression given by the averaged results in the table.

To visualize the adequacy of the Gaussian model for the estimation errors, Figure 4.2 shows
a histogram of the disparity estimates for a single pixel plotted together with a Gaussian curve
whose mean and variance equal the sample mean and sample variance for that pixel. The
agreement between the histogram and the Gaussian curve is very close. A x? goodness of fit
test with this data accepts the Gaussian hypothesis at a 70% significance level. Therefore, for
a 5 x 5 window under the ideal conditions of this simulation, the Gaussian model is very good
indeed.

We conclude from these experiments that the behavior of the disparity estimator agrees very
well with the mathematical model for linear ramp images with Gaussian white noise. Next, we
check the behavior with more realistic image data.

2Parabolic blending [Rogers76]
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Gradient | Sample mean (avg.) CRB Sample Variance (avg.)
2.0 0.00020 0.01 0.0101
4.0 0.00009 0.0025 0.00251
8.0 0.00004 0.000625 0.000627
(a) Results for linear ramp image, true disparity = 0.0 pixels
Gradient | Sample Mean (avg.) | CRB Sample Variance (avg.)
20 -0.199 0.01 0.0100
40 -0.200 0.0025 0.00247
8.0 -0.200 0.000625 0.000616
(b) Results for linear ramp image, true disparity = - 0.2 pixels
Gradient | Sample Mean (avg.) CRB Sample Variance (avg.)
20 0.199 0.01 0.0100
4.0 0.200 0.0025 0.00247
8.0 0.200 0.000625 0.000616
(c) Results for linear ramp image, true disparity = 0.2 pixels
Table 4.1: Results for linear ramp image.
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Figure 4.1: Bias plot, linear ramp image



CHAPTER 4. DEPTH ESTIMATION: BASIC DISPARITY AND ERROR ESTIMATION 74

200
180 - A
160 A (
140 -
120 -
100 -

80 -

60 4

Frequency

03 -02 01 -00 01 02 03 04 05 06 07
Disparity (pixels)

Figure 4.2: Disparity histogram, linear ramp image

4.3.2 Real Image with Synthetic Noise

The goals of the second experiment were to examine the bias, variance, and distribution char-
acteristics with a real image when the noise was known to be Gaussian, white, and stationary.
Therefore, the previous experiment was repeated with the center quarter of the image in Figure
4.3 used as the reference image. Target images were created by adding noise with 62 =1 to the
reference image. 5000 matching trials were performed for a true disparity of 0.0 pixels.

Figure 4.4 shows a histogram of the sample means. Over 90% of the means had an error of
less than 0.001 pixels and the worst errors were less than 0.03 pixels. While cases leading to
greater bias probably can be constructed, these results suggest that bias will not be significant
with natural images.

Figure 4.5 plots the sample variance at each pixel against the variance estimate computed
with equation (4.7) from the noise-free reference image. In other words, each point in the scatter
plot compares the sample variance of the disparity estimates at one pixel with the theoretical
lower bound. The points cluster very closely around the ideal, unit-slope line.

A x? test for an arbitrary pixel accepted the Gaussian hypthesis at a significance level of 5%.
The histogram of disparity errors is plotted with the Gaussian curve superimposed in Figure 4.6.
The Gaussian model is satisfactory.

In summary, the simulations show that the estimator achieves near-optimum performance
with a real image corrupted with synthetically generated Gaussian white noise.
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Figure 4.3: Poster used for simulations with realistic data
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Figure 4.4: Bias plot, tiger poster
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Figure 4.5: Theoretical variance lower bound (CRB) vs. sample variance. The line shows the
theoretical variance, the dots show actual variance.
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Figure 4.6: Histogram of disparity errors for a single pixel for the matching experiment with the
tiger poster and synthetic noise. Superimposed is the Gaussian curve with mean and variance
equal to the sample mean and variance.

4.3.3 Real Image with Real Noise

Noise in real cameras and digitizing systems departs from the idealized model used so far. Since
modeling these characteristics more accurately is beyond our scope, the final set of experiments
was done to verify that the estimator performs satisfactorily despite the inaccuracy of the noise
model. In these experiments, two new images of the poster in Figure 4.3 were digitized for
each matching trial. The true disparity was again zero. One form of noise compensation was
performed. Electrical interference caused low-frequency, low-amplitude intensity fluctuations to
roll down the images. To remove these, we subtracted out bias differences between corresponding
scanlines of the image pair.

A histogram of the sample means computed for a 60 x 70 pixel segment of the image is
shown in Figure 4.7. The results agree closely with those observed in simulation. The maximum
deviation from the true disparity of zero is less than 0.02 pixels.

A histogram of 5000 disparity estimates at a single pixel is shown in Figure 4.8 with a
Gaussian curve superimposed in the same manner as for the simulation result shown in Figure
4.6. The x? test accepts the Gaussian hypothesis at a significance level of 50%. The agreement
with the Gaussian model is excellent.

Finally, two factors complicate evaluation of the variance of the estimator. First, both images
contained noise in this experiment, so the variance estimates at a single pixel fluctuate from image
pair to image pair. Second, the image noise level is not constant, so efforts to compute ensemble
statistics by averaging over time are complicated by the non-stationarity of the noise. Assuming
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Figure 4.7: Bias histogram for real image with real noise
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Figure 4.8: Disparity histogram with Gaussian curve for real image with real noise
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that the noise is approximately stationary within each image, a simple way to overcome these
problems is to compute sample variances by spatial averaging with a single image pair instead
of time averaging over many image pairs®. This is done by taking the sample variance for all
pixels with estimated variance within a small distance from a nominal value, then comparing the
sample variance to this nominal value. By partitioning the range of the estimated variances and
applying this technique to each partition, we obtain comparison plots analogous to Figure 4.5.

Results for disparity estimates from the entire tiger image are shown in Figures 4.9 and 4.10.
For these results, o was estimated as described in section 4.1. Figure 4.9 shows the estimated
standard deviation versus the sample standard deviation, while Figure 4.10 shows the number
of pixels in each partition®. The agreement between the estimated and actual standard deviation
is quite good, except for a constant offset of about 0.14 pixels. This offset may reflect timing
jitter in the digitizer scanline clock. The larger variation at higher ¢’s may be due to the smaller
number of pixels available for computing sample statistics, as indicated in Figure 4.10. We
conclude that the results indicate that it is possible to obtain meaningful uncertainty estimates
from the images themselves.

4.3.4 Conclusions

To recapitulate the results of the experiments, we found that the estimator did not produce
significant bias in any of the experiments. The distribution of the estimation errors witha 5 x 5
match window was sufficiently close to Gaussian in all cases tried. The variance of the estimator
was close to the theoretical lower bound for both the ideal, linear ramp image and for the realistic
image when the noise was white and Gaussian. For the real image with real noise, the image
noise level was determined from the images being matched by averaging the reference variance
esimates over the whole image. Using this estimate for 02, we found that the variance of the
estimator was again in moderately good agreement with the theoretical lower bound.

In conclusion, it was found that the Gaussian model of disparity uncertainty is a good
description of the experimentally observed estimation errors. It was also found that the variance
of the estimation errors could be estimated fairly well directly from the image pair using equation
(4.7). Therefore, the variance estimate is a good description of the uncertainty in the disparity
estimate and may be useful in subsequent reasoning about disparity uncertainty. Limitations of
these conclusions lie in the fact that the experiments used a fronto-parallel, non-specular surface
translated parallel to the image plane. The impact of surface slant, shininess, and other effects
must be examined in the future.

3This technique was developed by Rick Szeliski
“We plot standard deviation instead of variance on the assumption that most people will find it easier to relate
this to error as a fraction of the pixel size
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Figure 4.9: Variance scatter plot with spatial averaging
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Figure 4.10: Number of pixels in each partition. Partition size is 0.005 sigma.
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4.4 Extensions and Related Work

Many extensions to this work suggest themselves. Foremost is to improve the matching and/or
noise models for real images. Modifying the matching model of equation (4.1) to include a
linear transformation of the window from image /; to image I, [Forstner86,Gennery80], with the
scale and offset terms of the transformation treated as unknowns, may improve the estimator.
We have not considered the effect of correlated noise on the estimator. This may be important
if the noise is spatially correlated or if image prefiltering is performed, for example to reduce
resolution, since this may introduce correlations even if the noise was originally uncorrelated.
The effects of perspective compression and non-Lambertian reflectance also need to be analyzed.
Extensions at a higher level of abstraction include characterizing the probability of error in the
disparity estimate and dealing with the issue of scale. Error probability has been discussed in
[Gennery80]. A multi-scale approach to obtaining image difference measurements is given in
[Kass86,Kass84].

4.5 Summary

The goals of this chapter were to elaborate a basic, probabilistic formulation of image match-
ing and to examine the validity of the uncertainty models employed. To do so, we derived a
maximum-likelihood, sub-pixel estimate of disparity, given observations of intensity differences
between image pairs, and derived the corresponding error variance. This estimator is asymptoti-
cally unbiased, minimum variance, and Gaussian. We showed in simulation that these properties
were observed for 5 x 5 matching windows for the ideal case of linear ramp images and for
a real image, so long as the noise conformed to the Gaussian white model. For real image
sequences with real noise, the estimator did not show significant bias and the estimation error
was approximately Gaussian. A comparison of the estimated disparity variance and the sample
variance showed that the sample variance was higher than the estimate by roughly a constant
factor. Thus, the estimated variance appears to have been a good model of the actual uncertainty,
up to an unmodelled, additive factor. We conclude that the Gaussian model of estimation error
is valid under our experimental conditions, which consisted of a non-specular, fronto-parallel
surface. We accept this is adequate justification for pursuing extensions of the ML formulation
of this chapter to a Bayesian formulation of the bootstrap operation in the following chapter.







Chapter 5

Depth Estimation: Bootstrapping Stereo
Fusion

In chapter 3, we outlined a statistical formulation for depth map estimation and described an
approach to “bootstrapping” stereo fusion by using narrow-baseline and wide-baseline image
pairs. Chapter 4 derived a classical, area-based, maximum-likelihood disparity estimator and
presented experimental results to justify the use of a Gaussian random field model of depth
maps. In this chapter, we extend the estimator of chapter 4 by developing Bayesian matching
algorithms for the bootstrap operation.

We begin by identifying three classes of single-scale depth map estimation algorithms. These
are algorithms that estimate depth independently for each pixel, jointly for each scanline, or
jointly for the entire image. Phrased another way, these algorithms are either completely un-
coupled, coupled in 1-D, or coupled in 2-D. We then develop algorithms for the independent
and joint 1-D classes. These lead to simple, efficient algorithms that use depth estimates from
the narrow-baseline image pair as prior densities for matching the wide-baseline image pair.
For the joint 1-D case, we develop two algorithms that generalize current regularization-based
approaches to matching. This is done by constraining the disparity field estimated from the
wide-baseline image pair to have smoothness properties similar to those measured from the
narrow-baseline image pair, rather than employing universal smoothness heuristics as existing
algorithms do. We briefly examine the possibility of 2-D coupling. The main advantage of such
approaches appears to be enforcing coherence between scanlines. Since area-based matching
algorithms already achieve this to some degree by using 2-D image comparison operators, we
conclude that 2-D coupling is probably unnecessary. After developing matching algorithms, we
examine issues of sensitivity, computational complexity, and matching ambiguity that arise in
determining both the direction and the distance to move the cameras in obtaining the narrow-
baseline image pair. Finally, we show that the algorithms developed here perform very well on
images of scale models of outdoor scenes.

The results of this and the previous chapter lead us to conclude that the three main components
of the approach we have pursued — the random field model of depth, area-based matching, and
the bootstrap operation — are very promising techniques for stereo depth estimation in complex,
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Figure 5.1: Images and matching steps in the bootstrap operation

unstructured environments. We close this chapter by discussing limitations of our work to date
and outlining areas for extension.

5.1 Mathematical Models and Matching Algorithms

We begin by recalling the overall approach outlined in chapter 3. The goal is to estimate the
disparity at every pixel in the image; that is, to estimate the entire disparity field, which we
denote by the vector d. We model prior information about d as jointly Gaussian with mean d~
and inverse covariance Wy. We model intensity differences between the two images as Gaussian
conditioned on d. Bayes’ theorem is used to obtain an estimate d* of d, with inverse covariance
Wg. We operationalize this formalism in a bootstrap operation that uses fine camera motion to
initialize stereo fusion.

There are many ways to use camera motion to assist stereo fusion. Figure 5.1 illustrates the
specific scenario we explore in this chapter. We assume that two, narrow-baseline images I, and
I, are taken with the left camera. Assuming that prior information guarantees that all disparities
lie in the range [dpnin, dmaxl, We match Ij to 1) to sub-pixel precision using techniques similar to
those of the previous chapter. The resulting disparity estimates determine a prior density for the
disparity field that constrains matching for the wide-baseline image pair of I, and I,.

In the balance of this section, we develop mathematical models and matching algorithms for
this scenario. The algorithms operate at a single scale of resolution. We distinguish three classes
of models that differ in the model for Wy:

Fully independent model: This treats the prior density of d as completely uncorrelated, so that
Wy is diagonal. With this model, we estimate disparity for each pixel independent of all
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others <not quite right because of overlapping windows>. As we discussed in chapter 3,
this provides for a very simple matching algorithm, but requires that prior information be
sufficiently constraining to make the match unambiguous. The intent of the camera motion
is to provide this information.

Joint 1-D model: This treats d as correlated within scanlines, but as uncorrelated across different
scanlines. With this model, we estimate disparity for each scanline as a unit, but there is
no interaction between scanlines. This can lead to matching algorithms that incorporate
constraint neighboring pixels within each scanline, yet are efficient in space and time
and allow separate scanlines to be processed in parallel. The key issues in developing
such algorithms are to find reasonable correlation models and to find matching algorithms

that can estimate jointly optimal disparities for the scanline under the assumed correlation
model.

Joint 2-D model: This treats d as correlated across as well as within scanlines. With this model,
the optimal estimate at each pixel depends on neighbors above and below, as well as to
the left and right. This may lead to better estimates than the first two models, but the
coupling between scanlines also increases the computational burden in determining optimal
estimates.

We consider each of these models below. For the first two, we develop complete matching
algorithms for the bootstrap operation. These algorithms are efficient and perform well on com-
plex images. For the third model, the joint 2-D case, we examine issues involved in developing
such an algorithm and contrast likely characteristics of such algorithms with the algorithms we
develop for the joint 1-D case. We conclude that it does not appear attractive to purse the joint
2-D case, so we do not develop an algorithm for it.

5.1.1 Fully Independent Model

Figure 5.1 illustrates the images acquired and the sequence of matching operations performed
in the basic bootstrap scenario. We assume that the left camera acquires image /;,, moves to
acquire image /;,, and that the right camera acquires image /,. Considering only 1-D images for
simplicity, we model the images as shifted, noise-corrupted versions of the same deterministic
signal:

I,(x) = I(x—d(x))+ n,(x)
Inx) = I(x)+n,(x)
L(x) = I(x+kdx)+n(x).

Here d(x) is the disparity function and the constant k is the ratio of disparity between I;, and I,
to the disparity between I;, and I,. If the spacing between the images is equal in both cases, £ is
1; in general we will want less spacing between I, and I;, than between I;, and I,, so in general
k will be larger than 1.
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To estimate disparity at pixel x; in image I;, we observe intensity differences between the
images in a window around x; in the same way as in chapter 4. Assuming that d(x) is constant
in a small region around x;, the intensity errors between I;, and I;, and between I and I, are,
respectively,

e,,(x,- + AXj; d) = I,o(x,- + ij + d) —_ Ill(xi + Ax])
e (xi + Axj; d) L(x; + Ax; — kd) — I, (x; + Ax;).
We denote the intensity errors in a region around x; for both image pairs by the vectors e; and
e, Tespectively.
To derive the estimator, we will first extend the maximum-likelihood formulation of chapter

4 to a Bayesian formulation matching with the narrow-baseline image pair. We will then extend
this to apply the result to the wide-baseline pair.

I

Formulation for I;, and 7,

In chapter 4, we used the conditional density f(ey|d) to obtain maximum-likelihood disparity
estimates. Here, we use Bayes’ theorem
Sfley,d)

fdlen) = flen)

to obtain expressions for the posterior density of d, given ey, in terms of the joint density
f(eu, d) and the marginal density f(e;). As in chapter 2, we use the MAP criterion to define the
optimal estimate. For a given set of observations, the marginal density in the denominator is a
constant normalizing term that is not needed to arrive at our results. We assume that any prior
information about d comes from external sources, such as a laser scanner or a map database,
and is independent of the image noise.

We assume that the prior information can be modelled by a Gaussian density with mean a-
and variance s—; that is,

é.1

1(d—d-)?
2_______} , (5.2)

fd) « exp{~- p=

When d is independent of the image noise, the conditional density is the same as we gave in
chapter 4:

fley|d) CXP{ e,, Teyl.

With the MAP criterion, the optimal estimate of d maximizes f(d|ey), which is equivalent to
maximizing the log-likelihood

—\2
2(d)=——12-{ e,, y+-(ii—-s—d——)—}+K, (53)

where K is a constant. Therefore, we obtain disparity estimates to pixel resolution by maximizing
(5.3) over d, or equivalently by minimizing the expression in parentheses,

;Eeﬂ ey F i (5.4)
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Figure 5.2: Bayesian matching for a single pixel. Curve Cp represents the quadratic cost term
from the prior density; curve Cy illustrates the intensity error or “likelihood” term. Local minima
of C;, become candidate disparities.

This is just a combination of the intensity error term of chapter 4, weighted by the inverse
noise variance, with a quadratic penalty for deviation from the prior estimate, weighted by the
variance of the prior estimate. Figure 5.2 illustrates this by plotting the quadratic term (curve
Cp) and the intensity error term (Cy) as a function of disparity. The latter may have several local
minima, as shown in the figure. Intuitively, we can view the local minima in Cy as defining
candidate disparities and the prior term as influencing which candidate is considered optimal.
Our implementation does exactly that by evaluating (5.4) only at local minima in C;. The best
local minimum according this criterion defines the disparity estimate to pixel resolution, which
we denote dp.

Sub-pixel disparity estimates are obtained by linearizing the observation equations about dp,
as done in chapter 4. Expanding the error observed at dj yields:

en(xi+ Axj;do) = In(x; + Axj + do) — I, (x; + Ax;)
= I(x,-+ij — d+d0) —I(x,- +ij)+n,°(x,- +A}Cj+d()) —-n,,(x,-+ij)

n I+ Ay — (@ —do) ZEF A ZdHd)] | e A
ad i
+ ng, (x; + Axj) — ny, (x; + Ax;)
= ——I’(x; + AXj)(d —dy) + nIO(x,- + ij') —ny, (xg + AXj). (5.5)

Letting J be the vector of derivatives over a window around x; and letting n;, and n;, be the
corresponding noise vectors, the linearized measurement vector is

ey~ —J(d—dy) +n;; —ny.

Substituting this approximation for ey into (5.3), the log-likelihood becomes

a2
‘@ ~ - {;}z-[eu + 3(d — do)"len + J(d — do)] + 5—‘—1—;_‘—’—)-} +K. (5.6)
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The MAP estimate of d is obtained by taking the derivative d¢/dd, setting it to zero, and solving
for d. This produces

T T T e
2 = [JJ _;_] [JJdO Jeu 9’__]

o2 5= s

T -1 14T ~
= J J — J_J. dO -+ l.fﬁ + g_.. .
02 $= o? J7J s~
Here, (do + J7ey/J")) is the linearized maximum likelihood estimate derived in chapter 4 and
J7J/o? is the corresponding error variance. Denoting these terms by dyy, and o, gives

-1 ra o~
~ 1 1 dyr d-
df = |—>—+—| |+ |. 7
il [O’}lL+S"] [Uiu S‘] (5 )

Thus, d;; is a weighted combination of the prior estimate 4~ and the maximum-likelihood estimate
du, where aML is computed by linearizing about the best pixel-resolution disparity. As in chapter
4, this process may be iterated to further refine the disparity esimate. The form of (5.7) suggests
the simplicifation of iterating djy;. to convergence, then combining this with d- to compute d,,

By completing squares in the exponent of f(ey|d)f(d), it can be shown [DeGroot70] that
d;; as above is the mean of the posterior density f(d|e;) and that the posterior variance is

1 11!
Sl+[ = {;i—--*-—] . (5.8)

Therefore, s}, is the variance of the estimation error in d;.

To summarize what we have done so far, we assumed that a prior disparity estimate was
available for each pixel and modelled this estimate as Gaussian, with mean d— and variance 5~.
Using the conditional density f(ey|d) from the previous chapter, we derived the log-likelihood
£(d). The intensity error term of £(d ) is evaluated for all disparities in a search range [dmin, dmax) " -
Local minima of this term define a set of disparity candidates at pixel resolution; the candidate
for which (5.4) is minimal becomes the initial disparity estimate dy. We then used a first order
expansion of e; about dy to derive the posterior mean Zi{,’ (5.7) and variance s}, (5.8) of 4,
which define the “best” estimate of d and the variance of the estimation error. In practice, we
decompose the calculation of d,, by iterating the linearized, maximum-likelihood estimate dyy
to convergence, then combining dyy, with the prior estimate d~. If there is no prior information,
s~ is infinite and the equations reduce to the maximum-likelihood estimator.

We repeat this procedure for each pixel in J;, to estimate the entire disparity field. In regions of
the image with negligible intensity variation, this will not yield a meaningful disparity estimate.
Such regions can be detected before attempting to match by thresholding o, , which can be
computed in advance. Thresholding o2, amounts to applying an interest operator; however,
instead of choosing to match only at local maxima of the interest value, we match everywhere
where interest falls within a threshold.
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Formulation for /; and I,

The above operation is used to estimate a disparity field from the narrow-baseline image pair,
I, and I;,. This disparity field becomes the prior density for matching the wide-baseline image
pair, I, to I,. Therefore, what were the posterior mean and variance, d;; and s};, now become
the prior mean and variance, d;; and s;;. The observed intensity errors for this image pair are

en(xi + Axj; d) = L(x; + Ax; — kd) — I, (x; + Ax;j).
The appropnate form of Bayes’ theorem is

fler, ey, d) f(ezr[ezl, d)
flen,ep) flerlen)

The conditional density f(e,|es, d) is somewhat more complex than the density f(ex|d) for the

narrow-baseline case, because the sharing of I; makes e; and e, correlated. For the moment,
we will avoid the additional complexity by ignoring this correlation and using f(e;|d) instead of
f(er]en,d). This is equivalent to assuming that the narrow-baseline depth estimate is independent
from I;, and I,; for example, this would be the case if a new copy of image I;, was acquired for
the wide-baseline match. Since we do not do this, the resulting estimator is sub-optimal.

With this simplification, the derivation of the estimator is very similar to the previous section.
Collecting the observations over the area of the match window into the vector e, and following
the MAP estimation method as before, we find that the optimal estimate of d minimizes

732
LeTe,+ U=%) 5.9)
o Sy

fldley,en) =

-f(d|ex)

This expression is used to determine the best disparity estimate to pixel resolution in the same
manner as before. If there is no prior information for the narrow-baseline case (i.e. s~ = oo),
then s, = 02/J7J and the above expression becomes

1, (d-dp)
e,, ¢, + —G_Z/—JTTI—"

This version is useful if the variance of the image noise is not well known, because then o
factors out of both terms and does not affect the match decision. Minimizing either of these
expressions produces the initial disparity estimate dp. :

Sub-pixel precision again is obtained by linearizing about dy. Expanding e; in a similar
fashion to (5.5), we obtain

2

e, = kJ(d— dp) +n, —ny.

Following through the MAP derivation of equations (5.6) through (5.8) leads to the following
disparity estimate and error variance:

R 24T
s () (2R)E] e

el

+ m—
o? Sy

st = (5.11)
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In (5.10), the term (do +J7e;,/J7J) is the ML disparity estimate for this image pair; the factor of
(1/k) scales the correction term so that the disparity estimate is in units of the narrow baseline.
Likewise, the term (k2J7J/0?) is the inverse of ML error variance, scaled into units of the
narrow baseline. Therefore, we can rewrite (5.10) as

. dyr dj
dy =sj, [kz—”z“ + —’5] :
oML Sir
which shows that the disparity estimate is again a weighted combination the prior estimate and
a new measurement obtained from images I, and /,. The weight of k2 attached to the new
measurement reflects the longer baseline used to obtain it.

If no prior information is available for matching the narrow-baseline image pair (s~ = o00)
(5.10) and (5.11) reduce to

I+ 1 275 o
d; = k2+1[k dy + 35|
S5 = o

SN CZINTY O o

That is, the new disparity estimate is a weighted combination of two measurements obtained
with baselines in the ratio of k : 1, which results in a weight ratio of k2 : 1. Note that if & = 1
(equal distances between both pairs of images), then the posterior disparity estimate is just the
average of the two measurements and the posterior variance is half that of the measurements, as
we would expect.

To summarize, by ignoring correlation between e, and the prior information about d, we
were able to apply the same estimator to the wide-baseline image pair as the narrow-baseline
image pair. An initial disparity estimate dy at pixel resolution is obtained by minimizing (5.9).
From this, a sub-pixel estimate and the error variance are obtained from (5.10) and (5.11). This
estimate can be iterated as described in the previous section. We also showed simpler forms of
the equations that result when s~ = co. Finally, if the correlation is taken into account, it can be
shown that different weights are obtained for the terms comprising 3,’; and that the final variance
is lower. We will not enter into the details here.

Overall Algorithm for the Bootstrap Operation

The entire procedure for estimating depth from the narrow and wide-baseline images consists of
the following steps:

o Compute o2 from image J;, and threshold it to determine which pixels to match.

* Match the narrow-baseline image pair for pixels within threshold. If prior information
consists of disparity limits, use the ML operator; otherwise, use the Bayesian operator.
Sub-pixel disparity estimates are computed by linearization and iteration.
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¢ Match the wide-baseline image pair. In principal, search windows for this step could
be established by deriving confidence limits from the prior estimate and centering the
resulting range around the prior mean. In practice, we use the more conservative approach
of assuming that the disparities from /;, and J; are accurate to within a fixed fraction of
the pixel width (generally 0.5 to 0.7), scaling this interval up according to the size of the
wide baseline, and using the result as the search window half-width. Within this search
range, we use the Bayesian operator. Again, sub-pixel disparity estimates are computed.

The results of this procedure are estimates of disparity, computed to sub-pixel resolution, and
error variance for each pixel within threshold of the interest operator.

Discussion

This algorithm is simple and efficient, because it does not use global optimization or the expensive
search methods sometimes used with global optimization. To achieve reliability, the algorithm
requires appropriate choices of the narrow baseline and the ratio between the narrow and the
wide baselines. This makes the choice of baseline, especially the automated choice of baseline,
an important problem. We consider this problem in section 5.2.

Whereas the algorithm in this section estimates depth for each pixel independently, most
binocular stereo algorithms attempt to gain reliability by using surface smoothness or “local
support” heuristics that couple the depth estimate at each pixel to estimates at neighboring
pixels. In the next section, we interpret these concepts in the context of the bootstrap operation.
This leads to attractive re-statements of the existing heuristics into forms that have better physical
and statistical justifications.

5.1.2 Joint 1-D Model

In terms of the probabilistic model of the entire disparity field, the fully independent algorithm
above is modelled by prior and posterior densities for the disparity field in which the covariance
matrix is diagonal; that is, there is no correlation in the field. In this section, we investigate
formulations that are coupled with one dimension. The corresponding probabilistic models in
which the disparity field is correlated within scanlines, but independent across scanlines. This
leads to objective functions that require global optimization within scanline, but which can be
minimized efficiently with dynamic programming.

As motivation, we begin with the gradient-based, surface-smoothness constraint discussed in
chapter 3. In the bootstrap scenario, the heuristic of low disparity gradient can be replaced with
the more justifiable constraint that gradients measured from the wide-baseline pair should be the
same, up to noise, as those measured from the narrow-baseline pair. In one dimension, the this
constraint leads to an objective function for which the global minimum can be found efficiently
by dynamic programming. However, this objective function is still based on a somewhat ad
hoc development and contains blending constants that must be defined heuristically. As a step
toward a more rigorous probabilistic model, we recall from chapter 4 that disparity estimates
obtained from the narrow-baseline image pair are in fact correlated. We use this observation
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to derive a joint, Bayesian estimator for disparity within scanlines that includes an exponential
model of correlation in the prior density. The resulting objective function is closely related to
the objective function based on the gradient constraint and can also be minimized by dynamic
programming.

Gradient Constraint Formulation

As we noted in chapter 3, a common approach to stereo matching has been to augment image
similarity measures with cost functions that penalize departures from smoothness in the estimated
disparity field [Barnard89,Boult88,Horn86,Poggio85,Witkin87]. The predominant smoothness
constraints have been based on first and second derivatives of the disparity field. In chapter
3, we looked an example based on first derivatives. In one dimension, this example chose the
disparity function d to minimize the integral

0@ = [ {thx~ ) — 1P + Md' @)} ax, (5.12)

where ) is a blending constant. The term (d'(x))? penalizes departures of the estimated disparity
field from zero derivative; that is, it biases the algorithm to prefer surfaces that face the cameras
directly. A suitable discrete version of this integral is obtained by using a forward difference
approximation of d'(x) to write

N N-1
q(d) = (Z U —dp) — Il(xi)]z) +A (Z(dm - di)z) :

i=1 i=1

With this cost function, we seek the disparity vector d = [d),...,d,]" that minimizes the total
intensity error across the scanline plus the weighted, total “deviation from flatness” of d. It is
useful to note that the second summation is equivalent to the quadratic form d"W,d, with

1 -1 0 - 00
-1 2 -1 - 00
W,=| 0 -1 2. 00
0 0 0 .- -1 1]

Thus, in 1-D the gradient constraint is equivalent to a quadratic form with a tri-diagonal coeffi-
cient matrix.

Unfortunately, constraining the estimated disparity field to have low gradients is purely
heuristic. Although it has been shown that this tends to be true for surfaces with random
orientations in space [Arnold80,Milenkovic85], this heuristic is by no means true everywhere
in the image or for all scenes. On the other hand, the bootstrap scenario allows this heuristic
to be replaced with another, more meaningful constraint. Because we are observing the same
surface with both the narrow-baseline and the wide-baseline image pairs, the disparity gradients
observed in both cases must be the same, up to the effects of noise. To relate this to (5.12),




